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Abstract: Many regulatory loops in drug delivery systems for depth of anesthesia optimization
problem consider only the effect of the controller output on the patient pharmacokinetic
and pharmacodynamic response. In reality, these drug assist devices are over-ruled by the
anesthesiologist for setpoint changes, bolus intake and additional disturbances from the surgical
team. Additionally, inter-patient variability imposes variations in the dynamic response and
often intra-patient variability is also present. This paper introduces for the first time in
literature a study on the effect of both controller and anesthesiologist in the loop for hypnosis
regulation. Among the many control loops, model based predictive control is closest to mimic
the anticipatory action of the anesthesiologist in real life and can actively deal with issues as
time lags, delays, constraints, etc. This control algorithm is here combined with the action of
the anesthesiologist. A disturbance signal to mimic surgical excitation has been introduced and
a database of 25 patients has been derived from clinical insight. The results given in this paper
reveal the antagonist effect in closed loop of the intervention from the anaesthesiologist when
additional bolus intake is present. This observation explains induced dynamics in the closed
loop observed in clinical trials and may be used as a starting point for next step in developing
tools for improved assistance in clinical care.
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1. INTRODUCTION

Many regulatory loops address drug dosing problems,
with applications varying among diabetes (Kovacs, 2017),
anaesthesia (Copot and Ionescu, 2014), immunodeficiency
(Popovic et al., 2015) and hormonal treatment (Churilov
et al., 2009). Drug intake, uptake and clearance have been
characterized using either compartmental models, either
input-output filters by means of linear transfer functions.
Compartmental models for drug kinetics are available in
the literature from population data and are based on Gaus-
sian normalized distributions (Pereira, 2010). Additional
dynamic response in drug effect is added as a pharmaco-
dynamic (PD) additional compartment, usually nonlinear.
The pharmacokinetic (PK) and PD models then combined
deliver the response to a drug input administered either
oral or intravenous, of an average patient (Holford and
Sheiner, 1999).

These average patient models are no longer valid in the
framework of individualised treatment paradigm, irrespec-
tive of the medical application. It is therefore important
to deliver models which are sufficiently accurate yet simple
in structure such that adaptation may be obtained (Nino
et al., 2009). To circumvent the complexity of compart-
mental models, input output models driven from online
� This work is financially supported by Flanders Research Centre,
grant nr 12B3415N, G008113N and G026514N.

data have been proposed as transfer functions with poles
and zeros identified for each patient (Soltesz et al., 2013;
Dumont et al., 2009). Their time constants may be related
to various residence times from different tissue properties
and volumetric elements.

The complete regulatory paradigm is however much more
complex that anything literature addresses from control
engineering point of view. The computer based drug dosing
optimisation is always limited in the information it receives
from the system (i.e. vital signals from the patient). In
general anaesthesia, the anesthesiologist must provide a
cocktail of optimal dosages of various drugs to induce and
maintain this complex physiological state in the patient,
while avoiding under- and over-dosing, and coping with
great patient variability (Ionescu et al., 2014; Copot and
Ionescu, 2014). As such, anaesthesia is much of an art
rather than a numerical problem. The expertise of the
team of doctors and the unique patient response may play
at times a role delimiting the fine line between life and
death-threatening situations.

Rather than delivering control algorithms based on indi-
vidualised patient models and optimal dosing protocols, in
an effort to mimic the operation theater with the actors
playing a role, fuzzy control seemed to be a good tool
at hand for multiple variable control (Shieh et al., 2005).
The fact that the controller was using a patient model
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based on neural network modelling with manifold of inputs
to extract via nonlinear functions the response to specific
drug input was clearly a step towards reality. However, the
necessity to ensure stability and maintain constraints for
patient well-being and safety required a control law which
can provide an analytical solution. Furthermore, feedback
based control loops have a drawback in their looking
backward policy, whereas true anticipatory reactions of the
anaesthesiologist require predictive control techniques, i.e.
looking in the future policies (Ionescu et al., 2014).

In this paper, we revisit our previous predictive control
algorithms for hypnosis regulation to include and analyse
the effect of anaesthesiologist in the loop (Ionescu et al.,
2008, 2014, 2015; Nascu et al., 2015). Since these are
merely assist devices, the clinical expert will always have a
supervisory role and intervene whenever necessary. From
a control engineering viewpoint, the action of anaesthe-
siologist is based on information which is not available
to the controller. For instance, the controller sees only
the hypnotic state of the patient, past values and past
drug dosing samples, makes a prediction for optimizing
the best suitable dosing scenario to reach/maintain the
desired level of hypnosis. The anaesthesiologist, however,
has a broader view of information, from the various sensing
devices monitoring vital signs of the patient, e.g. heart
rate, respiratory rate, distal oxygenation, and can antic-
ipate effects in the hypnotic state from the information
cocktail. Additional drugs to stabilise various other vital
signs alter the information and the controller does not
know this, i.e. in heart surgery patients medication alters
heart rate and indication of elevated hypnosis may not be
directly observable in the feedback signal (Ionescu et al.,
2014).

The paper is organized as follows. Next section presents
the materials and methods used, i.e. the PK-PD model
used to simulate the patients. The surgical stimulation
profile acting as a disturbance is also presented in the
same section. Third section presents the control algorithm
and the additional bolus intake protocol. The results and
discussion thereof are given in the fourth section, and a
conclusion section summarizes the main outcome of this
work and points to further use.

2. PATIENT MODEL FOR HYPNOSIS

As an important part of the anaesthesia paradigm, hypno-
sis is characterized by unconsciousness, i.e. inability of the
patient to recall intra-operatory events. In order to control
the depth of anesthesia by means of model-based control
strategies, a suitably defined model which captures the
dynamics of the relation between drug uptake, drug effect
and the patient is required (Nascu et al., 2015; Ionescu
et al., 2015).

The selection of the model input and output variables
is crucial for achieving optimal control (Dumont et al.,
2009; Ionescu et al., 2014). The PK-PD model most com-
monly used for Propofol is the 4th order compartmen-
tal model described in (Schnider et al., 1998, 1999). A
generic schematic representation of a PK-PD compartmen-
tal model is presented in Fig. 1.

Fig. 1. A schematic representation of a compartmental
model for PK and PD with two inputs and one
output. For the purpose of this paper, only one input
(Propofol) has been considered active and the second
one (Remifentanil) is zero.

The ODEs characterizing the Propofol uptake as the PK
model are given by the relations to the variation of con-
centrations xi with i = 1..3 the respective compartments
(i.e. blood, muscle, fat):

ẋ1(t) = k12x1(t)− k13x1(t)− k10x1(t)−
k1ex1(t)
−k21x2(t) + k31x3(t) + u(t)/V1

(1)

with u(t) the input infusion rate of drug (Propofol,
Remifentanil, or a combination of both).

ẋ2(t) = k21x1(t)− k12x2(t) (2)

ẋ3(t) = k13x1(t)− k31x3(t) (3)

with the parameters kji for ij, denoting the drug transfer
frequency from the jth to the ith compartment and u(t)
[mg/s] the infusion rate of the anaesthetic drug into the
central compartment.

ẋe(t) = k1ex1(t)− ke0xe(t) (4)

An additional hypothetical effect compartment represents
the lag between drug plasma concentration and drug
response. The amount of drug in this compartment is
represented by xe. The parameters of the PK models
depend on age, weight, height and gender (Schnider et al.,
1998, 1999) and can be calculated for Propofol as follows
:

V1 = 4.27[l] V3 = 2.38[l]
V2 = 18.9− 0.391 · (age− 53)[l]

(5)

The volumes V1, V2 and V3 represent the compartmental
volume, i.e. blood, muscle and fat.

Cl1 = 1.89 + 0.0456(weight− 77)−
0.0681(lbm− 59) + +0.0264(height− 177)[l/min]

(6)

Cl2 = 1.29− 0.024(age− 53)[l/min] (7)

Cl3 = 0.836[l/min] (8)

k10 =
Cl1

V1
[min−1]; k12 =

Cl2

V1
[min−1]

k13 =
Cl3

V1
[min−1]

(9)

k21 =
Cl2

V2
[min−1]; k31 =

Cl3

V3
[min−1]

ke0 = 0.456[min−1]
(10)

where lbm represent the lean body mass, Cl1 is the rate
(called also clearance rate) at which the drug is cleared
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deliver the response to a drug input administered either
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based on neural network modelling with manifold of inputs
to extract via nonlinear functions the response to specific
drug input was clearly a step towards reality. However, the
necessity to ensure stability and maintain constraints for
patient well-being and safety required a control law which
can provide an analytical solution. Furthermore, feedback
based control loops have a drawback in their looking
backward policy, whereas true anticipatory reactions of the
anaesthesiologist require predictive control techniques, i.e.
looking in the future policies (Ionescu et al., 2014).

In this paper, we revisit our previous predictive control
algorithms for hypnosis regulation to include and analyse
the effect of anaesthesiologist in the loop (Ionescu et al.,
2008, 2014, 2015; Nascu et al., 2015). Since these are
merely assist devices, the clinical expert will always have a
supervisory role and intervene whenever necessary. From
a control engineering viewpoint, the action of anaesthe-
siologist is based on information which is not available
to the controller. For instance, the controller sees only
the hypnotic state of the patient, past values and past
drug dosing samples, makes a prediction for optimizing
the best suitable dosing scenario to reach/maintain the
desired level of hypnosis. The anaesthesiologist, however,
has a broader view of information, from the various sensing
devices monitoring vital signs of the patient, e.g. heart
rate, respiratory rate, distal oxygenation, and can antic-
ipate effects in the hypnotic state from the information
cocktail. Additional drugs to stabilise various other vital
signs alter the information and the controller does not
know this, i.e. in heart surgery patients medication alters
heart rate and indication of elevated hypnosis may not be
directly observable in the feedback signal (Ionescu et al.,
2014).

The paper is organized as follows. Next section presents
the materials and methods used, i.e. the PK-PD model
used to simulate the patients. The surgical stimulation
profile acting as a disturbance is also presented in the
same section. Third section presents the control algorithm
and the additional bolus intake protocol. The results and
discussion thereof are given in the fourth section, and a
conclusion section summarizes the main outcome of this
work and points to further use.

2. PATIENT MODEL FOR HYPNOSIS

As an important part of the anaesthesia paradigm, hypno-
sis is characterized by unconsciousness, i.e. inability of the
patient to recall intra-operatory events. In order to control
the depth of anesthesia by means of model-based control
strategies, a suitably defined model which captures the
dynamics of the relation between drug uptake, drug effect
and the patient is required (Nascu et al., 2015; Ionescu
et al., 2015).

The selection of the model input and output variables
is crucial for achieving optimal control (Dumont et al.,
2009; Ionescu et al., 2014). The PK-PD model most com-
monly used for Propofol is the 4th order compartmen-
tal model described in (Schnider et al., 1998, 1999). A
generic schematic representation of a PK-PD compartmen-
tal model is presented in Fig. 1.

Fig. 1. A schematic representation of a compartmental
model for PK and PD with two inputs and one
output. For the purpose of this paper, only one input
(Propofol) has been considered active and the second
one (Remifentanil) is zero.

The ODEs characterizing the Propofol uptake as the PK
model are given by the relations to the variation of con-
centrations xi with i = 1..3 the respective compartments
(i.e. blood, muscle, fat):

ẋ1(t) = k12x1(t)− k13x1(t)− k10x1(t)−
k1ex1(t)
−k21x2(t) + k31x3(t) + u(t)/V1

(1)

with u(t) the input infusion rate of drug (Propofol,
Remifentanil, or a combination of both).

ẋ2(t) = k21x1(t)− k12x2(t) (2)

ẋ3(t) = k13x1(t)− k31x3(t) (3)

with the parameters kji for ij, denoting the drug transfer
frequency from the jth to the ith compartment and u(t)
[mg/s] the infusion rate of the anaesthetic drug into the
central compartment.

ẋe(t) = k1ex1(t)− ke0xe(t) (4)

An additional hypothetical effect compartment represents
the lag between drug plasma concentration and drug
response. The amount of drug in this compartment is
represented by xe. The parameters of the PK models
depend on age, weight, height and gender (Schnider et al.,
1998, 1999) and can be calculated for Propofol as follows
:

V1 = 4.27[l] V3 = 2.38[l]
V2 = 18.9− 0.391 · (age− 53)[l]

(5)

The volumes V1, V2 and V3 represent the compartmental
volume, i.e. blood, muscle and fat.

Cl1 = 1.89 + 0.0456(weight− 77)−
0.0681(lbm− 59) + +0.0264(height− 177)[l/min]

(6)

Cl2 = 1.29− 0.024(age− 53)[l/min] (7)

Cl3 = 0.836[l/min] (8)

k10 =
Cl1

V1
[min−1]; k12 =

Cl2

V1
[min−1]

k13 =
Cl3

V1
[min−1]

(9)

k21 =
Cl2

V2
[min−1]; k31 =

Cl3

V3
[min−1]

ke0 = 0.456[min−1]
(10)

where lbm represent the lean body mass, Cl1 is the rate
(called also clearance rate) at which the drug is cleared
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from the body, Cl2 and Cl3 are the rates at which the
drug is removed from the central compartment to the other
two compartments by distribution. The lbm for man and
women necessary in (6) is calculated using the following
expressions:

lbmm = 1.1 · weight− 128 · weight
2

height2
(11)

lbmf = 1.07 · weight− 148 · weight
2

height2
(12)

The relation between the effect site concentration and the
measured effect in the brain, i.e. the Bispectral Index (BIS)
is modelled as a nonlinear sigmoid Hill curve scaled be-
tween 0%-100%, with 100% denoting fully awake patient:

BIS(t) = E0 − Emax
Cγ

e (t)

Cγ
e (t) + Cγ

50

(13)

where E0 is the BIS value when the patient is awake; Emax

is the maximum effect that can be achieved by the infusion
of Propofol; C50 is the Propofol concentration at half of the
maximum effect and γ is a parameter which together with
the C50 determines the patient sensitivity to the drug. E0

and Emax are considered equal to the value of 100. This
signal has proved most suitable in clinical trials for regula-
tory closed loops in hypnosis (Sakai et al., 2000; Absalom
et al., 2002; Absalom and Kenny, 2003). The ODE model
has been shown to be approximated by linear transfer
functions, more practical from control engineering point
of view, while still related to compartmental physiology,
as in Soltesz et al. (2013). An important factor in the
origin of great uncertainty in patient PD model is the great
patient variability (Ionescu et al., 2016; Padula et al., 2016;
Ionescu et al., 2011), which require the additional actions
of the anesthesiologist.

3. PROPOSED ANALYSIS PROTOCOL

3.1 Controller-Based Regulation

The typical closed loop control is depicted in Fig. 2. This
involves the control strategy receiving feedback informa-
tion from the state of the system, i.e. the patient BIS
level in our case, followed by an optimization algorithm
to compute the best suitable Propofol infusion profile.
Since the regulatory loop has a model based predictive
control algorithm, it considers past inputs (Propofol), past
outputs (BIS), a cost function based on required perfor-
mance (desired BIS). Along with a forecasting procedure,
it computes then the optimal infusion rate over a prede-
fined time interval in the future (prediction horizon) to
reach the desired output. The method has various features,
being able to cope with a manifold of control system
challenges, e.g. constraints, nonlinearities, time delays and
disturbance profiles. For the objectives of this work, the
time delay effect has been neglected.

The EPSAC (Extended Prediction Self-Adaptive Control)
algorithm has been employed hereafter. The method has
been developed in the early 80s (De Keyser and Van
Cauwenberghe, 1981) and tailored later for regulatory
loops in anaesthesia (Ionescu et al., 2008, 2014, 2015;
Nascu et al., 2015). For details on the control algorithm,
the reader is thus referred to the references mentioned
above.

Anesthesiologist 

Syringe 
pump
PROPOFOL 
infusion

Monitoring device
BIS signal

Patient 

Surgeon/Disturbance

COMPUTER with EPSAC algorithm

Fig. 2. The computer based hypnosis regulatory loop.

3.2 Combined Anesthesiologist-Controller Based
Regulation

A more realistic view on the actual regulatory loop is
given in Fig. 3. In this case, the anaesthesiologist may
decide to intervene with additional bolus of Propofol
infusion, as to anticipate the presence of disturbances.
It is important to realize that the information sources
for the anaesthesiologist and computer-controlled hypnosis
actually differ.

Anesthesiologist 

Syringe 
pump
PROPOFOL 
infusion

Monitoring 
device

Patient 

Surgeon/Disturbance

COMPUTER with 
EPSAC algorithm

Anesthesiologist
Many 
SignalsBIS signal

Continuous 
Infusion

Bolus Infusion

Combined 
infusion

Fig. 3. The combined anesthesiologist in the loop and
computer based hypnosis regulatory loop.

The operation theater is a collection of monitors delivering
information upon the vital signs of the patient under-
going general anaesthesia and surgical intervention. The
anaesthesiologist is but one actor of the many playing a
role in maintaining patient well-being during and after the
medical objective has been achieved. During the surgery,
a constant interval of BIS (40-60) is required for safe oper-
ation. Values BIS¿70 suggest a light sedated patient with
imminent awakening profile, whereas values BIS¡30 are
deep anaesthesia with complex post-surgical side effects.
Both outliers should be avoided, and reduce risk for over-
and under-dosing.

For the anaesthesiologist in the loop protocol, a fixed
amount of bolus infusion has been set to 10 mg/ml during
10 seconds.

3.3 Surgical Stimulation Profile

Literature presents a disturbance signal mimicking surgi-
cal stimulation profile, as depicted in Fig. 4. Each segment
corresponds to a typical step in most of the procedures.
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However, the assumption that the signal changes abruptly
in one sample instant is highly unlikely. Instead, a finely
tuned smooth profile can be considered, as given in the
same figure referenced as above.

Fig. 4. The original disturbance profile from literature
and its smoothed version. The stimulus represents,
in order, the following events: intubation; surgical
incision followed by a period of no surgical stimulation
(i.e. waiting for pathology result); an abrupt stimulus
after a period of low level stimulation; onset of a
continuous normal surgical stimulation; short-lasting,
larger stimulation within the surgical period; and
withdrawal of stimulation during the closing period.

For the controller-based regulation protocol, the distur-
bance signal is not known in advance, and thus enters the
system through the feedback loop information flow.

When the protocol is enhanced with the intervention of the
anaesthesiologist, an additional input signal is delivered
to the system. This additional input signal is depicted in
Fig. 5 along with the disturbance signal, where one may
recognize the anticipatory action of the anaesthesiologist
to compensate in part the expected disturbance profile.

Fig. 5. The signal used for bolus infusion as a result of
the anticipatory action of the anesthesiologist to the
expected disturbance profile.

3.4 Numerical Simulation from Artificial Patient Database

Given our past expertise and studies in cooperation with
Ghent University Hospital Belgium and University Med-
ical Center Groningen The Netherlands, a database of
patient profiles has been artificially created to mimic as
close as possible reality. The details for the PK-PD models
are given in table 1 (Ionescu et al., 2008).

Since the controller is model based, a patient model
is required for the computer-based regulatory loop. A
hypothetical patient model has been used in the controller

for optimization purposes, with values simplifying the
dynamics from the PK and PD models. The patients from
table 1 denote the real patient, i.e. different from the model
used in the controller, as to mimic inter-patient variability
and test the robustness of the closed loop.

4. RESULTS AND DISCUSSION

The PK model (1)-(4) with values from the patient
database in table 1 delivers a transfer function model for
each patient. Analysis of these models reveals a pole-zero
mapping of dominant pair of real valued poles ranging
from -0.9 to -0.4. These are linked to the dynamic uptake
and clearance from the compartments, specific to each
patient through the biometric values (Soltesz et al., 2013).

The closed loop simulations have been performed with a
sampling period of 1 second, a prediction horizon in the
EPSAC algorithm of 40 samples and a prediction model
with two real poles at -0.7 and unitary gain. Although the
disturbance filter in EPSAC may be used to augment the
prediction model (De Keyser and Ionescu, 2003), it has not
been used, except in its default form, i.e. an integrator, to
ensure zero steady state error to desired BIS values.

The greater variability among the patient response is
coming not from the PK model, but from the PD model,
i.e. the c50 concentration varies greatly from one patient to
another. This has been in-depth analysed and presented in
(De Keyser et al., 2015). In fact, it has been established in
previous studies that this represents the gain of the patient
model and its variability can be as high as 300% (Copot
and Ionescu, 2014; Nino et al., 2009; Ionescu et al., 2016;
De Keyser et al., 2015). The variability may be observed
in the induction phase, when both regulatory loops have
same conditions for simulation, as in Fig. 6.

Table 1. Artificial Patient Database with PK
Model Biometric Values and PD Model Sensi-

tivity Values.

Index Age Height Weight C50 γ
- (yrs) (cm) (kg) (mg/ml) -

1 74 164 88 2.5 3
2 67 161 69 4.6 2
3 75 176 101 5 1.6
4 69 173 97 1.8 2.5
5 45 171 64 6.8 1.78
6 57 182 80 2.7 2.8
7 74 155 55 1.7 3.5
8 71 172 78 7.8 2.9
9 65 176 77 2.9 1.88
10 72 192 73 3.9 3.1
11 69 168 84 2.3 3.1
12 60 190 92 4.8 2.1
13 61 177 81 2.5 3
14 54 173 86 2.5 3
15 71 172 83 4.3 1.9
16 53 186 114 2.7 1.6
17 72 162 87 4.5 2.9
18 61 182 93 2.7 1.78
19 70 167 77 6.8 3.1
20 69 168 82 9.8 1.6
21 69 158 81 3.2 2.1
22 60 165 85 5.1 2.51
23 70 173 69 3.67 3.1
24 56 186 99 5.8 2.3
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However, the assumption that the signal changes abruptly
in one sample instant is highly unlikely. Instead, a finely
tuned smooth profile can be considered, as given in the
same figure referenced as above.

Fig. 4. The original disturbance profile from literature
and its smoothed version. The stimulus represents,
in order, the following events: intubation; surgical
incision followed by a period of no surgical stimulation
(i.e. waiting for pathology result); an abrupt stimulus
after a period of low level stimulation; onset of a
continuous normal surgical stimulation; short-lasting,
larger stimulation within the surgical period; and
withdrawal of stimulation during the closing period.
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Fig. 5. The signal used for bolus infusion as a result of
the anticipatory action of the anesthesiologist to the
expected disturbance profile.
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used in the controller, as to mimic inter-patient variability
and test the robustness of the closed loop.
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disturbance filter in EPSAC may be used to augment the
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been used, except in its default form, i.e. an integrator, to
ensure zero steady state error to desired BIS values.

The greater variability among the patient response is
coming not from the PK model, but from the PD model,
i.e. the c50 concentration varies greatly from one patient to
another. This has been in-depth analysed and presented in
(De Keyser et al., 2015). In fact, it has been established in
previous studies that this represents the gain of the patient
model and its variability can be as high as 300% (Copot
and Ionescu, 2014; Nino et al., 2009; Ionescu et al., 2016;
De Keyser et al., 2015). The variability may be observed
in the induction phase, when both regulatory loops have
same conditions for simulation, as in Fig. 6.
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Model Biometric Values and PD Model Sensi-

tivity Values.
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Fig. 6. Induction profiles for hypnosis regulation. Results
reported as output (BIS) and input (Propofol) pro-
files.

The result for the computer based regulatory loop is
given in Fig. 7 and the combined regulatory loop with
the additional bolus infusion in Fig. 8. The result is
reported by means of output (BIS) and input (Propofol)
profiles. Both protocol loops violate now and then the
maintenance interval for 45 < BIS < 55. A closer look
using histograms in Fig. 9 reveals that the case when the
anesthesiologist in the loop is active, a higher number of
violations above/below this maintenance interval occurs.
The number of occurrences counted from simulated data
is given in Fig. 10. It can be then concluded that the
anesthesiologist in the loop combined regulatory loop has
more wobble in the BIS values.

Fig. 7. Results obtained with the computer based protocol
only.

Fig. 8. Results obtained with the combined infusion from
computer and from anesthesiologist in the loop.

Clearly, the comparison between the two protocols must
be performed with care. As depicted in Fig. 3, the anes-
thesiologist receives more information from the state of the
patient than the computer based regulatory loop in Fig. 2.
This is reality in operation theaters and unfortunately,

Fig. 9. Histograms of the BIS value distribution for the
computer only loop (A) and the combined loop (B),
with corresponding input distributions (C) and (D),
respectively.

Fig. 10. Number of occurrence values outside the 45 <
BIS < 55 interval in both protocols.

today’s computer based systems provide a limited amount
of information they process. When the anesthesiologist
anticipates the disturbance effect and takes feedforward
action, this acts as an input disturbance in the controller
optimization procedure. The controller does not under-
stand the reason for this additional infusion augmentation,
hence it decreases its own computed infusion rate, creating
thus additional wobble in the input variable, later trans-
lated into the output variable. The result is then a decrease
in the overall performance.

When discussing the complex depth of anesthesia paradigm,
one needs to take into account multiple inputs and multiple
outputs to reach the necessary minimum degree of infor-
mation required by optimal drug management (Ionescu
et al., 2014; Shieh et al., 2005).

5. CONCLUSION

This paper proposed to offer an explanation for the de-
crease in performance of regulatory closed loops in hypno-
sis observed as a result of the anesthesiologist anticipatory
actions. These may have de-stabilising effects (oscillations)
the computer-based closed loop due to the limited feedback
information received by the controller and care must be
exercised when comparison is made against various situa-
tions.

Ideally, assist devices for drug delivery systems in general,
must have a mechanism which allows a multitude of
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heterogeneous signals to be processed to distill useful
information for the control algorithm. Both continuous as
well as dis-continuous variables, boolean, logical operators
and text input from the medical staff can be incorporated
in one console for interfacing and centralizing the great
amount of information available currently in the operation
theaters at no extra cost.
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heterogeneous signals to be processed to distill useful
information for the control algorithm. Both continuous as
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and text input from the medical staff can be incorporated
in one console for interfacing and centralizing the great
amount of information available currently in the operation
theaters at no extra cost.
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