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Abstract. We present a fully closed-loop design for an artificial pan-
creas (AP) which regulates the delivery of insulin for the control of
Type I diabetes. Our AP controller operates in a fully automated fash-
ion, without requiring any manual interaction (e.g. in the form of meal
announcements) with the patient. A major obstacle to achieving closed-
loop insulin control is the uncertainty in those aspects of a patient’s
daily behavior that significantly a↵ect blood glucose, especially in re-
lation to meals and physical activity. To handle such uncertainties, we
develop a data-driven robust model-predictive control framework, where
we capture a wide range of individual meal and exercise patterns us-
ing uncertainty sets learned from historical data. These sets are then
used in the controller and state estimator to achieve automated, pre-
cise, and personalized insulin therapy. We provide an extensive in silico
evaluation of our robust AP design, demonstrating the potential of this
approach, without explicit meal announcements, to support high carbo-
hydrate disturbances and to regulate glucose levels in large clusters of
virtual patients learned from population-wide survey data.

1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease where the pancreas is not able
to autonomously produce a su�cient amount of insulin to regulate blood glu-
cose (BG) levels, thereby inhibiting glucose uptake in muscle and adipose (fatty)
tissue. In healthy subjects, pancreatic � cells are responsible for the release of
insulin in amounts commensurate with current BG levels. This regulation main-
tains healthy BG values within tight ranges, normally between 70-200 mg/dL.
In T1D, T cell–mediated destruction of insulin-producing � cells occurs, leading
to high BG levels.

In the U.S. alone, more than 29 million people su↵er from diabetes, among
which about 5% have T1D [2]. T1D patients need to wear an insulin pump for
the injection of basal and bolus insulin. Basal insulin is a low and continuous
dose that covers insulin needs outside meals. Bolus insulin is a single high dose
for covering meals.

The concept of closed-loop control of insulin, a.k.a. the artificial pancreas
(AP), involves a continuous glucose monitor (CGM) that provides glucose mea-
surements (with a typical period of 5 minutes) to a control algorithm running



inside the insulin pump or on a peripheral device (e.g. smartphone or tablet)
connected to the pump [38]. The controller adjusts the insulin therapy to main-
tain healthy BG levels and to avoid hyperglycemia (BG above the healthy range)
as well as hypoglycemia (BG below the healthy range). AP systems have been
extensively studied in the last 20 years [10], but only lately cleared for clinical
trials [17, 22] and commercialization.

The recently FDA-approved MINIMED 670G by Medtronic3 is the first com-
mercial AP system, and can regulate the basal insulin rate automatically. It is
referred to as a “hybrid closed-loop” device as patients need to manually an-
nounce the amount of carbohydrate (CHO) and time of each meal to receive the
appropriate bolus insulin dose. This manual procedure is a burden to the patient
and inherently dangerous as incorrect information can lead to incorrect insulin
dosage and, in turn, harmful BG levels.

While meals are the major source of uncertainty in BG control, another
important factor is physical activity, which accelerates glucose absorption and
thus requires a reduced insulin dosage. To build fully automated closed-loop AP
systems, it is essential to design insulin control algorithms that are robust to the
patient’s behavior and activities.

In this paper, we propose a data-driven, robust model-predictive control (ro-
bust MPC) framework for the closed-loop control of insulin administration, both
basal and bolus, for T1D patients under uncertain meal and exercise events. Such
a framework seeks to eliminate the need for meal announcements by the patient,
to fully automate insulin regulation. We capture the wide range of individual
meal and exercise patterns using uncertainty sets learned from historical data.

Following [1], we construct uncertainty sets from data so that they cover
the underlying (unknown) distribution with prescribed probabilistic guarantees.
Leveraging such information, our robust MPC system computes the insulin ad-
ministration profile that minimizes the worst-case performance with respect to
these uncertainty sets, so providing a principled way to deal with uncertainty.

Besides uncertainty, another challenging aspect of closed-loop control is state
estimation, which is needed to recover the full state of the model (used within
MPC) from CGM measurements. Not only are these measurements noisy and
delayed with respect to BG (the CGM detects glucose in the interstitial fluid),
but we also need to estimate, along with the state, current meal and exercise
uncertainties.

For this purpose, we designed a moving-horizon state estimator (MHE) [6,20,
27] that, similar to MPC, exploits a prediction model to find the most likely state
estimate given the observations. Crucially, data-driven uncertainty sets improve
the estimation by constraining the admissible meal and exercise uncertainties.

To the best of our knowledge, our robust MPC design for an AP is the first
approach to leverage data-driven techniques to enhance robust insulin control
and state estimation, supporting at the same time both meal and exercise un-
certainties. In summary, our main contributions are the following.

3
https://www.medtronicdiabetes.com/products/minimed-670g-insulin-pump-system



– We formulate a closed-loop AP design based on robust MPC to optimize BG
levels under meal and exercise uncertainties.

– We apply data-driven techniques to construct uncertainty sets that provide
probabilistic guarantees on the robust MPC solution.

– We design an MHE that leverages data to make informed estimates for BG
and uncertainty parameters.

– We provide an extensive in-silico evaluation of our design, including one-
meal simulations, one-day high carbohydrate intake scenarios, and one-day
simulations of large clusters of virtual patients learned from population-wide
survey data sets (CDC NHANES).

– Overall, our robust closed-loop AP is able to keep BG within safe levels
between 84% and 100% of the time, outperforming an implementation of a
hybrid closed-loop AP and state-of-the art robust control algorithms [31].

2 System Overview

The design of our proposed data-driven robust artificial pancreas is illustrated
in Figure 1. The robust MPC component (described in Section 4) is responsible
for computing the insulin administration strategy (both basal and bolus) that
optimizes, over a finite time horizon, the predicted BG profile against worst-case
realizations of the uncertainty parameters, used to capture unknown meal and
exercise information.

Uncertainty sets describe the domains of the uncertainty parameters and are
derived by the data-driven learning component (see Section 4.2), starting from
a dataset about the patient’s meal and exercise schedules. Uncertainty sets can
be also updated online as new data (estimated or announced) comes along, in
this way enabling the continuous learning of the patient’s behavior.
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Fig. 1: Robust artificial pancreas design.

At this stage, we ana-
lyze our robust artificial pan-
creas design in silico. Thus,
the plant is given by a sys-
tem of di↵erential equations
(see Section 3) describing the
gluco-regulatory dynamics of
a virtual T1D patient, as well
as the e↵ects of insulin and
random disturbances (i.e. un-
known realizations of the un-
certainty parameters).

In order to faithfully re-
produce real-life settings, we
assume that the state of the
plant (BG) cannot be observed by the controller, but that we can only access
(noisy) CGM measurements. We designed a moving-horizon state estimator (de-
scribed in Section 4.1) that, based on a bounded history of CGM measurements



and estimations, computes the most likely plant state. Importantly, this compo-
nent also provides estimates for the uncertainty parameters, which can be used
to update the uncertainty sets.

3 Plant Model

3.1 Uncertainty parameters

To account for uncertainty in meal consumption, we consider the parameter
D

t
G, which describes the rate of CHO ingestion at time t. As in the exercise

model of [9, 13, 21, 28], physical activity is represented by parameters MM t,
the percentage of active muscular mass at time t, and O2 t, the percentage of
maximum oxygen consumption which can be combined to reproduce arbitrary
kinds of physical activity.

MM t corresponds to the ratio between the active muscular mass and the total
muscular mass, with typical values being MM t = 0% at rest and MM t = 25%
for a two-legged exercise. O2 t describes the oxygen consumed relative to the
maximum oxygen consumption of the subject, and thus, represents a subject-
independent measure of exercise workload. As in [9, 21], typical values are 8%
at rest, 30% for light activity, 60% for moderate activity, and 90% for intense
activity. In our scenario, these meal and exercise parameters are not observed
or measured, and are thus represented by an uncertainty parameter vector ut =
(Dt

G,MM t
,O2 t). The e↵ects of these parameters on blood glucose are described

in Section 3.2, in which the patient’s gluco-regulatory model is presented.

3.2 Patient Model

We consider the nonlinear ODE gluco-regulatory model of Jacobs et al. [13,28],
which extends Hovorka’s well-established model [11,36,37] to capture the e↵ect
of exercise on BG. The model describes the dynamics of glucose and insulin in the
human body, i.e., their absorption, metabolism, excretion and transport between
compartments (tissues and organs). In addition to insulin, Jacobs’ model also
allows for the automated control of glucagon, i.e. the hormone antagonistic to
insulin that protects against hypoglycemia. In our work, however, we leave aside
glucagon. Model parameters (listed in Table 2 of the appendix) are deterministic
and represent the physiological characteristics (e.g. transport or consumption
rates) of a single virtual subject.

At time t, the inputs to the system are the subcutaneous insulin infusion rate,
◆
t (mU/min), and the uncertainty parameter values, ut = (Dt

G,MM t
,O2 t). The

output corresponds to the CGM measurement. The state-space representation
of the system is as follows:

ẋ(t) =F
�
x(t), ◆t,ut

�
(1)

y(t) =h (x(t)) + v
t (2)



where x is the 14-dimensional state vector that evolves according to the ODE
system F, which is given below (see Appendix A for the full set of equations).
Eq. 2 describes the CGM measurement y, which is derived from x with the mea-
surement model h and subject to an additive measurement noise v

t 2 N (0, qt),
where q

t is the noise variance. We fix q
t = 0.1521 mmol2/L2 constant for all t,

corresponding to a standard deviation equal to 5% of the ideal glucose value.

Figure 2 illustrates a high-level schema of the ODE system F. The gut ab-
sorption subsystem [37] uses a chain of two compartments, G1 and G2 (mmol),
to describe digestion of ingested CHO, given by the uncertainty parameter Dt

G.

The glucose kinetics subsystem describes the glucose masses in the accessible
(where BG measurements are made) and non-accessible compartments, respec-
tively through variables Q1 and Q2 (mmol). BG concentration, G (mmol/L), is
the main variable we aim to control, and is derived from Q1 as G(t) = Q1(t)/VG,
where VG is the glucose distribution volume. Variable C is the glucose concentra-
tion in the interstitial fluid, which has a delayed response w.r.t. the concentration
in the blood G. C corresponds to the glucose detected by the CGM sensor and
thus, the measurement function h of Eq. 2 maps the state vector x(t) to C(t).
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Fig. 2: Schema of the gluco-regulatory ODE sys-
tem and its four main subsystems. White circles:
ODE variables; black boxes: uncertainty param-
eters; white rounded box: insulin input; solid
black arrows: flows of glucose or insulin; dashed
green/red arrows: positive/negative interactions
between variables.

The insulin kinetics sub-
system models the absorp-
tion of the fast-acting insulin
◆
t, i.e. our control input (in
mU/min), and its transport
through compartments Q1a,
Q1b, Q2i and Q3 (in mU) [36].
This model assumes a slow in-
sulin absorption pathway con-
sisting of compartments Q1a

(subcutaneous insulin mass)
and Q2i (non-accessible in-
sulin), and a fast pathway
that includes only Q1b (sub-
cutaneous). K represents the
proportion in which the in-
put insulin ◆

t is distributed
into the two pathways. Q3 is
the plasma insulin mass, from
which we derive the plasma insulin concentration I (mU/L) as I(t) = Q3(t)/VI ,
where VI is the insulin distribution volume.

The insulin dynamics subsystem defines the e↵ects of insulin on blood glucose
through variables x1, x2, x3. Variable x1 (min�1) promotes glucose distribution;
x2 (min�1) promotes glucose disposal ; and x3 (unitless) inhibits endogenous
glucose production. The overall subsystem decrease blood glucose masses Q1

and Q2 and in turn, BG concentration G. Plasma insulin levels I directly in-
crease x1, x2, x3. Uncertainty parameters MM t (active muscular mass) and O2 t

(target workload in terms of oxygen consumption) increase x1, x2, x3 indirectly,



through state variables UA (mg/min) and O2m (unitless), not shown in the fig-
ure. They characterize physical activity and describe, respectively, the glucose
uptake due to active muscular tissue and the actual percentage of maximum
oxygen consumption.

Initial conditions: The initial state of the system is derived at a steady-state BG
level of 7.8 mmol/L [31], assuming no meal and exercise. We use a nonlinear
equation solver (MATLAB’s fsolve) to find x(0) and the basal insulin level ◆̄
such that ẋ(0) = F

�
x(0), ◆̄,u0

�
= 0 (see Eq. 1), where the uncertainty param-

eters u0 are given by D
0
G = 0, MM 0 = 0 and O2 0 = 8 (oxygen consumption

at rest). Following [13], we further assess the physiologic feasibility of the initial
conditions by checking that: 1) in absence of insulin, steady-state BG is above
300 mg/dL, and 2) delivery of high-dose insulin (15 U/h) results in a steady-state
BG below 100 mg/dL.

4 Robust MPC

Since we want to optimize the BG profile against worst-case realizations of the
uncertainty parameters, at each time step t, the robust MPC computes the in-
sulin infusion ◆

t as the solution of the following non-linear minimax optimization
problem:

min
◆t,...,◆t+Nc�1

max
ut,...,ut+Np�1

NpX

k=1

d(x̃(t+ k)) + � ·
Nc�1X

k=0

(�◆
t+k)2 (3)

subject to: ◆t+k 2 D◆ (k = 0, . . . , Nc � 1) (4)

◆
t+k = ◆̄ (k = Nc, . . . , Np � 1) (5)

ut+k 2 U t+k (k = 0, . . . , Np � 1) (6)

x̃(t) = x̂(t) (7)

˙̃x(t+ k) = F (x̃(t+ k), ◆t+k
,ut+k) (k = 0, . . . , Np � 1) (8)

where Nc and Np are the control and prediction horizon (in minutes), respec-
tively; constraint (4) states that the control input ◆ must belong to some set D◆

of admissible insulin infusion rates; through (5), we impose that ◆ is fixed to the
basal insulin rate ◆̄ outside the control horizon; (6) states that, at any time point
t+ k in the prediction horizon, uncertainty parameters ut+k must belong to the
corresponding uncertainty sets U t+k; constraint (7) and (8) restrict how the ro-
bust MPC computes the predicted state vector x̃: for the initial state, it uses the
estimated plant state at time t, x̂(t), while following states are predicted using
the same plant model (see Equation 1). We set control and prediction horizons
to Nc = 100 min and Np = 150 min, respectively, as opposed to [28] where
Nc = 20 and Np = 200: preliminary experiments suggested that large Np values
and small Nc values cause excessive insulin therapy and hypoglycemia.

We design the cost function so as to optimize the following two objectives:

1. Minimize the sum of squared distances between the predicted BG level x̃G(t+
k) and a target trajectory R(t+ k):

d(x̃(t+ k)) = �(t+ k) · (x̃G(t+ k)�R(t+ k))2 (9)



where �(t + k) = � if x̃G(t + k) < R(t + k) and 1 otherwise. (Remind that
xG(t) = G(t) = Q1(t)/VG in the glucose kinetics subsystem) Parameter
� � 1 allows defining asymmetric cost functions where predicted BG values
below the target are penalized more than those above the target. Glucose
control is naturally asymmetric given that hypoglycemia leads to more se-
vere consequences than (temporary) hyperglycemia, and, as shown in [7],
asymmetric costs e↵ectively contribute avoiding hypoglycemia.

2. Minimize step-wise changes in the control input (�◆
t+k)2, where �◆

t+k =
◆
t+k � ◆

t+k�1, and ◆
t�1 corresponds to the control input in the previous

iteration, or to the basal insulin rate ◆̄ if t = 0.

In our setup, we fix the target trajectory to R(t+ k) = 7.8 mmol/L for all time
instants and set penalty � to 1/50. We set the asymmetric cost penalty to � = 2,
after experimenting with di↵erent values (see Appendix D).

Optimization algorithm: We solve problem (3) using non-linear optimization
techniques, where, for a fixed control strategy ◆

t
, . . . , ◆

t+Nc�1, the objective func-
tion value is given in turn as the result of maximizing the objective function over
the uncertainty parameters (and with fixed ◆

t
, . . . , ◆

t+Nc�1). To solve both min-
imization and maximization problems, we use MATLAB’s fmincon. To reduce
the computational cost of this optimization method, we decrease the number
of decision variables by assuming that, in the prediction model, control inputs
change with period 10 min, and uncertainty parameters with period 30 min.

Hybrid closed-loop (HCL) variant: To compare with our robust MPC approach,
we develop a hybrid closed-loop insulin pumps where only basal insulin is auto-
matically regulated and the patient is responsible for bolus insulin. This reduces
to a MPC that has no knowledge of meals and exercise, and thus, approximates
the behavior of a current state-the-art approved device that requires explicit
meal announcement. In our settings, this is equivalent to fixing the uncertainty
parameters to their default values at rest.

Then the optimization problem of the HCL controller reduces to:

min
◆t,...,◆t+Nc�1

NpX

k=1

d(x̃(t+ k)) + � ·
Nc�1X

k=0

(�◆
t+k)2 (10)

subject to (4, 5, 7, 8) and ut+k = (0, 0, 8) (k = 0, . . . , Np � 1).

Note that the constraints on the insulin therapy are the same of the robust
controller (4-5) meaning that the HCL controller is free to synthesize bolus-
like therapy profiles too. This will also serve as the baseline controller in the
evaluation part of Section 5.

4.1 State estimation

This component allows to recover an estimate of the current state, which is used
in the following iteration by the robust MPC as the initial state for its predic-
tions (see Eq. 7). Following [8,27], we designed a moving-horizon state estimator
(MHE) that works in a finite-horizon fashion similar to an MPC problem, and



allows estimating the current state starting from previous estimations and a
bounded history of observed CGM measurements.

For an estimation window of size N , MHE is based on simulating a model
of the plant from time t � N to t and aims at finding the model trajectory
x(t �N), . . .x(t) that minimizes the discrepancies between simulated and esti-
mated states, and between simulated and measured outputs (CGM). Then, x̂(t)
is chosen as the final state of the optimal trajectory.

Crucially, our estimator also works as a meal and physical activity detector
[3,19,34]: in addition to the plant state, we compute the most likely sequence of
uncertainty parameters ut�N

, . . . ,ut, corresponding to decision variables in our
optimization problem as they are inputs of the model. The MHE problem boils
down to the following non-linear optimization problem:

min
x(t�N),...x(t),ut�N ,...,ut

µ · kx(t�N)� x̂(t�N)k2 +
N�1X

k=0

kvt�kk2

qt�k
(11)

subject to: vt�k = y(t� k)� h(x(t� k)) (k = N � 1, . . . , 0) (12)

ẋ(t� k) = F (x(t� k), ◆t�k
,ut�k) (k = N, . . . , 0) (13)

ut�k 2 U t�k (k = N, . . . , 0) (14)

where (12) defines the measurement discrepancy v
t�k at time t� k as the dif-

ference between the measured and simulated output, y(t� k) and h(x(t � k)),
respectively (see also Eq. 2); and (13) states that x evolves according to the
same ODE model of the plant, with ◆

t�k being the insulin input previously com-
puted by the robust MPC. We remark that data-driven uncertainty sets play
an important role also in state estimation, since they constrain the domain of
the corresponding estimated uncertainty parameters, as per (14). The problem
is solved using MATLAB’s fmincon non-linear solver.

The first addend of the cost function penalizes the discrepancy between the
initial state of the simulated trajectory and the corresponding state estimation,
where µ > 0 is a weighting factor. The second addend penalizes measurement
discrepancies, weighted by the inverse of the measurement noise variance q

t�k

(see Eq. 2). In the original formulation of the MHE [8, 27], the cost function
includes discrepancies for all the states in the trajectory. Our simplification
comes from the fact that we do not consider random noise in the model (but
only in the measurements), and thus, the trajectory x(t � N), . . . ,x(t) is fully
determined by the initial state x(t � N) and by the uncertainty parameters
ut�N

, . . . ,ut. Further, this greatly improves computational e�ciency because
variables x(t�N+1), . . . ,x(t) are strictly constrained by the ODE in Eq. (13). In
practice, this means that the decision variables reduce to x(t�N),ut�N

, . . . ,ut.

The MHE has an important probabilistic interpretation: when N = t (un-
bounded horizon), the MHE problem corresponds to maximizing the joint prob-
ability for the trajectory of states x(t � N), . . . ,x(t) given the measurements
y(t�N), . . . , y(t) [27].



4.2 Building data-driven uncertainty sets

In this section, we describe how to build the uncertainty sets used within the
robust MPC and the state estimator to restrict the domain of the admissible
meal and exercise parameters. We apply the approach of [1] where the authors
present a general schema for designing uncertainty sets from data for robust
optimization (of which robust MPC is an instance). The key idea is to define an
uncertainty set that captures possible realizations of the uncertain parameters
and then optimize against worst-case realizations within this set. Importantly,
this method requires no information about the underlying distribution of the
parameters and provides a probabilistic guarantee (an upper bound) on the
likelihood that the true realized cost is higher than the optimal ‘worst-case’ cost
computed by the robust controller.

Let us characterize an uncertainty set U by means of a so-called robust con-
straint f(u,x)  0, where u is the uncertainty parameter and x is the optimiza-
tion variable, corresponding in our case to the state vector plus insulin input.
Recall that the true distribution P⇤ of u is unknown. Given confidence level
✏ > 0, U should satisfy two conditions: (1) the robust constraint f is computa-
tionally tractable. (2) U implies a probabilistic guarantee for P⇤ at level ✏, that
is, for any solution x⇤ 2 Rk and for any function f(u,x) concave in u for all x,

if f(u,x⇤)  0 8u 2 U , then P⇤(f(u,x⇤)  0) � 1� ✏.

The data-driven schema we follow is based on sampling a set of data points S
i.i.d. from the true distribution P⇤ and uses hypothesis testing to construct the
uncertainty sets with such guarantees. In particular, for confidence level ↵ < 1,
the schema employs the corresponding (1�↵) confidence region to build U . With
the proper construction, the following theorem from [1, Sect. 3.2] holds.

Theorem 1. With probability at least 1 � ↵ with respect to the sampling, the
resulting set U(S, ✏,↵) implies a probabilistic guarantee at least ✏ for P⇤.

In [1], the authors show how di↵erent uncertainty sets are built depending on
the assumptions about P⇤, and, in turn, on the suitable statistical test. In this
work we consider box sets (i.e. multi-dimensional intervals), which make no as-
sumptions on P⇤ and are suitable for data with missing values. The assumptions
and the full construction are described in Appendix B. The application of other
types of uncertainty sets, able for instance to capture temporal dependencies
and correlation between meals and exercise, is in our future plans.

To shrink the size of uncertainty set, we employ the following two strategies:
1) prior to set construction, we classify the input data and partition it into a
number of clusters so as to obtain tighter sets and more customized, patient-
specific control strategies. 2) based on Algorithm 1 of [1], we use bootstrapping [5]
to approximate the threshold of the test statistics, by estimating the sampling
distribution of the statistics through re-sampling with replacement.

We remark that the construction of uncertainty sets is performed o↵-line and
thus has no computational footprint on the robust controller.



5 Results and Discussion

We evaluate our robust control algorithm through a number of experiments for
simulating: intake of a single meal (Section 5.1), exercise (Section 5.2), one-
day meal intake scenario with patient behavior learned from population-wide
survey data (Section 5.3), and two-day scenario with irregular meal timing and
unusually high CHO intake (Section 5.4). Section 5.5 is dedicated to the analysis
of state estimation. For each experiment, we compare the robust controller with
the non-robust, hybrid closed-loop (HCL) variant introduced in Section 4. We
also report the ideal performance by running a so-called perfect controller, that
can access both the full plant state (i.e. does not need state estimation) and the
exact values of the uncertainty parameters in the plant.

Hardware and performance: We ran the experiments on a Windows 8 machine
with an Intel Core i7 processor and 32GB of DDR3 memory. We used MATLAB
version 2016b. With this configuration, the average time to compute the insulin
therapy over all the experiments ranged from 4 to 18 seconds, which is well within
the CGMmeasurement period of 5 minutes. This means that the controller works
faster than real-time. Given the significant performance improvement of modern
embedded and mobile devices, we expect our algorithm to perform similarly as
well once deployed on such hardware platforms.

Performance indicators: To measure the e�cacy of our robust controller design
over multiple runs, we consider the following indicators:

– t<3.9, t3.9�11.1, t>11.1: mean percentage of time spent in, respectively, hypo-
glycemia (BG < 3.9 mmol/L), normal ranges (BG between 3.9 and 11.1),
and hyperglycemia (BG > 11.1). Clearly, we wish to maximize t3.9�11.1 and
minimize the other two indicators, keeping in mind that we can tolerate
some temporary postpandrial hyperglycemia while hypoglycemia should be
avoided as much as possible.

– BGmin, BGmax: average low BG level and peak BG level, respectively, in
mmol/L. An e↵ective robust controller should keep BGmin and BGmax as
close as possible to the target BG level.

–
P

◆: mean total non-basal insulin (in U). This indicator measures the amount
of insulin injected by the controller in order to cover meals, and thus excludes
the contribution of basal insulin.

To evaluate state estimation, we further consider indicators EDG , EMM , EO2,
i.e. the mean absolute error between plant and estimated uncertain variable
values, and EBG, the mean absolute error between plant BG and estimated BG.

5.1 One-meal experiments

We consider 300-minute simulations comprising a single meal, and three di↵erent
synthetic scenarios (illustrated in Figure 3 (a-c)), i.e. where meals are sampled
from arbitrary distributions. For each scenario and controller, we collect results



for 50 repetitions. Details on the construction of uncertain sets from arbitrary
distributions are given in Appendix C.

Scenario 1, meals as expected: in the uncertain plant, we assume a uniformly dis-
tributed meal with start time ts = unif(30, 90), total amount of CHO (grams)
CHO = unif(42, 78) and meal duration fixed to 20 minutes, during which CHO
ingestion happens at a constant rate. Given that uniform distributions have
bounded support, we can build tight box-type uncertainty sets (i.e. intervals)
that contain all possible realizations. This scenario allows us evaluating the ade-
quacy of the controller when the plant behaves according to a known distribution,
in other words, when we have accurate information for building uncertainty sets.

Scenario 2, outliers: in this case, random meals behave as statistical outliers,
i.e. they are constantly distant from the expected value of the underlying dis-
tribution. To this purpose, we build the uncertainty sets under the assump-
tion that meals are normally distributed with parameters ts = N (60, 15) and
CHO = N (60, 9). The uncertainty sets are built so as to cover all possible realiza-
tions with z-score between -3 and 3 (i.e. between -3 S.D. and +3 S.D. around the
mean). However, to reproduce outliers, meals in the uncertain plant are sampled
from the tails of the distributions (z-scores in [�4,�3] and [3, 4]).

Scenario 3, late meals: here we consider the same settings as in Scenario 1, but
with each random meal delayed of one hour. This models the situation where
the controller has wrong information about the meal schedule, since it expects
the meal to start, on the average, one hour earlier.

Results in Figure 3 show that our robust controller attains very good perfor-
mance, closely following the ideal behavior of the perfect controller in the first
and third scenarios, where the virtual patient stays in normal ranges for >97% of
the time. In the outliers scenario, we register some postprandial hyperglycemia,
because this scenario is characterized by frequent high CHO intake. Overall, the
robust controller is able to limit the time spent in hypoglycemia below 1% and
consistently outperforms the HCL controller, staying in normal BG ranges for
3% to 31% more. Full statistics are reported in Table 4 of the Appendix.

5.2 Regulation during exercise

We evaluate the behavior of the robust controller when the virtual patient is
involved in physical activity, which, contrarily to meals, contributes to decreasing
BG levels. We simulate a two-legged exercise consisting of two phases:

1. Moderate activity, with start time ts = unif(40, 80), duration d = unif(24,
36), active muscular mass MM = unif(0.15, 0.35), and oxygen consumption
O2 = unif(45, 75); followed by

2. Light activity, where parameters stay as in the previous phase except for
02 = unif(15, 45).

Results, reported in Figure 4, evidence that both the robust and the HCL con-
troller can maintain BG within very tight ranges, as confirmed by the BGmin
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t<3.9 t3.9�11.1 t>11.1 BGmin BGmax
P

◆

Scenario 1, perfect 0% 99.69% 0.31% 7.15 9.91 4.38
Scenario 1, HCL 1.6% 69.4% 29% 5.61 12.85 8.19

Scenario 1, robust 0.51% 97.7% 1.79% 5.57 9.96 6.23
Scenario 2, perfect 0% 100% 0% 7.03 8.84 4.67
Scenario 2, HCL 1.03% 81.51% 17.45% 5.75 11.32 6.31

Scenario 2, robust 0.28% 84.19% 15.53% 5.16 10.94 5.82
Scenario 3, perfect 0% 100% 0% 7.22 9.3 5.06
Scenario 3, HCL 0% 67.25% 32.75% 7.19 13.34 5.05

Scenario 3, robust 0.79% 99.03% 0.18% 5.09 8.77 5.64

Fig. 3: One-meal, 300-minute experiments (50 repetitions). Top: uncertainty sets
and random realizations of parameter DG (rate of CHO ingestion). Middle: BG
profiles (with solid black lines indicating the normal BG range). Bottom: syn-
thetized insulin therapies. Thick solid lines indicate average BG/insulin values,
and are surrounded by an area spanning ± 1 S.D. In the table, we highlight in
bold the best value of each index between the robust and the HCL controllers.
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Perfect 0% 100% 0% 7.64 7.92 N.A. N.A. N.A. -0.29
HCL 0% 100% 0% 7.13 7.88 0.05 6.97% 0.42 -0.26

Robust 0% 100% 0% 7.5 7.98 0.05 5.04% 0.42 -0.22

Fig. 4: Regulation during random exercise (50 repetitions). a) and b) show un-
certainty sets and realizations for active muscular mass (MM ) and oxygen con-
sumption (02 ). Legend is as in Figure 3.

and BGmax indicators. BG profiles are almost indistinguishable from the ideal
ones (i.e. those of the perfect controller) and for 100% of the times within healthy
ranges. Note that both controllers correctly reduce the insulin therapy below the
basal level to counteract the decrease of BG due to exercise. Hence, the negative
values of

P
◆. The main di↵erence is that the robust controller, due to the su-

perior predictive capabilities, is more timely in cutting insulin therapy than the
HCL controller, leading to a smaller excursion from the target BG value.

Resalat et al. [28] realized a similar scenario to test their dual-hormone MPC
(300-minute simulation with a 45-minute exercise at fixed 02 = 60 and MM =
0.8). While we use their same plant model, their MPC design is di↵erent in two
ways: it can regulate both insulin and glucagon (to prevent hypoglycemia) and is
not robust, meaning that exercise must be announced in order for the controller
to make correct predictions. Despite that, however, their evaluation resulted into
some episodes of hypoglycemia and hyperglycemia, while our controller is able
to keep BG for 100% of the time in healthy ranges without meal announcements.

5.3 One-day experiments using NHANES survey data

We test our robust controller with real population data from the CDC’s National
Health and Nutrition Examination Survey (NHANES) database.4 We consider
the 2013 survey, comprising 8,611 participants, and classify the participants into
10 groups using k-means clustering. In this experiment, we selected the cluster
whose meal patterns are characterized by a CHO-rich breakfast at around 9am,
as visible in the uncertainty set of Figure 5(a). From this cluster, we extract meal
information to parameterize the virtual patient and build the uncertainty sets as
explained in Section 4.2 (choosing ↵ = 0.2 and ✏ = 0.2). Due to the poor quality
of physical activity data in NHANES, we generated one random exercise event

4 https://www.cdc.gov/nchs/nhanes/



for each patient. Details on the other clusters and on extraction and processing
of data are given in Appendix E.
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Robust 2.02% 93.45% 4.52%

Fig. 5: BG regulation for virtual patient learned from NHANES database (20
repetitions). Legend is as in Figure 3.

Results were obtained with 20 repetitions and are reported in Figure 5. In this
experiment, our robust controller has a close-to-ideal performance, with >93%
of time spent in normal BG ranges. It outperforms the HCL controller, which
fails to predict the correct BG levels during sleep (time < 500 min), leading to
excessive insulin therapy and to dangerous overnight hypoglycemia.

5.4 High carbohydrate intake scenario

We assess the behavior of the controller under irregular meal timing and un-
usually high CHO intake, following the protocol of [31], reported in Table 1. In
this protocol, no physical activity is considered. Uncertainty sets were derived
following the same construction of the one-meal experiments. Results, obtained
with 50 repetitions, are shown in Figure 6.

Chance of CHO Time of
occurrence (g) day (h)

Breakfast 100% 40-60 6:00-10:00
Snack 1 50% 5-25 8:00-11:00
Lunch 100% 70-110 11:00-15:00

Snack 2 50% 5-25 15:00-18:00
Dinner 100% 55-75 18:00-22:00
Snack 3 50% 5-15 22:00-00:00

Table 1: High carbohydrate intake sim-
ulation parameters of [31]. Meals in the
plant are sampled uniformly based on
the above intervals and probabilities.

Our robust controller resulted in
87.56% of time within healthy BG
ranges, against the 80.6% of the
HCL controller. Despite hypoglycemia
amounts to 3.11% of the total time, it
corresponds only to minor episodes, as
visible by the standard deviation in-
tervals in the plot and by the average
minimum BG (BGmin =3.84 mmol/L)
that falls only slightly below the hypo-
glycemic level (3.9 mmol/L).

We also report that our approach
outperforms the robust LPV approach
of Jacobs et al. [31], discussed in the
related work (Section 6). With the same plant model and scenario, they obtain
t<3.9 = 0%, t3.9�11.1 = 83.08% and t>11.1 = 16.92%, meaning that our robust
controller stays > 4% of the time longer in healthy ranges. We remark that the
results of Jacobs et al. are as reported in [31], and were not obtained by running
their controller on our machine.
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Fig. 6: BG profile (left) and performance indicators (right) for the high carbo-
hydrate intake scenario (50 repetitions). Legend is as in Fig. 3.

5.5 Evaluation of state estimator

We chose an MHE scheme for state estimation (see Section 4.1) after having
evaluated extended Kalman filters (EKF) [35], which are commonly employed
for the state estimation of non-linear systems. MHE overcomes some of the typi-
cal problems of Kalman filtering, namely, the inability to accurately incorporate
state constraints (e.g. non-negative concentrations); poor use of the nonlinear
model [8]; and estimations that often diverge, or converge to wrong state pre-
dictions [26,32]. Moreover,“o↵-the-shelf” Kalman filters only support zero-mean
disturbances (white Gaussian noise), thus preventing the estimation of random
meal and exercise episodes.
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MHE 0% 94.38% 5.62% 2 1.15
EKF 1.32% 43.75% 54.93% N.A. 4.44

Fig. 7: BG estimation error of Moving Horizon Estimator (MHE) and Extended
Kalman Filter (EKF), at di↵erent sensing noise variances q (20 repetitions).

We compare the state estimation accuracy between our MHE design and an
EKF scheme, according to the meals as expected scenario (see Section 5.1). In the
EKF, to predict the state estimate at time t, x̂(t), we use the model of Section
3 as follows: ˙̂x(t) = F (x̂(t), ◆t,E[ut]), where ◆

t is the (known) insulin input and
uncertainty parameters ut are replaced with their expected value E[ut]5.

To evaluate if the estimators are robust with respect to sensing noise, we
tested two di↵erent variance values for the sensing noise: q = 0.1521 (default) and
q = 1 (increased noise). As visible in Figure 7, the MHE outperforms the EKF,
with a consistently lower state estimation error. The imprecise state predictions
of the EKF lead to a wrong behavior of the overall closed-loop system, with

5 The real expected value of ut is known because here we work with arbitrary distri-
butions.



only ⇠ 44% of time spent within normal BG ranges, against > 94% of the MHE.
Unlike the EKF, the MHE is robust to sensing noise, with an average estimation
error (column EBG) that stays relatively constant from q = 0.1521 to q = 1.

6 Related Work

Robust control methods are able to minimize the impact of input disturbances on
the plant, and thus have the potential to enable fully closed-loop insulin delivery.
Earlier approaches [14, 25, 29] are based on the theory of H1 control [30], a
technique where the robust controller is synthesized o✏ine as the result of an
optimization problem that minimizes the worst-case closed-loop performance of
the controlled system. However, H1 control only supports linear systems, thus
requiring linearization of physiological, non-linear gluco-regulatory models, with
inevitable loss of accuracy.

Kovacs et al. [15, 16, 31] introduce robust linear parameter varying (LPV)
control, a technique that consists on deriving a piecewise-linear approximation
of the non-linear plant and synthesizing a robust H1 controller for each linear
region, and thus, improves on previous H1 approaches. In Section 5.4, we have
compared our robust controller to [31], showing that our algorithm is able keep
glucose levels within normal ranges for a longer time.

In contrast to the above techniques, our data-driven robust MPC supports
not just meal disturbances, but also physical activity, and is based on non-
linear optimization, meaning that it does not require to approximate the system
dynamics, leading to more precise predictions. Further, MPC is known to be
superior for individualized control strategies [4,23,33], even though is computa-
tionally more demanding than o✏ine techniques like H1 or LPV control, but
still feasible within the update periods typical of the artificial pancreas (5-10
minutes). Finally, our data-driven scheme supports continuous learning of the
patient’s behavior, thus enabling the synthesis of robust and adaptive insulin
therapies. On the other hand, H1 and LPV controllers are o✏ine and need to
be synthesized from scratch in order to adapt to changing patient conditions.

A simpler strategy employed in a number of AP studies, see e.g. [12, 18], is
that of PID control, where the control input results from applying tunable gains
to the error between the system output and a desired setpoint. Synthesizing these
gains to obtain robustness guarantees, however, becomes di�cult for systems
with nonlinear and probabilistic dynamics.

7 Conclusions

Thanks to modern wearable sensing devices, patient-specific data about meals
and physical activity is becoming more readily available, making it possible to
o↵er significantly enhanced personalized medical therapy for type 1 diabetes.
Accordingly, we presented a data-driven robust MPC framework for T1D that
leverages meal and exercise data to provide enhanced control and state esti-
mation. Our results show that learning a patient’s behavior from data is key



to achieving fully closed-loop therapy that does not require meal and exercise
announcements.
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A Gluco-regulatory ODE model

We describe the details of the ODE system used in our controller design, which
consists of the following subsystems:

Glucose kinetics: describes the glucose masses in the accessible (where BG mea-
surements are made) and non-accessible compartments, respectively through
variables Q1 and Q2 (mmol) as follows:

Q̇1(t) =� F01c � x1 ·Q1(t) + k12 ·Q2(t)� FR + Ug(t) + EGP0 · (1� x3(t)) (15)

Q̇2(t) =x1(t) ·Q1(t)� k12 ·Q2(t)� x2(t) ·Q2(t)

where F01c and FR (mmol min�1) are the corrected non-insulin mediated glucose
uptake and renal glucose clearance, respectively, derived as per [11]; x1, x2, x3

describe the e↵ect of insulin on glucose (see the insulin dynamics subsystem); Ug

is the gut absorption rate (see the gut absorption subsystem); and EGP0 (mmol
min�1) is the glucose production at a theoretical zero-insulin concentration. BG
concentration, G (mmol L�1), is derived from Q1 as G(t) = Q1(t)/VG, where VG

is the glucose distribution volume. In our robust MPC controller (Section 4), G
is the main state variable that we want to control.

Interstitial glucose: subcutaneous glucose concentration C (mmol/L) detected
by the CGM sensor has a delayed response w.r.t. the blood concentration G,
and is given by:

Ċ(t) = ka int · (G(t)� C(t)) (16)



Therefore, the measurement function h of Eq. 2 maps the state vector at time t

to C(t).

Gut absorption: this subsystem uses a chain of two compartments, G1 and G2

(mmol), to model the absorption dynamics of ingested food (given by the un-
certainty parameter Dt

G) [37]:

Ġ1(t) = �G1(t)/Tmax +Ag ·Dt
G, Ġ2(t) = (G1(t)�G2(t))/Tmax (17)

where Ag (unitless) is the CHO bio-availability, and Tmax (mins) is the time of
maximum appearance rate of glucose, computed as per [37]. The gut absorption
rate Ug(t) = G2(t)/Tmax (mmol min�1) characterizes the flow into the plasma
glucose compartment Q1 (see Eq. 15).

Insulin kinetics: models the absorption of the fast-acting insulin ◆
t (i.e. our

control input, in mU min�1) and its transport through compartments Q1a, Q1b,
Q2i and Q3 (in mU) [36]:

Q̇1a(t) =K · ◆t � kia1 ·Q1a(t)�
Vmax,LD ·Q1a(t)
km,LD +Q1a(t)

(18)

Q̇1b(t) =(1�K) · ◆t � kia2 ·Q1b(t)�
Vmax,LD ·Q1b(t)
km,LD +Q1b(t)

Q̇2i(t) =kia1 ·Q1a(t)� kia1 ·Q2i(t)

Q̇3(t) =kia1 ·Q2i(t) + kia2 ·Q1b(t)� ke ·Q3(t)

This model assumes a slow insulin absorption pathway consisting of compart-
ments Q1a (subcutaneous insulin mass) and Q2i (non-accessible insulin), and a
fast pathway that includes compartment Q1b (subcutaneous). K represents the
proportion in which the input insulin ◆

t is distributed into the two pathways.
Q3 is the plasma insulin mass. The plasma insulin concentration I (mU L�1) is
derived as I(t) = Q3(t)/VI , where VI is the insulin distribution volume. Vmax,LD

(mU min�1) and km,LD (mU) are the Michaelis-Menten constants characterizing
local insulin degradation.

Insulin dynamics: defines the e↵ects of insulin on glucose distribution with vari-
able x1 (min�1), on glucose disposal with x2 (min�1), and on the endogenous
glucose production x3 (unitless):

ẋ1(t) =ka1 · (�x1(t) +MPGU (t) ·MPIU (t) · SIT · I(t)) (19)

ẋ2(t) =ka2 · (�x2(t) +MPGU (t) ·MPIU (t) · SID · I(t))
ẋ3(t) =ka3 · (�x3(t) +MHGP (t) · SIE · I(t))

where MPGU , MPIU and MHGP (unitless) are factors depending on the patient’s
physical activity (described below).

Physical activity: consists of two state variables: the glucose uptake due to active
muscular tissue UA (mg min�1), and the experienced activity level, which is
captured by the percentage of maximum oxygen consumption O2m (unitless):

U̇A(t) = kUA · (UA(t)� UA(t)), Ȯ2m(t) = kO2 · (O2m(t)�O2 t) (20)



where O2 t is the input uncertainty parameter describing the target workload,
and UA(t) = f (O2m(t)) is the steady-state value of UA which is computed as
a function of O2m, where f is estimated in [21] using quadratic regression.

The e↵ects of exercise on peripheral glucose uptake (MPGU ), on peripheral
insulin uptake (MPGU ), and on hepatic glucose production (MHPG) are a↵ected
by UA and O2m as follows:

MPGU (t) =1 + kPGU · UA(t) ·MM t (21)

MPIU (t) =1 + kPIU ·MM t

MHPG(t) =1 + kHPG · UA(t) ·MM t

where MM t is the uncertainty parameter for the active muscular mass.

B Construction of uncertainty sets from data

We will describe the assumptions and the details of the construction for the box
type uncertainty sets. We follow the notations similar in [1]. u 2 Rd denotes the
random uncertainty vector and ui denotes its components. P⇤ refers to the true
and unobserved probability measure for u. The set of sample data points S =
{û1

, . . . , ûS} is constructed by drawing i.i.d. S = |S| times from P⇤(u). Here, we
do not need to assume the marginal distributions of P⇤ to be independent. That
is consistent to the observation that the elements in uncertainty parameter u for
artificial pancreas controller is correlated. Moreover, the box type is designed to
be suitable for the case when the sample data contains many missing values or
we are only able to collect samples asynchronously.

Box type The univariate hypothesis test for the 1� ✏/d quantile in David and
Nagaraja is extended to the multivariate case in [1]. Given q̄i,0, qi,0

2 R, 8i =
1, . . . , d,

H0 : inf{v : P(ui  v) � 1� ✏/d} � q̄i,0 and

inf{v : P(�ui  v) � 1� ✏/d} � q
i,0
8i = 1, . . . , d

Assume that we have S random samples. The index s is defined as

s = min

8
<

:k 2 N :
SX

j=k

✓
S

j

◆
(
✏

d
)S�j(1� ✏

d
)j  ↵h

2d

9
=

; .

For each component ui of u and we re-order them in an increasing order u(1)
i , u

(2)
i , . . . , u

(S)
i .

So the test is rejected at level ↵h if

û
(s)
i < q̄i or � û

(S�s+1)
i < q

i
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by union bound. By this construction, the Theorem 7 in [1] shows that if s is
defined by the above equation satisfies S � s+ 1 < s, then, with probability at
least 1� ↵h over the sample, the set

UM
✏ =

n
u 2 Rd : û(S�s+1)

i  ui  û
(s)
i 8i = 1, . . . , d

o

implies a probabilistic guarantee for P⇤ at level ✏.

C Building uncertain sets from probabilistic models

We show how to build tight time-varying uncertainty sets when the uncertain
meal and exercise episodes are uniformly or normally distributed. Importantly,
such distributions can also be derived from sample data through the bootstrap-
ping method [5], as done in the robust taxi dispatch approach of [24].

For each meal, we assume that the start time, ts, and the total amount of
ingested carbohydrates, CHO , are uncertain. Meal duration (d) is fixed, during
which carbohydrate ingestion happens at a constant rate. Similarly, each exercise
episode has uncertain start time ts, percentage of muscular massMM , percentage
of maximum oxygen consumption O2 and duration d.

According to which distribution the meal or exercise event is sampled from,
we derive the lower and upper bound of the corresponding uncertainty parame-
ters. The intuition is that when at time t a random variable, say O2 , is uniformly
distributed in the interval [O2?

,O2>], written as O2 ⇠ Unif(O2?
,O2>), then

the lower and upper bound is [O2?
,O2>]. Note that such a defined uncertain

set covers all possible realizations of the random variable. Instead, when O2 is
normally distributed with mean µO2 and standard deviation �O2 , written as
O2 ⇠ N (µO2 ,�O2 ), we set the bounds to be [µO2 �k ·�O2 , µO2 +k ·�O2 ], with
k > 0. Since the normal distribution has unbounded support, we cannot cover
all possible realizations with an interval. In our experiments, we select k = 3,
which covers ⇡ 99.74% of all possible values.

Besides the lower and upper bounds, the uncertain sets U t are also condi-
tioned by the range of the (uncertain) start time [t?s , t

>
s ] and the range of dura-

tion [d?, d>] for each meal/exercise episode. (The duration of meal is fixed so the
range is only a single value d). Table 3 illustrates the rule for the construction
of uncertainty set at time t.

D Asymmetric costs

We evaluate glucose regulation under di↵erent asymmetric costs. By choosing
� > 1 in the controller (see Equation 9), predicted BG trajectories below the
target BG level are penalized more than those above the target. As discussed
in [7], this strategy contributes to reducing hypoglycemic episodes and is sub-
stantiated by the fact that hypoglycemia leads to more severe consequences than
those of (temporary) hyperglycemia.



U t[DG] D
t
G

?
= CHO?

/d if t>s  i  t
?
s + d, 0 o/w

= [Dt
G

?
, D

t
G

>
] D

t
G

>
= CHO>

/d if t?s  i  t
>
s + d, 0 o/w

U t[MM ] MM t? = MM? if t>s  i  t
?
s + d

?, 0 o/w

= [MM t?
,MM t>] MM t> = MM> if t?s  i  t

>
s + d

>, 0 o/w

U t[O2 ] O2 t? = O2? if t>s  i  t
?
s + d

?, O2 0 o/w

= [O2 t?
,O2 t>] O2 t> = O2> if t?s  i  t

>
s + d

>, O2 0 o/w

Table 3: Uncertain sets at time t for CHO ingestion rate DG, active muscular
mass MM and oxygen consumption O2 . O2 0 = 8 is the basal oxygen consump-
tion at rest.

t<3.9 t3.9�11.1 t>11.1 BGmin BGmax
P

◆

Scenario 1, perfect 0% 99.69% 0.31% 7.15 9.91 4.38
Scenario 1, HCL 1.6% 69.4% 29% 5.61 12.85 8.19

Scenario 1, robust 0.51% 97.7% 1.79% 5.57 9.96 6.23
Scenario 2, perfect 0% 100% 0% 7.03 8.84 4.67
Scenario 2, HCL 1.03% 81.51% 17.45% 5.75 11.32 6.31

Scenario 2, robust 0.28% 84.19% 15.53% 5.16 10.94 5.82
Scenario 3, perfect 0% 100% 0% 7.22 9.3 5.06
Scenario 3, HCL 0% 67.25% 32.75% 7.19 13.34 5.05

Scenario 3, robust 0.79% 99.03% 0.18% 5.09 8.77 5.64

Table 4: Complete statistics for the one-meal experiments of Section 5.1.

t<3.9 t3.9�11.1 t>11.1 BGmin BGmax

� = 1 1.5% 85.35% 13.15% 5.17 11.05
� = 2 0% 80.13% 18.87% 5.4 11.38
� = 4 0% 76.8% 23.2% 5.6 11.63

Table 5: Indicators for di↵erent asym-
metric cost strategies.

We tested the robust controller
with � = 1, 2, 4 (symmetric, 2x,
and 4x penalty, respectively). Sim-
ulations were conducted according
to the outliers scenario (see Section
5.1), which typically generates hypo-
glycemic episodes and thus, is an ideal
testbed for tuning �. Table 5 reports the performance indicators obtained with
20 repetitions for each value of �. While for � = 1 (symmetric cost) we record
some minor hypoglycemic episodes, hypoglycemia is totally avoided for � = 2, 4.
Between these two values, we chose � = 2 since it yields smaller hyperglycemia.
The indicators for average BG peaks and lows confirm that glucose levels increase
with �.

E Data extraction from NHANES database

Below, we describe how we extracted meal data from the CDC’s NHANES
database and generated the corresponding uncertainty sets.

– We retrieve meal information from the dietary interview, where each partic-
ipant reports the timings, types and amounts of each meal during a typical
day.



– Through a moving average filter, we transform the meal events of each par-
ticipant into a one-day trajectory describing the CHO intake rate, so that it
can be mapped into the uncertainty parameter DG.

– Note that a building a single uncertainty set built from the whole database
would result in a overly-conservative sets that allows for essentially unre-
stricted random behaviors. To avoid this, we classify the database based on
the above CHO trajectories into 10 groups using k-means clustering, and
select a cluster consisting of 274 people.

– Such data is then used to construct the uncertainty sets, as described in
Section 4.2, and to parameterize the virtual patient, where random meal
uncertainties are sampled from the set of participants.

– Due to the lack of good quality data for physical activity in the NHANES
database, we generated synthetic exercise data (1 random one-hour exercise
episode for each patient) as follows:
• draw uniformly a random start time for exercise between 9am and 6pm
• set CHO intake rate to zero for the corresponding time window, since it
is unlikely if not impossible that eating and exercise happen at the same
time

• uniformly sample among light, moderate and intense exercise
• depending on the above outcome, sample oxygen consumption and active
muscular mass according to the below predefined ranges:

∗ light: MM = unif(0.1, 0.25),O2 = unif(15, 45);
∗ moderate: MM = unif(0.2, 0.35),O2 = unif(45, 75);
∗ intense: MM = unif(0.3, 0.5),O2 = unif(75, 100).



(a) Cluster # 2: 368 people (b) Cluster # 3: 592 people (c) Cluster # 4: 440 people

(d) Cluster # 5: 4663 people (e) Cluster # 6: 325 people (f) Cluster # 7: 662 people

(g) Cluster # 8: 128 people (h) Cluster # 9: 658 people (i) Cluster # 10: 551 people

Fig. 8: Uncertainty sets for clusters 2-10 extracted from the NHANES database.
Cluster # 1 was used for our experiments and is reported in Figure 5. Cluster
# 2, 3, 4, 6, 8, 9, 10 show peaks at about minute 1200, indicating schedules
characterized by CHO-rich dinners. Participant in cluster # 7 are characterized
by a rich lunch, while no particular patterns can be observed for cluster # 5.
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