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Abstract 

The complexity and size of the higher animal genome and relative scarcity of DNA-binding 

factors with which to regulate it imply a complex and pleiotropic regulatory system. Cis-

regulatory modules (CRMs) are vitally important regulators of gene expression in higher 

animal cells, integrating external and internal information to determine an appropriate 

response in terms of gene expression by means of direct and indirect interactions with the 

transcriptional machinery. The interaction space available within systems of multiple CRMs, 

each containing several sites where one or more factors could be bound is huge. Current 

methods of investigation involve the removal of individual sites or factors and measuring 

the resulting effect on gene expression. The effects of investigations of this type may be 

masked by the functional redundancy present in some of these regulatory systems as a 

result of their evolutionary development. The investigation of CRM function is limited by a 

lack of technology to generate and analyse combinatorial mutation libraries of CRMs, 

where putative transcription factor binding sites are mutated in various combinations to 

achieve a holistic view of how the factors binding to those sites cooperate to bring about 

CRM function. The principle work of this thesis is the generation of such a library. 

 This thesis presents the development of microstereolithography as a method for 

making microfluidic devices, both directly and indirectly. A microfluidic device was 

fabricated that was used to generate oligonucleotide mixtures necessary to synthesise 

combinatorial mutants of a CRM sequence from the muscle regulatory factor MyoD. In 

addition, this thesis presents the development of the optimisation algorithms and assembly 

processes necessary for successful sequence assembly. Furthermore, it was found that the 

CRM, in combination with other CRMs, is able to synergistically regulate gene expression in 

a position and orientation independent manner in three separate contexts. Finally, by 

testing a small portion of the available combinatorial mutant library it was shown that 

mutation of individual binding sites within of the CRM is not sufficient to show a significant 

change in the level of reporter gene expression. 
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Chapter 1 

1. Systems approaches of combinatorial dissection of cis-

regulatory module function 

1.1. Specification in development 

Development is the process by which higher organisms transition from a single celled 

zygote to the complex, multicellular adult. During this transition the cells of the developing 

embryo will undergo periods of patterning, specification, migration, rapid division, 

apoptosis and differentiation. These processes are regulated in a precise and concerted 

manner by a remarkably small set of developmental genes1,2. The expression of these 

developmental genes must be tightly restricted to specific spatial and temporal locations 

within the developing embryo. The result of these processes is the specification of 

populations of cells, cell lineages, which will go on to form all of the >200 cell types found 

in the complex metazoans, known colloquially as ‘higher animals’.. 

 The specification of a cell lineage is the result of several processes acting in 

concert3. Firstly, the cell(s) must interpret the developmental cues from their surroundings 

to derive their ‘identity’. Secondly, the expression of specific regulatory genes necessary for 

this identity must be activated and then stabilised. Thirdly, alternative regulatory genes for 

alternative identities must be excluded. Finally, various lineage specific genes necessary for 

proper development of the lineage within the context of the overall embryo must be 

activated. When a decision is made to express a given regulatory gene, a pleiotropic gene 

regulatory network (GRN) is initiated where a cascade of interregulating genes are 

expressed that result in the appropriate course of development for the given lineage3. 
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 The processes of development are initiated in response to a range of inter- and 

intracellular signalling cues. Many cues are derived from the overlapping gradients of 

signalling molecules throughout the embryo generated by specific groups of cells (such as 

dorsal-ventral orientation). Other cues, however, are transmitted via direct cell-cell 

contacts (such as Notch/delta signalling in pigmentation). A cell must integrate information 

from various competing and cooperating signals and determine the appropriate response. 

One mechanism of this integration process occurs during signal transduction: different 

signalling pathways might share common elements in their cascades and by affecting the 

activity of these elements, the information from different signalling sources is merged. The 

p38 mitogen activated protein kinase (MAPK) pathway is an example of a signalling 

pathway with multiple inputs4. The activation of specific regulatory factors within the 

nucleus, however, is the terminus of many signalling cascades. In the nucleus, integration 

of complementary and competing signals is achieved at the promoters, enhancers, 

silencers and other regulatory modules associated with specific target genes. The result of 

these regulatory interactions is the expression of genes that result in the assumption of a 

cellular identity. Although selected, in some cases the identity of a cell is still plastic, as 

demonstrated by tissue grafting experiments in the chick embryo5. Cells previously 

expressing genes specific for one location can be induced to express genes specific to 

another location once grafted to the new location and the alternative signalling cues are 

internalised and interpreted. 

 A cell lineage is maintained by a permanent alteration of the cell’s response to 

signalling. Elements of a signalling cascade may be sequestered, degraded or expression 

deactivated in order to make a cell deaf to a specific signal. Activation of a specific 

regulatory factor may initiate a positive feedback loop, reinforcing its own expression that, 

by virtue of its effect on the expression of downstream genes, locks in the identity of the 

cell to a specific lineage. Furthermore, epigenetic modification of the DNA and histones is 
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known to lead to the silencing of whole regions of DNA, preventing the expression of 

regulatory genes therein6–8. Silencing is usually achieved by a combination of epigenetic 

and histone modification driven by the recruitment of DNA methylases and histone 

deacetylases that serve to favour the packaging of DNA into silent, non-expressing 

heterochromatin9. 

 The spatial and temporal expression of genes necessary to specify a cell lineage is 

usually tightly controlled. Figure 1.1 exemplifies this using the specification of muscle 

progenitor cells in the developing embryo. The specification of a region of tissue in the 

embryo that will become the adult skeletal musculature is achieved by the overlapping 

presence of several signals; bone morphogenetic protein-4 (BMP4), noggin, Shh and the 

Wnt proteins. This process is discussed further in chapter 3. 

 

Figure 1.1: Overlapping signals that lead to the specification of muscle cells in the 
developing embryo. Image shows a transverse section through a developing embryo; A 
central neural tube (top centre) and notochord (bottom centre) are flanked by a pair of 
somites on each side followed by a pair of lateral limb buds. Left half of the image shows 
the morphogenic fields of various transcriptions factors: Red; BMP4, cyan; noggin, yellow; 
Shh and blue; Wnt proteins. Right side of image shows the relative concentration of these 
factors in the different portions of the somite. Letters denote the tissues that are the 
sources of the different signalling molecules. The section highlighted in green on the left 
and by 1111 on the right is the area where muscle cell progenitors are specified. Image 
taken from Piran et al.10. 
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Bacteria are able to achieve a sufficiently sophisticated suite of regulatory control 

mechanisms by direct interactions between transcription factors and the core 

transcriptional machinery11. A population of bacteria may respond to changes in 

environment by evolving their responses appropriately, trimming excess genetic code and 

altering regulatory interactions. In contrast, the responses to environmental change of 

each of the >200 cell types of the higher animal must be encoded in each of the individual 

cell types. Remarkably, this function is achieved with relatively fewer transcriptional 

genes2. As a result, the regulatory interactions that ensure the appropriate responses occur 

are significantly more complex in higher animals than prokaryotes. In higher animals 

correct spatiotemporal gene regulation is achieved through the complex interactions of 

multiple DNA-binding proteins and their cognate binding sites in regulatory modules in the 

non-coding DNA. This is achieved with a relatively small amount of genes operating in 

pleiotropic networks and the mechanisms that result correct regulation of each gene are 

likely to be complex. To understand how genes are regulated, the mechanisms of their 

expression must first be understood. 

1.2. Regulation of transcription 

Several processes must occur in concert for a gene to be actively transcribed: The highly 

packaged chromatin immediately around the transcription start site (TSS) must be 

decondensed. The pre-initiation complex (PIC), containing ribonuceleic acid (RNA) 

polymerase II (RNAPII), must form at the sequence elements of the core promoter 12. 

Finally, the assembled RNAPII is released and processive transcription occurs producing a 

messenger RNA (mRNA) transcript from which a functional protein is subsequently 

produced by translation. Although transcription constitutes the major point of regulation in 

the expression of most genes, other mechanisms of the regulation of protein expression 

and activity should also be noted; degradation of mRNA, inhibition of nuclear export, 
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sequestration/localisation of mRNA, degradation of protein, sequestration of protein and 

post-translational modification. Regulation of transcription is achieved by the interaction of 

enhancing and silencing regulatory modules with the core transcriptional machinery at the 

core promoter.  

In contrast to the highly conserved prokaryotic promoter, the promoters of 

eukaryotic cells exhibit significantly more variation in the elements present therein. The 

diversity in promoter structure observed in eukaryotic organisms13,14 is presumably a 

reflection of the range of regulatory conditions that must be represented in order to 

correctly control in a complex multicellular organism the spatiotemporal expression of the 

~20000 genes present in the human genome with only an estimated <2000 DNA-binding 

transcription factors1,2. 

The promoter alone is not sufficient to facilitate the high levels of expression 

associated with some genes6. The core promoter is supplemented by additional elements 

that facilitate and regulate the expression of a given gene. These elements can be close (≤1 

kb) to the promoter they regulate in the case of proximal regulatory elements or many 10s 

or even 100s of kb away in the case of distal regulatory elements15. Regulation of a target 

gene by a regulatory element is achieved in conjunction with the binding of a specific 

transcription factor. For example, activation of a target gene can be achieved by the 

binding of an activatory transcription factor to an element, which is called an enhancer16. 

Conversely, the binding of a repressive transcription factor to an element produces a 

silencer. Clusters of regulatory transcription factor binding sites that act on genes on the 

same chromosome, to bring about enhancement or silencing of a target gene, are termed 

cis-regulatory modules (CRMs)17. Further elements include insulators and locus control 

regions (LCRs). Insulators bound the influence of nearby enhancers and silencers and 

prevent the functionality of these elements from affecting the promoters beyond. LCRs, 

typified by the β-globin LCR, are collections of regulatory elements that cooperate to 



1. Systems approaches of combinatorial dissection of cis-regulatory module function 

6 
 

achieve the regulation of a gene in a location-independent manner18. Similarly, groups of 

enhancers are able to associate into enhanceosome structures, the best characterised 

being the enhanceosome of the IFN-β gene19 which has even been crystallised20. Groups of 

repressive regulatory elements can also cooperate to act as a repressosome21 and, in the 

right circumstances, enhanceosomes can be converted to repressosomes22. The 

enhanceosome model of CRM action, therefore, involves the interaction of various factors 

bound to a CRM in with an overall structure and that each element of the structure is 

necessary in order for the whole to function as intended. In addition to this highly 

coordinated and cooperative model of CRM action, another model, the billboard model, 

also exists23. In this model, factors bound to binding sites do not interact with each other 

and instead regulate transcription through independent interactions with the core 

transcriptional machinery. 

Regulation of the target promoter is brought about by the relative frequency with 

which these different elements are able to interact with the transcriptional machinery 

bound to the core promoter. 

A diverse range of signals are integrated by interactions between and within CRMs 

that result in specific decisions about whether a gene is expressed or silenced24. A single 

decision made at a specific CRM can have dramatically wide ranging downstream effects 

that can affect the fate of a cell. For example, the expression of myod results in the 

commitment of a group of cells within a structure called the somite in the developing 

embryo to the myogenic lineage (see figure 1.1) during initial stages of myogenesis (see 

chapter 2 for a summary of the current knowledge of how myod regulation is achieved). 

Clearly, the mechanisms by which the appropriate response is computed as a result of 

integration of the diverse signalling inputs are necessarily complex. 
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1.3. Signal interpretation at/by cis-regulatory modules 

A vast number of regulatory inputs must be processed by the many cells of a developing 

embryo. The output, activation and/or silencing of gene expression at certain specific loci, 

will incorporate information about the history of the cell, or cell lineage with information 

from the environment. The effect of the integration of the external signalling influences 

and the internal lineage information is determined by CRMs that control the 

spatiotemporal expression of each gene. The regulatory responses to a given set of inputs 

by the cell is, therefore, ‘hardwired’ into the genome by the presence of these CRMs25. 

CRMs are typically between 100 and 1000 basepairs in length and contain a high 

concentration of transcription factor binding sites26. Some regulatory modules are capable 

of acting on the promoters of more than one gene and also across chromosomes27. 

Furthermore, whether the CRM is activatory or inhibitory depends what factors are bound 

to the sites within that CRM. Regulatory modules in both these contexts are herein referred 

to as CRMs. Because they are the site of integration between the signalling and internal 

regulatory state of the cell, CRMs, or combinations thereof, are the site where the 

appropriate response is determined. 

 A CRM receives input, binding of transcription factors, as a result of internal or 

external signalling events, operates upon them and derives an output: driving or halting 

gene expression as appropriate28. The CRM is, therefore, acting like a computer29 with 

binding of transcription factors to DNA generating logic gates controlling the expression 

from the target promoter30. Cooperative and competitive binding form the basis of the 

interactions that underpin these logic gates. Cooperative binding is where two factors co-

stabilise their interaction with the DNA by interacting with each other. Competitive binding 

is where two factors, which are independently able to bind the DNA, share overlapping 

binding sites and cannot bind simultaneously. If two activatory factors, A and B, must bind 
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cooperatively to the DNA an AND gate is generated as the activatory effect is only observed 

when both factors are available (see figure 1.2, a). Similarly, if two independently binding 

activatory factors are able to perform the same activatory effect, an OR gate is generated 

(see figure 1.2, b). The NOT version of each of these gates, NAND and NOR, can be 

generated if the transcription factors compete with the RNAPII binding site. An example of 

a NAND gate is shown in figure 1.2, c. 

 

Figure 1.2: Gene regulatory logic gates. Three gates are demonstrated: a) represents an 
AND gate, where both factor A and B must be present for either bind and interact with the 
RNAP. b) represents an OR gate, where factors A and B binding to distinct, non-interacting 
sites and each interact with the RNAP independently. c) represents a NAND gate, where 
both factor A and B must be present for either to bind and thereby disrupt RNAP function. 
Image adapted from Buchler et al.30. 

Higher order interactions between transcription factors can result in more complex 

regulatory logic gates31 including transistor-like latches32. Importantly, the same or similar 

modes or motifs of gene regulation appear repeatedly in disparate regulatory settings. 

Such motifs usually rely on the relative position of transcription factor binding sites, with 
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changes in position or orientation critically affecting function. Conversely, there are 

examples of considerable flexibility in the order and relative position of transcription factor 

binding sites33.  

 Logic functions appear to play a central role in the regulation of many 

developmental genes across several multicellular species 34. The mechanism by which a 

cell, finding itself in a given environment, determines what identity it should assume is 

hardwired into the genetic code by means of transcription binding sites within CRMs. 

Specific factors bound to these sites interact to bring about the expression of specific 

regulatory factors. The expression of these factors sets in motion a cascade of gene 

expression that brings about the appropriate response. 

1.4. Evo-devo and CRM interactions 

Unlike gene regulation in bacteria, where gene activation or repression frequently involves 

tightly binding σ factors35, regulation in animals involves weakly interacting transcription 

factors binding to regulatory modules distinct from the promoters of genes. The separation 

of the regulatory and functional aspects of gene expression allows each to evolve 

separately. Gene duplication, mutual redundancy and subsequent divergence can lead to 

new functionality and/or spatiotemporal expression without necessarily restricted by 

either36,37. The study of how evolutionary change is brought about by modification of the 

regulation of development is called ‘evo-devo’38,39. The evo-devo narrative, in response to 

the finding that significant differences in body plans between higher animals is not 

mirrored by significant differences in gene sequence, says that it is changes to the 

regulation of genes that drives morphogenic change rather than physicochemical change in 

protein structure/function38,40. For example, gene families such as the homeobox-

containing Hox genes and Wnt genes are centrally involved with fundamental processes of 

specification and development, are highly functionally similar but possess dramatically 
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different expression patterns. It is the differences in expression patterns of these and other 

influential gene families that results in the differences in the body plans between higher 

animals. 

Duplication of whole GRNs can lead to alteration of the body plan by patterning of 

previously adapted organs or tissues41. The flexibility and variation seen in the vertebrate 

body plan, as compared to the relatively insignificant variation in genome sequence, is 

probably due, at least in part, to the flexibility of a system where regulatory modules are 

divorced from the genes they regulate40,42. This conclusion is supported by the fact that 

there is significant variation in the relative number of members of DNA-binding protein 

families across different animal phyla, although each phyla does contain a common set of 

families overall43. The master muscle regulatory factors (MRFs) seem to exemplify this 

paradigm: A family of related transcription factors that exert high level control over the 

processes of muscle specification during development across all higher vertebrate animals. 

The MRFs are a family composed of four genes; myod, myf-5, myogenein and mrf4 44.  

1.5. Mechanisms of CRM-promoter communication: Billboard vs. Enhanceosome 

CRMs can be classified into either enhanceosomes, which feature highly cooperative 

transcription factor binding sites, or billboards (also known as information display), which 

are more flexible in terms of transcription factor binding site arrangement23. 

Enhanceosome CRMs involve the interaction of many proteins to generate a complex that 

can have either an enhancing or repressive effect. Billboard CRMs consist of distinct sites, 

each of which is competing for a limited number of target sites within another regulatory 

complex. The position and orientation of the multiple transcription factor binding sites that 

constitute an enhanceosome is vital to enhanceosome function. As a result, 

enhanceosomes are usually conserved evolutionarily. Billboard-type CRMs are, by contrast, 

not sensitive to the position or orientation of transcription factor binding sites as each site 
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operates on the core transcriptional machinery independently. The output from a 

billboard-type CRM is more likely to be stochastic, with output from the gene depending on 

the relative likelihood of each subset of transcription factors interacting with the 

transcription machinery. The best known example of enhanceosome CRM is virus inducible 

enhancer in the human IFN-β gene19. Conversely, the stripe 2 enhancer in Drosophila 

exemplifies the billboard-type CRM45,46. The two types can be distinguished by the 

independence of the billboard-type from position and/or orientation sensitivity. Sites 

within the billboard-type operate essentially independently or in pairs and are therefore 

resistant to individual sites being changed. In contrast, sites in the enhanceosome model 

are highly cooperative, often requiring architectural looping interactions47,48and removal of 

one site likely result in the silencing of the CRM. Long distance interactions between CRMs 

that constitute enhanceosome structures can be identified through chromatin 

conformation capture (3C) assays49,50 that provide information about the 3D structure of 

interacting sites. More recently, high throughput modifications of the 3C protocols, such as 

circularised 3C (4C) and carbon-copy 3C (5C), have provided genome wide interaction 

maps51. Due to the involvement of multiple modules undergoing complex interactions, the 

enhanceosome model is likely to demonstrate context sensitivity, whereas an individual 

module can either be activatory, repressive or silent depending on the presence and 

factors bound to the other modules. 

 CRMs can either operate in either rheostatic or binary manners. In the former, the 

CRM affects the rate of transcription at the target promoter quantitatively. Whereas in the 

latter, the CRM increases the likelihood that transcription from the target promoter will 

take place without affecting the overall rate of transcription. Rheostatic enhancers will 

increase the overall quantity of the gene product in a given population of cells. Binary 

enhancers, by contrast, increase the likelihood that a given cell within a population will 

express the gene, but not the final concentration of the gene product52. To distinguish 
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between these two types measurements of individual cells within large populations must 

be made. If the whole cell population state is measured by, for example a Western blot or 

qPCR, a moderate level of protein expression might be indicative of either all the cells 

expressing a moderate amount of protein, rheostatic type, or half the cells expressing a 

high level of protein and half the cells expressing none, binary type. To measure large 

populations of cells individually, either live cell imaging or flow cytometry can be used. 

Statistics about individual cells can then be determined and the two types of CRM, 

rheostatic or binary, distinguished. 

1.6. Investigation of CRMs 

CRMs are typically identified by either computational or perturbation experiments. In the 

former type, which is much faster but less conclusive and requires aligned genomic 

sequence information, sequences from the genomes of difference species are compared 

for conservation or simply scanning for high densities of predicted binding sites. Regions 

that are strongly conserved between species are considered to be important as there is a 

strong evolutionary pressure to resist changes in these regions. The CRMs putatively 

identified thusly must then be confirmed by in vivo/in vitro experimentation either in 

culture or in whole organisms. The latter type, which is slower but more conclusive and 

requires many constructs, the DNA sequence around a promoter of interest is manipulated. 

Specific regions or binding sites can be removed and their effect on expression of a gene 

can be monitored. Because transcription factors do not appear to bind sites with affinity 

directly proportional to the sequence of the site, as would be expected53, it is not possible 

to use solely predictive, computational methods for CRM identification. 

Several bioinformatics tools have been developed to detect CRMs based upon 

sequence conservation across species54–56 or the density of predicted transcription factor 

binding sites26,57,58. The vast amount of information arising from whole genome sequencing 



1. Systems approaches of combinatorial dissection of cis-regulatory module function 

13 
 

and microarray expression studies have led to attempts to predict the number and 

interactions of CRMs necessary to achieve given gene expression patterns 59–61. In situations 

where comparable sequence information is not available, CRMs can still be identified by 

integrating information from chromatin immunoprecipitation on chip (ChIP-chip) and ChIP-

sequencing (ChIP-seq) that can identify regions where specific factors bind or where the 

chromatin is in the open conformation across the whole genome. Information from such 

experiments can be used to make sequence search models more accurate62. In relatively 

simple systems, such as segmentation in drosophila, a knowledge of the spatiotemporal 

expression of a range of factors and a clearly discernible output can be combined to make 

accurate models of CRM interactions based on probabilistic models of site occupancy63. 

Confirmation of networks predicted by such systems still requires some form of specific site 

ablation or knockdown. 

The spatiotemporal expression pattern of a given gene can be determined by a 

combination of whole mount in situ hybridisation (WMISH) and quantitative PCR (qPCR), 

respectively. Ablation of whole CRMs, or sites within CRMs, that target the gene of interest 

can be followed by a mixture of WMISH, qPCR and microarray analysis64. A gold standard of 

confidence a CRM mode of action can be obtained by performing either in vivo gene 

ablation or knock-down and rescue of effect. A combination of approaches can be used to 

identify gene regulatory networks including statistical mechanics, in vivo knock outs and 

knowledge of protein-protein interactions65. An example of how prior knowledge of 

relevant GRNs, inter-species sequence comparison, gene knock-downs and reporter 

constructs can be used to elucidate mechanisms of gene regulation is presented by Ransick 

et al.66. In this case, the mechanism of how Notch signalling is integrated in the decision 

during sea urchin mesoderm specification to express glial cells missing (gcm) is described. 

The development of additional combinatorial approaches could increase the rate at which 

GRNs such as these can be discovered in higher animals24.  
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Regulatory networks that control aspects of Drosophila and sea urchin67 

development have been elucidated68. The relatively simple body plans and easily handled 

embryos of these organisms mean they are well suited for developmental studies. Simple 

logic systems derived from eukaryotic regulatory networks have been successfully 

expressed and operated in bacteria69,70. Figure 1.3 shows the most up to date 

understanding of this GRN as elucidated by work from the Davidson lab and others.  
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Figure 1.3: GRN for endomesoderm in sea urchin development. Labelled horizontal lines 
indicate genes. Arrowed lines indicate where a gene product of one gene affects the 
regulation of another. Network obtained for the whole sea urchin genome at up to 30 
hours. from http://sugp.caltech.edu/endomes/. Refer to figure text for explanation of 
abbreviations. 
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A crucial concept in CRM function is activator synergy71 and the regulatory logic gates are a 

form of transcription factor synergy. Cooperative binding is an obvious mechanism of 

activator synergy. This direct type of interaction may be transmitted short distances by one 

or more third party factors, the binding of which stabilises each of the DNA binding 

proteins. Indirect synergies can also occur: A factor bound to one site might recruit a 

chromatin remodelling complex or cause nucleosome slippage that adjusts the chromatin 

structure so as to expose another site7,72,73. Similarly, some effects that would otherwise be 

observable by single site sequence modification could be masked due to redundancy in the 

regulatory systems37. To observe and understand these effects, a combinatorial approach 

must be taken where pairs and whole sets of sites are simultaneously mutated and the 

effects observed. In this manner, an ‘alphabet’ of common networks or motifs of cis-

regulatory functionalities can arise. Such a compendium would prove invaluable for future 

developments in the field of synthetic biology that might lift systems whole sale from those 

that already exist. 

Investigation of CRM function by combinatorial investigation of transcription factor 

binding can be performed by examining the activity of CRMs that have sites mutated in 

pairs, triplets or more. By carefully comparing expression of reporter genes in the context 

of every combination of the ‘on’ (wild type) and ‘off’ (mutated) sites, a clear picture can be 

obtained of the effect and function of each site within the context of the presence or 

absence of each other site. This type of manipulation is usually achieved by gene ablation 

where sections or sites within the regulatory regions are removed. 

 Gene ablation is performed by deleting whole sections of the sequence 

surrounding a promoter and observing the effect via expression of a visualisable product 

such as GFP or β-galactosidase74. This is a typically low resolution approach (100’s to 1000’s 

of bp) that depends on the presence of unique sites for restriction enzymes. At the other 

end of the scale, site directed mutagenesis (SDM) can be used to target specific sites by 
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making short (<5 bp) changes to the sequence75,76. SDM cannot make multiple changes in a 

single reaction and is limited in terms of the length of the change. Therefore SDM is 

suitable for targeting individual sites, but cannot make large scale changes. Thus SDM is 

only suitable for the generation of limited, small scale libraries. More recently, zinc-finger 

nucleases have been employed to make alter sequences at specific sites in the sea urchin 

genome77. Zinc finger nucleases rely on accurate targeting via DNA binding domains and 

therefore suffer the same limitations of restriction enzymes. These techniques offer a 

method to determine whether a given sequence is capable of affecting the expression of a 

target gene. 

Error-prone polymerase chain reaction (PCR) could be used to produce a library of 

variants of a single sequence78,79, with this library then being assessed for activity. This 

method would, however, not make use of any of the available a priori information available 

in this situation and would make changes to all parts of the sequence at random rather 

than at specific sites as desired. The various methods of library production are discussed in 

more detail in section 8.1. 

To produce a set of sequences, therefore, that are capable of interrogating the 

apparent complex, higher order interactions between previously identified CRMs (see 

section 3.5) a combinatorial approach must be taken which existing techniques are not 

suitable to provide. Such an approach would require the development of new technologies 

and techniques necessary for the efficient generation of the library. 

1.7. Thesis aims and objectives 

The time consuming methods of knockout studies and genomic deletion mapping do not 

always return successful results and do not allow for the combinatorial analysis of the 

many potential inputs of a cis-regulatory system. By combining information from 

microarrays, ChIP, bioinformatic binding site prediction and highly parallel, microfluidic 
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synthesis techniques useful information about how regulation of gene expression can be 

obtained24. Combinatorial libraries can be used to supplement traditional approaches of 

construct generation for transient expression studies in suitable cell culture models to 

rapidly elucidate the complex interactions between factors bound to discrete sites in the 

CRMs and the promoter of the myod gene. This type of investigation can also determine 

whether the mechanisms by which the previously identified CRMs of myod act in a manner 

consistent with either the billboard or enhanceosome model. 

De novo gene assembly is such a technology that could be used to produce a library 

of combinatorial CRM variants in a parallelisable manner. The use of gene assembly to 

produce such a library requires the development of optimisation algorithms, of assembly 

protocols and microfluidic systems. The development of each of these necessary enabling 

technologies is described herein and applied to the investigation of the mechanisms 

regulating myod, a master regulator of myogenesis. This thesis aims to develop 

technologies necessary to investigate the mechanisms of CRM interaction within the 

context of previously identified CRMs of the myod gene. The technologies and systems 

developed here could then be applied to other systems for the rapid acquisition of 

information about CRM regulation in different gene systems. Figure 1.4 shows a high level 

overview of the different aspects of the project. 
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Figure 1.4: Chart showing a high level breakdown of the different aspects required for the 
development of novel technology for the investigation of CRM interactions presented in 
this thesis. The thesis breaks down into three main subject areas; library design, 
microfluidics and DNA assembly. Each of these areas involves several distinct aspects that 
are split amongst the chapters as appropriate. 

A combinatorial mutant library was designed by taking into account information from a 

variety of sources. Chapter 2 outlines the diverse signalling pathways involved in muscle 

specification and the regulation of myod. How these signalling events are integrated at the 

myod promoter is less clear, despite the considerable effort in the last two decades by 

various labs, including the one in which this project is based. The information currently 

known about the contribution of several suspected CRMs is also summarised in chapter 2. 

In addition to the information available in the literature, data obtained by previous 

researchers within the group in which this project was based was incorporated. An 

argument for the prioritisation of certain binding sites is then made in chapter 2 and a set 

of these sites were selected for combinatorial mutation in a specific CRM context. Figure 

1.5 summarises the process for combining the knowledge into a list of sites of interest from 

which the sequences composing combinatorial mutant library was generated. 
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Figure 1.5: Flow chart describing the process of determining the sequences that make up 
the mutational library (see chapter 3). The process starts with previous work by firstly by 
H. Crutzen and secondly by P. Downton. Using information from this previous work and 
modelling of the CRM interactions by J. Reid and others, a CRM system of a set of sites to 
mutate within a specific CRM were selected. These sites were then used to produce a 
mutant library that consists of a complete set of combinatorial mutations of these sites. 

Chapter 3 reviews the application of microfabrication technologies to the production of 

microfluidics that could be used in this project. Whilst suitable for methods development 

and small scale library generation, molecular biology on the bench top scale is unsuitable 

for the generation of large scale, productive development. As a result, a method for the 

fabrication of microfluidic devices for the contamination free mixing of DNA assembly 

substrates is described in chapter 6. The microfluidic devices were fabricated by multilayer 

soft lithography, with each layer of the device composed of polydimethylsiloxane (PDMS) 

casts of moulds fabricated by microstereolithography (MSL). The process of optimising MSL 

for the production of microfluidic devices and its use as a mould to cast PDMS is described 

in chapter 5. Figure 1.6 shows a flow chart that describes the process employed here for 

the development, assembly and testing of the microfluidics in this project. 

 Chapter 4 contains the materials and methods for the experimental work 

presented throughout this thesis. 
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Figure 1.6: Flow chart describing the process for the development, assembly and testing 
of the microfluidic oligonucleotide mixing chip used in this project (see chapters 5 and 6). 
The MSL procedure was characterised and used to make MSL moulds from which PDMS 
casts were obtained. Several processes were necessary for the successful operation of the 
microfluidic chip: Assembly of the chip by multilayer soft lithograph and fabrication and 
writing of electronics and control software. The successfully assembled and characterised 
microfluidic chip was then employed to make oligonucleotide mixtures. 

The combinatorial mutant library was generated by a DNA assembly process. Two methods 

were used: Gao assembly and OptiCut assembly. Both methods involve the ligation of 

specifically designed oligonucleotides followed by the amplification of the full length 

ligated DNA assembly. The methods are distinguished by the sequence optimisation 

method, whether all or a subset of the oligonucleotides were present in the assembly 

reaction and the need for intermediate amplification steps. The development of the 

OptiCut optimisation algorithm is described in chapter 7. The optimisation of the CRM 

assembly process is described in chapter 8. The overall process for the CRM assembly 

described herein is summarised in figure 1.7. 
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Figure 1.7: Flow chart describing the CRM assembly process used in this project (see 
chapter 8). The Gao assembly (section 8.2) process was the first attempted and failed at 
the assembly of oligonucleotides step. An alternative approach, OptiCut assembly (section 
8.3), was then used as the source CRM mutant sequences that were then partially tested. 

Whilst knock-down of a specific factor can yield high quality evidence of that factor’s 

importance to the regulation of a factor, knockdown alone does not indicate whether the 

observed effect is direct or indirect. Initially, observation of effects on the basis of ablation 

of specific sites or combinations of sites is a useful first step to identifying the factors to 

knock-down in further analysis. 

 Finally, chapter 9 describes the testing of both the position-orientation 

dependence of the CRMs (see section 9.3) and of a small portion of the mutant library (see 

section 9.4) generated in chapter 8. The position-orientation investigation shows whether 

the observed effects are an artificial product of the plasmid environment into which they 

are place or representative of the CRMs acting as independent regulatory entities.  

 Chapter 10 then draws the principle conclusions of the previous results chapters 

together and discusses potential future work.  
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Chapter 2 

2. Traditional and combinatorial investigations into the regulation 

of myod 

The regulation of the muscle regulatory factor (MRF) myod was investigated to examine 

the mechanisms underpinning the expression of this tightly regulated factor. This chapter 

aims to summarise the key findings in the literature about the mechanisms of myod 

regulation in mouse (Mus muculus) in a variety of developmental contexts. Information 

from the literature, summarised in sections 2.1 to 2.4, is combined with data obtained by 

previous researchers within the group that this research project is based to present a 

current understanding of myod regulation. By developing on this previous work, the 

position/orientation of the previously identified CRMs can be determined. Furthermore, 

combinatorial mutant libraries can be developed and tested in order to deduce the activity 

of specific sites within a CRM. 

2.1. Muscle specification in vivo 

During vertebrate development, structures called somites are formed from the paraxial 

mesodermal tissue on either side of the neural tube and notochord. Within the somites, 

four compartments are defined that will become the dermis (dermatome), the vertebrae 

(schlerotome), the tendons (syndetome) and the skeletal musculature (myotome). The 

dermatome and myotome are frequently referred to together as the dermomyotome as 

they are both specified within the dorsal somite. Surgical grafting revealed that 

specification of the regions within the somite was determined by exogenous signals from 

‘organisers’ in neighbouring tissues1,2. 
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 Signals from the adjacent structures in the developing embryo result in the 

specification of the regions of the somite3. Shh signalling from the notochord and floor 

plate and Wnt signalling from the neural tube stimulate Myf5 expression in the epaxial 

somite 4. Bone morphogenetic protein (BMP) signalling from the limb bud inhibits MyoD 

expression in the lateral portion of the somite and is counteracted by noggin expression 

originating from the dorsal medial lip of the hypaxial dermamyotome5. Together these 

signals specify a region of the developing somite that expresses either MyoD or Myf5 and 

will go on to form the myotome142. Figure 1.1 shows the interactions of these signalling 

molecules diagrammatically. 

Specification of cells into the myogenic lineage is defined by expression of either 

MyoD or Myf5. The fact that homozygous myod and myf5 double knockout mice 

completely lack skeletal muscle illustrates the crucial role of these two genes to the process 

of myogenesis7. Interestingly, homozygous knockouts for either myod or myf5 exhibit 

largely normal muscle development indicating that these factors are able to rescue muscle 

development in each other’s absence. It should be noted, however, that myf5 null mice do 

exhibit a reduced capacity for regeneration in the adult8. Myogenin appears to act during 

the terminal stages of the differentiation cascade as disruption of the myogenin gene 

prevents proper muscle differentiation in vivo whilst MyoD expression is unaffected 9. 

Contrastingly, Mrf4 has been shown to be involved in both muscle specification and 

terminal differentiation 10. These factors, MyoD, Myf5, myogenin and Mrf4, are collectively 

known as the muscle regulatory factors (MRFs). The MRFs are members of the basic helix-

loop-helix (bHLH) transcription factors11 and the MRF family of genes is thought to have 

arisen out of the duplication of a single ancient gene12. 

Other factors are also associated with muscle cell specification, such as Pax3 and 

Pax713,14. The Pax genes act upstream of the MRFs and appear to act to maintain a specified 
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but uncommitted population of muscle stem cells, satellite cells, that are discussed in 

section 2.4.  

2.2. The MyoD protein 

The first evidence for MyoD was found in the fibroblast cell line 10T1/2. Treatment with 

the demethylating agent 5-aza-cytidine results in the expression of muscle specific genes in 

these cells15. This finding strongly suggests that methylation-dependant gene silencing is 

responsible for preventing MyoD expression in these cells. Chromatin remodelling is, 

therefore, most likely necessary for correct expression of the MyoD in vivo. Subsequently, 

MyoD was shown to be able to force a variety of cell types to express muscle specific 

genes16. This evidence indicates that MyoD is a master regulator of cell fate; expression is 

tightly controlled by gene silencing and is necessary and sufficient for activation of a slew of 

genes that are associated with the muscle phenotype. 

 MyoD is a member of the bHLH family of transcription factors17. The bHLH 

structural motif consists of two α-helices linked by a short loop18. One end of each of the 

antiparallel helices associates with the other to form a cross-shape. The basic region at the 

end of one helix is responsible for binding to the DNA. The rest of the HLH domain is 

involved in allowing MyoD to form heterodimers with other HLH domain-containing 

proteins, such as the ubiquitously expressed Ebox proteins. When dimerised with a suitable 

partner, such as itself or a member of the Ebox family of proteins, the consensus binding 

site for MyoD is the motif CANNTG, called an E-box. An activation domain on the MyoD 

protein is then responsible for activating gene expression, in concert with activation or 

repression domains on the appropriate Ebox protein19. The binding of MyoD appears to be 

cooperative with a binding observed at paired E-boxes or where another site can substitute 

for the second E-box20,21. 
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2.3. Regulation of MyoD 

MyoD is known to regulate many downstream genes, a feature that is typical of a master 

regulatory factor22. Microarray analysis of mRNA expression of C2C12 cells (a widely used 

mouse myoblast model cell line) shows that the expression level of a wide range of genes 

vary during differentiation23. Table 2.1 shows a list representing the range of genes that 

MyoD is known to regulate 24. A more comprehensive list, including targets of other MRFs, 

can be found in Blais et al.24. Additionally, post-translational regulation of MyoD by 

ubiquitin-dependant degradation is also involved 25, which is not included within the scope 

of this study. As well as targeting a range of genes involved in muscle specification, MyoD 

also targets genes involved in chromatin remodelling. As discussed previously, chromatin 

remodelling is an important step in the activation and expression of a gene (see section 

2.1). By activating factors responsible for chromatin remodelling, such as the histone 

deacetylases, MyoD is able to indirectly affect gene expression for genes which it does not 

itself bind to. MyoD itself is expressed in specified and proliferating myoblasts, but is 

downregulated as differentiation occurs. The closely related member of the MRF family, 

myf5, is able to overcome the absence of MyoD expression in homozygous knockouts for 

myod26. Figure 2.1 shows how the expression profile of MyoD and Myf5 are linked. 
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Figure 2.1: Postulated expression dynamics of MyoD and Myf5 in myoblasts through the 
cell cycle. Signalling from the factors shown in brackets has been implicated in the decision 
between differentiation, proliferation or quiescence. Image taken from Kitzmann et al.25. 

Signalling from diverse pathways, such as p3827, Notch28,29, TNFα30, Shh31, Insulin32, TGFβ33 

and Wnt34, have been implicated in the regulation of myod. A more complete list of 

pathways and implicated factors, with appropriate references can be seen in table 2.1. Two 

regions are known, the core enhancer and distal regulatory regions (CER and DRR, 

respectively)35–37, that are able to regulate MyoD expression. The mechanism of how these 

signalling pathways integrate at the myod promoter is currently unknown. Deletion of the 

CER or DRR in mice results in altered expression of a lacZ reporter gene38 and replacement 

of the myod promoter with a heterologous promoter results in an expression profile similar 

to native expression39. The CER is responsible for the correct timing of MyoD expression in 

the limb buds and branchial arches40. Targeted mutagenesis of the DRR shows that the DRR 

is not necessary for myogenic differentiation41. The DRR is important for integrating the 

effect of innervation of adult muscle on MyoD expression but not sufficient to describe 

all42. Either directly or indirectly, the information from these diverse signalling pathways 

must be integrated at the myod locus, thus determining MyoD expression.  
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Signalling pathway Activator/repressor Candidate effector proteins 

EDAR 
Activator 
Repressor 

AP1 (c-Jun/Fra2, JunD/Fra2) 
AP1 (c-Jun/cFos, JunD/cFos) 

Wnt Activator Wnt6, Wnt7a43, Pax344 

PPAR Repressor PPARγ45,46 

Insulin Activator CREB47 

p38 Activator E12,E4727,30,48 

Fas Activator TRAIL receptor DR5/FADD49,50 

TNFα Repressor NF-κB30 

Epo Repressor Stat351, GATA152 

MyoD Activator MyoD53 

Notch 
Activator 
Repressor 

Hes654 

Hes155 

AhR Repressor ARNT56 

TGF-β Repressor Mef233, Smad357 

BMP Repressor Runx258 

Table 2.2: Signalling pathways, their qualitative effect on MyoD expression and candidate 
downstream effectors. See text in section 2.6 for explanation of acronyms. 

The regulation of myod is not completely understood6. The identification of additional 

regions that contribute to the regulation of the myod promoter activity is likely to elucidate 

key regulatory mechanisms that occur during the developmental specification of skeletal 

muscle as well as how the repair of adult muscle tissue is regulated. MyoD is itself a 

regulatory transcription factor and is able to effect the transcription of many downstream 

genes which could, by virtue of various gene regulatory networks (GRNs), feedback onto 

the myod promoter.  

2.4. Satellite cell specification 

During development a population of cells are specified that are responsible for repair and 

growth of muscle in the adult. This population of normally quiescent adult stem cells, 
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satellite cells, reside between the sarcolemma and the endomysium of muscle fibres and 

are necessitated by the fact that differentiated myotubes are unable to proliferate. Satellite 

cells are defined by being positive for Pax7 expression59–61 and proliferate slowly, 

maintaining their own population by asymmetric division62. The C2C12 cell line, which is a 

widely used model for adult stem cells, is used in this project for the myod regulation 

studies. 

Upon injury or exercise-associated damage to the muscle, the satellite cells are 

activated by a variety of factors63. Activated satellite cells begin to express Myf5, coupled 

with a down regulation of Notch, and rapidly divide as cycling myoblasts before 

differentiating into muscle cells, which then fuse to form replication incompetent 

myotubes4. Interestingly, there is some evidence that Pax7 positive satellite cells express 

osteoblast-specific markers before terminal myogenic differentiation, suggesting a role in 

osteogenesis64. Finally, differentiation occurs when the proliferating myoblasts fuse to form 

nascent myotubes, which is associated with a down regulation of Notch signalling29,65. 

During differentiation, a cascade of MRF activation, reminiscent of the cascade during 

embryonic development is seen, where My5/MyoD expression gives way to myogenin 

expression. 

The differentiation of satellite cells in adult muscle is similar to the differentiation 

of specified cells in somite in the developing embryo. The regulatory interactions that 

control the expression of MyoD in the context of differentiating satellite cell are likely to be 

similar to those that occur in the expression of MyoD during development. Thus, 

investigation of the differentiation of satellite cells is likely to shed light on the process of 

myogenesis in the developing embryo. 
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Figure 2.2: Regulation of satellite cell activation, proliferation and differentiation. 
Quiescent satellite cells, shown by blue nuclei, are activated, shown by green nuclei, and 
proliferate before finally differentiating and fusing. Important factors are shown in red. 
Image taken from 4. 

2.5. Previous work 

The master muscle regulatory gene myod is known to be regulated by a number of 

previously identified CRMs, the DRR and CER, mentioned above. In addition to the 

published literature, work has been undertaken by previous researchers working on similar 

projects within the group that this project was based. This previous work identified further 

putative CRMs that regulate the activity of the myod promoter in plasmid constructs. This 

section of the thesis seeks to summarise this work and bring in additional insight by looking 

at the sites found within their CRMs and their potential relevance to the regulation of myod 

in a development setting. By the end of the next section, the selection of sites within a 

specific CRM is described and justified using information from previous expression (section 

2.5.1) and bioinformatics studies (section 2.5.2), ChIP analysis (section 2.5.3) and literature 

review. The generation of the combinatorial mutant library containing sequences that 

possess each possible combination of the mutated sites is then described in the rest of this 

project. 
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2.5.1. Previous identification of cis-regulatory modules of myod 

A previous Ph.D student, H. Crutzen, identified several putative CRMs in the region 

upstream of the myod promoter (PRR) transcription start site (TSS). A bioinformatics 

approach was taken to find regions of conservation upstream of the myod promoter by 

comparing 100 bp sliding window sections across several vertebrate species (work by Dr. 

Sascha Ott). Similar searching methods followed by functional analysis has been 

successfully used to find enhancers in several genes66–68. 

 

Figure 2.3: Diagram of regions of homology found upstream of the myod promoter (PRR) 
and transcription start site (TSS) in several species. DRR, CER, A, B and C are noted. 
Numbers next to homologous regions denote the percentage similarity. 

Conservation was tested across diverse vertebrate species for which genome sequences 

were then available; Humans, mouse, opossum and fish (see figure 2.3). Several regions 

were identified, including the CER and DRR that had been previously identified, thus 

validating the approach. Interestingly, the promoter itself was not conserved between 

species, supporting the previous finding that the promoter was not essential for expression 

of MyoD in mouse36. 

CRMs have been investigated previously by a process called promoter bashing and 

targeting mutagenesis of specific sites within regions that have been then determined to 

have an important regulatory effect69. Enhanceosome-type CRMs are highly sensitive to the 

position and orientation of the transcription factor binding sites within them. 
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Rearrangement of the binding sites, therefore, will obliterate the activity of the 

enhanceosome. In contrast, the rearrangement of a billboard-type CRM will not 

significantly alter their affect transcription from the linked gene. These differences are 

described in further detail in section 1.5. 

Dr. Crutzen’s work indicated that the mouse versions of these regions were able to 

regulate the promoter of mouse myod gene in transient transfection experiments. A total 

of 16 constructs were made for these experiments: All possible combinations of CRM A, B, 

C and the CER. The CRMs in each construct were either present or absent. The distance 

between each CRM and the promoter and each of the other CRMs is changed in each 

construct depending on which combination of CRMs precedes it. The order and orientation 

of each CRM, however, remains unchanged in the constructs. Expression testing of these 

combinations indicates whether the CRMs are capable of modulating the expression from 

the myod promoter. 

Figure 2.4 shows how combinatorial expression data indicates how different 

combinations of CRMs interact to bring about regulation of the myod promoter. This data 

includes the DRR in the combinations, yielding a total of 32 constructs, and represents the 

most up to date combinatorial expression data for the CRMs available (data obtained by P. 

Downton, unpublished). 

The normalised green fluorescent protein (GFP) expression data for the different 

CRM combinatorial constructs shown in figure 2.4 show a wide range of expression levels. 

Some constructs, including the PRR alone, express at very low levels, which reflects 

previous findings36. In contrast, other constructs, such as A-CER-DRR-PRR, C-B-A-CER-PRR, 

C-A-CER-DRR-PRR and B-A-CER-DRR-PRR, express at very high levels, up to 3 times higher 

than the SV40 promoter, which is constitutively active. Furthermore, output of the CRM 

combinations does not appear to be a sum of the effects of each individual CRM. Thus, the 
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CRM combinations appear interacting in a more complex manner. In terms of individual 

CRMs, the DRR appears to be a non-specific enhancer that increased expression in nearly 

every case it was present, as compared to a construct containing the same CRMs absent 

the DRR. The combination of A-CER also appeared to have a relatively high expression level 

expressing highly in nearly every case construct that this pair is present in. 

A simple additive model, where the expression of a more than one CRM is equal to 

the sum of the expression of each CRM alone, is clearly not sufficient to explain the 

synergies observed in the data presented in figure 2.4. The CRMs appear, therefore, to be 

exhibiting context sensitivity, where expression level is determined via interaction of the 

CRMs. Alternative modelling approaches were then used to attempt to determine the 

overall function of each individual CRM. 
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Figure 2.4: Combinatorial plasmid expression for previously identified CRMs in 
differentiating C2C12 cell cultures. Each bar represents the average of four identical 
repeats with each plasmid, error bars represent one standard deviation of the data. Data 
obtained by P. Downton. 
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2.5.2. Modelling of higher order interactions 

Thermodynamic models can be used to model how CRMs interact in order to bring about 

regulation of a target promoter70–72. In the future, a complete physical model of the 

interactions of CRMs by virtue of transcription factors bound to specific sites in each 

module is envisaged. A related approach to modelling the complex CRM interactions 

revealed by H. Crutzen and P. Downton was undertaken by J. Reid, S. Mukajee and M. 

Nicodemi73. In this model, each CRM combination is assigned a ‘V-term’ that represents the 

extent to which each combination differs from the expectation based solely upon the 

additive model. This difference is defined as the effect, in addition to each CRM’s additive 

contribution to overall expression, that is derived from each CRM’s interaction with each of 

the other CRMs in the combination. The model represents the CRMs as a variable, nk where 

k  {DRR,CER,A,B,C}, that can be either 1 or 0, representing their presence in a given CRM 

combination. A furter set of variables, k, is 1 when a given CRM is in a conformation where 

it is able to interact with the transcriptional machinery and 0 when the CRM is not able to 

interact. In this notation, exp[(n;) is the statistical weight of the conformation  of 

construct n. The partition function of the system can be written as; 

  ( )      ( )    ( ) Eqn. 1 

Where Zint is the sum of the weights of the states where the CRMs in construct n interacts 

with the transcriptional machinery and Z0(n) is the remaining states where there is no 

interaction. Zint(n) can be expressed as; 

     ( )  ∑    { (  )}  Eqn. 2 

(n;) represents the relative free energy of the CRMs of construct n folded in the state  

and the interaction with the ranscriptional machinery. (n;) is the summation of the free 

energies of the CRMs interacting with the trancriptional machinery individually or as 
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ensembles with any number of the CRMs in construct n. Parameter fitting was performed 

by simulated annealing74. 

 A high V-term, therefore, indicates that, whilst the individual CRMs themselves 

might cause a lower level of expression, the combination of the CRMs result in a higher 

level of expression, which is presumed therefore to be a result of their interactions. 

Conversely, a negative V-term indicates that the interactions between the CRMs is 

repressive of the individual CRMs’ enhancing effect. 

 The CRM interaction terms in the model are fitted to the experimental data and 

the resulting interaction perameters are then used to develop the predicted expression 

data. The closeness of the fit between the experimental and predicted model data 

indicates the acccuracy of the reproduction. To reflect the real in vivo situation, this type of 

modelling requires that the system is complete and all the interacting CRMs are accounted 

for in the model. The CRM combinations with the most positive or negative V-terms are the 

most likely to have the strongest interactions, or the expression levels which are most likely 

to be changed by preventing or breaking the interactions. These combinations were 

targetted for combinatorial study as they exhibited the strongest interaction dependant 

effects. 
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Figure 2.5: V-terms obtained from models of the obtained expression data. Each V-term 
represents the extent to which a given construct differs from the expected expression. 
Expected expression is based upon an additive model of CRM action. Data was obtained by 
P. Downton. V-terms were obtained by J. Reid. 

The V-terms derived for each of the CRM combinations is shown in figure 2.5. The majority 

of interactions are weakly negative (ie these constructs expressed less than was expected), 

but some are stongly positive (ie these constructs express much more strongly than was 
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expected). The systems chosen for position/orientation effect studies, B-A-PRR, C-B-PRR 

and C-B-A-PRR all have negative V-terms and low level expression level except for C-B-A-

PRR which has a high expression level. The system chosen for the CRM-B modification 

study was C-B-A-CER-PRR as this system has an overall high expression level and a positive 

V-term. A high expression level is desired as it is resonable to suspect that, in the 

background of a positive V-term, that modifications to the system that might prevent the 

synergistic interactions between CRMs would result in a measureable drop in expression 

level. 

2.5.3. Chromatin immunoprecipitation of factors on CRMs 

In addition to relative expression data for the different CRM combinations, chromatin 

immunoprecipitation (ChIP) experiments were performed to inform whether specific sites 

would be prioritised for investigation (data obtained by Dr. K. Vance). ChIP involves the 

following steps: Genomic DNA from cells is sheared by sonication. Antibodies to specific 

factors are used to pull those factors and any DNA that they are bound to out of solution. 

Lastly, specific primers are used to determine whether a specific DNA sequence is present 

in the pulled down DNA. Hence, ChIP can be used to determine whether a specific factor 

binds directly to a given DNA sequence in vivo. 

Investigation of the acetylation and methylation state of histone proteins in the 

region of the CRMs before and after differentiation indicated that the chromatin state of 

each changes during this process (K. Vance, unpublished work). This observation is 

consistent with the CRMs participating in the regulation of the myod gene, which exhibits 

dramatic changes in expression during this period. 



2. Traditional and combinatorial investigations into the regulation of myod 

44 
 

 

Table 2.3: Summary of results from ChIP experiments. Tick marks represent a positive 
result indicating binding of the factor to the indicated regulatory region. Data obtained by 
K. Vance and P. Downton. 

2.6. Prioritisation of binding sites within CRMs 

To investigate the mechanisms of regulation of the previously identified CRMs, a 

combinatorial gene ablation approach was employed (link to chapter 1 and the benefits of 

such approaches). Figure 2.6 shows a prioritised list of sites within the CER and CRM-A, -B 

and -C developed using several sources of information. The various sources of information 

and the literature evidence for factors that bind to specific sites and their contribution to 

myod regulation is now discussed. 

The integration of signalling inputs that regulate myod begins with the cross talk of 

different signalling pathways as their signalling cascades converge on common elements. 

Knowledge of these signalling pathways, particularly of their downstream effectors, is 

useful in the prioritisation of binding sites for further study. Figure 2.6 represents a set of 

prioritised sites developed using multiple sources of information: Hits using the BiFa tool 

(which searches for sequences that match transcription factor binding sites from the 

TRANSFAC database75), microarray data (H. Crutzen), phylogenetic conservation of site 
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relative order (P. Downton), ChIP experiments (K. Vance and P. Downton), prior knowledge 

of downstream effectors of signalling pathways and, in the case of the CER only, previous 

DNase footprinting39. 

Sites were also assessed according to whether the factors bound were capable of 

forming bridges between CRMs, the relative score of the binding site hit (how well the 

identified sequence matches the consensus sequence), whether they were a downstream 

target (and therefore possible autoregulatory target for MyoD) and whether they were 

known to induce DNA bending. The potential for a transcription factor to form bridges and 

cause bending in the DNA is important as these are essential features of CRM interaction. 

Removing or otherwise interfering with these factors could affect CRM function even 

though the factors affected do not directly interact with the transcriptional machinery. 

2.6.1. Summary of contributing factors 

The factors that were taken into account during the prioritisation of the binding sites on 

the CRMs are summarised in tables 2.4 to 2.7. These factors include: binding site location, 

as defined by the start and stop position of the site. The category, such as activator-

repressor (AR), bridge or competitor. Whether the site binds a protein that is itself a 

downstream target of MyoD. The pathway by which the factors controlling the factors that 

bind to the site are controlled by. Whether previous ChIP experiments have shown that a 

factor is or is not bound to the CRM. Whether the site appears to be or not to be 

phylogenetically conserved. The extent to which factors bound to the site could induce 

DNA bending important in the formation of regulatory structures composed of several 

CRMs and their binding proteins. The presence of hypersensitivity or footprinting sites in 

DNase assays is also indicated for the CER only. 
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Table 2.4: Factors affecting the prioritisation of binding sites in the CER. DNase 

footprinting data obtained by Goldhamer et al.76.  
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Table 2.5: Factors affecting the prioritisation of binding sites in CRM-A. 
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Table 2.6: Factors affecting the prioritisation of binding sites in CRM-B. 
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Table 2.7: Factors affecting the prioritisation of binding sites in CRM-C.  

2.6.2. CRM binding site maps 

The cooperative and competitive interactions between transcription factors with 

neighbouring and overlapping binding sites can be more easily seen in diagrammatic form. 

Figure 2.6 shows scale diagrams of the binding sites that appear in tables 2.4 to 2.7. In this 

figure, the binding sites are coloured according to the signalling pathways that are known 

to regulate the transcription factors that are known to bind to each site. 
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Figure 2.6: Schematic of prioritised transcription factor binding sites found within the CER 
(top), A (2nd top), B (2nd bottom) and C (bottom). Red dots correspond to phylogenetic 
conservation (P. Downton). Dotted lines indicate either footprinting or DNase 
hypersensitivity was found at these positions by Goldhamer et al.39. Numbers indicate the 
start and end of each site, which are colour coded according to the pathways index. Note 
the different sequence lengths for each CRM: The lengths of each binding site are 
approximately to scale relative to the length of each CRM. NB Vertical position of the site 
relative to the CRM is for illustrative purposes only. 

Clusters of binding sites become apparent when viewing the binding site map presented in 

figure 2.6 that are not so readily in table form (see tables 2.4 to 2.7). Multiple close or 

overlapping binding sites provide the basis on which competitive and cooperative binding 

can work. If possible, sites within the clusters should be targeted for individual mutation. 

Interesting patterns emerge through examining the information in tables 2.4 to 2.7 

and in figure 2.6. The presence of common binding sites on many or all CRMs, such as AP1 

and Eboxes and Ets sites, and the limitation of other sites to specific CRMs, such as NF-κB 

on CRM-B and PBX on CRM C, suggests that these sites might be involved in facilitating the 

interactions that result in the regulatory output of these modules. The information from 

the preceding sections is combined with information from the literature in the following 

section to discuss the relative important of most of the sites discussed above. 

2.6.3. Discussion of factors contributing to the prioritisation of binding sites 

Nuclear factor-κB (NF-κB) is a well-known transcription factor that regulates a wide variety 

of genes77 and is furthermore known to regulate myod as a downstream effector of the 

tumour necrosis factor-α (TNFα) signalling pathway30. A pair of sites specific for NF-κB was 

found on CRM-B and the fact that no other sites were observed on these CRMs was 

particularly interesting as this made it likely that manipulation of NF-κB by specific 
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inhibition or knockdown would influence the system through these sites. To further 

validate the interest in NF-κB, presence of the factor on any of the CRMs was investigated 

by ChIP. Interestingly, the ChIP experiment indicated that NF-κB does not bind to the CRM-

B/-C pair, but does bind in CRM-A and to part of the PRR. This result does not necessarily 

mean, however, that the two identified sites do not participate in NF-κB binding at some 

other point of differentiation other than the 20 hour time point analysed. This evidence 

was sufficient to conclude that, since the mutagenesis experiments were to be performed 

at the same time point as previous experiments for consistency, the NF-κB sites would not 

be mutated in this project. 

Serum response factor (SRF) has been implicated to be involved with DRR activity78, 

in conjunction with Mef279. A SRF site is found in CRM-B where is occludes an Ets site and 

partially overlaps with an activator protein (AP1) and a PXR site. As mentioned previously 

(see section 1.2), competitive interactions are likely to be involved in logical computation 

on CRMs. Interestingly, the SRF site is adjacent to an androgen receptor (AR) site. 

Coexpression of AR and SRF in C2C12 cells is capable of coactivating the skeletal α-actin 

promoter by interacting with SRF80. It is possible that a complex containing SRF and AR 

could compete with the binding site for AP1. In addition to their sites on CRM-B, further 

sites for both AR and AP1 are present on other CRMs: One additional AR site is present on 

CRM-A and AP1 sites are present on all other identified CRMs. 

The AP1 heterodimer, for instance, is composed of members of the c-Fos and c-Jun 

protein families and the composition of the heterodimer is altered by multiple signalling 

inputs81. Furthermore, the composition of the AP1 heterodimer has been shown to be 

relevant to the regulation of myod82,83. Two potential subunits of the AP1 dimer were 

analysed by ChIP, Jun and c-Fos. Jun was found to be bound to the CER, CRM-A and CRM-

B/-C as well as the PRR. c-Fos, by contrast, was found to be bound to the CER and the PRR 

only. The AP1 binding sites could be occupied by AP1 heterodimers composed of other 
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factors, however. AP1 also appear to bend DNA dependant on the composition of the 

heterodimer84 and the sequence of the site85. This DNA bending effect could be important 

in the formation of larger complexes from of multiple CRMs, such as those in 

enhanceosomes. 

 Runt-related transcription factor 2 (Runx2) is capable of binding to DNA via nuclear 

factor-Y (NFY) sites. Runx2 is involved in osteogenic development and is likely to be 

involved in the suppression of MyoD expression in bone-forming tissues86. Furthermore, 

BMP-2 signalling is able to convert C2C12 myoblasts87 and primary skeletal myoblasts to 

the osteoblastic lineage88. Runx2 is capable interacting with a variety of factors including 

AP189 and Smad390. The presence of a single NFY site in CRM-B was potentially interesting, 

as was the fact that this site was partially overlapping with an Ets site. Furthermore, Runx2 

was found to be bound to CRM-B/-C as well as the PRR by ChIP. Another site related that 

binds a factor related to bone development is the vitamin D receptor (VDR)91 site in CRM-A. 

VDR-/- mice exhibit smaller muscle fibres and deregulated MRF expression92 indicating the 

VDR has an important role in myogenic development as well. VDR was, however, found not 

to be bound to any of the CRMs or the PRR. 

 Forkead box subtype O (Foxo) 1 and 3 factors are implicated in the suppression of 

proliferation and erythrocyte differentiation93,94, are involved in insulin signalling95 and are 

implicated in the regulation of myogenesis96. Foxo sites are found on CRM-A and CRM-B 

and appear to be both phylogenetically conserved and overlap with other factor binding 

sites in both cases. The foxo site overlaps with the Ets site in CRM-A and the GATA, Ebox 

and MyoD sites in CRM-B. Two members of the Foxo family were analysed by ChIP: Foxo1a 

was found to be bound to the CER and CRM-A as well as the PRR. Foxo3a was found to be 

bound to the PRR only. The GATA-binding factor (GATA) family of proteins is involved with 

a range of functions including erythroid differentiation97 and cell growth. Changes in GATA 

site occupancy have been linked to changes in chromatin looping98 and is capable of 
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inducing a bend in DNA99, both of which are an important requisites for enhanceosome 

function (see section 1.5). Two GATA sites are present in CRM-B and one on CER. 

Furthermore, the GATA site in the CER is hypersensitive to DNase39, indicating that the DNA 

in this region is decondensed and easily accessible. 

 Aryl hydrocarbon receptor (AhR) is a bHLH factor (like MRFs) involved with a range 

of developmental and adaptive response contexts100,101. AhR and is thought to be involved 

in regulation of myogenesis through the Ah receptor nuclear translocator (ARNT) 

homodimer56. The peroxisome proliferator-activated receptor (PPAR) signalling pathway is 

also involved in adipogenic development102 and is potentially involved in regulation of 

myod through the PPARγ factor45. 

 Myeloid ecotropic viral integration site 1 (Meis1) and Pre-B-cell leukemia 

transcription factor 1 (PBX1) are two DNA binding proteins that are known to interact with 

homeobox (HOX) proteins that play an important role in morphogenesis in all animals103,104. 

The PBX and Meis1 sites in CRM-C are potential points of integration of morphogenic 

signals from these factors early in development. The interaction of PBX1 and Meis1 

proteins with Hox genes is associated with the recruitment of coactivating factors that are 

necessary for chromatin remodelling associated with the activation of gene expression (see 

chapter 1, gene regulation)105. Pbx and Meis1 are also thought to be involved in the 

regulation of myod activity106–108. Pbx and Meis1 were found to be bound to CRM-B/-C by 

ChIP. The presence of both a Pbx and a Meis1 site in CRM-C indicate that this CRM could be 

responsible for the opening of further CRMs or possibly the myod promoter itself. The 

Meis1 site in CRM-C is phylogenetically conserved and occluded by an AP1 and sterol 

regulatory element-binding protein (SREBP) binding sites. SREBP is itself implicated in the 

activation of gene expression via recruitment of chromatin remodelling complexes109. 
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 The hypoxia inducible factor-1 (HIF1) binding site in the CER is interesting despite 

the lack of phylogenetic conservation and appearance in the DNase sensitivity experiments, 

as factors binding this site are involved in hypoxia sensing110. HIF1 appears to be involved in 

the regulation of myod111. 

Lymphoid enhancer-binding factor 1 (LEF1) is transcription factor usually associated 

with T- and B-cell development112 but has also been associated with regulation of somite 

myogenesis via an interaction with Pitx2113. LEF1 is regulated via a functional interaction 

with β-catenin114, which is an integral component of the developmentally important Wnt 

pathway115. Furthermore, LEF1 is capable of inducing a significant bend in the DNA of 117-

130° when bound to its specific site116, which appears to be functionally relevant in the 

regulation of the T-cell receptor-α (TCRα) promoter117. ChIP analysis indicated that LEF1 

was not bound to any of the CRMs or the PRR, however. Architectural transcription factors 

are likely to play important roles in the formation and function of enhanceosome-type 

structures. As a result, the presence of a LEF1 site close to two GATA sites (also capable of 

inducing DNA bending) in CRM-B is interesting. Although these sites occur at the end of the 

identified sequence, it should be noted that there is only a short stretch of sequence (<100 

bp) between CRM-B and CRM-C. This site could, therefore, have an important role in any 

the interactions between CRM-B and CRM-C. 

E-twenty six (Ets) sites are present on the CER (4), CRM-A (3) and CRM-B (2). This 

large family of transcription factors is involved in regulating a variety of functions118–120. 

None of the Ets sites in the CER were identified in DNase footprinting or hypersensitivity 

assays. Several of the Ets sites were identified as being phylogenetically conserved, as 

shown in figure 2.6. SRF is known to undergo cooperative binding with Ets family 

members120 and both sites are found in CRM-B. Ets1 was analysed by ChIP and found to be 

bound the PRR, but to none of the CRMs. The Ets family is large, however, and it is possible 

that another member of the family is responsible for binding to the Ets sites in this context. 
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 Enhancer-box (Ebox) sites are present in the CER, CRM B and CRM C. A large 

number of factors have the potential to bind to Ebox sites such as E12, E47, c-Myc and 

MyoD121. Eboxes can bind a variety of heterologous transcription factor complexes, the 

identity of which has implications for enhancer function122. The fact that many of the 

factors that bind to Eboxes are able to form bridges to factors bound on other sites means 

that this sites might be necessary for correct CRM interaction and therefore function. 

Interestingly a non-canonical Ebox site has been recently identified in the CER that appears 

to be involved in regulation of myod activity123. ChIP analysis indicated that MyoD, which is 

capable of binding some Ebox sequences, was bound to the CER and CRM-A as well as the 

PRR. Other potential Ebox binding proteins were not examined by ChIP. 

 ChIP data (see section 2.5.3) is able to provide strong positive indication of the 

presence of a transcription factor on a DNA sequence. It should be noted, however, that 

ChIP will yield a positive result if and only if the antibody used is able to bind to the specific 

protein. Binding of the antibody to the target protein could be affected or prevented by 

post translational modification or alternative splicing of the protein. Furthermore, many 

consensus binding sites can be bound by several members of the same protein family, each 

with a similar effect. An antibody specific to a single member of that family will not detect 

the binding of the other members of the same family to the same site. 

2.6.4. Selection of binding sites for further analysis 

As a result of the initial transient expression studies performed by H. Crutzen (see section 

2.5.1) CRM B was selected for further analysis through the generation of a combinatorial 

mutant library. This was mainly because the presence/absence of CRM-B appears to be 

correlated with substantial changes in expression level in several constructs, but also 

because it was the smallest of the three CRMs, and therefore the easiest to assemble. The 

following sites within CRM-B were selected for further study on the basis of their presence 
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in C2C12 cells at the differentiation time point selected (20 hours) as determined by 

microarray, ChIP presence/absence, phylogenetic conservation and evidence in the 

literature for involvement in muscle regulation (numbers in brackets are the start-stop 

positions of each site): AP1 (58-71), Ets (67-81), NFY (103-120), Ets (113-127), Ebox (146-

156), FOXO1 (149-159), MyoD (163-173), Lef1 (189-199). See figure 2.6 for a map of the 

sites with CRM-B. Each site was selected for the reasons discussed above in section 2.6.4 

and on the basis of the information in table 2.6. In addition to these sites, a bacterial 

binding site (BBS) was added to the flanking sequence upstream of CRM-B. This sequence 

was added as a way of driving artificial CRM-CRM interactions in future experiments. The 

total number of sites was therefore 9, so the library size was 29 = 512 sequences long. 

Some sites could not be modified without affecting neighbouring sites, such as PXR 

(54-66), the SRF (61-80) site and GATA (153-160). These sites, whilst potentially interesting 

for the reasons discussed above, were not included. Some sites, such as the MyoD (145-

155) / Ebox (146-156) and TCF4 (190-198) and Lef1 (189-199) rely on most heavily on the 

same bases, as a result modification of one site inevitably affects the binding to the other. 

2.7. Generation of mutant sites 

Once a specific site was selected for mutation, changes to the consensus sequence were 

investigated in silico using the BiFa tool. Mutant sequences were required to be at least 

four consecutive base pairs, due to the anticipated method of separation of the sequences 

that would have been required had the Gao assembly proven successful. A successful 

mutation sequence was one that significantly or completely reduced the predicted binding 

affinity of the specific transcription factor without significantly altering the binding affinity 

of the adjacent factors. 
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 The consensus sequences for several of the targeted transcription factors were 

adjacent to or overlapped with other consensus sequences. As a result the mutant 

sequences had to be carefully selected to ensure that only the targeted binding site was 

affected. Figure 2.7 shows an example using two adjacent predicted binding sites, GR and 

Ebox. As can be seen in figure 2.7, the replacement of part of the consensus sequence for 

either site with mutant sequence did not affect the predicted binding of the other as 

determined by the predicted binding strength score of the relevant sites. This score is 

determined by the extent, measured in arbitrary units, to which the binding site matches 

the consensus binding site motif for a given factor. 

2.8. Unaddressed issues with CRM investigation 

As discussed in section 2.5, experiments on the previously identified CRMs have been 

limited to combinatorial presence or absence experiments by P. Downton and H. Crutzen, 

microarray experiments with C2C12 cells by H. Crutzen, ChIP experiments by K. Vance and 

P. Downton as well as investigations of the CER and DRR in the literature40. No experiments 

have been performed to ascertain whether the position and/or orientation of the CRMs 

have a functional effect on their ability to regulate the myod promoter. These experiments 

are likely to yield information useful for determining whether these CRMs function through 

the various mechanisms described in chapter 1 (enhanceosome vs. billboard, see section 

1.5). 

The identified CRMs contain multiple potentially interesting factors that are 

capable of undergoing interactions, integrating information from signalling pathways and 

facilitating gene expression from the myod promoter. The potential interaction space in 

such a multivariate system requires combinatorial analysis to elucidate the mechanisms 

behind the CRM synergies that have been previously observed. As discussed in section 1.6, 
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current methods do not allow for the rapid, parallel generation of libraries of combinatorial 

CRM mutants. 

Current techniques such as ChIP-chip have allowed the binding sites for a given 

protein throughout the genome to be identified and together with ChIP-seq have revealed 

useful information for the modelling of CRM function. One step gene assembly, rather than 

step wise mutagenesis represents the most plausible solution to this issue. An assembly of 

this type requires sequence optimisation algorithms to be developed as well as methods 

for the assembly of optimised sequences once optimised. An established method such as 

flow cytometry could then be employed to investigate whether the resulting constructs 

had an effect on the function of the different CRMs and could elucidate the mechanisms of 

CRM function. 

The work presented here was used to select the binding sites of CRM B that were 

to be targeted in the combinatorial mutant library. The mutant library was meant to 

address the fact that investigation of CRM interactions via single pertrubation studies might 

not assess the full contribution of each site if they are acting in a cooperative or 

competitive manner. The library that was designed as a result of the work presented in this 

chapter was assembled by ligative assembly in chapter 8 following optimisation of the 

assembly sequences as described in chapter 7. The use of several members of the library is 

then described in chapter 9.  
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Chapter 3 

3. Review of microfluidics 

Large scale DNA mutant library synthesis should be fast, efficient and use minimal reagents. 

A microfluidic platform offers a solution that can meet all these criteria. Various methods 

are available for the fabrication of different classes of microfluidic systems this chapter 

seeks to summarise the key methods for the fabrication of microfluidic systems with 

special emphasis of methods and techniques which yield properties that are beneficial to 

this application. This chapter is a review of fabrication techniques, materials and designs 

which are used in modern microfluidic devices. The design of monolithic microfluidic 

devices made by MSL (chapter 5) and of devices assembled by multilayer soft lithography 

from polydimethylsiloxane (PDMS) layers cast in MSL moulds refer to the findings of this 

review (chapter 6). 

3.1. Microfluidic overview 

The growth of microfluidics as a discipline is reminiscent of the development of the 

integrated circuit (IC). Although today ICs are present in many of the devices that are 

indispensable to modern life, the adoption of microfluidics has been somewhat slower1. 

Miniaturisation of biological and chemical assays is associated with several benefits: 

Reduction in raw materials requirements, rapid mixing facilitating rapid reaction times, fast 

heat transfer, decreased analysis time and facilitates parallelisation of assays. Thus, the 

cost and volume of work done can be greatly decreased and increased, respectively.  

Microfluidic devices in the context of this thesis are defined as devices which have features 

and channels where one dimension is typically 1 – 100 µm in size, through which fluids 

flow. The first microfluidic device was a gas chromatography system fabricated in silicon 
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and glass by Terry et al. in 19792. This early work was not significantly expanded until the 

1990’s when techniques, such as photolithography, used to make micro electromechanical 

systems (MEMS) were applied to biological and chemical fields3.. During the 1990’s 

microfluidic devices were primarily fabricated using the techniques of lithography and 

micromachining4.Since 2000, the fabrication of devices from polymeric materials such as 

PDMS5,6 reduced the cost and production time required and allowed the field to experience 

strong growth.  

3.2. Types of microfluidic devices 

Microfluidic devices fall into three distinct categories that are distinguished by the 

combination of phases of fluid within the microfluidic channels. Continuous flow systems 

are single liquid phase, whereas droplet systems consist of two or more mutually 

immiscible phases. By contrast, digital devices do not possess channels in the traditional 

sense instead moving droplets of fluid between electrodes by means of dieletric forces. The 

following sections describe each of these types in more detail. Table 3.1 compares the 

relative utility of each of these types. 

3.2.1. Continuous 

Continuous flow microfluidics involves devices with channels made in suitable materials 

(see section 3.7) that have a single liquid phase flowing through them. A variety of methods 

can be used to control the flow of fluid through channels including on chip valves and 

pumps, off chip pumps, semi-permeable membranes, magnetic fields and electro-osmotic 

pumps (EOPs) (see section 3.12). Due to surface wetting effects, single phase devices are 

prone to contamination between reagents and must undergo washing or surface treatment 

to avoid these issues. Continuous flow devices are generally easier to fabricate and most 

widely applicable. Each of these mechanisms will be discussed during this introduction.  
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3.2.2. Droplet 

Droplet microfluidics involves the formation of droplets of one phase, such as an oil phase 

in another phase, such as an aqueous phase. The hydrophobic oil does not mix with the 

water-based polar fluid and so droplets of one can be carried by a flow of the other. 

Droplets are kept separate from each other and do not contact the internal surfaces of the 

device, provided the device material and droplet fluid properties are appropriate. Droplet 

microfluidics makes use of the same flow control methods as continuous flow devices (see 

sections 3.11 and 3.14), but also makes use of the geometry of channels to control the 

mixing and merging of droplets (see section 3.16). Droplet microfluidic devices require 

accurate and consistent control of flow rates and often require stabilisation prior to 

running productively. Furthermore, the liquids may contain toxic oils or surfactants. 

3.2.3. Digital 

Digital microfluidics involves the movement of droplets of a polar phase across electrically 

active surfaces in air or non-polar/conducting medium by electrowetting7,8. Digital 

microfluidics is often referred to as electrowetting on dielectric (EWOD) microfluidics. 

Confusingly, because digital microfluidics employs the movement of droplets, digital 

microfluidics is sometimes referred to as droplet microfluidics. Digital microfluidic 

platforms can be prepared by patterning electrodes across parallel glass plates using a 

pattern mask. As a result EWOD does not require mould production or photolithography 

and so can be produced relatively easily. The required devices are complicated, however, 

and as droplets transit around the surface of the device, they may leave residue that can 

cause contamination of subsequent droplets. Furthermore, the range of suitable fluids is 

limited by the requirements of the method. Surface acoustic waves (SAWs) and ultrasound 

can be employed to produce and manoeuvre droplets. 
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Type 
Risk of 

contamination 
Ease of use 

Sample 
volume  

Flexibility 

Continous Moderate High Moderate Low 

Droplet Low Moderate Low Moderate 

Digital High Moderate Low High 

Table 3.1: Comparison of the relative utility of the three primary types of microfluidic 
device. 

3.3. Microfabrication methods 

At the heart of microfluidic devices is the production or microfabrication process. 

Techniques such as lithography, used to mass produce ICs, can be used to etch channels 

directly into materials such as glass or silicon that are relatively impervious to attack by 

organic solvents or aqueous solutions of neutral pH. Lithography is also frequently used to 

pattern spun layers of photoresist (usually SU-8). Micromachining is employed to create 

channels directly in softer materials, such as plastic. Patterns made in a master can then be 

reproduced in a secondary material, such as PDMS or poly(methyl methacrylate) (PMMA), 

through a process called lithography, electroplating and moulding (LIGA). In both the 

lithographic and micromachining cases, the channels are formed initially as grooves on a 

surface, the fourth wall of which is formed when the patterned surface is sealed against 

another, flat surface. 

3.4. Photolithographic techniques 

Photolithography allows the patterned etching or deposition of materials onto an 

underlying material. Typically, a layer of photoresist is applied to a surface, which is then 

patterned using a photomask in conjunction with exposure to light (usually UV, depending 
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on the photoresist). Photomasks can be produced be a range of techniques depending on 

the requirements of the application: Low resolution (>150 nm) masks can be prepared by 

printing onto a transparent medium and higher resolution masks generally require the 

employment of phase-shifting, he use of short wavelength light such as x-rays or immersion 

lithography. Once patterned photoresist is then developed, where the excess resist is 

removed leaving behind a patterned layer of photoresist. Although this photoresist can be 

used directly as part of a microfluidic device, it is more common to etch the underlying 

material using an etchant to which the photoresist is resistant. After this process, 

remaining photoresist can be removed leaving the negative of the photoresist pattern 

engraved into the underlying material. 

 Photolithographic techniques are capable of producing features and channels 100’s 

of nm in size. The scale of features typically used in microfluidic devices (1-10 µm) are 

easily produced by photolithography. Furthermore, photomasks can be reused and 

patterns repeated for mass-manufacturing. Silicon is the most commonly used material in 

photolithography, but other materials can also be etched such as HF etching of glass. 

Accurate production of small devices with small feature sizes (<10 µm) by photolithography 

requires precisely manufactured photomasks, expensive equipment such as mask aligners 

and the use of toxic or caustic chemicals. This requires lithographic techniques be 

performed by experienced personal operating in a controlled laboratory environment. In 

addition to constituting the devices themselves, photolithographically patterned devices 

can be used as moulds to produce microfluidic devices by casting or hot embossing using 

suitable polymers such as PDMS and polymethylmethacrylate (PMMA). 

3.5. Micromachining 

Micromachining uses small drill bits or a laser to pattern a surface by directly removing 

material from the surface. Parts can be designed in 3D CAD software and produced using 
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CNC machines. Micromachining is best employed with hard materials such as PMMA, that 

will not deform during the milling process compared to softer materials, such as PDMS. 

Although variations in parts can be introduced as drill bits undergo wear, the cost of 

replacing drill bits is insignificant next to the cost of the CNC machine itself or the cost of an 

equivalent lithographic setup. Lasers, which do not undergo wear, but whose power may 

fluctuate, can be used to machine both hard and soft materials but may leave rough or 

damaged surfaces9. The primary limitation of micromachining is resolution; typical drill bit 

diameters are >100 µm which limits the minimum feature size. The primary benefit of 

micromachining is that parts can be produced rapidly without the need for toxic chemicals. 

3.6. Additive layer manufacture 

Additive layer manufacture (ALM) is a broad term which encompasses the range of 

technologies that form whole parts or devices by the gradual addition of successive layers. 

There are many ALM technologies available that can be categorised into the following basic 

groups: Photopolymerisation, powder fusion, extrusion, printing, sheet lamination and 

beam deposition10. A further group exists that consists of hybrid technologies that take 

elements from two or more of the above categories. Table 3.2 compares these 

manufacturing techniques and each is discussed in more detail below. 

Photopolymerisation or stereolithography (SLA) involves the light activated 

reaction of a liquid monomer to form a complex polymer. Activation can be achieved by 

exposure with a patterned light source or with a laser which is rastered across a surface. 

Very high resolutions (< 10 nm) can be obtained by using two photon laser systems11,12. The 

range of materials which can be used in a photopolymerisation process is limited. The 

material must be able to polymerise specifically (i.e. not be polymerised when exposed to 

ambient light or be handled limited wavelength environment), quickly and at high 

resolution (with minimal spreading of the reaction). The leeching of uncured liquid 
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components, such as activators or inhibitors of polymerisation, into media can result in 

toxicity to biological systems. MSL flow cells have been successfully used in chemical 

applications13–16. 
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Table 3.2: Comparison of ALM-based rapid manufacturing methods. Dimension units are 
as specified in the column headers. Resolution and layer thicknesses are representative of 
published and commercially available examples. NB Commercial suppliers of ALM machines 
are subject to rapid change at this time as the industry is undergoing consolidation 
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Powder fusion systems (also known as selective laser sintering, SLS) typically involve the 

selective sintering of a powder material by a heat source, such as a laser. The laser is 

rastered across a surface to produce a solid material from a powder, of either plastic or 

metal, which is briefly melted as a result of the action of the laser19. This method has the 

advantage that the unsintered material remains to support future layers, meaning that 

overhanging and suspended features, such as an arch or ball-on-chain, can be produced. 

Conversely the unsintered material must be removed after the building process before the 

part is complete. Unsintered material cannot be removed from fully enclosed hollows thus 

limiting the range of parts that can be made by this process.  

Extrusion, also called “fused deposition modelling” (FDM), involves the heating of a 

solid thermoplastic, usually acrylonitrile butadiene styrene (ABS), the plastic becomes 

sufficiently pliable to push through a nozzle. Extruded material cools as it leaves the nozzle 

head and becomes solid once more. Parts can be built by extruding trails of thermoplastic 

onto a solid surface, building layers by rastering of the extruding nozzle. Successive layers 

can be built on top of previously formed layers provided the newly extruding material does 

not melt the previously extruded material. Companies such as Stratasys Inc.20 and Bits from 

Bytes21 utilise the extrusion method in their Dimension3D and BFB3000 respectively. 

Printing systems use printing heads similar to those used in inkjet printers to place 

discrete drops of material onto a surface and previously formed layers to form a part26, 

called 3D printing (3DP). Liquid material is ejected from the nozzle and is solidified on the 

part before the next layer is placed. The method used to cure the liquid polymer to a solid 

depends on the polymer involved. Due to the nature of the method, overhangs are 

impossible unless a separate support material is employed. The support material must be 

removed in a post-processing step before the part is ready for use. A prominent example of 

a printing system is the Objet PolyJet technology used in their Connex and Eden products23.  
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Sheet lamination (or laminate object manufacturing, LOM) involves the cutting of 

thin sheets of material into specific shapes and then binding them together to make a part. 

A laser or other cutting tool can be used to cut a specific shape from the sheet material and 

a variety of methods can be used to bond successive layers together. Cubic technologies 

produce LOM machines used the Solidimension SD300 brand, which uses polyvinyl chloride 

(PVC)25. Sheet lamination of materials that contract under heating has also been 

performed27. Pre-stressed polystyrene (PS) sheets are scribed and/or punched as necessary 

then aligned, clamped together and heated. The sheets then relax back to their original 

conformation as a result of the heating, shrinking back to their pre-stressed shape. 

Beam deposition involves the direction of a continuous stream of particles at a 

surface resulting in the accumulation of those particles at the surface. The beam can be a 

stream of ions or a laser focused to a point within a powder stream. In the latter case, the 

powder is heated and fused at the specific position. An example of laser mediated powder 

fusion in a beam deposition arrangement is laser engineered net shaping (LENS) 28. 

Hybrid technologies such as a cross between printing and powder fusion, where a 

binder agent is printed from an inkjet head onto a powder substrate also exist26. 

Alternatively, a material which sets solid on a surface can be projected from an inkjet head, 

multiple heads are then capable of making builds comprising more than one material. 

Furthermore, biological materials including cells can be projected29 which opens up the 

possibility of direct digital manufacture of living structures. 

All the technologies described here share the advantage of requiring no ‘tooling’ 

and can be used to make objects that traditional multi-axis machining cannot, due to drill 

access. All the methods can take a 3D object in silico and produce a full 3D object that 

would not otherwise be possible to produce in a relatively short amount of time. Whilst 

some methods involve the use of potentially harmful glues or other chemicals, the level of 
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personal risk is below that of the chemicals associated with lithographic techniques. 

Furthermore, lithographic techniques can be applied to a relatively small range of 

materials, such as silicon and glass, which can be etched appropriately.  

3.7. Microfluidic device materials 

The material chosen for any microfluidic device depends on the application of the device30. 

Lithographic techniques are used to make devices comprising of channels in PDMS, silicon31 

or glass32. A form of RIE, deep reactive ion etching (DRIE) is usually employed to produce 

channel patterns in hard materials, such as silicon. Glass offers unparalleled optical 

transparency and quartz quality glass is clear into mid-UV wavelengths. The use of hard 

materials such of these precludes any type of actuatable valve features unless a flexible 

membrane layer is included33–36.  

Soft materials offer the advantage that parts can be made by imprinting or replica 

moulding37. PDMS is the predominant material for microfluidics due to its advantageous 

properties: PDMS can be easily cast as a liquid and cures to a rubber-like, transparent 

solid38. PDMS cures rapidly, in <1 hour at 80°C. PDMS layers can be bonded together to 

make single materials, a process called multilayer soft lithography (discussed in section 

3.9)6. PDMS is sufficiently flexible that pneumatic valves are possible at relatively low 

pressures (<1 bar).. PDMS is, however, associated with disadvantages: PDMS is, however, 

susceptible to swelling in response to organic solvents such as decane and xylene. PDMS 

also absorbs small molecules from solution39. Overall, PDMS is good for producing multiple 

copies of a device by replica moulding, the final articles can incorporate actuatable features 

as a result of bonding multiple layers. Conversely, swelling in organic solvents and 

sequestration of small molecules from solution limit the range of applications in which 

PDMS can be used. To overcome solvent-based swelling, other materials are available: 
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‘Liquid Teflon™’ based on photocurable perfluoropolyethers (PFPEs)40,41. Chips can also be 

fabricated entirely from Teflon™ by imprinting42. 

 A frequently used material for microfluidics is PMMA, also known as Plexiglass™. 

Like PDMS, PMMA can be cast as a liquid and set to a solid and is optically transparent43. 

PMMA can also be printed if pre-softened with acetonitrile44. Laser machining can be 

employed to create microfluidic channels in PMMA45,46, SU-847 or even glass48. The 

geometry of channels produced by laser machining is limited as the laser will generate a 

channel with a V-shaped cross-section reflecting the power output across the diameter of 

the laser beam. 

 A major advantage of polymeric materials such as PMMA and polycarbonate (PC) is 

that they are susceptible to hot embossing, also known as thermoforming49,50. Hot 

embossing is a way of replica moulding with solid substrates by imprinting with a mould at 

above a critical temperature at which the substrate becomes pliable. Injection moulding is 

another, related method, but requires a completely enclosing mould. 

Other materials include polyurethane-methacrylate (PUMA)51, which is especially 

suited to high aspect ratio structures, thiolene52, which can withstand a temperature range 

from -150 to 125°C and solvents such as toluene. Microfluidic devices can be fabricated out 

of pre-stressed polymer sheets (i.e. ‘shrinky-dinks’), made from polystyrene27 or cyclic 

olefins53, layers of which can be shrunk and bonded with heat and pressure. Even paper can 

be used as material for microfluidic devices54, which could be used as disposable point-of-

care diagnostic aids. 

3.8. Does smaller equal better in microfluidics? 

The advantages of microfluidic systems over traditional bench top systems are plain: 

smaller reaction volumes require less substrate, the small scale of components means that 

the time between reaction and detection can be minimised and small devices mean less 
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power is required to drive them. Integration of small scale devices onto a chip facilitates 

parallelisation of the assays. Laminar flow within channels implies that only diffusive mixing 

is possible, enabling tight regulation over reactant localisation. As such much of the work in 

microfluidics has focussed on making channels and features smaller so as to fit more 

functionality onto one chip55. The methods of detection used in devices do not always scale 

efficiently. Very low amounts of analytes leads to a low signal to noise ratio56. Ideally, all 

microfluidic experiments would be wholly performed on one device. The terms micro-total 

analysis system (µTAS) and lab-on-a-chip were first created to describe such devices.  

Circumstances, however, sometimes dictate that products of reactions on one chip 

must be transferred to other chips or to the bench top where further processing is 

performed57. In these cases, the minimum size of the devices must be carefully selected to 

ensure that a sufficient amount of reagents are available for the off-chip processing steps. 

3.9. Multilayer soft lithography 

Micropatterns in a hard surface can be transferred to a soft material by embossing or the 

hard surface can be used as a mould from which casts can be made. The alignment and 

assembly of multiple patterned layers into a single device is called multilayer soft 

lithography6. The most frequently used material for multilayer soft lithography is PDMS. 

When uncured, mixtures of monomeric dimethlysiloxane and the curing agent are liquid 

and can be poured easily with a consistency approximating honey. The temperature 

dependant curing of the mixture to PDMS yields an optically clear (absorbance increases 

rapid at wavelengths < 300 nm58,59) rubber-like solid. Devices made from PDMS casts of 

moulds made by a variety of microfabrication methods discussed above are described in 

the following examples. 

 The Quake lab at Stanford University has, for much of the last decade, been at the 

forefront of PDMS microfluidics6. During this time the paradigm of large scale integration 
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(LSI) was developed60 that predicts that microfluidics as a platform will only take off once 

the design rules of critical components is decided upon. Thereafter, new devices can be 

created by bolting together components without each device having to be designed from 

the ground up. The core components can then be mass produced, bringing their cost down 

to an affordable level. Systems like SmartBuild61 appear to be following this paradigm. 

Although the SmartBuild system is modular and uses clever design to accomplish an easy to 

assemble and use system, its utility is fundamentally limited by the applicability of static 

parts that possess user-operated mechanical valves. 

3.10. Bonding of PDMS devices 

There are several methods to bond the multiple layers of PDMS devices that are necessary 

to make functional microfluidic chips, such as oxygen plasma treatment, partial curing or 

coronal discharge62. Using an uncured PDMS mortar has been shown to yield the strongest 

bond, able to withstand a pressure of >600 kPa, followed by partially cured PDMS, oxygen 

plasma and coronal discharge considerably weaker by a factor of a half. 

3.11. Flow in microfluidic channels 

Microfluidic systems have large surface area:volume ratios. As a result, the flow of fluid 

through microfluidic channels is dominated by viscous forces meaning that flow through 

channels occurs laminally, with no chaotic mixing. Laminar flow is observed in low 

Reynold’s number regimes, typically <2000. In regimes where a larger Reynold’s number is 

calculated, turbulent flow is expected to dominate. The following equations can be used to 

determine whether flow through a pipe, relevant to microfluidic applications, will be 

laminar. Equation 3.1 and 3.2 are used to determine the Reynold’s number (Re) of a given 

system 

   
    

 
    

  

 
 Eqns. 3.1 and 3.2 



3. Review of microfluidics 

82 
 

where ρ is the fluid density, v is the velocity, DH is the hydraulic diameter and µ is the 

dynamic viscosity. The hydraulic diameter used for non-circular pipes and is equal to four 

times the cross sectional area (A) of the pipe divided by the perimeter (P).  In short, a 

fast flowing, high density, low viscosity fluid flowing through a pipe which has a low surface 

area:volume is less likely to undergo laminar flow than a slow flowing, low density, high 

viscosity fluid moving through a pipe which has a high surface:volume. 

 

Figure 3.1: Flow lines (blue) of a fluid undergoing laminar flow as it moves through a tube 
and around an obstruction (grey oval). Laminar flow is characterised by non-intersecting 
flow lines depicted here, where fluid flows in laminar sheets with very little mixing. 

Modelling of fluid dynamics can be employed to determine flow in microfluidic 

environments. Although various fluid dynamics packages are available, see section 4.6, the 

COMSOL modelling package will be focussed on here as it was used for the fluid dynamics 

models described in chapter 5. By performing fluid dynamic modelling it is possible to 

determine flow profiles through systems that are too complicated for a straight forward 

analytical solution to be applicable. Optimisation of flow profiles by modification of the 

model geometry means that the optimal design can be produced in fewer design iterations. 

It is also possible to simulate the generation, movement and merging of droplets in droplet 

microfluidic systems. 

3.12. Pumping in microfluidic devices 

Pumping in microfluidic devices is usually achieved with equipment external to the device 

itself. Syringe pumps are the most widely used as they are capable of the consistent, very 
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low flow rates (<10 µL/min) typically used for microfluidic devices. Maximum flow rates in 

microfluidic devices are limited by the viscosity of the liquid and the strength of the 

interaction between the liquid and the channel walls. Syringe pumps are typically expensive 

(costing several hundred to a few thousand pounds)63–65. Peristaltic pumps can also be 

used, but less commonly due to the fact that low flow rates are difficult to achieve with 

sufficient consistency (to prevent backflow)66–68. Selective application of air pressure to 

reservoirs connected to microfluidic chips is also a commonly used method to move fluid 

around microfluidic devices69. In contrast to these three types of pump, which all require 

equipment external to the microfluidic device itself, micropumps are micro-scale devices 

that are capable of moving fluid around microfluidic channels70,71. 

 Peristaltic micropumps can be built by multilayer soft lithography72,73. Cycling the 

pressure in each of three or more valves by external pressure regulation causes flow in 

microfluidic channels. Instead of using a series a pneumatic valves, a single, biased valve 

can be used74 to achieve peristaltic pumping. Although the three valves are typically 

controlled by three separate air lines, peristaltic pumping can be achieved using a single 

line and a serpentine pneumatic channel75. Only devices that consist of soft materials or 

incorporate flexible materials are capable of this type of pumping. Furthermore, flow from 

peristaltic micropumps is inconsistent and susceptible to backflow. Similarly, valveless 

micropumps also result in only biased flows, with back flow common without the use of 

check valves76. 

 Monolithic mechanical micropumps can also be fabricated in MSL devices77. This air 

pressure driven membrane displacement pump could be easily driven by a magnetic or 

piezoelectric method. The principle disadvantage with all mechanical pumps is that they 

require an off chip power source to drive them. The equipment required to drive these 

pumps is likely to be orders of magnitude larger than the devices and pumps they drive, 

thus limiting their utility in true lab-on-a-chip applications. The equipment can be reused in 
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multiple microfluidic designs, however, unlike integrated pumps that cannot be separated 

from the device. 

 A promising method of non-mechanical microfluidic pumping is the use of electro-

osmotic pumps (EOPs)78. EOPs utilise the electro-osmotic force (EOF) that is the movement 

of locally separated, solvated charges in response to an electrical field79. For example, when 

a surface that holds positively charged, covalently bound charges (stationary phase) is 

submerged in a solution containing charged solutes, the solutes will rearrange to correct 

the local charge imbalance around the surface (see figure 3.2). A layer of the solution close 

to the positively charged surface will be enriched in negatively charged ions. This layer is 

called the Debye layer, also known as an electrical double layer. Application of an electrical 

field along the charged surface results in the movement of the ions in the Debye layer, the 

movement of the ions is then imparted to the rest of the solution via the solvation layer 

around each ion.  

 

Figure 3.2: Diagram of how the EOF is created. A positively charged tube causes a charge 
imbalance in charged solutes across the tube as negatively charged solutes prefer to be 
closer to the positively charged walls and vice versa for positively charged solutes (forming 
a Debye, or double, layer). Application of an electric field along the tube pushes the net 
negatively charged surface layer of fluid to move away from the negative electrode. The 
combination of this forward force and of viscous drag results in the flow profile shown in 
the figure. 
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For example, an EOP based upon a silica monolith stationary phase is capable pumping 

deionised water at a rate of 2.9 µL/min against a back pressure of 3.1 atmospheres, the 

power consumption of the pump is low; although a potential of 6 kV is required, the 

current consumption is 1.5 nA meaning the pump consumes power in the mW range80. In 

addition to supplying such a high voltage, the application of such a voltage across aqueous 

solutions results in electrolysis of the water, so electrodes must be carefully placed to avoid 

bubble formation that would block channels81. Interestingly, stationary phases can be made 

by photopolymerisation of polyimides82, which opens up the possibility of building 

microfluidic devices with integrated pumps using a multi-material MSL method. 

Furthermore, EOPs have been used in a functional DNA fingerprinting lab-on-a-chip 

previously reported by the Haswell group83. 

Fluid movement can also be achieved with only the entirely inactive mechanism of 

capillary action84. The semi-permeable nature of PDMS can be used to push fluids around 

microfluidic devices85,86. Another mechanism for microfluidic pumping is electrochemical 

pumping87,88, where a gas is generated from a solution (usually by electrolysis) that causes 

fluid movement by virtue of pressure imbalance. Electrochemical pumping is relatively slow 

and can require complicated circuitry to perform. For applications where gas permeability 

of PDMS is not desired, PDMS can be treated to lower permeability such as with parylene 

coating19,63,64 and wax treatment91. 

3.13. Measurement in microfluidic devices 

Although microfluidic systems are capable of creating many reaction conditions per second, 

up to 100 Hz, the rate of the system can be limited by the maximum rate at which 

information can be extracted from the system92. The interrogation of microfluidic reactions 

can be performed either on- or off-chip and fall into two categories: continuous or discrete. 

This review will focus primarily on the on-chip methods as the off-chip methods could 
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include any measurement technology currently available and is too broad to cover here. 

The following information is summarised in table 3.3. 

Several technologies are available for the on-chip interrogation of microfluidic 

reactions. The most widely used is optical measurements using visible or fluorescent dyes 

that track the progress of a reaction93. Raman and confocal microscopy can also be used to 

extract more information from each reaction, but the long scan times (several seconds) 

associated with these usually prevents their application in high speed systems (>1 Hz)94. 

Recently, however, ultrafast systems with scan times of 10 µs for single wavelength surface 

enhanced resonance Raman scattering (SERRS) has been demonstrated95. 

The output of microfluidic reactions can be passed to continuously operating 

detection systems such as HPLC96 and mass spectroscopy97. The advantage of these 

techniques is that they are able to separate the products of the reaction, allowing more 

information to be obtained. To insure the fidelity of the measurements taken in these 

systems, the rate at which samples are introduced must not exceed the time taken for the 

slowest component to leave the detector, otherwise sample overlap will occur. As a result 

the detection system must be tuned to the reaction generation rate. 

Electrical methods, defined as methods that involve an electrical field component, 

encompass electrical field distortion as a result of the passage of particles or cells98 as well 

as electrochemical turnover of a species at an electrode14,99. 
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Method Mode Speed Applicability 

Off-Chip Discrete Slow Very broad. 

Optical Continuous Rapid 
Limited by dyes, 

sensitivity, 
selectivity. 

Electrical fields Continuous Rapid 
Limited: Particles 

only 

Electrochemical Continuous Rapid 
Limited: Suitable 

species only. 

HPLC 
Potentially 
continuous 

Dependant on 
sample transit rate. 

Broad 

Mass spectroscopy 
Potentially 
continuous 

Rapid Broad 

Table 3.3: Summary on detection methods in microfluidic devices. 

3.14. Methods of microfluidic valve actuation 

To be able to perform more than one action reliably, microfluidic devices cannot solely rely 

on geometry and selective pumping alone. The process of controlling the flow of liquids 

within a microfluidic chip requires actuation of valves within the chip itself. Actuators can 

be extensively miniaturised for use in microfluidics100. A valve can be closed using a variety 

of mechanisms. Only valves in soft materials, such as PDMS, will be discussed here as PDMS 

is used in the fabrication of the microfluidic device described in chapter 6. Actuation of 

hard materials such as plastics or metals, such as solvent absorbtion101 and shape memory 

alloys102–104, is possible. 

The most conceptually simple actuated valve is a membrane valve100. Here, a 

membrane separates two chambers; raising the pressure in one chamber relative to the 

other pushes the membrane into the lower pressure chamber. The lower chamber will 

collapse, blocking it, if the pressure difference becomes sufficient. If the lower chamber 

forms part of a channel, then the channel will be sealed. This system, commonly referred to 
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as the ‘Quake valve’, was first reported in Science in 20006. Accurate flow control by this 

type of valve, by varying pressure on the valve membrane, is possible105. The method of 

assembly of a typical Quake valve can be seen in figure 3.3, part A. Two layers, a fluidic and 

pneumatic layer are fabricated from suitable moulds. Alignment and sealing of the two 

layers yields cross-over points where sealing of one chamber in response to a pressure 

being applied to the other can be achieved. 

 

Figure 3.3: Diagram of Quake valve assembly process: Layers are separately cast and 
bonded together (A). How chamber deformation results in channel sealing in either 
rectangular or semi-circular cross section channels (B). Image taken from Unger et al.6. 

Generally, Quake valves are actuated by applying a positive air pressure to one chamber 

using off chip solenoid valves. Positive air pressure can also be created inside a sealed 

chamber by heating31. Actuation by heating in this manner is slower than by actuating using 

pressure applied through off chip valves; 150 ms closing time and 300 ms opening time for 

a 130 x 30 x 2.9 µm membrane using a 240 mW heater, due to the time required for heat 
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transfer to occur which presumably occurs at a similar rate to the valve actuation times 

stated above. The advantage of this method is that all the machinery necessary for the 

valve can be integrated onto the chip rather than necessitating off chip valves. The 

operation of the heating elements requires additional circuitry and equipment and will 

most likely render one side of the device opaque, preventing through device microscopy. 

 Local heating can be used to direct droplets within a flow due to the Marangoni 

effect106. Local viscosity changes as a result of applying a temperature gradient across a 

flow causes droplets within the flow to tend towards the path of least viscosity. Setting up 

the temperature gradient takes seconds and the maximal flow rate is limited to ~10 

µL/min, which together means that the rate of sorting in such a device would be slow. 

Local heating and cooling can be used to cause phase change of plugs of various 

kinds and can be used to seal valves: Generally, a material such as wax is heated, and 

forced into a channel. Once cooled, the wax then seals the channel. To remove the seal, the 

wax is then heated and forced out of the channel. Movement of the wax can be achieved 

by applying air pressure107,108 or magnetic fields109. Temperature dependant hydrogels can 

also be employed110. The actuation time of such systems is considerable, requiring several 

seconds for melting. Furthermore, the application of external pressures or fields is usually 

necessary for sealing. The main advantage of this type of system is that it is latchable: Once 

a valve is sealed the external pressure can be removed and the valve will remain sealed. 

Direct mechanical movement is also used to seal valves: Braille reader111 and 

piezoelectric drivers112 are most commonly used. Actuators of this type directly impinge on 

soft PDMS membranes, deflecting them into and sealing underlying channels. The main 

limitation associated with this valve actuator type is the maximum density of actuators that 

can be achieved. Braille readers, typically solenoid driven, are relatively large, with heads of 

diameters measuring in the millimetres. Valve densities using direct mechanical actuation 
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will, therefore, be an order of magnitude less than can be achieved using Quake valves113. 

Furthermore, the presence of a large, opaque object on one side of the microfluidic chip 

prevents any through chip spectrophotometric measurements that might be taken. Quake 

valves, on the other hand, consist entirely of uniform optically clear PDMS.  

3.15. Methods of making droplets within microfluidic devices 

Several methods exist to generate droplets within a microfluidic device114. Most depend on 

simple collision of two streams of fluid of different phases in junctions of specific geometry. 

The making and control of droplets requires functionality from the previously discussed 

microfluidic actuation and pumping sections. 

 Droplet generation can be achieved in a microfluidic device with a simple T-

junction115, a tube-within-a-tube or by flow-focussing. The size and frequency of the 

droplets can be controlled by the relative flow rates of the two phases, as well as their 

properties; addition of surfactants stabilises individual droplets. Generally such droplet 

generation is performed continuously, using off chip pumps to continuously generate 

droplets at a passive interface. Incorporation of a feedback mechanism can allow automatic 

changing of droplet size over a period of time116. Significant, instantaneous changing of the 

droplet size or rate of generation, however, may require a pause and/or reconfiguration of 

the pump. Droplet generation on demand, with most methods of fluid pumping and 

droplet generation, is not easily possible. 
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Figure 3.4: Three channels geometries capable of producing droplets from two 
continuously flowing phases (pink and blue). 1) Simple T-junction. 2) Flow focussing. 3) 
Tube within a tube. Flow of each phase is shown by arrows. 

Similar to the principle that drives the print heads in inkjet printers, piezoelectric actuators 

can be used to create droplets on demand117,118. The piezoelectric actuators are relatively 

bulky and must be positioned directly above the reservoirs they actuate. The system is 

capable of producing single droplets with a range of sizes that depend on the size the 

aperture, the frequency of actuation and the actuation and relaxation time. 

 Droplets can be generated with a simple pneumatic ‘chopper’119. In this system, 

two continuously co-flowing fluid phases flow through a series of valves. By actuating the 

valves, the stream is cut into pieces, generating droplets that depend on the space 

between the actuators and the flow rate of the two phases. This setup can generate 

droplets on demand, but the system requires running for a period before consistently sized 

droplets are produced. Furthermore, the size of the droplets is dependent on the spacing 

between the valves, which means that generation of significantly larger or smaller droplets 

would require a completely new device.  
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 Off chip valves can be used to accurately control the flow of fluids into microfluidic 

chips resulting in different concentrations of two components in mixed droplets120. The 

valves used in these cases must be specifically modified to permit low fluid flow rate. 

 Another interesting method of making droplets is to use an oscillating needle that 

moves between the interface between two phases in a reservoir121,122. By varying the rate 

and position of the centre of oscillation, the droplet size and frequency can be easily varied. 

With sufficiently large reservoirs, continuous operation can be achieved without the centre 

of oscillation requiring adjustment throughout the experiment. 

3.16. Methods of controlling droplets within microfluidic devices 

Control of droplet direction is critical for microfluidic devices aimed at more than just one 

purpose. Typically microfluidic devices are designed for single experiments with geometries 

of channels being designed to perform single functions. If a droplet microfluidic device is 

required, for instance, to mix a subset of available substrates together then the device 

must have the ability to select or otherwise filter which droplets are allowed to merge. The 

methods for controlling droplets within microfluidic devices fall into two separate 

categories; passive and active123. 

Passive methods of controlling droplets involve clever design of channel geometry 

in order to derive a desired outcome. Splitters, mergers and sorters can be built by using 

selective junctions that respond to the pressure changes caused by droplet size and/or 

presence in a given channel124–126. Aqueous droplets will absorb onto hydrophilic wall 

sections in normally hydrophobic PDMS devices (akin to normal phase chromatography) 

and this effect can be used to mediate passive droplet merging127. These interesting designs 

show that a wide range of functionalities are possible using only passive effects. The design 

of the channels, however, depends on the size and frequency of droplets. A new chip is 

required if a significant change in the frequency or size of the droplets is necessary. 
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Active methods, by contrast, are flexible and are capable of delivering the control 

without need for reconfiguration of a whole device. Active membranes128, magnetic129,130, 

optical131,132, selective flow133 or electrical fields134–136 can be employed to deflect droplets 

down different outlets. In addition to controlling droplet deflection, droplet merging can be 

achieved using electrical potentials137. 

The primary issue with droplet merging is ensuring that the wrong droplets do not 

merge or that a droplet is not contaminated when passing by an inlet. Multi-junction 

devices can be used to minimise droplet contamination138.  

3.17. Droplet monitoring 

Measurements inside microfluidic devices are typically performed using colour changes 

monitored by external devices139, such as confocal microscopes140. Monitoring systems of 

this type can be used to make high resolution measurements of continuous flow141 and 

droplet mixing142. Integration of monitoring systems, such as optical fibres143–145 or 

microlenses146, shrinks the system considerably and can improve signal:noise ratios147. 

Integrated electrodes can be used to make droplet size estimations148 or for cell culture 

monitoring149. 

 On-chip integration of monitoring devices as described above is necessary in order 

to achieve a true lab-on-a-chip (LoC) or micro-total-analysis-system (µTAS). Investigation of 

biological systems often requires expensive enzymes and reagents that are often only 

available in 10’s of µL. Therefore the benefits of miniaturisation in terms of reagent use and 

parallel reactions can be realised without all the components being shrunk to fit onto such 

a device. 
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3.18. Applications of microfluidics to synthetic and systems biology 

3.18.1. Synthetic biology 

Synthetic biology involves the use of artificial environments or reagents to generate 

biological products. One highly publicised example of synthetic biology is the production of 

an entire 0.5 Mbp genome for the bacteria Myocoplasma genitalium150. By miniaturising 

this synthetic process it is hoped that larger constructs can be synthesised quickly and 

accurately151. Parallelising assays will allow brute force, or boot-strap methods, to become 

viable in the context of synthetic biology152,153. Examples of application of microfluidics to 

synthetic biology include high throughput synthesis artificial DNA sequences154 and 

directed evolution of DNA sequences134. 

The principle reaction of synthetic biology, PCR, requires temperature cycling as 

the steps of melting, primer annealing and extension occur optimally at different 

temperatures. The large surface area:volume relationship implicit in microfluidic devices 

allows for very efficient heat transfer suiting this reaction to miniaturisation155. Droplet 

microfluidics is particularly suited to PCR reactions, which are extremely sensitive to 

contamination156,157.  

 PCR microfluidics involves two steps: 1) Appropriate primers and template must be 

brought together with common components such as enzyme, substrates and buffer and be 

subjected to temperature cycling. 2) Products must be either measured on chip, usually by 

capillary electrophoresis, or be taken off chip for further analysis. 

 Examples of PCR microfluidics from range simple plugs in capillary tubes being 

moved between heated locations158 through convection driven flow159 to the more complex 

droplets moving around segments of a circle arranged around a Peltier heating element160. 

These papers exemplify what is a commonly published theme; PCR, even single molecule 

PCR, is feasible on the microfluidic scale. Interestingly, microfluidic reactors have not, as 
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yet, permeated the actual biological lab bench. Systems like Raindance Technology’s 

RainStorm and ThunderStorm devices116,161 as well as Dolomite’s custom etched glass and 

Mitos chips162 can create large numbers of droplets in defined geometries but do not 

usually offer the ability to vary the composition of each droplet during an experiment. 

 Gene synthesis has been performed in a continuous flow microfluidic device110. 

Interestingly, this study used a mould created using Eden 350 (Objet Geometries) from 

which a PDMS cast was taken and involved several of the previously discussed methods to 

control fluid flow: A syringe pump, hydrogel valves, primers immobilised on beads and 

magnetic separation were employed.  

3.18.2. Systems biology 

Systems biology is the study of the complex, high order interactions that occur in biological 

systems such as cells. Careful comparison of combinatorial experiments, that involve 

pulling multiple levers within the system simultaneously, are required to find how each 

input interrelates to develop the output. Traditionally, many carefully controlled 

experiments must be performed in order to understand the many interactions that occur 

within a cell system163. Microfluidics based approaches are readily applicable to repetitive 

and parallelisable experiments of this nature151,164 and for generating the large amount of 

input variance for combinatorial experiments. 

Microfluidics is also suited to single cell analysis that is necessary in order to 

elucidate stochastic regulatory mechanisms165: Single cells can be trapped, subjected to 

flows containing active factors and the effect on sub-cellular protein localisation 

followed166. By trapping single cells, complexities arising from population effects of 

intercellular communication are avoided, resulting in a clear system to study. The signal 

processing performed by cells as they interpret an input can be investigated on a single cell 
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basis, yielding important information about how signal transduction can occur particularly 

with reference to oscillatory signals167,168. 

 Continuous flow microfluidic devices from the Quake lab have been used to 

identify and characterise putative transcription factor binding sites by affinity analysis169,170. 

These devices were able to analyse an 8 bp oligonucleotide library containing ~1500 

sequences for binding to target protein in one experiment. 

3.19. Review conclusions 

The production of a microfluidic device requires the selection of appropriate methods in 

order to shape and pattern the appropriate materials to produce the geometry and 

features necessary to achieve the desired effects. The material should possess the correct 

mechanical properties without absorbing from or dissolving into the media within the 

device. Active features such as valves and pumps require flexible membranes or other 

considerations (EOPs, EWOD) and must be incorporated in the appropriate material. 

Accurate manipulation of fluids within microfluidic devices is crucial and the mechanism, 

such as electric or magnetic fields, active membrane/valve etc., should be appropriate for 

the task. Microfluidic devices are typically produced by aligning and bonding multiple layers 

each with appropriate material properties. Bonding of the layers in this case must be 

sufficient to produce a device that can operate at the operating pressure expected. By 

careful selection of the appropriate choices in the above categories, an appropriate device 

can be fabricated. 

 New manufacturing methods, such as ALM, offer the opportunity to produce 

devices composed of multiple layers in a single manufacturing step. ALM, therefore, 

promises to make microfluidic fabrication more simple and rapid. The range of materials 

that are suitable for ALM, however, is more restricted than those that can be used in the 

more traditional lithographic or micromachining techniques. There are surprisingly few 
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examples in the literature of microfluidics made by ALM, either directly or indirectly. The 

key challenge is to develop the MSL, a type of ALM technology, for the fabrication of 

microfluidic systems. Although MSL microfluidic systems can be used directly, only a limited 

range of materials and therefore properties are suitable. Therefore, fabrication of 

microfluidic devices indirectly through casting of a secondary material is also necessary. 

Chapter 5 describes the use of MSL for the direct fabrication of microfluidic flow cells and 

also the development of the MSL process for the production of moulds for PDMS casting. 

Chapter 6 then describes the use of the techniques developed in chapter 5 for the 

fabrication of a PDMS microfluidic chip by multilayer soft lithography. 

 In the future, microfluidics will be able to be applied to diverse areas of molecular 

and systems biology. At one end of the scale, paper microfluidic devices are inexpensive 

and can be used in remote areas to obtain medical diagnoses whilst at the other end 

commercially available high throughput machines are capable of producing 1000’s of 

droplets per second. The development of novel, high throughput gene synthesis and 

assembly technology as well as point-of-care disposable diagnostic devices is likely to have 

a significant effect on modern biological research as well as medicine1.   
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Chapter 4 

4. Methods 

The methods and materials used during the project are described within this chapter. 

Firstly, the microstereolithography (MSL) process is described, with reference to the build 

procedure and settings. The production of PDMS microfluidic devices by replica moulding 

of MSL moulds is then described. The development of the build settings, the post curing 

and replica moulding procedures will be referenced in chapters 5 and 6. Secondly, methods 

of molecular and cellular biology are described. Generally used methods and methods 

developed specifically during the project are described. These sections will be referenced in 

chapters 8 and 9. Finally, the modelling and programming aspects are then described and 

will be referenced in chapters 5, 6 and 7. 

4.1. EnvisionTec Perfactory Mini microstereolithography machine 

A modified EnvisionTec Perfactory Mini1 was used to fabricate flow cells directly from 3D 

CAD files designed in SolidWorks 2009. This machine uses MSL, a type of additive layer 

manufacture (ALM) discussed in chapter 3, to build 3D objects by sequentially depositing 

successive layers. Figure 4.1 shows a schematic of the Pefactory machine whilst figure 4.2 

shows how the EnvisionTec machine fits into the work scheme for creating flow cells.  
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Figure 4.1: Schematic of EnvisionTec Perfactory MSL machine. 1: Removable build 
platform onto which completed parts are attached. 2: Tilting resin tray. 3: Z-stage driven by 
a lead screw. Computer is connected to the network for transfer of build jobs. 

Parts fabricated on the EnvisionTec Perfactory are built onto the build platform, figure 4.1 

(1). The build platform consists of a glass block and metal rails that facillitate attachement 

to the Z-stage, figure 4.1 (3) of the Perfactory machine. The liquid resin from which parts 

are cured is held in the resin tray, figure 4.1 (2). The resin tray of the EnvisionTec Perfactory 

Mini consists of a glass base onto which a thin (~2 mm) layer of transparant silicone rubber 

is attached. The silicone top surface is also treated with an agent to aid detachment of each 

layer. Walls around the resin tray hold in the liquid resin. The volume of resin can be varied 

depending on the task at hand. 

The projector in the EnvisionTec Perfactory has been raised closer to the build 

platform to reduce the pixel size so that the minimum feature size can also be reduced. A 

modified version of the EnvisionTec Perfactory Mini firmware and software was kindly 
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provided by EnvisionTec. The resin tray, shown in figure 4.1, has a tilting mechanism. Thus, 

when a layer of resin is cured, one end of the resin tray is pulled down, away from the build 

platform. This tilting causes the part, including the newly formed layer, to peel from the 

resin tray. The peeling process is employed to reduce delamination of the new layer. Layer 

delamination is discussed in section 4.1.8. 

4.1.1. EnvisionTec Perfactory workflow 

The workflow for the EnvisionTec Perfactory is described in figure 4.2. STL files created in a 

CAD package, such as SolidWorks, are ‘sliced’ into layers by EnvisionTec RP software, 

compiled into ‘job’ files and transferred to the machine. On running a job file from the 

machine, the job file is unpacked and the build is executed. Once complete, parts are taken 

off the build platform using a scalpel or sharp knife. The part is then transferred to a 250 

mL beaker and washed with acetone and/or isopropanol. Swilling of the beaker can then be 

employed if necessary, to desorb the uncured resin from the solid part. Acetone is a more 

aggressive solvent than isopropanol and will dissolve cured resin slowly. For this reason 

either acetone washing is employed sparingly or isopropanol is used. Difficult to clean parts 

can be soaked in isopropanol and continuously mixed using the horizontal rocker. High 

pressure air can also be used to clear uncured resin from tubes or holes where appropriate. 

Finally, the part is post-cured by flashing in a UV flasher box (see section 4.1.8 
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Figure 4.2: Workflow schematic of making parts with the EnvisionTec Perfactory Mini 
machine. 

4.1.2. EnvisionTec Perfactory build material 

The EnvisionTec Perfactory uses blue light (mainly between 250 and 550 nm) to cure 

photosensitive liquid resins into solid polymers. Although a variety of compatible resins are 

available, only one resin was used here, R11. R11 is a liquid resin composed of a di-acrylate 

monomer, tri-, penta- and hexa-acrylate crosslinkers, a free radical photoinitiator and a dye 

to control light penetration. The photoinitiator causes a radial reaction between acrylate 

groups in the mixture. Any of the acrylate group-containing species in the mixture can be 

covalently bound to any other. The result is a highly complex, disordered polymer. The dye 

limits the depth through the resin that the light can penetrate such that after around 25 

µm the reaction is effectively prevented. The reaction is exothermic and polymerisation can 
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also be initiated by heating, so the dye also prevents a runaway reaction that could cure 

the entire of the available resin and damage the resin tray. 

 Several other materials are available for use with the Perfactory system2. These 

materials are formulated to include material properties for specific applications: 

Photosilver resin has high temperature resistance suitable for making moulds for 

vulcanising rubber (~130°C). PIC and WIC resins can be removed easily from an encasement 

by heating (‘burning out’) making these resins suitable for the production of moulds used in 

the jewellery industry. eShell resins are opaque and are formulated in a variety of colours 

for the manufacture of discrete hearing aids. NanoCure resin contains suspended 

nanoparticles that provide high stiffness and temperature resistance as well as being hard 

wearing. 

4.1.3. Optical characterisation of R11 resin 

R11 is formulated in several colours as a result of the dye molecule used, R11, red, blue, 

clear and rose. To determine the absorption profile of different colours of R11 resins 

available, samples of each resin were prepared. Sheets of each resin 0.5 ± 0.01 mm were 

cut from blocks of cured resin. Sheets were then polished using fine grain sandpaper 

followed by polishing with Wenol (Reckitt Benckiser, DE). Sheets were then trimmed to 9 

mm wide pieces to fit into the sample holders (Hellmet spectrophotometer optical 

calibration filter holders). All pieces were tested in a Cary 100 Bio spectrophotometer 

(Agilent, UK) and the results presented in chapter 6. 

4.1.4. EnvisionTec Perfactory capability 

The maximum build envelope of the EnvisionTec Perfactory is 28 x 21 x 250 mm which is 

defined by the projected area and the maximum travel of the Z-stage. The resolution of the 

projector in the EnvisionTec Perfactory is 1400 x 1050 pixels which means that each pixel is 
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20 µm square. Theoretically, the minimum feature size is the same as the pixel size. In 

practice, the minimum feature size is around 100 micrometres for experienced users in 

good conditions. Furthermore, a wall is more likely to build successfully than a tower of the 

same diameter as the wall width. Single towers are not attached to the rest of the part by a 

sufficiently large surface area leading to delamination during the peeling step. 

 The key parameters affecting minimum feature size are exposure time, projector 

brightness and resin condition. Exposure times from 3.7 to 9.5 seconds will result in 

successful builds. Delamination increases with shorter exposure times. The same exposure 

and peel settings must be used throughout the part to get an even finish with minimal 

delamination. Projector brightness settings from 560 to 620 will result in successful builds. 

The effect of projector brightness on builds is very similar to exposure time. Resin condition 

deteriorates through use or time. The best builds (minimal delamination, smallest features) 

are made with new resin. Build failure results in significant deterioration of resin condition, 

but successful builds will also result in slow deterioration of the resin. Poor resin condition 

is defined by a high viscosity of relative to new resin and the presence of lumps which 

accumulate from failed and delaminated builds. Resin can be filtered through a 1 mm2 steel 

mesh in a Buchner funnel attached to a vacuum pump (Caper 2D, Charles Austin Pumps, 

UK) to remove the larger lumps. Smaller lumps are soft enough, however, to pass through 

the filter. Filtered resin significantly improves the build quality. Filtering is only performed 

once per batch of resin as the accumulation of small, unfilterable lumps renders the resins 

unable to produce good quality builds. 

4.1.5. Burn-in range settings 

A cured layer of R11 resin will make a conformal bond with the glass surface of the build 

platform and the silicone rubber of the resin tray. To ensure that the nascent part is 

securely fastened to the build platform rather than the resin tray, the first several layers 
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(~400 µm) are built with ‘burn-in’ settings. Burn-in settings comprise a longer exposure 

time (9.5 seconds) and a slower peel speed (800 µm/s) relative the standard range. 

4.1.6. Build range settings 

The remaining layers of the part are built with standard build settings; exposure time of 3.7 

seconds and a peel speed of 1200 µm/s. These are sufficient to cure layers and allow parts 

to be built rapidly. 

Thin parts tend to warp after they are removed from the machine. The warping 

process is most likely a result of the change in build parameters between the burn-in and 

the build ranges. Warping can be reduced by clamping thin parts flat during the post curing 

process. Warping can also be reduced by building the build range with the same settings as 

the burn-in range. Using the same settings for the burn-in and the build ranges is also used 

in taller parts where a consistent finish is required. 

4.1.7. WYKO build characterisation 

To characterise parameters such as surface roughness and layer thickness a Wyko 

(Microprecision Instruments, UK) optical profiling system was used. The Wyko uses 

interferometry to vertically scan a surface returning a 3D representation of the surface 

which can then be analysed. Analysis was carried out using Gwyddion (version 2.25-1); an 

open source scanning probe data analysis software3. 

4.1.8. Post curing 

Parts are post cured in the EnvisionTec flasher box (Otoflash, EnvisionTec, UK) after 

building. The flasher box has two metal halide tubular arc lamps which emit flashes of 

bright white light at ~10 Hz. EnvisionTec recommend at least 3000 flashes per part. The 

parts become notably hot during flashing so parts are flashed 1000 times, turned, left for a 

minute and flashed for another 1000 times. The heating of a part is probably at least in part 
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due to the exothermic reaction of the R11 monomer as it reacts. Flashing is necessary to 

ensure that all the uncured monomer that is trapped within the part is fully reacted. 

Uncured monomer can have a significant impact on the properties of finished parts. Post 

curing is necessary in order to maximise the strength of R11 parts and to prevent inhibition 

of the PDMS curing reaction. Post curing also reduces, but does not eliminate, warping in 

thin parts. 

4.2. Microfluidic device fabrication 

4.2.1. PDMS casting 

Some flow cells described in chapter 5 required material properties not possessed by R11 

(see section 4.1.2). Poly dimethoxysilane (PDMS) met these material requirements well. A 

R11 mould, that held the negative shape of the desired PDMS shape, was produced. PDMS 

(sylgard 184, DowCorning, US) was mixed in a 10:1 proportion of polymer base to curing 

agent by weight. Thorough mixing of the PDMS was necessary to ensure that the cured 

material had consistent properties throughout. The mixing process, however, results in the 

incorporation of significant amounts of air bubbles. The mixture is poured into the mould 

ensuring that a the top of the liquid PDMS is level with the top of the walls of the mould. 

Degassing of the mixed, uncured polymer was achieved using a vacuum desiccator 

attached to a vacuum pump (Caper 2D, Charles Austin Pumps, UK). A vacuum was then 

applied to the cast for around 30 minutes, which caused the majority of the bubbles to pop 

or merge into large bubbles. Stubborn bubbles could be lanced using a dry knife. It was 

important to degas all uncured PDMS samples, even samples which did not have evident 

bubbles as bubbles could develop during the heated curing process. 

PDMS cures continually once the two components are mixed. The mixture will cure 

at room temperature overnight or within an hour at 60°C. In this work all PDMS curing was 

performed at 60°C after degassing. It was discovered that moulds which have never been 
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used before will slow the curing process significantly such that full curing will only be 

achieved in 24 hours at 60°C. Subsequent casts of the same mould will then cure as normal. 

Flashing the mould for more than 3000 flashes lessens the inhibition of the curing process. 

Once cured, the PDMS casts were removed from the moulds using a scalpel blade. 

The back of the blade was used to prevent damage to the mould. The sides of the cast were 

first loosened from the side walls of the cast. The blade could then be used to gently lever 

the cast out of the mould taking care that the blade did not cut the cast or that the cast 

was not bent sufficiently to tear. 

4.2.2. Membrane thickness determination 

The relationship between layer thickness and spin speed was determined by spinning 

uncured PDMS onto glass squares cut from glass slides using a carbide scribe. Spinning was 

performed with a spin coater (G3P-8, Speciality Coating Systems, US). Glass squares were 

stuck to a silicon wafer using double sided sticky tape, the silicon wafer was held to the 

spinning chuck by a vacuum force applied through the chuck. ~100 µL of uncured PDMS 

was applied to the centre of each glass square. The spin coater was then run in the 

following manner: 1) Spin at 500 for 20 seconds. 2) Ramp to selected spin speed over 20 

seconds. 3) Remain at specified spin speed for 20 seconds. 4) Stop spinning without 

ramping. Duplicates were performed at each spin speed. Coated glass squares were 

transferred to a pre-heated hot plate (KW-4AH, Chemat Technology, UK) set to 60°C for 1 

hour to cure. A scalpel was then used to cut through the coated layer, one half of which 

was then peeled away to leave a step feature. 

 To measure the layer thickness, the TalySurf (Taylor-Hobson, UK) was used. Three 

measurements were made across the step feature made previously at different positions 

along the step. A script was written in MATLAB to convert the raw data from the TalySurf 

into .xlsx format for analysis in MATLAB. 
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4.2.3. Multilayer soft lithography 

Microfluidic chips were assembled by multilayer soft lithography. Each layer was cast in 

MSL moulds as will be described in Chapter 6. Chips consisted of two layers, the pneumatic 

layer and fluidic layer, bonded together with a PDMS membrane between them. 

Membranes were made and bonded to layers by a partial curing. ~100 µL of 

uncured liquid PDMS was spun on silicon wafers at 2500 RPM and partially cured by placing 

at 60°C for 12±1 minutes. Partial curing of the PDMS prevents the liquid PDMS from flowing 

into, and blocking, the channels of a layer whilst ensuring that the liquid PDMS is 

sufficiently tacky to bond to the applied layer. Alignment of the layers was performed by 

hand using a dissection microscope. A black background and a strong light source (halogen 

lamp) projecting along plane of the chip were used to increase the contrast between the 

transparent PDMS layers. Alignment was performed using the valve membranes and valve 

seats as references (see chapter 6). This method ensured correct alignment of two layers in 

approximately 80% of cases. Realignment of layers bonded using the partial curing method 

is not usually possible due to filling of features with uncured resin. 

Following alignment, the layers were placed at 60°C for at least one hour in order 

to cure fully. Full curing is important to ensure that uncured PDMS monomer and/or 

oligomers do not leach into solutions carried within channels4.  

4.2.4. Microfluidic device control 

Three way solenoid valves (12 V DC, ES-3W-12, Clippard, USA) were used to control the 

flow of air in the pneumatic channels of the microfluidic devices. The valves were attached 

to a custom built manifold consisting of machined plastic and MSL adaptors. The valve 

ports were connected in such a way as to ensure that the device was exposed to either 

regulated air-line pressure (at around 20 PSI) or atmospheric pressure during valve closing 

or opening. The regulated air pressure was connected to each of the solenoid valves by 
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1/16” ID TYGON® tubing (Cole-Palmer, UK). The solenoid valves were connected to the 

microfluidic device by 1/50” ID TYGON® tubing (Cole-Palmer, UK). The 1/50” tubing then 

connected to 90° bent needles (Fishman, UK) via an interference fit. The needles interfaced 

with the microfluidic device via a barbed end adaptor built from MSL specifically for the 

task. Needles were glued into channels built within the MSL adaptor with cyano-acrylate 

superglue. 

LuerLoc® fittings (Cole-Palmer, UK) were placed in-line between the solenoid valves 

and the device to allow filling of the pneumatic channels in the microfluidic device with 

water containing food dye. Filling the PDMS channels of the pneumatic layer with water 

prevents the formation of air bubbles in the fluidic channels due to the relatively high 

permeability of PDMS to air. To fill the pneumatic channel, the LuerLoc® is disconnected 

from both the solenoid valve line and the microfluidic device adaptor. A 1 mL syringe was 

used to fill the 1/50” tubing with water containing food dye such that the tube was half full. 

The LuerLoc® fitting was thoroughly dried with a paper towel to minimise the risk that 

liquid would flow back towards the solenoid valves. The filled tubing was then reconnected 

to the microfluidic device adaptor followed by being reconnected to the LuerLoc® adaptor. 

Connection in this order was to ensure that the liquid in the tubing did not flow back 

towards the solenoid valve, which could result in valve failure. Once connected, a steady air 

pressure (20 PSI) was applied through the solenoid valves into the pneumatic channels. The 

air pressure behind the liquid in the channels forces the air ahead of the liquid through the 

PDMS walls of the device. Because of the relatively high permeability of PDMS to air, the air 

in the pneumatic channels can be fully removed within 15 – 30 minutes. Fluid channels will 

remain filled with liquid whilst the system is closed (I.E. the solenoid valves are shut and 

the channels full of fluid). If the channels are opened to the air then evaporation and 

movement of water vapour through the PDMS will render the channels dry overnight. 
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4.2.5. Microfluidic device operation 

Mixing of oligonucleotides was performed in a PDMS microfluidic chip. A droplet system 

was created using mineral oil (M5904, Sigma-Aldrich, UK) as a carrier phase and 

oligonucleotide-containing deionised water as the immiscible droplet phase. Reservoirs in 

1.5 mL Eppendorf tubes were attached to the chip via 1/50” ID TYGON® tubing (Cole-

Palmer, UK). Two holes were drilled in the lids of the Eppendorf tubes and the tubes were 

then routed to the bent needle adaptors in the chip manifold. Cleaning of the system was 

performed with 100% ethanol. ~1 mL of ethanol was loaded into each reservoir and was 

pushed through each of the valves in turn. 

Loading of each oligonucleotide was performed by using a P20 pipette (Pipetman®, 

Anachem, UK). 10 µL of each oligonucleotide was placed in the bottom of each reservoir 

and the pneumatic valve actuated whilst a constant pressure was applied to the reservoir 

to cause the 10 µL bolus to enter the tubing and travel to the chip valve. The valves were 

then actuated in the order and timing as previously determined (see chapter 6) to achieve 

mixing of the oligonucleotide-containing droplets. 

Collection of the chip eluent was then performed with a 1.5 mL Eppendorf tube. 

Both carrier and droplet phases were captured. Once in the Eppendorf tubes, the droplets 

merged to form a single, large droplet in the bottom of the tube. A 0.1-10 µL pipette 

(Eppendorf, UK) was then used to sample from the large droplet, which then formed the 

template for an assembly reaction as described in chapter 6. 

4.3. DNA manipulation 

Pipetting was performed using micropipettes (Eppendorf, UK) with appropriately sized tips 

(1000 μL, 200 μL , 10 μL, graduated, filtered, StarLab, UK). Weighing of substrates was 

performed on an weighing scales (CP225D, Sartorius,UK). 
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4.3.1. Restriction digests 

Analytical digests were performed rapidly with minimal substrate (~200 ng) and cloning 

digests were performed slowly (i.e. until completion) with mg quantities of substrate. All 

digests were performed with restriction enzymes obtained from New England Biolabs (NEB, 

UK). Digests were performed with 10 units of the appropriate enzyme in volumes of either 

25 or 50 µL supplemented with the appropriate buffer and Bovine serum albumin (BSA) 

(NEB, UK) as necessary. Incubation was performed in a 37°C incubator (Sanyo, UK) or a PCR 

machine. Heat inactivation was always performed after digests for cloning and usually 

performed after analytical digests. Heat inactivation was performed in either a 65°C water 

bath (OLS200, Grant, UK) or an appropriately programmed PCR machine for enzymes 

requiring different temperatures. Once heat inactivated, digests can be stored at 4°C 

before downstream use. 

4.3.2. PCR amplification 

PCR amplification typically consisted of: 1x PCR buffer, 2.5 mM MgCl2, ~20 ng plasmid 

DNA/other template, 0.5 µM forward and reverse primers, 0.5 mM of each 

deoxynucleotide triphosphate (dNTP), 5 units of AmpliTaq DNA polymerase and ~5% 

dimethyl sulfoxide (DMSO). Total reaction volumes for PCR was 20 µL. Reactions were 

carried out in 0.2 mL PCR tubes and conditions controlled by a Mastercycler Gradient PCR 

Machine (Eppendorf, UK). Unless otherwise specified the PCR program was: Initial 

denaturation at 95°C for 3 minutes. 30 cycles of 92°C for 30 seconds (denaturation), 55°C 

for 30 seconds (primer annealing) and 72°C for 1 minute per kilobase (elongation). 

Followed by a final elongation step at 72°C for 5 minutes. 
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4.3.3. Gel electrophoresis 

Gel electrophoresis of DNA was performed on agarose gels in horizontal gel electrophoresis 

systems (VWR, UK). Agarose gels of appropriate concentration (0.7 – 2%) were prepared by 

mixing appropriate quantities of agarose with 100 mL of TEA buffer. TEA buffer consists of 

40 mM Tris-acetate, 1 mM ethylenediaminetetraacetic acid (EDTA) at pH 8.0. To dissolve 

the agarose the mixtures were microwaved and mixed by swirling until homogeneous. 0.3 

µg/mL ethidium bromide was added after the solution had cooled to around 60°C and 

mixed. The solution was poured into moulds and gel combs inserted to form wells. 

Electrophoresis was carried out in 1x TEA buffer with DNA ladder as appropriate and 

samples mixed with 1x loading buffer loaded into individual wells. Voltages of 40 – 80 V 

were applied during the electrophoresis; low voltages were used for samples requiring gel 

extraction and higher voltages used for analytical gels. Following electrophoresis, gels were 

visualised using a G:Box transilluminator (Syngene, UK) and analysed using GeneSnap 

software (Syngene, UK). 

4.3.4. DNA ladder 

The ladder markers used in gel electrophoresis were either low molecular weight marker 

(NEB, UK) or were generated by combining 0.2 mg/mL of lambda DNA and phi174 DNA 

ladder markers with 1x loading dye. 0.3 µL was added to each gel so that band sizes in test 

lanes could be accurately determined. 

4.3.5. Gel extraction 

For gel extraction, bands on high quality electrophoresed SeaKem® GTG® agarose (Lonza 

Biologics, UK) gels were visualised using a High Performance UV Transilluminator (Syngene, 

UK). Agarose percentages were tailored to the expected size of the fragment. Bands were 

excised with a scalpel. DNA extraction was achieved using the QIAquick Gel Extraction Kit 
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(Qiagen, UK) according to the manufacturer’s instructions. Briefly, the gel piece was 

dissolved in a high salt binding buffer. Several drops of sodium acetate (3M) can be added if 

the pH of the binding buffer changes during the solvation, as indicated by a yellow to 

purple colour change by the indicator in the buffer. The dissolved gel piece, in binding 

buffer, was then bound to the silica QIAquick spin column. For high concentration gels (≥ 

2%), a further wash with 500 µL binding buffer was performed to remove remaining 

agarose traces. The bound DNA was then washed to remove impurities with wash buffer 

containing 70% ethanol. Elution of the DNA was achieved using water, DNA concentration 

quantified using a NanoDrop ND-1000 Spectrophotometer (Nanodrop Technologies, US) 

and a quality checked by agarose gel electrophoresis. 

4.3.6. Bacterial culture 

Escherichia coli (E. coli) was used as a culture organism to grow up and select clones 

resulting from a cloning reaction or for when growing up a previously prepared plasmid. 

Preparation of the culture was performed in 15 mL round bottomed, snap capped tubes 

(BD falcon, UK) with 3 mL of Lysogeny Broth – Miller variant (LB-Miller). LB-Miller consists 

of 1% tryptone, 1% NaCl, 0.5% yeast extract (all w/v), was not pH adjusted prior to use and 

no buffers were added. LB-Miller is prepared by Warwick Life Sciences Preparation Room. 

The media was supplemented with 1 mg/ml of amplicillin to act a selective marker for the 

presence of the transfecting plasmid. All cultures were incubated at 37°C overnight in an 

orbital incubator (Sanyo E&E Europe BV, UK) at 180 RPM. 

4.3.7. Ligation for cloning 

DNA, which was used for cloning into target vectors, was derived exclusively from digests. 

Cultures of E. coli containing the insert DNA, carried in a temporary plasmid vector, such as 

TOPO, were grown up and miniprepped. The plasmid DNA was isolated by miniprep using a 

Miniprep kit (Qiagen, US). Plasmid DNA containing the insert of interest is then digested 
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with the appropriate enzymes (see section 4.3.1.) to liberate the insert. The digest was 

then run on a gel and the insert DNA is purified from the cut temporary vector DNA by gel 

purification (see section 4.3.3). The recipient vector was similarly digested but only gel 

purified if the digest cuts out a portion of the recipient vector, in all other circumstances, 

where the vector is simply being opened, a PCR purification was performed using a PCR 

purification kit (Qiagen, US). The recipient vector DNA was dephosphorylated using rAPid 

alkaline phosphatase (Roche, UK). Ligation was performed with a Quick Ligation kit (NEB, 

UK). A 3:1 molar ratio of insert to vector was mixed with an appropriate volume of 2x 

buffer and topped up to a volume of 20 μL with deionised water. To this mixture, 1 μL of 

ligase was added and incubated at room temperature for 5 minutes. The ligation mixture 

was then put on ice for transfection. 

4.3.8. TOPO Cloning 

Cloning of PCR products, such as those of the assembly/amplification reaction, was 

performed using the TOPO TA 2.1 kit (Invitrogen Ltd, UK). TOPO vector employs 

topoisomerases covalently attached to T/A overhangs in a standard vector. The 

topoisomerases ligate linear DNA into the host vector quickly and easily. TOP10 chemically 

competent cells (Invitrogen, UK) were transfected with an aliquot of the TOPO TA cloning 

reaction according to the manufacturer’s instructions. Briefly, insert DNA was quantified by 

running a small aliquot of the purified PCR product on an appropriate gel with a marker of 

known concentration. Based on this quantification an aliquot of the PCR product 

preparation was added to a volume of diluted salt solution and vector DNA was added. The 

ligation reaction was allowed to proceed for 5 minutes at room temperature before the 

reaction tube was placed on ice. The total volume of the TOPO ligation reaction is 6 µL.  
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4.3.9. Bacterial transfections 

TOP10 (Invitrogen, UK) were thawed on ice. A 1-3 μL aliquot of the ligation reaction was 

added to TOP10 cells and mixed gently without pipetting. The cells and ligated DNA were 

incubated for 30 minutes on ice before being heat shocked at 42°C for 30 seconds. The 

aliquot of cells was then ready for short term growth prior to plating. Retransfection of a 

previously prepared plasmid was performed in the same manner as above, without TOPO 

ligation steps and with an aliquot of the TOP10 cells. Up to 4 different plasmids were 

retransfected in independent transfection reactions from a single tube containing 50 µL of 

TOP10 cells. 

Short term growth prior to plating of the transfected cells was performed by 

addition of 250 µL of Super Optimal broth with Catabolite repression (SOC) to the 

transfected cells after the heat shock step. SOC media consists of 2% tryptone, 0.5% yeast 

extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2 and 20 mM glucose pH adjusted to pH 7.0 

and autoclaved or filter sterilised. SOC media was prepared by the Warwick Life Sciences 

Preparation Room. Transfected cells in SOC were incubated at 37°C in the orbital shaker 

(Sanyo, UK) at 180 RPM for up to 1 hour. Transfected cells were then transferred to agar 

plates for clonal selection. 

Selection of successful transfectants was performed on the basis of ampicillin 

resistance and blue/white colony selection (the latter in the case of TOPO ligation only). 

Transfected cells were plated onto LB-agar plates. LB-agar consists of LB supplemented 

with 1.5% Bacto-agar (see section 4.3.6 for description of LB) and 1 mg/mL of ampicillin. 

Further, for blue-white selection 20 µL of 50 mg/ml X-gal in dichloromethane (DCM) was 

spread over the surface of the agar and allowed to dry. LB-agar was prepared by Warwick 

Life Sciences Preparation Room. Short term growth cultures were transferred to plates by 

pipette and spreading across the plate was performed using glass beads sterilised by 
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autoclaving at 121°C. The plates were then incubated upside down at 37°C overnight in an 

incubator (Sanyo, UK). Bacteria which pick up a plasmid containing the ampicillin resistance 

gene are able to grow on the surface of LB-agar supplemented with ampicillin. Insertion 

into the TOPO vector, without relegation of the vector alone, disrupts the lacZ gene which 

encodes a -galactosidase enzyme which is able to digest the x-gal into an insoluble, blue-

coloured product. Thus cells which were transfected with a relegated TOPO vector which 

did not receive an insert were able to survive on ampicillin supplemented agar but were 

unable to produce a blue coloured product when the agar was also supplemented with X-

gal. Hence, picking white colonies allows TOPO vector containing the insert to be cultured. 

4.3.10. Sequencing 

Sequencing of successful transfectants was performed by the Genome Facility at Warwick 

University by the Sanger method using a Prism 7000 sequencer (Applied Biosystems, UK). 

DMSO was added to some sequencing reactions to reduce secondary structure formation 

due to palindromic sequences present in some plasmids and assembled sequences. All 

insert sequences were checked to be 100% correct sequencing prior to continuing to the 

next cloning step. 

4.4. DNA assembly 

4.4.1. Phosphoramidite synthesis 

The DNA used to make the combinatorial mutant libraries was synthetically derived. The 

most widely used method of producing synthetic oligonucleotides is the phosphoramidite 

cycle31,32. A key limitation in DNA assembly is arises due to the method by which the DNA is 

first synthesised. The cycle involves the repetition of three steps; deblocking, coupling and 

capping. The three steps are depicted in figure 4.3. The building blocks of the process are 

nucleoside phosphoamidites which are analogues of the naturally occurring DNA base 
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pairs. Interestingly, nascent strand is synthesised from 3’ to 5’ in contract to the biological 

polymerase enzyme which synthesises 5’ to 3’. 

 

Figure 4.3: Steps of the phosphoramidite synthesis cycle for synthesis of DNA chains on a 
solid support. This method is widely used in the production of synthetic DNA. 

Each step of the process is not 100% efficient, about 0.1 - 1% of the nascent strands fail to 

be coupled with each round of the reaction. These failed couplers are capped during the 

capping step to prevent the production of a deletion mutant. Instead, these capped species 

will form truncation mutants which are easier to separate downstream by, for instance, 

high performance liquid chromatography (HPLC). Deletion mutants can arise from 

incomplete deblocking, although this reaction is comparatively much more successful. The 

frequency of mutations in the nascent strands limits the overall length of contiguous, 

correct sequence that can be produced by DNA synthesis. The maximum synthesisable 

length whilst still obtaining sufficient full length, correct sequence is around 100 bp. 

4.4.2. Assembly of genes by the Gao method 

The method of gene synthesis that is performed by Prof. X. Gao in the University of 

Houston will be referred to from here on as ‘Gao synthesis’33–36. DNA sequences are 

‘grown’ in microfluidic chambers using a light activated decoupling step and normal 



4. Methods 

126 
 

phosphoramidite chemistry. The projected light is patterned, using a digital micromirror 

device (DMD) to activate only the wells which are to add the next base. The microfluidic 

chip consists of 4096 individual wells each connect to the inlet and outlets such that all the 

chambers in the chip can be flushed simultaneously. This method has been successfully 

used to produce microarrays directly on glass surfaces (ie without spotting)37. 

By careful design and assembly of the synthesised oligonucleotides, synthetic genes 

can be made. The length of these assembled sequences is not bound by the limitations of 

the phosphoramidite synthesis process. Assuming that both strands are synthesised and 

assembled ligatively, the 4096 well chip could theoretically synthesis oligonucleotides 

sufficient to assemble a sequence just over 200 kbp long. Synthetic genes have been by 

assembling oligonucleotides which themselves were made by Gao synthesis previously35. 

4.4.3. Gao assembly 

The oligonucleotides created during Gao synthesis are limited to <100 base pairs in length 

mainly due to failure of the coupling step (see figure 4.3, phosphoramidite synthesis). 

Hence, to synthesise the ~300 base pair CRM, several overlapping oligonucleotides were 

necessary. 

 The synthesis scale of oligonucleotides made by this method is very small. Each 

nucleotide is produced in femtomolar amounts. To obtain useful quantities of 

oligonucleotides the product of the synthesis must be amplified. A generic primer sequence 

is added to the start and end of each of the synthesised oligonucleotides to amplify all the 

sequences at once. This is step 2, ligator PCR, in figure 4.4. Gel electrophoresis is then used 

to check the success of the ligator PCR. Gel electrophoresis will confirm the size of the 

product of the PCR reaction, but will not confirm that every member of the oligonucleotide 

set has been amplified. In fact, variations that already exist in the relative amounts of 

individual oligonucleotides before the ligator PCR step will be amplified afterwards. 
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Figure 4.4: Schematic of the assembly process developed by Gao. Oligonucleotides are 
synthesised by Gao synthesis, amplified, and assembled into longer sequences by PCR. 

Once the ligator PCR has been satisfactorily completed, the generic primer sequences must 

be cleaved off. Type IIS restriction enzymes are a type of restriction enzymes which 

recognise a palindromic sequence but then cut the DNA double strand several base pairs 

away from the recognition site38. By placing the recognition site of a blunt cutting type IIS 

appropriately in the generic primer binding sequence on each oligonucleotides can be 

cleaved off cleanly leaving a blunt end. 

Once the generic oligonucleotide amplification sequences have been cleaved off, 

the oligonucleotide set is ready to be assembled. It should be noted that following the 

ligator PCR amplification of the set of all oligonucleotides that each oligonucleotide and its 

complementary pair is present in solution. For simplicity, figure 4.4 shows only the forward 

direction oligonucleotides. The presence of complimentary partners to each 

oligonucleotide in solution presents a problem during the next step, where each 



4. Methods 

128 
 

oligonucleotide is to find its appropriate partners as described in figure 4.4, step 4. By 

adding ligase and putting the mixture through several rounds of heating and cooling it is 

hoped that at least a small proportion of the full length sequences will assemble. Because 

the assembly of the full length sequence is unlikely, several lesser interactions must occur 

on the same strand and be successfully ligated, the number of oligonucleotides in a single 

sequence is limited. 

 After assembling and ligating the oligonucleotides, the small proportion of full 

length sequences must be once again amplified by a PCR reaction. For the full sequence 

amplification a second short generic sequence is added to the first and last 

oligonucleotides in the sequence. Once again a type IIS restriction enzyme is used to cleave 

off the generic fragment primer. 

 For the assembly of longer sequences, an additional assembly step can be 

employed: The assembled sequences from the ligation reaction can be designed so they 

themselves contain overlaps suitable for PCR-based assembly. For this step, an overlap PCR 

is employed where each of the ligated sequences becomes a primer to another ligated 

sequence. The polymerase then fills in the gaps to produce a single complete sequence. 

4.4.4. Chip cleavage 

During synthesis of the microfluidic synthesis chip, the oligonucleotides were covalently 

attached to the solid silicon surface. To cleave the oligonucleotides from the chip a 

procedure developed by Qi Zhu (University of Houston) was followed. 

The following list describes the ammonia cleavage of chip oligonucleotides. In this 

protocol, ‘dummy chip’ refers to an empty microfluidic chip which has not been used in a 

synthesis reaction. The ‘holder’ is a plastic device which channels the fluid from the tubing 

system to the inlets on the synthesis chip. Washing steps require routing the chip outlet 

into the reservoir, allowing the volume to be cycled indefinitely. Reservoirs consist of 1.5 
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mL Eppendorf tubes with two holes drilled to allow access by tubing. Flow speeds refer to 

the custom built peristaltic pump that was used In the Gao lab. The protocol now follows: 

1. With dummy chip in the holder, clean the system in following sequence: 1% sodium 

dodecylsulfate (SDS) (1 mL) circulate for 10 minutes at low speed, 5 mM Tris (1 mL), 

pH 6.8, circulate for 10 minutes at low speed.  Flow through with 3 mL 5 mM Tris, pH 

6.8. In a new tube, add 1ml 5 mM Tris, pH 6.8, flow through about 300 µL. 

2. Replace the dummy chip with the synthesis chip. 

3. Flow through about 300 µL  5 mM Tris, pH 6.8, circulate with the rest of 5 mM Tris, pH 

6.8 for 5 minutes. Then let the 5 mM Tris, pH 6.8, flow through completely. 

4. Replace the solution to 1000 µL of 5 mM Tris, 1% BSA, pH 6.8.  Flow through about 300 

µL and then circulate the rest of solution for 20 minutes. 

5. Flow through about 500 µL of 5 mM Tris, pH 6.8; flow through completely. 

6. Circulate 250 µL ammonia hydroxide with the chip at room temperature for 10 

minutes, 37°C for 10 minutes, 45°C for 10 minutes, and 50°C for 1.5 hours. 

7. Collect all 250 µL of the ammonia solution (be careful not to run air into the chip). 

Wash the chip with 250 µL of 5 mM Tris, pH 6.8. Collect the first 100 µL in the tube 

containing the ammonia hydroxide. Circulate with the remaining 150 µL Tris buffer for 

10 minutes at 50°C and collect.  

8. Speed dry the sample in a heated vacuum centrifuge (heated to 45°C) to reduce the 

volume (ensure the caps are not closed!). Combine two solutions and continue until 

dry. The drying process will usually take 1.5-2 hours. 

9. Resuspend the pellet in 20-50 µL deionised water. 

The most difficult aspect of the cleavage process was avoiding trapping bubbles in the 

synthesis chip. If a particular well was blocked by a bubble, the wash solution would not 

fully reach that well which could lead to improper cleavage of the oligonucleotide 

synthesised therein. Avoiding and/or removing bubbles was a major concern. 
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After the synthesis process was complete, the chip was provided dry. Bubbles in 

the aqueous media would form spontaneously when the chip was heated. To remove 

bubbles, techniques such as changing the direction of the flow and putting the chip through 

heating and cooling cycles were employed. 

4.4.5. Gao oligonucleotide digests 

A Type IIS restriction enzyme which produces blunt ends, MlyI (NEB, UK), was used to 

cleave the oligonucleotide amplification primers from the oligonucleotide sequences prior 

to assembly. Reactions were carried out in a volume of 50 µL with 1x NEBuffer 4 and 1x 

BSA. Each digest was performed upon a whole amplification reaction volume (5-7 µg), 

minus an aliquot taken for comparative gel electrophoresis. Digests were performed 

overnight at 37°C. 

 Comparative gel electrophoresis was employed to determine whether the digest 

was successful. Gels of 2.5% agarose were used as the expected product size was 50-100 

base pairs. 

4.4.6. Gao assembly ligation reaction 

The Gao assembly ligation reaction was carried out in a volume of 20 µL using Taq ligase 

(NEB, UK). The template, digested oligonucleotides obtained by the Gao synthesis chips, 

was added at either a ‘high’ or ‘low’ concentration. The low concentration contained ~0.5 

µg of DNA whereas the high concentration contained ~4 µg. The cleaved oligonucleotide 

primers will contribute to this total but will not be actively ligated. As such, the actual 

concentration of active oligonucleotide substrate is around 30% less than these values. 

Because some oligonucleotides were used in more than one sequence it is difficult to 

determine each oligonucleotide’s expected concentration. 
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4.4.7. Optimisation of the Gao assembly 

Several variations of the assembly protocol were performed. The basic method was as 

follows: Mix oligonucleotides with appropriate buffers.  Initial slow cool from 95°C to 60°C, 

add 1 µL of ligase. Heat to 95°C for 3 minutes, touch down from 76°C to 60°C at one degree 

per cycle with a hold at each step of the touchdown for 20 minutes. Hold at 60°C overnight. 

Alternatively, the touch down was also performed slowly whereby the mixture was heated 

to 95°C then cooled quickly to a ‘topline’ temperature 76°C then slowly to a ‘bottomline’ 

60°C over 20 minutes, the cycle was repeated but the ‘topline’ temperature was reduced 

by 1°C per cycle. The rate of the slow cool did not change so the total time spent in the 

cooling cycle also diminished with each cycle. 

In one case, an additional cycle was included on the end of the touchdown cycle: 

Heat to 95°C for 3 minutes and cool quickly to 50°C for 5 minutes and repeat for 30 cycles. 

This cycle was tagged onto the end of the appropriate touch down. 

4.4.8. Gao assembly amplifications 

Two amplifications were performed during the Gao assembly process: The first was the 

amplification of the oligonucleotide substrate. The second was the amplification of the 

assembled full length product. 

 The oligonucleotide amplification was carried out at on a large scale to provide a 

uniform starting material for the assembly reactions. Separate reactions were prepared 

from an identical master mix using pfu polymerase (Stratagene, US), 1x buffer (containing 2 

mM MgCl2, 200 μM dNTPs, 5 microM primer and 1% DMSO). A sample of each 

amplification was run on a 2.5% agarose gel to check that the reaction had been successful. 

The reaction volumes were then frozen and kept separate to avoid repeated freeze-

thawing cycles. 
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The assembled products were amplified using a specific PCR for the full length 

sequences. Primers for this reaction were obtained from the Gao lab, which has DNA 

synthesis facilities.  

4.4.9. OptiCut oligonucleotides 

The oligonucleotide substrate (Eurofins MWG, Ger) used in the OptiCut assemblies were 

synthesised at the 0.01 micromole synthesis scale. All oligonucleotides were modified by 

the manufacturer to contain a phosphate on the 5’ OH and were HPLC purified. Eurofins 

claim that the purity, as measured by capillary electrophoresis, of their standard high 

purity, salt free (HPSF) purification method is >70% whereas the HPLC purity is >80%. 

4.4.10. Opticut assembly protocols 

Oligonucleotide sequences were optimised using the OptiCut program described in chapter 

7. Assembly of the OptiCut optimised oligonucleotides was performed by a similar 

assembly method as published previously5. The protocol is a two-step assembly-

amplification. First, oligonucleotides were mixed in equimolar amounts to completely 

describe the entire sequence. Second, a PCR was performed on a sample of each of the 

ligase reactions. Each PCR was then gel purified. Assemblies were carried out in 96-well 

quantitative PCR (qPCR) plates (Beckman Coulter, UK) that could be used with the 

Eppendorf PCR thermocycler. Master mixes were used to ensure consistent reaction 

conditions. 

Ligative assembly was performed on each equimolar mixture of HPLC-purified 

oligonucleotides (EuroFINS MWG, Germany) at high temperature (65 - 45°C) in the 

presence of Taq Ligase (NEB, USA): Taq ligase (20 units per reaction), 1x Taq ligase buffer, 

oligonucleotides to a concentration of 20 nM each. 5 minutes at 95°C, a further 1 minute at 

95°C, cool rapidly to 65°C. Cool slowly to 45°C over 15 minutes. Hold at 45°C for 15 



4. Methods 

133 
 

minutes. Once the assembly reaction is complete, the 96-well plates can be sealed with 

either adhesive film (ThermoSeal RT2, Alpha Labs, UK) or suitable sealing strips (Domed cap 

strips, ThermoScientific, UK) and be stored at 4°C.  

To amplify the products of the ligation reaction, a small aliquot of the ligation is 

used as a template for a PCR with AmpliTaq Gold DNA polymerase (Applied Biosystems, 

US): Taq polymerase (2.5 units per reaction), primers (800 nM each), dNTPs (10 mM of 

each), DMSO (2% v/v), 1x PCR buffer, MgCl2 (2 mM). The maximum template concentration 

(assuming 100% ligation) is 800 pM. Initial denaturation at 95°C for 3 minutes, 30 seconds 

at 95°C, 30 seconds at 55°C, 1 minute at 72°C and a final extension at 72°C for 3 minutes. 

4.4.11. Purification protocol 

Gel purification was employed to isolate the PCR products of the appropriate size. High 

quality 1.5% (w/v) agarose (SeaKem® GTG® agarose, Lonza Biologics, UK) gels were used in 

purification. Purifications were performed using a Qiagen Gel Purification Kit with MinElute 

columns (Qiagen, US), which are designed to maximise retention of products 70bp < x < 4 

kbp. 

4.4.12. Cloning and sequencing 

TOPO® cloning was employed using TOPO® TA cloning® kits (Invitrogen Ltd, UK). Cloning 

was performed according to the manufacturer’s protocol using gel purified PCR products. 

Selection of successful transfectants was performed on the basis of ampicillin resistance 

and blue/white colony selection. Sequencing of successful transfectants was performed by 

the Genomic Facility at University of Warwick. 
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4.5. Tissue culture 

4.5.1. Cell culture and passage 

All tissue culture was carried out in Class II Microbiology Safety Cabinets (Walker Safety 

Cabinets Ltd, UK). C2C12 cells were maintained in Dulbecco/Vogt modified Eagle's minimal 

essential medium (DMEM) without sodium pyruvate, with glutamax and supplemented 

with 10% fetal bovine serum (FBS) (Invitrogen, UK). All culture was performed in T75 flasks 

(BD Falcon) at 37°C humidified Galaxy R CO2 incubators (New Brunswick, UK). Once cells 

reach ~80-90% confluence they were passaged into new flasks. C2C12 cells will 

differentiate when confluent and so to avoid differentiation and to maintain cells in a fast 

growing state, cells are passaged. 

To passage, the medium was removed by aspiration and the cell surface washed 

gently with ~13 mL of PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4 at pH 7.4) warmed to 

37°C. Cells were detached from the cell culture surface by adding 3 mL of room 

temperature trypsin solution (0.05% trypsin-EDTA, Invitrogen, UK) was added and allowed 

from 30 seconds to 2 minutes to work. The time spent in the trypsin solution should be 

minimised so as to minimise the damage done to cells. Flasks can be smacked several times 

to lift of cells once the trypsin has weakened their interaction with the culture surface. 12 

mL of warmed (37°C) DMEM + 10% FBS was used to remove the cells and wash the flask to 

a suitable tube. The 10% FBS serves to saturate the trypsin and effectively halt the reaction. 

The tube was then spun at 1000 revolutions per minute (RPM) for 4 minutes to pellet the 

cells in suspension, the supernatant aspirated and the pellet re-suspended in a known 

volume of warmed (37°C) DMEM + 10% FBS. The cell suspension was then split between 

the desired number of flasks. 
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4.5.2. Cell freezing 

For long term storage, stocks of cells are frozen in liquid nitrogen dewars at around -198°C. 

Cells were grown to 80-90% confluency, similar to the passage procedure, in an incubator 

set to 37°C with 5.0% CO2 in DMEM + 10% FBS in T75 flasks. Flasks containing cells were 

removed from the incubator, media removed by aspiration and washed 2 times with PBS 

warmed to 37°C in an appropriate water bath. Care was taken so that the jet of PBS from 

the PipetteBoy (Integra Biosciences, UK) does not impinge on the growth surface so as to 

avoid the unnecessary dislodging of cells. 3 mL of trypsin is added to the flask and the flask 

incubated at 37°C, 5.0% CO2 for 2-3 minutes. The culture area of the flask was observed, 

using a stereo light microscope at 100x magnification (TS100, Nikon, UK) to check that the 

cells are rounded up. The flasks were then vigorously slapped to dislodge the remaining 

attached cells. A further observation was performed with the light microscope to check 

that significant attached cells do not remain on the culture area of each flask. 

 The trypsin reaction was halted by addition of 12 mL of DMEM + 10% FBS to the 

flask. The FBS contains sufficient non-specific protein that it effectively blocks the trypsin 

enzyme active site. Cells were washed from each surface of the flask to ensure that a 

homogeneous suspension of all the cells in the flask is obtained. Care was taken not to 

introduce bubbles to the solution. The cell suspension was then transferred to a 50 mL 

falcon tube (BD Biosciences, UK) which was then centrifuged at 1000 RPM for 4 minutes to 

pellet the cells. The media was removed by aspiration and the cells re-suspended in a 

known volume of freezing solution. Freezing solution consists of a warmed (37°C) solution 

of 1:4:5 DMSO:FBS:DMEM. The volume of freezing solution used to re-suspend the pellet 

depends on the desired concentration of cells to be prepared. Cryopreservation requires 1-

10 x 106 cells with a total volume of 1.8 mL per vial, typical cell concentrations used in the 

course of this project were 2.5 x 106 cells per vial, which is approximately ¼ of a T75 flask. 2 

mL cryovials for freezing are obtained from VWR Jencons. 
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 DMSO is cell toxic and once the cells are suspended in freezing solution they must 

be chilled and frozen as soon as possible. Freezing by steps is preferred over snap freezing 

as step freezing results in less loss of viability of the cells compared to snap freezing. 

Cryovials are placed at 4°C and chilled before being transferred to -20°C overnight. Frozen 

vials of cells are then transferred to -80°C for a further night and finally transferred to liquid 

nitrogen dewars (-198°C). Cells can be stored practically indefinitely (up to 20 years) 

although a loss of cell viability is usually experienced with storage greater than 1 year. 

4.5.3. Cell Thawing 

C2C12 cells in this study were prepared from stocks of cells in 1:4:5 DMSO:FBS:DMEM 

frozen in liquid nitrogen at ~-196°C. Thawing was achieved by bathing the tube containing 

the cells in sterile PBS at 37°C until the tube contents were completely thawed. The 

contents were removed by pipette and diluted to 10 mL with DMEM + 10% FBS warmed to 

37°C. After dilution, the cells were spun at 1000 RPM for 4 minutes to pellet the cells. The 

supernatant was then aspirated leaving the cell pellet which was then diluted to ~15 mL 

with warmed (37°C) DMEM + 10% FBS and plated into a T75 flask. Cells typically settle to 

the bottom of the flask after 15 minutes and attach after 2 hours. Cells will then firmly 

attach and begin migratory behaviour after 4-5 hours. The medium of the cells is replaced 

24 hours after the initial plating and growth monitored using a stereo light microscope to 

ensure the cells do not overgrow. Further feedings as necessary are performed every 48 

hours until the cells are ready for passage. Thawed cells are typically slow growing and may 

take several days to reach passaging density. 

4.5.4. Cell seeding 

C2C12 cells for seeding were obtained from 80-90% confluent T75 flasks retrieved from 

incubation at 37°C, 5.0% CO2. The process of removing the cells from the cell culture 

surface of the flask is described previously (see section 4.5.1). Several flasks may be 
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combined to increase the cell count sufficiently to allow the seeding of multiple 6-well 

plates as necessary. A single T75 flask at 80-90% confluency can seed approximately four 6 

well flasks. The cell count derived from resuspension of cell pellets was assayed using a 

haemocytometer (Neubauer Improved). The cell suspension was diluted so as to obtain 2 x 

105 cells per well of a 6 well plate (BD Biosciences, UK) and each well was seeded to a total 

volume of 2 mL. The seeded 6 well plates were placed in an incubator at 37°C, 5.0% CO2
 

overnight. 

4.5.5. Transient transfection 

Transient transfection was used to determine the level of expression a specific CRM 

combination as capable of eliciting. Plasmids containing GFP under the control of the myod 

promoter and combinations of CRMs and their mutants were transfected into C2C12 cells. 

The workflow associated with this experiment is shown in figure 4.5. 

 

Figure 4.5: Workflow of a typical transient transfection experiment. 

Transient transfections were performed 24 hours after seeding. Transfections were 

performed by adding OptiMEM (Invitrogen, UK) supplemented with lipofectamine™ 2000 
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(Invitrogen, UK) containing the plasmid DNA of interest. Test constructs, containing GFP 

under the control of a specific CRM combination, were transfected onto at least two wells 

of cells simultaneously. Transfection control was performed by adding a plasmid expressing 

the red mCherry fluorescent protein under the control of the same promoter into all the 

cells at a concentration of ¼ that of the test plasmid. 

For each well (multiply by the number of wells to be treated simultaneously), 1 µg 

and 0.25 µg of the test and mCherry control plasmids, respectively, were combined with 

100 µL of OptiMEM® (Invitrogen, UK) and incubated at room temperature for 5 minutes. In 

another tube, 3 µL of lipofectamine™ 2000 (Invitrogen, UK) was combined with a further 

100 µL of OptiMEM and incubated for 5 minutes. The tube containing OptiMEM 

supplemented with lipofectamine was then transferred to the tube containing the 

OptiMEM and DNA and mixed gently by pipetting. The combined mixture was then 

incubated at room temperature for 30 minutes. The incubated mixture was then added to 

the appropriate well of a 6 well plate containing C2C12 cells that have been incubating 

overnight. The plate was then swilled gently by hand to ensure proper mixing of the 

OptiMEM transfection mixture. Plates were returned to the 37°C, 5.0% CO2 incubator for 

24 hours. 

4.5.6. Differentiation 

The media covering the cells since their seeding was removed and replaced with 

differentiation media 24 hours after the transfection mixture was added. Media and 

transfection mixture was removed from plate wells by aspiration and each was washed 

with 2 mL of PBS warmed to 37°C. The PBS was added slowly by PipetteBoy so as to 

minimise the disturbance to the cell monolayer. The PBS was then removed by aspiration 

and the wash procedure repeated twice to ensure the removal of the DMEM + 10% FBS. 

Differentiation medium consisting of DMEM + 2% Horse Serum (HS, Oxoid microbiology 
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products, Thermo Scientific, UK) was added to each of the wells so that each well receives a 

total of 2 mL media. The plates were then replaced at 37°C, 5.0% CO2 for 20 hours so that 

differentiation may take place. 

4.5.7. Cell fixing 

Differentiated, transfected C2C12 cells were fixed after the cells have been under 

differentiating conditions (DMEM + 2% HS) for 20 hours. Plate wells were washed twice 

with PBS in a manner identical to that employed before the media change described above. 

The adherent cells were treated with 0.5 mL of trypsin to allow them to be removed from 

the culture surface. Room temperature trypsin solution was added to wells and the plates 

are incubated for a short period of 30 seconds to 2 minutes. Cell rounding up was observed 

on a stereo light microscope. Once the cells were partially rounded up, representing a 

significant loosening of cell-surface attachments, 1 mL of warm (37°C) DMEM + 10% FBS is 

added to block the trypsin reaction. A 1 mL pipette was used to wash the cell surface with 

the added media to generate a cell suspension. The cell suspension was then transferred to 

1.5 mL Eppendorf tubes. Tubes containing cell suspensions were spun at 5000 RPM for 1 

minute to pellet the cells. The supernatant was then removed by aspiration and the cell 

pellet resuspended in 1 mL of PBS using a 1 mL pipette to break up the cell pellet. The cell 

pellet washing procedure is repeated twice. The colour of the pellet usually changes from a 

brown-beige to a slightly grey white during the wash steps and becomes progressively 

easier to break up. After the final cell pellet washing step, the pellet was resuspended in 

800 µL of 10% CellFix (BD Biosciences) in sterile water. The cells were then left in 

suspension, transferred to 4°C and covered to prevent photobleaching of the fluorophores 

prior to flow cytometry analysis. 
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4.5.8. Flow cytometry 

To analyse the effect of changing CRM combinations and mutations thereof flow 

cytometric analysis was performed. Flow cytometry operates on the principle of 

encapsulating single cells within a droplet of liquid within a fast moving carrier, or sheath, 

fluid. The droplets can then be interrogated for fluorescence by several lasers in rapid 

succession thus exciting several fluorophores that might be present. The emitted light from 

the fluorophores can be split via successive filter sets so that multiple fluorophores can be 

detected simultaneously though independent channels. Measurements can be taken from 

many hundreds of individual cells per second making this technique a rapid and statistically 

accurate way of determining variance within a population. 

Fixed cells are used in flow cytometry experiments where live cells are not required 

to be cultured subsequently. Cell fixing is necessary to allow analysis to be postponed as 

they can be stored for up to a month at 4°C. The quantum yield of fluorescent proteins, 

such as GFP will decrease over time, however, so the quantification of even fixed cells must 

be performed within this length of time. Both live and fixed cells can be labelled with 

antibodies to enable the identification of subpopulations of cells. 

Cell fixing allows the later addition of antibody labelling, which can be used to 

identify sub-populations of cells within the overall population. The quantum yield of 

fluorescent proteins, such as GFP will decrease over time, however, so the quantification of 

even fixed cells must be performed within a month of storage at 4°C. 

 Standard fluorescent beads can be used to calibrate the efficiency of the machine 

in making fluorescent measurements. Untransfected cells are also used to normalise flow 

cytometry measurements. Normalising measurements against these two standards is 

necessary to obtain consistent measurements over the lengths of time necessary for a 

single experiment (30-40 samples). 
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 Flow cytometry is not suitable to obtain expression profiles of single cells as cells 

cannot be tracked between consecutive measurements. To obtain an expression profile of 

a single cell in consistent culture conditions a through time live cell study is required. This 

type of analysis requires a cell to be followed continuously in culture and is usually 

performed by cell culture and microscope robots. Sophisticated software is required for cell 

tracking through successive frames, which is complicated by cells merging, dividing or 

passing over one another. Furthermore, different cells in confluent cell cultures are difficult 

to distinguish from their neighbours. As a result, the conditions that the cells are in, 

confluent and merging during differentiation, are not conducive to accurate through time 

measurement. 

 Flow cytometric analysis was performed on a BD Influx flow cytometry system (BD 

Biosciences, UK) running Spigot 6.1.4 (BD Biosciences, UK). The BD influx contains four 

lasers with which to interrogate the cells in suspension. In the experiments described 

herein a 488 nm laser is used to excite the GFP fluorophore whilst a 561 nm laser is used to 

excite the mCherry fluorophore. Filter sets 530/40 and 593/40 were used for the 488 nm 

and 561 nm laser respectively. Fixed cells suspended in 10% CellFix diluted in water are 

removed from storage at 4°C and kept on ice. Aliquots of the fixed cell suspension are 

diluted with sterile water to achieve a particle count rate of around 200 per second on each 

machine. The dilution factor was typically 1/5. Between 10000 and 50000 cells are counted 

during each run to ensure the statistical significance of the results. Results of a FACS run 

are analysed using FlowJo 7.5.5 software (FlowJo, UK) and Microsoft Excel (Microsoft, US). 

4.5.9. Analysis of flow cytometry data 

Flow cytometry measures several metrics about each of the several tens of thousands of 

particles that pass the detectors. Flow cytometry data must be appropriately analysed as 

misleading conclusions might be otherwise drawn from the large amount of data available. 
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In this section, a single example data set is examined in detail in order to determine the 

appropriate handling procedure. Once ascertained, this procedure is then applied, without 

modification, to the data set for each CRM construct. 

The principle flow cytometry data handling procedure is ‘gating’. The principle 

metrics upon which gating is performed, forward and side scatter (FSC and SSC, 

respectively), are discussed in section 4.5.8. Particles are gated according to these metrics 

to filter out particles of the inappropriate size or granularity. Gating allows the removal of 

cell debris and clumps that might inappropriately skew the results. Figure 4.6 shows ‘raw’ 

data from the flow cytometer. Particle detection during analysis was triggered by FSC 

measurement above a threshold of 5500 as seen in figure 4.6. The threshold was set at this 

level to exclude detection of small particle debris. 

 

Figure 4.6: Raw flow cytometry data from a population of untransfected, differentiating 
C2C12 myoblasts with ‘gates’ indicated black lines from FlowJo software. The following 
gates are indicated: 1. The main gate. 2. Low FSC, low SSC. 3. High SSC. Colour indicates 
frequency with blue being lowest and red being highest. 
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By applying ‘gates’, like the one seen in figure 4.6., particles which are not cells can be 

removed on the basis of size or complexity. The C2C12 cell population shows a wide range 

of FSC values with the majority of cells falling into a peak around with a mean FSC value of 

20000. The differentiating C2C12 cells will have stopped growing and started to fuse into 

myotubes, which might explain the large variation in FSC seen here as fused cells are larger 

than non-fused cells. The gate also removes the large number of low FSC, low SSC (small 

size, low complexity) particles that are most likely cell debris generated as a result of the 

fixing process. FSC detection becomes saturated at very high levels, so a small number 

(~0.1%) of very high FSC particles are present at the end of the x-axis. These particles are 

essentially off the scale and should not be included as their size cannot be accurately 

determined. Reducing the gain setting on the FSC channel would bring these particles into 

the range of the main axes, but would also risk dropping some of the valuable particles in 

the main peak below the detection threshold. 

 The gate is defined by an oval, as shown in figure 4.6, and reduces the number of 

particles to 88.5% of the original. Other gate polygons are available, but an oval is most 

likely to approximate the variance of the underlying population; two orthogonal normal 

distributions of size and complexity. It is critical that the same gating procedure be applied 

to all the samples to avoid any bias as a result of the gating. 

The histogram of the relative GFP expression of each of the particle population 

gates shown in figure 4.6 is shown in figure 4.7. The mean values of the ungated, main, low 

FSC/low SSC and high SSC are 54.9, 48.4, 2.46 and 130 respectively. Inappropriate gating 

can, therefore, alter expression values by ~10%. These values clearly show how gating can 

affect the determined results. The gates used on the CRM construct expression 

experiments presented herein are a combination of the ‘high SSC’ and ‘main gates’ (gates 3 

and 1 in figure 4.6, respectively). 
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Figure 4.7: Histogram of GFP expression in particles in the gated populations shown in 
figure 4.6. The darkest shade is the ungated population, the second darkest is the main 
oval gate, second lightest is the low FSC, low SSC gate and the lightest is the high SSC 
population. The units of GFP expression are arbitrary. 

The low FSC, low SSC gate consists of a population of with a predominantly low GFP 

expression (relative to the overall mean), supporting the hypothesis that these are cell 

fragments. Conversely, the high SSC gate consists of a population with predominantly high 

GFP expression (relative to the overall mean).  

The high SSC population could be differentiating myoblasts. As discussed in the 

introduction (see section 1.5), myoblasts fuse to form myotubules during differentiation. A 

high SSC indicates granularity or complexity, which would be the case for multinucleate 

myotubules. This hypothesis could be tested by putting differentiating myoblasts through 

the flow cytometer at several time points after starting differentiation and monitoring any 

change in the proportion of high SSC particles. For consistency, all experiments on 

differentiating myoblasts were performed 20 hours after initiating differentiation. 
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4.6. COMSOL modelling 

COMSOL modelling was undertaken to determine the likely behaviour of fluid in flow cell 

channels. COMSOL Multiphysics v4.2 (COMSOL AB, UK) is a popular finite element analysis 

software package that has a relatively intuitive interface and also interfaces well with 

MATLAB. COMSOL is a modelling package that incorporates tools for each stage of the 

modelling process, is designed to be easy to use and was available through one of the 

project collaborators. Other suitable modelling packages include FLOW-3D6, OpenFOAM7 

and Ansys8. All COMSOL modelling was undertaken on a computer with a Phenom II x4 3.0 

GHz processor, 4 GB of RAM and a 64-bit Windows 7 operating system. 

 In all cases, laminar flow physics were used as the flow through the channels was 

determined to be of low Reynold’s number. Geometries were either designed in 

SolidWorks 2009, converted to .stl format and imported into COMSOL or were generated 

directly inside COMSOL using the in-built 3D geometry tool. The flow through the inlet was 

defined as a constant velocity normal to the plane of the inlet. Outlets were defined as zero 

pressure. Other boundaries were all defined as non-slip.  

4.7. Programming 

4.7.1. MATLAB 

The optimisation of oligonucleotide sequences was performed in MATLAB 2009a 

(MathWorks, US) using a program, OptiCut, described in chapter 7. The Bioinformatics 

Toolbox was installed and functions from this toolbox were used or modified. MATLAB is an 

anagram for matrix laboratory and as such is optimised for handling and manipulating large 

matrices, as required in image analysis. The problem at hand here, see section 7.1.1 on the 

definition of the problem, potentially involves large matrices of values which must be 

manipulated rapidly. 
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MATLAB is easy to use by non-technical users due to its weakly dynamically typed 

nature. i.e. variable types can be dynamically defined without being assigned beforehand. 

Furthermore variable types can be redefined implicitly. This flexibility is very useful to a 

programmer who is not familiar with statically typed programming languages such as C++. 

All optimisations were carried out on a Dell Latitude D630 laptop. This computer is 

equipped with a T7100 Intel™ Core 2 Duo™ 1.8 GHz CPU, 800 MHz front side bus (FSB) with 

2 GB of random access memory (RAM).  

4.7.2. DNA melting point determination 

The Bioinformatics Toolbox within MATLAB was the source of several functions used in the 

program. For instance, the DNA melting temperature determination function, 

TmNNSanta98.m, was modified from the oligoprop.m function which determines many 

properties of a given DNA sequence. Putative overlap temperatures are estimated using 

the SantaLucia method9. The NN method is described in the chapter 7 (see section 7.1.3). 

4.7.3. Algorithm scaling efficiency testing 

To test how well the algorithm would scale with larger sequences and greater complexity 

as defined by a larger number of mutation sites, a testing environment was programmed. 

The environment generates randomised sequences using the MATLAB random number 

generator (uniform distribution of bases) to generate randomised sequences. A defined 

number of mutation sites are then created within the random sequence. The mutation 

sites are non-overlapping and between 4 and 6 base pairs in size. Each base of the 

mutation site is different from the corresponding base of the normal site. 

Several hundred random sets were tested. Complexity was varied from a single 

mutation site (2 sequences in the set) to 10 mutation sites (1024 sequences in the set). 

Lengths varied from 200 to 600 base pairs in 50 base pair steps. The number of 
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oligonucleotides per strand was restricted to 8 for all examples tested. This value was 

chosen so that the results would be relevant for the optimisation performed in chapter 7. 

4.7.4. LabVIEW 

The graphical programming environment LabVIEW (Laboratory Virtual Instrumentation 

Engineering Workbench) (v2010, National Instruments, US) was used to automate the 

control of the off chip valves. A program was written which was capable of controlling the 

valves via a GUI or input text file. This program is presented in section 6.13-16. A key 

benefit of LabVIEW is the extensive support for communication with various types of 

instrumentation hardware. Another benefit is that LabVIEW is packaged with several large 

libraries of functions which make manipulation of data easy. Execution of text-based code 

via the MathScript node is possible and is generally compatible with MATLAB. Since 

MATLAB was used in other areas of this project, LabVIEW was a natural fit. 

 All LabVIEW programs were run on a Pentium 4 2.6 GHz with 1 GB RAM and 

communicate with a National Instruments – Digital acquisition (NI-DAQ) box (USB-6009, 

National Instruments, UK). Since the NI-DAQ box has 5 V output voltages, which is 

insufficient to actuate the 12 V valves, a high current circuit was prepared. 

Each of the valves was connected to a 5V pin from the NI-DAQ box via a BDX33C 

transistor (Darlington Transistors, supplied by Farnell, UK). A 1 kΩ resistor was placed in 

between the NI-DAQ box and the base of the transistor to limit the current flow through 

the NI-DAQ box. A 1N4001 diode was placed in parallel to the solenoid valve to ensure that 

the current would only flow one way through the transistor. 
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Figure 4.8: Schematic diagram of high voltage switch circuit used to drive 12V solenoid 
valves. A total of 9 units can be seen that apply the 12V potential of the power supply to 
the solenoid valves in response to the activation of the 5V pins from the NI-DAQ box. 

4.7.5. Flow rate analysis 

Flow rate through valves in microfluidic devices was achieved using two methods: The first 

method used a calibrated gas flow meter (ASF1430, Sensirion, CH) which was 

communicated with using a program written in LabVIEW. The second method was used to 

confirm the first. The fluid flowed through the valve into a piece of tubing approximately 1 

m long. The tubing was placed against a 1 m ruler that was graduated in millimetres. The 

fluid position in the tube before and after each valve actuation was recorded and the 

volume of the flow was determined. The displaced air from the tube was then channelled 

through the flow meter and measured in the form of total counts recorded. 

 A similar experiment was performed to determine the flow rate through a valve in 

response to increasing pressure on the valve. In this experiment the flow rate was 
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measured by the flow meter alone and recorded as the average number of counts during 

the time the valve was actuated for. 

4.7.6. Droplet size analysis 

To determine the relationship between valve opening time and droplet size in microfluidic 

devices an automated program to analyse droplet size from live video of the microfluidic 

chip was written in MATLAB. A digital microscope (Veho VMS-001) was used to monitor 

droplet production. The MATLAB program was used to pull frames from the digital 

microscope, find droplets and record them in a database according to user instructions. 

Analysis was performed on live video running at approximately 20 frames per second (FPS) 
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Chapter 5 

5. Flow cells by microstereolithography 

As described in chapter 2, there are various techniques for the fabrication of different types 

of microfluidic devices. For this project, microfluidic devices were fabricated by a process 

called multilayer soft lithography that requires the production of patterned layers of 

material that are then annealed together to make a functioning device. This process is 

described in the following chapter, chapter 6. Before the layers can be assembled they 

must be patterned and, in this case, the layers were patterned by casting of the material 

into a prefabricated mould. This chapter describes the characterisation of the EnvisionTec 

Perfactory microstereolithography (MSL) machine build process for the purpose of making 

3D microfluidic devices and moulds for casting of the commonly used polymer poly 

dimethylsiloxane (PDMS). The flow cells described herein were each produced in order to 

investigate how best to apply the MSL process to specific problems in biology and 

chemistry. 

 MSL was chosen as the fabrication technique because it is possible to rapidly 

produce 3D devices that would not be possible through other techniques such as 

micromachining or injection moulding. In the case of the thin layer flow cells it would not 

be possible to produce the required geometry by a non-ALM technique. Previous work, to 

produce relevant geometries for the thin layer flow cell, and their short comings is 

discussed in section 5.4. In the cases of the flow cell for microbiology (section 5.3.1), the 

MSL mould for PDMS flow cell (section 5.3.2) and the optical flow cell (section 5.5), viable 

devices could have been assembled from machined components. Here the rapid translation 

of the design to a finished monolithic product or mould facilitated by MSL allowed for rapid 

design revisions in minimal time. Table 5.1 summarises the advantages and disadvantages 
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of three relevant fabrication techniques; machining, ALM and injection moulding. It is 

important to note that, depending on the design of the device to be fabricated, further 

assembly may be necessary with all of the techniques. This further assembly should be 

determined on a part-by-part basis and should be factored into the build time. 

Method Tooling time Build time Repeatability Unit cost 

Machining Low Moderate High Low 

ALM Very Low Low High Moderate 

Injection 
moulding 

High Very low High 
Depends on 

run size 

Table 5.1: Table showing the advantages and disadvantages of different fabrication 
methods that could be used to fabricate the microfluidic devices in chapter 5. 

5.1. EnvisionTec build characterisation 

The MSL process is a form of additive layer manufacture (ALM) and is described in chapter 3 

(see section 3.6). Briefly, ALM involves the sequential deposition of patterned layers that 

together produce an object that might contain geometries, such as internal voids and 

channels, that traditional manufacturing techniques cannot. This section seeks to 

characterise the limitations of the build process by investigating the pixel size, layer 

thickness and incidence of build artifacts. This characterisation is performed by analysing 

example builds using a variety of techniques including interferometry and scanning electron 

microscopy (SEM). 

5.1.1. Pixel size 

The EnvisionTec Perfactory uses projected light from a digital micromirror device (DMD) to 

cure liquid resin to a solid in 25 µm layers. The digital nature of the DMD means that the 

resulting layers are ‘pixelated.’ As mentioned in the methods chapter (see chapter 4) the 
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pixel size is around 20 µm square. Measurements made between regular features on the xy 

plane supports this with pixel measurements of 20±2 µm (as inferred from interferometry 

results shown in figure 5.1). Periodic surface roughness on all flat surfaces can also be seen 

in figure 5.1 and 5.2. The roughness has a square pattern of positively embossed ridges. 

Each ridge is most likely the result of an overlap in the curing region of two neighbouring 

pixels. This periodic surface roughness is ±1 µm in the xz and yz planes and ±0.5 µm in the 

xy plane. The different surface roughness in the three orthogonal planes is most likely due 

to the fact that the surface in the xz and yz planes is unconstrained, unlike the xy plane 

which is constrained by the resin tray surface. 

5.1.2. Layer thickness 

One advantage of the ALM process is that individual layers can be very thin. The 

EnvisionTec Perfactory machine produces parts where each layer is around 20 ± 2 µm thick 

as determined by Wyko (Microprecision Instruments, UK) measurement. These 

measurements are consistent across several parts built in a range of conditions. 
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Figure 5.1: Example single layer thicknesses as measured by interferometry. Wyko data 
was analysed using Gwyddion. Grey bars indicate the position of the profiles shown in the 
lower axes. Red areas denotes for which height data could not be obtained. 

Interestingly, the measured layer thickness of 20±2 µm differs from the EnvisionTec 

Perfactory’s stated layer thickness of 25 µm. Performing interferometry across layers, in the 

xz plane, indicates a layer thickness of 25 µm. The interferometry data is supported by 

microscope image measurements. The difference between layer thickness on the surface 

and within a part could be due to layers only being completed once a subsequent layer is 

formed. The final layers, the layers measured here, are not followed by subsequent layers 

and therefore are shorter than the 25 µm layer thickness seen elsewhere. Another cause 

could be shrinkage of the layer during post-curing. The top layer is unconstrained by other 

layers and therefore is able to shrink more significantly. The implication of this observation 

is that features on the top surface of a MSL mould are significantly shorter than expected. 
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The vertical layer thickness is consistent due the position accuracy that the z-axis 

stepper motor possesses. A step feature was built in the x and y dimensions to test the 

accuracy of the EnvisionTec Perfactory when reproducing structures in these dimensions. 

5.1.3. Model slicing 

3D CAD models are sliced into layers by the EnvisionTec RP software. Pixels of a slice that 

are within the part are turned on, curing the layer according to the desired pattern. Parts, 

however, do not necessarily conform to the pixel grid as some features will not be properly 

represented. The example of a curve is a particularly good one. The full sweep of a curve 

cannot be resolved by this method, instead a series of stepped layers are produced that 

approximate the curve as best as possible. Edge features, such as that shown in figure 5.2 

can be used to investigate the accuracy of the pixel assignments of the Perfactory RP 

software. 

 

Figure 5.2: Edge feature interferometry measurements (left pane) of an MSL part. The line 
indicates the path of the profile shown in the right pane.  

The pixilation of parts can be directly measured: The feature vertical difference between 

the top and bottom of the feature shown in figure 5.2 was specified to be 500 µm. The 

actual vertical height of the feature was measured as 527 µm. The difference between the 

specified and measured values is around the resolution of a single pixel and probably due to 

pixel assignments during the RP program layer slicing process. 
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5.1.4. EnvisionTec build capability 

Several test parts were built to investigate the limits of the EnvisionTec Perfactory MSL 

system. Two parts with fine features are shown in figure 5.3. The machine is capable of 

minimum feature sizes of 100 µm in complex 3D shapes made in single builds over a matter 

of hours. 

  

Figure 5.3: Example builds with the EnvisionTec Perfactory. Left hand pane (scale bar: 
3mm) shows microfluidic channels with each chamber possessing a unique pattern of valve 
walls. Valve walls are 100 µm long and 250 µm wide (photo credit to C. Purssell). The right 
hand pane (scale bar: 1mm) shows a ball made from hexagons. The complete ball is 1 cm in 
diameter, the hexagons are 250 µm wide and the struts are 100 µm in diameter (photo 
credit to S. Leigh). 

Chambers and channels can be made inside of MSL parts, as demonstrated by the mesh 

sphere shown in figure 5.3 and the channels in figure 5.4. Theoretically, the smallest size of 

these features is a single voxel, with dimensions of 20 x 20 x 25 mm. Single pixels can be 

resolved into features as can be seen in figure 5.4. A dye (discussed in section 4.1.2) present 

in the resin prevents the passing of light through the layer and into voids left behind by 

previous layers. Overflow of light in this manner can cause filling of the void, particularly if 

the void is only a few layers thick. The minimum totally enclosed vertical void height is ~500 

µm or 10 layers. It was discovered through experimentation voids less than 8 layers tall will 

not be resolved by the EnvisionTec Perfactory, instead blocked channels will be produced. 
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Figure 5.4: Scanning electron micrograph of a pyramidal microstructure (left) and 
channels (right) rendered in MSL resin. The pyramid is 100 µm wide at the base and 125 
µm tall. The point of the pyramid consists of a single pixel. Part and photo credit to P. King. 

The material blocking the channel in these cases, however, is usually not as solidified as the 

material of the rest of the part. The material in such channels can, therefore, be pushed out 

mechanically (using 1-2 bar air pressure) or by a soaking in isopropanol for 1-4 hours. Using 

such methods, enclosed channels with minimum vertical height of 400 µm have been 

resolved. 

5.1.5. EnvisionTec build artifacts 

During the manufacture of parts using the EnvisionTec Perfactory mini, artifacts were 

consistently present in the final builds. These artifacts were ridges or mounds in the final 

layer of the part. Since the flow cell chamber was composed of the last layers to be built, 

the presence of the ridges is likely to have negatively impacted the fluid dynamics within 

the flow cell chamber. 

 A square surface would yield a single pyramid peak in the middle, whereas a 

rectangular surface would yield a ridge along the middle of the long dimension of the 

rectangle. Figure 5.5 shows a Wyko image of once such ridge artifact. 
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Figure 5.5: Wyko characterisation of a ridge-type artifact seen on flat rectangular 
surfaces. Blue bar indicates the position of the profile data shown in the right hand axes 

Wyko measurement of the middle of the ridge indicates it is 6 ± 2 µm tall and 100 µm wide. 

At the ends of the ridge, the artifact reaches a maximum of 20 ± 5 µm in height and 280 µm 

wide. The presence of such an artifact in the flow cell chamber would significantly perturb 

the fluid dynamics. 

Interestingly, using a faster peel speed reduced the appearance of the peak build 

artifacts, possibly because, at a faster peel speed, the part is pulled off the resin tray at 

once rather than being able to tear when peeled slowly. Furthermore, the presence of the 

artifact was correlated with the age of the R11 resin: Older resin produce more pronounced 

artifacts. Parts will require more force to pull them out of older resin, which is more 

viscous, therefore increasing the likelihood of detachment from the build platform and 

deformation of the final layer. It is possible that the artifacts are due to a tearing of the final 

build layer during the peeling process. For most build layers, the tear is then subsumed in 

the subsequent layer. In the final layer, however, the layer remains exposed. 

The chamber depth of the radial flow cell was characterised using a Wyko 

interferometer. Three flow cells were tested, each with an expected chamber height of 100 

m. The determined chamber heights were 107, 99 and 96 m. The height of the chamber 

of the radial flow cells can, therefore, be said to be 100 ± 4 m. 
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5.2. EnvisionTec MSL fluidic parts 

A number of flow cells were produced to evaluate the ability of the system to produce 

complex fluidic parts. The first set of flow cells discussed is for use in conjunction with living 

biological samples. The second set of flow cells utilise the minimum layer thickness to 

produce thin layer chambers. Finally, a flow cell that consists of multiple MSL parts 

designed to fit together into an easily reconfigurable optical flow cell is discussed. The aim 

of producing these parts was to determine the design and build parameters of parts used 

later in this thesis (see chapter 6) and also the suitability of parts built by the EnvisionTec 

Perfactory MSL process for a range of applications in biology and chemistry. 

5.3. Flow cells for biological applications 

Flow cells for biological applications are commonly made by casting a biocompatible or 

inert material, such as PDMS, into a mould made by micromachining or lithography. The 

following sections describe a flow cell for microbiological biofilm analysis made directly 

from MSL and also a PDMS flow cell cast from a mould that was made by MSL. 

5.3.1. Flow cell for microbiology 

The ability of the MSL process to create complex internal geometries can be applied to 

semi-permanent microbial cell culture. Microbial cell cultures are sensitive to insult by a 

variety of chemicals. The MSL resin is known to dissolve in a variety of solvents such as 

ethanol, isopropanol, acetone and toluene, as shown in previous work by Dr. Fauzan Harun, 

performed at the School of Engineering, University of Warwick. It was possible that the a 

component of the cured resin part is able to leech into these solvents and thus would leech 

into the culture medium and be toxic to the cells under culture. Biocompatibility testing of 

the R11 resin is necessary before flow cells using this resin can be used in culture 

experiments. 
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Biocompatibility of MSL resin was initially determined by soaking MSL parts in 

warm phosphate-buffered saline (PBS) overnight and then applying the PBS solution to 

microbial cultures. The biocompatibility testing and microbial cell culture work was 

undertaken in collaboration with Dr. Rich Boden, School of Biomedical & Biological 

Sciences, University of Plymouth. The design and fabrication of the microbial flow cell, 

including modelling of the proposed design, was performed by the author as a result of 

discussions with Dr. Boden. The assembly of the flow cell into a device for confocal 

measurements and all cell viability experiments were performed was performed by Dr. 

Boden 

Cells were not adversely affected by the PBS that had been used to soak the MSL 

test part. MSL parts can, therefore, be used in semi-permanent cultures of bacterial biofilm. 

 By incorporating glass into the device, confocal measurements through a flow cell 

are possible. Furthermore, progress of reactions being performed by microbial cultures can 

be followed through time after the addition of the necessary substrates. A short chamber is 

required for microscopy due to the small depth of field available. An inlet and outlet are 

required for the exchange of media and the addition of a substrate. Ideally the addition of 

media to the chamber should be performed as uniformly as possible for two reasons: 1) So 

that the flow rate does not become sufficient to dislodge cells in any one area and 2) So 

that the whole culture area receives a treatment at the same time. 

 The confocal microscope used here (Leica SP2) incorporates a motorised stage that 

is used to move the sample in 3D. The interfacing tubing was inserted into the inlet/outlet 

ports vertically to avoid the tubing becoming dislocated or leaking during the movement of 

the stage. A shallow groove was introduced into the top surface of the device to facilitate 

sealing of the glass against the device. 
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Figure 5.6: Isometric projection of the CAD model of the microbial flow cell. Note the 
vertical inlet ports, the groove on the top surface for sealing and the arrangement of the 
inlet ports. Image not to scale. 

 

Figure 5.7: Schematic diagram of the CAD model of the later iteration of the microbial 
flow cell. All dimensions are in millimetres. 

COMSOL modelling (see section 4.6 for details) was undertaken to investigate the fluid 

profile into the chamber. A laminar flow model was created that combined the microfluidic 

channels and a portion of the chamber (see figure 5.8). Several inlet flow rates (1, 0.1 and 

0.01 m/s) were simulated with the boundary condition of the outlet defined as zero 

pressure at the outlet. 



5. Flow cells by microstereolithography 
 

162 
 

 

Figure 5.8: COMSOL modelling flow through MSL flow cell for microbiology. Fluid enters 
one of from the inlet at the bottom right of the figure, is split into four channels that then 
enter the main chamber. The same process then happens in reverse on the left hand side. 
Fluid flow is represented with the heatmap as indicated. Inlet flow rate is 0.1 m/s. X-Y scale 
is in millimetres. See text and methods for details of simulation. 

The flow rate through each of the channels is proportional to each channels length; the 

shortest channel has the largest flow rate whilst the longest channel has the shortest. The 

relative velocity profiles at three inlet flow velocities can be seen in figure 5.9. The flow 

rates in the fastest flow channel, at 6.5 mm in each case, overlap because the 

measurements are relative to the maximum, which occurs in this flow channel. There is a 

greater range in the flow rates at a lower overall flow velocity (~25%) than with a higher 

overall flow rate (~45%). The profiles in figure 5.9 are interpolated from the mesh used in 

the simulation. 
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Figure 5.9: Relative velocity profiles of each of the four inlets as they enter the main 
chamber. Red line denotes inlet flow velocity of 1 m/s, the blue line denotes an inlet flow 
velocity of 0.1 m/s and the green line denotes an inlet flow velocity of 0.01 m/s. 

The internal surfaces of the microfluidic channel can be considered to be rough (see section 

5.1), but the simulation was performed assuming smooth walls. In laminar flow with non-

slip walls the velocity at the walls is zero, so implementing a surface roughness will not 

reduce the velocity at the wall. Significant roughness, however, might cause the stationary 

layer to extend further into the channel than when the surface is smooth. Observed 

roughness is <2 µm, which is not significant with respect to a channel that is ~500 µm wide. 

Interfacing with the microbiological flow cell was achieved using a needle inserted 

into the vertical inlet ports and glued in place with silicone cement. Given this fact and that 

the fluid exchange was performed by hand using a syringe, a low flow rate was expected. 

The lowest inlet flow velocity (0.01 m/s) corresponded to a flow rate of 5 mL/s and is 

representative of the flow rate expected during a hand syringe transfer. 

The flow cell discussed here shows that small channels, with a 500 x 500 µm cross 

section, can be built in MSL using the EnvisionTec Perfactory machine. This flow cell was 

successfully employed to obtain real-time measurements of environmental microbial 

biofilm samples using a confocal microscope.  
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5.3.2. MSL moulds for PDMS flow cell 

It is possible to make moulds out of MSL parts which can then be used to make flow cells by 

casting another material into the MSL mould. One of the key weaknesses of the MSL 

method is the limitation in material: only materials that can be combined with a suitable 

photocrosslinker can be used. Polydimethoxysilane (PDMS) is a plastic rubber material, 

which is transparent for visible light, cures from a liquid to a solid in a heat dependant 

reaction and is easy to handle and pour into moulds at room temperature. PDMS has been 

used in many cell-based assays previously with no deleterious effect on a variety of cell 

types (HepG21, CHO-K12, HeLa3) although PDMS has been found to selectively absorb 

solutes from solution4. PDMS was chosen as it is soft enough to be sealed against a surface 

with minimal force. Furthermore, many reports exist indicating that PDMS is non-toxic to 

cells although there is literature to suggest that PDMS can absorb small molecules that 

might affect cells in culture indirectly5. 

The following section describes the casting of a PDMS flow cell from an MSL mould. 

For evaluation purposes, a surface acoustic wave (SAW) device was added and used to 

make measurements of insect cells cultured in the flow cell chamber in order to determine 

whether the flow cell could be successfully used for this type of measurement. The design 

and fabrication of the mould and the casting of PDMS into the mould to produce the PDMS 

flow cell was performed by the author as a result of discussions with Dr. Zoltan Racz. The 

assembly of the PDMS flow cell onto the SAW device was carried out by Mr. Sanju Thomas, 

School of Engineering, Warwick University. 

 Creating inlet and outlet ports in monolithic flow cells cast from a soft material is 

difficult. The ports are essentially suspended voids within the mould and so two options are 

available; drilling after curing or partial disassembly of the mould prior to removal of the 

cast flow cell. Since drilling of soft materials is not reliable, partial disassembly of the mould 
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was performed. A mould with rods connecting the outer walls to the chamber walls would 

create a cast with a permanent access tube, but the cast would be destroyed when removal 

was attempted as the cast would have to travel through the rods. The mould could be 

made in multiple parts and/or broken to yield the final part but since smooth sealing 

surfaces and reusable moulds were desired this option was not preferred. The solution 

presented in figure 5.10 was used to avoid this problem. Removable rods were inserted 

through holes made in the mould for the casting. Once curing was complete, the rods could 

then be removed and the cast lifted from the mould. 

The rods used to make the voids were 0.5 mm outer diameter (OD) Teflon tubing. 

Holes to allow for rod insertions were made in the mould with a 50 µm tolerance (see 

figure 5.10 for locations of holes). Rods were cut to length using a diamond scribe and 

inserted before the PDMS was cast. PDMS curing was as described in the methods section 

(see section 4.2.1). Once curing was complete the glass capillaries could be removed with a 

slight twisting motion. A scalpel was used to loosen the flow cell from the mould and then 

also used to lever the cast from the base of the mould. Care was required to ensure that 

the mould was not damaged by the scalpel during cast removal. 
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Figure 5.10: Schematic diagram of mould for SAW device flow cell. All dimensions are in 
millimetres. 

 

Figure 5.11: Isometric projections of CAD models of PDMS cast (left) made from MSL 
mould (right). Teflon rods are placed in the holes during curing of the PDMS. Once cured, 
the rods are removed prior to the cured PDMS flow cell so that tubes are left in the 
resulting PDMS part. Images are not to scale. 

To interface with the finished cast short, flat ended needles with LuerLoc® fittings were 

used. The needles had the same diameter as the tubing used to make the holes and so no 

further sealing was required. Finally, the chambers themselves were given domed tops to 

prevent the trapping of bubbles in the corners of a cuboid chamber. These considerations 

represent a significant improvement from previous devices that have been made by 
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micromachining6. Furthermore, making a similar mould by traditional stereolithographic 

techniques would require multiple masks and thick layers of photoresist. The mould 

described here was made in one step in a matter of hours. The time taken to produce a first 

finished part, including time taken to make the mould itself was 8 hours. 

5.3.3. Effect of uncured R11 on PDMS curing 

Unexpectedly, PDMS curing time was found to be closely correlated with extent of R11 post 

curing. R11 was normally post cured after building in the EnvisionTec flasher box. It was 

found that flashing the R11 mould for less than 3000 flashes resulted in a significant 

reduction in curing rate: An insufficiently post-cured R11 mould extends the time that a 

PDMS cast will cure in from <1 hour to 24 hours at 60°C. Post curing of the R11 part for a 

minimum of 3000 flashes resulted in PDMS curing occurring within 6 hours at 60°C. Curing 

for 5000 flashes reduced curing time to 3-4 hours at 60°C. Interestingly, curing of PDMS in 

an R11 mould, which had already been used at least once, resulted in a return to normal 

curing time of 1-2 hours for PDMS at 60°C. Also, incompletely post cured R11 moulds could 

be conditioned to allow PDMS to cure in the standard 1-2 hours by heating of the R11 part. 

24-48 hours of heating at 60°C was necessary for this conditioning to take place. 

It was hypothesised that a chemical component of the uncured R11 resin, which 

was present in incompletely cured R11 parts, inhibited the curing process in PDMS. Post 

curing in the EnvisionTec flasher box for several thousand flashes or heating to 60°C for 24-

48 hours completes the curing process, which removes or locks in the component of R11 

resin that is inhibitory to PDMS curing. The most likely candidate is active, unterminated 

acrylate chains on the surface of the MSL mould which are removed by prolonged curing. 

The SAW sensor used here consisted of a conductor patterned onto a piezoelectric 

surface. The conductor pattern is a pair of interdigitated combs. When a cycling voltage is 

applied across the combs the piezoelectric surface contracts and expands producing a wave 
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that travels across the surface. The frequency and amplitude of the wave depends on 

parameters of the applied cycling voltage, the material being used, the size of the combs 

and, importantly, any loading that might be present on the surface. The SAW device can be 

used, therefore, to detect changes in the properties, such as viscosity and density, of the 

medium at the surface. The PDMS flow cell used in combination with SAW devices was used 

successfully to obtain experimental data in conjunction with the Sf9 insect cell line (work by 

Z. Racz, S. Thomas and S. Pathak, unpublished). This work shows how high quality PDMS 

casts can be made from MSL moulds in the shortest time possible. 

5.4. Thin layer flow cells 

Thin flow cells are advantageous in some applications as all of the analyte or sample can be 

brought to the sensor. The MSL process, where parts are made by addition of successive 

layers, is ideally suited to this application. To determine how best to fabricate flow cells 

where the flow chamber is <100 µm tall, two flow cells were made. These flow cells were 

tested by performing electrochemical measurements within them. The work described in 

this section contributed to two papers that are summarised in appendix B.2 and B.3 

Previous thin layer flow cells are usually assembled from multiple parts where a 

spacer is placed between two plates, each containing suitable inlet and outlet channels. 

Some example spacer sizes include the following: 16 µm gasket7, 80 m adhesive tape8 and 

~50 µm Kalrez gasket9. An advantage of the MSL process is that the device can be 

constructed monolithically; the gasket and the inlet/outlet channels are built in the same 

part. The gasket and the inlet/outlet will always be perfectly aligned in every run and dead 

volumes can be minimised. 

Radial flow cells are so called as they create a radially symmetric flow through a 

chamber. The flow within the chamber is said to be radial as the two ports are arranged so 

that the inlet is in the centre of the circle and the outlet is towards the periphery. The non-
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uniformity of the outlet(s), however, means that the flow is very unlikely to be radial, 

instead the flow will tend to find the shortest path through the chamber resulting in, at 

best, a partially radial flow. Radial flow cells are available from a variety of manufacturers: 

DropSens use a direct digital manufacturing method similar to MSL10 whereas BASi use 

computer numerical control (CNC) to manufacture a flow cell, which requires assembly 

before use. The assembly of the flow cell makes it difficult to quickly swap out structures 

from the assembly, such as electrodes11. Furthermore, previously published work tends to 

use flow cells in which the inlet and the outlet are discrete points within a circular flow 

chamber11,12.  

Radial flow cells typically suffer from issues of recirculation13 where flow becomes 

turbulent instead of laminar. The comparatively large chamber dimensions (1 mm height 

and 30 mm radius) in this case probably contributed to the fact that turbulent flow 

occurred. A higher flow rate and a smaller chamber would most likely limit this effect. 

The two test chambers that were created here were designed as linear or radial 

flow cells and were tested by Dr. Eleni Bitzou and Dr. Mike Snowden, respectively, 

Department of Chemistry, University of Warwick. The design and fabrication of the flow 

cells, including modelling of the proposed design for the radial flow cell, was performed by 

the author as a result of independent discussions with Drs. Bitzou and Snowden. Once 

fabricated, the flow cells were then assembled into sensing devices by sealing against 

electrodes was performed by Drs. Bitzou and Snowden. Results from all flow 

characterisation experiments, presented in figures 5.16 and 5.17, were obtained by Dr 

Bitzou and Dr Snowden respectively. 

 Figure 5.12 shows two 3D models of 3D flow cells made to evaluate the EnvisionTec 

Perfactory MSL machine’s ability to build parts using the minimum layer thickness. Both 

models include recessed inlets into which tubing can be glued. The outlet of both parts also 
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included openings to allow for the necessary reference and ground electrodes to be 

inserted. 

 

Figure 5.12: Isometric projection of the CAD model of the thin layer flow cell (left) and 
radial flow cell (right). Recesses on the inlet and outlet are for inserted tube interfaces. The 
fluid flows from the inlet to the outlet through complex geometries that are designed to 
perform different functions. Image not to scale 
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COMSOL (v4.2) modelling was undertaken to compare the radial flow of the radial flow cell 

design and the DropSens flow cell. A direct comparison between the two can be seen in 

figure 5.14. A Navier-Stokes convection simulation was carried out with a chamber height 
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of 200 µm and an inlet flow rate of 10 mL min-1. Whereas the radial flow cell has axially 

symmetrical flow from the inlet to the circumference, the DropSens flow cell has a clearly 

biased flow. This result indicates that the DropSens flow cell will not exhibit true radial flow. 

 

Figure 5.14: COMSOL Modelling of the currently available DropSens radial flow cell (left) 
verses relevant modelling of the MSL Radial flow cell (right). The fluid velocity profile 
shown is taken 50 or 100 µm from the base of the chamber for the DropSens and Radial 
flow cell respectively. The colour bar indicates the flow rate in mL/s. 

An example of how the flow cells described in this section are interfaced is shown in figure 

5.15. A small amount of cyanoacrylate super glue is applied evenly to the outside of tubing 

of the appropriate diameter. The tubing is then inserted into the inlet and outlet ports and 

twisted gently to ensure the glue coats the entire surface. 

Both flow cells were used to detect specific analytes in solution, amphoterically. 

The following figures, 5.16 and 5.17, show representative amphometric traces of the linear 

and radial flow cells respectively. Data in these figures was obtained by E. Bitzou and M. 

Snowden. 
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Figure 5.15: Image of thin layer flow cell on electrode surface with inlet and outlet 
connectors. The fixing string used to seal the flow cell against the electrode is not shown. A 
ruler with millimetre graduations is shown beside the flow cell for scale purposes. SWNT in 
this figure refers to single walled nano tubes that compose the electrode. Photo credit to E. 
Bitzou. 

 

Figure 5.16: Data obtained from the thin layer flow cell. Different concentrations of 
dopamine were applied to the flow cell/electrode set up and the amphometric trace shown 
above was obtained. The inset shows detail of the lowest concentration tested. Data 
obtained by E. Bitzou. 
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Figure 5.17: Data obtained from the radial flow cell. Graph of current flow (ilim) against 
flow rate (Vf) for comparison of experimentally obtained (black dots) and expected (red 
line) current flow as determined by COMSOL modelling. Data obtained by M. Snowden. 

The flow rate-current response reaction shown in figure 5.17 is the oxidation of 10 µM 

FcTMA+ in 1.0 M KNO3 at an Au disc electrode. The flow cell was placed over the electrode 

using a jig. The expected response line (figure 5.17, red) was determined from the Levich 

equation14 and differs from the experimentally determined response line (figure 5.17, 

black). The cause of this difference could be due to variation in the positioning of the flow 

cell relative to the electrode or inconsistencies in the inlet or chamber geometries, both of 

which could serve to increase the stagnant region above the electrode that would reduce 

the effective concentration at the electrode in a manner similar to that seen in figure 5.17. 

 This work demonstrates that the minimum layer thickness of the EnvisionTec 

Perfactory MSL machine can be used to make a variety of flow cells. Furthermore, these 

flow cells can be used to make novel measurements that closely match theory. Work using 

MSL flow cells has formed the basis of three publications15–17 with a further two on the thin 

layer flow cells in preparation. 
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5.5. Optical flow cell 

Optical flow cells are used extensively in biology as light can be used to observe changes in 

proteins within tissues, cells or in vitro. Light is capable of interrogating tissues rapidly, 

relatively unobtrusively, involves no radioactive components and has become increasingly 

popular over the last two decades since the discovery of green fluorescent protein (GFP), a 

widely used protein label18. Light and fluorescent microscopy can be used to characterise, 

find and follow proteins that have been specifically labelled with a marker, such as GFP. The 

fact that certain protein side chains absorb UV light (principally tyrosine and phenylalanine) 

can be used to monitor changes in proteins, as the fluorescence intensity of these side 

chains changes depending on their environment (ie hydrophilic vs. hydrophobic), a process 

called dichroism. 

Although monolithic parts are possible with the MSL process, it is necessary to build 

parts out of multiple sections when the desired geometry or material properties of the 

build material are not suitable. R11, for example, contains a dye which partially blocks 

ultraviolet (UV) light below 500 nm which permits close control of layer thickness. Several 

alternative resins, however, are available for use with the EnvisionTec Perfactory system. 

Spectrophotometry was employed to determine whether any of these materials are 

suitable for the building of optically transparent parts. 
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Figure 5.18: Spectrophotometric analysis of different resin materials from 200 to 800 nm. 
For clarity the absorbance axis has been limited to 6 units. 

The absorbance spectra of five resin formulations were obtained and are shown in figure 

5.18. All the tested resins had high absorbance values (>2) from 200 to 300 nm. An 

absorbance value of >2 is essentially opaque. The resins tested were nearly or totally 

opaque throughout the range of UV light (200 – 400 nm). R11 is also practically opaque up 

to 500 nm. Whilst two of the resins (clear and rose) could be used for wavelengths from 

420 nm upwards, most would not be suitable for such applications. The cause of this 

opacity is most likely to be the specific dye molecule used in each material. 

The opacity of all types of resin suitable for use with the EnvisionTec Perfactory 

machine meant that, for optical measurement through an MSL flow cell, another material 

must be used. Multiple component parts can be built by MSL and used in conjunction with 

materials that do possess suitable material properties to make a whole microsystem. To 

demonstrate this, a flow cell suitable to optical measurements was fabricated and tested 

using linear dichroism (LD). 
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LD is a method for determining the secondary structure of proteins in solution. 

Flow cells are used widely in linear dichroism, such as the Couette flow cell19. The Couette 

flow is complicated and requires multiple parts to work, including a quartz rod rotating at 

more than 3000 rpm. Fluid travelling through small channels also experiences a shear force 

as the walls drag on the moving fluid. Given sufficient shear force, molecules in solution can 

be induced to align allowing LD measurements without a complicated flow cell involving 

moving parts. Testing of the flow cell for LD was undertaken in collaboration with Miss Xi 

Cheng, Department of Chemistry, University of Warwick. Design and fabrication of the 

device was undertaken by the author as a result of discussions with Miss Cheng’s PhD 

supervisor Prof. Alison Rodger. Miss Cheng then performed all the characterisation of the 

flow cell including obtaining the experimental data presented in figure 5.20. 

Two pieces of high quality quartz (UV fused silica, UQG optics) were incorporated 

to achieve a sufficient level of optical clarity through the channel. The glass was pre-cut into 

10 mm and 5mm square pieces 1 mm thick. The glass needed to form two opposite 

surfaces of the flow channel. To do this there would have to be a square of unsupported 

build of at least 5 x 5 mm with a 1 x 5 mm channel running through the middle. Although it 

is possible to build small overhangs with the Perfactory machine, the size of the overhang 

and the importance of the uniformity of the channel cross-section led to the decision to 

build the flow cell in three separate components. By building the device as three separate 

components, the overhangs could be avoided entirely (see figure 5.19). The channel was as 

thick as the middle part and size uniformity of this piece was critical to the final channel 

size. This part was built with the same settings for the burn-in and build layers. The small 

thickness of the part, however, meant that it was difficult to handle and would warp if left 

unrestricted during curing. To prevent warping, the middle part was sandwiched between 

two glass slides. The weight of a single glass slide was sufficient to prevent the middle part 
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from warping during the flashing process. A tolerance of 50 µm was sufficient to allow the 

top and middle parts to fit into the base part. 

 

Figure 5.19: A dimetric (left) projection of a CAD model of the optical flow cell. The flow 
cell is exploded into the three component parts (left) and an isometric projection of the 
same three part optical flow cell shown assembled (right). Image not to scale. 

The final device was sealed with silicone sealant to allow reconfiguration after assembly. 

Parts could then be used interchangeably, allowing top, middle or bottom parts to be 

swapped out without requiring an entire device to be built from scratch. 

A 100 µL bolus of calf thymus-DNA (ct-DNA) (250 µM) was injected into the optical 

flow cell at time zero. As the DNA solution passed through the channel, shear forces cause 

the long DNA molecules to align resulting in an observable change in the LD absorbance at 

260 nm. Figure 5.20 shows the relationship between flow rate and change in LD absorbance 

at 260 nm. Increasing the flow rate increases the observable signal as the shear force the 

solution experiences increases with the speed of the solution through the channel. 



5. Flow cells by microstereolithography 
 

179 
 

 

Figure 5.20: The relationship between continuous channel flow LD and flow rate. 100 µL  
of 250 µM ct-DNA was injected at time 0 and LD was measured continuously at 260 nm. 
Data obtained by X. Cheng. 

It is unlikely that molecule aligning shear flow will occur throughout the channel of the 

device, due to its large size. Therefore Couette flow is not likely to occur thoughout the 

channel. Figure 5.20, however, shows that sufficient analyte does undergo shear flow-

dependant alignment to be detectable by LD. The optical flow cell demonstrates the ability 

of the EnvisionTec Perfactory to fabricate components of a flow cell rapidly and accurately. 

These parts can be assembled and disassembled easily to change channel sizes and 

configurations. The utility of the resulting flow cell was demonstrated by aligning molecules 

of ctDNA. 
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5.6. Conclusions 

Flow cells, principally made from PDMS, are used widely in biological microfluidics. Flow 

cells have been made from a variety of materials and by a variety of methods. Generally 

flow cells are composed of multiple parts, but are difficult to assembly repeatably and 

possess non-ideal fluid dynamics. This chapter shows that: 

 Direct digital manufacturing can be used to make a range of monolithic or multi-

part flow cells. 

 PDMS flow cells cast from R11 moulds can be used in experiments with insect cells. 

 R11 flow cells can be used directly for microbiological culture assays. 

 R11 flow cells with complex internal geometries can be used to facilitate 

electrochemical and microbiological experiments. 

 Optical components can be incorporated into R11 parts made by MSL for the 

purposes of assembling multiple parts into a single flow cell. 

The work presented herein has pushed the ability of the EnvisionTec Perfactory to produce 

devices which were necessary for experiments to be possible, producing novel and 

interesting scientific publications across a diverse set of fields. The diverse range of 

applications described herein required close collaboration with several different 

departments. Design and fabrication was performed by the author as a result of discussions 

with various individuals during the project. Apart from modelling of flow cell designs during 

the design period, which was performed by the author, all characterisation and operation 

of the produced flow cells was performed by the collaborators in each case. 

 The potential for moulding of PDMS fluidic components in R11 moulds made by 

MSL is only briefly explored here. In chapter 6 the experience gained here was used to 

explore multilayer devices which incorporating moving parts within them, allowing a 

precise and repeatable level of fluidic control.   
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Chapter 6 

6. Design and operation of PDMS microfluidic device 

The production of a combinatorial mutant library using bench top methods is time 

consuming and materially inefficient. Ideally, all or part of the production process should 

be transferred to a microfluidic device so that the assembly can occur using the minimal 

raw materials, highest rate and maximal efficacy. This chapter describes the design and 

fabrication of a microfluidic device from PDMS by the process of multilayer soft 

lithography. The fabrication process required characterisation of microfluidic valves and 

the development of electronic hardware and control software that is described herein. The 

flow chart in figure 6.1 represents how each necessary process relates to the overall goal of 

the fabrication of the microfluidic chip. 

 

Figure 6.1: Flow chart describing the processes necessary for the fabrication and 
operation of the microfluidic device. Development of the MSL procedure and its use in the 
fabrication of moulds for PDMS casts is described in chapter 5. Assembly testing is 
performed in chapter 8 and 9. 

In the previous chapter the manufacture of monolithic and multi-component flow cells was 

described. The flow cell in section 5.3 had a channel with a cross sectional area of 0.25 
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mm2, which was completely enclosed within the part. The flow cell in section 5.4 used the 

minimum layer thickness of the MSL process to make a chamber 25 micrometres tall, 

although this chamber was not fully enclosed in the part. All the flow cells described in 

chapter 5 are static. Once assembled, they are not capable of changing shape. All fluidic 

control and pumping must be done outside the flow cell. 

 Here, the design and manufacture of a PDMS microfluidic device is described that is 

fabricated from multiple layers of PDMS each cast from moulds made by the MSL method. 

The final PDMS device contains actuatable surfaces and valves that are used to control the 

flow of several reactants to make complex reaction mixtures. The PDMS microfluidic chip 

was used to make oligonucleotide mixtures necessary to synthesise two related mutant 

variant sequences that encode cis-regulatory modules (CRMs). 

 Photolithography and hot embossing were considered as an alternative fabrication 

methods for the PDMS microfluidic device. The photolithographic process, described in 

section 3.4, is widely used to pattern moulds for PDMS microfluidic devices. Although 

photolithography offers higher resolution than can be obtained through ALM, ALM was 

chosen because of the rapid fabrication times and the prior experience of the investigator 

(see chapter 5). Hot embossing, described in section 3.7, is widely used to make 

microfluidic device parts. Although PDMS is not suitable for hot embossing, other easily 

available materials are, such as PMMA. The microfluidic device required a flexible 

membrane to be incorporated into the device between multiple aligned layers. PDMS 

mortar layers offer an obvious solution to this and cannot be incorporated into PMMA 

devices without clamping of the device. As PDMS is not suitable for hot embossing, this 

method was not used. 
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6.1. Droplet microfluidics 

Droplet microfluidics is a type of microfluidics in which an aqueous phase (the droplets) are 

suspended in an oil phase (the carrier flow). The advantages and disadvantages of droplet 

microfluidics are discussed in chapter 2. Analytes of interest are dissolved in the aqueous 

phase droplets, the movement of which through the chip can be controlled. Because the 

droplets do not touch the sides of the PDMS, they are separated by a thin layer of the 

carrier fluid, thus there is very little risk of contamination. 

 Alternative microfluidic methods considered include microfluidic spotting using 

microarray spotting robots and continuous flow devices. Microfluidic spotting allows the 

placement of sub-µL volumes in specific locations of a glass slide. This method could be 

used to make place oligonucleotides in specific wells of a multiwall plate to which the DNA 

assembly solution could be added. This method was not used as spotting of sufficient 

volumes (~1 µL) without droplets into wells without contamination of the dropping tip was 

difficult using the available equipment. Continuous flow devices are a viable alternative to 

droplet systems provided flushing is performed to prevent contamination. The 

incorporation of a flushing system and the use of droplet microfluidics are equivalently 

complex in terms of additional liquid handling and on/off chip valving. Droplet microfluidic 

systems provide more efficient reagent use as the system scales in size as droplets can 

traverse whole device lengths in the flow of a carrier fluid, which uses less reagents than 

filling the entire channel, as would be required by continuous flow system. As a result of 

these considerations, droplet microfluidics was selected as the operating technique for the 

PDMS microfluidic device. 

 Droplet microfluidics was employed in an experiment to mix appropriate 

oligonucleotide sequences for assembly reactions to be performed off chip. This 

experiment is a proof of principle that the oligonucleotide mixtures can be mixed in 
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equimolar quantities, without contamination, to produce mixtures capable of assembling 

into distinct sequences. 

 A two layer chip was assembled that was capable of performing the mixture 

experiment. The droplets are produced when a valve from a perpendicularly flowing side 

channel is opened into a continuously flowing mainline channel. Droplet merging is 

achieved by moderating valve timing such that each newly created droplet is ‘injected’ into 

the main droplet as it flows through the channel. By using valves that sit as close as 

possible to the main channel as possible, the entire of the injected bolus is carried into the 

main channel, thus avoiding the possibility of contamination of later droplets by aqueous 

fluid remaining in the side channel. Figure 6.2 describes this process of merging droplets in 

flows. 

   

Figure 6.2: Diagram of valve controlled microfluidic droplet merging. Carrier flow (pink) is 
flowing vertically from top to bottom as indicated in the arrow in the first frame. The valve 
is indicated by the transparent grey rectangle. At t1, An aqueous droplet in red is flowing 
within the carrier flow. At t2, as the red droplet passes the valve, the valve is opened 
allowing another aqueous solution to be ‘injected’ into the red droplet. At t3, has moved 
past and the valve is closed. 

6.2. Making of PDMS channels using MSL moulds 

Simple microfluidic flow cells can be fabricated through the process of multilayer soft 

lithography 1. The process is described in figure 6.3. The microchip was comprised of two 

layers of PDMS bonded together using a PDMS mortar layer. Open channels in the top 
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surface of one or both of the layers will be closed once bonded to a complementary layer. 

Further layers can be added to make more complex microfluidic chips. 

 

Figure 6.3: Process flow of making a simple PDMS microchip by multilayer soft 
lithography using MSL moulds. 1) Pour uncured, liquid PDMS into two complementary 
moulds and degas thoroughly. 2) Cure at 60°C for 1 hour. 3) Remove casts from moulds. 4) 
Spin coat one side with additional uncured, liquid PDMS and partially cure. 5) align and 
bond two parts of the PDMS microchip. Uncured PDMS of the mortar layer is shown in a 
darker shade of grey. 

Figure 6.4 shows a top down microscope image of two PDMS layers bonded together by a 

PDMS mortar layer. The overall chip was fabricated in the manner described in figure 6.3. 

Producing channels and actuatable membranes within microfluidic chips required the 

development of methods for the mould, casting, assembly and membrane production as 

well as testing procedures to determine flow rate through the resulting chips. This chapter 

describes the characterisation of the resulting chip assemblies at each stage. 
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Figure 6.4: Microscope image of PDMS channels test part. Several channels of varying 
width are arranged radially around a central chamber. The chamber and channels are a 
single MSL layer thick. 

The hatched pattern of the MSL mould surface is reproduced in the PDMS cast in figure 6.4. 

The regions where the two layers are bonded by the mortar can clearly be seen by the 

absence of the hatching pattern that is present in unbounded areas. This hatching pattern 

can also be clearly seen in figure 6.7 (left). The thick, dark line that traces the edges of the 

channels indicates a curved vertical wall, rather than the straight vertical wall that was 

designed. Imperfections reminiscent of patched of peeling paint can be seen in the surface 

of the chamber. These are most likely the result of incomplete cleaning of the mould prior 

to casting. An SEM image of the cross section through these channels can be seen in figure 

6.5. 

 The PDMS mortar is partially cured before the two parts are aligned and bonded. 

The partial curing renders the PDMS more viscous but still sufficiently sticky for strong 

bonding. An insufficiently cured PDMS mortar layer results in inflow of the mortar into the 

channel features as seen in figure 6.3, right pane. The outline of the original channel can be 

seen, but the channel is completely blocked. It is not possible to clear a blocked channel 

without breaking the bonding elsewhere in the part. 

 Figure 6.4 show two simple, independently cast PDMS microfluidic chips. A 

significant amount of dust and fibres, black marks and lines in the sealed regions, can be 
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seen in both chips. The inclusion of fibres, dirt and dust are a result of the fact that the 

microchips were assembled in a standard lab environment rather than a clean room 

environment. It was found that fibres, dirt and dust buried in the main body of a layer had 

no effect on the operation of the device, except when they occurred in portions of the 

devices that optical measurements where made. Fibres that are on the inner surface of the 

channels, however, can affect droplets as they traverse the channel. Fibres were often 

found to be hydrophilic and therefore likely to retain some droplet material as it passes, 

ready to contaminate the following droplets. Contamination of critical chip areas was not a 

common occurrence, affecting approximately 1 in 10 finished devices.   
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6.3. Membranes from the mortar layer 

Membranes were made in the PDMS microchips in a two-step process, as described in 

figure 6.6. A support layer, in this case a silicon wafer, was used to form a thin film of PDMS 

which is then partially cured. A previously cured layer of PDMS, with channels as 

appropriate, was then aligned to the partially cured thin film and bonded by curing. Once 

cured, the PDMS film forms a strong bond to the PDMS part. The film was cut and the part 

peeled from the silicon support to yield a membrane attached to the PDMS layer. The film 

now forms a membrane covering any channels in the first layer. 

 To enclose the membrane, a second PDMS layer must be bonded to the first. A 

new film of PDMS is spun onto the membrane of the first layer, which acts as a mortar to 

bond a second pre-cured layer of PDMS to the first. 

 

Figure 6.6: Process flow for making PDMS microchip with actuatable PDMS membrane 
component by multilayer soft lithography. 1) Spin coat silicon wafer disc with uncured, 
liquid PDMS. 2) PDMS layer is partially cured and pre-cured PDMS layer is aligned. Cure 
fully and peel off silicon support. 3) Spin coat fresh, uncured PDMS onto the cured PDMS 
membrane. 4) Partially cure, align and bond to a new pre-cured layer. 
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6.4. Valve design 

Figure 6.6 shows a schematic diagram with a single simple channel in the upper layer and 

three overlapping channels in the lower layer. Pressurising the middle chamber of the 

lower layer will seal the channel in the upper layer. In this case and in the rest of the 

chapter, the upper layer, that contains the channels through which the fluid flows, is 

termed the fluidic layer, whereas the lower layer, which contains the chambers which are 

pressurised to seal the channels of the fluidic layer, is termed the pneumatic layer. To make 

valves in the assembled chip, chambers are arranged so that they overlap but are divided 

by a membrane. By pressurising the medium in one chamber, the dividing membrane is 

pushed into the other chamber (see figure 6.7, right panel). Provided the geometry of the 

membrane and the receiving channel are correct, the receiving channel is closed to flow. 

The process is reversible upon the removal of the actuating pressure as the membrane 

relaxes back to the open configuration (see figure 6.7, left panel).  

 A step feature was produced in the fluidic layer to aid the sealing of the valves. The 

step can be seen diagrammatic form in figure 6.7 and also in practice in figure 6.8 

(unbonded) and 6.9 (bonded). This step is a valve seat for the membrane to seal against 

when the valve is pressurised. The fluidic layer channels were specified to be 4 layers, 

around 100 µm, high, whereas the channel through the valve seat region was only one 

layer, around 25 µm, high. The valve seat was incorporated to ensure rapid sealing of the 

fluidic channel with the minimum membrane movement. 
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Figure 6.7: Schematic diagram of valve closing of the Quake valves fabricated here. The 
left panel shows the open valve with a top down view and two orthogonal side views of the 
channel (SEM images of these two planar views can be seen In figure 6.10. The right panel 
shows the change in the change in channel cross section as a result of pressure being 
applied to the chamber above the valve seat. Positive pressure causes the membrane 
between the fluidic channel and the pneumatic chamber to expand into the fluidic channel, 
as indicated by the arrows, blocking flow. Diagram not to scale. 

6.5. Layer production, alignment and bonding. 

Vertical channel heights correspond with those obtained by WYKO measurements of the 

mould feature sizes presented in chapter 5 (see section 5.1). 

 

Figure 6.8: Microscope images of PDMS layers prior to sealing against one another. Fluidic 
channel is seen in the left pane where an inlet channel meets the main channel with a valve 
seat in centre. Surface of membrane bonded to the pneumatic layer is seen on the right 
pane. Note the presence of the hatched pattern on the surface of the fluidic layer and the 
absence of this pattern on the pneumatic layer. Scale bars indicate 200 µm. 

The right hand frame of figure 6.8 shows a membrane formed over a chamber in a PDMS 

layer. The image is focussed on the top of the membrane surface. By focussing the 

microscope it is possible to see that the membrane is not flat, instead the membrane 
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appears to sag away from the plane of the top surface of the layer. Spinning of additional 

liquid PDMS onto the concave membrane surface is likely to result in a thicker spun layer in 

the region of the membrane. As a result, the valve will not have a uniform cross section, 

which will affect the sealing of the valve when pressurised. 

Alignment of the two layers is carried out by hand using a low magnification 

dissection microscope. A light source is placed orthogonally to the plane of the lower layer, 

which is coated with partially cured PDMS. The orthogonal light source highlights the 

vertical faces within the part and, combined with using a black background surface, 

maximises the contrast in what is a transparent material. The valve seats and valve 

membrane were used as marks during alignment. 

  

 

Figure 6.9: Microscope images of two valves made by multilayer soft lithography. The top 
right pane shows a valve where the PDMS of the mortar layer has ingressed into the fluidic 
channel permanently sealing it. The bottom pane, by comparison, represents when the 
membrane layer has not completely sealed to the sides of the channel. Scale bars indicate 
200 µm. 
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Microscope images of valves produced by multilayer soft lithography using PDMS layers 

cast from MSL moulds can be seen in figure 6.8. The time that the mortar layer is partially 

cured for is the principle determinant of whether a valve will seal properly (see figure 6.8, 

top left) or be blocked (see figure 6.9, top right). Through systematic experimentation the 

optimal partial curing time was found to be 12±1 minutes at 60°C for fresh mixed PDMS. 

The importance of using fresh mixed PDMS is highlighted by the fact that highly variable 

results were obtained with PDMS mixed >45 minutes after partial curing. The variation is 

most likely due to the range of temperatures that the mixed PDMS is exposed to after 

mixing (the lab temperature is controlled to ±2°C). PDMS tubes were manipulated by hand, 

heat transfer from which would have accelerated the curing process. 

 Although an undercured PDMS layer can be easily identified by blocking of 

channels and valves, overcured PDMS is not as easily identified. Strongly bonded PDMS 

layers should not be able to be peeled apart easily and the ease with which two layers can 

be pulled apart is the only identifying trait of overcured PDMS. Devices assembled with 

overcured PDMS mortar are unable to withstand the pressures necessary to operate the 

fluidic and pneumatic functions of the device. Perfectly partially cured PDMS can be 

identified by lightly touching the surface at the periphery of the coated layer with a gloved 

finger. The partially cured PDMS is tacky enough to stick to the gloved finger and not so 

liquid as to leave an imprint in the mortar layer. 

6.6. Membrane thickness 

Generation of a strong, flexible membrane between the two layers of the chip is crucial to 

the function of the chip overall. Generally, the faster PDMS is spun onto a support surface, 

the thinner the resulting layer is. The following experiment was performed to determine 

the relationship between spin speed and layer thickness: PDMS was spun at several speeds 

(500 – 5000 rpm) onto glass slides, the resulting layers were cured and cut using a scalpel 
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and the layer thickness determined using the TalySurf as described in section 4.2.2. The 

graph shown in figure 6.10 provides a summary of the results from this experiment. 

 

Figure 6.10: Graph of PDMS layer thickness after spinning from 500 to 5000 rpm. Crosses 
show averages between duplicate spins, each spin is measured in triplicate. Error bars 
represent one standard deviation of the averages. The black line is a curve, with the 
equation displayed, fitted to the data. 

Interestingly, these data differ significantly from previously published PDMS layer 

thicknesses 2. This difference indicates that more variables than just spin speed affect spun 

layer thickness and illustrates the importance of performing this type of experiment using 

the specific equipment and conditions available. 

The layer thickness measurements were performed on PDMS layers spun onto 

glass surfaces rather than the silicon and PDMS that are used to produce chips. Several 

layers were spun onto pre-cured flat PDMS surfaces to determine whether there are 

significant differences between layer thicknesses on the two surfaces. Because the uncured 

PDMS layers could not be cut after curing, however, layers were cut before curing. This 
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delay allowed the spun layers to flow, making the edge indeterminate and the thickness of 

the resulting layers could not be accurately determined. 

 As can be seen in the 500 and 1000 RPM data point error bars in figure 6.10, the 

variation in layer thickness produced by low spin speeds is larger than at higher spin speeds 

(>1000 RPM). At these speeds, the quantity of PDMS added probably has a significant 

effect on the layer thickness as the slow speed is insufficient to throw off excess material in 

the available time. All experiments were performed using a graduated syringe to deposit 

the liquid PDMS onto the spinning surface. Although care was taken to ensure that 100±10 

microlitres of PDMS was applied prior to each spin, this level of variation is clearly sufficient 

to cause significant variation in the resulting layers at low spin speeds (≤1000 RPM). 

Whereas at high spin speeds (>1000 RPM), the speed is sufficient to equalise variation 

applied PDMS volumes with respect to layer thickness. 

 To directly investigate the layer thickness of the membrane SEM was performed 

and the results are shown in figure 6.11 and 6.12. By cutting the valves orthogonally to the 

plane of the membrane allows the membrane thickness to be directly measured. 

Interestingly, the membrane could also be clearly visualised in other parts of the chip as 

well (see figure 6.11). 

  

Figure 6.11: SEM images of two orthogonal cross sections through two valves from the 
same chip assembled by multilayer soft lithography. Scale bars can be seen in the two 
images. Note the valve seat in the right hand pane, which the membrane is touching. 
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The membrane of the valve shown in figure 6.11 does not appear to be uniform. During the 

spinning of the second PDMS layer (mortar layer), the membrane could be seen to sag 

(experimental observation). It was hypothesised that although the second spinning would 

result in a flat top surface of PDMS, that the sagged membrane would result in the 

membrane layer being thicker in the region of the valve than over the rest of the part. This 

was not considered to be an issue, however, as the top surface of the spun PDMS was 

expected to be uniform after spinning. 

 

Figure 6.12: SEM image of a channel in a PDMS chip assembled by multilayer soft 
lithography. The membrane is clearly visible as a band across the top of the channel. 

Two independent spins were performed to assemble each chip; the first was performed on 

silicon at 2500 RPM and the second was performed at the same speed on the reverse of 

the fully cured PDMS surface of the first spin. Measurements of from these images as well 

of other valve sections obtained in a similar manner indicate a mean membrane thickness 

of 50±10 µm. The measured membrane thickness matches the expected thickness of two 

PDMS layers each spun at 2500 RPM. 
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6.7. Flow rate through valves at varying pressures 

To investigate the relationship between pressure and flow rate through the valves, two 

experiments were performed. The first varied the pressure applied to the fluidic layer and 

the second varied the pressure applied to the pneumatic membrane. Figure 6.13 shows the 

images of valves in the open and closed positions. 

 

Figure 6.13: Microscope images of a PDMS valve when closed (left) and open (right). 
Laminar flow of the two fluids (water and water + red food dye) can clearly be seen. Fluid 
pressure was 34.5 kPa and valve pressure was 137.9 kPa. Black scale bar in both panes 
represents 250 µm. 

In figure 6.13, water carrying red food dye enters from the left, passes through the open 

valve in the centre of the frame and collides with pure water flowing from the bottom. 

Both fluids pass out of the outlet towards at the top of the frame. The valve seat cannot be 

clearly seen in this experiment. When pressurised, figure 6.13, left pane, the chamber on 

the pneumatic side of the valve expands noticeably. The pressurised valve is ~12% larger 

than the unpressurised valve which is approximately 500 µm square. 

 Figure 6.14 shows the through valve flow rate as a function of pressure on the 

fluidic layer. Regulated air pressure was applied to a reservoir outside of the chip, which 

was then connected to normal atmospheric pressure via a valve on the microfluidic chip. 
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Figure 6.14: Graph of flow rate through a PDMS microvalve over the range of 0 – 55 kPa 
as measured by two complimentary methods. Measurements using the ruler method are 
denoted with crosses (x) whilst measurements using a flow meter are denoted with plus 
signs (+). Vertical error bars represent standard deviations of triplicates whereas horizontal 
error bars have length 3.45 kPa and are estimated from the pressure gauge. 

Interestingly, over the tested range of pressures, the flow rate response is non-linear. This 

is probably due to expansion of the channels narrowest point in response to the increasing 

pressure. The larger channel is then able to admit a higher flow rate. Once the PDMS is 

maximal expanded, the increase in flow rate in response to increasing pressure was 

expected to become linear. At higher inlet pressures (69-138 kPa) the response from a 

valve does indeed appear to be linear (data not shown), as expected. 

Figure 6.14 indicates how flow rate responds to increasing pressure on the fluidic 

channel with respect to the outlet. It should be possible, however, to limit the flow rate 

through the valve by increasing the pressure on the pneumatic side of the channel. Figure 

6.15 shows how flow rate through the valve at a fixed pressure of 34.5 kPa changes when 

various external pressures are applied to the pneumatic channel. 
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Figure 6.15: Graph of valve pressure from 20.7 to 72.4 kPa against flow rate as measured 
by flow meter. Crosses represent empirical data and horizontal error bars one each 
represents uncertainty as to the pressure (±3.44 kPa). Black line is a linear best fit line 
through the data.  

The response curve was expected to be linear through most of the tested range and the 

data presented in figure 6.15 reflects this expectation. The flow rate through the valves for 

pressures of <20.7 kPa was constant, indicating that this applied pressure was unable to 

change the shape of the valve membrane in response to the pressure applied to the fluidic 

chamber. By using pneumatic chamber pressures of <82.7 kPa the flow rate, with a fluidic 

channel pressure of 34.4 kPa, can be specified to an order of magnitude from the apparent 

maximum. As a result of this experiment, the valve pressure was set to be 137.9 kPa in all 

subsequent experiments so as to ensure that valves were fully sealed when pressurised. 

During the valve pressure experiments bubbles were observed to be forming on 

the valve seats, on the fluid side of the membrane. The source of the bubbles was not, as 

was expected, either of the two fluidic input lines. Instead the source was the membrane 

itself: when the membrane is pressurised, air is able to leak through. The thin PDMS 
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membrane was sufficiently permeable to gasses that air was able to leak through in 

significant quantities at the pressures used. 

 Gas permeability of PDMS has been investigated previously and is often regarded 

as a positive property of the material such as when used for tissue culture34. The gas 

permeation effect has been used to directly control fluid albeit slowly5–7. Typically coating 

with an impermeable layer, such as Parylene C, is employed to reduce gas permeation into 

channels within PDMS devices. A simple solution, filling the pneumatic lines with water, 

was found to this issue. By filling the pneumatic line with water, which PDMS is 

impermeable to, no air is forced through the membrane when the pneumatic line is 

pressurised. This solution has been implemented previously8. PDMS is also permeable to 

water vapour, meaning that evaporation from channels is an issue for long term 

experiments. 

 More generally, bubbles of air could become trapped within the microfluidic 

device. Bubbles were best prevented by ensuring that the fluidic inlet lines were bubble 

free. This was achieved by flushing lines with bubbles through the chip until the bubble was 

removed from the chip. Fluctuating the pressure on the inlet line, by pinching the inlet 

tubing, was usually sufficient to cause droplets to be moved by the flow of carrier fluid. 

Occasionally, bubbles would get caught in regions of the channel where flow was low, or 

alternative paths for carrier fluid flow were available. In these cases, bubbles were brought 

into the main flow by pressing onto the device and dragging the offending droplet towards 

the exit channel. 

6.8. Microfluidic chip design 

To achieve microfluidic mixing of oligonucleotides necessary to assembly members of the 

CRM mutant library, a microfluidic chip was fabricated that made use of the information 

described above. The initial design made use of a ‘droplet catcher’ that has been previously 
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demonstrated9. This geometric channel design retarded the flow of a droplet through a 

channel by providing alternative side paths for the carrier oil to flow around the droplet 

once the droplet enters the catcher. The subsequent loss of pressure immediately behind 

the droplet causes the droplet to arrest. Subsequent droplets will then collide with the rear 

of the arrested droplet, whereupon the side paths are blocked, causing the pressure behind 

the droplet to increase, forcing the merged droplet from the catcher. Although this catcher 

was a potentially promising design, it was found that merging droplets in the main channel 

of the device was more efficient and resulted in the formation of fewer ‘satellite droplets’. 

Satellite droplets are formed when a deformation of a droplet in the flow causes the 

pinching off of a small portion of the main droplet. Satellite droplets do not flow with the 

same dynamics as large, channel filling droplets and represent a contamination risk as they 

may merge with subsequent droplets. 

Two moulds for the fluidic and pneumatic layers are shown in figure 6.16 and 6.17. 

These moulds were built with burn-in settings throughout, 9600 ms exposure time, in order 

to avoid warping of the part after post-curing. The discovery that incompletely cured R11 

moulds inhibit the curing of PDMS casts made in chapter 5, section 5.3.2, informed the 

decision to flash each mould for 4000-5000 cycles in the UV flasher box. 

 The channel configuration of the pneumatic layer seen in figure 6.17 (right hand 

pane) was chosen so as to minimise the space required to fit the valves in. The valve sizes, 

0.5 mm2 was chosen so as to minimise the membrane sagging effect seen in figure 6.8. 

Small valve seats (1 mm2) were also chosen so as to minimise the energy required to open 

the valve. 
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Figure 6.16: Photograph images of a finished whole microfluidic chip (top panel) and 
detail of the droplet catcher and serpentine (bottom panel). Red food dye is used to fill 
the fluidic channels, with breaks indicating air bubbles in the system. The pneumatic 
channels are filled with air and can be distinguished by looking at the detail (bottom panel). 
A 5 pence piece (Ø 18 mm) can be seen in the top panel for scale. 
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Figure 6.18: Isometric views of 3D CAD models of the moulds for the two layers of the 8-
inlet chip. Left pane shows the fluidic layer whilst the right pane shows the pneumatic 
layer. See related schematic for measurements. Images not to scale. 

6.9. Interfacing with the chip 

The most common method of interfacing with PDMS microfluidics is by punching a hole 

through the top surface into the channels below. In these experiments 90° bent needles 

were used to interface with the chips. Bent needles were used in order to allow access of 

microscopes and light sources from the top and bottom. 

Flat tip needles were used to punch holes through the outside surface of the PDMS 

layers into chambers in the PDMS layers. A common observation during punching of the 

holes was that the PDMS would frequently tear, leaving pieces of PDMS inside the chamber 

able to block the channels. Furthermore, tearing would often cause the inlet port to leak. 

To seal leaks uncured PDMS daubed around the interface site once needles were inserted. 

PDMS was either cured for 1-2 hours at 60°C or overnight at room temperature. 

 Insertion of each needle was time consuming and would often fail: Punching was 

variable and could yield a hole which would continually leak. Furthermore, the needles 

were securely held in the PDMS, so accidental movement of the tubing or the needle would 

easily break the conformal seal. Sealing could not be tested until the daubed PDMS was 

cured, at which point further PDMS would need to be added. Since PDMS does not stick to 



6. Design and operation of PDMS microfluidic device 

206 
 

the metal of the needles well, the seals were weak and could be broken with only slight 

pressure. Overall, issues with chip interfacing and sealing of leaks that would develop was 

an issue that required solving. 

 To solve this issue, a part was fabricated by MSL which adapted the bent needles 

into barbed ends which could be inserted into preformed chambers made during casting. 

The barbed ends used interference fitting to seal into the inside of the chambers. Bent 

needles, used to minimise the dead volume between the reservoirs and chip, could be 

securely glued (with cyanoacrylate superglue) into the MSL adaptor and were then able to 

resist the torques that would be regularly applied during the manoeuvring of a chip for an 

experiment. The adaptor could then be pulled out of one chip and fixed into another with 

ease and a total changeover time is 5-10 minutes without leaks or requiring time 

consuming post-insertion sealing. Figure 6.18 shows a schematic diagram of the adaptor. 
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Figure 6.19: Schematic diagram of chip interfacing adaptor. All measurements are in 
millimetres. 

 

Figure 6.20: Isometric view of 3D CAD model of chip-interfacing adaptor. See related 
schematic for measurements. Image not to scale. 
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6.10. Microfluidic setup 

Several pneumatic, fluidic and electronic components were necessary for the operation of 

the microfluidic chip. Figure 6.21 shows a schematic diagram of the tubing that connects 

the components to the chip. Figure 6.22 shows a picture of the same microfluidic setup. 

Regulated air pressure is split and applied to each of the fluidic reservoirs. The reservoirs 

consist of eppendorf tubes with two holes drilled in the lid. 0.5 mm inner diameter (ID) 

tubing is then pushed through. Whereas the inlet tube is inserted a short distance into the 

eppendorf, the outlet tube is inserted right to the bottom of the eppendorf. 

 

Figure 6.21: Schematic diagram of the arrangement of pneumatic and fluidic tubing 
connecting oligonucleotide reservoirs to the microfluidic chip. Two regulators control the 
pressure to the oligonucleotide and oil reservoirs and the solenoid valves, respectively. 
Solenoid valves control the application of pressure to the on chip pneumatic valves that in 
turn regulate the flow from each of the oligonucleotide reservoirs through the chip. Finally, 
the entire of the chip eluent is caught in the output sink. 
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Figure 6.22: Picture of the microfluidic chip setup. Several components can be seen: 1) 
Pressure regulators. 2) Microfluidic chip, with inserted adaptor, seen between the USB 
microscope above and LED lamp below. 3) Fluidic sources. 4) Solenoid valves for control of 
on-chip valves. 5) Electronics for control of valves; consisting of DC power supply, high 
current circuit and USB-NI-DAQ box. The air pressure source and the computer running 
LabVIEW (National Instruments version 8.6) are not shown. 

6.11. Droplet contamination 

Contamination of liquids at droplet forming junctions is a common issue in microfluidic 

devices. Whilst aqueous droplets do not touch the sides of the device, they will readily 

form direct contact with other aqueous droplets. Typically surfactants are used to conceal 

the aqueous nature of droplets from each other, thereby preventing droplet merging. This 

device requires, however, droplet merging and so the use of surfactants was avoiding. The 

issue of contamination is demonstrated in figure 6.23. 
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Figure 6.23: Time series of images showing droplet contamination. Each image is one of 
every four frames of a video. Merging of the droplet containing red dye can be seen with 
the channel containing green dye in frames B and C. The contamination of the green 
channel can be seen in frame C. The scale bars are 500 µm in length. 

A 

B 

C 

D 
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Figure 6.23 shows that droplets can contaminate other aqueous droplets at inlet junctions 

even when the junction is not actuated. Having valves recessed from the main channel is a 

common feature of microfluidic devices that include actuateable inlets5–7. To prevent this in 

the microfluidic device used for oligonucleotide mixing, which is highly sensitive to 

contamination, valves were placed directly beside the main channel. With this arrangement 

the valve separates a droplet in the main channel from coming into contact with solutions 

from the side channels. 

6.12. Droplet size variability 

To measure the variation in droplet sizes an automated droplet counting method was 

developed. A control program was written that would produce 30 droplets at each 

specified actuation time for each valve. Another program was written, in MATLAB (see 

appendixA.1), to read frames off a digital microscope viewing the chip. Drops in the frames 

were identified and their sizes recorded. In this manner the relationship between actuation 

time and droplet size could be determined for all the valves on a chip in real time. Figure 

6.24 shows the results of one such experiment. 

Interestingly, the variation in droplet size was not reduced when using the adaptor, 

indicating that chip interfacing was not the most significant source of inter-valve flow rate 

variability as was expected. 
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Figure 6.24: Graph of droplet size against actuation time for all 8 valves of a single chip. 
Each point is represents the average size of up to 30 individual droplets. Vertical error bars 
represent one standard deviation of the determined droplet sizes. Horizontal error bars 
represent the variation in valve timing observed (±1 ms). 

Figure 6.24 shows how droplet size varies at a specific actuation time for each valve on a 

single chip. Significant variation is seen between valves. The variation in valve flow rate is 

probably due to variations between each valve within the chip itself. The alignment of the 

two layers is probably the greatest source of variation between microfluidic chips. Once 

layers are aligned, the outer edges of each layer are pressed gently with a pair of forceps to 

ensure that there is continuous sealing up to the edges of the layers. Placing excessive 

pressure results in the blocking of channels, particularly at the valves. Placing any pressure, 

therefore must introduce variation in the thickness of the mortar layer. 

 The results presented in figure 6.24 indicate that significant differences exist 

between the valves within a single chip. These differences will almost certainly extend to 

how the flow rate through each valve, at a fixed fluidic pressure, responds to varying 

pressure on the pneumatic channel.  
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Valve opening occurs when the pressure behind the fluid channel overcomes the 

pressure on the pneumatic side sufficiently to push the valve membrane open. Variations 

that affect the thickness of the membrane are likely to affect valve opening times and 

therefore droplet size. The length of the pipe between the on chip Quake valve and the off 

chip solenoid valve could also have affected the speed at which the valve opens and closes, 

which in turn will affect the observed flow rates, particularly at fast opening times. The 

speed of sound in air is approximately 343 m/s. The time for a pressure wave to travel the 

~20 cm of tubing between the two valves is approximately 3 ms. Differences in the length 

of tubing, which were all cut to approximately the same lengths, but not measured, could 

have contributed to the differences in observed total flow rates. Additionally, the opening 

rate of the solenoid valves was not examined. It is quite likely that the valves open and 

close at different speeds or permit different flow rates when open. The available flow 

meters did not have the millisecond accuracy necessary, however, to test this hypothesis. 

The variation in the valve flow rates is controlled for by altering the open time of 

each valve. By opening each valve for a period inversely proportional to their flow rate, 

droplets of the same size can be produced. Although this means that each valve does not 

have the same dynamic range of droplet size, it does allow droplets of the same size to be 

created. 

6.13. ValveControl LabVIEW program design 

A program was written in LabVIEW, ValveControl.vi, that could interact with the user 

through a simple GUI or text file and send instructions to the attached NI-DAQ box. 

ValveControl has two modes; button and text input. The two modes are essentially 

exclusive; instructions from a text file will override user button presses when in text input 

mode. The shortest actuation time required was ~10 ms. It was essential, therefore, that 

the ValveControl was able to cycle in this length of time or shorter. Furthermore, an 
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inconsistent cycle length would mean that a valve might remain open too long or not open 

at all. 

 For optimum speed, LabVIEW was allowed to determine its own order of action as 

much as possible. This means that artificial order of action constraints such as sequences or 

loops were avoided as much as possible. Sequences and loops are frequently used when 

the programmer must restrict the order of action, as is implicit in a text-based coding 

environment such as C or MATLAB. LabVIEW, however, is not implicitly restricted in this 

manner and is, in fact, inherently able to utilise multi-threading to speed up processing 

times. 

6.14. ValveControl GUI 

LabVIEW incorporates the writing of a GUI, called a front panel, into the process of writing 

a program. The valve control GUI is separated into three key sections. The first is the 

program interface, where the user can specify text input files, reset the timing system, start 

and stop the simulation. The second in the valve button interface where the user can 

interact directly with the valves provided a program is not currently running. The valve 

button interface is useful for initial filling of pneumatic channels, for priming of the fluidic 

channels and for the removal of bubbles. 
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Figure 6.25: Valve Control front panel. This panel allows the direct control of valves when 
not in ‘run’ mode via the manual valve control buttons. The current state of the valves is 
shown in ‘valve array’. See text for description of how the GUI functions. 
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6.15. ValveControl text input 

Text input files followed a simple, tab-delimited table format. Instructions were separated 

into rows with the time (in milliseconds) of event (relative to pressing ‘run’) in the first 

column and the valve state in the second column. When the user wants to specify a text 

input file, the ‘Load file’ button is pressed. A dialog asks the user to specify a file, once 

selected the entire file is read and the end time determined as the largest valve in the first 

column. ValveControl is then ready to run. 

 When the user presses the ‘run’ button, the start time is recorded. The program 

then repeatedly polls the system clock and compares this with the event time as specified 

in the user controlled program. When the current time becomes greater than the event 

time, the event is triggered. The event is encoded in the 8-digit string in the second column 

of the text input file. Surprisingly, LabVIEW does not implement a function for directly 

converting of a string of 1’s and 0’s into a Boolean array. Several methods of reading the 

string and converting it into a Boolean array suitable for passing to the NI-DAQ assistant 

were trialled. The fastest method compared each digit to the ascii code for a 0 (48) The 

results of this comparison are then used to construct a Boolean array which is then passed 

to NI-DAQ assistant. The program then continues until the current time becomes greater 

than the end time. 

 When the program reaches the end of the text input file the valves will remain in 

the same state as the final instruction indefinitely. Once an inputted instruction set has 

been finished, however, the valve control buttons become usable again. In order to start 

the program anew, the user must press ‘reset’ so that program start time can be 

reinitialised.  
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6.16. Additional functionality 

Additional functionality was programmed into other versions of the Valve Control program 

but are not shown here. The user can specify individual valve opening and closing times 

using a slider. This function allowed modification of valve opening frequency in close to real 

time; an adjustment is made to a slider for a running valve and a button pressed that 

applies the change immediately. The sliders were accurate to the nearest millisecond and 

had a range of 1 – 200 ms. 

This function was especially useful when determining delays necessary to achieve 

droplet merging. The additional computation time required to implement this feature, 

however, meant that opening times were inconsistent with a variation up to 10 ms on 

actuation times. Whilst acceptable at lower pressures with longer actuation times, this 

variation was not acceptable at the higher pressures and actuation times used in the DNA 

assembly testing experiment. 

6.17. DNA assembly testing 

A DNA assembly experiment was performed to test the ability of the chip to accurately mix 

solutions of oligonucleotides. Two sequences were selected for assembly, each sequence 

required 7 oligonucleotide solutions for assembly to work correctly. Of the 7 

oligonucleotide solutions, 6 were common between both of the sequences to be 

assembled. As a result, all the solutions necessary for the assembly of both sequences 

could be loaded onto the 8-valve chip simultaneously Because the two sequences are 

composed nearly identical oligonucleotides incorporation of an incorrect, contaminating 

oligonucleotide is possible. Contaminated assemblies could then be seen in downstream 

sequencing. The two sequences are, therefore, highly sensitive to contamination by each 

other and serve as internal controls. 
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A total volume of 10 µL of oligonucleotide solution was loaded into each inlet line. 

The valve actuation times were selected according to the valve flow rate measurement 

experiment (see figure 6.24) to ensure that the volume of a droplet from each valve was 

the same. Droplet merging was achieved by timing valve openings so droplets injected 

directly into previous droplet as the previous droplet travels past the valve. 

Merged droplets and carrier fluid were collected from the outlet in 1.5 mL 

eppendorf tubes, sealed and place on ice at 4°C. To be able to handle the droplets on the 

bench for the assembly procedure, the output droplets from the procedure were merged in 

the eppendorf tubes by brief centrifugation. Total volumes of 7 and 4 µL of merged droplet 

mixtures were obtained from the two assemblies. The obtained volumes were used in two 

assembly reaction mixtures each totalling 25 µL. 

After assembly of the oligonucleotide mixtures using Taq ligase, samples of the 

reactions were taken to be amplified. Amplification was performed exactly as previously 

described for amplification of normal assembly reactions. Products of the assembly 

reactions were run on 2% agarose gels to check the successful mixing, ligation and 

amplification of the two sequences. Figure 6.25 shows the gel of this reaction along with a 

parallel assembly performed using the normal, bench top method as a control. 
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Figure 6.27: Gel of amplification of assembly reaction for two sequences mixed on the 
microfluidic chip (lanes 3 and 4) or the traditional bench top method (lanes 6 and 7). 

As can be seen in figure 6.27 the concentration of the oligonucleotides used in the 

assembly reaction has an effect on the amount of product produced. Both reactions 

contained less than the two control reactions, 4 and 7 µL as compared to an equivalent of 9 

µL. The fact that the 4 µL band is weaker than the 7 indicates that the concentration of 

oligonucleotides is limiting. Reactions were performed at between 9 and 16 nM of each 

oligonucleotide. The chapter on optimisation of CRM assembly conditions (chapter 8) 

describes the effect of dilution of oligonucleotides in the reactions mixtures. Assembly is 

successful at 20, but not 2 nM. These results are consistent with these findings. 

 To measure the mutation rate of sequences assembled through the microfluidic 

method, the assembled DNA sequences were gel purified and TOPO cloned. The resulting 

plasmids were then isolated and sent for sequencing. Of a total of 10 plasmids sequenced, 

representing a total of 295 base pairs of assembled sequence, the number of errors found 

was 15 the determined error rate was 0.51%. The data used to obtain these values is 

603 - 

310 - 

200 - 

125 - 

872 - 

6557- 

1353- 

1078- 



6. Design and operation of PDMS microfluidic device 

221 
 

shown in table 6.1 This error rate is comparable to the error rate of sequences assembled 

through the bench top method. Finally, there was no evidence of contamination of either 

of the two sequences with oligonucleotides from the other sequence. Except for random 

mutations to sequences were identical to those specified. 

 

Table 6.1: Sequencing data obtained from a set of 10 sequences produced using the 
PDMS chip mixtures. Sequence numbers are relative to those found in table 8.1. Binary 
codes represent the sites that are mutated in each sequence. Percentage errors are 
calculated assuming a total assembled length of 295 base pairs in each sequence. Insertions 
and deletions are defined and the presence of an unexpected or absence of expected base 
pair. substitutions are a base pair change. The types of substitutions (transversions or 
transitions) are not recorded. 
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6.18. Conclusions 

This chapter has demonstrated the feasibility of MSL moulds to make working microfluidic 

chips with actuatable valves. The time taken to make MSL moulds is shorter than the time 

required to make moulds through traditional lithographic techniques. In addition, the 

moulds produced possess features of multiple heights, which would require several steps 

and might not be feasible by traditional lithographic techniques. 

 A microfluidic device was designed, made and operated to produce two sequences 

using half as much oligonucleotide substrate as was previously possible through the use of 

bench-top methods. The sequences produced were accurate, with an error rate 

comparable to assembly on the bench-top, and contamination free, as the sequences did 

not contain any sequences specific to the other. Assessment of the device’s performance 

over time was not assessed as both sequenced were mixed and assembled on the same 

day. 

 A proof of concept for the use of a PDMS microfluidic device to make mixtures 

capable of being assembled correctly has been described. By simply increasing the number 

of valves at the current density (8 in 10 mm2) with the 36 valves necessary to make the 

mixtures to assemble all 512 sequences could be produced using the same method of using 

MSL moulds described herein. 

 The final PDMS device is relatively robust; assembly of the fluidic and pneumatic 

layers with the PDMS mortar provides a strong bond without additional clamping. The 

weakest part of many microfluidic devices is the inlet/outlet seal, with leaks being caused 

when the inlet tubing is twisted relative to the device. This issue was reduced by the design 

and use of the inlet adapter described in section 6.9. The use of the adaptor meant that the 

device could be handled more roughly and without clamping the inlet tubes relative to the 

device.  
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Chapter 7 

7. Development of OptiCut 

OptiCut is the name of a computer program for the optimisation of oligonucleotide overlap 

sequences written in MATLAB. This functionality was found to be missing from currently 

available commercial and free software, as described in section 7.1.1. Therefore, a new 

program was required to successfully design oligonucleotides that can be assembled into 

the required CRM sequences. Each sequence is assembled from a set of cognate 

oligonucleotides that are selected from a larger set of oligonucleotides. Each sequence in 

the CRM mutant library can be assembled by mixing and ligating a different set of 

oligonucleotides. 

The function of OptiCut is to take a suitable input file and optimise oligonucleotide 

sequences according to user-specified parameters. The results of the optimisation are then 

displayed and the output can be produced in a number of different formats. Once 

obtained, the oligonucleotides can then be combined as specified to produce any of the 

member sequences. The algorithm has been tested on each of the CRM sequences 

associated with the project, although only optimisations for CRM-B are presented herein. 

OptiCut is designed as a standalone optimisation program with a graphical user 

interface (GUI) that is installable on Windows® computers. This chapter describes the 

program, the implemented modules and discusses their effectiveness and efficiency. 

Finally, further modules are suggested and conclusions from the work drawn. The OptiCut 

algorithm is presented in appendix A.3. 
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7.1. Introduction 

7.1.1. Definition of the problem 

Cis-regulatory modules (CRMs) are sequences which are capable of regulating gene 

expression of genes on the same chromosome. In this case, the CRM of interest, CRM-B, is 

a single, short region of DNA (~300bp) in the genome of Mus musculus. Previous work has 

identified that this region is conserved in mammals and more distantly related animals1. 

Furthermore, the ability of this CRM to synergistically regulate the myod promoter, in 

combination with additional novel CRMs and CRMs previously identified in the literature, 

was previously demonstrated2,3.  

In addition to the CRM itself, consensus binding sites for transcription factors of 

interest were found previously (see section 2.6). Microarray, bioinformatics and ChIP 

analysis of the various transcription factor binding sites present in the CRM allowed the 

prioritisation of several of the binding sites for further analysis. This information and the 

process by which binding sites were prioritised is described in chapter2.  

To investigate the transcription factor interaction landscape that exists within a 

CRM, specific binding sites can be replaced with null binding sites. A null, or mutant, 

binding site is defined as a sequence that shows no predicted affinity for the factor 

predicted to bind there. For this project, null binding sites were generated randomly 

according to two simple rules: The sequence should show an almost or completely reduced 

affinity for the specific factor. The sequence changes never changed the overall length of 

the DNA. Factor affinity for sequences was predicted using the BiFa tool as previously 

described (see section 2.7). Further rules were that the mutation site should be contiguous 

and at least four base pairs long. These last rules were implemented to facilitate 

downstream separation of sequences assembled by Gao assembly (see chapter 8). By 

comparing reporter expression levels from constructs containing sequences with different 
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combinations of binding sites, different modes of cooperative regulation can be 

distinguished, as discussed in chapter 1 (see section 1.5). 

A set of sequences which contain all the possible combinations of these mutant 

sites constitutes a mutant library. Each putative site has an ‘on’ and ‘off’ sequence 

associated with it, the former being the wild-type and the latter a sequence that has hugely 

reduced or null potential binding to the factor without significantly affecting the binding 

potential of adjacent or partially overlapping sites. A combinational mutant library for this 

region consists of every possible combination of ‘on’ and ‘off’ sites. In this case, the CRM 

sequence contains 9 sites which have been prioritised for mutational analysis. The mutant 

library, therefore, contains 29 or 512 sequences in total. 

Generation of this library by progressive SDM would involve a large number of 

reactions (>512) and could not be run in parallel, as the products from one reaction would 

be used in the next. Furthermore, each step requires reamplification of the previous 

product, which introduces more random mutations. Sequencing at each step would be 

necessary to ensure that these mutations do not build up. 

Direct synthesis of 512 sequences, approximately 300 bp long for $0.20 per bp 

would cost in excess of $30,000. Since the sequences are identical except for the mutation 

sites, there would be a large amount of redundancy expected in such a synthesis. A set of 

mutually compatible, short, overlapping oligonucleotides could be derived that could be 

used to assemble the full 512 sequences by DNA assembly. By mixing the right combination 

of oligonucleotides from this set, any sequence from the library could be assembled.  

DNA assembly was chosen as the method by which the library was generated. All 

the sequences could be generated in parallel without requiring multiple amplification steps 

progressive SDM would require multiple amplification steps. Chapter 8 compares the two 

methods of DNA assembly (see section 8.1.2). In this project, the method of ligative 



7. Development of OptiCut 
 

227 
 

assembly was chosen in preference to the more commonly used PCR-based assembly. 

Successful ligative DNA assembly requires the optimisation of the sequences of the 

oligonucleotides that are to be used. This chapter describes the various available methods 

and their short comings, before describing the software that was developed to perform this 

optimisation, OptiCut. 

7.1.2. Current gene assembly software 

Many commercial options exist for researchers requiring synthetic DNA. Several large 

companies offer gene synthesis services such as Invitrogen GeneArt®4 and Sigma 

(GeneOracle)5. In addition, several smaller companies offer gene synthesis services: 

Integrated DNA technologies (IDT)6, EuroFINS7, DNA2.08, BlueHeron9, Origene10, BioMatik11 

and Entelechon12. The cost per base for oligonucleotides and synthetic genes have both 

been decreasing whilst the maximum synthesisable length has been increasing at roughly 

exponential rates since the mid 90’s. Gene synthesis and gene assembly will be discussed 

primarily in chapter 8. 

The many companies that provide synthetic gene services is mirrored by the 

plethora of optimisation software available for synthetic gene work; Gene Designer13 , 

genecomposer14 , TmPrime15, Gene2Oligo16, Assembly PCR oligo maker17 , DNAWorks18, 

Computationally Optimised DNA Assembly (CODA)19, GeneDesign20 , OPTIMIZER21 and gene 

morphing system (GeMS)22. These software principally perform the optimisation of 

oligonucleotide sequences for PCR or LCR-based assembly reactions. Most will also allow 

codon optimisation in the case of expressed proteins or reverse translation of a desired 

protein sequence. 

None of the software described above offer the option to optimise multiple 

sequences in parallel such that the same oligonucleotides can be used in the synthesis of all 

sequences. Batch sequence processing can be performed by some software, but this is not 
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for the purpose of parallel, degenerate assembly as described here. By reusing 

oligonucleotides the whole library can be built using as few as 50 oligonucleotides, from 

which a set of around 20 are selected to assemble each sequence in the library. In order to 

maximise the chance of success, the lengths of the overlapping oligonucleotides must be 

optimised so that they will anneal at a similar temperature suitable for ligating. The 

following section describes the most widely used method of melting temperature 

estimation. 

7.1.3. Melting temperature estimation 

The method of determination of melting temperature is of primary importance to any DNA 

overlap optimisation program. Generally, the Nearest Neighbour (NN) method using base 

pair coefficients determined by SantaLucia et al.23 is used for overlaps of <50bp. For 

overlaps of >50bp the simpler Meinkoth and Wahl algorithm is employed 24. More recently, 

optical trap experiments have refined the coefficients used in the NN method still further25. 

In this project the SantaLucia 1998 values were used as these are the most commonly 

employed values in other software. 

 Whilst the energy derived from the base pairing of pairs of bases in opposite 

strands is the primary determinant to oligonucleotide melting temperature. The NN 

method takes into account the basepair stacking energy of DNA as well as the basepairing 

energy. In short, a DNA sequence of GGGGGGAAAAAA will have a higher melting point (to 

its cognate partner) than a sequence of GAGAGAGAGAGA, 41°C and 36°C respectively. Both 

sequences are the same length and have the same G:A ratio. Based solely on the 

proportion of G/Cs and A/Ts, therefore, they should have the same melting temperature. 

However, the extra energy comes from the fact that there is a stacking ‘preference’ 

between certain bases adjacent to each other in the chain 26.  
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2nd base 

1st base 
A C T G 

A -7.9 -22.2 -8.4 -22.4 -7.8 -21.0 -7.2 -20.4 

C -8.5 -22.7 -8.0 -19.9 -10.6 -27.2 -7.8 -20.0 

T -8.2 -22.2 -9.8 -24.4 -8.0 -19.9 -8.4 -22.4 

G -7.2 -21.3 -8.2 -22.2 -8.5 -22.7 -7.9 -22.2 

Table 7.1: Nearest Neighbour (NN) binding energies for adjacent bases as determined by 
SantaLucia23. The first value in each box is the ΔH (kcal/mol) and the second value is the ΔS 
(cal/K.mol). 

The melting temperature (Tm) of two DNA strands can be determined using equation 7.1, 

    
   

           
 Eqn. 7.1 

where ΔH° is the change in enthalpy ΔS° is the change in entropy, R is the gas constant 

(1.987 cal/K.mol) and CT is the ratio of the concentrations of the two annealing strands. In 

this case, where strands are not self-complimentary and the two strands are assumed to 

have equal concentrations, CT becomes CT/4. The ΔH° and ΔS° are determined from table 

7.1 as the sum of the contributions from each pair of nucleotides in the linear sequence. 

7.1.4. Competitor identification 

Oligonucleotide assembly reactions are sensitive to competition reactions. Each 

Oligonucleotide has 1 or 2 target oligonucleotides that it is ‘meant’ to bind with. Each 

oligonucleotide is, however, capable of binding with any of the others present in solution, 

including itself. To further complicate the situation, individual oligonucleotides can form 

hairpin loops within themselves. Heteroduplex binding energy prediction is difficult as the 

binding energy associated with heterologous bases is not null. Empirical investigation has 

informed the modification of the binding energy tables used in the NN method27. The 
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predictions developed by this method are not ideal as they are performed in HPLC 

conditions using acetonitrile as a solvent. Consequently, corrective coefficients are applied 

to bring the results in line with those observed in aqueous conditions. The method used 

here was reverse engineered from IDT SciTools28. Basically, the method finds regions of 

homology between two strands and uses the NN method on each region. The final melting 

temperature is then calculated from the sum of all the homologous regions. 

7.2. OptiCut method 

A flow chart summarising the optimisation algorithm is shown in figure 7.2. The program 

optimises the lengths of the overlapping portions between oligonucleotides. The overlaps 

start and stop at ‘cut positions’, although first and last cut positions are fixed to the start 

and the end of each sequence. A set of cut positions and the sequences to be assembled is 

sufficient to describe the full set of necessary oligonucleotides. The oligonucleotide overlap 

optimisation program was written in MATLAB with a modular format. The main module 

receives a FASTA format file containing the combinational mutant library and performs the 

optimisation procedure. Output consists of an Excel file containing the 5’ to 3’ base pair 

sequence of all the necessary oligonucleotides. Alternatively, output can be produced in 

tab-delineated ASCII format. 

Melting temperatures are determined using the SantaLucia coefficients29 for 

Nearest Neighbour (NN) method as discussed in the introduction (see section 7.1.3). In 

brief, the optimisation procedure consists of series of fully defined steps: 

1. Determine the temperature of every overlap in the sequence library. 

2. Identify the ‘hottest’ and ‘coldest’ overlaps. 

3. Shift the positions of all the intervening cut sites by one base pair to reduce the 

length of the ‘hot’ overlap and increase the length of the ‘cold’ overlap. 

4. Repeat until the end condition is met. 
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Thus, the ‘hot’ and ‘cold’ overlap lengths change whilst the intervening overlap lengths do 

not change. Although the overlap lengths of the intervening overlaps do not change, their 

sequences do. Overlaps outside of the ‘hot’ and ‘cold’ overlaps are not altered. See figure 

7.2 for a flow chart of how the algorithm optimises an oligonucleotide set. 

 

Figure 7.2: Flow chart for the OptiCut program with tranch-shifting employed. 

The above procedure is performed on the whole set of library sequences simultaneously. 

The ‘hot’ and ‘cold’ overlaps, therefore represent the average melting temperature of all 

the sequences within a given sequence length. The cut site position changes are 

propagated to every sequence in the library. Performance of the algorithm is measured by 
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the root mean square difference (RMSD) of the melting temperatures of the whole overlap 

set. 

Exhaustive searching is not feasible for anything but very small sets due to the 

amount of computation required. The following set of equations (eqns 7.2 – 7.4) can be 

used to determine the approximate time required: The number of overlaps is determined 

using equation 7.2. The average oligonucleotide length for each overlap is described by 

equation 7.3. Given that each cut position is allowed to vary from the original by ±2 bp, 

each cut position can take any of 5 positions. Equation 7.4. describes the total number of 

position sets that need to be computed. 

 
                 

 
             Eqn. 7.2 

 
                     

         
                          Eqn. 7.3 

                                               Eqn. 7.4 

For example: A set of 128 sequences each 100 bp long with 5 oligonucleotides in each 

strand is to be optimised. A total of 9 overlaps, each with average length 22.2 bp, generate 

a total of ~400,000 cut position sets. Each cut position set must be applied to each of the 

128 sequences in the original set and statistics of the resulting oligonucleotides developed. 

This process takes a non-trivial amount of time (typically between 0.5 and 1 second). The 

overall time taken to perform such an exhaustive search is several hours. The exhaustive 

approach is, therefore, only appropriate for a very limited search range and is incapable of 

providing a good quality optimisation (as measured by RMSD) of anything but the most 

homogeneous sequence. 

The algorithm will estimate the melting temperature of a sequence and then store 

the determined melting temperature in a database. If the algorithm then determines that 

the melting temperature of the same sequence is required it will first check the database to 
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determine whether the melting temperature has been previously determined. Storing of 

previous melting temperature results in a database that markedly speeds up the process of 

optimisation. To test this, a database of 10000 random oligonucleotide sequences of length 

22 (representative) was generated (using ‘randseq’, from the MATLAB bioinformatics 

toolbox), the melting temperatures assessed and the results stored. This represents the 

process of reanalysing the sequence every time. Sequences from the database were then 

searched for 10,000 times within the database to simulate lookup of the sequence instead 

of reanalysing. The results from this simulation can be seen in figure 7.3 and indicate that 

lookup was approximately 15x faster than redetermination. 

 Figure 7.3 indicates that lookup in a database only becomes slower than 

redetermination when the database is approximately 5,000 members or larger. Therefore, 

the database lookup method was implemented in preference to a redetermination 

method. A typical sequence library of 512 sequences, with 10 oligonucleotides per strand, 

therefore 19 overlaps, would produce a database with maximum size of 9728. Because of 

the similar nature of the sequences in the library, most of these overlaps would be 

identical, so the database is likely to be much smaller than this. As the optimisation 

progresses, and new overlaps are added, it is possible that the library will become > 5000 

members in size. At this point a simple switch could be employed where the algorithm 

determines the melting temperature of new overlaps rather than looking in the database.  

Furthermore, experience of the optimisation algorithm indicated that a typical overlap 

database size is 100-400 members in size. Therefore, no attempt was made to gauge the 

size of the database and switch between the two possible modes. 
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Figure 7.3: Comparison of time taken to determine each melting temperature repeatedly 
(reanalyse, circles) with time taken to lookup each sequence in the database first 
(lookup, crosses) for increasing database sizes from 1,000 to 10,000 members. Bars 
represent the average of 10 repeats of the simulation, which involved 1,000 reanalyses or 
lookups. Error bars represent one standard deviation of the 10 repeats. Simulation details 
are explained in the text. 

Linear lines of best fit shown in figure 7.3 were fitted using Microsoft Excel 2010. A linear fit 

was chosen as it seemed to best describe the trend of the line in the region measured. 

The initial conditions of the OptiCut algorithm are chosen arbitrarily; such that all 

the overlaps are of equal length that depends on the number of oligonucleotides per 

strand. Since the algorithm selects the greatest outliers for optimisation first, the algorithm 

can handle particularly long or short overlaps by bringing their length closer to the mean in 

the initial optimisation steps. A formal investigation of the sensitivity of the algorithm to 

‘badly chosen’ initial conditions was not carried out. 

7.3. Loop identification 

A module was implemented for the identification of loops occurring in the optimisation 

process. Fully defined optimisation procedures always run the risk of optimising into a local 
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minimum rather than the true global minimum. In situations where fully exhaustive 

implementations are impractical, like ours, various strategies can be employed to avoid a 

local minimum trap. Such strategies include an implementation of a random ‘jump’ or a 

brief, restricted ‘exhaustive’ search. Both these two strategies were implemented as 

switchable events within the main program. In the event that a loop is found the program 

either; 1. A random set of cut sites are shifted by a random (<3 bp) amount and the 

program allowed to continue. Or 2. A brief exhaustive search is performed where the cut 

sites are shifted by only a few base pairs and every possible temperature determined. 

These two methods ensure that the minimum found is sufficiently robust for the reasons 

described above. 

The end state of the optimisation is a loop. The algorithm makes a cut site move in 

an attempt to reduce the total range of temperature values. The move chosen results in 

the algorithm making a subsequent move of a cut site which returns the cut sites to their 

original state. A loop then ensues as the algorithm flips between the two states. Such loops 

are clearly identifiable on graphs of the RMSD of a given optimisation (see figure 7.3): After 

the 60th cycle, the RMSD switches between two values for the remainder of the iterations. 
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Figure 7.4: Graph of RMSD over iteration of a representative optimisation run. Note the 
cycle which is reached at around the 60th iteration. 

The trace shown in figure 7.4 is representative of a typical optimisation. The trace is 

obtained by recording the RMSD of the melting temperatures of all the overlaps of the 

whole sequence set relative to the average overlap melting temperature. A hundred 

iterations are usually sufficient for the optimisation to reach the cycling state. Most 

optimisations will reach the cycling state in less than half this number of iterations. The 

OptiCut GUI includes a checkbox which enables automatic loop detection. Upon detecting a 

loop, the algorithm will stop optimising and will proceed to display the output. The 

automatic loop detection check box should be ticked for best performance. 

 It is possible that the loop-end algorithm might represent only a local minimum 

rather than the true global minimum. Two methods were implemented to check whether 

the initial looping minimum could be improved: The first is a simple, short exhaustive 

search. The second is a temporary cut site locking. In the first, the cut sites are all moved by 

two base pairs in each direction. The search is exhaustive because every possible 

combination of positions within this restricted set is considered. In the second, one of the 
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cut sites that participates in the loop is ‘locked’, i.e. the algorithm is forced to make the 

second best move rather than the preferred move. After proceeding for a time, cut sites 

then became unlocked and the algorithm could then resettle on a new minimum. Locking 

of sites, however, did not improve the overall effectiveness of the optimisation. A brief 

exhaustive search was also determined to be inefficient: The optimisation gain was 

insignificant relative to the amount of computing power necessary to perform it. 

7.4. Visualisation of algorithm performance 

The cut mutant library can be visualised as a chessboard with a unique sequence in each 

row and a specific overlap in each column where colour represents melting temperature. 

Each element of the matrix then represents the melting temperature of the overlap for a 

given sequence. Graphing the overlap temperature on a colour scale with red representing 

‘hot’ and blue representing ‘cold’ temperatures allows the quick and clear visualisation of 

the oligonucleotide set that would compose the mutant library with respect to the 

heterogeneity of the underlying sequences. Furthermore, side by side comparison of 

before and after graphs allows easy visualisation of algorithm performance. 

Figure 7.5 simultaneously visualises the performance of the algorithm and the level 

of sequence variation present in the combinational library: The performance can be seen 

by noting the homogenous colour in the second frame as compared to the first, whilst the 

variation can be seen in the heterogeneous colour in the first frame. The AT-rich region in 

the last half of the sequence can be seen in the left panel as a set of columns that appear in 

blue, indicating lower melting temperatures. The effect on the variation in melting 

temperature of the overlaps can be seen in the right panel of the same figure. Whilst most 

of the columns are consistent turquoise/pale green colour, some have significant variation 

within the column (for example: overlap 14, right hand panel of figure 7.5). The significant 

difference in the G/C content of the ‘on’ and ‘off’ sites in this overlap is the cause of the 
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colour heterogeneity in a given column. A histogram of the overlap melting temperatures 

can be seen in figure 7.5. This histogram demonstrates the improvement of the algorithm 

over arbitrarily assigned cut positions; the starting point of the optimisation procedure. 

 

Figure 7.5: Colour histograms visualising performance of algorithm. The left panel is 
before optimisation, with regularly spaced cut sites. The right panel is after optimisation, 
with optimised cut sites. Each row represents one sequence, each column one overlap. The 
colour represents the estimated melting temperature of each overlap.  

In figure 7.5, the 15th overlap before optimisation and the 14th overlap after optimisation 

both exhibit significant temperature variation between sequences. Melting temperature 

variation between sequences in the same overlap indicates that the mutation sites in this 

region have a significantly different melting temperature than the wild type sequences. 

This represents an ‘optimisation limit’ that is due to the original library sequences. To 

minimise or avoid this problem, optimisation would have to be able to change the 

sequence of the mutation sites. Implementation of this would require cross-talk between 

the optimisation algorithm and the binding site consensus sequence tool. 

A more traditional method of visualising algorithm performance is with a histogram 

of overlap melting temperatures. Histograms represent the frequency with which an 

individual overlap melting temperature is observed in the whole set. Figure 7.6 shows 

histogram plots of the same data that can be seen in figure 7.5. An advantage of histogram 

plots is that the range can be more clearly discerned. The GUI plots only histogram plots.  

OptiCut flowchart 
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 Like the colour chessboard plot in figure 7.5, the histogram plot in figure 7.6 shows 

the melting temperature of each overlap in the set. Hence the total area under the 

histogram is 512 x 17 = 8704 represents the total number of overlaps.  

 

Figure 7.6: Histograms representing performance of the optimisation algorithm. 
Temperatures of overlaps generated by arbitrarily assigned cut sites are shown in the left 
panel, whilst the right panel shows optimised overlap positions. Bucket size is 0.1 °C. 

The chessboard visualisation makes it clear that the limitations of the optimisation are due 

to the specific sequences in the library. The difference in melting temperature of the 

sequences of overlap 14 in figure 7.5 is due to the difference between the mutated and 

wild type site sequences held therein. Strategies for the mitigation of this limitation are 

discussed in the further work section of this chapter (see section 7.10). As it stands, the 

minimum range that the overlap temperatures could ever take is limited by the overlap 

which possesses the largest mutation site sequence dependant change in melting 

temperature. 

7.5. Competitor identification 

A module was written which allows the full set of possible interactions to be analysed, 

including self-interactions. Hairpin interactions within a single oligonucleotide were not 

considered. Regulatory modules do, however, often exhibit repeated binding site motifs. As 

a result, care should be taken where the optimised sequences contain reverse 
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complimentary sequences that are <1 overlap length apart. To make the algorithm suitable 

or application where this is the case detection of hairpin loops should be implemented. The 

module requires a checkbox to be ticked in the GUI for it to be used during optimisation. 

Once the main optimisation loop is complete, if the checkbox has been ticked, the set of all 

oligonucleotides is checked for all potential interactions. The chart shown in figure 7.7 

shows the output of the competitor identification module. The module will detect intended 

interactions as well as unintended interactions. Hopefully, the intended interactions will be 

as strong as or stronger than the unintended interactions. 

 

Figure 7.7: Bar chart displaying data obtained by running competitor identification within 
OptiCut. Intended (green) and unintended (red) interactions for an example set of 
oligonucleotides necessary to make a single sequence. 

To exemplify the output of the competitor identification module, all the feasible 

interactions of the set of oligonucleotides necessary to build a single sequence is displayed 

in figure 7.7. The competitor identification module will output ‘intended’ hits as well as 

‘unintended’ hits. The lower cut off for melting temperature was arbitrarily set at 30°C 

which means that only interactions of that are estimated at 30°C or more are reported. 
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 As discussed in the introduction (see section 7.1.4) prediction of heteroduplex 

melting temperature is somewhat imprecise. Therefore, the values here are probably only 

accurate to the stated value ± 5°C. Even with this uncertainty, the two highest scoring 

unintended interactions score 10-12°C lower than the intended interactions. 

7.6. Efficiency and effectiveness of algorithm 

To determine how well the algorithm scales with the size and complexity of the 

optimisation set, a testing environment was written. The testing environment is described 

in the methods (see section 4.7.3). In brief, a random sequence generator made sets of 

sequences with n randomly generated mutation sites of varying, defined length. The 

algorithm then optimised each of the sets, recording only the time necessary to do so.  

 

Figure 7.8: Graph of algorithm performance, measured by average total optimisation 
time required, against number of sequences (blue diamonds). Error bars represent one 
standard deviation of the optimisation time required. Trendline, shown in black, does not 
take account of the first three values. 

Figure 7.8 shows the how the performance of the algorithm scales with the number of 

sequences in the optimisation set. Because the algorithm is being applied to a library of all 
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possible combinations of several mutant sites, the library contains 2n sequences where n is 

the number of mutation sites. 

As can be seen in figure 7.8, the algorithm scales linearly with the number of 

sequences in the optimisation set except for optimisations performed on small numbers of 

sequences. For ≤16 sequences the total optimisation time in generally <1 second. For 

optimisations of this type, the time taken for the algorithm to initialise the necessary data 

structures becomes significant with respect to the time spent optimising the sequences. 

This baseline amount of time required for the algorithm to initialise is probably the main 

source of the non-linearity observed for sets containing ≤16 sequences. 

 In contrast to the number of sequences in a given set, the number of iterations is a 

poor representation of the efficiency of a given optimisation as measured by total time for 

optimisation minima to be reached. Figure 7.8, 7.9 and 7.10 are representative of the same 

empirical data. 

 

Figure 7.9: Graph of the average number of iterations required before the optimisation 
minima is reached against length of inputted sequence (blue diamonds). Error bars 
represent one standard deviation of the values. 
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Figure 7.10: Graph of the average time required before the optimisation minima is 
reached against length of inputted sequence (blue diamonds). Error bars represent one 
standard deviation of the values. 

Figure 7.10 shows that the time required for optimisation depends weakly on overall 

sequence length. In contrast, figure 7.9 shows that the number of iterations required to 

optimise each sequence does correlate with sequence length. The observation that the 

number of iterations is not proportional to the time required was not expected. This 

observation does indicate, however, that number of iterations before a minimum is 

reached should not be taken as the sole measure of algorithm performance. 

 The sequences used to test algorithm performance in this section were generated 

randomly and therefore are more likely to be homogenous than true, genetic sequence. As 

a result it is likely that randomly generated sequences will require less optimisation than 

true, genetic sequences. Although this relationship was not tested, significant performance 

differences should only occur in repetitive or variable, where one portion is significantly 

more G/C rich than another, sequences. 
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 The overall performance of the algorithm is characterised by the range of the 

RMSD of the optimised overlaps. None of the commercially available programs for 

optimisation of sequences are capable of producing sequence sets that can be used 

interchangeably in several gene assembly reactions to produce different products by 

ligative assembly. Optimisation of each member of the mutant sequence library using a 

program with a batch optimisation function (see section 7.1.2) would produce sequences 

that have cut sites at different positions in the overall sequence. The oligonucleotides are 

not, therefore, compatible with each other. The only available optimisation program is the 

SeqZego program (see section 8.2.1) that was used by the Gao lab. Both programs were 

used to optimise the same sequence set, a set of 512 sequences of CRM-B, with 6 

oligonucleotides per strand. The results are displayed in figure 7.11. 

 

Figure 7.11: Histogram showing comparison of oligonucleotide optimisation by the Gao 
lab’s SeqZego (left) and the OptiCut (right) optimisation algorithms. Optimisations were 
run on the same sequence sets.  

The OptiCut optimised oligonucleotide sets exhibit a significantly smaller range of melting 

temperatures than the SeqZego optimised oligonucleotide set: 59 – 65°C vs. 54 – 70°C, 

respectively. Furthermore, the OptiCut optimised melting temperatures appear to have a 

nearly normal distribution, as compared to the more uniform appearance of the SeqZego 

optimised melting temperatures. 
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7.7. Optimisation and cost minimisation 

The assembly procedure is based upon selecting a subset of oligonucleotides from a master 

set, the subset being sufficient to make a given sequence and the master set necessary to 

make all the sequences. Some oligonucleotides will be used for every sequence whereas 

some will only be used for a subset of sequences. A given oligonucleotide will be used in 2n-

a sequences where ‘n’ is the total number of mutant sites in the library and ‘a’ is the 

number of mutation sites present in a given oligonucleotide. Conversely, in order to be able 

to build a full library 2a versions of a given oligonucleotide containing ‘a’ mutant sites will 

be required. It is thus in the interest of the experimenter that the number of mutant sites 

per oligonucleotide be minimised. To minimise the number of oligonucleotides necessary 

for a complete set, situations where a cut site occurs within a mutation site should be 

avoided, as this would cause the mutation site to be doubly represented in terms of the 

number of oligonucleotides necessary. 

 The OptiCut algorithm can detect when a cut site occurs within a mutation site. In 

this event, the algorithm will attempt to adjust the cut site position as minimally as possible 

so as to take the cut site out of the mutation site. This will most likely have an effect on the 

distribution of overlap melting temperatures and the resulting RMSD. In the event that this 

option is enabled, both the normal output and the minimised output will be displayed in 

the output. 

7.8. OptiCut Graphical User Interface 

The OptiCut algorithm is associated with a GUI that allows users unfamiliar with MATLAB to 

use the optimisation algorithm. The GUI was written using the MATLAB’s GUIDE GUI tool. 

All GUI screenshots displayed here are taken on Windows 7 with Aero desktop features 

enabled. The graphical features of the GUI may appear differently on other operating 

systems. The code for the OptiCut GUI is presented in appendix A.3.1. 
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Figure 7.12: Screenshot of the OptiCut GUI on opening. Panels separate the key controls 
and graphs in the middle show the performance of the algorithm. 

The GUI uses panels to separate the controls and displays. Certain controls (such as the 

Optimise and Export controls in figure 7.12) are disabled and appear greyed out until the 

necessary information to make the button functional is supplied by the user. Default values 

are provided where possible but can be modified as required. Button presses will be 

necessary in order to enact the changes in these user inputs: The Optimise button will have 

to be pressed for OptiCut to enact a change to the ‘#oligos’ or ‘#interations’ text input 

boxes. 

 The ‘Browse…’ buttons open dialogs for the user to select files appropriately. 

Whilst the input file ‘Browse…’ dialog requires the file selected to exist, the export file 

‘Browse…’ dialog can be pointed to a file that does not exist, in which case the appropriate 

file will be created, or to a file which already exists, in which case the file overwrite dialog 

will be displayed. 

 The Messages panel interactively displays messages, suggesting the next step of 

the optimisation process. It is also used to explain errors that may occur, such as when the 

cancel button is pressed during the ‘Browse…’ dialogs. 
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Figure 7.13: Screen shot of the OptiCut GUI after running an optimisation on a sequence 
set. Note the two plots which display the algorithm performance. 

Pressing the ‘ReOptimise’ button will cause the program to repeat the optimisation 

procedure, even if no changes to the input have been made. Changes to the input.fas file 

after pressing Optimise and ‘ReOptimise’ will not be noticed. The Browse button to select 

the file must be pressed for the GUI to recognise changes in the input.fas file. 

 The histogram plot represents the distribution of melting temperatures across the 

whole overlap set. The histogram plot can be redrawn at any time using the Redraw button 

in the plot options panel. The Lower bound is the minimum limit of the x-axis whilst the 

Upper bound is the maximum limit of the x-axis. Entering a values where Lower bound < 

Upper bound and pressing Redraw will cause the program to throw an error. The plot will 

not be updated. The error is not fatal, however, and entering appropriate values and 

pressing Redraw will allow the program to recover. 

 The output panel allows configuration of the output and export of results of the 

optimisation algorithm. The ‘Export’ button is disabled and greyed out until a suitable 

filename is inputted using the ‘Browse…’ button in the output panel. Checking the .xls or 

.csv radio buttons will amend the filenames returned when selecting the filename through 
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the Output ‘Browse…’ button. Changing the radio button selection after choosing a 

filename will not, however, amend the filename suffix, although it will change the filename 

format. It is also important to note that the .xls button will cause the file to be exported at 

2007 .xlsx format. Users who do not have Office 2007 or greater or the compatibility pack 

for Office 2003 are restricted to using the .csv export option. 

7.8.1. Sub functions and installation of the OptiCut GUI 

The main GUI function is called OptiCutGUI.m. Running this file on any machine with 

MATLAB installed will cause the GUI to run. The following functions must also be present: 

GroupCutINIT.m which contains the optimisation algorithm and GroupCutOutput.m which 

formats the optimisation algorithm output suitable for printing to a file. GroupCutINIT.m 

and GroupCutOutput.m are presented in appendix A.3.2 and A.3.3, respectively. 

A histogram plotting function used by GroupCutGUI.m was written when the inbuilt 

MATLAB histogram function was found to lack the necessary flexibility. This histogram 

plotting function can be found in plothist.m (see appendix A.3.4). Similarly, a novel 

heteroduplex melting temperature function was written when the MATLAB Bioinformatics 

Toolbox was found to not possess a function to determine this information. This function 

was built around the melting temperature algorithm reverse engineered from IDT 

SciTools28,30. The function is called HeteroDimerMeltingTemp.m (see appendix A.3.5). The 

melting temperature of homologous overlaps was determined by the SantaLucia method, 

see section 7.1.3 and appendix A.3.6. 

The OptiCutGUI has been compiled into an executable that installs the necessary 

files onto a standard Windows PC. The program needs either a full version of MATLAB or a 

copy of the MATLAB C runtime (MCR) installed to function. The MCR is essentially a cut 

down version of MATLAB that contains the minimum necessary for software written in 

MATLAB to function. The MCR can be used royalty free. Versions of the program with and 



7. Development of OptiCut 
 

249 
 

without the MCR, the size of each is 414 MB and 1 MB, respectively. The compiled GUI runs 

identically to the GUI running natively in MATLAB. The compiled GUI cannot be edited, 

however, whilst the natively running GUI can be edited as required. 

7.9. Assembly results 

The ultimate test of the optimisation algorithm is the assembly of optimised 

oligonucleotides. The main discussion of the assembly protocol is discussed in chapter 8. 

Here a simple demonstration of the algorithm efficacy is presented. An assembly reaction 

(ligation) was performed as described in the methods (see section 4.4.8.). The result of the 

ligation reaction was then sampled and the specific sequence amplified by PCR. The 

product of the PCR was then visualised in a gel which can be seen in figure 7.14. 

Figure 7.14: Inverted colour agarose gel of 8 of 512 assembled products stained with EtBr. 
Each lane contains the product of a PCR using a sample from Taq ligase assembled 
oligonucleotides designed by the OptiCut program. 

Single, clear bands slightly larger than the 310 marker band were seen in the gel of the PCR 

products (see figure 7.14). The presence of the specific band of the right weight indicates 

that the algorithm is working as intended and is successfully generating overlap sequences 

that can be used to assemble the target sequence (as indicated by sequencing of the 

assemblies). This result contrasts markedly with many gene assembly results which 
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produce many product bands. As these alternative bands represent competing products 

that reduce the overall efficiency of the assembly of the desired product, a single band is 

significantly better. A minor, fuzzy band with a smaller molecular weight can also be seen 

on the gel. This band is probably partial amplification of incompletely assembled products 

of the ligation reaction and also the primers used in the PCR. 

To determine the error rate of the assembly reaction and ensuing amplification 

steps, PCR products were TOPO cloned and colonies were Sanger sequenced. A total of 42 

colonies from 19 separate TOPO cloning procedures were sequenced (for breakdown of 

sequencing results see table 8.2). The average error rate in all sequenced constructs was 

0.42%. This compares favourably with other gene assembly methods19,31–33. Incorporation 

of mutant oligonucleotides (heteroduplex binding events) is thought to be the major 

contributing factor to incorrect products, above the contribution of erroneous 

incorporations by DNA polymerase34. However, previous analysis of gene assembly by PCR 

has indicated that mutations in overlap regions is roughly half that in single strand 

regions19. 

7.10. Further work 

Currently, Opticut does not perform codon optimisation, but could be extended to do. 

Codon optimisation is typically employed when sequences are to be expressed as protein; 

particularly when a protein is from one species and is to be expressed in another. Reverse 

translation of a desired protein sequence in a given species could also be implemented. In 

the case discussed herein, the DNA sequences themselves are the active elements, and are 

not meant to be expressed as protein. As such a codon optimisation module was not 

implemented. Change of codons could also be employed to minimise the mutation-site 

dependant melting temperature variation as seen in columns in figure 7.5, although any 
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codon changes would have to be made with regards to the efficiency with which that 

codon was translated in the target organism. 

 The most commonly used method for gene assembly, particularly of long genes, 

involves PCR using overhanging primers. As discussed in the introduction (see section 7.1.) 

this is not suitable for the application used here. OptiCut could be modified to perform 

optimisations on oligonucleotides designed for a PCR-based assembly process. 

Here, the OptiCut program is applied to a set of sequences that are all largely 

identical. The OptiCut program could equally be applied, as efficiently, to sequences with 

more significant differences. The current program, however, will not accept inputs that 

have sequences with non-uniform lengths. Modification of the initial overlap positioning, 

handling of variable numbers of overlaps per sequence would be required. The main 

algorithm would be largely unchanged apart from looking up overlap positions on a per 

overlap basis rather than using the same positions for every sequence. 

The competitor identification module currently only considered interactions 

between oligonucleotides and not self-interactions within the same nucleotides. The 

module could be developed further to include consideration of these loops. Thus giving the 

user more confidence that the oligonucleotide set selected would function as intended. 

The major weakness of this assembly method is the mutation-site sequence 

dependant melting temperature variation, as mentioned in section 7.4. This variation 

cannot be completely avoided as the mutation site must be, by definition, different to the 

wild-type site. The differences could be minimised however and an additional module 

could be developed for the suggestion of mutation sites. On one level, the module could 

suggest mutation sequences that result in minimal change in melting temperature over the 

site for the user to check with the BiFa tool for suitability. On another level, the module 

could communicate with the BiFa tool or the TRANSFAC database itself to determine 
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whether the mutation removed the target site without affecting neighbouring sites or 

introducing additional sites. 

7.11. Conclusions 

This chapter describes the OptiCut algorithm and associated GUI which allows the user to 

optimise oligonucleotide sequences for ligative assembly reactions. Currently available 

sequence optimisation software does not provide oligonucleotide sequences that can be 

used in the assembly of several related DNA sequences. The OptiCut software described 

herein can be used to define a set of sequences that can be used to assembly a library of 

related sequences. The key conclusions of this chapter are: 

 The OptiCut program (described in section 7.2.) can be used to optimise sequences 

for a library containing hundreds or thousands of individual sequences rapid and 

efficiently. 

 OptiCut has an easy-to-use and clear GUI and option for .xlsx or .csv outputs 

(described in section 7.8). 

 Optimisation scales linearly with number of sequences (see section 7.6). 

 The algorithm can be run on any Windows desktop computer (provided either 

MATLAB or MCR are installed). 

 Proof of concept has been obtained through a successful assembly of OptiCut-

optimised oligonucleotides (see section 7.9). 

The OptiCut program is small, cheap in terms of system resources and can be installed and 

run on large proportion of computers. These facts should facilitate the programs use by 

researchers investigating problems by the use of similar mutant libraries. 

 In its current form, the goodness of the optimisation result is dependent on the 

variation present in the input sequence and the number of oligonucleotides per strand. The 
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OptiCut algorithm is not currently setup for optimisation of overlaps for assembly by, for 

instance, polymerase-based assembly.  
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Chapter 8 

8. CRM library assembly 

The CRM mutant library was created by DNA assembly. DNA assembly was employed so 

that all the variants in the combinatorial mutant library of CRM-B could be assembled 

rapidly and in parallel. Two gene assembly methods were used here. The first, Gao 

synthesis1, involves the simultaneous synthesis of all the oligonucleotides required for 

every sequence on a microfluidic chip. The sequences are then removed from the chip for 

simultaneous, one pot assembly. The second, OptiCut assembly, was employed due to 

difficulties in obtaining full length sequences from the Gao assembly. In OptiCut assembly, 

the sequences are assembled separately in parallel using multiwall plates. These successful 

assemblies were then. The Gao assembly was only partially successful even after significant 

optimisation. As a result, the OptiCut assembly process was developed so as to obtain 

successfully assembled sequences for testing in chapter 9. In contrast to the Gao assembly 

process, the OptiCut process uses separately synthesised oligonucleotides that are 

optimised using the OptiCut sequence optimisation algorithm described in chapter 7. A key 

step of the assembly process described in this chapter, the accurate and equimolar mixing 

of oligonucleotides prior to assembly, was performed in the microfluidic device described 

in chapter 6. 

This chapter firstly describes the optimisation of the Gao assembly and the analysis 

of the partial success, in section 8.2. Secondly, the OptiCut assembly process is described in 

section 8.3. Finally, the possible further work is discussed in section 8.4 and conclusions are 

drawn in section 8.5. The flow chart depicted in figure 8.1 represents this. 
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The assembly process was first optimised on the bench top and thereafter the same 

process was used to the assembly of mixtures made using the microfluidic device 

described in chapter 6. 

 

Figure 8.1: Flow chart outlining the two attempted CRM library assembly processes. 
Initially, the Gao assembly path was expected to yield assemblies for cloning and testing. 
Due to the failure of the Gao assembly (as denoted by the dashed arrow), the OptiCut 
assembly process was employed and the failure of the Gao assembly process was analysed. 

8.1. Introduction to gene assembly 

8.1.1. Current gene assembly methods 

The first assembly of a synthetic double stranded DNA molecule was reported more than 

40 years ago. In 1970 Agarwal et al. assembled in vitro a 77 base pair sequence that 

encoded a yeast alanine transfer RNA2 19. The first synthesis of a gene more than 1 kb in 

length was performed by Ferretti et al.34. Most recent development of gene synthesis in 

the last 5 years has focused on synthesising longer constructs. A milestone was reached 
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recently when an entire genome was synthesised5,6 with implications for the development 

of so-called ‘synthetic life’. 

 Several methods exist for the synthesis of large numbers of genes in parallel7,8. 

Other gene synthesis methods which were investigated for their suitability are TopDown9, 

TBIO 10, overlap extension PCR11–14 and dual-asymmetric PCR13 . Various gene assembly 

methods have been reviewed previously15. The ligase chain reaction (LCR) method has been 

used successfully in gene assembly16. The advantages of LCR based gene are principally the 

minimal use of polymerase compared to PCR based approaches. Genes assembled by the 

LCR method are regarded to be of higher quality, or possessing fewer errors, than PCR 

based methods. LCR based approaches require more DNA template ad every base of the 

final gene sequence is synthesised twice. In PCR based approaches, most bases are 

synthesised once with only base pairs in the overlap regions being synthesised twice. 

8.1.2. DNA assembly of the CRM 

At 300 base pairs the CRM is a relatively short sequence of DNA for an assembly reaction. 

Furthermore, since the mutation sites are not scattered uniformly along the sequence, 

instead clustering towards one end, the density of sites is high. The most frequently used 

DNA assembly method is PCR-based: Long primers of 50-100 base pairs are designed with 

short regions of homology 15-20 base pairs long between them. A PCR then fills in the gaps 

between the primers. See figure 8.2 (right panel) for a diagram of the PCR-based gene 

assembly method. The oligonucleotides overlap with each other and leave gaps between 

each oligonucleotide on each strand. The overlapping portions of the oligonucleotides then 

act as primers for a DNA polymerase to fill in, making a contiguous sequence. The CRM 

could be fully described by 3-6 PCR primers of this type. However, due to the concentration 

of sites, there would be 5-6 sites on just one of the primers. In order to describe the whole 

mutant library, therefore, 25-26 (32-64) versions of a single primer would be necessary. If a 
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mutation site occurred within an overlap region then the variants of both primers would be 

affected. Finally, analysis of the final sequence from previous PCR assemblies have 

indicated the rate of error in single strand regions is higher than double strand regions17. 

Due to the high density of sites and the requirement for high sequence fidelity, the ligative 

assembly approach was selected as the preferred method by which to generate the library. 

The oligonucleotides used for ligative assembly, shown in figure 8.2 (left panel), 

differ from those used for PCR-based assembly in that there are no gaps between 

oligonucleotides on the same strand18. Instead, both strands are contiguous, which 

removes the requirement for a polymerase step to fill in the gaps. A DNA ligase can be used 

to ligate pairs of oligonucleotides together. A high temperature ligase, such as Taq ligase, 

can be used. Correctly annealed overlapping oligonucleotides will anneal at a higher 

temperature than improperly annealed oligonucleotides that are only partially 

complementary. Taq ligase, active at 40 – 60°C, will actively ligate at a higher temperature 

than other ligases, such as T4 DNA ligase. Therefore, by using Taq ligase at a high 

temperature it is less likely that incorrect assemblies will be produced. 
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8.1.3. Literature examples of library assembly 

Libraries of mutants are typically used for directed evolution studies that seek to optimise 

sequence-function relationships without a priori knowledge of mechanism. There are 

several methods of creating libraries, such as error-prone PCR, mutator strains, 

oligonucleotides or recombination, that are suited to different applications19. 

Mutant libraries could be created by progressive site directed mutagenesis (SDM) 

of plasmids. SDM involves amplification of a sequence with primers that contain a 

mismatch in their binding site. The product of the reaction will contain the sequence of the 

primer rather than of the template, thus introducing a mutation. Due to the annealing 

limitations of the primer, SDM is typically limited to altering ≤3 bp of contiguous sequence. 

Furthermore, an amplification step is required for every additional mutation required. As 

each amplification involves the risk mutation, it is likely that mutations would be added 

during the production of a whole combinatorial library of sequences by SDM. The use of 

SDM is generally limited to the modification of enzyme properties20–22. Such directed 

evolution studies will also make use of random SDM and error prone PCR 23,24. Previous 

work utilising SDM includes modifying properties of GFP25.  

Recombinant libraries of various genes have been produced in the past: 

 Bacterial lipases recombined by a primerless PCR method26. 

 Recombinant human collagen variants produced by modular recombination of 

gene-coding fragments27. 

 Recombination of 15 subtilisin gene variants through a spiked overlap extension 

PCR method followed by clonal selection28. 

 Synthetic antibodies produced without DNA amplification, although gel purification 

and clonal selection were employed29.  



8. CRM library assembly 
 

261 
 

None of these methods are suitable for the library in this case due to the 

constraints of working with a regulatory module in a high-throughput, parallel manner. The 

requirement that the sequence outside of the mutations sites remain unaltered means that 

recombination based upon restriction enzymes is not suitable. The high density of the sites 

precludes the use of a PCR-based approach. 

Libraries described in this chapter represent an advance from other recently 

developed methods, such as systematic evolution of ligands by exponential enrichment 

(SELEX)30. The SELEX method makes use of barcode tags, randomised sequences and 

Illumina sequencing to identify the sequences which transcription factors bind to in 

mammalian cell lines. Although the application of our method is similar to that of SELEX, 

the sequence length (14 bp in SELEX) is small compared to the sequence length by our 

method and randomly generated. The study of libraries composed from larger sequences is 

important in order to elucidate the interactions between transcription factors that may 

have binding sites separated by 100s of base pairs. Random mutations could be 

incorporated through the application of oligonucleotides containing randomised sequence 

in specific base pair positions. 4n variants would be produced, where n is the number of 

bases in the varying region. Successful base pairing could then be achieved by generating 

complementary oligonucleotides with random sequence in the relevant positions. 

Downstream analysis could then be employed to identify specific mutants after a selective 

assay step. 

8.1.4. Downstream separation 

The Gao assembly is a one-pot assembly where the oligonucleotides necessary to assemble 

every sequence in the library is present in the reaction mixture. In previous examples of 

one-pot assembly the full length sequences possess unique primers7 or are easily separable 

on the basis of length. In this case, the number of variants to be synthesised (several 
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hundreds) means that separation by primer variation prohibitive. Furthermore, the 

sequences were all of the same length, which makes separation on sequence length 

impossible. Clonal selection is a viable solution to separation of the variants, but would 

require many more samplings from the set than unique members of the set. Furthermore, 

the likelihood that a given sample would contain a mutation means that several members 

would have to be sampled several times. 

 To estimate the number of samplings that would be necessary to be reasonably 

certain of selecting every member of the set, bootstrapping was performed. This 

bootstrapping was performed using a script written in MATLAB (see A.2). From the 

bootstrapped results, the probability distribution function (PDF) and the cumulative 

distribution function (CDF) can be plotted. 

 

Figure 8.3: Bootstrapped PDF (solid blue histogram) and CDF (red line) of number of 
samplings required to select every member of a set of 512 sequences at least once based 
purely upon random selection. Note that the CDF approaches but never reaches 1 and that 
the most likely number of samplings necessary is equal to the mode of the PDF. 
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In figure 8.3, the PDF and CDF the represents the likelihood that, having sampled a specific 

number of times, the whole population would have been isolated. The CDF is asymptotic to 

a probability of 1: i.e. It is necessary to sample an infinite number of times to be certain of 

having sampled the whole population. Using the CDF, the number of samplings required to 

be 95% certain of having sampled the population is determined to be 4725. Random 

mutations in a sequence mean that each sequence is likely to need to be synthesised more 

than once. A representative error rate and the overall sequence length are required to 

estimate the effect on the sampling described. 

8.2. Optimisation of the Gao assembly protocol 

The Gao assembly process was developed by a group from the University of Houston led by 

Xiaolin Gao and is described in section 4.4.3. Briefly, the Gao assembly process consists of 

several distinct steps: The oligonucleotide sequences are designed and synthesised. The 

synthesised oligonucleotides are cleaved from the chip and amplified by ligator PCR. The 

generic oligonucleotide primers are cleaved off. Finally, the assembly of the full length 

sequence is attempted from the amplified constituent oligonucleotides. See figure 4.4 for a 

summary of this process. 

8.2.1. Gao assembly sequence optimisation 

The Gao lab used several pieces of software to produce the oligonucleotide sequences 

prior to synthesis. The primary software was called SeqZego, written by Dr. Rafal Debrek. 

At the time of writing, this software was unpublished and not freely available. The primary 

function of SeqZego was to produce overlapping oligonucleotides. A range for the number 

of oligonucleotides and their lengths could be selected. Selecting incompatible values, 

however, produced an error. By exploring the additional functions of the SeqZego program 

it was noted that checking the “Tm optimisation” box would result in truncated 

oligonucleotides being presented in the output. Since such oligonucleotides would not be 
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able to produce successful assembled sequences, the Tm optimisation offered by SeqZego 

was not utilised. The cut positions and overlaps were, therefore defined arbitrarily. The 

wide variation of overlap melting temperatures that resulted from this sequence approach 

was not considered not be an issue by members of the Gao lab. 

 The generic primer sequences that are added to each of the oligonucleotides can 

also be added by SeqZego. Once the oligonucleotide sequences were determined the 

output was written to files readable by Microsoft Excel. A script was written in MATLAB to 

confirm whether these oligonucleotides were indeed capable of forming correct 

sequences. The script tried to reconstruct each of the input sequences from the 

oligonucleotides present in the output. This script would produce a descriptive error 

whenever a sequence could not be assembled. 

8.2.2. Oligonucleotide mixture amplification 

The first step in the Gao assembly procedure is the one-pot amplification of all the 

oligonucleotides cleaved from the synthesis chip. The cleavage of the synthesis chip was 

performed as described in section 4.4.4. Once cleaved, all the synthesised oligonucleotides 

from the synthesis chip are present in 10 – 20 µL of deionised water. Each oligonucleotide 

is thought to be present at the femtomolar level. To obtain sufficient oligonucleotides for 

the assembly procedure, the cleaved oligonucleotide mixture is amplified by PCR. The 

synthesis work was performed at the University of Houston, US. The cleaved 

oligonucleotides were then assembled, amplified and assessed at the University of 

Warwick, UK. 

Temperature during in the primer annealing step of the PCR has an effect on the 

amount of PCR product produced. To test this relationship a gradient PCR was prepared 

where the annealing temperature was varied between 45 and 55°C. 
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Figure 8.4: Effect of changing annealing temperature on oligonucleotide amplification. 
The annealing temperatures at 45, 47, 48 and 49°C in lanes 1-4 and 51, 52, 53 and 55°C in 
lanes 6-9. 

The oligonucleotide primer melting temperature is estimated to be 50°C and effectiveness 

of the PCR when the temperature of the annealing step was increased over 50°C. Figure 8.4 

shows that the temperature of the annealing step does not reduce the amount of 

oligonucleotide amplified at each temperature. The other synthesised CRM yielded similar 

results to the results shown here. The two expected band sizes are 123 and 84 base pairs. 

There is a weak band visible that is nearest in size to the 150 base pair marker. This band 

was unexpected and was not part of the synthesis. Furthermore, there is a significant high 

molecular weight smear in each lane that could indicate a non-specific amplification. 

8.2.3. Oligonucleotide mixture digest 

The first step of the Gao assembly process once the cleaved chip oligonucleotides have 

been amplified is to digest off the short oligonucleotide primer sequences that were used 

in the amplification of the oligonucleotides. The oligonucleotide primers sequences 

contained a recognition site for a type IIS restriction enzyme, in this case MlyI. The 

recognition site was placed so that the cut site would excise the complete oligonucleotide 

primer sequence. 
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Figure 8.5: Gel of digested oligonucleotide cleavage mixtures from the Gao synthesis 
chips for two CRMs. Lane 1 contains a sample of the undigested template DNA whereas 
lane 2 contains a sample of the template DNA digested with MlyI.  

The oligonucleotides from the amplification PCR were digested according to the protocol 

described in section 4.4.5. Figure 8.5 shows the oligonucleotide mixture before and after 

digestion for two amplified oligonucleotide cleavage products. The successful reaction can 

be seen by comparing lane 1 and 2: Before digestion with MlyI there are two higher 

molecular weight bands which correspond to the long and short possible oligonucleotide 

sequences (see figure 8.5). After digestion, the two higher molecular weight bands have 

disappeared and been replaced by two lower molecular weight bands. Additionally, a new 

very low molecular weight band can now be seen in the digested lane. This new band 

corresponds to the primers sequences that have been cut off from the larger 

oligonucleotide sequences. The expected band sizes are 123 and 84 before digest which 

convert to bands of 77 and 53 base pairs respectively after digest. The cleaved 

oligonucleotide primer sequence is 15 base pairs in length. 
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8.2.4. Gao Assembly PCR 

The oligonucleotides are ready to undergo ligative assembly once the oligonucleotide 

primers have been fully digested. Using a restriction enzyme that leaves only blunt ends, 

such as MlyI, and a ligase that only ligates overlapping or nicked strands, such as Taq ligase, 

means that removal of the cut oligonucleotide primers from the reaction mixture before 

ligation is unnecessary. The ligation of the digested oligonucleotide mixtures was carried 

out as described in the methods (see section 4.4.6). Once the ligation reaction was 

complete, an aliquot was taken and a PCR amplification along the full length sequence.  

 

Figure 8.6: Gel of amplified assembly reaction products. The basic assembly reaction 
protocol was followed. A gradient annealing temperature step was performed in the 
amplification. Lane 1: Ladder. Lane 2-5: 45, 50, 55, 60°C annealing temperature. 

Figure 8.6 shows gel which exemplifies the output from the Gao assembly PCR after ligation 

of the digested oligonucleotides. There are no bands of the expected size (335 base pairs) 

in the gel shown on figure 8.6. It does not appear that the assembly of the oligonucleotides 

into full length sequences was successful. The bands that are visible, however, are of 

different size than the bands present in the cleaved oligonucleotide mixture that was the 

template for the amplification. Indicating that some form of assembly other than what was 
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intended has occurred. Furthermore this assembly was, at least partially, able to be 

amplified in the ensuing PCR. The band sizes are approximately the same as the undigested 

oligonucleotide cleavage mixture, as seen in lane 1 of figure 8.5, indicating that the failure 

could have been simply due to the wrong substrate being used. Repeated experiments, 

however, with the freshly digested oligonucleotide cleavage mixture yielded similar results. 

 No separation of the digested ends from the digested oligonucleotide cleavage 

mixture could result in the simple religation of the ends in the assembly reaction. As Taq 

ligase only ligates blunt ended fragments, however, this is unlikely. Incompletely 

synthesised strands could result in strands that do not possess the binding site for the 

restriction enzymes, but do possess sufficient overhang for the binding of ends digested 

from fully synthesised strands. It is possible that these ends were able to catalyse PCR on 

the incompletely synthesised strands, resulting in a re-emergence of the complete, 

undigested-like sequence after the reaction. This process, however, would need to be the 

dominant reaction in order to amplify exponentially. Since the first step after the cleavage 

of the chip is to amplify the chip oligomix, the vast majority of the strands are likely to 

complete as they result from the amplification reaction, not the chip synthesis which is 

likely to be incomplete. This side reaction is, therefore, unlikely to have taken place. The 

alternative explanation, that the major products of the reaction are simply coincidentally 

approximately the same size as other sequences used previously, becomes the most likely 

explanation. 

8.2.5. Changing concentration of oligomix 

The failure of several attempted assembly reactions, as described in section 8.2.4, implied 

that the ligative or PCR steps were at fault. In the following section, the process whereby 

the Gao assembly ligation reaction conditions were optimised is described. During this 

process, the key parameters that were varied are the concentration of the oligonucleotides 
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in the assembly reaction, the number and type of temperature cycling that the ligation 

mixture undergoes. The results shown here are a selection from the multiple assembly and 

amplification reactions that were performed.  

 

Figure 8.7: Comparison of oligonucleotide concentration on the Gao assembly reaction. 
The four left hand lanes are all at a high substrate concentration whilst the four right hand 
lanes are all at a low substrate concentration. 

Figure 8.7 compares high and low concentrations of the oligonucleotide mixture template. 

As described in section 4.4.6, the high concentration is approximately 4 µg template, 

whereas the low concentration is approximately 0.5 µg template. Interestingly, a lower 

oligonucleotide concentration results in the presence of more bands in each lane. It is 

possible that each band is amplified from a partially ligated template that was not fully 

ligated. The amplification uses primers specific to sequences on either end of the full length 

assembled sequence. Amplification by these primers, therefore, indicates that the 

oligonucleotides in the middle of the assembly are not selective as there exist several ways 

of getting from the forward to the reverse primers. It is possible that the primers were ar 

fault. The primers were obtained from the Gao lab and the same primers were used 

throughout. The oligonucleotide amplification primers, however, worked consistently (see 

section 8.2.3) and were synthesised using the same method. 
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The presence of more bands in the lower substrate concentration conditions could 

be due to the lack of inhibition of the ligation reaction by truncation mutants or otherwise 

unligatable oligonucleotides. Despite the presence of more bands, no strong bands are 

observed. The bands can be seen in lane 1 (high concentration) is probably due to a 

contamination of the PCR mixture in this lane. 

8.2.6. Changing the conditions of the post-assembly PCR 

After initial difficulty with the assembly, the paper by Smith et al.39 was used as a source of 

an assembly method, see section 4.4.7 for description of method. The effect of the use of 

an alternative assembly method can be seen in figure 8.8. 

The assembly reaction mixture was put through a series of temperature cycles 

during the ligation step. At the start, the solution is heated to a temperature sufficient to 

melt all DNA double strands in the reaction mixture. The mixture is then slowly cooled and, 

ideally, each oligonucleotide would bind to its complementary partner(s). A portion of the 

oligonucleotides, however, will bind to partially complementary or mutated partners that 

are inevitably present in the reaction. By cooling the mixture slowly, and using a high 

temperature ligase, the most complementary oligonucleotides anneal and care ligated first. 

The improperly pairs oligonucleotides are then given successive opportunities to bind to 

their intended partners by cycling the reaction mixture from a high melting temperature 

(95°C), through a slow cool (over ~15 minutes) to a baseline temperature (~40°C). The 

probability that mutated oligonucleotides are incorporated into the assembled sequence is 

reduced by maintaining a relatively high baseline temperature, above which these 

oligonucleotides will not significantly anneal. 
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Figure 8.8: Gel of amplified assembly reaction for two CRMs. The temperature cycling 
used in the protocol was modified from the Gao assembly cycling protocol in this 
experiment. Additionally a gradient was applied during the PCR reaction: The annealing 
temperature of lanes 1-6 and 8-13 were 45, 48, 50, 55, 60, 65°C respectively. The lanes on 
the left side of the ladder were run with a high oligonucleotide concentration whilst the 
lanes on the right hand side of the marker were run with a low oligonucleotide 
concentration. 

A range of primer annealing temperatures was employed in the reaction shown in figure 

8.8 to whether the issue was with the PCR step rather than the assembly step, which had 

been modified thus far. It was expected that as the melting temperature increases, the 

primers would not be able to anneal to the template and the amount of product would 

decrease. As can be seen in figure 8.8, however, there are bands present in every lane. This 

observation would seem to indicate that the PCR using the full assembly primers is having 

no effect on the products and that the bands are present from prior to the amplification or 

that some component of the template mixture is able to prime even at temperatures 

>65°C. Several high molecular weight bands can be seen in figure 8.8 indicating that the 

assembly has been at least partially successful. None of these bands, however, are of the 

expected size of 335 base pairs. Multiple, spurious bands are regularly reported in this type 

of parallel, one-pot gene assembly35. 

To identify what had been amplified several of these bands were excised, purified 

and cloned into TOPO vector. The resulting plasmids were sequenced. The resulting 
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sequencing traces were uniformly unreadable. It is likely that the band is comprised of 

several distinct sequences that would make sequencing accurately impossible. 

8.2.7. Use of alternative primers 

The use of full length sequence primers necessitates that sufficient copies (105) of the full 

length sequence were successfully ligated. The sequencing data from the bands that could 

be synthesised indicated that a portion of the internal sequence had been assembled 

correctly. Furthermore, the primers used for the full length sequence amplification step 

were obtained from the Gao lab. These primers were of an artificial sequence and so there 

was no positive control to ensure that the primers themselves were working and able to 

amplify sequences that possessed the appropriate sequences. The assembled sequence, 

however, was natural and so a set of primers was obtained to an internal portion of the 

sequence. 

 

Figure 8.9: Gel of amplification products comparing old and new primers. Unassembled 
(lane 1 and 4) and assembled (lane 2 and 5) template using high (left hand pair) and low 
(right hand pair) template concentrations. 
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The set of primers used in the amplifications shown in figure 8.9 are specific to internal 

sequences within the CRM sequence being amplified. Clear, strong bands can be observed 

at the expected product size of 239 base pairs. This presence of this single strong band 

indicates that the assembly was at least partially successful; the middle section of the 

sequence had been ligated and was able to be amplified. Weaker bands can also be seen at 

lower molecular weights as well as significant smears at both higher and lower molecular 

weights. 

To determine which of the ends of the assembled sequence had failed to ligate 

and/or which if the original primers were at fault a PCR was performed using different 

combinations of the primers. For simplicity, the original full length primers were called P1f 

and P1r and the new set of primers was called P2f and P2r. Four possible combinations of 

the two pairs of primers were used to amplify a typical ligation reaction mixture. The gel of 

the PCR products is shown in figure 8.10. 
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Figure 8.10: Amplification of Gao ligation products using internal/external primer 
combinations. Note the single, strong band in lane 4. 

There is a single strong band present in lane 4 of figure 8.10. This band corresponds to the 

internal portion of the CRM which is being successfully amplified by the new primer pair. 

Additional weaker bands are visable which could be indicative of a competative binding 

interaction between two oligonculeotides present in the oligonucleotide mixture. 

Furthermore, there are weak bands in each of lanes 2 and 3. These weaker bands 

correspond to the expected sizes of the corresponding products: P1f/P1r, 335 base pairs. 

P1f/P2r, 296 base pairs. P2f/P1r, 278 base pairs. P2f/P2r, 239 base pairs.  

 This result appears to indicate that it was the fragment amplification primer was at 

fault during the preceeding optimisation process. It is possible that the primers provided by 

the Gao lab were unsuitable for the amplification of the full length sequence. The presence 

of weak bands in lanes 2 and 3 of figure 8.10 indicate that these primers are capable of 

producing a small amount of product of the appropriate size. To test this, new versions of 
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the Gao-sunthesised primers could have been ordered and used in the amplification of the 

full length assembly. Due to constraints of time, however, this was not performed. 

 The amplification product (strong band in lane 4) of the shorter primer pairs (239 

bp) was isolated by gel purification and TOPO cloned. The resulting plasmid was then 

sequenced with TOPO specific primers. An example trace can be seen in figure 8.11. 

 

Figure 8.11: Sequence traces indicating partially successful assemblies of the Gao 
oligonucleotides. Four mutation sites are indicated by the overlay. The two alternative 
sequences (wild-type and mutated) are shown for the mutation sites. 

Whilst the sequencing quality was generally poor, the sequence trace shown in figure 8.11 

was obtained. Several mutation sites can be identified in the sequence trace. Generally the 

two highest traces correspond to the two expected bases at a given position of the 

mutation. Outside of the identified mutation sites the trace is generally clearer with single 

strong traces being observed. However, there are cases outside of the mutation sites 

where there are significantly high secondary traces. It is difficult to draw any conclusions 

from the available sequences beyond the fact that a portion of the several of the variants 

has been successfully assembled and amplified. 
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8.2.8. Reasons for failure of the Gao assembly 

During the oligonucleotide sequence selection step, before any oligonucleotide selection 

has taken place, the Gao lab use several programs to attempt to determine whether there 

are likely to be any significnat competative binding events. Although the program did 

identify likely interactions, the melting point of these interactions signifncantly below the 

intended interactions. It is possible that an unidentified binding interaction, such as a 

hairpin loop, could have occurred that sequestered the oligonucleotides from the ends of 

the sequence away from the ligating strand, thus preventing the full length sequence from 

successfully assembling. Interactions of this type could be avoided by assessing the 

potential of oligonucletoides to form hairpin loops during optimisation. The method of 

competitor identification, described in section 7.5, could be modified for this task. Once 

identified, the lengths of oligonucleotides with a significant chance of forming hairpin loops 

could be changed such that cut sites appear within the looping region. 

 The synthesis chip contained 4096 wells in a roughly square configuration. The light 

that deblocks a given well is focussed in the centre of the chip, meaning that the light 

becomes progressively less focussed towards the periphery of the chip. Members of the 

Gao lab recommended that all the sequences to be synthesised should be placed as close 

to the middle of the chip as possible, avoiding the perphery, for this reason. The synthesis 

chip did, however, possess quality control sequences in the periphery wells to which a 

tagged probe was bound to ensure that synthesis had occurred successfully even in this 

peripheral wells. The quality control sequences bound their probes, indicating that 

synthesis was successful right up to the periphery of the chip. 

The quality of the oligonucleotides produced by the Gao synthesis method is not 

quantified. No purification was performed on the chip oligonucleotides prior to 

amplification and assembly. It is possible that the presence of truncation mutants inhibited 
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the Gao assembly. Oligonucleotides synthesised close to the periphery of the chip are more 

susceptible to mutation as light used to direct the synthesis reaction is less focussed than in 

the centre of the chip. As a result, correct full length examples of some sequences will not 

be present in equimolar concentrations as others. 

In order to synthesise the 512 member library, two strands of each sequence are 

required. Each strand was specified to be split into 6 oligonucleotides, which implies a total 

of 6144 oligonucleotides. Since the chip only contained a maximum of 4096 wells, some 

oligonucleotides, the oligonucleotides that occur in every sequence were not repeatedly 

synthesised. The resulting oligonucleotide mixture, therefore, did not contain each a molar 

ratio of each oligonucleotide equal to frequency with which that oligonucleotide would be 

required for the assembly of every sequence. This lack of equimolarity in the original 

oligonucleotide mixtures is likely to have had a detrimental affect on the success of the 

assembly reaction. 

The quality of the SeqZego optimisation that the oligonucleotide sequences were 

obtained from was quite poor. Figure 7.11 (left) shows a histogram of the melting 

temperature of all the overlaps in the oligonucleotide set. The melting temperatures range 

from 54 to 70°C with a  fairly uniform distribution indicating that the oligonculeotides will 

assemble across a wide range of temperatures. This lack of optimisation could mean that 

the higher melting temperature sequences are either annealed non-selectively at lower 

temperatures leading to improper or truncated sequences being produced.  

8.3. Opticut assembly 

Due to the difficulty in obtaining full length sequence products from the Gao gene 

assembly method an alternative gene assembly method was developed. Fully optimised 

individual oligonucleotides were to be bought from commercial sources. The advantages of 

taking this change in approach were as follows: 
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1. Oligonucleotides would be of known quantity, quality and concentration, allowing 

precise equimolar mixing of the assembly components. 

2. Oligonucleotide overlap sequences could be optimised using OptiCut and therefore 

exhibit a smaller range of melting temperatures. 

3. The OptiCut assembly was multipot, requiring no downstream separation or 

sampling. 

Buying oligonucleotides of known purity meant that all the necessary oligonucleotides 

were present in the assembly solution at a sufficient concentration was known with a high 

degree of confidence relative to the Gao method. Furthermore, because the 

oligonucleotides used in the assembly reaction did not need to be amplified prior to use 

there is less chance of mutations being introduced as a result of the PCR amplification. This 

reduced need for amplification was expected to be observed in the error rate of the final 

sequence. 

8.3.1. OptiCut optimised oligonucleotide assembly 

The assembly of the OptiCut optimised oligonucleotides was comparatively much simpler 

than the Gao assembly. A simple slow cool with several cycles was employed for the 

ligation reaction as described in the methods section 4.4.7. Once complete, an aliquot of 

the assembly reaction was sampled amplified using specific primers to the full length 

assembly. The gel of the product of several such reactions can be seen in figure 8.12.  
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Figure 8.12: Gel showing successful amplification of full length oligonucleotide assemblies 
(top pane) and efficiency of the purification protocol for the same (bottom pane). 

In figure 8.12, each band in the top pane is the whole of a PCR volume for a unique 

sequence from the combinatorial mutant library whereas each band in the bottom pane is 

an aliquot of the gel purification of the same band. A single strong band at the expected 

product size of 327 base pairs is observed. An additional, significantly weaker band can also 

be seen in each lane. Care was taken during the gel purification to avoid excising the weak 

band with the strong band. Interestingly, despite this care the weak band still reappeared 

in the purification check gel shown in the bottom pane of figure 8.12. 

8.3.2. Use of high fidelity DNA polymerase 

The DNA polymerase used in the amplification PCR was Taq Gold. This polymerase is for 

use with a wide variety of amplicons and boasts a low level of false positive results. Phusion 

DNA polymerase is a high fidelity polymerase which is specifically for long amplifications or 

when accuracy is particularly important. The high fidelity is due to the proof reading 
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capability of the Phusion DNA polymerase, if an incorrect base is added to the nascent 

strand then the polymerase process is halted allowing the incorrect base to be excised and 

the replication process to begin again. The manufacturer of Phusion DNA polymerase claim 

an error rate of the 1 per 4.4 x 107 base pairs. 

 To test whether the Phusion DNA polymerase could be used to amplify the ligated 

oligonucleotide mixtures a direct comparison was performed. Two oligonucleotide 

mixtures were prepared and ligated. A sample of each was then amplified by either Taq 

Gold or Phusion DNA polymerase. Other than the buffers and the polymerases the 

conditions of each pair of amplifications was identical. 

 

Figure 8.13: Gel of amplified assembly products. Comparison of polymerase types: Lanes 1 
and 2 were amplified using high fidelity phusion polymerase whereas lanes 3 and 4 were 
amplified using Taq Gold polymerase. 
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Figure 8.13 shows that high levels of the final product were only produced by the Taq Gold 

polymerase. Weak bands can also be seen in the Phusion DNA polymerase lanes, but the 

majority of the DNA appears to be in the high molecular weight smear towards the top of 

the gel. 

8.3.3. Demonstration of the necessity of the ligation step 

The necessity of the ligase step is clearly indicated in figure 8.14. An oligonucleotide 

mixture was prepared and split into two. One part received the Taq ligase whilst the other 

received no enzyme. Both mixtures were then put through the ligation procedure and 

samples taken for amplification. It is entirely possible that an effect like that observed with 

TBIO10 and other PCR based DNA assembly methods might be taking place. The DNA may 

not be fully assembling the ligase step and instead being assembled by the PCR step. 

 

Figure 8.14: Gel of products from the amplification PCR. Lanes 1-3 had ligase added to the 
assembly reaction whereas lane 4 did not. All other treatments were the same. 

Figure 8.14 clearly shows the necessity of the ligase in the two step assembly. Without the 

ligase the specific, high molecular weight band is not observed. Furthermore, the fuzzy, low 
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molecular weight band of the remaining assembly oligonucleotides and PCR primers is 

much stronger than in the other lanes (comparison of lane 4 and lanes 1-3 of figure 8.14). 

The strength of this band is due to the overlapping presence of unassembled 

oligonucleotides and PCR primers. 

8.3.4. Assembly of whole CRM-B library 

The entire of the 512 sequence CRM-B library was assembled using the OptiCut optimised 

oligonucleotide set. The assembly was carried out in 96-well qPCR plates as described in 

section 4.4.10. Samples of stored plates, sealed and cooled to 4°C, have been used as 

template for successful ligation reactions 4 months after the initial assembly and could be 

viable beyond this time frame. This could be due to the fact that the assembly is a ligase- 

rather than polymerase dependant reaction. High fidelity DNA polymerases have a 3’ to 5’ 

exonuclease proofreading activity that could result in degradation of the assembled 

sequences during storage. Taq ligase, by contrast, does not have any exonuclease activity 

and sequences can, therefore, be expected to have a longer lifetime in storage without 

purification. 

 Each assembled member of the combinatorial was assigned a global identifying 

number from 1 to 512. In addition, each sequence was associated with a string of 1’s and 

0’s that identified which sites were mutated. For instance, ‘#67 110001101’ denotes 

sequence number 67, which possesses mutated binding sequences at site positions 1, 2, 6, 

7 and 9 and wild type binding sequences at site positions 3, 4, 5 and 8. Table 8.1 shows 

every member of the CRM-B mutant library that has been assembled to date (all 512 

members) as they occur in the qPCR plates in which they were assembled. The order of 

each sequence in the library shown in table 8.1 is determined by the order in which that 

sequence’s binary code occurs in a 9-bit reflected binary code (also known as ‘Gray code’40 
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or a ‘Hamiltonian cycle’). This order was produced as a result of the MATLAB function ‘ff2n’ 

that was used to generate the library sequences. 

  

Continued overleaf 
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Table 8.1: Table of all members of the CRM-B mutant library assembled by OptiCut-
optimised ligative oligonucleotide assembly. The members of the library are arranged by 
their occurrence on the 96-well qPCR plates in which they were assembled. The binary 
code associated with each well denotes the presence of a mutated (1) or wild type (0) 
sequence present at each site in the sequence.  
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8.3.5. Sequencing of amplified assemblies 

The full length sequences were cloned into TOPO vector as described in the methods, see 

section 4.3.7, for sequencing and downstream use. Sequencing reactions were performed 

using a primer on the TOPO vector backbone point towards the cloning site. The results 

from these initial sequencing reactions were not successful (see figure 8.15). Initially high 

quality sequence quickly gave way to very low peak heights which continued for the result 

of the sequencing reaction. The sharpness of the drop in quality of sequence was indicative 

of the presence of a secondary structure in the DNA such as a hairpin loop. A hairpin loop 

would be difficult for the polymerase to bypass and would result in a significant number of 

prematurely terminated products. 

 

Figure 8.15: Sequence trace of CRM cloned into TOPO vector without addition of any 
chaotropic agents. The black bar denotes a 43 base pair region of homology. Note the 
sharp drop in sequence quality within the denoted region. 

Chaotropic agents such as DMSO41 or betaine42 are frequently added to PCR and 

sequencing reactions in order to reduce secondary structures present in the DNA. DMSO 

was added as standard to all PCR reactions performed during the assembly of the full 

length sequences. Neither DMSO or beteine agent is not usually added to sequencing 

reactions due to the fact that DMSO increases the rate of degradation of the tubing used in 

the sequencers. Whilst the addition of DMSO did not significantly affect the sequencing 
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reaction, the addition of beteine did marginally improve the signal after the signal drop 

(data not shown). Even with the improved signal:noise ratio the low quality of the 

sequence made determination of error rate during the assembly process difficult to 

determine.  

8.3.6. Palindromic regions present in original sequences 

The initial failure of the sequencing reaction with the full length sequences with traces 

indicative of secondary structures being present in the DNA led to a close investigation of 

the original sequence. A long stretch of sequence at either ends of the full sequence were 

identified as being homologous. Furthermore, when cloned into TOPO vector, the region of 

homology was increased due to palindromic sequences present in the TOPO vector 

backbone. The result of this homology was that a structure reminiscent of a Holliday 

junction43 is very likely. 

 

Figure 8.16: Diagram of secondary structure that could form in the CRM constructs that 
inhibit the sequencing reaction. The TOPO boundaries denote the start and finish of the 
cloned CRM sequence. The rest of the plasmid DNA, depicted by dashed lines, is omitted 
for clarity. Diagram not to scale. 
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The total length of the homologous region is 43 base pairs and has an estimated melting 

temperature of 73°C. The secondary structure represented in figure 8.16 is likely to be the 

cause of the sequencing failure observed. To test the hypothesis, the majority of the 

homologous region was removed by recombinant PCR of unamplified, ligated assembly 

with a new pair of primers. Sequencing of this product yielded high quality sequence traces 

from which the error rate can be accurately determined. 

8.3.7. Error rate 

All the possible sequences in the library were assembled and amplified in parallel using a 96 

well format. 5 1/3rd 96 well plates were necessary to amplify all the sequences. Of this 

library 20 distinct sequences were cloned and a total of 42 sequence traces were obtained 

sequencing a total of 12390 bases of assembled sequence. The error rate in the sequenced 

DNA was found to be 4.2 per kb or 0.42%. The data used to determine this error rate is 

displayed in table 8.2. An error rate of 0.42% implies that each sequence would have to be 

sampled an average of 1.377 times in order to be confident that at least one copy of 

correct sequence had been obtained. This value compares favourably with other reported 

error rate values17,35,44,45. Methods of improving this error rate are discussed in the 

following section 8.4. 

 Figure 8.17 shows an example alignment of 6 sequences generated in order to 

obtain sequence #505 001000000. Figure 8.18 shows the relative distribution of these 

mutation sites across all aligned sequences. Interestingly, this distribution appears to be 

skewed to the first position of the overlap. It should be noted that in this analysis the 

normalised positions 0 and 1 do not represent the 5’ or 3’ end of the synthesised 

sequences specifically. Rather 0 is the first base downstream from a cut site and 1 is the 

first base upstream of a cut site. 
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Table 8.2: Sequencing data obtained from a set of 42 sequences produced by the bench-
top OptiCut sequence assembly process. Sequence numbers are relative to those found in 
table 8.1. Binary codes represent the sites that are mutated in each sequence. Percentage 
errors are calculated assuming a total assembled length of 295 base pairs in each sequence. 
Insertions and deletions are defined and the presence of an unexpected or absence of 
expected base pair at a specific positions. Substitutions are a base pair change at a specific 
position. The types of substitutions (transversions or transitions) are not recorded. 
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Figure 8.17: Aligned sequencing data obtained from four sequencing reactions of 
sequence #505 001000000. The top sequence of the alignment is the expected sequence 
(6.25) and the sequenced sequences (seq 6.25 1-6). The assembly oligonucleotide start and 
stop points (cut sites) are indicated by the blue vertical lines dropping from the double 
strand sequence above each row of the alignment. Cut sites in the top strand are 
represented by bars reaching up to the top strand, conversely cut sites in the bottom 
strand are represented by bars reaching to the bottom strand only. Intended mutation sites 
are marked in yellow. Unintended mutations are visible in the alignment sequences. 
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Figure 8.18: Histogram of normalised mutation location showing the distribution of 
relative positions of mutations within each overlap in sequenced data. Histogram bars are 
each 0.05 units wide. 

It is impossible to know with this analysis whether the source of the mutation was the 

oligonucleotide of the strand which possesses the cut site or the strand which does not. 

The apparent skew of the normalised mutation location distribution shown in figure 8.18 

does appear to indicate that the source of some mutations is the oligonucleotide substrate 

and/or the assembly process. This is because if all the mutations were due purely to errors 

occurring during amplification then the distribution seen in figure 8.18 would be uniform. 

Unfortunately, this sample is not large enough for the apparent skew in the normalised 

mutation location distribution to be significant.  

8.4. Further work 

In this chapter, the feasibility of the creation of the library using bench-top methods is 

demonstrated. Unfortunately there are two primary downstream bottlenecks. The first 

bottleneck is the cloning of each PCR product into its target vector. To alleviate this 

bottleneck a high throughput cloning strategy is required that would allow cloning of each 
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PCR product of the into the target vector. Ideally a rapid cloning method, such as TOPO 

cloning, would be employed with a recipient vector. 

 The second bottleneck is gene expression testing of each plasmid. Currently the 

effect of each CRM is determined by measurement of the level of green fluorescent protein 

(GFP) in transient transfections in C2C12 cells by flow cytometry. This work is described in 

detail in chapter 4. Ideally the measurement of transcription from the gene of interest 

would be performed in live cells in real time. 

 A single pot assembly of the oligonucleotides could possible by combining all ~42 

oligonucleotides in a single ligation reaction. Some oligonucleotides will be expected to 

participate in multiple sequences, whereas others will only participate in a small number of 

sequences and the molarity of each oligonucleotide should reflect this. For reasons of 

sampling (see section 8.1.4), however, this is not an efficient approach to take. 

 Enzymes such as MutS digest DNA with mismatched base pairs. A band shift assay 

can then be employed to separate sequences containing mismatches from correct 

sequences46. It is possible, however, for this system not to catch mutations as two strands 

that have complementary mutations will not exhibit mismatching. Two identically mutated 

strands are extremely unlikely, however. A commercially available combination of enzymes 

called ErrASE (Novici Biotech, US) allows the cutting of mismatched sequences before 

amplification to remove these sequences from the population7.  

 Further analysis of the mutations could be performed by high throughput 

sequencing of a mixture of assemblies. A higher number of samples, >1000 sequences 

could allow the deconvolution of the two possible sources of mutation; the oligonucleotide 

substrate and/or assembly process and the amplification process. 
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8.5. Conclusions 

This chapter details the attempts to generate a combinatorial mutant library of DNA 

sequences using two related gene assembly approaches. The main conclusions that are 

drawn from this work are as follows: 

 One-pot assembly of the library using the Gao method was only partially successful. 

 The multi-pot assembly of the library using OptiCut optimised oligonucleotides was 

successful. 

 The error rate determined by traditional Sanger sequencing was 0.42 %. 

 Secondary structures, present as a result of the input sequence, whilst they did not 

prevent the sequence from successfully assembling, did make sequencing difficult. 

Unfortunately, the Gao assembly was not successful despite the attempts at optimising the 

ligation reaction and PCR conditions. Had the Gao assembly been successful, however, 

significant work would have remained in sampling the one pot assembly for mutants of 

interest (see section 8.1.4). By converting to a multi-pot assembly the full length sequences 

required could be assembled and amplified on demand. 

A key advantage of the gene assembly process used here to make mutational 

libraries over methods such as site directed mutagenesis (SDM) is that the range of types of 

mutations is increased. SDM is limited to making changes to only a few basepairs at a time. 

The gene assembly process described here can create sequences with multiple mutation 

sites in the assembled sequence in a single reaction.  

 The entire mutant library is now assembled, amplified and purified as linear DNA 

and is ready to be cloned into any appropriate vector. The sampling of this mutant library 

and regulation of gene expression experiments are discussed in chapter 9.  
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Chapter 9 

9. Analysis of CRM position-effect and mutant constructs 

As described in chapter 1, there are two models of CRM action, the billboard and 

enhanceosome models (see section 1.5). The previous investigation of this CRM system has 

not indicated which of these models best describes the mechanisms by which these 

previously identified CRMs achieve the regulatory synergy observed (see section 2.5). 

Furthermore, the plasmid into which the previously identified CRMs have been cloned is an 

artificial construct that does not accurate represent the environment that the CRMs 

function in. As a result, it is possible that the synergistic effects observed are a product of 

the artificial environment rather than representative of processes which occur in vivo. To 

investigate outstanding questions, the position and orientation of one CRM with respect to 

the others was modified in three CRM contexts and the effect on reporter expression 

measured by flow cytometry (see section 9.2). 

In addition to the above, this chapter describes the measurement of the reporter 

expression changes induced by the mutation of single sites within CRM-B in one CRM 

context (see section 9.3). The mutation sites were identified based on the information 

presented in chapter 2 (see section 2.6.4). Furthermore, by cloning the mutant CRM 

sequences in both the forward and backwards directions, the orientation sensitivity was 

measured. These experiments represent the sampling of a small portion of the mutant 

library generated in chapter 8. 

9.1. Description of model system and analysis 

Transient transfection assays were used to investigate the activity of different CRM 

constructs by quantification of expression of a reporter gene. This section will introduce the 
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different methods of model systems used in this analysis, with reference to their power 

and limitations as well alternative methods where applicable.  

9.1.1. C2C12 cells 

The model system used in this study was the C2C12 mouse muscle myoblast cell line. This 

cell line is capable of reproducing the major steps of muscle differentiation and is a well-

established model system for studying myogenesis. C2C12 cells were first isolated from 

dystrophic mouse muscle1. From these isolates a heterogeneous cell population was 

derived. By serial passaging a population of cells was obtained that was capable of 

proliferation and differentiation in cell culture conditions. This population is thought to be 

derived from the muscle satellite cells: A population of adult stem cells responsible for 

repairing damage to muscles sustained during adulthood2. Satellite cells are described in 

more detail in section 2.4.  

 The C2C12 cell line differentiates in appropriate (serum-starved, confluent) 

conditions into contractile myotubules that produce characteristic muscle proteins. The cell 

line exhibits some plasticity; application of bone morphogenetic protein-2 (BMP-2) shifting 

differentiation towards osteoblastic pathway3. Similarly, inhibiting myogenic differentiation 

shifts C2C12 differentiation towards the adipocytic pathway4. In their undifferentiated 

state, C2C12 cells are characterised as small, mononucleate and fast replicating. During 

myogenic differentiation myoblasts stop replicating and fuse into multinucleate myotubes. 

This differentiation process can be induced by cell-cell contact and removal of fibroblast 

growth factor (FGF) from the medium. There is evidence that during differentiation, a 

subpopulation of C2C12 cells remain in an undifferentiated state expressing low levels of 

MyoD and Myf55, analogous to the specification of the satellite cell population during 

development and adult regenerative myogenesis. 
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C2C12 cells are tetraploid6 and therefore it is impossible to insert DNA by 

homologous recombination from a suitable vector such as a bacterial artificial chromosome 

(BAC). An alternative mouse cell line used for myogenic differentiation studies is the 

10T1/2 cell line. This line, however, requires treatment with demethylating agents before 

myogenic differentiation will take place7. Primary cells can be obtained from samples of 

mouse muscle. The size of such samples and the fact that primary cells can only be 

maintained for a limited number of population doublings mean that significant numbers of 

cells, as would be required for flow cytometry analysis, is difficult to obtain.  

9.1.2. Transient transfection to study reporter gene expression 

Plasmids encoding genes of interest or marker genes can be inserted into eukaryotic cells 

by the process of transient transfection. Plasmids are double stranded, circular and small, 

usually less than several thousand base pairs in length. Cultured cells will take up plasmids 

in solution and transport them to the nucleus, where factors present therein can initiate 

expression of a reporter gene. A common reporter gene is GFP, the fluorescence of which is 

proportional to the of GFP as measured by antibody staining8. Transfection additives such 

as Lipofectamine 2000™ can be included in order to increase transfection efficiency9. 

Lipofectamine operates by lipofection, where liposomes that are capable of merging with 

the cell membrane are used to encapsulate the double stranded plasmid DNA10. This 

method of transfection is widely used and effective. Plasmids are degraded rapidly by cells, 

however, so the lifetime of a plasmid in a cell is short. If the appropriate sequences are 

present on the plasmid and factors present in the cell then genes on the plasmids can be 

expressed during the plasmid’s lifetime in the cell (48-72 hours).  

 Plasmids exist separately from the host DNA and do not usually integrate into the 

host genome. This fact combined with the lack of structural sequences on the plasmid DNA 

mean that there is no epigenetic modification of the plasmid DNA. Epigenetic modification 
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can cause a section of DNA sequence to condense from open, accessible euchromatin to 

closed, inaccessible heterochromatin11. Chromatin condensation and decondensation 

events, an important mechanism of gene regulation, will not be represented by transient 

gene expression experiments involving plasmids used here. 

 Plasmid copy number is an important determinant of resulting gene expression: 

More copies of a plasmid will mean more of the resulting protein product12. Furthermore, 

many thousands of copies of a given plasmid will enter a cell during a transfection, meaning 

that gene dosing, competition between plasmids for available factors, can affect the 

obtained results13. Ideally, all cells will receive the same number of plasmids, making the 

variation in resulting measurements dependant solely upon plasmid sequences. In reality, 

variation in plasmid copy number will account for some of the variation in the resulting 

measurements. Plasmid transfection strategy is, therefore, important to control, to ensure 

that the variation due to transfection efficiency is minimised.  

 Transient gene expression studies offer a way of rapidly determining, roughly, the 

sequence-response relationship of a given system14. Plasmids can be easily manipulated in 

bacteria to contain sequences of interest in specific arrangements. Manipulation of 

plasmids is performed using the toolkit of molecular biology including, but not limited to 

restriction digest, ligation, recombination and mutagenesis. Once transient transfection 

studies in cell lines indicate a relationship, more controlled studies can be initiated. 

9.1.3. Studying reporter gene expression using stable transfectants 

Stable transfection of cells is achieved when a DNA sequence, usually from a transfection, is 

inserted into the genome of the host cell. One mechanism that is frequently used is 

borrowed from retroviruses. Specific homologous sequences in the host and the infecting 

plasmid undergo recombination due to the co-transfection of a plasmid encoding a 

recombinase gene. The most widely used example of this is the Cre-Lox system15. The 
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insertion of recognition sequences for recombination is done randomly which can result in 

position-effect variegation, as the sites where the sequence might insert have different 

packaging environments. Stably incorporated sequences will, however, be copied through 

future generations, although there is a risk that the inserted sequence will be randomly 

excised during replication. Stable transfections using recombination offer a method for 

generating single copy, stable insertions of genes from plasmids into specific sites in the 

host genome. 

The gold standard of genetic analysis is usually a stably transfected whole mouse 

model. This approach is not feasible with a combinatorial experiment such as this one 

potentially involving hundreds of variants due to the length of time required to generate 

the constructs necessary and then breed the mice to generate the necessary animals. 

9.2.  Testing of position and orientation effects of CRM-B 

The looping hypothesis suggests that CRM-B is brought close enough to the promoter 

through protein-protein bridges for the regulatory factors bound to the CRM to act on the 

formation of the DNA polymerase holoenzyme. Although the plasmid is not a perfect 

analogy of the chromosome, it is possible to test certain aspects of the looping hypothesis 

in a plasmid situation. For instance, if CRM-B does form a loop to bring itself close to the 

promoter, it should be able to do so from any position on the plasmid or orientation of that 

position. 

For consistency, the differentiation time point chosen for all CRM expression 

studies was the same in all experiments and the same as had been used in previous work 

(Dr. H. Crutzen, P. Downton). The C2C12 cells in individual wells were transfected with the 

appropriate plasmid 24 hours before, when still proliferating, being transferred to a 

differentiation medium (serum starved) when confluent. The cells then remained in the 
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differentiation medium for a further 20 hours before the cells were fixed. See methods 

section 4.5 for full details of the transfection, differentiation and fixing protocols. 

9.2.1. Plasmid construct design 

The vector backbone for all expression studies was consistent across all experiments. The 

basic plasmid, the pGL plasmid, which contains an ampicillin resistance gene, an origin of 

replication, had been modified previously (H. Crutzen) to include the myod core promoter, 

a venus GFP (vGFP) encoding sequence (with 3 nuclear localisation sequences on the 3’ 

end) and a SV40 poly adenosine (pA) sequence. A total of 16 combinations were cloned 

which had every possible combinations of CRMs, including none at all. The relative 

expression values of each of the constructs can be seen in figure 9.3. The basic backbone 

can be seen in figure 9.4. Combinations of the four CRMs; A, B, C and CER were cloned into 

the multiple cloning site (MCS) upstream of the myod promoter by H. Crutzen. More 

recently P. Downton repeated cloned the DRR, another region known to regulate myod, 

into the same constructs to generate a total of 32 constructs. The relative expression 

values from all 32 of these constructs can be seen in figure 2.4. 
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Figure 9.1: Previous work on combinatorial CRM constructs (H. Crutzen). Three 
constructs, highlighted in red, were used to test the position/orientation effects of CRM-B. 
Note that the scheme in the left pane is not to scale; there is no ‘blank’ sequence replacing 
absent CRMs. 

 

Figure 9.2: Schematic diagram of the plasmid vector backbone used in all expression 
studies. The NotI restriction enzyme binding site is marked, pA refers to polyadenlyation 
sequence, MCS to the multiple cloning site, myod PRR to the core promoter of mouse myod 
gene, vGFP w/ 3xNLS to the venusGFP encoding sequence with 3 nuclear localisation 
sequences attached and AmpR to the amplicillin resistance gene. NB the diagram is not to 
scale. 

Figure 9.2 shows the basic plasmid backbone common to all previous experiments with the 

CRMs and the myod PRR, performed by H. Crutzen and P. Downton. The backbone consists 
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of an amplicilin resistance gene used for bacterial selection, the myod PRR and the venus 

GFP (vGFP) reporter flanked by two poly adenosine (pA) sites. In addition to these modules, 

an MCS is present upstream of the myod PRR and an additional, unique NotI site upstream 

of the 5’ pA site. In previous experiments, the various CRM combinations were cloned into 

the MCS. 

 Figure 9.3 shows the CRM combinations cloned into the MCS to generate three 

constructs produced by H. Crutzen. Note that the order and orientation of the CRMs in 

these constructs does not change; CRM-C is upstream of CRM-B is upstream of CRM-A is 

upstream of the CER. The DRR, not represented in this figure, would be cloned downstream 

of the CER. 

 

Figure 9.3: Schematic diagram of arrangement of CRMs in the control plasmids used as 
controls in the position/orientation experiments. The dotted lines indicate where the 
region joins the rest of the plasmid. The inserts shown here replace the region between the 
NotI site and the MCS of the backbone vector. NB diagram not to scale. 

The three constructs were chosen based on work by H. Crutzen, shown in figure 9.3. CRM-B 

appears to have a large synergistic regulatory effect when combined with CRM-A, 

comparing the expression level of A-PRR and B-PRR with A-B-PRR. Conversely, CRM-B 

appears to have a negative effect on the overall expression level in two other cases; 

comparing C-CER-PRR with C-B-CER-PRR and C-A-CER-PRR with C-B-A-CER-PRR. These 

results appear to indicate that CRM-B is capable of exerting context-dependant effects on 
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the overall level of gene expression. It should be noted that the results obtained by H. 

Crutzen were not entirely consistent with the results obtained by P. Downton; the A-B-PRR 

synergistic effect is lost. In this case, the experiments performed by P. Downton are 

thought to be more reliable as they involve more repeats, were performed on a more 

accurate flow cytometer and did not use plasmids that were identified as defective. The 

choice of plasmids for testing was made on the basis of the information available at the 

time, which was the data obtained by H. Crutzen. 

To investigate the how the position and order of the CRMs might affect their 

synergistic effects on myod activity, CRM-B was cloned into the NotI site upstream of the 5’ 

pA so that it was out of position with respect to the other CRM cloned into the MCS. Three 

constructs, seen in figure 9.4, were prepared for comparison to the three constructs seen 

in figure 9.3. 

 

Figure 9.4: Schematic diagram of arrangement of CRMs in the test plasmids used for 
position/orientation experiments. The dotted lines indicate where the region joins the rest 
of the plasmid. The inserts shown here replace the region between the NotI site and the 
MCS of the backbone vector. NB diagram not to scale. 

In addition to cloning CRM-B out of position, CRM-B was also cloned into the NotI site in 

both the forward and backward orientation. A total of six test plasmids were produced; a 

pair for each of the arrangements shown in figure 9.4. The expression of these test 

plasmids was compared to the three control plasmids, as shown in figure 9.3. All plasmid 
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manipulation was performed according to the techniques described in section 4.3 of the 

methods. 

9.2.2. Expression analysis results 

Figure 9.5 shows the normalised results of the experiment to test position and orientation 

effects in CRM-B. To emphasise the fact that CRM-B has been taken out of its normal order 

with respect to the promoter and the other CRMs, the construct labels on figure 9.5 

represent the order of CRMs in each construct from 5’ to 3’. 

Figure 9.5 shows that there is clear segregation of the three CRM combinations. 

The yellow bars in figure 9.5 show the relative expression of the A-B construct with the A-

IR-B construct, that contains the intervening region between A and B, and the A-B 

constructs with CRM-B cloned into the NotI site in either the forward or reverse 

conformation. Whilst there is an increase in the relative expression by including the IR, 

there is no change when B is cloned into the NotI site than when B is cloned into the 

normal site. B was not cloned into the NotI site in the A-IR-B construct. 

The light orange bars in figure 9.7 show the relative expression of the CER-B-C 

construct and the CER-B-C constructs with CRM-B cloned into the NotI site in either the 

forward or reverse conformation. There is no significant difference between these three 

constructs.  



9. Analysis of CRM position-effect and mutant constructs 

307 
 

 

Fi
gu

re
 9

.5
: C

o
m

p
ar

is
o

n
 o

f 
ex

p
re

ss
io

n
 o

f 
co

n
st

ru
ct

s 
co

n
ta

in
in

g 
th

re
e

 c
o

m
b

in
at

io
n

s 
o

f 
C

R
M

s.
 T

h
e 

ef
fe

ct
 o

f 
cl

o
n

in
g 

C
R

M
 B

 in
to

 t
h

e 
N

o
tI

 s
it

e 
in

 e
it

h
er

 t
h

e 

fo
rw

ar
d

 (
N

o
tI

F)
 o

r 
re

ve
rs

e 
(N

o
tI

R
) 

co
n

fo
rm

at
io

n
s 

ca
n

 b
e 

se
e

n
. E

xp
re

ss
io

n
 v

al
u

es
 a

re
 s

h
o

w
n

 r
el

at
iv

e 
to

 m
C

h
er

ry
 in

te
rn

al
 c

o
n

tr
o

l. 
SV

40
 a

n
d

 u
n

tr
an

sf
ec

te
d

 
ce

ll 
co

n
tr

o
ls

 a
re

 a
ls

o
 s

h
o

w
n

. 

 



9. Analysis of CRM position-effect and mutant constructs 

308 
 

The dark orange bars in figure 9.5 show the relative expression of CER-A-B-C construct and 

the CER-A-B-C constructs with CRM-B cloned into the NotI site in either the forward or 

reverse conformations. Again, there is no significant difference between any of these three 

constructs. 

These results support the assertion that the previously identified sequences are 

indeed acting as CRMs. Their presence, independent of their relative position or 

orientation, in constructs containing the target myod promoter is sufficient for their 

regulatory effect to be observed. These observations indicate that the CRMs are acting as 

independent entities that cooperate to achieve regulation of the myod promoter. 

According to the enhanceosome model of CRM function, relative spatial 

arrangement of CRMs is important their function. Thus, it would be expected that, by 

changing the position and orientation of a CRM, that the ability of that CRM to function as 

part of an enhanceosome would be impaired. The obtained results do not indicate that this 

is the case. The billboard model of CRM function implies that it is the presence of a factor, 

not its relative position, that affects function. Whilst positioning a factor further away from 

its site of interaction might affect the likelihood of interaction, orientation is unlikely to 

have an effect. The results shown here indicate that changing the position and the 

orientation of the CRM did not significantly alter the ability of the CRM to regulate myod 

activity. These results are, therefore, consistent with both the billboard and enhanceosome 

models of CRM function. 

9.3. Mutational analysis of CRM activity 

9.3.1. Selection of sites within CRM-B for mutational analysis 

To investigate the regulation of myod, a library of combinatorial mutants of a CRM, CRM B, 

were prepared. CRM B was chosen because it is the smallest of the CRMs, contained 
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several binding sites for relevant transcription factors and previous work by H. Crutzen and 

P. Downton, see figure 2.2, indicated that the addition of CRM B to the C-A-CER-PRR 

construct resulted in a significant upregulation of promoter activity. It was hoped, 

therefore, that mutation of the CRM B sequence would prevent this enhancing effect and 

would be readily observable for flow cytometry analysis. Furthermore, a ‘fuller’ construct 

that contains most of the identified regulatory regions of myod is most likely to reflect the 

physiological situation, where all CRMs are available. 

A total of 65 sites were found in CRM B using the Binding Factor (BiFa) tool 

developed by Dr. J. Reid. Briefly, the BiFa tool searches a given sequence for matches to the 

consensus binding sequences of all known DNA binding proteins found in the TransFac 

database16. The consensus binding sequence for a given transcription factor may only 

weakly depend on some base pairs within its binding site, as defined by the relative 

strength of the base pairs in the transcription factor’s binding motif. Furthermore, the 

database often over represents transcription factors, with a factor having several valid 

consensus binding sites. As a result of these two facts, the BiFa tool returns many hits for 

the same site as shown in figure 2.7. To reduce the number of hits to only the most 

promising, the list of potential binding sites is limited to those sites that bind factors that 

have been shown to be expressed in differentiating C2C12 cells by microarray analysis 

(previous work by H. Crutzen). Further analysis of the binding sites is performed by 

assigning certain sites to signalling pathways known to be important to the regulation of 

myod specifically or to cellular differentiation in general. By combining this information 

with data from previous experiments, described in section 2.6, several sites were selected 

for mutation in CRM B.  

The following 7 sites in CRM B were selected for mutational analysis (in order from 

5’ to 3’): AP1, Ets, NFY, Ets, FOXO, Ebox and Lef1. Two additional sites were regarded as 

significantly interesting, a serum response factor (SRF) binding site that overlaps both the 
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AP1 and first Ets site and an Ebox site that overlaps with the FOXO site. These additional 

sites could not be mutated according to the used mutation strategy without affecting the 

other mutant sites as any changes that obliterated one binding site also affected the 

binding score of the other. See figure 2.6 for a diagram of the sites on CRM-B. 

As discussed in the background chapter (see section 2.6), the factors that bind to 

these predicted sites are known to affect regulation of the myod promoter. Each of the 

selected sites will now be briefly discussed in turn with regard to why the site was selected. 

The AP1 and first Ets site partially overlap. Ets is known to coregulate the binding of 

AP1 to target promoters and so these two sites were of particular interest. The SRF binding 

site that was not selected for mutation overlaps with both the AP1 and first Ets sites. SRF is 

known to regulate the myod promoter through the DRR and, therefore, could also regulate 

the myod promoter through other means17. This fact elevated the importance of all three 

sites as this could be a site of potential competitive binding interactions.  

The NFY site is known to bind Runx2 which, as discussed in section 2.6, is known to 

regulate the osteoblastic differentiation pathway18 that C2C12 cells are known to be able to 

follow3. The second Ets site is adjacent to the NFY site, which could indicate that the Ets site 

is a site of coregulation of Runx2 binding. 

The Ebox site, which is known to bind MyoD, is adjacent to a FOXO site, which is 

able to bind members of the FOXO family. The MyoD protein is known to autoregulate the 

myod gene19 and members of the FOXO family are known to regulate differentiation in 

several cell types20,21 including myogenesis22 and is a known mediator of insulin signalling in 

cells23. An additional Ebox overlapped with the FOXO site and could not be mutated 

without affecting the FOXO site.  

Enhanceosomes require specific arrangements of transcription factors in order to 

function24. The final binding site selected for mutation was capable of binding the 
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architectural protein Lef1. Lef1 is capable of bending DNA when binding to its specific 

binding site25 and could therefore be important in the formation of a specific 

enhanceosome structure that could be responsible for the regulation of myod. 

Furthermore, Lef1 mediate the Wnt signalling response for some genes26 and has been 

implicated in playing a role in somitogenesis27.  

In additional to the investigatory mutations, an artificial binding site was added to 

the CRM B sequence. This artificial binding site was specific to a bacterial DNA binding 

protein that is able force DNA to loop. In this case, the binding protein, itself a dimer, forms 

a tetramer with another dimer bound to another identical binding site. The non-covalent 

interaction forces the DNA to loop, the idea being to be able to force the interaction of two 

CRMs by coexpressing the specific bacterial DNA binding protein. This binding site was not 

used in this study, but is available for use in subsequent studies. 

9.3.2. Selection of several members of the mutant library for further analysis 

Several mutant sequences from the previously assembled mutant library (see chapter 8) 

were selected for testing in a CRM-plasmid context. Due to the limited amount of time 

available, only a limited set of sequences could be tested. Each sequence in the selected set 

contained a single mutation at a different target site whilst the rest remained as wild-type 

sequence. The highly expressing plasmid from the previous experiment (figure 9.5, dark 

orange) was selected as the vector for this experiment. The CRM combination for this 

plasmid had the largest CRM-B dependant effect of all the plasmids measured (see figure 

9.6): When B is removed the plasmid expresses at a low level and when B is added the 

plasmid expresses highly. It was hoped that by choosing this vector system a full range of B 

activities will be observable. 
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Figure 9.6 shows the relative expression of several versions of mutated CRM-B sequences 

in either the forward or reverse conformations in the context of other CRMs. All the tested 

combinations expressed highly, above the positive control. The results here (bars 2-4) 

confirm the results from the position orientation experiment, which was performed with 

the same plasmids. The CER-A-C plasmid was expected to only express at a low level, 

however, and here it can be seen expressing at a higher level than the CER-A-B-C plasmid 

(compare bars 1 and 2). All the plasmids tested expressed higher than untransfected cells, 

indicating that the GFP-containing plasmids were having detectable level of expression over 

background autofluorescence. 

Although there appear to be some minor differences, such as with CER-A-

C(ΔETS#1)(NotIR) these differences are not regarded as significant. It appears from the data 

presented in figure 9.6 that single site mutations of CRM-B in the context of CER-A-C do not 

have a significant effect on overall expression. 

Since the results presented here are the average expression of >10000 cells, 

differences in expression between subpopulations of cells might be missed. Gene 

regulation is a stochastic event. There is some evidence that gene expression occurs in 

bursts of high activity followed by periods of relative silence28,29. Regulation of noise in 

gene expression, where one cell or population of cells expresses highly and another 

expresses at a lower level is an important aspect of gene regulation30,31. Processes such as 

quorum sensing in bacteria, where group behaviours are coordianated, have been shown 

to involve ‘noisy’ gene regulation32. The results shown in figure 9.6 could indicate a role for 

the mutated sites in inducing ‘noisy’ gene expression. Some constructs, particularly 

B(ΔETS#1)(NotIF)-C-A-CER-PRR, B(ΔNFY)(NotIF)-C-A-CER-PRR, B(ΔETS#2)(NotIF)-C-A-CER-

PRR, B(WT)(NotIF)-C-A-CER-PRR and B(WT)(NotIR)-C-A-CER-PRR, all exhibit a high level of 

noise their average expression value between replicates, but not between duplicates. In 

contrast, some constructs, particularly C-B-A-CER-PRR, B(ΔETS#1)(NotIR)-C-A-CER-PRR and 
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B(ΔLEF1)(NotIR)-C-A-CER-PRR exhibit much lower noise levels, matching the noise level of 

the SV40 positive control. Interestingly, the ETS#2 and the NFY site bind to overlapping 

sites on CRM-B, as seen in chapter 3, figure 2.6. This information could indicate that this 

site has a role in the regulation of noisy gene expression from the myod promoter. 

 It is possible that the regulatory effect of the mutations was not evident due to the 

model that was chosen. C2C12 cells are tetraploid (see section 9.1.1) and therefore could 

be unable to reproduce the appropriate regulatory environment in which the mutations 

could have significant effects. It is possible that significant differences in expression caused 

by the mutations are not seen at this differentiation time point. 

 It should be noted that, based on the results from P. Downton (see section 2.5.1, 

figure 2.5), the level of expression of C-A-CER-PRR was expected to be much lower than the 

level of C-B-A-CER-PRR. This was not observed in the data presented in figure 9.6, 

comparing the first two columns. The results presented here are the average of four 

identical repeats of the same experiment, with duplicate wells in each repeat. 

Furthermore, the expression level of each construct is in excess of that observed with the 

positive control SV40 promoter, which is consistently observed in both of P. Downton’s 

results. The confidence in these results is, therefore, high. 

9.3.3. Mutation analysis of A-CER construct 

Mutation of single sites within CRM B in the context of the CRMs CER, A and C did not have 

a significant effect on overall gene expression. The decision to use the C-B-A-CER-PRR/C-A-

CER-PRR system for the combinatorial mutant library investigation was made on the basis 

of the results obtained by H. Crutzen (summarised in figure 9.1) which indicated a strong 

CRM B-dependant downregulation in expression levels. The later results from P. Downton, 

made with updated plasmids that corrected an expression issue with some of the earlier 

plasmids and using a flow cytometer calibrated with fluorescent beads, changed this 
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indication. Instead of a B-dependant downregulation, a B-dependant upregulation was 

observed that was not as strong as the previous downregulatory effect. For these reasons, 

the mutational analysis of CRM A in the context of A-CER-PRR was performed by P. 

Downton at the University of Warwick. Several sites within CRM A were individually 

mutated by a site directed mutagenesis (SDM) approach. Figure 9.7 shows the results from 

this individual site mutation experiment. As can be clearly seen in figure 9.7, the mutation 

of individual sites in CRM A within the context of A-CER-PRR has a significant effect on the 

level of overall normalised gene expression. This data, obtained by P. Downton, indicates 

that single site mutation of a CRM within the context of other CRMs is able, in contrast to 

the results presented in section 9.3, to have a significant, measureable effect on relative 

gene expression. 

It is possible that whilst the effect of the single site mutations within the context of 

a large collection of CRMs is lost within the morass of completing signals coming from each 

CRM, the effect of single site mutations can be seen within the context of only a pair of 

CRMs.  
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Figure 9.7: Graph of relative normalised expression values for several individually 
mutated sites in CRM A expressed within the context of A-CER-PRR. Bars represent 
averages of two repeats whilst error bars represent one standard deviation of these values. 
‘Full’ refers to the full construct that contains all CRMs. NB Data obtained by P. Downton. 

9.4. Further work 

Not all the highly interesting sites could be mutated according to the used mutation 

strategy. The mutation strategy, contiguous mutations ≥4 bp long that obliterate the 
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selected site without affecting the binding scores of the neighbouring or overlapping sites, 

was determined in response to the downstream separation strategy that was to be used 

for the separation of specific mutants from the one-pot Gao assembly. Although the Gao 

assembly was not used (see chapter 8), the mutation sites sequences remained the same. It 

is possible that by using another mutation strategy, the additional highly interesting sites 

described in section 9.3 could be analysed. 

 Although the analysis of the CRM B mutants in the context of C-B-A-CER-PRR 

showed that none of the sites necessary for a high level of expression it is possible that the 

CRM B mutant library could be used in another CRM context. In the case of successful 

identification of sites contributing to the regulation of the myod promoter two further 

avenues of investigation are available: The binding of the predicted factor to the CRM could 

be confirmed by ChIP and the factor responsible for the affect could be identified by 

reproduction of the effect in the presence of the wild type site when the specific factor is 

knocked down using RNA interference (RNAi). 

 The current combinatorial mutant library replaces bioinformatically identified 

transcription factor binding sites with null sequences (as described in section 2.7). Several 

similar investigations could be envisaged from this starting point. The entire sequence 

except for the identified binding sites could be replaced with null sequence and specific 

sites combinatorially reintroduced in order to develop a full understanding of the sites 

necessary for various functions of the CRM. Additionally, the enhanceosome model of CRM 

action involves the interaction of CRMs away from the core transcriptional machinery, 

artificially driving the CRMs to interact using unique bacterial binding sites could elucidate 

whether sites, or combinations thereof, are involved in CRM-CRM interaction verses CRM 

activity. To this end, a bacterial binding site was introduced to each of the sequences, but 

due to constraints of time these sites were not employed. 
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9.5. Conclusions 

This chapter presents evidence that the position and orientation of CRMs in the context of 

transiently expressed plasmids does not affect how those plasmids contribute to the 

regulation of myod1 promoter also on the plasmid. This is important evidence in support of 

the looping hypothesis and against the billboard hypothesis. 

 Because mutation of single sites in CRM-B did not indicate any significant effects, 

mutation of several sites simultaneously should be performed. For instance, mutation of all 

the Ebox sites should be performed. The flexibility of the assembly process allows 

additional mutation sites beyond the original set to be incorporated in to the library 

subsequently. For instance, although ChIP data indicated that NF-κB was not bound to the 

relevant site in the developmental context, the NF-κB site could be mutated by replacing 

the relevant oligonucleotides with appropriately designed oligonucleotides. 

 In the event that significant differences were found in response to deleting a 

binding site within a given CRM, the putative hypothesis would be that the predicted 

binding factor is then unable to bind. This hypothesis could be tested by using RNAi against 

this factor, a similar expression level in response to knock down of the factor using the 

wild-type sequence as when using the deleted sequence would support the hypothesis. 

Furthermore, ChIP and/or DNaseI footprinting could be performed to confirm that the 

specific factor or other factors were bound to the CRM.  
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Chapter 10 

10. Conclusions 

Gene expression in higher animals is regulated, in part, by complex interactions between 

CRMs that facilitate the formation and release of RNAPII from target promoters. Internal 

and external information is integrated at CRMs by means of competitive and cooperative 

binding of transcription factors to specific sites. Transcription factors bound to CRMs can 

enhance or silence target genes by direct interaction with the core transcriptional 

machinery or indirectly by affecting chromatin conformation or recruitment of 

coactivators. The way the expression of a gene changes in response to stimuli is, therefore, 

hardwired into the CRMs by means of the arrangement of the different transcription factor 

binding sites present therein. Current methods for investigating the mechanisms by which 

transcription factors cooperate or compete to facilitate proper CRM function are not 

sufficiently combinatorial to address the huge potential interaction space of a system that 

can contain several CRMs each with several transcription factor binding sites. Chapter 1 

describes the mechanisms, as they are currently understood, underpinning CRM 

interactions that bring about regulation of genes in a variety of contexts. This chapter then 

concludes that a combinatorial, holistic approach is required to efficiently understand the 

mechanisms behind CRM function in higher animals. It is likely that through further study 

of these mechanisms functional motifs will emerge that can then be identified in other 

genes. 

This thesis describes the development of novel microfluidic, computational and 

molecular biology techniques for the generation of a combinatorial mutant library (all 

possible combinations of 9 binary sites; 512 sequences). This mutant library consists of 

variants of a CRM sequence that has previously been shown to, in cooperation with other 
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previously identified CRMs, synergistically regulate the myod promoter. The current 

understanding of the regulation of myod and how the expression of this gene relates to 

muscle specification in the developing embryo and adult muscle is described in chapter 2. 

The interactions synergistic effects of three other recently identified CRMs, in combination 

with two CRMs that have been known about for some time, are also described in chapter 2.  

10.1. Microfluidics for biological and chemical applications 

Microfluidic devices, particularly droplet microfluidics, fabrication techniques, control 

methods and are reviewed in chapter 3. This review served as the basis for the design of 

the PDMS microfluidic device described in chapter 6. The EnvisionTec Perfactory mini MSL 

process was used, in chapter 5, to produce novel microfluidic devices both directly and 

indirectly, by casting of PDMS in MSL moulds. These devices were then applied, in 

collaboration with others, to different experimental situations, including microbial biofilm 

culture and electrochemistry. In addition to making monolithic, inactive devices, moulds 

made by the MSL process were used to make patterned PDMS layers that were 

subsequently assembled into microfluidic devices by multilayer soft lithography, as 

described in chapter 6. 

Two flow cells were fabricated with chambers a single or a few layers thick (see 

section 5.4). One of these flow cells were used to improve upon currently available radial 

flow cells and the second was used to make measurements of low concentrations of a 

specific solute down to the nM level. Both these flow cells and an additional flow cell, that 

was used for microbial biofilm culture (see section 5.3.1), utilised the MSL procedure’s 

ability to make complicated internal geometries in one process to make monolithic devices 

with appropriately placed channels. The flow of fluids through the radial flow cell and the 

flow cell used for biofilm culture were analysed by COMSOL fluid dynamics modelling. This 
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modelling indicated that the flow cell design was appropriate for the functions required 

(see sections 5.3.1 and 5.4). 

A final flow cell was assembled from multiple parts, each fabricated by the MSL 

procedure as well as quartz-quality glass (see section 5.5). This final flow cell overcame the 

fact that the material that MSL parts are made from is not sufficiently optically clear for 

some applications. This flow cell was then applied to make highly sensitive UV-absorbance 

measurements. 

 Chapter 6 describes the assembly of a microfluidic device for the contamination-

free mixing of oligonucleotides for the assembly of a CRM mutant library. The device was 

fabricated using moulds made from MSL to create patterned layers of PDMS that were 

assembled by multilayer soft lithography (see section 6.2 and 6.3). The device made use of 

pneumatic ‘Quake valves’ to control the fluid flow necessary to make droplets of the 

correct size with the correct timings (see sections 6.4, 6.7 and 6.12). The device is applied 

to the mixing of the oligonucleotides that were subsequently assembled and amplified off 

chip. The results of this experiment indicated that the device was capable of making the 

mixtures in the right stoichiometry without contamination (see section 6.17). Furthermore, 

sequencing of the assembled sequences indicated that the error rate was comparable to 

that achieved by bench-top assembly. 

 By overcoming the issue of improper casting of PDMS on MSL parts, this thesis has 

shown it is possible to fabricate PDMS layers suitable for multilayer soft lithography (see 

section 5.3.3). Furthermore, since MSL is a rapid, maskless technique that can produce a 

finished cast in 2-3 hours, layers and finished devices can be produced quickly; 24 hours 

from design to device. 

 A system of valves was set up for the independent control of the 8 on-chip 

microvalves (see section 6.10). The design of the valve, described herein (see section 6.4), 
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shows it is possible to achieve simultaneous and contamination-free merging of droplets. 

These valves controlled the formation of droplets from each of a set of 8 reservoirs that 

were merged to make the appropriate oligonucleotide mixtures in the microfluidic device. 

To fabricate these valves, a PDMS membrane was incorporated using a PDMS mortar 

procedure optimised herein (see section 6.5). Reviews of the literature had indicated that 

sealing the device in this manner resulted in the strongest seals possible (see section 3.10). 

 To use the resulting microfluidic device to make mixtures suitable for assembly of 

CRM mutant sequences, the operation of the device was characterised. The flow rate 

through the valves was quantified using a real-time droplet measuring system based on a 

USB microscope (see section 6.12). Software and systems necessary for the control of the 

fluid flow and monitoring of the droplet output were developed (see sections 6.13 – 6.16). 

These systems allowed the control of the valve opening signal to occur with a 1 ms time 

resolution, which is less than the solenoid valve opening time as estimated by the 

manufacturer. 

 The mixing of 8 reagents through the use of droplet microfluidics using a PDMS 

device composed of layers patterned using moulds made by MSL has not been reported in 

the literature. In this project, feasibility of using the device to generate mixtures suitable 

for mutant CRM assembly is demonstrated. It is possible apply the current device to other 

situations requiring precise addition and mixing of multiple reagents in droplets. 

10.2. Optimisation of oligonucleotide overlap sequences 

Currently available software was investigated (see section 7.1.2) but found not to be 

suitable for the optimisation of sequences that could be assembled into a CRM mutant 

library (see section 7.1.1). As a result, novel software, named OptiCut was developed for 

the optimisation of DNA sequences necessary for the assembly of the CRM mutant library 

in chapter 8. The software described in chapter 7 is written in MATLAB and produces a 
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minimal set of optimal oligonucleotides. Subsets of this set can then be mixed and 

assembled into members of a combinatorial mutant library for a given CRM.  

 The efficiency of the optimisation algorithm is investigated and the time taken for 

optimisation was found to be proportional to the number of sequences in the library rather 

than sequence length. The efficiency of the algorithm was assessed by comparison to the 

optimisation algorithm used by the Gao lab and the OptiCut algorithm was found to 

significantly reduce the spread of oligonucleotide melting temperatures (see section 7.6). 

Various modules were implemented for the OptiCut program; identification of competitors 

can be performed to check that the desired sequences will be produced by the assembly 

process and reduction of costs by minor sequence adjustment (see sections 7.5 and 7.6 

respectively). An OptiCut GUI is developed, which allows non-experienced users to 

optimise oligonucleotide sequences inputted via the widely used FASTA format (see section 

7.8). Oligonucleotide sequences can then be outputted in a variety of formats for 

downstream use. Finally, the effectiveness of the optimisation process is demonstrated by 

the assembly of a set of optimised sequences using bench-top methods. 

10.3. Optimisation of CRM assembly 

The assembly of the CRM combinatorial mutant library was attempted using two, related 

gene assembly processes. Both methods used a form of ligative assembly that had been 

shown to be successful in the past1–4. The first method, termed ‘Gao synthesis’, used sets of 

oligonucleotides that were synthesised in one step and simultaneously assembled in one 

pot after initial amplification (see sections 4.4.2 and 4.4.3). Despite a significant 

optimisation process, described in chapter 8, this method did not yield successful 

assemblies (see section 8.2). The Gao assembly process did yield a partial product, 

however, that matched in sequence with what was expected (see section 8.2.7). It is 

possible that a full length could have been obtained by changing the primers for the full 
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length amplification and further optimisation. The generally poor quality of the sequencing 

results (see section 8.2.7) and the potential difficulty with sampling individual sequences 

from the one-pot assembly (see section 4.4.2) indicated that this approach was not likely to 

yield sufficient results within the available time and therefore this approach was 

abandoned. 

Another assembly method was developed to generate the sequences for the 

combinatorial mutant library due to the failure of the Gao assembly method (see section 

8.3). The new method avoided used individual, commercially synthesised, purified and 

phosphorylated oligonucleotides whose quality could be ensured. By using individual 

oligonucleotides, the sequences could be assembled independently (multi-pot assembly), 

avoiding problems with competitive binding interactions. Furthermore, the assembled 

sequences would then not need any downstream purification. To ensure the 

oligonucleotides sequences were optimal an optimisation algorithm, OptiCut, was 

developed, which is described in chapter 7.  

 Finally, the successful assembly of the CRM mutant library using methods 

optimised on the bench-top for the assembly of the OptiCut-optimised sequences is 

demonstrated in chapter 8. The error rate of the assembly was determined to be 0.42% 

(see section 8.3.7). 

The assembly process was a successful proof of concept of both the OptiCut 

optimisation strategy and the assembly methods that were developed as part of the Gao 

assembly optimisation. This approach could be applied to other systems to generate 

mutant libraries that are not feasible with traditional techniques such as SDM or gene 

ablation. 
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10.4. Investigation of CRM position/orientation and CRM mutation analysis 

In the final results chapter, chapter 9, the involvement of a model CRM (CRM-B) in the 

regulation of myod in the context of other CRMs cloned into a model plasmid was 

investigated. Previous work investigating the regulatory interactions of the CRMs and the 

myod promoter had always involved the CRMs being cloned in the same relative positions 

and orientations. To test whether the position or orientation of the CRMs affects the 

regulatory contribution of a given CRM, CRM B was cloned upstream of other CRM 

elements and in either the forward and reverse confirmations (see section 9.3). The results 

of this experiment indicated that the position and orientation of the CRMs had no effect on 

the expression from the myod promoter. 

 To begin to investigate the mechanisms through which the CRMs interact to bring 

about regulation of the myod promoter the combinatorial mutant library of CRM-B 

produced in chapter 8 was used. By cloning the CRM B sequence in the context of other 

CRMs in the model plasmid, changes in expression levels when compared to the wild type 

CRM-B sequence could be assigned to specific sites within CRM-B (see section 9.3.2). The 

mutation of specific sites of CRM B did not result in significant changes in myod promoter 

activity. Interestingly, however, single site mutation of another CRM within the context of a 

different set of CRMs, work by P. Downton, did result in significant changes in expression 

levels, indicating that the mutation of sites within individual CRMs can be measured (see 

section 9.3.1). 

10.5. Future work 

The microfluidic devices developed during this thesis have shown that MSL can be used to 

make useful devices either monolithically or by multilayer soft lithography. There is 

significant possibility for the fabrication of bespoke microfluidic devices for a variety of 
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applications in chemistry and biology. The key items of further work with regards to the 

PDMS microfluidic device are listed below and then each is discussed in the following text. 

 Integration of additional valves (~30) for the control of all necessary 

oligonucleotide solutions. 

 Integration of a multiplexer to control a larger (>30) number of valves. 

 Incorporation of heating elements so that the process of gene assembly can occur 

on chip. 

With the current device, the oligonucleotides necessary for only two members of the 

mutant library can be assembled in a single run without switching reservoirs. Ideally, 

sufficient valves could be incorporated onto the device that all the necessary solutions to 

enable the mixing of the oligonucleotides necessary to assembled any of the sequences 

from the library (~30 solutions). The type of layer annealing process used here, partially 

cured mortar, results in the strongest interlayer bonding (see sections 3.10, 6.2 and 6.3) 

and could therefore support a relatively high density of valves (up to 1 valve per mm2). 

Packaging of a sufficient number of valves to enable individual control of each of the 

solutions required to make the full library is, therefore, possible. 

An even larger number of reagents (>30) could be mixed by either operating 

multiple chips in parallel or increasing the number of available valves. Operating multiple 

chips is problematic because it requires the transfer of droplets between devices in a 

reliable manner. Similarly, the number of valves that can be placed on a device is limited by 

the space available. A multiplexer can enable the control a larger number of valves using 

less than 1 off-chip valve per on-chip valve5. The area required to interface with an on-chip 

valve is larger than the area of the valve. To make maximum use of the available space, 

therefore, a multiplexer could be incorporated that would minimise the interfaces 
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necessary to control sufficient valves. This approach could compromise the fidelity of the 

valve operation, however, as every line is indirectly connected each other. 

By incorporating heating elements and suitable reaction chambers, the entire 

process of gene assembly to be miniaturised to fit on a microfluidic chip similar to that 

demonstrated here. Due to the fact that PDMS is relatively permeable to water vapour, the 

internal or external surfaces of the device would have to be coated with a layer 

impermeable to water vapour to prevent evaporation affecting the reaction (see sections 

2.12 and 6.7). Increasing the proportion of the workflow that occurs in the microfluidic 

device would improve the efficiency of the process of synthetic gene assembly.  

Further stages of the process can be incorporated onto the microfluidic device; 

addition of an appropriately prepared, linearised vector could enable one step assembly 

and cloning into the target vector. Modification of the linearised vector with topoisomerase 

at each end, similar to the TOPO® TA cloning® kit from Invitrogen Ltd., could be used to 

maximise cloning efficiency.  Once circularised, this vector could be used to transform E. 

coli for growing up6. Once grown, the amplified plasmid could then be isolated from the 

culture on the microfluidic device7. In a following step, this plasmid DNA could be used to 

transform cells of a suitable type8. Given the appropriate intermediate quality control steps 

or post hoc analysis, a miniaturisation of the whole process can be envisaged that would 

enable the rapid discovery of CRM interaction motifs in a variety of cellular situations. 

The OptiCut software can be readily applied to the optimisation of libraries of 

sequences for applications besides investigation of regulatory modules, such as directed 

evolution. The following list summarises the key items of further work. 

 Additional modules could be readily implemented for the OptiCut programs for the 

optimisation of oligonucleotides from PCR-based gene assembly or codon 

optimisation for protein expression.  
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 A module that generates appropriate mutant sequences at sites selected by the 

user, possibly by interacting with the BiFa tool, could improve optimisation. This 

would be achieved by reducing or avoiding the optimisation limit caused by 

sequence differences between the mutant and wild-type versions of the sequence. 

 At this stage the competitive binding module only indicates that potential 

competitive binding interactions may occur. This module could be made 

significantly more useful if it suggested changes to the optimised sequences that 

would minimise or avoid these competitive interactions. 

 The core of the optimisation algorithm could be applied to one of the commercially 

available sequence optimisation software. 

Although the testing of the CRM B mutant library indicated that there was no measureable 

effect of mutating the individual sites predicted to be present on CRM B, significant effects 

were observed following the mutation of individual sites on CRM A. By applying the same 

library generation procedure instead to CRM A, the combinatorial interactions that 

facilitate the expression levels observed in this latter context can be examined. 

In this project the effect of each of the DNA constructs was assessed by transient 

transfection performed on large numbers of cells that were, at the appropriate time point, 

fixed and analysed by flow cytometry. Although flow cytometry is able to provide 

simultaneous expression data from a large number of cells in a short amount of time, the 

process gives just a snapshot in time. Ideally, the effect of each construct could be 

monitored through time so changes in gene expression could be mapped in individual cells 

through time. This could be achieved by using real-time fluorescence microscopy that, with 

appropriate cell tracking software, could be used to obtain expression data in hundreds of 

cells over time. Furthermore, by multiplexing using multi-well plates, hundreds of 

constructs could be assessed simultaneously. The relatively long lived, slow to mature GFP 
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protein can obfuscate meaningful through time expression data, however. An alternative 

reporter system could be used instead to avoid this problem. 

 

In summary, this project has addressed a bottleneck in the investigation of CRM function. 

That is, the generation of a set of sequences that constitutes a library of combinatorial 

mutants; where each sequence possesses a unique combination of transcription factor 

binding sites. The prioritisation process, assembly methods and optimisation algorithms 

presented herein can be applied to any genetic system where combinatorial investigation 

can be usefully applied. A droplet microfluidic device was presented that can be applied to 

any situation where rapid, accurate and contamination free mixtures of up to 8 

constituents are required. This system was successfully applied herein to the generation of 

oligonucleotide mixtures necessary for the assembly of members of a combinatorial 

mutant library. 
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Appendix A 

A. Appendix A: MATLAB code 

This appendix contains a compilation of MATLAB code written during the course of this 

thesis. Given the appropriate input files, these programs should be able to run as written 

here. 

A.1. Video reading code 

This code was written to enable obtaining and analysing the real time images from a USB 

microscope. These images were then used to determine the size of droplets produced in 

the microfluidic chip described in chapter 6.  

% function [DropDataStore,StatStore] = DropAnalQuery 
% optional function call code. 
%program to analyse video and determine drop sizes 

  
%% User input information 
[fileName,filePath] = uigetfile('C:\Documents and Settings\msrgbh\My 

Documents\MATLAB\Image analysis\Drop anal\*.avi'); 
if fileName == 0, disp('No file selected... exiting...'); return; 

end 
videoObj = mmreader([filePath fileName]); % read the file. Some 

codecs might not work and return an error here. 

  
% writeName = [fileName(1:end-4) ' 70ms ']; 
nFrames = videoObj.NumberOfFrames; 

  
% create the video windows with the appropriate properties 
hVideo1 = video.VideoPlayer('WindowCaption', 'Original Video'); 
hVideo1.WindowPosition(1) = round(0.4*hVideo1.WindowPosition(1)) ; 
hVideo1.WindowPosition(2) = round(1.5*(hVideo1.WindowPosition(2))) ; 
hVideo1.WindowPosition([4 3]) = [200 200]; 

  
hVideo2 = video.VideoPlayer('WindowCaption', 'Motion Vector'); 
hVideo2.WindowPosition(1) = hVideo1.WindowPosition(1) + 350; 
hVideo2.WindowPosition(2) =round(1.5* hVideo2.WindowPosition(2)); 
hVideo2.WindowPosition([4 3]) = [200 200]; 

  
hVideo3 = video.VideoPlayer('WindowCaption', 'bbox'); 
hVideo3.WindowPosition(1) = hVideo2.WindowPosition(1) + 350; 
hVideo3.WindowPosition(2) = round(1.5*(hVideo3.WindowPosition(2))) ; 
hVideo3.WindowPosition([4 3]) = [200 200]; 

  
h = waitbar(0,'Processing frames...'); 
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% These values will change with every video. 
LOIrow = 425; 
LOIcolLeft = 155; 
LOIcolRight = 181; 
IOIlength = 300; 

  
% periodicity of the droplets, number of frames. Necessary for the 
% appropriate statistics 
UpperPeriodLimit = 26; 
LowerPeriodLimit = 19; 

  
% setup data stores 
NumDropsDetected = 0; 
Step = 1; 
valve = 1; 
DropSizes = zeros(1,30); 
DropSizeVector = zeros(1,11); 
DropErrors = zeros(1,11); 
figure(1); 
N = 0; 
StatStore = {'Frame index' 'Blob size'}; 
%% begin loop for image analysis. 
DropDataStore = zeros(8,11,2); 
for i = 1:nFrames 
    image = read(videoObj,i); 
%         IOI = image(LOIrow-

5:LOIrow+IOIlength,LOIcolLeft:LOIcolRight,:); % vertical droplets 
    IOI = image(LOIrow-IOIlength:LOIrow+5,LOIcolLeft:LOIcolRight,:); 

% horizontal droplets 
    bwIOI = ~im2bw(IOI,0.45); %change to black and white. value 

might change depending on the colour/brightness 

     
    LOI = bwIOI(end-7,1:end); 

     
    % commented code below is for use when changing the IOI 

parameters 
    % above. 
%     image(LOIrow,LOIcolLeft:LOIcolRight,:) = 255 - 

image(LOIrow,LOIcolLeft:LOIcolRight,:); 
    %     figure(1) = imshow(image); 

     
    %     if isempty(OldLOI), OldLOI = NewLOI; end 
    %     ChangeInLOI = OldLOI - NewLOI; 
    %     TotChangeInLOI = sum(ChangeInLOI(:)); 

     
%     subplot(2,2,[1 3]), imshow(image); 
%     subplot(3,2,[1 3]), imshow(image); 
%     subplot(3,2,2), imshow(IOI); 
%     subplot(3,2,4), imshow(bwIOI); 

     
    % update the frames 
    step(hVideo1, image); 
    step(hVideo2, IOI); 
    step(hVideo3, bwIOI); 

     
    [B,L,N] = bwboundaries(bwIOI,8,'noholes'); 
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    % ignore any droplets that touch the sides. Record the sizes of 

the 
    % droplets in the statstore 
    if N == 1 && sum(bwIOI(:,1)) == 0 && sum(bwIOI(:,end)) == 0 && 

sum(bwIOI(1,:)) == 0 && sum(bwIOI(end,:)) == 0 
        %             subplot(3,2,[1 3]), imshow(image); 
        %             subplot(3,2,2), imshow(IOI); 
        %             subplot(3,2,4), imshow(bwIOI); 
        DropSize = sum(bwIOI(:)); 
        StatStore(end+1,:) = {i DropSize}; 
    elseif N > 1  
        for j = 1:length(B) 
            logical1 = B{j}(:,1) > 1 & B{j}(:,1) < length(L(:,1)); 
            logical2 = B{j}(:,2) > 1 & B{j}(:,2) < length(L(1,:)); 
            if  sum(logical1) == length(logical1) && sum(logical2) 

== length(logical2) 
                BlobSize = sum(sum(L==j)); 
                if BlobSize > 5; 
                    DropSize = BlobSize; 
                    StatStore(end+1,:) = {i DropSize}; 
                end 
            end 
        end 
    end 

     
    % increment the counter and adjust the waitbar 
    DropCount = length(StatStore(:,1)) - 1; 
    waitbar(i / nFrames,h,['Processing frames... ' int2str(i) ' of ' 

int2str(nFrames) '. Drop count = ' int2str(DropCount) '. N = ' 

int2str(N)]); 

    
end 
%% Develop statistics 
figure(3) 
StatMatrix = cell2mat(StatStore(2:end,:)); 
LowBound = 30; 
HighBound = 400; 
for i = 1:120 
    vector = StatMatrix(StatMatrix(2:end,1) > LowBound & 

StatMatrix(2:end,1) <= HighBound,2); 
    stdDropSize(i) = std(vector); 
    vector(vector < stdDropSize(i) || vector > stdDropSize(i)) = []; 
    DropSize(i) = mean(StatMatrix(StatMatrix(2:end,1) > LowBound & 

StatMatrix(2:end,1) <= HighBound,2)); 
    stdDropSize(i) = std(vector); 
    LowBound = HighBound; 
    HighBound = HighBound + 400; 
end 
errorbar(DropSize,stdDropSize); 

 

A.2. Probability bootstrapping 

This code was used to determine the number of samplings would likely be required to have 

sampled every member of a mixture of assembled sequences. This code was used to obtain 

the data presented in section 8.1.7. 
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%512 balls. 
Limit = 100000; 
h = waitbar(0); 
Store = zeros(Limit,1); 
for j = 1:Limit 
    AllSelected = 0; 
    Population = zeros(512,1); 
    Samples = 0; 
    while ~AllSelected 
        Selection = ceil(rand(1)*512); 
        Population(Selection) = 1; 
        if all(Population) 
            AllSelected = 1; 
            break 
        end 
        Samples = Samples + 1; 
    end 
    Store(j) = Samples; 
    waitbar(j/Limit,h); 
end 

  
%% 
Data = zeros(max(Store),1); 
for j = 1:max(Store) 
    Data(j) = sum(Store==j); 
end 

  
%% 
CDF = zeros(length(Data),1); 
for j = 1:length(Data) 
    CDF(j) = sum(Data(1:j)); 
end 

 

A.3. OptiCut program 

The OptiCut optimisation algorithm was packaged within a GUI so that users who were not 

experienced in MATLAB could easily use the program. The following code is sufficient to 

generate the GUI, run the optimisation, generate the results graphs and format the 

outputs. This additional code is provided in the following sections. The OptiCut algorithm is 

presented in chapter 7. See section 7.8.1 for details of the additional components. 

A.3.1. OptiCut GUI 

function varargout = GroupCutGUI(varargin) 
% GROUPCUTGUI M-file for GroupCutGUI.fig 
%      GROUPCUTGUI, by itself, creates a new GROUPCUTGUI or raises 

the existing 
%      singleton*. 
% 
%      H = GROUPCUTGUI returns the handle to a new GROUPCUTGUI or 

the handle to 
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%      the existing singleton*. 
% 
%      GROUPCUTGUI('CALLBACK',hObject,eventData,handles,...) calls 

the local 
%      function named CALLBACK in GROUPCUTGUI.M with the given input 

arguments. 
% 
%      GROUPCUTGUI('Property','Value',...) creates a new GROUPCUTGUI 

or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before GroupCutGUI_OpeningFcn gets called.  

An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to GroupCutGUI_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help GroupCutGUI 

  
% Last Modified by GUIDE v2.5 12-Oct-2011 10:01:59 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @GroupCutGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @GroupCutGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before GroupCutGUI is made visible. 
function GroupCutGUI_OpeningFcn(hObject, eventdata, handles, 

varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to GroupCutGUI (see VARARGIN) 

  
% Choose default command line output for GroupCutGUI 
handles.output = hObject; 
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% Update handles structure 
guidata(hObject, handles); 
% UIWAIT makes GroupCutGUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = GroupCutGUI_OutputFcn(hObject, eventdata, 

handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Browse1_pushbutton. 
function Browse1_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Browse1_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[FileName Path] = uigetfile([pwd '.fas'],'Select a .fas file 

containing all sequences...'); 
if isequal(FileName,0) || isequal(Path,0) 
    set(handles.Message2_text,'String','User pressed cancel when 

selecting input filename'); 
else 
    FullFileName = [Path '\' FileName]; 
    

setappdata(handles.Browse1_pushbutton,'FullFileName',FullFileName); 
    [FASTAHeader, FASTASequence] = fastaread(FullFileName); 
    

setappdata(handles.Browse1_pushbutton,'FASTAHeader',FASTAHeader); 
    

setappdata(handles.Browse1_pushbutton,'FASTASequence',FASTASequence)

; 
    NumSeq = length(FASTASequence); 
    LengthSeq = length((FASTASequence{1})); 
    MessageString = ['You have selected a file containing 

',num2str(NumSeq),' sequences of length ',num2str(LengthSeq),' 

bp.']; 
    set(handles.Message1_text,'String',MessageString); 
    MaxNumOligos = floor(LengthSeq/3); 
    MessageString = ['Enter an integer value for # oligos between 3 

and ' num2str(MaxNumOligos) ' and a number of iterations (100 is 

suggested).']; 
    set(handles.Message2_text,'String',MessageString); 
    set(handles.Optimise_pushbutton,'Enable','on'); 
end 

  

  
% --- Executes on button press in Optimise_pushbutton. 
function Optimise_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Optimise_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%init 
set(hObject,'Enable','off'); 
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set(hObject,'String','Optimising...'); 
% refresh(handles.Optimise_pushbutton); 
set(handles.Message2_text,'String','Please wait whilst sequences are 

optimising...'); 
NumIterations_inputtext_Callback(handles.NumIterations_inputtext, 

eventdata, handles) 
OligosPerStrand_inputtext_Callback(handles.OligosPerStrand_inputtext

, eventdata, handles) 

  
NumLig = getappdata(handles.OligosPerStrand_inputtext,'NumOligos'); 
FASTAHeader = getappdata(handles.Browse1_pushbutton,'FASTAHeader'); 
FASTASequence = 

getappdata(handles.Browse1_pushbutton,'FASTASequence'); 
NumIterations = 

getappdata(handles.NumIterations_inputtext,'NumIterations'); 

  
DetectEndpointFlag = get(handles.DetectEndpoint_checkbox,'Value'); 
CompIDFlag = get(handles.DetectCompetitors_checkbox,'Value'); 

  
LengthSeq = length((FASTASequence{1})); 
MaxNumOligos = floor(LengthSeq/3); 
if NumLig > 2 && NumLig < MaxNumOligos 
    [RMSDVector,TmMatrix,UniqueSeqCell,CutSites,HitsStore] = 

GroupCutINIT(FASTAHeader,FASTASequence,NumLig,NumIterations,DetectEn

dpointFlag,CompIDFlag); 

     
    set(handles.RMSD_axes,'YLim',[0 ceil(RMSDVector(1)/10)*10]); 
    plot(handles.RMSD_axes,0:1:length(RMSDVector)-1,RMSDVector,'x'); 

     
    BucketSize = 0.5; 
    LowerBound = floor(min(TmMatrix(:))/10)*10; 
    UpperBound = ceil(max(TmMatrix(:))/10)*10; 
    histstore = plothist(TmMatrix,(UpperBound-LowerBound)*2+1); 
    

bar(handles.Histogram_axes,LowerBound:BucketSize:UpperBound,histstor

e); 
    set(handles.Histogram_axes,'XLim',[LowerBound UpperBound]); 

     
    set(handles.HistLow_text,'String',int2str(LowerBound)); 
    set(handles.HistHigh_text,'String',int2str(UpperBound)); 

     
    setappdata(hObject,'SeqCell',UniqueSeqCell); 
    setappdata(hObject,'RMSD',RMSDVector); 
    setappdata(hObject,'TmMatrix',TmMatrix); 
    setappdata(hObject,'CutSites',CutSites); 
    setappdata(hObject,'HitsStore',HitsStore); 
else 
    MessageString = ['POTENTIAL ERROR DETECTED: You have selected 

the number of oligos per strand to be ' int2str(NumLig) '. Enter an 

integer value for # oligos between 3 and ' num2str(MaxNumOligos) ' 

and a number of iterations (100 is suggested).']; 
    set(handles.Message2_text,'String',MessageString); 
    return 
end 
set(hObject,'Enable','on'); 
set(hObject,'String','ReOptimise!'); 
% set(handles.Export_pushbutton,'Enable','on'); 
set(handles.Message2_text,'String','Sequences optimised, please 

review statistics and export data.'); 
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%cycle 

  
%final 

  

  
function OligosPerStrand_inputtext_Callback(hObject, eventdata, 

handles) 
% hObject    handle to OligosPerStrand_inputtext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of 

OligosPerStrand_inputtext as text 
%        str2double(get(hObject,'String')) returns contents of 

OligosPerStrand_inputtext as a double 
NumOligosStr = get(hObject,'String'); 
NumOligos = str2double(NumOligosStr); 
setappdata(hObject,'NumOligos',NumOligos); 

  
% --- Executes during object creation, after setting all properties. 
function OligosPerStrand_inputtext_CreateFcn(hObject, eventdata, 

handles) 
% hObject    handle to OligosPerStrand_inputtext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function NumIterations_inputtext_Callback(hObject, eventdata, 

handles) 
% hObject    handle to NumIterations_inputtext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of 

NumIterations_inputtext as text 
%        str2double(get(hObject,'String')) returns contents of 

NumIterations_inputtext as a double 
NumIterationsStr = get(hObject,'String'); 
NumIterations = str2double(NumIterationsStr); 
setappdata(hObject,'NumIterations',NumIterations); 
set(handles.RMSD_axes,'XLim',[0 NumIterations]); 
% set(handles.RMSD_axes,'XTick',0:1:NumIterations); 
% XTickLabelCell = cell(1,NumIterations+1); 
% for i = 0:20:NumIterations 
%     XTickLabelCell(i+1:i+20) = {int2str(i) '' '' '' '' '' '' '' '' 

'' int2str(i+10) '' '' '' '' '' '' '' '' ''}; 
% end 
% set(handles.RMSD_axes,'XTickLabel',XTickLabelCell); 

  
% --- Executes during object creation, after setting all properties. 
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function NumIterations_inputtext_CreateFcn(hObject, eventdata, 

handles) 
% hObject    handle to NumIterations_inputtext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function Message1_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Message1_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  

  
% --- Executes during object creation, after setting all properties. 
function Histogram_axes_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Histogram_axes (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: place code in OpeningFcn to populate Histogram_axes 

  

  
% --- Executes on button press in xls_radiobutton. 
function xls_radiobutton_Callback(hObject, eventdata, handles) 
% hObject    handle to xls_radiobutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of xls_radiobutton 
set(handles.csv_radiobutton,'Value',0); 

  
% --- Executes on button press in csv_radiobutton. 
function csv_radiobutton_Callback(hObject, eventdata, handles) 
% hObject    handle to csv_radiobutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of csv_radiobutton 
set(handles.xls_radiobutton,'Value',0); 

  
% --- Executes on button press in Export_pushbutton. 
function Export_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Export_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
OutputCell = getappdata(handles.Optimise_pushbutton,'SeqCell'); 
if get(handles.MinimiseOligos_checkbox,'Value') 
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    Sequences = 

getappdata(handles.Browse1_pushbutton,'FASTASequence'); 
    Headers = getappdata(handles.Browse1_pushbutton,'FASTAHeader'); 
    CutSites = getappdata(handles.Optimise_pushbutton,'CutSites'); 
    [NumSites, SitePositions] = FindSiteSet(Sequences); 
    ModifiedCutSites = CutSites; 
    for j = 1:length(CutSites) 
        CutSite = CutSites(j); 
        for k = 1:NumSites 
            MutSite = SitePositions{k}; 
            if CutSite >= MutSite(1) && CutSite <= MutSite(2); 
                if CutSite-MutSite(1) < MutSite(2)-CutSite; 
                    %cutsite is closer to start of mutsite 
                    ModifiedCutSites(j) = MutSite(1)-1; 
                elseif CutSite-MutSite(1) == MutSite(2)-CutSite 
                    %cutsite is in the middle of the mutsite 
                else 
                    %cutsire is closer to the end of the mutsite 
                    ModifiedCutSites(j) = MutSite(2)+1; 
                end 
            end 
        end 
    end 

     
    if isequal(ModifiedCutSites,CutSites) 
        %no modifications have been found 
    else 
        %modifications have been found 
        [uniqueseqcell] = 

GroupCutOutput(ModifiedCutSites,Sequences,Headers); 
        uniqueseqcell(1,1:3) = {'Sequence' 'Participating sequences' 

'Name'}; 

         
        OutputCell(1,1:3) = {'Sequence' 'Participating sequences' 

'Name'}; 
        OutputCell(1:length(uniqueseqcell),5:7) = uniqueseqcell; 
    end 
else 
    ModifiedCutSites = 0; 
    %user has selected no modification, change ouput 
    OutputCell = getappdata(handles.Optimise_pushbutton,'SeqCell'); 
    OutputCell(1,1:3) = {'Sequence' 'Participating sequences' 

'Name'}; 
end 

  
ExportFileName = 

getappdata(handles.ExportBrowse_pushbutton,'ExportFileName'); 
OutputXLS = get(handles.xls_radiobutton,'Value'); 
if OutputXLS 
    xlswrite(ExportFileName,OutputCell); 
else 
    csvwrite(ExportFileName,OutputCell); 
end 
Message = ['The file ' ExportFileName ' has been written 

successfully.']; 

  
HitsStore = getappdata(handles.Optimise_pushbutton,'HitsStore'); 
if get(handles.ExportInteractions_checkbox,'Value') 
    InteractionsFilename = 'InteractionsData.xlsx'; 
    xlswrite(InteractionsFilename,HitsStore); 
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end 
set(handles.Message2_text,'String',Message); 

  
% --- Executes on button press in Stats_checkbox. 
function Stats_checkbox_Callback(hObject, eventdata, handles) 
% hObject    handle to Stats_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of Stats_checkbox 

  

  
% --- Executes on button press in MinimiseOligos_checkbox. 
function MinimiseOligos_checkbox_Callback(hObject, eventdata, 

handles) 
% hObject    handle to MinimiseOligos_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of 

MinimiseOligos_checkbox 

  

  
% --- Executes on button press in ExportBrowse_pushbutton. 
function ExportBrowse_pushbutton_Callback(hObject, eventdata, 

handles) 
% hObject    handle to ExportBrowse_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
OutputXLS = get(handles.xls_radiobutton,'Value'); 
if OutputXLS 
    suffix = '.xlsx'; 
else 
    suffix = '.csv'; 
end 

     
[FileName Path] = uiputfile([pwd suffix],'Select a .fas file 

containing all sequences...','OptiCut_output.xlsx'); 
if isequal(FileName,0) || isequal(Path,0) 
    set(handles.Message2_text,'String','User pressed cancel when 

selecting export filename'); 
else 
    FullFileName = [Path '\' FileName]; 
    setappdata(hObject,'ExportFileName',FullFileName); 
    set(handles.Export_pushbutton,'Enable','on'); 
    set(handles.ExportInteractions_checkbox,'Enable','on'); 
end 

  
% --- Executes during object creation, after setting all properties. 
function Optimise_pushbutton_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Optimise_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
set(hObject,'Enable','off'); 

  

  
% --- Executes during object creation, after setting all properties. 
function Export_pushbutton_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to Export_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
set(hObject,'Enable','off'); 

  

  

  
function HistLow_text_Callback(hObject, eventdata, handles) 
% hObject    handle to HistLow_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of HistLow_text as 

text 
%        str2double(get(hObject,'String')) returns contents of 

HistLow_text as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function HistLow_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HistLow_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function HistHigh_text_Callback(hObject, eventdata, handles) 
% hObject    handle to HistHigh_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of HistHigh_text as 

text 
%        str2double(get(hObject,'String')) returns contents of 

HistHigh_text as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function HistHigh_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HistHigh_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 

  

  

  
function BucketSize_text_Callback(hObject, eventdata, handles) 
% hObject    handle to BucketSize_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of BucketSize_text 

as text 
%        str2double(get(hObject,'String')) returns contents of 

BucketSize_text as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function BucketSize_text_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to BucketSize_text (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Redraw_pushbutton. 
function Redraw_pushbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to Redraw_pushbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
LowerBound = str2double(get(handles.HistLow_text,'String')); 
UpperBound = str2double(get(handles.HistHigh_text,'String')); 
BucketSize = str2double(get(handles.BucketSize_text,'String')); 
TmMatrix = getappdata(handles.Optimise_pushbutton,'TmMatrix'); 

  
histstore = plothist(LowerBound,UpperBound,BucketSize,TmMatrix); 
bar(handles.Histogram_axes,LowerBound:BucketSize:UpperBound,histstor

e); 
set(handles.Histogram_axes,'XLim',[LowerBound UpperBound]); 

  

  
% --- Executes on button press in DetectEndpoint_checkbox. 
function DetectEndpoint_checkbox_Callback(hObject, eventdata, 

handles) 
% hObject    handle to DetectEndpoint_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of 

DetectEndpoint_checkbox 
if get(hObject,'Value') 
    set(handles.NumIterations_inputtext,'Enable','off'); 
else 
    set(handles.NumIterations_inputtext,'Enable','on'); 
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end 

  

  
% --- Executes on button press in DetectCompetitors_checkbox. 
function DetectCompetitors_checkbox_Callback(hObject, eventdata, 

handles) 
% hObject    handle to DetectCompetitors_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of 

DetectCompetitors_checkbox 

  

  
% --- Executes on button press in ExportInteractions_checkbox. 
function ExportInteractions_checkbox_Callback(hObject, eventdata, 

handles) 
% hObject    handle to ExportInteractions_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of 

ExportInteractions_checkbox 

  

  
% --- Executes during object creation, after setting all properties. 
function ExportInteractions_checkbox_CreateFcn(hObject, eventdata, 

handles) 
% hObject    handle to ExportInteractions_checkbox (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
set(hObject,'Enable','off'); 

 

A.3.2. GroupCutINIT 

This function is the core of the optimisation process. It performs the iterative sequence 

changes and produces the final output and suitable statistics. 

function 

[rmsdvector,bestTmmatrix,uniqueseqcell,bestcutposvector,HitsStore] = 

GroupCutINIT(FASTAHeader,FASTASequence,numlig,iterations,DetectEndpo

intFlag,CompIDFlag) 
% Program for cutting groups of sequenes in a manner to minimise the 

number 
% of different oligos in the final design. 
%clear 
%tic 
%inputfilename = 'C:\Documents and Settings\moac\My Documents\PhD\UK 

assembly\Opticut\GroupCut\remo11-allcombinations-9-MUT.fas'; 
%numlig = 9; 
numhalflig = numlig*2-1; 
%iterations = 100; 
%cyccheckdelay = 20; 
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%fprintf('%s','Loading sequences... '); 
% [headercell sequences] = fastaread(inputfilename); 
%fprintf('%s\n','done.'); 
numseq = length(FASTAHeader); 
lenseq = length(FASTASequence{1}); 
esthalfliglen = round(lenseq/numhalflig); %guess a solution 
cutposvector = [1 

esthalfliglen:esthalfliglen:esthalfliglen*numhalflig-1 lenseq]; 
originalcutposvector = cutposvector; 

  
uniqueseqholder = cell(1,4); 
cutposstore = zeros(numhalflig+1,iterations+1); 
Tmstore = zeros(numseq,numhalflig,iterations+1); 
rmsdvector = zeros(1,iterations+1); 

  
cutposstore(:,1) = cutposvector; 

  
%fprintf('%s','Making first guestimate... '); 
for j = 1:numseq 
    sequence = FASTASequence{j}; %load in the new sequence 
    Tmvector = zeros(1,numhalflig); %reset store of Tm's 
    for i = 1:numhalflig 
        start = cutposvector(i); 
        stop = cutposvector(i+1); 
        seq = sequence(start:stop); %find the segment section 
        logical = strcmp(seq,uniqueseqholder(:,1)); %check to see if 

this segment has been determined previously 
        if sum(logical) > 0 %if so, use the previously determined 

value 
            [a b] = find(logical==1); 
            Tmvector(i) = uniqueseqholder{a,2}; 
        else %if not, record the pertinant points about the novel 

overlap and determine the new overlap. 
            %             uniqueseqholder(end+1,1:2) = [start stop]; 
            uniqueseqholder{end+1,1} = seq; 
            Tm = TmNNSanta98(seq); 
            Tmvector(i) = Tm; 
            uniqueseqholder{end,2} = Tmvector(i); 
            uniqueseqholder(end,3:4) = {start stop}; 
        end 
        start = stop + 1; 
    end 
    Tmstore(j,:,1) = Tmvector; %record the store of Tm's 
end 
diff = Tmstore(:,:,1) - mean(mean(Tmstore(:,:,1))); 
diffvector(1:numhalflig) = mean(diff(:,1:end)); 
sqdiffvector = diffvector.^2; 
rmsd = sqrt(mean(sqdiffvector)); 
rmsdvector(1) = rmsd; 
%fprintf('%s\n','done.'); 

  
h = waitbar(0,'Running optimisation...'); 
%fprintf('%s','Performing iterations... '); 
for k = 1:iterations 
    %look at stats, find the positions which need changing 
    [minval mindiffpos] = min(diffvector); 
    [maxval maxdiffpos] = max(diffvector); 
    % generate director 
    director = zeros(1,numhalflig+1); 
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    if mindiffpos < maxdiffpos %the smallest temp is to the left of 

the largest, shift all the positions to the right by one 
        director(mindiffpos+1:maxdiffpos) = 1; 
    else %the smallest temp is to the right of the largest, shift 

all the positions to the left by one 
        director(maxdiffpos+1:mindiffpos) = -1; 
    end 
    %do the changes 
    cutposvector = cutposvector + director; 
    %write to store 
    cutposstore(:,k+1)  = cutposvector; 
    %do the stats on the new set of positions. 
    for j = 1:numseq 
        sequence = FASTASequence{j}; %load in the new sequence 
        Tmvector = zeros(1,numhalflig); %reset store of Tm's 
        for i = 1:numhalflig 
            start = cutposvector(i); 
            stop = cutposvector(i+1); 
            seq = sequence(start:stop); %find the segment section 
            logical = strcmp(seq,uniqueseqholder(:,1)); %check to 

see if this segment has been determined previously 
            if sum(logical) > 0 %if so, use the previously 

determined value 
                [a b] = find(logical==1); 
                Tmvector(i) = uniqueseqholder{a,2}; 
            else %if not, record the pertinant points about the 

novel overlap and determine the new overlap. 
                %                 uniqueseqholder(end+1,1:2) = 

[start stop]; 
                uniqueseqholder{end+1,1} = seq; 
                Tm = TmNNSanta98(seq); 
                Tmvector(i) = Tm; 
                uniqueseqholder{end,2} = Tmvector(i); 
                uniqueseqholder(end,3:4) = {start stop}; 
            end 
            start = stop + 1; 
        end 
        Tmstore(j,:,k+1) = Tmvector; %record the store of Tm's 
    end 
    diff = Tmstore(:,:,k+1) - mean(mean(Tmstore(:,:,k+1))); 
    Tmvector(1:numhalflig) = mean(Tmstore(:,1:end,k+1)); 
    diffvector(1:numhalflig) = mean(diff(:,1:end)); 
    sqdiffvector = diffvector.^2; 
    rmsd = sqrt(mean(sqdiffvector)); 
    rmsdvector(k+1) = rmsd; 

     
    %     fprintf('%f\t',cutposvector);fprintf('\n'); 
    %     fprintf('%f\t',diffvector);fprintf('\n') 
    %     fprintf('%f\t',Tmvector);fprintf('\n') 

     
    if k > 4 && DetectEndpointFlag 
        if rmsdvector(k-3:k-2)==rmsdvector(k-1:k) 
            %loop identified 
            rmsdvector(k+1:end) = []; 
            break 
        end 
    end 
    waitbar(k/iterations); 
end 
%fprintf('%s\n','done.'); 
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% find the best solution and stick with it 
[minrmsd iternum] = min(rmsdvector); 
bestcutposvector(1,:) = cutposstore(:,iternum); 
bestTmmatrix = Tmstore(:,:,iternum); 

  
UScutposvector = [bestcutposvector(1:2:end) bestcutposvector(end)]; 
LScutposvector = [bestcutposvector(1) bestcutposvector(2:2:end)]; 

  
%find the number of unique oligos in this set 
uniqueseqcell = cell(1,3); 
uniqueligcount = cell(numlig*2,4); 

  
%fprintf('%s','Developing output data... '); 
for i = 1:numlig*2 
    uniqueligcount{i,2} = 0; 
    if i <= numlig 
        cutposvector = UScutposvector; 
        index = i; 
        start = UScutposvector(index); 
        stop = UScutposvector(index+1); 
        prefix = 'US'; 
    else 
        cutposvector = LScutposvector; 
        index = i - numlig; 
        start = LScutposvector(index); 
        stop = LScutposvector(index+1); 
        prefix = 'LS'; 
    end 
    uniqueligcount{i,4} = stop-start; 
    for j = 1:numseq 
        sequence = FASTASequence{j}; 
        if strcmp(prefix,'US') 
            seq = sequence(start:stop); 
        else 
            seq = seqrcomplement(sequence(start:stop)); 
        end 
        logical = strcmp(uniqueseqcell,seq); 
        if sum(logical(:,1)) < 1 
            uniqueseqcell{end+1,1} = seq; 
            uniqueseqcell{end,2} = 1; 
            uniqueligcount{i,1} = [prefix,int2str(index)]; 
            uniqueligcount{i,2} = uniqueligcount{i,2} + 1; 
            uniqueseqcell{end,3} = [FASTAHeader{1,j} '_' prefix '_' 

int2str(index)]; 
        elseif sum(logical(:,1)) == 1 
            uniqueligcount{i,3} = uniqueligcount{i,3} + 1; 
            [x y] = max(logical(:,1)); 
            uniqueseqcell{y,2} = uniqueseqcell{y,2} + 1; 
        else 
            %            fprintf('%s\n','Something terrible has 

occured. Error #1'); 
        end 
    end 
end 
%fprintf('%s\n','done.'); 

  
if CompIDFlag 
    waitbar(0,h,'Running competitor identification...'); 
    HitCounter = 0; 
    CompCounter = 0; 
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    ComparisonStore = cell(1,3); 
    for j = 1:numseq 
        sequence = FASTASequence{j}; 
        header = FASTAHeader{j}; 
        OligoList = cell(numlig*2,2); 
        for k = 1:numlig*2 
            if k <= numlig 
                cutposvector = UScutposvector; 
                index = k; 
                start = UScutposvector(index); 
                stop = UScutposvector(index+1); 
                prefix = 'US'; 
            else 
                cutposvector = LScutposvector; 
                index = k - numlig; 
                start = LScutposvector(index); 
                stop = LScutposvector(index+1); 
                prefix = 'LS'; 
            end 

             
            OligoList{k,1} = sequence(start:stop); 
            OligoList{k,2} = [FASTAHeader{1,j} '_' prefix '_' 

int2str(index)]; 
        end 

         
        for l = 1:numlig*2 
            PrimaryOligo = OligoList{l,1}; 
            PrimaryName = OligoList{l,2}; 
            index = []; 
            for m = 1:numlig*2 
                if l <= numlig && m <= numlig 
                    % US comp with US 
                    SecondaryOligo = OligoList{m,1}; 
                elseif l <= numlig && m > numlig 
                    % US comp with LS,  
                    SecondaryOligo = seqrcomplement(OligoList{m,1}); 
                elseif l > numlig && m <= numlig 
                    % LS comp with US 
                    SecondaryOligo = seqrcomplement(OligoList{m,1}); 
                elseif l > numlig && m > numlig 
                    % LS comp with LS 
                    SecondaryOligo = OligoList{m,1}; 
                end 
%                 SecondaryOligo = OligoList{m,1}; 
                SecondaryName = OligoList{m,2}; 
                PrimFind = 

strcmp(PrimaryOligo,ComparisonStore(:,1)); 
                SecoFind = 

strcmp(SecondaryOligo,ComparisonStore(:,2)); 
                CompFind = PrimFind + SecoFind; 
                index = find(CompFind==2); 
                if isempty(index) 
                    CompCounter = CompCounter + 1; 
                    [comparison,longerid] = 

HeterodimerMeltingTemp(PrimaryOligo,SecondaryOligo); 
                    ComparisonStore(CompCounter,:) = {PrimaryOligo 

SecondaryOligo comparison}; 
                else 
                    comparison = ComparisonStore{index,3}; 
                end 
                Tms = cell2mat(comparison(:,4)); 
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                Hits = Tms > 30; 
                if ~all(Hits==0) 
                    HitsIndicies = find(Hits); 
                    for o = 1:sum(Hits) 
                        HitCounter = HitCounter + 1; 
                        Tm = Tms(HitsIndicies(o)); 
                        HitsStore(HitCounter,:) = 

{PrimaryName,SecondaryName,Tm}; 
%                         ['Possible competative binding event 

detected between ' PrimaryName ' and ' SecondaryName '.'] 
                    end 
                end 
            end 
        end 
        j; 
        waitbar(j/numseq); 
    end 
else 
    HitsStore = []; 
end 
close(h); 

A.3.3. GroupCutOutput 

This code is used to format the output data into either .xls or .csv formats. 

function [uniqueseqcell] = 

GroupCutOutput(cutposvector,FASTASequence,FASTAHeader) 
%function for generating output for GroupCut 
numlig = length(cutposvector)/2; 
numseq = length(FASTASequence); 

  
UScutposvector = [cutposvector(1:2:end) cutposvector(end)]; 
LScutposvector = [cutposvector(1) cutposvector(2:2:end)]; 

  
uniqueseqcell = cell(1,3); 
uniqueligcount = cell(numlig*2,4); 
%fprintf('%s','Developing output data... '); 
for i = 1:numlig*2 
    uniqueligcount{i,2} = 0; 
    if i <= numlig 
        cutposvector = UScutposvector; 
        index = i; 
        start = UScutposvector(index); 
        stop = UScutposvector(index+1); 
        prefix = 'US'; 
    else 
        cutposvector = LScutposvector; 
        index = i - numlig; 
        start = LScutposvector(index); 
        stop = LScutposvector(index+1); 
        prefix = 'LS'; 
    end 
    uniqueligcount{i,4} = stop-start; 
    for j = 1:numseq 
        sequence = FASTASequence{j}; 
        if strcmp(prefix,'US') 
            seq = sequence(start:stop); 
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        else 
            seq = seqrcomplement(sequence(start:stop)); 
        end 
        logical = strcmp(uniqueseqcell,seq); 
        if sum(logical(:,1)) < 1 
            uniqueseqcell{end+1,1} = seq; 
            uniqueseqcell{end,2} = 1; 
            uniqueligcount{i,1} = [prefix,int2str(index)]; 
            uniqueligcount{i,2} = uniqueligcount{i,2} + 1; 
            uniqueseqcell{end,3} = [FASTAHeader{1,j} '_' prefix '_' 

int2str(index)]; 
        elseif sum(logical(:,1)) == 1 
            uniqueligcount{i,3} = uniqueligcount{i,3} + 1; 
            [x y] = max(logical(:,1)); 
            uniqueseqcell{y,2} = uniqueseqcell{y,2} + 1; 
        else 
%            fprintf('%s\n','Something terrible has occured. Error 

#1'); 
        end 
    end 
end 
%fprintf('%s\n','done.'); 

 

A.3.4. PlotHist 

This simple function is used in preference to the hist.m function in built into MATLAB as the 

in built function does not offer sufficient control over the histogram. 

function output = plothist(data,buckets) 
%plothist(data,buckets) 
%% 
MinVal = min(data(:)); 
MaxVal = max(data(:)); 
BucketSize = (MaxVal-MinVal)/buckets; 

  

  
output = zeros(buckets,1); 

  
for i = 1:buckets 
    output(i) = sum(data(MinVal+((i-

1)*BucketSize)<=data&data<=MinVal+(i*BucketSize))); 
end 
%% 
% heatmap(:,1) = Tmstore(:,1,1); 
% heatmap(:,19) = Tmstore(:,end,1); 
% heatmap(:,2:18) = Tmstore(:,:,1); 
% heatmap = bestTmmatrix; 
% heatmap = Tmstore(:,:,1); 

  
% heatmap(1:end,end+1) = min(Tmstore(:)); 
% heatmap(1:end,end+1) = max(Tmstore(:)); 
% imagesc(heatmap) 
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A.3.5. HeterodimerMeltingTemp 

This function estimates the melting temperature of all possible binding configurations of 

two oligonucleotides. This information is then used to determine whether sequences in the 

set might undergo competitive binding interactions. This process is described in section 

7.1.4. 

function [comparisonstore,longerid] = 

HeterodimerMeltingTemp(sequence1,sequence2) 

  
% sequence1 = 'CGACGCGTCGAAGGAAAGCGGCCGCA'; 
% sequence2 = 'CTTCGACGCGTCG'; 

  
sequencearray = {sequence1 sequence2}; 

  
%column1 = dH, column2 = dS. Both in calories. 
lookuptable = {'AA/TT'  -7.900  -22.2; 
    'AG/CT' -7.800  -21.0; 
    'AT/AT' -7.200  -20.4; 
    'AC/GT' -8.400  -22.4; 
    'GA/TC' -8.200  -22.2; 
    'GG/CC' -8.000  -19.9; 
    'GC/GC' -9.800  -24.4; 
    'TA/TA' -7.200  -21.3; 
    'TG/CA' -8.500  -22.7; 
    'CG/CG' -10.600 -27.2; 
    'Terminal A-T base pair'    2.300   4.1; 
    'Terminal G-C base pair'    0.100   -2.8}; 

  
%constants, change at your peril. 
R = 1.9872; %Universal gas constant 
primerconc = 50e-6; 
saltconc = 0.05; 
ambienttemperature = 25; 

  
%determine the type of comparison we're dealing with, make changes 

to the 
%identity of sequences so that the comparison can be performed. 
%lenstate1: the max length of a seq2 underhang of seq1 
%lenstate2: the max # times that seq2 can fit within seq1 ie if 
%lenseq1=lenseq2, lenstate2 = 1.  
if length(sequence1) > length(sequence2) % seq1 is the longer, all 

is well 
    longerid = 1; %these ids tell the calling function whether a 

switch has taken place. 
    sequence2 = seqrcomplement(sequence2); %complement cos we 

compare characters, not basepairing (cheaty). reverse cos its 

obvious. 5'-3' 
    maxlength = length(sequence1); 
    minlength = length(sequence2); 
    lenstate1 = minlength - 1;  
    lenstate2 = maxlength - minlength + 1; 
elseif length(sequence1) < length(sequence2) % seq2 is the longer, 

this much be changed 
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    longerid = 0; 
    sequence1 = sequencearray{2}; 
    sequence2 = seqrcomplement(sequencearray{1}); %seq2 is always 

rcomplemented, even if it is actually sequence 1. confusing, huh? 
    maxlength = length(sequence1); 
    minlength = length(sequence2); 
    lenstate1 = minlength - 1; 
    lenstate2 = maxlength - minlength + 1; 
elseif length(sequence1) == length(sequence2) % the seqs are the 

same length. This is acceptable. 
    longerid = -1; 
    sequence2 = seqrcomplement(sequence2); 
    maxlength = length(sequence1); 
    minlength = length(sequence2); 
    lenstate1 = minlength - 1; 
    lenstate2 = 1; 
else 
    fprintf('%s\n','Error during relative sequence length 

determination. This is terminal.'); 
end 

  
numcomparison = length(sequence1) + length(sequence2) - 1; 
comparisonstore = cell(1,3); %stores all the comparisons for a 

particualr sequence. 

  
for i = 1:numcomparison 
    %1. find which state we are in so that we can appropriately 

generate overlaps. ie seq2 underhanging seq1 etc. 
    if i <= lenstate1 %seq2 underhangs seq1 
        overlap1 = sequence1(1:i); 
        overlap2 = sequence2(end-i+1:end); 
    elseif i > lenstate1 && i <= lenstate2 + lenstate1 %seq2 is 

encompassed in seq1 
        overlap1 = sequence1(i-lenstate1:i); 
        overlap2 = sequence2; 
    elseif i > lenstate2 + lenstate1 %seq2 underhangs seq1 at the 

other end. 
        overlap1 = sequence1(i-lenstate1:end); 
        overlap2 = sequence2(1:end-(i-lenstate1-lenstate2)); 
    else 
        fprintf('%s\n','Error during overlap generation. #1'); 
    end 

     
    %2. Find the bits of the given overlap match 
    lenoverlap1 = length(overlap1); 
    lenoverlap2 = length(overlap2); 
    matchflag = 0; %this probably doesnt need to be here. 
    if lenoverlap1 ~= lenoverlap2 
        fprintf('%s\n','Error during overlap generation. #2'); 
    else 
        rowdex = 1; %for the comparisonstore 
        matcharray = cell(rowdex,1); %reset the matcharray, this is 

the short term store in which all matching bits of sequence are 

recorded. 
        matchsequence = ''; %reset the matchsequence, to be inserted 

into the match array. 
        logical = overlap1 == overlap2; %compare the overlap 

strings. 
        j = 1; 
        while j <= lenoverlap1 %go through the overlap 
            matchflag = 0; 
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            while logical(j) && j <= lenoverlap1 %whilst the 

basepairs int he overlap match... 
                matchflag = 1; %turn on the match indicator 
                matchsequence = [matchsequence overlap1(j)]; %add 

the relevent base to the matchsequence 
                j = j + 1; 
                if j > lenoverlap1 
                    break 
                end 
            end %stop when the matched bit ends... 
            if matchflag %we found a matching bit, and its end. we 

now record the match 
                matcharray{rowdex,1} = matchsequence; 
                matchsequence = ''; 
                rowdex = rowdex + 1; 
                matchflag = 0; 
            else 
                j = j + 1;%no match found, move on. 
            end 
        end 
        %3. now we should have a matcharray of all matching bits, do 

maths. 
        if ~isempty(matcharray{1,1}); 
            nummatchsegment = length(matcharray); 

             
            for j = 1:nummatchsegment 
                sumdH = 0; 
                sumdS = 0; 
                sequence = matcharray{j,1}; 
                numbase = length(sequence); 
                for k = 1:numbase 
                    if k == 1 || k == numbase 
                        base = sequence(k); 
                        if strcmp(base,'A') || strcmp(base,'T'); 
                            sumdH = sumdH + lookuptable{11,2}; 
                            sumdS = sumdS + lookuptable{11,3}; 
                        elseif strcmp(base,'G') || strcmp(base,'C'); 
                            sumdH = sumdH + lookuptable{12,2}; 
                            sumdS = sumdS + lookuptable{12,3}; 
                        else 
                            fprintf('%s\n',['Unrecognised base 

(',base,') recieved at position ',int2str(i),' in inputted 

sequence.']); 
                        end 
                    else 
                        basestack = sequence(k:k+1); 
                        if strcmp(basestack,'AA') || 

strcmp(basestack,'TT'); 
                            sumdH = sumdH + lookuptable{1,2}; 
                            sumdS = sumdS + lookuptable{1,3}; 
                        elseif strcmp(basestack,'AG') || 

strcmp(basestack,'CT'); 
                            sumdH = sumdH + lookuptable{2,2}; 
                            sumdS = sumdS + lookuptable{2,3}; 
                        elseif strcmp(basestack,'AT') || 

strcmp(basestack,'AT'); 
                            sumdH = sumdH + lookuptable{3,2}; 
                            sumdS = sumdS + lookuptable{3,3}; 
                        elseif strcmp(basestack,'AC') || 

strcmp(basestack,'GT'); 
                            sumdH = sumdH + lookuptable{4,2}; 
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                            sumdS = sumdS + lookuptable{4,3}; 
                        elseif strcmp(basestack,'GA') || 

strcmp(basestack,'TC'); 
                            sumdH = sumdH + lookuptable{5,2}; 
                            sumdS = sumdS + lookuptable{5,3}; 
                        elseif strcmp(basestack,'GG') || 

strcmp(basestack,'CC'); 
                            sumdH = sumdH + lookuptable{6,2}; 
                            sumdS = sumdS + lookuptable{6,3}; 
                        elseif strcmp(basestack,'GC') || 

strcmp(basestack,'GC'); 
                            sumdH = sumdH + lookuptable{7,2}; 
                            sumdS = sumdS + lookuptable{7,3}; 
                        elseif strcmp(basestack,'TA') || 

strcmp(basestack,'TA'); 
                            sumdH = sumdH + lookuptable{8,2}; 
                            sumdS = sumdS + lookuptable{8,3}; 
                        elseif strcmp(basestack,'TG') || 

strcmp(basestack,'CA'); 
                            sumdH = sumdH + lookuptable{9,2}; 
                            sumdS = sumdS + lookuptable{9,3}; 
                        elseif strcmp(basestack,'CG') || 

strcmp(basestack,'CG'); 
                            sumdH = sumdH + lookuptable{10,2}; 
                            sumdS = sumdS + lookuptable{10,3}; 
                        end 
                    end 
                end 
                % get the relevant data. this is really fast. 
                temperature = (sumdH*1000)/(sumdS + 

R*log(primerconc)) + (16.6*log10(saltconc)) - 273.15; 
                dG = sumdH - (ambienttemperature + 

273.15)*(sumdS/1000); 
            end 
            %4. record the data in the important bit of the store. 
            comparisonstore(i,1:5) = {overlap1 overlap2 

nummatchsegment temperature dG}; 
        else 
            comparisonstore(i,1:5) = {overlap1 overlap2 0 0 0}; 

%note the zero values here. NaNs are NOT appropriate. becareful 

becuase in a lot of these comparison stores, 0 will be the highest 

value of the set. 
        end 
    end 
end 

 

A.3.6. TmNNSanta98 

This code is an optimised version of the appropriate parts of oligoprop.m that is provided 

as part of the MATLAB bioinformatics toolbol. This function is used to estimate the melting 

temperature of overlaps during the optimisation program. 

function tm = TmNNSanta98(seq) 

  
% seq = 'ATCGCTTAGCTCGCGGATT'; 
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seq_length = length(seq); 

  
numSeq = double(nt2int(seq)); 
baseNum = [sum(numSeq == 1) sum(numSeq == 2) sum(numSeq == 3) 

sum(numSeq == 4) sum(numSeq == 15)]; 

  
temp = 25;            % temperature in Celsius 
salt = 0.05;          % salt concentration in moles per liter (M) 
primerConc= 50e-6;    % concentration of primers in mole per liter 

(M) 

  
if (sum(baseNum)<14) 
    basic = 2 * (baseNum(1) + baseNum(4)) + 4 * (baseNum(2) + 

baseNum(3)); % TM BASIC [9] 
    saltadj = basic - 16.6 * log10(0.05) + 16.6 * log10(salt); % TM 

SALT ADJUSTED [9] 
else 
    basic = 64.9 + (41 * ((baseNum(3) + baseNum(2) - 16.4) / 

sum(baseNum))); %TM BASIC [1],[9] 
    saltadj = 100.5 + (41 * ((baseNum(3) + baseNum(2))/ 

sum(baseNum))) - (820/sum(baseNum)) + (16.6 * log10(salt)); %TM SALT 

ADJUSTED [9] 
end 
%% 
Sant98_H = [-7.9,-8.4,-7.8,-7.2,;-8.5,-8,-10.6,-7.8,;-8.2,-9.8,-8,-

8.4,;-7.2,-8.2,-8.5,-7.9,]; 
Sant98_S = [-22.2,-22.4,-21,-20.4,;-22.7,-19.9,-27.2,-21,;-22.2,-

24.4,-19.9,-22.4,;-21.3,-22.2,-22.7,-22.2,]; 
ind = sub2ind([4 4],numSeq(1:seq_length-1),numSeq(2:seq_length)); 
NN = [sum(Sant98_H(ind)),sum(Sant98_S(ind))]; 

  
% initiation with terminal  5' 
if(numSeq(1) == 2 || numSeq(1) == 3) 
    NN(1,:) = NN(1,:) + [0.1 -2.8]; 
elseif(numSeq(1) == 1 || numSeq(1) == 4) 
    NN(1,:) = NN(1,:) + [2.3 4.1]; 
    % NN(2,1) = NN(2,1) + 0.4; 
end 

  
% initiation with terminal  3' 
if(numSeq(end) == 2 || numSeq(end) == 3) 
    NN(1,:) = NN(1,:) + [0.1 -2.8]; 
elseif(numSeq(end) == 1 || numSeq(end) == 4) 
    NN(1,:) = NN(1,:) + [2.3 4.1]; 
end 

  
NNdelta=zeros(4,2); 
%% 

  
b = 4; 

  
% [NN, NNdelta] = near_neigh(numSeq, length(numSeq), selfCompFlag, 

nFlag); 
tm = (NN(:,1) * 1000 ./ (NN(:,2) + (1.9872 * log(primerConc./b)))) + 

(16.6 * log10(salt)) - 273.15; %TM NEAREST NEIGHBOR 
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Appendix B 

B. Appendix B: Papers 

This appendix contains a compilation of the papers written during and as a result of this 

PhD thesis as of October 2012. Each paper is briefly described and my contribution to the 

work is outlined. 

B.1. Continuous-channel flow linear dichroism 

Authors: Xi Cheng, Maxim B. Joseph, James A. Covington, Timothy R. Dafforn, Matthew R. 

Hicks and Alison Rodger. 

Published: Analytical Methods, 2012, 4, 3169-3173 

Summary: This paper compared three flow systems for the measurement fast kinetic 

reactions (<600 ms) using linear dichroism (LD). The minimum dead time reported here was 

25 ms, using < 100 µL sample volume per time point. The three flow systems used were: A 

quartz FC-20 cuvette in a SFM-300 stopped flow device. A µ-slide III3 in 1 channel cell and a 

custom made single channel quartz window cell with T-mixer (Q1x1). The custom made cell 

was designed and fabricated during this project and is described in detail in section 5.5. 

 The work completed as part of this thesis that contributed to the paper was the 

design, construction and assembly of the custom Q1x1 flow cell. The flow cell was designed 

in SolidWorks and fabricated in three pieces using the EnvisionTec Perfactory Mini MSL 

machine. The pieces were then assembled with two pieces of quartz glass (5x5 mm and 

10x10 mm) to produce the final device. A T-mixer was then employed to mix solutions 

ahead of the measuring cell.  
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B.2. Dissolution Kinetics of Polycrystalline Calcium Sulfate-Based Materials: Influence 

of Chemical Modification 

Authors: Robin D. Fisher, Michael M. Mbogoro, Mike E. Snowden, Maxim B. Joseph, James 

A. Covington, Pat R. Unwin, Richard I. Walton. 

Published: ACS applied materials & interfaces, 2011, 3, 3528-3537. 

Summary: This work experimentally determined the dissolution kinetics of crystals of 

gypsum and another related CaSO4-containing crystallite in the presence of several ‘humid 

creep inhibitor’ chemicals. The experimental work was carried out by Robin Fisher and 

Michael Mbogoro. The work was also validated a 2D model of the flow cell, created by Mike 

Snowden, that gave a theoretical framework to the experimental work. 

 The design and manufacture of the flow cell was carried out by Maxim Joseph using 

the EnvisionTec Perfactory Mini system and is described in section 5.4. This work required a 

radial flow cell with as close to true radial flow as possible. Simulations performed by 

Maxim Joseph and Mike Snowden indicated that the flow in contemporary commercially 

available devices was unlikely to be sufficiently radial. The radial symmetry of the outlets 

from the radial flow chamber and the incorporation of an inlet channel to the centre of the 

radial flow chamber were critical to the success of this device. 
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B.3. Ultrasensitive Detection of Dopamine Using a Carbon Nanotube Network 

Microfluidic Flow Electrode 

Authors: Siriwat Sansuk, Eleni Bitziou, Maxim B. Joseph, James A. Covington, Martyn G. 

Boutelle, Patrick R. Unwin and Julie V. Macpherson 

Published: Analytical Chemistry, in press. 

Summary: This work considered the detection of dopamine using a carbon nanotube 

network in a flow injection microfluidic setup. This work was able to accurately and 

repeatedly measure the concentration of dopamine in solutions to the 5 pM in sample 

volumes of 50 µL. The fabrication and operation of the carbon nanotube electrode and flow 

injection setup was performed by Siriwat Sansuk and Eleni Bitziou. 

The design and manufacture of the flow cell was carried out by Maxim Joseph using 

the EnvisionTec Perfactory Mini system, as described in section 5.4. To maximise the 

detection level and minimise the sample volume, a thin layer flow cell was required. Design 

of the flow chamber, including testing of the z-resolution of the Perfactory system, and the 

inlet and outlet geometries to incorporate the necessary reference and counter electrodes, 

was critical to the success of this device. 
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B.4. Insights into “fermentonomics”: evaluation of volatile organic compounds (VOCs) 

in human disease using an electronic “e-nose” 

Authors: Ramesh P. Arasaradnam, N. Quraishi, I. Kyrou, Chuka U. Nwokolo, Maxim Joseph, 

S. Kumar, Karna D. Bardhan, James A. Covington. 

Published: Journal of Medical Engineering & Technology, 2011, 35(2), 87-91. 

Summary: This work is the first in a series of papers validating the use of an ‘e-nose’ as a 

technique for the identification and diagnosis human disease. Stool samples from normal, 

healthy individuals and from individuals diagnosed with several inflammatory bowel 

diseases were compared using the e-nose and as mass spectroscopic approach. Both 

techniques were able to cluster the individuals according to the disease states. Ramesh 

Arasaradnam, N. Quraishi, I. Kyrou and Chuka Nwokolo assessed patients, took and handled 

samples as well as assessing the samples using the e-nose designed by James Covington. 

Maxim Joseph assessed the samples by mass spectroscopy using a head space sampler and 

analysed the data using principle component analysis. This work is not described in the 

present thesis. 
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