203 research outputs found

    Cooperative mobility maintenance techniques for information extraction from mobile wireless sensor networks

    Get PDF
    Recent advances in the development of microprocessors, microsensors, ad-hoc wireless networking and information fusion algorithms led to increasingly capable Wireless Sensor Networks (WSNs). Besides severe resource constraints, sensor nodes mobility is considered a fundamental characteristic of WSNs. Information Extraction (IE) is a key research area within WSNs that has been characterised in a variety of ways, ranging from a description of its purposes to reasonably abstract models of its processes and components. The problem of IE is a challenging task in mobile WSNs for several reasons including: the topology changes rapidly; calculation of trajectories and velocities is not a trivial task; increased data loss and data delivery delays; and other context and application specific challenges. These challenges offer fundamentally new research problems. There is a wide body of literature about IE from static WSNs. These approaches are proved to be effective and efficient. However, there are few attempts to address the problem of IE from mobile WSNs. These attempts dealt with mobility as the need arises and do not deal with the fundamental challenges and variations introduced by mobility on the WSNs. The aim of this thesis is to develop a solution for IE from mobile WSNs. This aim is achieved through the development of a middle-layer solution, which enables IE approaches that were designed for the static WSNs to operate in the presence of multiple mobile nodes. This thesis contributes toward the design of a new self-stabilisation algorithm that provides autonomous adaptability against nodes mobility in a transparent manner to both upper network layers and user applications. In addition, this thesis proposes a dynamic network partitioning protocol to achieve high quality of information, scalability and load balancing. The proposed solution is flexible, may be applied to different application domains, and less complex than many existing approaches. The simplicity of the solutions neither demands great computational efforts nor large amounts of energy conservation. Intensive simulation experiments with real-life parameters provide evidence of the efficiency of the proposed solution. Performance experimentations demonstrate that the integrated DNP/SS protocol outperforms its rival in the literature in terms of timeliness (by up to 22%), packet delivery ratio (by up to 13%), network scalability (by up to 25%), network lifetime (by up to 40.6%), and energy consumption (by up to 39.5%). Furthermore, it proves that DNP/SS successfully allows the deployment of static-oriented IE approaches in hybrid networks without any modifications or adaptations

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Developing a Holonomic iROV as a Tool for Kelp Bed Mapping

    Get PDF

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Automated taxiing for unmanned aircraft systems

    Get PDF
    Over the last few years, the concept of civil Unmanned Aircraft System(s) (UAS) has been realised, with small UASs commonly used in industries such as law enforcement, agriculture and mapping. With increased development in other areas, such as logistics and advertisement, the size and range of civil UAS is likely to grow. Taken to the logical conclusion, it is likely that large scale UAS will be operating in civil airspace within the next decade. Although the airborne operations of civil UAS have already gathered much research attention, work is also required to determine how UAS will function when on the ground. Motivated by the assumption that large UAS will share ground facilities with manned aircraft, this thesis describes the preliminary development of an Automated Taxiing System(ATS) for UAS operating at civil aerodromes. To allow the ATS to function on the majority of UAS without the need for additional hardware, a visual sensing approach has been chosen, with the majority of work focusing on monocular image processing techniques. The purpose of the computer vision system is to provide direct sensor data which can be used to validate the vehicle s position, in addition to detecting potential collision risks. As aerospace regulations require the most robust and reliable algorithms for control, any methods which are not fully definable or explainable will not be suitable for real-world use. Therefore, non-deterministic methods and algorithms with hidden components (such as Artificial Neural Network (ANN)) have not been used. Instead, the visual sensing is achieved through a semantic segmentation, with separate segmentation and classification stages. Segmentation is performed using superpixels and reachability clustering to divide the image into single content clusters. Each cluster is then classified using multiple types of image data, probabilistically fused within a Bayesian network. The data set for testing has been provided by BAE Systems, allowing the system to be trained and tested on real-world aerodrome data. The system has demonstrated good performance on this limited dataset, accurately detecting both collision risks and terrain features for use in navigation

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Development of methods for combinational approaches to cis-regulatory module interactions

    Get PDF
    The complexity and size of the higher animal genome and relative scarcity of DNA-binding factors with which to regulate it imply a complex and pleiotropic regulatory system. Cisregulatory modules (CRMs) are vitally important regulators of gene expression in higher animal cells, integrating external and internal information to determine an appropriate response in terms of gene expression by means of direct and indirect interactions with the transcriptional machinery. The interaction space available within systems of multiple CRMs, each containing several sites where one or more factors could be bound is huge. Current methods of investigation involve the removal of individual sites or factors and measuring the resulting effect on gene expression. The effects of investigations of this type may be masked by the functional redundancy present in some of these regulatory systems as a result of their evolutionary development. The investigation of CRM function is limited by a lack of technology to generate and analyse combinatorial mutation libraries of CRMs, where putative transcription factor binding sites are mutated in various combinations to achieve a holistic view of how the factors binding to those sites cooperate to bring about CRM function. The principle work of this thesis is the generation of such a library. This thesis presents the development of microstereolithography as a method for making microfluidic devices, both directly and indirectly. A microfluidic device was fabricated that was used to generate oligonucleotide mixtures necessary to synthesise combinatorial mutants of a CRM sequence from the muscle regulatory factor MyoD. In addition, this thesis presents the development of the optimisation algorithms and assembly processes necessary for successful sequence assembly. Furthermore, it was found that the CRM, in combination with other CRMs, is able to synergistically regulate gene expression in a position and orientation independent manner in three separate contexts. Finally, by testing a small portion of the available combinatorial mutant library it was shown that mutation of individual binding sites within of the CRM is not sufficient to show a significant change in the level of reporter gene expression
    • …
    corecore