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Developing a holonomic iROV as a tool for kelp bed mapping  

How can the data from multiple complementary sensors be fused to 

improve the mapping capability of a holonomic, intelligent , 

underwater vehicle in the nearshore environment?  

Abstract 

Kelp beds support a vast and diverse ecosystem including marine mammals, fish, invertebrates, 

other algae and epibiota, yet these kelp beds can be highly ephemeral. Mapping the density and 

distribution of kelp beds, and assessing change over yearly cycles, are important objectives for 

coastal oceanography. However, nearshore habitat mapping is challenging, affected by dynamic 

currents, tides, shallow depths, frequent non-uniform obstacles and often turbid water. Noisy and 

often incomplete sensor data compound a lack of landmarks available for navigation. 

The intelligent, position-aware holonomic ROV (iROV) SeaBiscuit was designed specifically for this 

nearshore habitat mapping application and represents a novel synthesis of techniques and 

innovative solutions to nearshore habitat mapping. The concept of an iROV combines the benefits 

of autonomous underwater navigation and mapping while maintaining the flexibility and security 

of remote high-level control and supervision required for operation in hostile, complex 

underwater environments. An onboard battery provides an energy buffer for high-powered thrust 

and security of energy supply. Onboard low-level autonomy provides robust autopilot features, 

including station-keeping or course-holding in a flow, allowing the operator to direct the survey 

and supervise mapping data in realtime during acquisition. 

With the aim of providing high-usability maps on a budget feasible for small-scale field research 

groups, SeaBiscuit fuses the data from an orthogonal arrangement of a forward-facing multibeam 

sonar and a complementary 360° scanning sonar with a full navigation suite to explore and map 

the nearshore environment. 

Sensor fusion, coupled with the holonomic propulsion system, also allows optimal use of the 

information available from the limited budget sensor suite. Robust and reliable localisation is 

achieved even with noisy and incomplete sensor data using a relatively basic Inertial Navigation 

System and sonar-aided SLAM in the absence of an expensive Doppler velocity log or baseline 

navigation system. Holonomic motion in the horizontal plane and an axisymmetric hull provide 

the manoeuvrability required to operate in this complex environment, while allowing 3D maps to 

be generated in-transit. 

The navigation algorithms were tested mapping a piling dock and the habitat mapping sensors 

calibrated using an ‘artificial’ kelp bed of manually dimensioned kelp stipes transplanted to a 

sheltered but open-water real-world environment. Sea trials demonstrated mapping open ocean 

kelp beds, identifying clusters of stipes, converting this into a useful measure of biomass and 

generating a density surface across the kelp bed. This research provides field-proven techniques 

to improve the nearshore habitat mapping capabilities of underwater vehicles. Future work 

includes the transition to full-scale kelp bed mapping, and further development of the vehicle and 

sensor fusion algorithms to improve nearshore navigation. 
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Chapter 1 Introduction 

This thesis describes the design, development, field trials and deployment of an underwater 

vehicle designed to map kelp beds in the challenging nearshore underwater environment. 

1.1 Motivation 

Kelp beds are the base for a diverse and highly productive ecosystem, yet they are highly 

ephemeral with very localised variation. Many studies focus on the ecology of these kelp beds, 

including marine mammals, fish and invertebrates [1-3]. These studies require an estimate of the 

density and distribution of kelp, and yet techniques to provide these maps have significant 

opportunities for development. 

Kelp stipes are anchored on a rocky substrate in shallow tidal areas. A buoyant pneumatocyst and 

air filled stipe support a surface canopy. Stipes typically wind around each other to form clusters 

spread out in great underwater kelp beds. Challenges of kelp bed mapping include high currents, 

fast flowing tides and shallow water which cause large movements of stipes together with a high 

risk of entanglement in or damage to the kelp. The stipes and rocky seabed present frequent non-

uniform obstacles and navigational landmarks are sparse. 

The research aim was to develop a tool capable of detailed mapping of kelp beds from the 

midwater with a resolution of individual stipes. 

1.2 Context 

Existing techniques to map the nearshore compromise detail and coverage. Airborne sensing 

maps only the kelp canopy [4, 5], which is susceptible to damage from storms, boats and marine 

mammals and stipe density must be inferred with a high uncertainty and low resolution [6]. Ship 

based mapping using sonar [7, 8] and towfish [9] has been used for submerged vegetation 

mapping, but this is not possible in canopy forming bull kelp due to damage and entanglement, 

shallow water environments, poor manoeuvrability and mapping sensors impeded by the surface 

canopy [10].  

Divers are limited by high cost [11], low coverage [1], visibility and positioning, many of which also 

apply to cameras drops [3]. Underwater vehicles using either sonar [11] or video [12] provide a 

compromise of detail, shallow water and midwater accessibility, manoeuvrability and coverage 

[13]. However, existing vehicles avoid operating under canopy forming kelp due to the challenge 

of this environment and risk of entanglement [14] and significant adaptation is required to 

operate within bull kelp beds. 

Visual and acoustic imaging are complementary in terms of range and detail. For the challenging 

conditions of the nearshore, the benefits of fusing visual and acoustic mapping are apparent, with 

sensor fusion used to increase reliability, sensor availability and to combine idiothetic/allothetic 

sensors, or to increase the information available from low budget sensors [15]. Sensor fusion for 

navigation is also important, with existing techniques for landmark based navigation requiring a 

sufficiently diverse environment [16] or artificial markers to be placed beforehand [17]. This 

research investigated the opportunity to use environmental features (kelp) for navigation. 

Sonar fusion is used elsewhere to increase detail and to reduce ambiguity [18], however the novel 

approach developed in this research fuses multibeam and scanning sonars using an axisymmetric 
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hull and holonomic propulsion to yield coverage and mapping speed benefits, together with 

mapping independent of navigation. 

Manual kelp detection has been used to process echosounder logs for giant kelp [8, 19], yet given 

the survey volume from midwater multibeam mapping, significant labour and accuracy 

improvements are possible from development of realtime autonomous kelp detection algorithms. 

Validation of sonar detection of kelp is performed either using divers, or separate video surveys in 

the general area, or from surveys of areas which dry out at low tide [20]. These are all susceptible 

to errors, yet an underwater vehicle allows co-registered video to be gathered of the exact sonar 

target at the same time to reduce ambiguity. 

Sonar calibration using a known arrangement of kelp stipes has been performed for just stipe 

detection for a different species, not relating measures of biomass / biovolume to a sonar return 

[8]. Additionally, Zabloudil et al. [8] struggled to map high kelp densities with a single beam 

echosounder, so multibeam midwater mapping is proposed to discriminate dense areas of kelp. 

Remotely operated vehicles (ROV) and autonomous underwater vehicles (AUV) are 

complementary in terms of the reliability and security of remote control via a tether and the 

flexibility and manoeuvrability gained from using an untethered autonomous solution. Remote 

control of underwater vehicles in high risk areas is still recognised as essential [21], while allowing 

realtime direction of a survey [22]. Autonomous features ranging from holding a position or 

course [23] through to teleprogramming or task scheduling [24] all have the potential to relieve 

an operator of low level control. 

An onboard power source would quickly be depleted given the high thrusts required to 

manoeuvre and operate in the nearshore, and yet a thick tether compromises manoeuvrability 

[25]. Data-only tethers exist [26], yet the use of an onboard energy buffer trickle charged by a thin 

flexible tether is undocumented. This research proposed an iROV, an intelligent position-aware 

ROV, as a hybrid solution. 

Vehicles capable of operating at the surface do exist [27], yet vehicles capable of hybrid 

operation, bridging the air-water interface to register underwater sonar targets using GPS for 

sonar-aided SLAM underwater is not documented. Axisymmetric holonomic ROVs are rare [28], 

and exploiting axisymmetry to enable spin mapping is even rarer with only a single vehicle 

documented [29], incapable of the manoeuvrability required for operation in the nearshore kelp 

beds. Coupling axisymmetric spin mapping with a forward facing multibeam sonar for vertical 

resolution and mapping, and a high angular resolution scanning sonar decoupled from vehicle 

heading is undocumented. 

Finally, ROV surveys are typically very expensive when including navigation systems and habitat 

mapping sensors [14]. In terms of sensing, ‘better’ results can usually be achieved given a greater 

budget [30], however, the challenge is to achieve high-quality habitat mapping given the limited 

budget of a small-scale field research operation. 

1.3 Background work 

Chapter 2 begins with the research context, describing the requirements and biological 

importance of mapping kelp beds. While a broad array of general purpose vehicles are available, 

specific design considerations are required for operation in the nearshore. A review of the state-

of-the-art of existing techniques for nearshore habitat mapping guided the hardware, software, 

vehicles and techniques developed in this research. 
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Practical evaluation of nearshore habitat mapping techniques detailed in the background work in 

Chapter 3 provided a demonstration of the limitations of existing solutions as well as an insight 

into the dynamic and challenging environment of kelp beds. A test bed vehicle was constructed to 

investigate the requirements and opportunities for using underwater vehicles for nearshore 

habitat mapping. The benefits of holonomic movement, hybrid control and fusion of visual and 

acoustic data were all seen. This background work was used to inform the development of the 

iROV SeaBiscuit described in Chapter 4. 

1.4 Research activities and thesis overview 

The iROV SeaBiscuit was designed for nearshore habitat mapping on a budget feasible to small-

scale research groups. A cylindrical fibreglass shell provided homogenous drag in the horizontal 

plane and vertical stability, important for midwater mapping. Four thrusters provided horizontal 

holonomic movement to counteract the effect of tether drag and reduce the risk of tether 

tangling giving the vehicle complete manoeuvrability. Two vertical thrusters were used for depth 

control. 

A full navigation sensor suite was coupled with forward and downward facing video cameras, a 

forward facing multibeam sonar and a 360 degree scanning sonar mounted underneath the 

vehicle. The two sonars were arranged to exploit maximum information using the complementary 

holonomic propulsion system. The 360° scanning sonar pans around the periphery of the vehicle 

in a 2D plane, controlled independently of the vehicle heading. This provides object detection, 2D 

habitat mapping and navigation information. The forward facing multibeam sonar allows objects 

to be co-registered and profiled in 3D using a vertical swath. 

Sonar targets can be registered using GPS from the surface. The vehicle is then able to dive and 

use this absolute reference to compile a drift-free map using sonar mosaicing, all registered 

relative to an absolute GPS position. A control system was used to resolve a set point of vehicle 

bearing and heading into individual motor thrusts for comparison to the vehicle sensors. Using 

holonomic propulsion, the forward facing multibeam sonar and camera could survey an object as 

it was passed without adjusting the original course.  

Multiple monitors on deck allow dual sonar and dual video to be displayed in realtime to the pilot 

and scientists, coupled with an intuitive user interface for displaying telemetry, controlling 

holonomic movement, toggling autonomous features and compiling survey missions from basic 

building blocks (e.g. hold a depth, heading, course). Realtime supervision allowed modification of 

the survey in response to rapidly changing conditions and data quality to be ensured the first time 

around, without the need for costly redeployments. 

SeaBiscuit exploited hybrid techniques from the fields of AUVs and ROVs to provide a robust 

solution for mapping the challenging kelp bed environment. A hybrid control architecture, 

combining onboard position-awareness and low-level autonomy, allowed survey data to be 

registered with a position reference and relieved the operator of the tasks of station-keeping and 

course-holding. Data validity in dynamic conditions was ensured by remote supervision and 

realtime data verification. Robust, reliable high-level control was provided by maintaining the 

operator-in-the-loop. A hybrid power-supply also provided the unlimited mission duration and 

security of a tethered vehicle, with the high-powered manoeuvring thrust required to navigate 

reliably in and around the full height kelp stipes despite currents. 

Sensor fusion provided benefits over using a single sensor, or using sensors in isolation. These 

benefits included combining drift-free navigation with the robustness and availability of idiothetic 
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information, the combination of detail and coverage by fusing sonar for detection and video for 

identification, the extended coverage and resolution in 3D realised by sonar fusion and bridging 

the air-water boundary to register sonar targets with an absolute GPS position. Utilisation of the 

same sensors for navigation as well as mapping was developed in Chapter 5 and later 

demonstrated off a piling dock in Chapter 6. 

Development into sonar-aided simultaneous localisation and mapping (SLAM) to supplement low-

budget inertial measurements and surface GPS fixes aimed to provide drift free underwater 

navigation. A manually surveyed piling dock was used to provide a ground truth map, and an 

instrumented crane was used to hold the iROV in a ground truth location off the dock. Together 

these allowed the SLAM algorithms to be validated against a known ground truth. A typical 

mapping accuracy of 40cm or 7% of target range was achieved. Algorithms were written to detect 

and parameterise features using both sonars, and an Extended Kalman Filter algorithm for SLAM 

was implemented in LabVIEW using a nearest neighbour method to establish landmark 

correspondences to previously mapped features. 

The same sonars demonstrated for navigation off the dock were also used for kelp mapping. An 

artificial kelp bed was created to calibrate and validate autonomous kelp stipe detection. A fully 

dimensioned arrangement of intact kelp stipes was transplanted to a known position off the piling 

dock. This allowed the sonar processing algorithms to be tuned in constant ground truth 

conditions to enable optimal and reliable detection of the stipes, towards relating the sonar scans 

to an absolute biomass and biovolume estimate, rather than simply measurements of relative 

density. 

Following the calibration, operation moved to open ocean kelp bed mapping. The first operation 

delineated the kelp bed perimeter before mapping the underlying bathymetry. Autonomous 

image processing algorithms then searched the scan for kelp stipes, using both sonars to create 

the map. Each stipe was parameterised for computational efficiency, allowing a full 

reconstruction of the kelp bed without having to store the memory-intensive raw sonar scans. 

The field trials culminated in a successful demonstration of open ocean kelp bed mapping using 

the iROV. Surveys of the same kelp bed from different days were manually registered using 

overlapping features. Kelp stipes were autonomously parameterised and areas of rock and raised 

bathymetry delineated by target mass. As well as target validation between sonars and surveying 

from multiple angles to reduce occlusion, the iROV cameras were also used for corroboration, 

target identification and density estimates where visibility permitted. 

1.5 Summary of conclusions 

In conclusion, a staged series of field trials described in Chapter 6 and Chapter 7 demonstrated 

the successful hybrid concept of an iROV, with capabilities moving towards full-scale kelp bed 

mapping. The iROV combined manoeuvrability, operational security and reliability with holonomic 

propulsion to exploit maximum navigation and habitat mapping information while in transit. A 

modular LabVIEW control system was developed to allow environment adaptive redistribution of 

video and sonar image processing algorithms between the onboard controllers and surface 

processing power. 

Quantitative mapping of kelp stipes, surveyed from the midwater and decoupled from both 

surface conditions and the restrictions of a surface vessel has been demonstrated. The map 

created was more detailed than boat surveys and had a greater coverage and positional accuracy 

than diver surveys or camera drops, with realtime feedback of results to the operator. Calibration 
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techniques were also developed to relate these maps to real life measures of kelp biomass and 

biovolume with realtime target verification. 

Compared to the existing field of nearshore habitat mapping, the iROV SeaBiscuit provided a 

compromise between detail and coverage which was ideally suited to navigation in kelp beds. A 

significant increase in coverage was demonstrated over diver surveys, with financial savings and 

an unlimited survey duration. Data gathered using video was of a comparable detail to that 

gathered by the divers, yet a continuous position estimate was provided. However, sonar fusion 

provided high coverage rates of data co-registered with video, with a quantitative estimate of the 

position and size of each stipe or cluster of stipes. 

Although acoustic mapping from surface vessels provided high-coverage surveys complementary 

to the iROV surveys, the level of detail available from midwater mapping using the iROV was 

much greater. Data was acquired free from the occlusion and restrictions of imaging through the 

kelp canopy, and without the movement and shallow water restrictions of a surface vessel 

transecting through the kelp bed. Furthermore, small-scale manoeuvrability provided data with a 

greater spatial resolution and reduced the effects of occlusion, decoupling the survey data from 

surface conditions. 
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Chapter 2 Literature Review 

2.1 Kelp beds 

The upwelling of cold nutrient-rich water along the entire Pacific coast of North America and 

Canada [31] increases biological productivity in coastal areas, and supports a rich biodiversity of 

life in the nearshore environment [32]. Fish, invertebrates and marine mammals feed, inhabit and 

transit through these shallow coastal waters [33]. 

A wide variety of algae supports this ecosystem, including a vast and diverse community of kelp in 

shallow rocky areas. The ecosystems of these kelp beds and the associated organisms such as 

marine mammals, fish, invertebrates, other algae and epibiota [33] collectively make this “one of 

the most diverse and productive ecosystems of the world” [34] supporting more than ten phyla 

[33] and are of particular biological value. 

Although definitions of the ‘nearshore’ vary widely between context, kelp flourishes in the photic 

zone, which in cold clear water ranges from the low tide level to depths of approximately 20-30m, 

which can extend several km offshore on gently sloping seabeds [34]. Gunderson et al. [35] define 

rocky reef ecosystems as extending from the shoreline to 40m of depth, supporting fisheries 

resources of rockfish, greenlings, sculpins, sea urchins and abalone, including several endangered 

species, and species at risk from expansion of fisheries. 

Of particular importance in the context of this research is the species of kelp Nereocystis 

luetkeana, more commonly known as bull kelp. Bull kelp is prevalent along the Pacific coastline of 

Canada and North America [36], as shown in Figure 2.1 below and is the dominant surface canopy 

kelp north of Santa Cruz, California [37]. 

 

Figure 2.1 - The distribution of Nereocystis luetkeana (bull kelp) along the Pacific coast of Canada and North America. 

  



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

20/347 

Bull kelp grows on a rocky substrate, either in the nearshore or on rocky pinnacles, anchored by a 

holdfast in shallow water depths of approximately 10-17 m [1]. Typical lengths are 20-25 m [38]. A 

single stipe grows (usually annually [37]) upward to the surface where a buoyant bulb 

(pneumatocyst), typically 5-10 cm in diameter, supports several ribbon like fronds [38] forming a 

surface canopy which peaks in density and area during July-October [37]. The circumference of 

the stipe gradually increases with distance from the holdfast and a longitudinal cavity develops in 

the centre, leaving a surrounding wall 0.5-1.5 cm in thickness [38].  

The pneumatocyst and upper portion of the stipe are filled with a mixture of gases, 

predominantly oxygen and carbon monoxide [38, 39] and the tissue is mainly (92%) water [39]. 

Figure 2.2 below shows the key elements of a typical specimen. 

Rock
Holdfast

Stipe

Gas cavity

Pneumatocyst

Fronds

Stipes are swept 
with current

 
Figure 2.2 - The structure of Nereocystis luetkeana. 

Stipes grow in tidal areas, often found in regions of high currents and typically wind around each 

other to form clusters spread out in great underwater kelp forests. These kelp beds support 

populations of mysids, small crustaceans which form the base of a substantial food-web that 

includes grey whales dependent on their abundance. Figure 2.3 shows a cloud of mysids and an 

example specimen under the microscope. 

 

Figure 2.3 - Kelp beds support populations of mysids, small crustaceans. The figure shows a sparse cloud of mysids 
[40]. 

Many studies are underway which are centred on these kelp beds with a focus on the ecology 

which they support. These studies range from mapping the density and species distribution of the 

mysid shrimp within the kelp beds [3], to sampling the populations of mysids [40], or investigating 

the acoustic properties of the kelp beds and how grey whales are using passive ambient acoustics 
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to navigate over great distances [1, 41]. All of these studies require an estimate of the density and 

distribution of the kelp beds with a resolution considering individual clusters of stipes, yet 

techniques to provide this data have significant opportunity for development. 

2.2 Habitat mapping in the nearshore environment 

 Importance 2.2.1

Mapping the density and distribution of kelp beds, and assessing change over yearly cycles, are 

important objectives for coastal oceanography. As the base for a diverse and highly productive 

ecosystem, mapping and monitoring change in the kelp beds can support fundamental research, 

such as the studies listed above, but can also be used to develop coastal conservation techniques. 

While these kelp beds support a great variety of life, they are also highly ephemeral. Steneck [33] 

lists thermal events, storms and outbreaks of herbivores as factors which can eliminate entire 

kelp beds within a year, yet the kelp beds can return nearly as quickly. Changes in water motion, 

temperature, salinity, nutrients, light intensity, available habitat and invertebrate predation are 

also listed [42]. The effects of these can be highly localised, with adjacent kelp beds experiencing 

similar conditions displaying different effects [37]. 

A >10% decline in canopy area from one year to the next was seen in bull kelp beds in Canada 

primarily from sand inundating a rocky habitat [37]. Trophic interactions can also have a rapid and 

significant effect. A commonly cited example is sea urchins grazing on the holdfasts which anchor 

the kelp stipes; a decline in sea otter population can reduce predation pressure on the sea 

urchins, leading to increased grazing and a reduced kelp population [37]. Elsewhere, in Alaska, 

bull kelp is harvested for use in agrochemicals [5]. Careful resource management is required to 

avoid multi-trophic consequences, including affecting fish abundance and diminishing coastal 

seabird foraging efficiency [43]. 

 Challenges 2.2.2

The mapping of kelp density and distribution poses significant challenges of operating in the 

nearshore environment. High currents and fast flowing tides, shallow water and a rocky seabed, 

together with a high risk of entanglement, fouling or even damaging the very environment being 

mapped, all serve to compound the difficulty. Additionally, often a large tidal rise and fall 

proportional to the water depth, coupled with kelp stipes only anchored on the seabed cause 

large movements of the stipes in tides, waves and wind. 

 Techniques 2.2.3

Several established techniques exist for nearshore habitat mapping, including specifically mapping 

kelp density and distribution. However, each technique has its limitations. The applicability of 

different techniques depends on the scale and resolution of the map required. Techniques range 

from high-coverage, low-detail satellite surveys, through to aerial surveys, ship-based surveys, 

underwater vehicles, camera drops, right down to low-coverage, high-detail diver surveys. 

2.2.3.1 Satellite and aerial surveys 

The canopy forming nature of kelp makes it amenable to mapping using remote sensing 

techniques [44]. Satellite imagery is very useful for obtaining broad overview maps, for example, 
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the density and distribution of kelp beds along an entire coastline. However, the low spatial 

resolution, typically 20m, makes it unsuitable for generating high-resolution detailed maps of 

individual plant distribution [4]. Airborne hyperspectral or visible spectrum imaging can improve 

this spatial resolution to approximately 0.5-2m, depending on the imaging altitude and the 

equipment used [5], with coverage of 1-4 square km per image [6]. 

However, aerial imaging measures canopy density and distribution rather than actual stipe density 

and so the density and distribution of the kelp stipes must be inferred from modelled data [6]. For 

the applications of the kelp bed maps considered here, including the grey whale feeding habitat 

studies and the acoustic transmission experiments, it is the stipe density and distribution which is 

important. The use of aerial imaging adds an additional source of uncertainty, particularly when 

considering the effect of wind and tides on the canopy, together with sea state, cliff shadows, 

atmospheric visibility and sun glare angle [6]. 

The surface canopy is also extremely variable in space and time due to the vulnerability of surface 

material to damage and removal by wave energy during storms [45]. The need to frequently 

remap the surface canopy is a major disadvantage of aerial techniques given the relatively long-

term studies (several months, the feeding season of the grey whales) which are performed on the 

kelp beds in the field site. However, despite the vulnerability of the surface canopy to change, the 

stipes themselves are much less vulnerable. 

Although the coverage area is very high for satellite imagery and aerial photographs, the 

resolution is too low for the small-scale maps required for the acoustic grey whale studies and the 

differences between canopy coverage and stipe density and distribution too unpredictable. 

Additionally, techniques to generate a 3D map of the kelp bed, add bathymetry data and populate 

the map with additional information such as mysid density and distribution are all near impossible 

using aerial techniques. Thus, the trade-off made by aerial techniques to increase coverage while 

reducing detail is deemed too great for the target application. 

2.2.3.2 Ship-based acoustic mapping 

Ship-based acoustic mapping provides an increased level of detail, resolution and the ability to 

generate 3D maps including bathymetry, but at a reduced coverage rate compared to airborne 

methods. 

The tissue of Nereocystis luetkeana is mainly (92%) water [39] and so it has a weak acoustic 

backscatter [46]. Other research has demonstrated acoustic mapping of kelp fronds without a gas 

cavity [7] using ship-based single and multibeam echosounders to map macroalgae in water 

depths of up to 20m. Noel et al. [47] map underwater seafloor vegetation using a combination of 

a surface vessel mounted echosounder and a side scan sonar mounted on a towfish, the results of 

which are combined using data fusion algorithms. These techniques work well for macroalgae 

without a gas cavity. The gas-filled portion of Nereocystis luetkeana, as described in Figure 2.2, 

provides a strong acoustic return, thus lending itself further to acoustic mapping using sonar. 

However, while ship-based acoustic mapping is suitable for seafloor vegetation [7, 47], it is less 

effective when mapping surface canopy forming vegetation such as kelp beds of Nereocystis 

luetkeana. For a canopy forming kelp, if the vessel performs a transect1 under power then it risks 

tangling either the drive train and/or the scientific equipment with the kelp and damaging the 

                                                           
1
 A transect is defined as traversing a fixed path or known course and recording survey data observed with a 

position reference. The path is fixed and repeatable to allow spatial comparison and temporal analysis. 
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environment being studied. Additionally, the vessels typically used for nearshore surveys are 

unable to provide full manoeuvrability at low speeds and many lack station holding or dynamic 

positioning capabilities. If the vessel is allowed to drift over the kelp bed with its engines idle to 

avoid damage to the ship and vegetation or entanglement, then its course is determined by the 

wind and currents and the risk of tangling is never completely mitigated. If the vessel 

circumnavigates the kelp bed, directing sonar imaging devices inwards, then the survey range and 

detail is limited leaving the centre sections of large kelp beds unmapped. 

As with any scan taken from the surface, the quality, resolution and understanding of what is 

happening underwater is much lower than if the sensors and instruments are positioned at depth 

(i.e. the difference between looking down over the kelp bed, and surveying at depth looking 

through the kelp bed). Overall, the positioning in latitude, longitude and depth of a surface vessel 

is not as flexible as that which can be obtained by underwater vehicles, nor can the kelp bed be 

entered and mapped from the midwater. 

Hass and Bartsch [48] provide a recent example of kelp bed mapping using a single beam 

echosounder and compare the results obtained to geo-referenced underwater video transects 

and diving transects. One of the significant benefits of acoustic surveys is the ease of data 

processing. However, the single beam echosounder approach employed by Hass and Bartsch [48] 

requires interpolation to generate a spatial map from a grid of regular transects. The resulting 

map is of a lower spatial resolution and detail compared to those required for this research. 

Nelson et al. [9] discuss monitoring the temporal and spatial shift of nearshore submerged aquatic 

habitat in the presence of anthropogenic factors, for example in the proximity of marinas and 

ports. A combination of underwater video and side scan sonar mounted to a towfish and 

referenced to the ship’s position is used. The benefits from fusing video and sonar in the dynamic 

conditions of the nearshore are demonstrated. However, the high risk of tangling and lack of 

small-scale manoeuvrability render a towfish ineffective for mapping the canopy-forming kelp 

beds proposed in this research. 

The applications of kelp bed maps can extend beyond simple habitat mapping; Elwany et al. [19] 

conducted a study to determine the effects of kelp beds on waves. A combination of side-scan 

and dual downward facing 200kHz echosounders from a ship-based survey was used to generate 

local kelp bed maps with a high-resolution considering individual plant density and distribution 

[8]. Although the post-processing and analysis to identify kelp stipes was performed manually, the 

constraints and criteria for manually indentifying kelp from sonar scans is applicable to any 

autonomous processing algorithm. 

2.2.3.3 Underwater visual surveys 

The most significant disadvantage of acoustic mapping is a lack of detail and resolution. However, 

this can be supplemented to some extent with visual surveys, either camera drops and tows or 

diver surveys, to provide high-resolution colour imagery. Visual surveys have the inverse (or 

complementary) characteristics of sonar surveys. Visual techniques require clear water, good 

illumination, have relatively poor range and coverage and cannot provide depth perception or 

ranging (unless stereoscopic techniques are used). 

In the kelp beds typical of Nereocystis luetkeana, visibility can be as low as <1m depending on 

water turbidity (verified from the author’s own diving experience!). The water turbidity is 

dependent on a variety of factors and can be highly dynamic and localised. Sea state and benthic 

composition can combine to cause sediment and silt in the water and the tide speed and direction 
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can affect the size and density of particles washed from the sediment. Runoff from the land 

following rainfall or at estuaries can wash particles and nutrients into the water. Additionally, the 

algal blooms occurring in the spring as sunlight hours increase cause a significant reduction in 

visibility [49]. The very upwelling of cold nutrient-rich water which supports the ecosystem of the 

kelp bed also serves to reduce visibility [50]. 

Thus, visual surveys are useful to complement acoustic mapping with short-range target 

confirmation and identification. However, for long-range survey, mapping and detection, acoustic 

mapping has significant advantages for high coverage, yet relatively high detail surveys of kelp 

beds. 

Ship-based underwater visual surveys use a tethered underwater camera, either lowered into the 

water from the surface vessel at a series of GPS referenced stationary points, or towed through 

the kelp bed on a transect. However, towing, dragging or dropping passive un-propelled 

instruments into the kelp bed has the limitation that the position of the instrument is relatively 

undetermined and uncontrolled. It is hard to accurately place a passive instrument from a surface 

vessel and the risk of tangling is significant with a moving surface vessel and an uncontrolled 

towed instrument.  

An alternative method of visual surveys to camera drops and tows uses SCUBA divers. The risk of 

tangling is lower, the survey can be directed and adjusted reactively, movement can be more 

controlled than a camera drop and measurements and sample collection are possible. 

This method was used extensively by Wladichuk [1] to estimate kelp bed density to ground truth 

acoustic transmission experiments. Figure 2.4 below shows an example image from a transect 

through a kelp bed, where the length of a diver is used as a reference and kelp stipes are 

identified through manual video frame analysis. 

 

Figure 2.4 - An example image from an underwater diver kelp bed survey video along a transect in relatively good 
visibility. Manual video frame analysis is used to identify 7 kelp stipes (or clusters of stipes) shown by red arrows. The 
length of the SCUBA diver in the frame is used as a reference to calculate a stipe density of 1.75 stipes/m² as there 
are 7 stipes (or clusters of stipes) in an area of approximately 2m by 2m. Figure and caption adapted from [1]. 
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Figure 2.4 shows relatively good visibility, uncharacteristic of many kelp beds. The labour effort of 

both data gathering by divers and data processing by manual video analysis is high, the coverage 

rate is low and there is no estimate of the stipe size or clusters of stipes. These limitations stem 

partly from the data gathering method of diver surveys, and partly from the limitation of visual 

surveys over acoustic mapping. 

The additional risk, time spent deploying and recovering divers, and the limitation of only being 

able to perform a few dives per day restrict the usefulness of SCUBA divers when large areas need 

to be covered or a long duration scan is required. Jones et al. [11] quote that a 2.5km transect 

mapping submerged aquatic vegetation (eelgrass) was assessed twice in a 4 hour period using an 

underwater vehicle which included set-up time and vehicle recovery. Jones et al. [11] estimate 

that the equivalent survey over 500m using 5 divers could take an entire day, depending on 

conditions and water visibility, costing up to $10k. While the coverage benefits over diver surveys 

are apparent, a direct comparison to the costs of an underwater vehicle (including capital, 

deployment and service) is not straightforward. 

Additionally, recording scientific data with an accurate position fix while diving is challenging and 

usually requires predefined simple transect routes or pre-deployed markers. Wladichuk [1] 

assumes a constant swim speed where the video footage is recorded along a straight transect at a 

constant speed and depth between two GPS-referenced surface markers. 
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2.3 Using underwater vehicles for nearshore habitat mapping 

Considered by many to be the first remotely operated vehicle, the POODLE built by Dimitri 

Rebikoff in 1953 [51] sparked a revolution in subsea vehicles which the US Navy quickly followed 

up. The VARE XN-3 delivered to the US Navy in 1961 provided one of the first controllable 

underwater video systems [52] and the rest is history. Underwater vehicles today have 

propagated across the fields of subsea defence, archaeology, security, biology, ecology, 

oceanography, infrastructure and energy [53, 54]. Enabled by a continual miniaturisation in 

electronics and power sources, an advance in control algorithms and a drive of expanding 

exploration, resources and research, the field is continually advancing [55] with the frontiers of 

autonomy and applications being pushed further and further [56, 57]. 

Although the field of underwater vehicles is well established, there are still significant 

opportunities for development to advance the field specific to generating the high-usability maps 

required for this application of nearshore habitat mapping. 

 Classification of underwater vehicles 2.3.1

The classification of underwater vehicles varies between sources. Blidberg [58] presents a widely 

accepted set of definitions which are summarised in Figure 2.5 in the category of unmanned 

underwater vehicles. 

 

Increasing autonomy (risk)Increasing control (security)
 

Figure 2.5 - The classification of underwater vehicles (adapted from [58]). 

Given the difficulties of using towed instruments in kelp beds, the discussion continues with 

remotely operated vehicles (ROV), autonomous underwater vehicles (AUV), and the hybrid, an 

untethered ROV with an onboard power source, no tether, and wireless remote control. 

The arrow drawn underneath Figure 2.5 represents increasing autonomy to the right, and 

increasing control to the left. While this increase in autonomy brings with it benefits (many of 

which are discussed below), it increases risk and potentially restricts the possible environments 

into which AUVs can be deployed. Moving to the left brings increasing control, and thus increasing 

security, but with disadvantages over AUVs (also discussed below). The optimal compromise 

somewhere along this line to combine the benefits of each end of the spectrum while mitigating 

the limitations for kelp bed mapping forms the focus of this research. 
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 The requirements and techniques for nearshore habitat mapping 2.3.2

When compared to the alternative survey methods previously reviewed (airborne, ship, camera 

drops, divers), for many applications, the use of underwater vehicles brings benefits to nearshore 

habitat mapping. These range from improved resolution, coverage, reliability and flexibility or can 

extend to a reduction in time, labour and expense. 

There are four fundamental requirements for any mobile robot: sensing, control, navigation and 

propulsion [59]. However, nearshore habitat mapping dictates specific requirements for an 

underwater vehicle. Each of these are considered in turn, with the specific context of nearshore 

habitat mapping. The requirements for operating in kelp beds are considered and existing 

techniques applicable to the use of underwater vehicles for kelp bed mapping are evaluated. 

2.3.2.1 Sensing (habitat mapping) 

The underlying requirement of the habitat mapping sensors is accurate2 (low-error) and reliable3 

(repeatable-error) sensing of the elements required to complete the map, in this case, the 

seabed, the kelp stipes, and any other targets present. All of this is required in the turbulent, 

dynamic and hostile nearshore environment of kelp beds. 

Whichever sensor is used to map the kelp beds, most commonly video or sonar, there are 

advantages and disadvantages to each which are inherent in the sensing mode, including 

resolution, range, attenuation and detail, as discussed in section 2.2.3. These factors are present 

whether the video or sonar scan is conducted using a ship-based method or an underwater 

vehicle. However, this subsection considers the benefits gained specifically from using the same 

sensor mode conveyed using an underwater vehicle. 

Using a mobile underwater vehicle compared to simply mounting the sonar unit to the surface 

vessel yields several advantages [13]. Underwater vehicles are able to position the sensors in 3D 

in the midwater, independently of a surface vessel. A position can be held in currents, or a course 

navigated independently of the movement constraints of a surface vehicle. Fine precision control 

of movement and positioning, navigation independent of the surface vessel and independent 

depth control are all gained as well as the ability to anchor the surface vessel safely out of the 

kelp bed to avoid shallow water and damaging the kelp. Even tethered underwater vehicles are 

able to extend the operating range of a surface vessel into shallow water, confined spaces, and 

operating in and around the kelp beds. 

Survey data can be gathered without the effects of surface conditions, such as waves and 

weather, which would reduce the survey quality of a ship-based scan. Through the 

manoeuvrability of an underwater vehicle, scans can be performed not only around the periphery 

of the kelp bed looking inwards as a surface vessel would, but also from within the kelp bed 

looking outwards, thus increasing survey detail and coverage. 

Using an AUV, Deneulle and Dunbabin [12] demonstrated successful kelp bed and seagrass 

mapping using optical techniques in nearshore regions in water depths of 6-10m, yet requiring 

adequate visibility. Downward facing video and autonomous texture recognition were used to 

                                                           
2
 Accuracy is often defined as “closeness of agreement between a quantity value obtained by measurement 

and the true value of the measurand” and is “inversely related to systematic error and random error” [60]. 
3
 Reliability is used in this context to mean precision, often defined as “closeness of agreement between 

quantity values obtained by replicate measurements of a quantity, under specified conditions” [60]. 
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classify seabed habitats, including leafy kelp, and techniques were proposed to deal with the 

significant sway of tethered targets in the wave action of the nearshore environment. 

Techniques to combine the coverage of a surface vessel with the level of survey detail provided by 

an underwater vehicle have also been considered. Barrett et al. [13] successfully used an AUV for 

mapping marine biodiversity in coastal waters in a recent (2010) survey. Information was 

combined from a ship-based high-resolution multibeam sonar survey of bathymetry with high-

resolution position referenced video footage gathered by an AUV navigating a pre-programmed 

constant-depth course through the surveyed areas. The scientific video footage gathered was also 

used to cross-reference and correct the vehicle position estimate using image recognition of 

seabed targets at crossover points along the trackline. The limitations identified by Barrett et al. 

[13] were the restrictions of water-clarity and the difficulties of estimating the range to and size of 

survey targets using video data alone. 

Therefore, the use of sonar to augment video footage is proposed to improve coverage 

particularly in low visibility, to reduce survey effort and to allow autonomous image processing 

and feature extraction algorithms thus removing the need to manually post-process video. Jones 

et al. [11] discuss the use of an AUV equipped with side-scan sonar to map the boundaries of 

eelgrass (Zostera marina) beds in the nearshore. The requirements are the same as for the kelp 

bed application discussed in this research, principally delineating (mapping the perimeter of) 

submerged aquatic vegetation beds in the nearshore to determine area and then populating the 

map with plant density. The strength of the acoustic sonar echo is driven by abrupt density 

changes from the surrounding seawater, either increasing density to a solid, or decreasing density 

to a gas [11]. The gas-filled spaces (lacunae) between the cells of the eelgrass tissue [61] lend 

eelgrass to acoustic detection [62] in the same way that the gas-filled pneumatocysts of bull kelp 

are easily detectable acoustically. 

Jones et al. [11] used side-scan sonar to delineate areas of eelgrass, however, clutter in regions of 

high shoot density restricted estimations of plant density. This can be addressed in part through 

the use of a downward facing (ship-mounted) echosounder capable of discriminating vegetation 

as a function of vertical height [62], yet the benefits of an underwater vehicle platform are lost. 

Jones et al. [11] discuss the possibility of using an Acoustic Doppler Current Profiler (ADCP) to 

populate the map with vegetation density and height, yet the capital costs of such an instrument 

are high, typically $15k upwards [63]. 

Instead of surface vessel scans, it is proposed that the combination of a position-aware 

underwater vehicle, coupled with a multibeam echosounder capable of mapping kelp stipe 

density over the entire water column can provide an optimal solution for nearshore kelp bed 

habitat mapping (or indeed any canopy forming kelp). As discussed above, the integration of 

visual data can provide corroboration and identification of the acoustic target, given short ranges 

and good visibility. 

2.3.2.1.1 Ground truthing habitat mapping sensors 

Ground truthing allows sensor data to be reliably interpreted autonomously and a dataset to be 

expressed using absolute units, rather than simply relative measurements. Given the applications 

of the kelp bed mapping discussed previously, ranging from supporting ecological research into 

the kelp bed as an important marine habitat to modelling the acoustic properties of the kelp bed, 

in each application absolute units of kelp stipe density and distribution are important. 
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Saade [20] describes a two-part ground truthing process, applied to both multibeam data and 

aerial imagery, in the context of seabed habitat mapping. The first part is calibration, to relate the 

arbitrary sensor values (in the case of the multibeam, the strength of the acoustic return) to real-

life values. In the case of the kelp stipes, these real-life values are the biomass and/or the 

biovolume, with an intermediate consideration of the gas volume, as this significantly affects the 

strength of the acoustic return. The second part is verification, which Saade [20] performs 

primarily using video transects. The verification phase provides confirmation that the autonomous 

detection routines are correct, with no false-positives, false-negatives or misidentifications. Saade 

[20] also uses the verification phase to provide a statistical estimate of the accuracy of the final 

habitat mapping, both in terms of the accuracy of classification, and the accuracy of positional 

and dimensional mapped information. 

In the context of using underwater vehicles for habitat mapping, this verification through video 

can be performed by diver surveys or by camera drops. However, self-contained visual verification 

of classification is also possible using one or more cameras mounted on the vehicle, recording co-

registered, synchronised video footage for later playback and examination. 

Zabloudil et al. [8] describe their calibration process of surface vessel sonar surveys of the density 

of giant kelp (Macrocystis pyrifera). Although a different species, giant kelp has a similar structure 

to bull kelp of long stipes anchored by a holdfast and an extensive canopy. However, whereas bull 

kelp has a gas-filled stipe and a single pneumatocyst supporting fronds at the surface, giant kelp 

has blades growing over the entire height of the stipe, with each blade supported by a 

pneumatocyst [64]. The calibration process included considerations of areas of too-high stipe 

density to distinguish single plants, or smaller stipes which have a reduced acoustic return. Stipe 

densities greater than 20 plants / 100m² were not distinguishable and not defined in the 

calibration model. However, for giant kelp, such densities were stated to be infrequent and it is 

proposed that midwater multibeam scans could distinguish greater stipe densities. 

To avoid underestimating density, Zabloudil et al. [8] performed a calibration survey of plants of 

known dimensions to determine the minimum size at which kelp stipes become acoustically 

undetectable. This involved harvesting, measuring and transplanting a series of stipes of particular 

sizes in a known arrangement with appropriately spaced artificial sonar markers for reference [8]. 

The technique is applicable to any species of kelp surveyed and allows development of a 

calibration model by comparing the known stipe data with the acoustic return. As well as 

calibration on a manually dimensioned artificial kelp bed, Zabloudil et al. [8] also discuss the 

technique of verification using manually measured sections of real kelp beds. 

2.3.2.1.2 Presentation of results 

Given the successful mapping of the density and distribution of the kelp stipes, the processing and 

presentation of the results is important to generate high usability, applicable maps and datasets. 

There are two options to store and present the kelp stipe data. 

The first considers the representation and mapping of individual stipes. An established 

consideration of habitat mapping is the large datasets of high-resolution imagery produced [13]. 

While recorded footage is useful to play back for later analysis and mission review, often more 

efficient storage techniques are available which are also more useful for later analysis and post-

processing. Using a combination of image processing and feature extraction algorithms, features 

pertinent to the survey application (in this case kelp stipes) can be extracted from the raw sonar 

imagery during acquisition and stored in a compact, efficient parametric representation. Although 
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this is at the expense of an increase in computing power required for on-the-fly realtime image 

processing, the reduction in data storage requirements is significant. It does however require 

survey targets which are amenable to autonomous detection. Techniques to autonomously detect 

and parameterise the kelp stipes are discussed in the later implementation sections. 

The second option represents stipe density as an interpolated surface over the delineated kelp 

bed area. Given the high currents and turbulent wave action of the nearshore, the kelp stipes 

often wrap around each other, forming clusters. Additionally, given the wave action and tidal 

flow, the position of the individual stipes and the clusters can often vary significantly, as the long 

stipes, only anchored at the holdfast on the seabed, sway back and forth. This movement can be 

relatively uniform across the kelp bed from tidal flows, with the majority of the stipes not moving 

relative to each other, but all moving in the same direction by approximately the same 

magnitude. However, it can also be much more unpredictable, from wave action and wind causing 

the stipes to move relative to each other in a highly dynamic manner. A significant change in the 

apparent map can be seen from one scan to the next, even over a few seconds. Therefore, 

although consideration of the individual stipe size and position is important, given the errors 

discussed above, it is also useful to consider an average density of kelp stipes 

(biomass/biovolume), represented as a density surface, delineated by the kelp bed boundaries. 

This is useful as a 2D density, gathered at a constant midwater height across the kelp bed, to 

allow relative measurements and observations to be made between stipes, but also interesting to 

consider in 3D given the changing characteristics of the kelp stipe, from the holdfast right up to 

the fronds of the canopy. The technique of presenting interpolated density as a 2D surface has 

been used previously with a ground truth calibrated scale and combined with a bathymetric map 

[8]. This presentation is useful both for immediate analysis, but also for recognising and 

quantifying trends from year to year and is easily expanded to join several local submaps. 

Geographic Information Systems (GIS) are often used for the interpretation and analysis of both 

terrestrial and marine habitat mapping, and a whole field of marine GIS has developed rapidly 

[65]. Bickers [66] uses these tools for the analysis and interpretation of results, allowing the 

comparison of the various ‘layers’ of data, from a digitised chart, aerial photography, 3D 

bathymetry, sonar overlays as well as classified data. 

2.3.2.2 Sensing (navigation) 

Navigation of underwater vehicles is not trivial, with radio frequency (RF) signals, including GPS 

attenuated quickly underwater [67], and sonar errors from reflections, reverberation, 

attenuation, multiple paths, occlusion, a variable speed of sound and a varying frequency 

response of targets [46]. Even sensors such as inertial measurement units, utilising 

accelerometers and gyroscopes to sense positional changes, are prone to significant cumulative 

errors if uncorrected [68]. 

Estimating the position of observed targets (seabed, kelp, etc.) is fundamental to the aim of 

habitat mapping. This turns a simple camera and sonar platform which can be piloted through the 

water to record footage for later playback into a useful scientific mapping tool. If the footage 

gathered can be referenced with a position, then quantitative analysis of habitat density and 

distribution can be performed, rather than simply playing back previously recorded footage. 

All targets are recorded with a position relative to the vehicle, as no uniquely identifiable 

landmarks are available with a prior known position. For example, the sonar records targets with 

a range and bearing to the current vehicle position. Therefore, the mapped data is only as 
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accurate as the vehicle position estimate when it was gathered. To generate useful (accurate and 

reliable) maps of the nearshore habitat, accurate and reliable, drift-free position information is 

essential [69] yet this is an outstanding challenge [70]. 

In particular, accurate and reliable navigation on a budget using imperfect sensors in the hostile 

nearshore environment is a current problem. The turbulent and dynamic environment causes the 

sensor characteristics and capabilities to vary continuously, thus compounding the difficulties. 

This is identified as a key opportunity for development and one of the subjects of this research. 

Advances in the capabilities and reliability of nearshore underwater navigation will have benefits 

to all applications of underwater vehicles. 

Although progress over recent years has advanced the field of underwater navigation, both in 

sensing hardware and data processing, the three underlying methods remain much the same, (1) 

dead reckoning and inertial navigation, (2) acoustic navigation and (3) geophysical navigation [71]. 

When conditions permit, visual navigation and radio navigation is also possible. These techniques 

are considered in the following sections, with a review of the current state of the art, together 

with the applicability to navigation in the target nearshore environment. 

2.3.2.2.1 Information available 

While considering the navigation sensors, it is important to distinguish between the two types of 

information available: idiothetic and allothetic sources [72, 73]. 

Idiothetic literally means ‘self-proposition’ and is the information proposed by the robot’s internal 

sensors on its current position, or a dead reckoning estimate. Dead reckoning is the process of 

estimating the current position based on a previously determined position, a fix, and advancing 

that position based on estimated speed over elapsed time and course. In terms of a land based 

robot, this can mean the odometry of wheel rotation. However, for the underwater vehicle, speed 

and course can be predicted by the electrical power applied to the thrusters and measured using 

accelerometers. As with any dead reckoning system, this process is prone to large cumulative 

errors. As each new position estimate is calculated solely from previous positions, the error in 

position grows with time [68]. 

It is therefore important to use allothetic information to complement the idiothetic dead 

reckoning system. By contrast, allothetic refers to external stimuli or cues, such as objects 

observed with vision and sonar systems, or surface GPS position fixes. Although the allothetic 

information appears to be more useful, it is not always available. However, idiothetic dead 

reckoning information is always available. For example, in turbid or deep water, objects may not 

be visible using sonar and cameras, and satellite GPS fixes are not available underwater. 

Additionally, allothetic information is subject to perceptual aliasing – that is two different 

locations perceived as the same location, or two observations of the same location recorded in 

error on the map as distinct locations [74]. Perceptual variability occurs when the same place 

varies in appearance over time [75]. In the underwater environment, tides, turbidity, vegetation 

growth, decay or damage can all cause perceptual variability, which, if not interpreted correctly, 

can also lead to perceptual aliasing. 

Allothetic information can also be heavily affected by external interference, e.g. sonar noise, 

visual turbidity, ferromagnetic interference with compasses and magnetometers, GPS signal loss, 

etc. As the following sections describe, the lack of absolute navigation data inherent in all 

underwater navigation, i.e. a lack of drift-free information, is compounded in the nearshore. 
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2.3.2.2.2 Dead reckoning and inertial navigation 

As Leonard et al. [71] state, the simplest method of maintaining a position estimate of the vehicle 

is to integrate the vehicle velocity in time to update a previous position estimate with the distance 

travelled. However, whether the vehicle velocity is estimated from the power applied to the 

thrusters, or measured by water speed and a compass, the presence of an ocean current will add 

a component of speed which is not accounted for [71]. Thus, in the nearshore environment, 

where such currents are common from tide and wave action, simple dead reckoning based on 

thrust applied or relative water speed is highly unreliable. 

Inertial Navigation Systems (INS) use accelerometers and gyroscopes (inertial measurement units, 

or IMUs) to sense linear and angular accelerations. These accelerations are integrated twice in 

time to yield a change in position from the last estimate [76]. They are capable of measuring fast 

accelerations and are not susceptible to external factors, such as ferromagnetic disturbances [15]. 

However, like all dead reckoning systems, they are prone to large cumulative errors building up 

over time (drift) if an absolute reference is not regularly available. As it is the acceleration which is 

sensed, any error is increased in magnitude during the double integration to yield displacement. 

INS are also prone to electrical noise and temperature drift. 

All of these problems mean that commercially available INS which have both good small-scale 

precision and good long duration accuracy are very expensive [77]. Recent advances and 

miniaturisation of components readily yield INS units suitable for mounting on underwater 

vehicles capable of a position drift of less than 0.1% of the distance travelled, CEP4 (the IXSEA 

PHINS III [79] and Kearfott T-24 [80]). However, the cost of these units is well above the typical 

users of the kelp bed habitat maps, including the grey whale and coastal ecosystems research 

organisations supported by this research. Lower cost units are available, but given the relatively 

small accelerations experienced by underwater vehicles, these cheaper units are prone to large 

cumulative errors if used alone for navigation [15]. 

Additionally, the power consumption of the two units considered here is 15-30 watts [78], and 

both are relatively large in size (the IXSEA PHINS III is 180×180×160mm and weighs 4.5kg [79]). 

When considering the target application, a compact highly-manoeuvrable vehicle capable of 

navigating in and around the confined and complex environment of the kelp beds, the size, weight 

and power consumption are all important considerations. 

It should be noted that even with the prohibitively high cost, and large size, weight and power 

consumption, each of these units use several other sensors to achieve the specified positional 

drift. Amongst other sensors (pressure/depth, sound speed), these units use a Doppler Velocity 

Log (DVL) to achieve the positional accuracy stated. In pure inertial mode, the IXSEA PHINS III 

achieves a positional accuracy of 0.6 nautical miles / hour CEP, or approximately 31 metres / 

minute CEP [79]. Given the small-scale operation in and around the kelp beds, this high rate of 

positional error per minute renders it unsuitable in inertial mode alone. Hence, the principle of 

using other sensors to increase the positional accuracy is continued in later sections. 

Doppler Velocity Logs, or Acoustic Doppler Current Profilers (ADCP) are based on the fundamental 

principle of Doppler shift, that “an acoustic signal, which has been either transmitted or received 

by a moving object, will be shifted in frequency by an amount proportional to the velocity of the 

                                                           
4
 As Panish and Taylor [78] describe: “CEP refers to the Circular Error Probability, or a circle about a mean 

value which includes 50% of the population”. For the INS described above with a positional drift of 0.1% of 
distance travelled, CEP, if it travels 1km, it is expected that 50% of the time the position drift when 
estimating its new position after 1km travelled will be less than 1 metre. 
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moving object” [81]. When used for the navigation of underwater vehicles, the velocity of the 

vehicle relative to the seabed can be used to estimate positional changes by detecting this 

frequency shift. When the seabed is not visible, or obscured (e.g. by turbulence or midwater 

vegetation) then the relative movement of the vehicle to the surrounding water can be sensed, 

however this has no correction for tidal flow and is less suitable for the high current regions of the 

nearshore.  

As the DVL estimates position changes by sensing velocity and integrating it over time, it too is 

prone to cumulative errors, as with other dead reckoning systems. This drift, whether the DVL is 

used independently or to support an INS as described above, limits its operation as a sole source 

of navigational data.  

Recent developments have brought the size and weight of DVLs within the capabilities of being 

carried on a small underwater vehicle: Teledyne-RD Instruments has developed the Self-

Contained, Phased Array, Explorer DVL which is 327×124×124mm in dimensions with remote 

electronics 241×84×88mm [82] and approximately 0.5kg transducer weight in water [83]. 

However, these dimensions still contribute to increasing the overall size and weight of the 

required compact, manoeuvrable vehicle. 

The second key constraint is budget, and suitable DVL units are often out of the budget 

constraints of the intended users of the habitat mapping underwater vehicles. As with all dead 

reckoning sensors, including the INS and DVL solutions discussed here, a higher budget usually 

means increased performance. The drift, inherent in all-dead reckoning sensors, reduces with 

higher price sensors, yet the constraints of the application dictate achieving the navigational 

accuracy required with the limited budget available. 

2.3.2.2.3 GPS navigation 

For terrestrial and aerial navigation, GPS is widely used as coverage is generally good and a global 

(geodetic) position is provided [84]. For small-scale navigation and surveying, such as the kelp bed 

mapping discussed here, GPS is used to register the resulting maps in the World Coordinate 

System (WCS) and to bound cumulative errors, but the precision of a few metres at best of 

standard GPS (even with WAAS5) [87] is usually coupled with other sensors to increase the 

accuracy [88-90]. 

As previously discussed, GPS signals are quickly attenuated underwater [67]. Techniques for 

extending the benefits of GPS underwater using acoustics are discussed in a following section. The 

alternative is for the vehicle either to operate with an antenna at the surface, or to return to the 

surface for regular GPS fixes. 

The former, operating with an antenna at the surface, can be achieved by the vehicle conducting 

surveys from the surface. However, this leaves the vehicle prone to tangling with the kelp fronds, 

and susceptible to surface wave action. Habitat mapping quality is also reduced, caused in part 

from the sonar operating through the attenuating bubble layer (section 2.3.2.2.6) and from video 

at a long range from the target and through reduced surface visibility. Surface operation also 

prevents the vehicle from surveying the kelp bed from the midwater, often causing the canopy to 

obscure measurements. 

                                                           
5
 Wide Area Augmentation System (WAAS) is used to increase the accuracy of GPS in selected areas by 

providing correctional data from terrestrial transmitters [85, 86]. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

34/347 

An alternative technique to providing a surface antenna for GPS is to either tow a surface antenna 

from the midwater, either continuously, or sporadically when required and recover the antenna 

when not in use, or to release expendable antennas, either cabled or with an acoustic 

communication channel [91]. However, any towed antenna is prone to tangling in the kelp canopy 

as the vehicle manoeuvres and expendable antennas are an expensive option. Whether towed or 

untethered antennas are used, there is also an error introduced from the position difference 

between the antenna and the vehicle, coupled with the precision of a few metres at best [87] of 

GPS. Techniques to minimise these effects using low-drag cables and to correct this error using 

acoustic relative positioning have all been explored [92]. While they are perhaps suitable to long-

duration straight-line survey operations, for the small-scale manoeuvres in closed quarters in the 

kelp bed, with high currents and frequent turns, the complexity and risk of tangling is too high to 

be feasible. 

The latter solution, the vehicle returning to the surface to receive a GPS position, can be used 

intermittently throughout a mission to bound the errors from dead reckoning sensors such as INS, 

where the surfacing frequency is proportional to the drift of the INS system. However, the 

surfacing and diving process expends time and energy, risks the vehicle in surface wave action 

while a satellite fix is obtained [93], again risks tangling at the surface, and by the time the vehicle 

has returned to depth any accuracy gained can easily have been lost during the dive. 

A novel alternative technique to extend the benefit of GPS to tethered ROVs is through the use of 

a ‘Smart Tether’. The principle, patented in 2008 [94] and manufactured by KCF Technologies [95], 

is a completely non-acoustic system which uses orientation and pressure sensors placed at 

regular intervals along the tether to estimate the tether shape. The relative position of the 

tethered vehicle to the surface support vessel can then be estimated from the tether shape and 

registered in the world coordinate system from GPS fixes obtained by the surface vessel. This 

allows underwater survey data to be registered with a GPS position without the need for the 

vehicle to surface. The Smart Tether system has been successfully deployed into confined yet 

static small-scale enclosed environments, most notably a series of underground flooded tunnels 

systems, to allow successive sonar scans to be co-registered without relying on cross-correlation 

and co-registered landmarks alone [96]. 

The benefits of using Smart Tether navigation are the same as any other non-acoustic navigation 

system: problems from acoustic reflections, noise, or obstructions are all avoided [97]. However, 

the cost is relatively high, and the accuracy obviously dependent on the application – tether 

length, and the number and radius of bends in the tether will all reduce the initial few-metre 

precision of GPS to a lower accuracy underwater. Thus augmentation from other onboard sensors 

is still required [83]. 

2.3.2.2.4 Geophysical navigation 

If an accurate a priori map of the operating environment is available, then one approach to 

provide drift-free globally referenced positioning is geophysical navigation. The principle is to 

match sensor data with an a priori map, given the assumption that there is sufficient spatial 

variation in the parameters being measured to avoid perceptual aliasing [71]. The most 

appropriate method for the nearshore is navigation by bathymetry, given the varied topography 

of the nearshore seabed surrounding the kelp beds. 

Over long durations where small-scale accuracy is not required, terrain-based navigation is used 

with great success [98], using maps either gathered by the vehicle prior to operation in a specific 
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mapping mode, or using conventional marine charts [99]. Global navigation can be achieved and 

exploration effort can be reduced through these methods. When operating over large areas, the 

search space and computational complexity from navigating from a priori maps alone is high, and 

often other techniques (inertial navigation, DVL) are used to limit the search area [71]. 

The reliability of navigation using an a priori bathymetric map depends on the accuracy of the 

map used [71]. Given the small-scale positional accuracy required by the underwater vehicle, the 

accuracy of traditional marine charts is insufficient – these typically have 10m contour lines, 

represent the complex rocky pinnacle supporting a kelp bed as a single height, and have depth 

markers often several tens or hundreds of metres apart. Therefore, often a specifically created 

map needs to be surveyed, either by the vehicle with an alternative position reference, or by a 

ship-based bathymetry survey. The time and complexity of this initial map-gathering is 

proportional to the map resolution, and therefore proportional to the navigational reliability of 

the vehicle. 

However, the principle of using terrain aided navigation, that is using terrain navigation for global 

position estimation with other navigation sensors used for smaller-scale local navigation [100], is 

recognised as a strong technique. Furthermore, in the specific application of the kelp bed, there 

are additional environmental cues available for navigation, principally the kelp stipes themselves. 

If treated with sufficient positional uncertainty due to their tethered movement in water currents, 

although no a priori map exists, through techniques of concurrent localisation and mapping 

discussed in later sections, these too have the potential to assist navigation. 

2.3.2.2.5 Acoustic navigation 

Techniques using sonar to recognise and navigate from bathymetry were discussed in the 

preceding section and techniques to navigate from sonar landmarks are discussed in the next 

section. However, acoustic navigation can also be used in a simpler manner. Many existing 

techniques for the navigation of underwater vehicles in the nearshore environment involve 

environment modification, such as establishing beacon systems in the environment to be covered 

[101-104]. The difference in arrival time between acoustic ‘pings’ from transducers at known 

positions can be used to triangulate the position of a mobile vehicle underwater. 

Calculating the range and bearing to the assumed stationary transponders allows for local 

navigation, however, if the global latitude/longitude of the transponders is known, then the 

vehicle can infer its global (geodetic) position while underwater. If the transducers are at the 

surface, on a buoy or a ship, then this latitude/longitude can be established using GPS and 

transmitted using the acoustic signal to allow for drifting transponders.  

Various techniques have been developed to try to extend the benefits of GPS underwater and 

Crowell [92] references two patents [105, 106]. In both cases, although the implementation 

differs, the principle is to replicate the GPS system using acoustic transmission underwater. GPS 

positions can be encoded and transmitted acoustically and the time of arrival from several 

beacons compared with the encoded GPS timestamps to calculate distance. This is the principle of 

a GPS intelligent buoy (GIB), a surface buoy which provides communication and therefore 

positional information between the boundary of the surface and subsea. The buoy tracks its 

position via GPS and is also itself capable of being tracked by underwater vehicles via acoustics 

[107]. 

The field of acoustic positioning, called baseline navigation, is well established [108, 109], and is 

split into three subclasses depending on the separation of the active sensing elements, Long 
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Baseline (LBL), Short Baseline (SBL) and Ultra-Short Baseline (USBL) [110]. However, in each case, 

the underlying principle is the same and a series of transducers, or transducer arrays, is used to 

aid navigation by measuring the difference in arrival time of acoustic pulses. 

From an application point of view, the principal difference between the technologies (LBL, SBL, 

USBL) is the configuration of the baseline stations. Figure 2.6 below shows the different 

configurations. Exact specifications for beacon spacing vary between systems and applications but 

the proportional orders of magnitude shown below are correct. Variations and permutations on 

the above three general categories are widely used [111, 112]. 

100 – 1000m separationseabed beacons

GPS referenced 
beacon deployments

GPS referenced 
surface vessel

1 – 10m

GPS referenced 
surface vessel

Hydrophone 
Array

USBL SBL LBL
 

Figure 2.6 - The three main techniques for acoustic ‘pinger’ navigation underwater are Ultra Short Baseline (USBL), 
Short Baseline (SBL) and Long Base Line (LBL). LBL uses GPS position referenced beacons separated by a few hundred 
to a few thousand metres, SBL uses beacons spaced 1-10m apart allowing them to be mounted on a GPS tracked 
surface vessel, and USBL spaces the receivers by a few cm to create the baseline. Figures adapted from [15, 110, 113]. 

USBL systems are used over short ranges. A hydrophone array is used to measure time or phase 

differences in the arrival of an acoustic signal between individual elements of the hydrophone 

array, with a spacing of a few centimetres. This allows relative positioning to a surface vessel, or 

absolute positioning if the surface vessel is GPS referenced [15, 110, 114]. Compared to SBL and 

LBL systems, the initial cost and the operating cost and complexity is the lowest with no 

requirements for beacons to be deployed and recovered from the seabed [111]. Considering the 

application for kelp bed mapping, of the three baselines, USBL is the most suitable. However, 

detailed calibration is required, and redundancy is not inherent in the case of signal occlusion or 

interference [111]. 

SBL beacons are typically spaced a few to a few tens of metres apart, allowing them to be 

mounted on a surface vessel with a GPS receiver. This system provides a compromise between 

the two extremes of USBL and LBL, not requiring beacons to be deployed but still requiring 

multiple transponders to be mounted (and calibrated) on the surface vessel [111]. 

LBL systems establish transponder stations throughout the operating environment spaced from 

few hundred to a few thousand metres apart, either anchored in known fixed positions, or 

tracked with GPS. LBL provides good positional accuracy independent of water depth, redundancy 

and wide coverage [111]. However, the systems are typically expensive and complex [111]. 

Additional operational time, complexity and risk are introduced by deploying and recovering 

transponders in the hostile nearshore environment. Navigation solutions which do not require 

environment modification are preferred, partly for operational reasons and partly for the security 

of equipment being damaged or lost [99]. 
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Although acoustic navigation is used across a range of fields for underwater navigation, it is not 

without its general limitations which must be considered. As with any relative navigation system, 

the positional measurements gathered are only as accurate as the position fix of the reference 

station in the world coordinate system [71]. Therefore, whether transponders are anchored and 

positioned using GPS, carried on a surface vessel, or free floating, all accuracies are referenced to 

GPS, and/or the anchored stability of buoys. 

There are also acoustic limitations, in particular considering the shallow water of the nearshore 

environment. Reverberation from the surface and seabed can create multipath interference 

which can cause errors if confused with the direct arrival [71] or attenuate signals through 

destructive interference [111]. Disturbed sediment in the high flow regions of the nearshore, 

coupled with vegetation and a varied topography can attenuate or occlude acoustic signals which 

require an acoustic line of sight to operate. 

Acoustic noise at the receiver also serves to reduce positional accuracy. This noise can be from a 

variety of sources. Ambient noise from waves, wind, rain, vessel traffic and marine life is common 

although less of an issue than other sources. Vickery [111] quotes heavy rain causing an increase 

of 15-25dB over background levels at 10kHz and shallow water approximately 9dB over deep 

water in the same sea state. Thus the wave and current action of the nearshore needs to be taken 

into account, as does noise from the kelp stipes in the flow. Noise from the operation of the 

underwater vehicle itself (thrusters, other acoustic instruments) can also be a limiting factor 

[111].  

As with other acoustic navigation systems, for accurate operation, the varying speed of sound 

underwater needs to be measured and accounted for. Whereas in deep water, the speed of 

sound varies relatively slowly with depth, in the shallow water of the target nearshore 

environment, different salinities and water temperatures interact in a turbulent and 

unpredictable manner. As the speed of sound varies, often dynamically over the course of a 

deployment [71], this can cause ray bending and errors in the measurements [115]. Furthermore, 

in the confined and complex nearshore, objects, vegetation and bathymetry can obscure the 

acoustic line of sight and turbulent shallow water can become aerated, therefore degrading 

acoustic baseline tracking performance [116]. 

Acoustic positioning techniques, with these limitations and a low data rate, are often used in 

conjunction with inertial navigation systems, which although having a higher data rate, are prone 

to large cumulative errors. Although not always available, the errors of the acoustic positioning 

system are not prone to drift and can be used to bound the cumulative errors (drift) of an INS 

[117]. 

2.3.2.2.6 Sonar navigation 

The more complex and sophisticated development of acoustic navigation is the use of active 

sonar for imaging, target recognition, identification and mapping. 

Compared to vision, frame rates are often lower (in part due to the lower speed of sound), 

resolution and detail are lower, yet depth perception/ranging is inherent and sonar scans operate 

independent of visibility and light levels. Similar to acoustic navigation, sonar navigation is 

compromised by occlusion, secondary and multipath echoes and reverberation including off the 

sea surface when operating in shallow water. The varying speed of sound and perturbation from 

the aerated layer of water called the ‘bubble-layer’ found at the surface [46] also limit shallow 

water use. The bubble layer can reach from the surface to several metres deep, is dependent on 
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sea state and wind speed, is highly absorbent to acoustic signals, and causes backscattering and 

attenuation for sonar observations at the surface [46]. However, overall the use of sonar for 

navigation is highly successful with many applications, including nearshore shallow water 

operation. 

In structured or partially structured environments [118], sonar can be used to recognise objects as 

navigational landmarks to assist with mapping and navigation [16]. When navigating in open-

water unstructured environments, one option is to place artificial sonar markers to aid with 

navigation in areas otherwise sparse of navigational landmarks [17]. However, environment 

modification entails logistical disadvantages discussed previously, together with the unreliability 

of tethered markers in the high currents found in the nearshore. The alternative is to rely on a 

sufficiently diverse natural environment, with adequate identifiable acoustic features to enable 

navigation without environment modification [119, 120]. 

Given a sufficiently diverse environment, usually the seabed, then navigation aided by sonar in 

unstructured environments is possible [121], given the same requirements that terrain-aided 

visual navigation imposes – that is, proximity, visibility and diversity of the seabed [122]. 

However, in the kelp beds, as discussed in the section on terrain-aided navigation, given occlusion 

of the seabed by vegetation and the lack of an acoustically diverse seabed, this technique is 

challenging. The occlusion of targets by dense concentrations of gas-filled kelp stipes, whether the 

occluded targets are further kelp or the seabed, is a common one, as Smith [123] puts it “a case of 

not being able to see the forest for the kelp”. 

2.3.2.2.6.1 Single beam echosounders 

An echosounder emits a single ping, and the returns (echoes) correspond to targets in the 

direction of the ping, but as the cone spreads, targets are included which are not directly collinear 

with the echosounder [46]. To build up an image of either bathymetry or the midwater is 

complex, as the echosounder must be panned over the target to image it, similar to raster 

scanning. 

Successful techniques to correct mechanically panned echosounders for vehicle movement, and 

using probabilistic scan matching to enable navigation in structured marine environments have 

been previously demonstrated [124, 125]. The correction for vehicle movement during a scan is 

essential to reliable mapping and scan matching – without it, the vehicle must either be reliably 

stationary for the entire duration of a scan limiting operation, or risk objects being ‘smeared’, 

distorted, appearing twice, being missed altogether or incorrectly corresponded to previously 

observed features. 

Side-scan sonars provide a one dimensional scan line formed from a very narrow beam (≈1°) in 

the horizontal plane perpendicular to the direction the vehicle is travelling in and wide (≈50°) in 

the vertical plane, thus spreading out sideways from the vehicle [46]. One beam is emitted on 

each side of the vehicle, and used to image the seabed as the vehicle moves. Although there is 

significant ambiguity in estimating bathymetry and targets from the side-scan returns, side-scan 

sonar has been successfully used for underwater vehicle navigation, provided that the bathymetry 

is diverse enough to present sufficient detectable features [120]. 

While errors due to movement during a scan can be corrected to some extent by robustness to 

sensor errors in mapping algorithms, if not handled correctly, they can cause significant mapping 

errors. Each sonar ping can be registered in 3D space using other sensors, and the sensor fusion 
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algorithms discussed later allow the ‘folding back’ of information to allow one sensor to correct 

another to yield an overall improvement in navigation capability. 

2.3.2.2.6.2 Multibeam echosounders 

The alternative to single beam mechanically-panned or vehicle-panned echosounders is 

multibeam echosounders. Multibeam units transmit several beams using an array of transducers 

to image an entire swath simultaneously generating a 2D spatial plot of acoustic return intensity 

[46]. This allows maps to be generated much more quickly, but also more reliably as the entire 

swath is imaged at the same time, so positional deviations of the vehicle or the targets during the 

scan do not occur. 

Multibeam sonars are typically used for terrain-aided bathymetric navigation, provided the 

seabed is sufficiently diverse and within the field of view [126] or used in a forward-looking 

configuration for obstacle avoidance, midwater target tracking and navigation relative to static 

targets in the water column [127, 128]. In general, the cost, size, power consumption and 

processing requirements increase between single beam echosounders and multibeam units, 

before increasing further when considering the latest development of multibeam echosounders, 

3D imaging sonars. 

3D imaging sonars, such as the Echoscope manufactured by CodaOctopus Ltd. [129], typically 

retail for $165,000+ [130] and are thus outside the budget of this application, yet methods to 

achieve the same results on a fraction of the budget become one of the main points of this 

research in later sections. 

2.3.2.2.6.3 Sonar fusion 

Sonar fusion is often cited as an opportunity to increase detail, correct artefacts and reduce 

ambiguity by combining the information from multiple sonar frequencies, modes, beamwidths 

and configurations [18]. Concurrent acquisition of multiple sonar sensors avoids errors in 

registration when overlaying multiple datasets gathered at different times and reduces survey 

time and cost as only a single survey need be performed [131]. However, either sufficiently 

separate operating frequencies are required to avoid cross-talk and interference [131], or 

synchronisation of the transmit pulses is required [18, 132]. Development of realtime adaptive 

triggering of different sensors based on autonomous analysis of the incoming acoustic data, the 

realtime range to the target being imaged and the coverage of each device, can be used to 

interleave the various acoustic pings to maximise resolution while minimising crosstalk [27]. 

2.3.2.2.7 Visual navigation 

Compared to other navigation and mapping sensors, in particular sonar, visual sensors are cheap, 

compact and under suitable conditions, can yield a high level of detail and resolution for both 

mapping and navigation [133, 134]. A great deal of success has been achieved in the field of 

computer vision for landmark detection, location and identification in AUVs worldwide [135] and 

successful visual-aided underwater station keeping [136-138], cable tracking [139] and benthic 

mapping [140] are widespread. However, the processing power required to process visual data is 

often high [133], and thus the power consumption of the vehicle is increased indirectly. 

Given the difficulties discussed previously of using visual sensors for underwater habitat sensing, 

the same limitations of illumination, visibility, brightness and contrast variation, non-uniform 
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colour attenuation and a lack of ranging and scaling apply to using visual sensors for navigation 

[141]. However, considering applicability to the nearshore environment, the two most suitable 

techniques for visual navigation are detecting markers and seabed tracking. 

The first technique requires artificial visual markers to be placed in the environment to use as 

landmarks to assist with navigation, either at known a priori locations, or at unknown but 

stationary locations. Although some development work into the algorithms at the University of 

Bath [142-145] has demonstrated identification and tracking of underwater visual markers in 

confined environments, this technique has limited application in real-world open ocean 

environments. In kelp beds, the limitations are the same as deploying acoustic beacons for 

navigation; the logistics of deployment and recovery, the high currents affecting the position of 

markers, and specifically for vision, often low-light and low-visibility conditions restrict the 

usefulness of these markers. 

The alternative technique, seabed tracking using visual navigation, sees more widespread use in 

the open ocean [146], but again, operating environments and conditions are restrictive. Whilst 

the kelp beds are often in shallow water and so the seabed is in close proximity, it is rare that the 

visibility is such that the seabed is visible from the midwater. Additionally to observing the seabed 

in sufficient clarity, the tracking algorithms require a sufficiently diverse seabed [147] and unless 

uniquely identifiable landmarks exist for correspondence to later re-observation, seabed tracking 

is a form of dead reckoning and is prone to large cumulative errors [148]. 

Hybrid systems exist, which are capable of visual-aided navigation from seabed tracking when the 

seabed is sufficiently diverse, and recognising artificial user-deployed markers on the seabed in 

areas of low-variability, or low-visibility [149]. 

2.3.2.3 Uncertainty 

As the robot finds itself operating in often unstructured and inherently unpredictable 

environments, yet still requiring an accurate navigation system, it is important to appreciate the 

uncertainties associated with the problem. If uncertainty is defined as ‘operating without definite 

and complete information’, then the five commonly cited [150-152] sources of uncertainty for 

mobile robots can be adapted and supplemented when considering uncertainty in an underwater 

application: 

Uncertainty arises from the inherently unpredictable, unstructured and often dynamic nature of 

the robot’s operating environment. Ocean currents, wave movement, dynamic untethered or 

anchored targets can all serve to increase environmental uncertainty, 

Sensors are inherently limited in what they can perceive arising from two factors. Firstly, the 

range and resolution of a sensor is subject to physical laws – for example, cameras cannot see 

through opaque objects, environmental conditions determine the perceptual range, and the 

spatial resolution of a sensor is finite. Secondly, sensors are subject to noise, aliasing, ghosting 

(false positives) and missed objects (false negatives); the information is often incomplete and 

imperfect.  

Mobile ‘free’ robots (implying operating free from constraints on their degrees of freedom) have 

a large degree of uncertainty associated with their movement. With every unconstrained Degree 

of Freedom (DoF), the uncertainty increases. For example, there is a relatively low-level of 

uncertainty associated with a robot operating on a rail or track system (e.g. a train). However, 

increasing the degrees of freedom to allow unconstrained 2D mobility (e.g. a car) increases the 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

41/347 

uncertainty. If the full 6 DoF are unconstrained (e.g. an airplane, submarine, or underwater robot) 

then the level of uncertainty associated with movement is high. In each DoF, not only will the 

actual movements differ from the expected, but the robot is also likely to be subject to external 

forces affecting its movement. The tether can act as an unpredictable constraint on movement, 

with nonlinear drag characteristics and the danger of entanglement. 

As models are abstractions of the real world and incompletely represent the underlying physical 

processes of the robot and its environment, they are inherently inaccurate. These inaccuracies 

translate into uncertainties when using the model and must be accounted for [152]. 

Mobile robots often impose constraints on the computing power that can be carried onboard, in 

terms of physical dimensions and electrical power available. Additionally, as robots are realtime 

systems, their operation can also be constrained by the computing power available. This forces 

algorithms to achieve a timely response, which in many algorithms is achieved by approximation – 

sacrificing accuracy for speed. 

As Thrun et al. [150] state, the ability to cope with uncertainty in both perception and action is 

critical to building successful robots. 

2.3.2.4 Sensor fusion 

The difficulties of navigating underwater, many of which are compounded in the nearshore, have 

been identified in previous sections. In many environments, navigation from a single sensor alone 

is not possible, due to inherently limited sensing conditions underwater [15]. However, as 

discussed, benefits can be achieved in terms of navigation accuracy and reliability through sensor 

fusion. This technique provides an improvement in information (accuracy, reliability, speed) by 

combining information from multiple sources (a priori information, multiple measurements, 

multiple sensors). 

2.3.2.4.1 Levels of sensor fusion 

There are three commonly distinguished levels of sensor fusion applicable to nearshore 

navigation, commonly represented as signal, pixel and feature based sensor fusion [153, 154]. 

Signal level fusion combines signals from similar sensors to produce a composite signal in the 

same form as the original components, but in some manner ‘better’ (accuracy, reliability, 

information content, etc.). Spatial and temporal registration is required between the similar 

sensors for fusion to occur [15]. A common example of signal level fusion is combining INS with 

GPS. 

Pixel level fusion is the equivalent at a pixel level, where multiple images (from the same or 

different sensors/modalities) are fused to obtain a ‘better’ image [15]. As above, registration 

between images is required, and thus content and resolution usually have to be similar. 

Feature level fusion includes the commonly cited example of combining sonar for detection with 

vision for identification. In this case, objects in the real world have already been discriminated 

from their surroundings as features, so either sensory or mapped data can be incorporated into 

the fusion, with temporal and spatial registration augmented by the correspondence of new 

measurements with previously recognised objects. Thus, feature level fusion is the most flexible 

way to fuse different sensor modalities, as the sensor-specific conversion from sensor data to the 

abstract feature level has already been performed. 
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A second distinction is also commonly made between direct and indirect sensor fusion. McKee 

[155] defines direct fusion as combining data from a set of heterogeneous or homogenous 

sensors and historical values of sensor data, whereas indirect fusion uses a priori knowledge and 

human input. 

2.3.2.4.2 Direct sensor fusion 

Considering specifically the direct fusion of multiple measurements from different sensors, if 

disparate sensors are used, then shortcomings in one sensor or modality can be overcome by 

others to yield a more reliable overall estimate. 

As an example, the sonar is able to provide low-resolution data over a high range, irrespective of 

darkness and turbidity, the opposite (complementary) characteristics to the vision system. Thus, 

vision proves useful for identification over a short range, but sonar is more useful for long range 

detection of objects and benefits can be gained from the combination of the two [156]. 

If the control system of the vehicle is aware of the sensor capabilities, then operation can be 

tailored to exploit maximum spatial coverage. When searching for, or mapping an object in the 

water, an initial sweep using the sonar can be used to detect the presence or absence of objects 

in the water over a long range. The locations of these objects are then flagged on the map (range 

and bearing) for later investigation. The vehicle can then move closer to each of these objects in 

turn for closer inspection and identification by the camera.  

Extended temporal coverage can be realised by combining the benefits of relatively slow to 

update sensors with those much faster, for example, the relatively slow update speed of a 

mechanically-panned sonar with a fast updating accelerometer. 

Sensor fusion also allows the combination of idiothetic and allothetic sensors: robustness against 

interference is gained from using idiothetic information, while drift and cumulative errors are 

avoided using allothetic sensors [157]. A regularly cited example for underwater vehicles is the 

combination of dead reckoning INS measurements [89, 90] with drift free GPS updates when 

surfacing, with particular application when operating at shallow depths [158]. This technique is 

often expanded to include acoustic methods, to increase the information available when acoustic 

conditions permit [88] or extended to include visual sensing when visibility and visual diversity 

permit [156]. Inherently scalable sensor fusion architectures allow additional sensors to be 

integrated directly into the fusion algorithms to incorporate their benefits [159]. 

Finally, sensor fusion provides a technique to maximise the accuracy and reliability which can be 

obtained from the low-cost limited sensing available in the nearshore. For example, a very high 

budget Fibre Optic Gyroscope (FOG), DVL and USBL system can yield a drift of a few metres per 

hour with a DVL aided INS, which the use of a USBL transponder can bound a drift-free error of a 

few metres or less [117]. On a lower budget, Majumder et al. [156] describe a framework for 

combining information from several physically different sensors into a single composite multi-

dimensional scene description to provide more robust navigation and mapping than if a single 

sensor mode was used alone. The principle of this research is similar, to use sensor fusion to 

increase accuracy and to bound drift, yet on a significantly lower budget. 

2.3.2.4.2.1 Redundancy and voting 

There are a variety of techniques to perform direct sensor fusion. Simple averaging of multiple 

sensors can lead to misinterpretations in the case of sensor failure [160]. Perhaps the simplest 
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technique to provide fault-tolerance or to compensate for sensor unavailability is to provide 

redundant sensors measuring the same quantity/space and to exclude the non-functioning unit. 

This can either be implemented with three or more sensors measuring the same quantity with a 

voting algorithm [161] or with two or more units with a fail-silent behaviour [162]. 

The highly dynamic environmental conditions of the nearshore can rapidly cause one sensor 

modality to become ineffective, for example cloudy water obscuring vision. Sensor fusion 

provides a framework to automatically use alternative modalities for continuing navigational 

reliability and robustness Even with the same sensor modality, multiple corroborating 

measurements of the same domain increase confidence [163]. 

This process of ‘deciding’ which sensor to use can be developed to intelligently select a sensor 

based on a confidence measure or suitability to a task, e.g. vision for short range, or sonar for long 

range. Alternatively ‘guiding’ can be used to focus one sensor onto part of the scene [160], for 

example, long range detection of objects by sonar for later investigation and identification with 

vision. Guiding range sensors using intensity images is a long established technique [164]. 

However, this is sensor integration; sensors are used sequentially which does not necessarily 

provide redundancy [160]. 

Provided the sensors can be correctly characterised, it can be proved that sensor fusion performs 

better than simply selecting the best sensor [165, 166]. Elmenreich [167] distinguishes between 

imprecision and uncertainty, stating that sensor fusion allows multiple independent 

measurements of the same property to be fused with a better precision than an individual 

measurement alone. Uncertainty however, depends on the measurand rather than the sensor, 

and arises when one sensor cannot measure all of the attributes of an object, or when an object is 

occluded, etc. Again, with sensor fusion, this uncertainty can be reduced [167]; each of the 

sensors provides only a small piece of information, and sensor fusion is used to compile the 

overall estimate. 

2.3.2.4.2.2 Probabilistic fusion and Gaussian filters 

A more sophisticated technique represents the uncertainty associated with mobile robot 

operation, including each sensor, with probability distributions [168]. This combination using 

Bayesian estimation theory was first formalised in 1985 [169] and shown to be a simple form of 

Kalman filter [170]. Kalman filters rely on recursively updating a state estimate with a prediction 

and then a correction from another source. The weighting of the prediction and correction is 

determined by uncertainty [171]. The technique was extended to manipulate and integrate 

uncertainty in perception, by characterising sensor uncertainty [172]. 

These probability distributions allow information to be represented over a whole space of 

possible hypotheses rather than just a single ‘best guess’ of what might be the case in the world, 

allowing a mathematically sound representation of ambiguity and degree of belief [150]. By 

representing the uncertainty associated with each sensor, an informed fusion of sensor data is 

possible. The central conjecture of Thrun et al. [150] when considering the implications of 

probabilistic robotics is “a robot which carries a notion of its own uncertainty and that acts 

accordingly is superior to one that does not”. 

To achieve probabilistic fusion, each sensor has to be modelled by a probability distribution, 

commonly a Gaussian distribution. The representation assumes a mean value is measured, but 

that measurements are corrupted by noise/uncertainty/errors represented by the variance of the 

Gaussian distribution [160]. Correspondence, registration and consistency checks between 
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multiple measurements are commonly performed by maximum likelihood estimates [160] or 

using the Mahalanobis distance between distributions [173], a distance measure based on 

correlations between variables of an unknown sample set to a known one [174]. 

Probabilistic approaches are widely deployed to applications of underwater sensor fusion. 

Techniques to deal with the varying availability of sensors underwater are also in existence. For 

example, Rendas and Lourtie [175] describe a system to maintain navigation accuracy over long 

duration surveys. The system uses arrays of LBL beacons carefully spaced at intervals throughout 

the mission. When in range, the LBL system is used to yield a relatively high positional accuracy 

and when out of range it relies on sonar, DVL and depth sensors for navigation. The switching 

process between when the LBL beacons are available, or not, is autonomous and the sensor 

fusion system adapts to incorporate this additional information using a variable dimension 

Kalman filter. When accelerations are detected, the vehicle switches to a larger order Kalman 

filter used for manoeuvring, however, when a long straight line path is being followed, a lesser 

order Kalman filter is used. In this case the sensor fusion takes place at the signal level [15]. 

For comparison, Loebis et al. [15] present an example of feature level fusion: an AUV used to track 

and survey underwater cables using vision in regions of varying visibility. The cable is frequently 

lost from view, however a high-level controller and 2D-position model of the cable are used to 

predict the most likely region of the cable within the image to reduce the processing time of 

searching the entire image. When the cable is not visible in the image, then the 2D-position model 

is used for navigation to predict where the cable is likely to return to the field of view and this is 

used to navigate the vehicle through periods of low visibility [176]. 

Probabilistic approaches typically place weaker requirements on the accuracy of models, thus 

algorithms are more robust to simpler sensor models. Additionally, by considering the full 

uncertainty rather than just the most-likely guess, probabilistic techniques are typically more 

robust in the face of sensor limitations, sensor noise, environment dynamics, etc. [150], making 

them ideally suited to the underwater environment where often a noisy and incomplete dataset is 

compounded by a dynamic environment. 

However, despite this broad applicability of probabilistic approaches for sensor fusion, there are 

disadvantages, requiring a careful application-specific selection of the sensor fusion technique. 

Durrant-Whyte [177] identifies the four main perceived limitations as the complexity required to 

specify all required probabilities in order to correctly apply the methods, inconsistencies between 

specifying beliefs and obtaining deductions of state, the required precision of models when 

uncertainty is high, and the difficulty of representing ignorance or ‘uncertainty about uncertainty’. 

The need to specify independent probability distributions, and a sensitivity to dynamic 

environments are also cited as limitations of probabilistic approaches [178]. 

The most commonly cited limitation is computational complexity resulting from considering the 

entire probability density, rather than just a single most-likely hypothesis [150]. Additionally, as 

most robot worlds are continuous there is a need to approximate the world into discrete points 

for evaluation by the algorithm. As the resolution with which the world is discretised into is 

directly proportional to the computational time required and the accuracy of the results, the 

resolution used is an important consideration. In some cases, the uncertainty can be 

approximated tightly with a compact parametric model such as discrete or Gaussian distributions. 

In other cases, such approximations are too crude and more complicated representations must be 

employed [150]. 
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Estimation techniques like the probabilistic approach described above can be extended to 

symbolic information using reasoning and inference techniques in the presence of uncertainty 

using constraints [174] which can again be managed using Bayesian techniques [179]. 

2.3.2.4.2.3 Dempster Shafer theory 

Alternative methods of sensor fusion also exist, the two most commonly used are the Dempster 

Shafer (DS) theory of evidence and fuzzy set theory [178]. 

The DS theory [180] provides a framework to combine evidence from independent sources by 

assigning probability to propositions [160]. The result is a belief function which takes into account 

all of the available information, and which can provide a measurement of conflicting sources. 

Compared to Bayesian approaches, where all probabilities must be clearly defined and thus which 

can limit their application, DS approaches allow a distinction between ignorance (uncertainty) and 

contradiction [181], or the distinction between uncertainty and risk [182]. Thus, when prior 

probability distributions are not completely modelled or known, a degree of ignorance (or 

uncertainty about uncertainty [177]) can be specified in the DS theory. 

As described by Hackett and Shah [160], the DS theory is based upon an interval of uncertainty. 

Defining proposition  , then      denotes the support for proposition   and      is the 

plausibility of proposition  . The interval between      and      is the interval of uncertainty 

            about proposition  . If the uncertainty is zero, then this is the same as a Bayesian 

approach as the support for proposition   is equal to the maximum likelihood. Support is the total 

positive effect a body of evidence has on a proposition, whereas plausibility represents the total 

extent to which a body of evidence fails to refute the proposition [160]. 

Thus the DS theory differs from the Bayesian approaches discussed in the previous section, as the 

interval of uncertainty can be used to represent uncertainty surrounding a proposition. The 

Bayesian approach can only use a single probability value to represent the probability that the 

proposition is true, thus requiring more complete information as the interval of uncertainty 

cannot be represented. Additionally, Bayesian approaches require independent measurements by 

definition, and inconsistencies develop when measurements are related [160]. 

Depending on the application, in high-risk applications, it can be safer to be undecided about a 

hypothesis, than to act wrongly based on a marginally higher belief of one of several conflicting 

hypothesis. Thus the capacity for ‘ignorance’ about a situation is, in some applications, considered 

an advantage of the DS theory [182]. 

Differences in computational complexity between Bayes and DS implementations vary between 

applications with some sources stating reduced complexity over Bayes implementations [183-

185]. However, the consensus for the majority of applications appears to be that DS 

implementations incur a higher computational complexity [186]. 

2.3.2.4.2.4 Fuzzy set theory 

Fuzzy set theory, or approximate reasoning [187], is a third, less common method used for 

combining imprecise assertions and inferences which can be applied to the fusion of several 

uncertain sensor measurements, although more widespread for supervisory control and high-

level data fusion tasks [177]. 
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Although application and implementation specific, fuzzy logic approaches have been cited to 

perform better in unstructured environments [188] and have a higher robustness to outliers 

[189]. However, robustness to outliers and filter divergence between two different hypothesis can 

be avoided by using fuzzy logic techniques to develop an adaptive Kalman filter [190], thus 

combining the benefits [15]. Even this however has its limitations, relying on trial and error to 

generate the fuzzy rule based algorithms [15]. Techniques to optimise the fuzzy systems were 

reviewed by Loebis et al. [15] to include genetic algorithms [191, 192], neural networks, 

chemotaxis, alopex and simulated annealing [193, 194]. The conclusion drawn is that no one 

fusion method is the perfect solution, and the associated benefits and limitations must be 

compared on an application-specific selection process. 

2.3.2.4.3 Indirect sensor fusion 

Indirect fusion was defined as using information sources like a priori knowledge about the 

environment. If the robot was simply placed in a new environment and left to localise and map its 

environment using just its onboard sensors then this is direct fusion. However, if information can 

be provided to the robot in advance, for example the geometry and dimensions of the tank it is 

operating in, or a topographical map of the seafloor, then this gives the sensor fusion algorithm 

one more source of data when considering the localisation and mapping. A priori information 

need not be 100% accurate as no measurements ever can be, and it is the task of the sensor 

fusion algorithm to assess the reliability and accuracy of a priori information as it does for the 

realtime sensor data. 

Indirect sensor fusion is less common than direct fusion, but includes the examples discussed 

previously in section 2.3.2.2.4 on geophysical navigation where a priori maps of the operating 

environment are fused with ongoing sensor measurements to improve the navigation capability. 

Several implementations of integrating terrain-based navigation into sensor fusion algorithms 

already exist which use either pre-existing a priori bathymetric profiles of the study area or a 

bathymetric map gathered on-the-fly. The benefits of navigation by matching a local bathymetric 

scan with a reference map avoids the use of transponder based positioning systems which require 

costly and time-consuming deployment and recovery in the study area [195]. Similar research 

integrating a priori underwater map-aided navigation comprising a database of benthic depths 

has also been implemented by Karlsson and Gustafsson [196] using a Bayesian probabilistic 

framework for surface vessels. This was developed for underwater vehicles by Di Massa [197] 

where the accuracy of results depends on the bathymetric variability in the operating 

environment (it is difficult to localise in sparse featureless environments). 

Tracking the seabed with reference to a priori bathymetric scans provides drift free, absolute 

measurements compared to a dead reckoning DVL system. Additionally, bathymetric tracking 

using sonar does not require clear water or such close proximity as seabed tracking using vision. 

Integrating terrain-based navigation provides corroborative information from a single depth 

measurement to either a pre-existing bathymetric profile chart (indirect sensor fusion) or to a 

simultaneously constructed map (direct sensor fusion). However, a topographically and 

acoustically diverse benthic composition is required for navigation using detailed small-scale 

sonar seabed topography tracking alone [70]. Instead, as Newman and Durrant-Whyte [70] state, 

navigational robustness and reliability in both natural and artificial environments can be achieved 

through a fusion of inertial and sonar information. 
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Usually the underwater vehicle begins in a new environment with no prior knowledge of its 

surroundings. However, any a priori knowledge which can be provided to the vehicle in advance 

aids its autonomous navigation and operation. In some cases, the user is able to confirm simple 

details about the operating environment, for example when operating in a uniform environment 

(e.g. a harbour or tank) the user can confirm the dimensions and depth of the tank and that a flat 

floor extends over the entire area. When operating in a dock environment the user can confirm 

the shape and acoustic (sonar) characteristics of the dock pilings even if the user is not able to 

confirm actual positions. The benefits of including the remote operator in the control system 

(user in the loop) in certain scenarios and applications are discussed further in the iROV sections 

below (2.3.2.6 and 2.5). 

Alternatively, in some cases a complete or even incomplete topographical or landmark based map 

can be provided in advance – for example by digitising marine topographical charts, or by 

performing a high-speed low-detail GPS referenced sonar scan of the operating area in advance 

by a surface vessel. Techniques such as these can accelerate autonomous operation of the 

underwater vehicle by providing a broad overview of the study area in advance which the vehicle 

can then populate with detail as it explores. 

Any a priori information, provided it is recorded with an appropriate certainty, is useful to the 

vehicle – as is any information gathered during the autonomous exploration, provided it is 

recorded with an appropriate uncertainty estimate. A small number of distinctive landmarks 

recorded on the map with a high certainty and GPS latitude and longitude can aid the robot 

greatly in quickly mapping its environment and provide a reference in the world coordinate 

system of latitude and longitude. 

2.3.2.4.4 General limitations of sensor fusion 

Sensor fusion, regardless of method, is not without criticism or its limitations. 

As Fowler [198] stated: “This is a great idea provided the input data are a good quality. Massaging 

a lot of crummy data doesn't produce good data; it just requires a lot of extra equipment and may 

even reduce the quality of the output by introducing time delays and/or unwarranted confidence… 

Be wary of proposals for synergistic systems. Most of the time when you try to make 2 + 2 = 5, you 

end up with 3 ... and sometimes 1.9.” 

Compared to a single measurement, or simple best sensor selection method, complex sensor 

fusion methods incur a computational penalty [165] dependent on sensor resolution, particularly 

relevant given the limited processing power onboard an underwater vehicle. Considering a 

generalised framework, the computational complexity can be seen as follows [15]. Information 

from different sensors needs to be co-registered in the same temporal and spatial coordinate 

system, correspondences established of which features in one sensor refer to the same 

aspect/feature in the other, followed by fusion of the two data sources (with a variety of methods 

discussed later in 4.7). Following fusion, inference of a conclusion based on the uncertainty of the 

source data is required, with reconfiguration of the mission / sensing strategy to direct the next 

measurement to reduce this uncertainty [15]. 

When assessing the benefits of sensor fusion, the measures of performance used are often 

specific to the application, but in general include the accuracy, reliability and reaction time [199]. 

An assessment of the incremental benefits gained from integrating an additional sensor to the 

suite is also an important consideration [200] given the finite cost, space, weight and power 

budgets available to the underwater vehicle. 
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2.3.2.4.5 The opportunities for nearshore sensor fusion 

As Majumder et al. [156] acknowledge, the techniques and benefits of multi-sensor fusion have 

been investigated for several years, but the development and application of these theoretical 

solutions to real-world applications is the cutting edge of research into mobile robot navigation. 

This research seeks to develop techniques for fusing data from multiple complementary sensors 

to improve the navigation capabilities of underwater vehicles in the notoriously difficult to 

navigate in and hostile nearshore underwater environment. 

In the dynamic nearshore environment, operating conditions can change rapidly, often in the 

short period of a mission, particularly when moving between the different operating regimes. 

Such conditions can include varying depth, varying proximity to visual and sonar landmarks, 

varying proximity to ferromagnetic structures, murky or dark water, varying sea-state, tides, 

currents and water movements causing sudden fast accelerations or long steady movements, 

which can all affect the information available. 

For example, as the water becomes turbid, cameras are less effective, or, as the vehicle passes 

magnetic environmental anomalies (such as ferrous structures), inaccuracies can appear on the 

magnetic compass data. Not only must the sensor fusion algorithm combine the data from each 

of the sensors to improve the reliability and accuracy of the overall position estimate, but it must 

also be able to cope with the dynamic characteristics of each of the sensors. 

Nearshore sensor fusion also provides an opportunity to realise the benefits (e.g. accuracy, 

robustness, etc.) of significantly higher budget sensors by intelligently fusing the data from 

multiple lower budget sensing modes, a recurring theme of this research. 

2.3.2.5 Localisation and mapping 

The previous sections have considered the navigation sensors, and techniques to fuse the 

information from selected sensors to improve the reliability and the accuracy of information. This 

information is used for underwater navigation, that is, tracking the position of the vehicle and 

mapping the environment. This allows survey data to be recorded with a position reference and 

permits varying levels of autonomous control. 

With this goal, it is important first to define some terms: localisation and mapping are defined 

below and navigation is considered in the following section (2.3.2.6). 

Localisation is the process of estimating a robot’s position in an external reference frame from 

sensory data when the robot is placed at an unknown location in the environment and has to 

localise itself from scratch [201, 202]. The pure problem of localisation assumes a known map. 

Cox [157] states that ‘using sensory information to locate the robot in its environment is the most 

fundamental problem to providing a mobile robot with autonomous capabilities’. 

If there is no map of the environment available then the robot has no a priori information 

available to it. The problem then becomes one of mapping – the pure problem of mapping 

assumes that the location of the robot is known [203]. 

However, in many cases, the robot is placed at an unknown position and has no knowledge of a 

map – in this case, the problem becomes one of Simultaneous Localisation and Mapping (SLAM), 

first coined by Leonard and Durrant-Whyte in 1991 [204]. 
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A variety of localisation and mapping techniques exist, including well established techniques for 

SLAM which can be applied to underwater navigation. A series of reviews over recent years have 

updated these techniques [71-73, 150, 171, 205, 206]. Those most applicable to the nearshore 

navigation application are discussed here. 

2.3.2.5.1 Geometric probabilistic SLAM (Gaussian filters) 

The same probabilistic framework introduced earlier for sensor fusion (2.3.2.4) can be applied to 

SLAM. In the case of Gaussian filters, the estimate of the robot’s state is represented by a mean 

value, centred on the most likely value, with a variance (or covariance for multivariate 

distributions) representing the level of uncertainty. Features in the environment which can be 

used for navigation are stored on the map as landmarks, and also parametrically represented by a 

mean and (co)variance of a Gaussian (normal) function. 

Probabilistic SLAM provides the same benefits as probabilistic sensor fusion, including 

computational efficiency resulting from the parametric representation, and the ability to track 

and act on uncertainty. Probabilistic SLAM is also capable of global localisation with no a priori 

information [150]. This is otherwise called the kidnapped robot problem, where a mobile robot 

must either recover from localisation failure, or must localise itself and map an environment with 

no a priori information and no global positioning device (such as GPS) [207]. 

The most common technique to solve the SLAM problem is the Extended Kalman Filter (EKF) 

[208], a development of the standard Kalman Filter (KF), introduced previously in the context of 

sensor fusion (2.3.2.4). 

The standard Kalman filter recursively estimates a state estimate using a prediction/correction 

cycle. However it requires data and models to be linear, and so cannot be used, for example, with 

circular orientation data, etc. The requirement for data and models to be linear is overcome by 

the Extended Kalman Filter (EKF). The EKF linearises the data to allow the standard KF process to 

be used. First used for SLAM in 1987 [209], the EKF is now widespread for mobile robot SLAM, 

including extensively underwater [16, 17, 121, 147, 210-212]. 

Although the parametric representation provides computational efficiency by discarding 

unnecessary data, the EKF SLAM algorithm is still not the most efficient solution. The EKF SLAM 

has quadratic complexity6 [208], so the run time increases proportional to the number of 

landmarks in the map squared. The memory requirements are also proportional to the number of 

landmarks squared. Thus, landmark selection is an important consideration for EKF SLAM. Too 

few landmarks and the map and localisation accuracy is compromised and the uncertainty in the 

robot’s positional estimate can grow too large for Gaussian filters to be effective. Too many 

landmarks causes the computational complexity to slow the frequency of updates, again 

compromising accuracy. Techniques for map management to reduce the number of tracked 

landmarks, such as correct association of features to avoid duplicates, or decaying spurious 

observations, are discussed later in this document. When working with large numbers of 

landmarks, mutual exclusion techniques can be applied to reduce the computational complexity 

                                                           
6 The time complexity of an algorithm refers to the amount of time taken to run the algorithm based on the 

number of elementary operations performed, expressed as a function of the length of the input to the 

algorithm represented as a string [213]. Therefore the time taken to run an algorithm with constant time 

complexity does not depend on the size of the input, and the run time of an algorithm with linear 

complexity increases linearly with the size of the input. 
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along with efficient searching and outlier rejection, for example only considering nearby 

landmarks when operating in a large environment [150]. 

One alternative to using the EKF is to pre-process the sensor data to be linear so that the standard 

KF can be used with significant computational savings [89]. Further techniques include the 

compressed EKF SLAM algorithm (C-EKF) which simplifies the covariance matrix (discussed later) 

used to store and track landmarks. This technique reduces the computational complexity to be 

linearly proportional to the number of landmarks [214]. 

In many SLAM implementations, the mapped environment is sparse, with isolated landmarks 

spread intermittently throughout [215], hence there are opportunities again to increase the 

algorithm efficiency by joining several detailed local submaps [216]. Provided the distances 

between landmarks are not too great, a map sparse of landmarks can be suitable to localisation. 

However, it is not necessarily suitable for mapping or autonomous navigation, including path-

planning [208]. 

Techniques towards more detailed yet still computationally efficient representations include 

Scan-SLAM [217] and VorSLAM [208]. Scan-SLAM represents landmarks by templates composed 

of raw scan data, rather than as parameterised features (Gaussians) in the standard EKF SLAM 

approach [217]. The EKF algorithm is still used for probabilistic localisation and mapping, yet Scan-

SLAM allows landmarks with arbitrary shapes to be accurately represented permitting more 

robust data association. 

Similarly, VorSLAM represents landmarks as isolated features in the map using the EKF, but 

around each landmark, a more detailed map represents the environment [208]. This provides a 

more complete representation of complex unstructured environments, allowing sensory 

information which cannot be modelled as geometric parameters, such as the Gaussians used in 

EKF SLAM, to be represented using arbitrary shapes if required, or the more standard points and 

lines while maintaining efficiency [208]. Voronoi division7 is used to build the local maps, ensuring 

maximum computational efficiency in the representation by ensuring no overlap of local maps 

and correct scaling. The local maps also have the potential to reduce data association errors when 

working in confusing environments [208]. A compromise is provided between the efficient 

landmark based representation and a full but highly memory-intensive representation of the 

environment. 

The unimodal Gaussian representation works well for local position tracking where the 

uncertainty is relatively small. As an example, Thrun et al. state a rule of thumb that if the 

standard deviation for the orientation is greater than ±20° then linearisation effects are likely to 

make the EKF algorithm fail [150]. The opposite is true for nonparametric filters which are better 

suited to global localisation problems or local localisation with a high uncertainty. 

To meet the limitation of representing a single belief with a unimodal distribution, an extension of 

the same compact and efficient EKF algorithm but capable of tracking multiple hypotheses was 

developed in 1979. The multi hypothesis tracking (MHT) EKF uses multiple Gaussians to represent 

and track multiple hypotheses [219] with a corresponding increase in computational complexity 

[150]. This has since been updated and widely used for underwater navigation [220, 221]. Multi 

hypothesis tracking (MHT) Gaussian filters can use negative information to some extent by 

decaying mixture components (possible hypotheses) that failed to observe a landmark. 
                                                           
7
 Voronoi division divides a plane of points into convex polygons such that each polygon contains exactly 

one of the points. The polygons are specified such that any position in a given polygon is closer to the 
generating point than to any other point [218]. 
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A major disadvantage of Gaussian filters is the inability to model hard spatial constraints. These 

can be better approximated using MHT algorithms but are still hard to model. The example used 

by Thrun et al. is ‘the robot is close to a wall but cannot be inside the wall’ [150]. It can be seen 

here, that if the belief that the robot is close to a wall is represented by a Gaussian, then the 

Gaussian is going to overlap with the wall suggesting that, albeit with a low probability, the robot 

is within the wall which contradicts the hard spatial constraint. MHT algorithms can approximate 

hard spatial constraints using mixtures of Gaussians but the spatial constraint is never definite – 

the analogy is approximating a square wave with a Fourier series of sinusoidal waves. 

2.3.2.5.2 Graph SLAM 

A second common technique for SLAM represents the environment and state as a sparse graph of 

constraints. The Graph SLAM algorithm uses nonlinear optimization to generate the map and the 

robot's location throughout the map [206]. 

Computational complexity is nearly opposite to the EKF methods discussed above. Whereas the 

EKF SLAM algorithm integrates every new piece of information to update the state estimate of 

the vehicle and the map, the Graph SLAM algorithm accumulates new information into the graph 

without resolving it. Therefore, updating the Graph SLAM algorithm with new information is 

computationally relatively simple, whereas updating the EKF can be complex depending on the 

map and state size [150]. 

As the EKF method incrementally and recursively updates the state and map estimates, the 

algorithm can run indefinitely. Conversely, the Graph SLAM algorithm retains all information, all 

robot path estimates, all landmark observations and associations, and all map data. Thus for long 

durations, the Graph SLAM algorithm can grow to be unmanageable. However, provided a pre-

determined dataset size is known in advance, the Graph SLAM algorithm can more efficiently 

manage maps which are many orders of magnitude larger than the EKF method [150]. 

Hybrid solutions have been developed to combine the computational efficiency of topological 

methods with the detail of metric maps [222]. The computational complexity of the EKF and C-EKF 

algorithms discussed previously can be further reduced to constant time using the sparse 

extended information filter (SEIF) SLAM algorithm [215]. This combines the benefits of the EKF 

algorithm, which performs online SLAM and maintains a current estimate of vehicle state, with 

the computational efficiency of the offline Graph SLAM algorithm, which simply accumulates 

information and turns the accumulated information into a map using inference, after all data is 

acquired [150]. However, the EKF is often favoured for landmark SLAM over potentially more 

efficient information filters as the covariances are available for data association without any 

further computation [16]. 

More recently (2012), techniques to solve the kidnapped robot problem using hybrid 

metric/topological maps have been proposed capable of global localisation [223]. These 

techniques use the Bayesian (Kalman) filters introduced previously, but combine topological maps 

similar to the Graph SLAM techniques. This hybrid solution seeks to avoid the environmental 

detail often lost in topological techniques [223], where parametric representations discard local 

detail, or environmental detail is lost in between features. 
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2.3.2.5.3 Nonparametric filters 

The EKF and Graph SLAM techniques introduced above represent the vehicle’s state and features 

in the environment parametrically. This leads to a compact and efficient representation when 

applied to suitable scenarios and applications. Particle filters however are the opposite, and 

represent state and the map non-parametrically by discretising the continuous state space into a 

finite number of values.  

Occupancy grid maps (OGM) represent a map of the environment as an evenly spaced array of 

variables where the state of each element of the grid represents the presence or absence of an 

object with a binary 1 or 0 [150]. Initially, with no a priori knowledge, the entire grid is ‘undefined’ 

and 1s and 0s are filled in as either positive or negative knowledge provides further information. 

Inverse measurement models are used to populate the grid as the robot explores. The inverse 

measurement model for each sensor reasons from effects (measurements) to causes (occupancy) 

[150]. For example, given a sensor measurement and pose, which OGM cells can be confirmed as 

empty and which can be confirmed as occupied. However, the standard OGM algorithm does not 

maintain dependencies (for example the position of one landmark relative to another) in the 

estimate of occupancy. 

The quality of the representation and the computational complexity are dependent on the 

number of values used for the approximation, i.e. the map resolution. An application specific 

compromise has to be reached, which can include a variable resolution. In large, sparse areas of 

open space, a coarse grid resolution is used to reduce computational complexity. However, in 

complex, detailed, highly-populated areas a finer grid resolution is used to allow an accurate 

representation. 

Landmark selection also has the same compromise on complexity versus accuracy of the 

representation. If too many landmarks are used then the computational complexity can become 

unnecessarily high; conversely, if too few landmarks are used, then the localisation algorithms can 

fail in sparse areas. 

Particle filters are well suited when the state, measurements, or environment cannot be 

approximated by a parametric representation (a Gaussian for the EKF) and a more complex 

representation is required. The computational complexity is proportional to the complexity of the 

representation. Techniques which can adjust the representation complexity in realtime, in 

response to the perceived complexity of the state and the computational resources available, are 

called resource adaptive algorithms [150]. 

Particle filters have been used with success for underwater navigation when the environment is 

complex with multimodal multidimensional density functions, albeit at a greater level of 

computational complexity [139]. Two examples are grid localisation (GL) and Monte Carlo 

localisation (MCL). These algorithms are able to process raw sensor measurements without having 

to extract features. This allows them to process negative information, for example the absence of 

an object can be confirmed which allows for more robust localisation. Because GL and MCL 

algorithms are non-parametric they are not bound to a parameter representation such as the 

unimodal distribution used by the EKF localisation algorithm. In particular, this allows for 

representation of beliefs which do not satisfy a Gaussian approximation and allows multiple 

hypotheses to be represented and tracked. 

However, the computational efficiency of the parametric representation used in the EKF SLAM 

algorithm and its variants is lost when using GL and MCL techniques [150]. Parametric algorithms 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

53/347 

such as the EKF can be very computationally efficient if implemented correctly. Computational 

complexity is increased in the MHT algorithm, and by the nature of their non-parametric 

representation, GL and MCL algorithms usually increase computational complexity further [150]. 

A significant advantage of nonparametric filters is the ability to localise in dynamic environments. 

This overcomes the requirement for Gaussian filters, that the world is static and the only variable 

is the robot’s pose. Normally, dynamic environments can only be accommodated by probabilistic 

approaches if the dynamic variable is independent at each time step in the same way as sensor 

noise is accommodated. However, if the environment variable is persistent over several time 

steps, for example a moving boat, then the parametric algorithms discussed previously are likely 

to fail. If nonparametric filters are used, then either state augmentation or outlier rejection can be 

used to deal with dynamic environments. 

State augmentation includes the dynamic state in the state estimated by the filter. However this 

increases complexity with the more dynamic variables introduced [150]. Outlier rejection aims to 

reject measurements likely to be caused by unmodelled environment dynamics. Although this has 

the potential to be more efficient than state augmentation, if localisation is temporarily lost and 

the robot must perform global localisation, there is a danger that every measurement will be 

rejected as an outlier, requiring careful evaluation to avoid [150]. 

2.3.2.5.4 SLAM – state of the art 

The challenge of simultaneous localisation and mapping with no a priori information is complex. 

However, to many, the problem of SLAM in structured environments with good sensing is widely 

regarded as a solved problem [171], at least at a theoretical and conceptual level [212]. 

Algorithms have been developed which are able to solve the SLAM problem for small/medium 

structured underwater environments [16]. However, these algorithms make several assumptions 

on the sensory information available and the structure of the environment, and are thus not yet 

suitable to SLAM in the unstructured kelp beds. As Durrant-Whyte and Bailey discuss [171], 

substantial issues remain in practically realising more general SLAM solutions, in particular 

developing the theoretical solutions through to real-world implementations for challenging 

environments. 

Even as of late 2011, fully autonomous underwater SLAM in dynamic, unstructured environments 

such as the nearshore is still an open challenge to realise practical implementations and solutions 

[224]. When dealing with the limited sensing available in the kelp beds, to achieve robust reliable 

results on a budget is far from a solved problem [206]. It is in this niche that this research seeks to 

advance the field; to improve the navigation capabilities of underwater vehicles operating in the 

hostile nearshore environment. 

Frese presents a recent (July 2010) interview in Künstliche Intelligenz [225] with two of the 

leading names in SLAM and mobile robot navigation, Sebastian Thrun and José Neira on whether 

or not the problem of SLAM is solved. The consensus of these two leading authorities in the field 

is that SLAM for basic structured environments with good sensing is solved as far as basic research 

is concerned. However, the understanding of SLAM with limited sensing in large and/or dynamic 

environments is still in its infancy [206]. Particularly, the ability to not only ignore the effects of 

dynamic objects but to include them in the model, to monitor and update changes in the 

environment and to compute semantically meaningful models not just geometric maps of the 

environment are all identified as opportunities for research [225]. 
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Of particular importance to this work is the identification by Neira that ‘because the pressure to 

publish is very important in many places’ and that ‘development and implementation is less 

publishable than new theoretical results’ that previous research has not thoroughly explored real-

world applications [225]. Thrun also reinforces the issue that SLAM for real-world partially 

structured (or unstructured) environments with real-world sensing, particularly in the absence of 

GPS or similar, is still largely an unsolved problem. Thrun and Neira conclude that the focus of 

work now should shift to implementation and development of SLAM in real-world applications 

with impact and benefit to society rather than solely continued theoretical development [225]. 

This sets the research context – to take a target application and requirements specification, and 

to both design from scratch and adapt existing solutions (and algorithms) to the specified 

purpose, before proving and developing the solution in a real-world environment. The real-world 

environment of interest is the dynamic, nearshore environment with often dynamic sensing and 

varying sensor availability, and crucially, with the constraints of a limited budget and reduced 

sensor capabilities. 

2.3.2.5.4.1 Efficiency and robustness 

Theoretical solutions to the SLAM problem have been known for many years. In 2001, 

Dissanayake et al. [226] presented a theoretical solution before demonstrating an 

implementation on a land based robot. Dissanayake et al. [227] concluded that theoretically SLAM 

was well understood and that the focus of research into real-world implementations of SLAM 

should shift to computational efficiency [228]. SLAM implementations with more than a few tens 

of landmarks were stated to become computationally intractable due to ‘the need to maintain the 

knowledge of the relative relationships between all the landmark estimates’ in the map [228]. 

Since this work performed by Dissanayake et al. [227, 228], great advances in computationally 

efficient SLAM implementations have been made and in mobile computing power, and the 

efficient techniques developed further [229]. Thrun et al. [150] provide a seminal review of many 

of the leading techniques developed in recent years which is updated in the more recent 

publication [206]. Now, in more recent years, the focus of research is shifting from computational 

efficiency to experimental evaluation and robustness in the real world [225]. This is prompted in 

part by the rapid advances in computational power available, but together with the advances in 

applications and environments in which mobile robots are being deployed. 

2.3.2.5.4.2 Future development of SLAM techniques 

As early as 2002, Thrun identified operation in dynamic unstructured environments, efficient map 

representation, and integration of mapping with robot control for exploration as key areas for 

ongoing research into SLAM [230]. Although there have been many advances in the field since this 

article, these issues remain current even today. 

Jiang et al. [231] provide an up-to-date (2009) review and summary of recent developments in 

EKF SLAM with perceptions of the current prospect of future research trends for EKF approaches 

to SLAM. Jiang et al. [231] identify suitable map representation of the environments, including 

mixed and layered maps with 3D considerations as being of particular importance to ongoing 

research. 

With relevance to the nearshore application, the map representation is particularly important. 

Considering a layered map, vertical objects can be observed in the current (2D) plane which can 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

55/347 

then be developed into a 3D representation for further inspection. In some cases, the position 

and configuration of the 2D landmarks can be sufficient for navigation, thus allowing 

computational efficiency. The 3D representation may only be required for user feedback of the 

survey data, or when the vertical characteristics of a landmark vary with height; hence the 

application of layered maps. 

The second relevant perception by Jiang et al. [231] with regard to this research is the 

identification of the benefits of EKF SLAM using multi-sensor fusion, the benefits of which set the 

context for the multi-sensor navigation system implemented in this research. Jiang et al. [231] 

identify a reduction in data association errors and improvement in the robustness of feature 

detection as the two most important benefits. Both of these are realised in this research and were 

discussed earlier (for example, fusing the data from sonar and video for a combination of 

detection and identification). 

2.3.2.5.5 Applicability to nearshore SLAM 

Landmark selection is of particular importance for nearshore SLAM. Navigational landmarks are 

selected based on the target operating environment and what is likely to be observed – for 

example, dock pilings, rocks on the seabed, kelp stipes, the shore line, etc. As Thrun et al. [150] 

state, the key to successful localisation lies in successful data association – that is correctly 

identifying the correspondence between observed landmarks and those recorded on the map. 

Techniques such as multi-hypothesis tracking add robustness to data association errors when 

working with sparse landmarks, or when landmarks can be easily confused or spuriously detected, 

by allowing multiple location hypotheses to be tracked until a confirmation can be made. 

Implementations of accurate, robust data association for nearshore SLAM are considered in 

section 5.3.4 demonstrated in the field trials of SeaBiscuit in Chapter 6.  

The theoretically solved problem of landmark SLAM for structured environments is gradually 

starting to propagate to the challenging underwater environment. The benefits of landmark SLAM 

for navigation when compared to techniques such as DVL, high precision INS and USBL/SBL/LBL 

systems are great. These benefits include drift free navigation, an increased immunity to noise 

and interference, the ability for geodetic navigation, no requirement for environment 

modification and beacon deployment and a significantly increased accuracy, reliability and 

robustness of navigation for a fraction of the budget. Techniques for autonomous image 

processing and feature extraction from underwater sonar and video data are also in constant 

development, including techniques to use both multibeam [126] and mechanically panned sonars 

[125] for navigation using EKF-SLAM in the nearshore. Significant advances have been made in 

recent years and this section considers some of the frontiers of research and their significance to 

the application of nearshore underwater navigation. 

Ribas et al. [16] have developed a recent (2007 & 2008) navigation system for AUVs in manmade 

structured and partially structured environments such as dams, harbours and marinas. The 

navigation system uses a combination of feature extraction from continuous sonar scans and 

updates from a DVL tracking the seafloor and water velocity. This system works well and uses 

similar wall detection algorithms for landmark based SLAM to those developed in this research 

when operating in a structured environment. The addition of a DVL to the vehicle used by Ribas et 

al. [16] increases the budget of the vehicle but allows for an additional source of navigational 

dead reckoning information. 
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Folkesson et al. [211] also provide an example of tracking and navigating from artificial targets 

using sonar and in the absence of a relatively expensive DVL sensor. Folkesson et al. [211] develop 

several useful techniques for working with Gaussian probabilistic representations of sonar targets 

for SLAM when the errors and uncertainty are non-Gaussian. However, for the sonar tracking to 

work, clearly identifiable sonar targets are required in the target environment; Folkesson et al. 

[211] used 12 artificial reflectors for their test. Although this represents an important move away 

from supplementing navigational information with a DVL, it still places requirements on deploying 

sonar landmarks. 

The move to unstructured natural environments represents a great challenge for image 

processing and feature extraction algorithms, as well as the algorithms for identifying 

corresponding features between successive scans. Eustice et al. [147] discuss a technique for 

visual tracking of the seafloor using techniques from optic flow to provide successive 

approximations of the movement of the vehicle from one video frame to the next. This technique 

has the benefit of not requiring any environmental modification or the deployment, positioning, 

calibration and then recovery of any additional infrastructure (for example LBL); however, the 

technique is not without its limitations. 

Visual tracking of the seabed requires a combination of clear water, good illumination, operation 

in close proximity to a relatively flat topography of seabed, and a sufficiently visually diverse 

benthic composition to allow navigation from just successive images. Mahon and Williams [121] 

expand this technique to successfully combine visual and sonar tracking of the seafloor which 

allows for higher water turbidity, operation at higher altitudes from the seafloor but requiring an 

acoustically diverse benthic composition instead of (or as well as) a visually diverse seafloor. 

Visual/acoustic tracking of the seafloor using cameras or sonar units and DVL seafloor tracking is 

similar in principle. Each has a set of operating conditions which restrict its use in some 

environments. However, due to the inherent expandability and flexibility of the sensor fusion and 

navigation algorithms developed in this research, if the target operating environment conditions 

allow, these technologies can be easily integrated into the navigation algorithms for an increase in 

navigation capabilities and a corresponding reduction in uncertainty.  

2.3.2.6 Control and navigation 

Navigation is the general process of selecting, maintaining and updating/adapting a desired 

course (a safe and suitable path) from one point to another using the information from both 

localisation and mapping [203]. As well as ensuring accurate maps, precise control and accurate 

navigation is required in the confined, complex environment to avoid damage, entanglement with 

the kelp stipes, and to manoeuvre in the highly varying bathymetry and rocky pinnacles typical of 

a kelp bed. If the vehicle size is kept to a minimum to reduce the risk of tangling and to aid 

deployment and recovery, and the vehicle is designed with the budget of a small-scale research 

group in mind, then the sensor suite which can be fitted to the vehicle for navigation is limited 

further. 

There are two approaches to this navigation. The first is a triggered pre-programmed response to 

an external stimulus. Mapless navigation can be achieved by reactive decision making based on 

the information contained within an image/scan, using optic flow, or feature tracking between 

frames [232]. 

The second, more sophisticated navigation strategy dramatically enhances the capabilities of 

mobile robots and interprets the environment as some form of cognitive map, either spatial, 
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topographical or some other form. Cognitive maps [233] not only enable path-planning 

capabilities but also the use of current perceptions, memorised events and expected 

consequences, additionally allowing detours and shortcut behaviour [234]. To be effective, this 

strategy needs to combine information from the past, present and future (planned actions, 

predicted events) [235]. 

A critical review of the successful techniques and state of the art of the control and navigation of 

underwater vehicles follows, which can be applied to operation in the nearshore environment, 

specifically kelp bed mapping. A distinction is made between remotely operated vehicles (ROVs) 

and autonomous underwater vehicles (AUVs) using the definitions of each from section 2.3.1. 

There are successful examples of each being deployed into similar environments and for similar 

tasks, yet limitations are identified with both approaches. 

2.3.2.6.1 Remote control (ROVs) 

The definition of an ROV implies remote control and supervision, and a remote power source, 

both transmitted to the underwater vehicle using a tether (or more occasionally, just remote 

control, either through a data-only tether, or acoustically) [58]. 

The benefits of remote control are operational security, both from an operator controlling the 

vehicle, and from the possibility of the tether being used as a recovery line. The operational 

security provided and the high-power available via the tether is well suited to operation in the 

nearshore, where the unstructured environment and dynamic conditions often dictate difficulty in 

implementing fully autonomous navigation and control. Additionally, through the tether, there is 

no limitation on a finite energy source carried onboard the vehicle, thus no limit on the duration 

of missions, and high-powered manoeuvring thrusters and instruments can be used more freely 

[25]. This is particularly applicable to manoeuvring accurately and reliably in the confined, 

complex environment in the tidal currents and wave action often found in the nearshore. 

Although there are limitations to the use and suitability of ROVs to all applications, some are 

increased in the nearshore. The limitations of a tether restrict the operating range of the vehicle 

without moving the support vessel, both from the finite tether length, but also the restriction of 

the vehicle towing the tether behind it. Untethered remote control is possible, but the bandwidth 

via acoustic communication for sensor feedback is low with interference common in the 

nearshore [236, 237]. The onboard power source also becomes finite and the security of the 

tether is lost [238]. 

Additionally, in the complex arrangement of kelp stipes, tangling is a frequent risk unless careful 

controlled navigation and manoeuvring is performed. Pacunski et al. [14] deliberately avoid 

operation of their small-scale ROV under canopy forming kelp, specifically Nereocystis luetkeana. 

Hence, precise positioning and high manoeuvrability are required for operation in and around 

canopy forming kelp beds. 

Although the labour requirements for ROV operation are less than that of, for example a diver 

survey, there is still a need for the continuous concentration and operation of a skilled surface 

operator. Tether management is also required to ensure the correct amount of tether is in the 

water: too much and the vehicle risks tangling, too little and its movement is restricted [25]. 

Large-scale ROVs are often used for deep water habitat mapping [239, 240], although ROVs have 

also seen successful use for shallow water nearshore habitat mapping, when the application is 

carefully selected. Parry et al. [241] successfully used an ROV for benthic identification and 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

58/347 

mapping in 10-15m of water depth using video with structured lighting projected to provide scale 

to the images. This overcomes the limitation of scaling and ranging using video, but the limitations 

of visibility are still a recognised issue in some circumstances. 

As is common for nearshore fisheries surveys, Smith and Shull [242] used a small-scale ROV for 

rockfish surveys in shallow waters, again using structured lighting for scale. Harrold et al. [243] 

used ROV video surveys at a low altitude (0.5m) for mapping macroalgal drift from kelp forests 

(Macrocystis pyrifera) into nearby canyons. In deeper waters, Reynolds et al. [244] surveyed 

fisheries and fisheries habitats using a combination of co-registered side-scan sonar from a 

surface vessel and visual observations from ROVs. 

In these examples, the sensors are well suited to the requirements, primarily manual 

species/habitat identification in relatively clear water. The use of ROVs is necessitated by the 

environment complexity, the budget, the requirement for manoeuvrability and to dynamically 

adjust the mission course in response to realtime sensor feedback. 

Pacunski et al. [14] define the small class of ROVs by cost with a limit of <$150,000 (which is 

considerably higher than the low budget considerations of this research) and go on to describe 

their successful operation of ‘small’ ROVs for shallow water surveys (<200m, again greater than 

this research). The benefits of small ROVs (cost, coverage, ease of logistics) are demonstrated and 

the apparent underutilisation of small ROVs for nearshore survey work is concluded [14]. 

2.3.2.6.2 Full autonomy (AUVs) 

The opposite end of the spectrum to the ROVs discussed above is a fully autonomous untethered 

underwater vehicle (AUV) [58]. Energy autonomy is provided by an onboard power source, or by 

harvesting energy from the environment [245, 246] and control autonomy is provided by onboard 

‘intelligence’. The level of this intelligence varies from a simple set of pre-programmed sequential 

operations, to programmed responses or decision making capabilities able to react to 

circumstances encountered. 

Energy and control autonomy bring great benefits to many applications, including the flexibility of 

not requiring a tether together with reduced labour and logistical support. However, if the 

application is not correctly selected, energy and control autonomy can be limitations. Energy 

autonomy restricts the power budget available for sensing and movement, hence fitting high-

power sensors, or expecting a high thrust or long duration missions dictates a large, heavy AUV. 

Equally, control autonomy is only as successful as the variety of scenarios which the programmer 

can predict in advance to pre-program reactions to foreseen scenarios. Developing sufficient 

intelligence to react to any given development or circumstance in the real world is an ongoing 

challenge for all mobile robotics, with difficulties compounded in the dynamic and diverse 

underwater environment. 

Hence, the applicability of ROVs and AUVs to different environments and tasks is an important 

selection process. Recent (2011) AUVs are highly capable for autonomous undersea inspection 

[69], yet even so, the challenges of the nearshore environment are still limiting their deployment. 

Recent development to expand their use to the nearshore is ongoing, with applications for AUVs 

mapping submerged aquatic vegetation (eelgrass) already successful [11]. Mapping kelp beds of 

Nereocystis luetkeana still poses such a challenge from the full height stipes, canopy [14] and 

challenging conditions such that modified surface vessels are still widely (as of 2012 [10]) used for 

survey and mapping of this environment [247]. 
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The benefits and limitations of using AUVs in kelp beds can be seen. The benefit of not having a 

tether to tangle around the kelp stipes is significant. Additionally, the surface vessel can be at a 

safe distance with no risk of affecting the measurements. However, the power required to 

manoeuvre in this environment around the obstacles, and to transect an accurate course or hold 

a station in the high currents found in the kelp beds is prohibitively high for a compact vehicle to 

carry its own power source. There is a compromise between correcting the motion of the vehicle, 

and correcting the readings of the sensors, the latter of which requires less power. However, a 

compact manoeuvrable vehicle is still required for this application to be able to map the kelp beds 

in high detail from close proximity, or even from inside the kelp bed looking outwards. The 

limitations of a tether tangling can be mitigated to some extent by careful piloting and mission 

planning, and given a correctly rated tether with strain relief, allows for recovery of the vehicle by 

retracting the tether rather than trying to dock an AUV in high swells. 

Considering control autonomy, the highly dynamic environment of the kelp beds, where sea-

state, tides and weather can change quickly, and conditions are unique to each kelp bed, make it 

hard to pre-program complete autonomy for the complex environments. Instead, the security and 

reliability afforded by remote supervision and control allow dynamic conditions to be dealt with 

and the mission adjusted while in progress. The need for remote control and supervision in high-

risk areas is still recognised as essential [21]. In scientific applications, remote control provides the 

essential realtime feedback of results, allowing the investigation (often in unknown 

environments) to be directed in realtime to maximise the scientific benefit [22]. Remote 

supervisory control also allows the surface support vessel to be repositioned as necessary, and 

ensures the security of the vehicle while continuing to generate a useful and accurate map. 

Thus a dichotomy exists between control autonomy and remote control and supervision, where 

risk is set against labour requirements. Similarly, the decision between energy autonomy versus a 

remote power supply contrasts the flexibility of tetherless operation with the restrictions of a 

finite power budget. With further considerations of additional vehicle complexity over ROVs (and 

thus potential unreliability & uncertainty) and costs with a near-unlimited ceiling as vehicle 

sophistication increases [11], the optimum solution for kelp bed mapping in the nearshore is 

proposed as a compromise between both extremes, a hybrid to yield combined benefits while 

minimising limitations. 

2.3.2.6.3 Hybrid solutions 

Given the often-specific applicability of ROVs and AUVs identified above, the opportunity for an 

optimal compromise has been identified for nearshore habitat mapping, specifically surveying the 

density and distribution of kelp beds. The AUV/ROV hybrid developed in this research combines 

the benefits of each, while seeking to minimise the limitations imposed by the two control modes. 

Hybrid Control 

The degree of autonomy integrated into ROVs varies, and the line between AUV and ROVs is not 

always clearly defined. In further offshore or deep water work, the need for hybrid systems where 

the benefits of AUVs are used to reduce labour requirements and ship support, but where either 

task complexity or environmental risk dictate, ROVs are still essential [21, 248, 249]. There are 

also successful hybrid solutions applicable to nearshore habitat mapping. Although the bandwidth 

of underwater acoustic communications is limited, usually to telemetry and control rather than 

full sensor (video/sonar) feedback [236, 237], untethering is one step in hybridisation, or 

developing autonomy for ROVs [238]. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

60/347 

One alternative to untethering is to deploy a very thin, lightweight (often fibre optic) tether, 

which maintains the high-bandwidth sensory feedback, yet does not transmit power [250, 251]. 

This does not provide any tensile strength for recovery of the vehicle in the case of a failure, and 

can still tangle, although the tether can be cut, the vehicle goes free and then is capable of 

surfacing (or continuing autonomously [251, 252]) while the tether is recovered. While this 

solution was proven in depths of over 2200m, there is still an inherent risk of tangling in the 

nearshore environment with any tether [250]. A similar version of the vehicle using this thin fibre 

optic tether, the Nereus hybrid underwater vehicle, is capable of operating as an untethered AUV 

for surveying broad areas, or with the lightweight fibre optic tether connected for high bandwidth 

(multi-gigabit [253]) realtime feedback of video and data when operating in an ROV mode [26, 

254]. 

An often-cited benefit of AUVs is the reduction in labour requirements from not requiring 

continual supervision and piloting by a remote operator [23, 255]. However, where conditions 

dictate the requirement for remote high-level operator control, steps can be taken to implement 

onboard low-level control of basic manoeuvres. These often comprise basic ‘autopilot’ functions, 

such as maintaining a heading, depth, and sometimes even course, all despite external influences 

(tether, currents, manoeuvring) [23, 249, 256] and serve to relieve the remote operator of some 

of the tedious, labour intensive fine scale control which can easily distract from the overall 

mission. The implementation of these hybrid control architectures often comprises a hierarchy, 

ranging from full autonomy with operator supervision, to operator defined waypoints followed 

autonomously despite external forces, through to direct manual control [249]. 

Low-level control of underwater vehicles is not trivial [257], due to non-linear dynamics (e.g. 

movement is not proportional to thrust which is not proportional to electric current), external 

disturbances, parameter variation during operation and uncertainties [255]. However, techniques 

such as Proportional Integral Derivative (PID), fuzzy [23] and sliding mode controllers [255, 258, 

259] have been developed to solve this control problem. Varying levels of control are used 

depending on the application requirements, ranging from relatively simple depth control [23, 260] 

through to correcting for wave motion [261, 262] before finally the development of full dynamic 

positioning [263]. 

The level of automation can be developed one step further, through remote high-level control, 

where manoeuvre commands are sent or scheduled by a remote operator [264, 265]. Complex 

movements and process can be compiled using elemental manoeuvres (such as a set point for 

trajectory, orientation, path, wall following, hovering and target tracking) through to fully 

automatic way point navigation [24] allowing the operator to quickly and easily define an 

operation, or even redefine on-the-fly, without having to resort to time-consuming low-level 

control. Fraga et al. [264] define this difference as ‘teleprogramming’ rather than ‘teleoperation’, 

but it is defined elsewhere as task scheduling. 

As with each level of increasing autonomy, the reduction in labour requirements allows an 

operator to concentrate on the unfolding survey in realtime, adapting the operation to optimise 

the quality of data, thus ensuring in realtime that the gathered data is suitable [249]. This not only 

ensures the security of the vehicle, but also avoids only discovering fundamental data flaws 

during review and post-processing. Given the dynamic conditions of the kelp beds, with a limited 

time and budget available for survey operations, ensuring a suitable dataset first time around is 

essential. Realtime semi-autonomous correction of the sensor platform position during a survey 

also reduces the amount of motion correction required in post-processing, avoiding any 

degradation of data and image quality [27]. 
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Hybrid Power Supply 

There is the also the opportunity for a hybrid power supply to bring benefits to nearshore 

operation by combining the AUV solution of an onboard finite battery with the ROV solution of a 

surface (unlimited) power source transmitted by tether. The aim is to preserve the benefits of 

each, while reducing the limitations in the target nearshore application. This hybrid-power tether 

is distinct from the hybrid-communications tether used by Nereus [26, 254]. 

The hybrid power tether provides the security of an onboard battery supply in the case of a 

tether-disconnect, while the need for a large and heavy battery pack resulting in a less compact 

manoeuvrable vehicle is avoided by the continual trickle charge from the surface. Conversely, a 

high-drag, thick diameter tether is avoided without limiting operational power for sensing and the 

required high-thrust in the nearshore by maintaining an onboard energy buffer. Thus, when a 

sudden surge of power is required, for example to accelerate, to avoid a collision, or to correct for 

wave movement, the onboard batteries can provide the surge of power, while the relatively thin 

tether can provide a continual ‘trickle’ charge to replenish the energy used over a longer duration 

allowing unlimited mission duration. 

Existing AUV habitat mapping solutions are often limited to moderate or low current 

environments, as coastal currents (stronger than 1 knot for example [13]) impede the ability of 

the AUV to maintain a course heading or steady speed over the seafloor. Thus the hybrid power 

supply techniques discussed here provide a necessary solution to enable the endurance and 

manoeuvrability required to carry out accurate transects or for station keeping in the currents 

found in kelp beds. The trickle-charging tether provides a continuous energy supply for small-scale 

study areas. When greater coverage is required, the surface support vessel can follow the 

underwater vehicle trailing the tether [14]. Alternatively, redeployment from a new anchor site is 

possible. 

Existing hybrid solutions often make use of a power tether and onboard battery to allow 

operation in different distinct modes (ROV or AUV) [266], or provide onboard power with a 

lightweight data-only tether [251, 252, 267-269], but the use of the onboard battery as a buffer is 

much less well documented. As well as permitting a thin low-drag tether, the system reduces the 

required power transfer down the tether, reducing cable cost, increasing safety through lower 

tether voltages and reducing the expense of onboard power conversion. Typical long distance 

ROV tethers use voltages upwards of 1500V AC at 400Hz to minimise loss in high power (20kW) 

tethers [270]. 

2.3.2.7 Mission planning 

When considering the control of the vehicle, at higher levels of autonomy, mission planning 

describes both the sequencing and scheduling of the operations required to achieve the intended 

task(s). This includes reacting to unforeseen circumstances (such as when a task cannot be 

completed) or a changing environment. Most intelligent behaviour, even in humans, is based on 

prior knowledge not realtime searching. For this reason, the AUV needs precise instructions, of 

not just how to attempt a particular mission, but also when to attempt it.  

Silva et al. [271] discuss a three-layer control architecture, starting with a layer to abstract the 

hardware from the control algorithms. This hardware abstraction layer (HAL) is normally provided 

by the operating system for standard computer peripherals and ports, but for the AUV it is 

extended to cover the message formats, timings, parsing and fault tolerance of the AUV specific 

peripherals and actuators. Silva et al. [271] continue with the functional layer which provides 
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motion and navigation operations, localisation and mapping before finally the coordination layer 

deals with mission planning, task selection and scheduling. Silva et al. [271] built this hierarchical 

tri-layer structure into a successful AUV control architecture with a fully integrated simulation 

environment.  

A few years later, in 2005, El Jalaoui et al. [272] built upon the work performed by Silva et al. [271] 

to implement a more robust, modular and upgradable control system. El Jalaoui et al. [272] 

redefine the titles of the tri-layer architecture to be a Global Supervisor, Local Supervisors and 

Low-Level Control Modules with several reaction (control) loops throughout. The core 

implementation and principles are the same as the previously discussed tri-layer control 

architectures. However, the implementation differs and potentially allows for more upgradeable 

and evolutionary mission definitions which are easily adapted to new scenarios by providing the 

user with a series of objectives to build a mission. Each objective contains a set of sub-objectives 

which reflect the capabilities of the given AUV. Any change in the actuation or sensing capabilities 

of the AUV is reflected in the definition of new objectives available to the user when building a 

mission, thus facilitating straightforward upgradeability of the control architecture. 

Palomeras et al. [273] again build on the work done previously and again define a tri-layer 

hierarchical control structure. Palomeras et al. [273] identify that the missions for which classical 

AUV mission controllers are usually developed have unstructured and very large environments to 

explore. In such situations, the trajectory of the AUV is calculated to optimize the energy 

efficiency. However, the control algorithm developed by Palomeras et al. [273] is optimised for 

robot reactivity to the environment, rather than the energy efficiency. The example quoted by 

Palomeras et al. [273] is the autonomous inspection of a structured environment, such as a dam, 

in which the robot must avoid the walls while following a trajectory. 

To implement full autonomy, the mission planning algorithm is required to be robust in the 

presence of unexpected hardware failures or external environmental changes. The capability to 

reconfigure the mission plan to recover from failures and to use alternative combinations of the 

remaining resources allows, where possible, successful completion of as many of the original 

mission objectives as possible. 

As Patrón et al. state [274], the majority of current AUV mission planning solutions are procedural 

and static. Hagen [275] defines a flexible mission planning algorithm, but one which is only able to 

react to environmental or machine changes which can be predicted in advance (a priori) by the 

programmer and a suitable response programmed in. 

Pang et al. [276] develop an improvement to the basic procedural and static mission planning 

techniques with a reactive technique called behaviour based planning. The technique allows the 

mission plan to be adjusted in response to sensor data. Reactive systems typically use few 

variables to model the environment as decisions are based in realtime on acquired data [277]. 

However, while this technique allows for reactive mission planning to a changing environment, 

the mission plan is still only capable of reacting to changes which can be predicted and 

programmed for a priori by the operator. Evans et al. describe an architecture which mixes 

reactive and deliberative collision avoidance and escape architectures to provide mission planning 

with an awareness of the known fixed environment, and robustness when faced with the 

changing unpredictable environment [278]. 

Patrón et al. summarise these earlier approaches which justifies their evolution of a declarative 

goal-based solution for adaptive mission planning [274]. This allows higher levels of autonomy 

than the waypoint-based approaches to mission trajectory planning and allows the mission plan 
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to adapt and recover from failures and external changes [274], of particular importance when 

operating in unpredictable environments. The principle of the technique is to repair and reuse 

parts of a mission plan where possible given a failure of a system or an environmental change, 

rather than a less robust approach which would simply terminate the uncompleted mission. 

Given the sensing available, and the highly dynamic nearshore environment, it is important to 

define the level of autonomy that is realistically possible. A compromise between high-level 

autonomy and the risk involved needs to be made. The higher the autonomy, the greater the risk, 

and while the mission planning techniques discussed here can be used for full autonomy, a more 

suitable application to the nearshore is the hybrid control discussed previously, where tasks can 

still be scheduled using these mission planning frameworks, but high-level control remains with 

the remote operator. 

2.3.2.8 Vehicle hull configuration 

There exist a great variety of underwater vehicle hull configurations, but these can be split into 

four distinct classes, each designed to suit their application. 

The first is the traditional ‘torpedo’ shaped vehicle, with a propeller at the stern, and control 

surfaces and variable buoyancy used to perform turns and depth changes. The National 

Oceanography Centre AUTOSUB is a good example [279]. These vehicles are often untethered 

AUVs referred to as flight vehicles [280] and designed for long duration surveys to yield maximum 

range (hence low-drag) for the finite energy carried. They are however of limited manoeuvrability, 

with control surfaces requiring a flow to be effective, and often incapable of lateral translation. 

Thus, they are highly suited to their application, but highly unsuitable for navigating in and around 

the kelp beds. 

Torpedo shaped ROVs exist and have been successfully used in applications where high-speed or 

forward propulsive efficiency is more important than manoeuvrability, and management of a thin, 

flexible tether is possible [281]. In some cases the application dictates a torpedo shaped hull, for 

example under ice surveys deployed through boreholes. In this case, manoeuvrability and remote 

control are required, yet deployment of a useful payload through a 20cm diameter borehole 

dictates a torpedo shaped hull configuration [282]. Thrusters are used for manoeuvring and 

lateral translation, and any forward propulsive efficiency from the hull design is incidental. 

The second of the common vehicle hull configurations is the ‘glider’, again designed for long 

duration untethered operation, but increasing range by ascending to the surface, then gliding 

forwards during descent following a sawtooth or triangular wave depth profile over distance and 

time. There are options to extend the range of these vehicles by energy harvesting, either from 

solar power at the surface [245, 246, 283] or using the temperature difference across depths 

(thermoclines) [284]. Again, these vehicles lack small-scale manoeuvrability, rendering them 

unsuitable for kelp bed mapping. 

The third class considers vehicles designed for manoeuvrability rather than long distance 

propulsive efficiency, and thus are often used in tethered applications where the vehicle operates 

in finite proximity to a surface vessel, and has higher power requirements to perform the 

inefficient small-scale manoeuvres. In the large class (over several thousand kg) and medium class 

(several hundred kg) of ROV, these vehicles are often cuboid shapes with little to no 

hydrodynamic fairing, as propulsive efficiency is less of an issue with an unlimited surface power 

supply and at low speeds. Instead, maximising useful payload while maintaining compactness for 

manoeuvrability in confined spaces often leads to open frame designs [285]. 
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The Smart ROV Latsis is designed for multi-mode operation via easily configurable buoyancy fitted 

to the top of the vehicle [286]. As well as typical submerged ROV operation, Latsis can be towed 

at the surface, with the sonar units sufficiently submerged to reduce any noise from bubbles and 

the buoyancy designed to reduce wave-induced motion. Alternatively, the vehicle can manoeuvre 

itself at the surface, with movement and positioning independent of the constraints of a surface 

vessel, for example near hazards or in confined spaces [27]. 

As the vehicles move towards the smaller classes of ROV (<100kg), hydrodynamic efficiency starts 

to be an issue, to ensure that the vehicle is capable of propulsion and station keeping with the 

relatively smaller amounts of thrust compared to vehicle mass and tether drag. However, little is 

currently done to optimise the hydrodynamic efficiency, as the unlimited power source is still 

available through the tether. Of particular interest to the nearshore environment are vehicles 

which have a low hydrodynamic drag, firstly to optimise thrust for the limited electrical power 

available in a thin, flexible tether, but secondly to aid station keeping and manoeuvrability in the 

dynamic currents of the kelp beds. 

Thus, a fourth class of vehicles contains small, compact, hydrodynamic and highly manoeuvrable 

ROVs. This field is relatively limited at present but is growing; HydroVision produce the highly 

manoeuvrable Hyball ROV which is designed around a spherical structure to support the 360° 

rotation of the camera through a meridian view port [287]. 

DepthX is an AUV designed to map subterranean flooded environments, so manoeuvrability is 

essential rather than forward propulsive efficiency [288]. Four thrusters are mounted at 90° to 

each other for horizontal manoeuvrability and two vertical thrusters are used for depth control. 

An elliptical shell both reduces the chance of entanglement and supports an array of 

echosounders mounted around its periphery for 3D SLAM and obstacle avoidance. The vehicle is 

2.13m in diameter, 1.52m in height and weighs 1272kg in air. An optional data-only fibre optic 

tether can also be used for remote control and debugging. 

DepthX was later developed to ENDURANCE and adapted for mapping under ice in Antarctica [29]. 

Modifications included the addition of an Imagenex Delta T multibeam sonar for mapping, and 

development of the navigation system, originally designed for flooded caves and caverns, for 

operation in unenclosed environments [289]. 

Saucer designs are occasionally used to provide omnidirectional drag properties in the horizontal 

plane, to enable horizontal translation in any direction without the need to rotate to face the 

direction of travel. The Duke University AUV Charybdis [28] uses three horizontal thrusters for 

translation and rotation, and one central vertical ducted thruster for depth control to provide a 

highly manoeuvrable vehicle. 

Highly manoeuvrable AUVs have also been developed which use oscillating fins for propulsion 

rather than conventional screw propeller thrusters. One of the most prominent is Transphibian, 

now developed by iROBOT [290]. Designed for environmental monitoring in the surf zone and 

very shallow water, the combination of ballast tanks and oscillating fins allow either free 

swimming, or crawling along the seabed. 

In the much smaller sampling class of vehicles, a spherical design is used to minimise drag in all 

directions and to minimise any risk of tangling or becoming stuck, particularly important when 

operating in confined process flows, pipes and chambers. The SUBMAR robot, developed by the 

Helsinki University of Technology, is a miniature (≈10.8cm diameter) spherical underwater robot. 

Although it contains no means of active propulsion, active buoyancy control allows it some 
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control over its movements through industrial process flows. It contains onboard environmental 

sensors, batteries, communications and control modules as well as a sample acquisition / reagent 

release tank [291]. 

Considering the nearshore environment, with dynamic and unpredictable currents in all directions 

from waves and tides, a ‘saucer’ hull configuration is proposed to minimise hydrodynamic drag in 

the horizontal plane while favouring omnidirectional manoeuvrability and maximising stability in 

pitch, roll [292] and vertical translation. 

The rotationally symmetric design aids omnidirectional movement and station keeping in the 

horizontal plane as the hydrodynamic drag is identical in each direction. This simplifies the control 

algorithms, and allows the vehicle to translate in any direction with no efficiency penalty. The hull 

design also enables the panning of directional sensors while underway to extend their coverage 

with no complex control and no increase in power required from translating in a direction off-axis. 

Vertical (translational) stability is important for the application to aid the vehicle in efficiently and 

accurately maintaining a constant height to provide repeatable kelp survey results across the 

rapidly changing kelp stipe diameter with height [38]. Vertical stability is difficult to control due to 

the combined effects of buoyancy, gravity and tether weight [260] – the problem of buoyancy is 

compounded as non-rigid components, including foam material added for buoyancy, compress at 

depth leading to instability in vertical control. If unchecked, this can either lead to oscillations 

from an underdamped system wasting a lot of power trying to hold a depth, or worse, lead to 

depth safety limits being exceeded, collisions, tangling and irregular survey data. 

In terms of practically realising a useful payload volume in the underwater vehicle, a saucer can 

be simplified to an oblate spheroid, or more practically for manufacturing, a flat, wide cylinder.  

2.3.2.9 Propulsion 

The nearshore presents a high risk of entanglement, fouling or even damaging the very 

environment being mapped. Accurate and controlled propulsion is required in conjunction with 

the navigation system to manoeuvre in the confined, complex environment to avoid damage, to 

hold a station and to transit an accurate course despite currents. The requirement is to be able to 

position the sensors accurately and reliably, correcting for the movement of the waves [261] and 

currents with opposing thrust (station holding). While the sensor measurements can be corrected 

in software for the movement of the vehicle to some extent, accurate positioning is still required 

to avoid tangling and damage. 

There exist a great variety of underwater propulsion methods which trade thrust, efficiency, 

stealth and cost to name but a few. A review of possible propulsion techniques is summarised 

here with consideration to the key requirement of manoeuvrability dictated by the kelp bed 

environment. 

Control surfaces only become effective above a certain operational velocity and are therefore 

inappropriate for the manoeuvrability required for station keeping and small-scale movement in a 

complex confined environment [293, 294]. Buoyancy control can provide efficient vertical control 

and the ability to hold a vertical position with zero energy expenditure but is often slow to 

provide rapid vertical changes in position [295]. Therefore, the high-thrusts required to hold a 

position despite external water movements from currents and tides necessitates the use of 

thrusters.  
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In their simplest form, a set of fixed thrusters mounted at opposing angles as discussed in the 

following section can provide a high degree of manoeuvrability [296], well suited to operation in 

the presence of the currents [297]. Depending on the number of thrusters fitted, the vehicle can 

either be underactuated, fully actuated, or overactuated [298]. The distinction is whether the 

vehicle has fewer controls than degrees of freedom (underactuated), the same number (fully 

actuated), or more controls than degrees of freedom (over actuated). 

In mechanics, degrees of freedom (DoF) are the set of independent displacements that 

completely specify the displaced position of an object. As movement underwater can occur in 

three dimensions (3D), there are three translational degrees of freedom and three angular 

rotational degrees of freedom. By definition, translation is movement without rotating, and 

rotating is angular movement about an axis. 

The three translational DoF are usually referred to as x, y, and z as shown in Figure 2.7 below. In 

the body-axis system, this Cartesian coordinate system is orientated so that positive x translation 

corresponds to forward motion of the craft, positive y translation is sideways right motion and 

positive z translation is downwards motion. 

The three rotational degrees of freedom correspond to rotation about the three perpendicular 

axes, often referred to as θx, θy and θz. Conventional naming defines roll as rotation about the x 

axis, pitch as rotation about the y axis and yaw as rotation about the z axis. From the point of view 

of the origin, looking in the positive direction of an axis, clockwise rotation about the axis 

corresponds to a positive angular motion. 

+ X
+ Y + Z

+ Roll

+ Yaw

+ Pitch

Positive X = forward translation (surge)
Positive Y = right translation (sway)
Positive Z = downward translation (heave)

Positive Pitch = Rotation about Y (nose up)
Positive Roll = Rotation about X (right wing down)
Positive Yaw = Rotation about Z (clockwise)  

Figure 2.7 - The 6-DoF of a body in 3-dimensional space using the Cartesian body-axis system. Submarine image [113]. 

2.3.2.9.1 Holonomic motion 

By definition, a holonomic platform has the same number of controllable degrees of freedom as 

there are total degrees of freedom available [299, 300]. Thus, an underwater vehicle capable of 

controlling its movement in all 6 DoF is said to be holonomic, dictating either fully actuated or 

overactuated propulsion (redundancy). For true holonomic control, translation and angular 

accelerations are decoupled from each other, allowing independent accelerations in any 

direction. For example, the robot can be rotating about its axis while also translating in a linear 

direction. 
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The majority of ‘flight’ underwater vehicles (torpedo-shaped hulls, gliders, etc.) are non-

holonomic, usually incapable of lateral translation when stationary, and many steered by control 

surfaces are incapable of varying vehicle attitude and heading unless underway. Water movement 

orthogonal to the available thrust degrades navigation and mapping accuracy, while also 

increasing the risk of damage and tangling [290].  

However, many of the vehicles designed for manoeuvrability rather than high speed or forward 

efficiency integrate movement in several degrees of freedom (such as the UHD, Hyball, DepthX, 

ENDURANCE and Transphibian all discussed above). Thus, considering the confined, complex 

nearshore environment, with unpredictable flows in any direction and the need for careful tether-

aware navigation, the benefits of increased manoeuvrability provided by holonomic propulsion 

are clear. 

Four opposing thrusters mounted at 90°, to each other as shown in Figure 2.8 below, can be used 

to provide holonomic motion (omnidirectional thrust) in the horizontal plane, similar to the 

DepthX, ENDURANCE, and UHD vehicles discussed previously. By varying the speed and direction 

of each of these thrusters independently, the vehicle is able to control its movement in every 

degree of freedom in the horizontal plane: forward and backward translation, left and right 

translation as well as rotation. 

Additionally, the vehicle is able to perform any simultaneous combination of movements while 

also accelerating or decelerating in any degree of freedom at the same time. This gives the vehicle 

a great degree of manoeuvrability. For example, it can be moving diagonally while also rotating 

about its axis as it moves – highly beneficial for the nearshore kelp bed mapping application. The 

axisymmetric hull of the DepthX, Endurance and Charybdis vehicles above exploit this benefit [28, 

29, 288]. If this system is combined with a means of depth control, for example vertical thrusters, 

then a vehicle capable of manoeuvring in 4 DoF is provided. 

 

Figure 2.8 - Horizontal holonomic movement allows for any simultaneous combination of translation and rotation in 
the horizontal plane. 

For operation in the kelp beds, translation in 3D is crucial to the mobility of the robot. Yaw control 

is also important to orientate directional sensors. Therefore, the propulsion system must be able 

to sense and control movement in these 4-DoF. However, considering the application of kelp bed 

mapping, an important simplification can be made which greatly reduces complexity: little 

functionality is lost if true 6-DoF holonomicity is simplified to holonomic motion in the horizontal 

plane. For the intended mapping, control over pitch and roll is not beneficial and instead 

unnecessarily increases complexity. Instead, pitch and roll can be kept constant and as close to 0° 

as possible to minimise any angular corrections which would need to be applied to sensor data. 
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Thus, manoeuvrability is provided by holonomic motion in the horizontal plane, but simplicity, 

reliability and efficiency are increased by simplifying the propulsion from 6-DoF to 4-DoF. 

Stability in pitch and roll can be designed into the vehicle. If the centre of mass (COM) is 

positioned near the bottom of the vehicle and the centre of buoyancy (COB) near the top directly 

and centrally above, then upward stability is ensured [301], like the keel of a sailboat. The 

separation distance between the COM and COB is called the metacentric height [297]. Although in 

turbulent environments, the pitch and roll of the robot will inevitably deviate, under steady-state 

conditions the vehicle should return to an upright position. 

Compared to vectorable thrusters, which rotate to align the axis of the thruster with the desired 

direction of vehicle movement [302], fixed opposing thrusters are a simpler, more reliable design, 

yet introduce inefficiency. The case of forward vehicle movement is shown in Figure 2.9 below. 

The desired movement of the vehicle is resolved into the individual thrusts required by each 

motor and the speed and direction of each motor is then controlled accordingly. Each of the four 

motors produces a thrust which sum to give the overall movement of the vehicle. The red arrows 

in Figure 2.9 represent the component of thrust cancelled out and thus represent inefficiency 

introduced by the fixed axis opposing thrusters. For the intended low-budget application, with a 

continual power source available through the tether, the advantages of simplicity and reliability 

outweigh any efficiency gains from using vectorable thrusters. 

Resolving forces into components parallel and 
perpendicular to the direction of movement

Direction of Motor Thrust

“Wasted” component of thrust
(perpendicular to the direction of movement)

“Useful” component of thrust
(parallel to the direction of movement)

Direction of movement

Figure 2.9 - Holonomic movement in the horizontal plane is achieved by 4 opposing thrusters, each mounted at an 
angle to each other. The speed and direction of each thruster is independently varied and sums together to produce 
an overall driving force. 

2.3.2.9.2 The benefits of holonomic motion 

The manoeuvrability provided by holonomic motion permits reliable operation in the confined, 

complex kelp beds. It also allows navigation between the kelp stipes to gather survey data at an 

increased detail or sonar scans from inside the kelp bed facing out while easily avoiding obstacles. 

Additionally, this manoeuvrability partially offsets the limitations of operating as a tethered 

vehicle, as the risk of tangling and effect of tether drag can be reduced by holonomic motion. 

The improved manoeuvrability also permits sensing and mapping with directional sensors while 

underway. For example, directional sensors such as a multibeam sonar unit and underwater 
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cameras can be mounted on the front of the vehicle facing forwards. However, full 360° 3D map 

data of the surroundings can be gathered by the vehicle rotating about its vertical axis as it moves 

through the water, thus scanning the forward facing sensors over its surroundings as it traverses a 

planned course. This is highly beneficial considering the limited budget of the target application as 

it allows the benefits of more sophisticated sensors to be achieved through holonomic control. 

For example, the benefits of expensive 3D imaging sonars discussed earlier can be partially 

reconstructed by the combination of a multibeam sonar and the holonomic scanning technique. 

For localisation purposes, a 360° spin while holding a stationary position will yield a sonar map of 

the surrounding environment, including walls, rocks, obstacles and objects in the midwater. This 

technique, coined ‘spin-mapping’ was exploited on the axisymmetric AUV DepthX to provide 360° 

sonar mapping of subterranean flooded caves and tunnels while descending [288, 303]. The 

axisymmetric shape meant little energy was expended maintaining a rotation once started of 

approximately 10°/s [303] due to the very low rotational drag [288]. 

Coupled with an appropriate sensing system, holonomic movement capabilities also enable 

station keeping, that is hovering over a fixed point at a constant height, or maintaining a fixed 

distance from either a stationary or moving target/vessel [296, 299]. If the vehicle is required to 

hold a position in the water despite swells and currents, for example for sensing and recording 

applications, then feedback from the positional sensors measuring deviations in position in 3D can 

be fed directly to the motor controller requesting corrective holonomic thrusts in 3D. 

In the shallow water nearshore environment, the vehicle is likely to be subjected to large and 

periodic wave induced hydrodynamic forces, as well as turbulent flow around objects and 

outcrops, and sustained tidal flow. When working with a remotely operated vehicle, requiring an 

operator to continually correct for these movements is an exhausting task, whether it is to ensure 

the safety of the vehicle or to perform a survey [304]. It also occupies the operator’s time and 

concentration when better productivity could be achieved if the operator was free to focus on the 

mission at hand [23]. An improvement in the performance of remotely operated vehicles is 

therefore quantified through an increase in the accuracy of operation and a reduction in labour 

requirements for continual manual position adjustment [305]. When operating in the currents 

and flows of the tidal nearshore environment, station keeping and the ability to hold a course 

autonomously are a necessity. 

Techniques and control architectures for dynamic positioning and way-point tracking of vehicles 

in the presence of constant ocean currents [297] and optimal efficient path-planning in fast-

flowing bi-directional estuarine environments [306] are already well established. Methods of 

efficient environment-aware path-planning include techniques to avoid fighting high-currents to 

conserve power and to ‘ride’ favourable currents. These techniques developed for estuarine 

environments [306] can be developed to the dynamic currents and obstacles found in the 

nearshore environment to ensure efficient operation [307]. 

Detecting and correcting for wave disturbances is also an important consideration, either for 

station keeping operations, or when underway. Existing techniques use a variety of sensors and a 

Sliding Mode Controller (SMC) to exploit sustained flows of the bulk of the surrounding water and 

the periodic movement of waves to provide predictive control, yielding more effective and more 

efficient compensation than simple reactive control alone [258]. 

The sensors used for station keeping depend on the application and the suitability of each sensing 

technology. Riedel and Healey [258] use an Acoustic Doppler Velocimeter (ADV) and motion 
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package whereas Leabourne et al. [305] exploit the clear water and close proximity of their 

vehicle to the seabed to provide station keeping capabilities using vision technology. 

2.3.2.10 Machine health 

Reliability and security can be approached in many ways. The requirement is always present: for 

any application, the reliable completion of a mission, successful recovery of the data, and a safe 

and reliable recovery of the vehicle intact are all imperative. A common distinction is made 

between reliability and survivability [274]. Reliability relates to vehicle failures due to the internal 

hardware components of the vehicle. Survivability on the other hand relates to vehicle failures 

due to external factors or damage. 

There are several techniques for increasing survivability, that is avoiding vehicle failures due to 

external factors or damage. For example, an increased environmental awareness and collision 

avoidance can reduce damage from external factors. Patrón et al. [274] reference recent 

improvements in rules of collision [308] and wave propagation techniques [309] for obstacle 

avoidance and escape scenarios [278], all in the context of improving the vehicle’s survivability to 

external factors and damage. 

Reliability, that is avoiding vehicle failures due to the internal hardware components of the 

vehicle, is achieved through careful mechanical and electrical design with consideration of the 

target environment and requirements. This ranges from material selection to mechanical strength 

and from failsafes to safety factors. The methods of achieving reliability which are built into the 

vehicles developed in this research are discussed in later sections. However, every decision taken 

and every design produced is with reliability in mind and critical judgement is exercised at every 

step. The result is a vehicle which demonstrates significant advances in reliability over previous 

generations. 

The second method of achieving reliability in particular, but also to some extent survivability 

(from now on referred to synonymously) is to either detect before a fault or potential failure has 

occurred and apply corrective action, or to detect a failure in progress. From this, either corrective 

action can be applied, the results mitigated, or in the worst case, the mission terminated to 

ensure safe recovery of the vehicle and data. This is the principle of machine health which relies 

on two stages: fault detection and fault reaction. Elsewhere, this is termed detection, diagnosis, 

and accommodation [310]. 

2.3.2.10.1 Fault detection hardware 

The first aspect of the machine health system is fault detection. Deciding on what to measure in 

order to detect potential problems and establishing safe operating limits are critical steps in 

implementing a successful and effective machine health system. For every possible mode of 

failure identified, a risk assessment covering the likelihood of failure, the severity of the 

consequences of failure and the effort in detecting the failure provides a three-fold measure of 

whether a machine health sensor should be implemented. 

Sensors typically implemented include water ingress (leak/humidity), temperature, pressure 

(over/under), power (voltage/current high/low) and thruster speed. 
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2.3.2.10.2 Fault detection algorithms 

It is as important to avoid false negatives, which may result in faults being overlooked, as it is to 

avoid false positives, which may cause unnecessary delays searching for non-existent faults. 

Several methods are available to filter the data obtained to reduce the possibility of false positives 

and false negatives. Healey [311] describes a method using Kalman filters and batch least squares 

which relies on a combination of predicting the sensor output based on the vehicle’s operation 

and then updating the prediction with actual measurements. 

For example, if the speed of a motor was increased by the mission control program, then the 

machine health Kalman filter would predict an increase in motor driver temperature, the amount 

determined in advance through calibration. A short time later, this temperature increase would 

be sensed (update) by the temperature sensor monitoring that motor driver. The prediction 

would match the update and the machine health algorithm would deem that the system is acting 

as normal. If the motor speed was not adjusted then the prediction would be no change in 

temperature of the motor driver and the update would be no change if the system was acting 

correctly. If the update was any different to this then the machine health algorithm would detect 

that there was a problem with the system. Combining predictions with updates in this filtering 

technique can reduce the frequency of false alerts [311]. 

Changting et al. [312] present a technique for fault detection and diagnosis based on Bayesian 

networks. This technique uses Bayesian (belief) networks to detect failures when complicated and 

often only incomplete or inconclusive data is available. The network relies on the causal 

dependencies of each mode of failure and calculating the probabilities of a fundamental failure 

given the sensor data available at that moment. It has the possibility to detect a fault at an earlier 

stage than using independent, individual sensor readings, thus often allowing corrective action to 

be taken before it becomes too late to rectify and the mission has to be aborted. 

This use of a Bayesian network is particularly useful as many potential faults can only be 

measured indirectly. For example, a jammed propeller can be detected by a rise in motor current 

and a rise in motor and motor driver temperature. Each of these sensors can be used indirectly to 

infer the probability that the propeller has jammed. Modelling the relationship between the 

connected set of electrical, mechanical and computing components can allow detection of faults 

with cause-effect patterns across different subsystems, without necessarily requiring a dedicated 

sensor for each fault condition [310]. 

Decentralised control of machine health systems adds safety and reliability. The use of dedicated 

microcontrollers allows for corrective actions to be taken even in the event of a main computer 

crash, or flooding of that compartment [313]. 

2.3.2.10.3 Fault reaction 

The second component of the machine health system concerns the fault reaction [314]. By 

monitoring trends and setting ‘warning limits’ then corrective action can be taken before a fault 

develops (incipient fault detection), for example an overheating motor can be slowed down 

before it becomes critical. 

If a safe operating limit is exceeded, despite attempts at corrective action, then emergency 

actions can be taken if redundant systems are not available. For example, if water ingress is 

detected, all systems are shut off and an emergency surfacing routine is activated, followed by 
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isolating the batteries and recovery by divers tracking an underwater strobe or surface VHF 

beacon. 

2.3.2.10.4 Fault tolerant control 

Overall reliability can be obtained by exploiting the redundancy built into the system to continue 

to operate despite a fault. Kanti Podder and Sarkar [315] as well as Li Ping et al. [316] present an 

adaptable framework for fault tolerant thruster control for a vehicle with similar holonomic 

thruster capabilities to those discussed above. This framework allows the redundancy in the 

propulsion system to be exploited by the machine health and mission planning systems in the 

case of a fault. 

Autonomous damage detection through a comparison of control input and detected output is a 

crucial step in fault tolerant control, before steps to reconfigure the system to allow safe recovery 

or mission continuation can be taken [317]. Many existing AUV/ROV systems simply trigger an 

emergency surfacing / shutdown routine if a fault is detected, yet in many cases redundancy and 

reconfiguration can be used to continue a mission safely [317]. 

In vehicles with a high level of autonomy, Patrón et al. [274] discuss a framework for an adaptive 

mission plan which seeks to obtain a successful mission outcome, despite any occurring failures, 

by the nature of adaptive planning and fault reaction. As Patrón et al. [274] state, when presented 

with an unexpected hardware failure the focus of the mission should shift to ‘reconfigure’ itself to 

use alternative combinations of the remaining functional hardware resources – this is the 

adaptability required of a robust mission plan which makes optimal use of the machine health and 

redundancy capabilities of a vehicle.  
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2.4 General opportunities for the development of underwater vehicles 

Figure 2.10 below identifies a series of general opportunities for development in the field of 

underwater vehicles identified as part of this literature review. 

 

Figure 2.10 - General opportunities for underwater vehicle development. Items in green are addressed or advanced 
through this research, items left in blue are deemed not required for the kelp bed mapping application. 

From Figure 2.10, it can be seen that improvements to the navigation capabilities will yield 

improvements to the entire operation of an underwater vehicle, autonomous or not. More 

accurate and reliable navigation improves the accessibility of the vehicle, allowing reliable 

operation in confined spaces, improving speed and efficiency with less time wasted on incorrect 

movements or inefficient exploration, and allows for an increase in the sophistication of the tasks 

the vehicle is capable of. Improved manoeuvrability is also seen to increase the accessibility of the 

vehicle, together with improving the mapping capabilities and operational reliability (e.g. 

tangling). Finally hybrid techniques are shown to provide a longer runtime for the same vehicle 

dimensions, and allow a more compact manoeuvrable vehicle. 

2.5 The opportunity and benefits of iROVs for nearshore habitat 

mapping 

The applicability of underwater vehicles to surveying and mapping the density and distribution of 

kelp beds has been identified, together with an assessment of the different techniques for 

sensing, navigation, control and propulsion. Based on the literature review and the requirements 

identified in section 2.3.2, the optimum solution of a hybrid AUV/ROV, the position-aware, 

intelligent-ROV (or iROV) is proposed, with the following summarised benefits to nearshore 

habitat mapping: 

It is proposed to combine holonomic horizontal propulsion with a complementary axisymmetric 

hull shape to enable manoeuvrability, station keeping and reliable operation in the currents of the 

nearshore. The holonomic propulsion system also allows in-transit panning of directional sensors 
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over objects of interest while maintaining the original transect course. This novel approach allows 

greater sensor coverage and faster surveys. 

Large ROV surveys can cost upwards of $10,000 per day or $1,000 per day for equipment lease of 

a small-scale ROV and associated equipment [14]. Typical purchase prices for mini-ROVs range 

from $100,000 to $150,000 for the Deep Ocean Engineering Phantom HD2+2 and Saab Seaeye 

Falcon respectively [14]. On a much smaller scale, with less manoeuvring power, and with less 

capability for payload or sensing, the VideoRay Pro 3 costs approximately $28,000 [14]. However, 

these costs do not include ancillary yet required equipment, such as tracking and navigation 

systems, habitat mapping sensors such as imaging sonars or high resolution cameras with laser 

ranging systems, all of which can add upwards of $15,000 - $150,000 to the initial price of the 

ROV [14]. 

In terms of sensing, ‘better’ results can usually be achieved given a greater budget, however, the 

challenge is to achieve high-quality sensor data given a limited budget to suit a small-scale 

research operation [30, 146]. The approach is similar to that attributed to Rutherford of ‘we have 

little money, therefore we must think harder’. One objective is to move towards the benefits of 3D 

imaging sonars on a fraction of the budget by combining holonomic propulsion with cheaper 

directional 2D multibeam sonars. 

A hybrid control strategy is proposed to allow reliable nearshore operation while reducing the 

labour requirements typical of a fully remote controlled underwater vehicle. The proposed iROV, 

an intelligent hybrid of autonomous low-level control, position awareness with localisation and 

mapping capabilities, is deemed the optimal solution for kelp bed mapping while maintaining the 

security and data quality of remote high-level operator control and supervision. The mission can 

be adjusted reactively and in realtime, yet low-level control is automated to reduce labour 

requirements and improve transect accuracy. The hybrid power solution of an onboard buffer for 

high-power manoeuvring in currents and the security of a local uninterruptible power supply with 

the unlimited mission duration enabled by remote surface trickle charging is also proposed to be 

an optimal compromise of the two techniques. Finally, sensor fusion is proposed to provide 

accurate localisation in the nearshore with a limited budget for sensors, and while maintaining a 

compact vehicle capable of being launched and recovered off a small research boat and capable 

of surveying in and around the confined kelp beds. 

It is through this unique and novel concept of an iROV that the rest of the research progresses, 

through background work, design, development, field trials and finally the results and analysis of 

actual kelp bed mapping trials. 
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Chapter 3 Initial Work and Background 

3.1 Introduction 

As an initial study into the requirements and challenges of kelp bed mapping, a test bed vehicle, 

Hawthorne 2.0 was constructed in July 2008. Hawthorne 2.0 included holonomic propulsion and a 

basic underwater navigation system and successfully completed confined water trials deployed as 

an ROV. The vehicle was then modified for sea trials in the nearshore environment (Hawthorne 

2.1) where it underwent successful deployment as an ROV, providing a holonomic sensor platform 

and early development as an iROV adding basic positional-awareness, navigation and mapping 

capabilities. 

The three design concepts of these test bed vehicles were reliability, flexibility and budget. 

Reliability was ensured in design, through innovative features such as automatic pressurisation of 

the housings, and in operation through machine health sensors and fault tolerant holonomic 

propulsions. Flexibility was provided by a modular hardware and software interface system, 

allowing different sensors to be easily integrated and software reconfigured in the field, often on-

the-fly during a mission. The entire system was designed for a budget feasible for small scale 

coastal ecology groups with a base cost of £2500 and the flexibility to add habitat mapping 

sensors as the budget permitted. Innovative techniques were used to exploit maximum benefit 

from the limited budget, such as using holonomic movement to extend the information available 

from habitat mapping sensors. 

This chapter provides a brief overview of the design, development and field trials of Hawthorne 

2.0 and Hawthorne 2.1. The results of these field trials informed the development of the iROV 

SeaBiscuit, providing practical information on the requirements and challenges of kelp bed 

mapping to supplement the literature review. The vehicles also allowed new systems to be 

trialled in the open ocean without having to rely solely on simulation and provided a baseline 

point of comparison against which improvements could be measured. 

A high degree of manoeuvrability was found to be essential for operating in the cluttered 

environment coupled with unpredictable currents and the risk of tether tangling. The benefits of 

holonomic movement to provide complete manoeuvrability were demonstrated, together with 

the benefits of panning habitat mapping sensors independently of vehicle course. High 

instantaneous thrust was required for collision-avoidance or manoeuvring around kelp stipes 

while trailing a tether, requiring a surface power supply without an unduly restrictive tether. 

Although full autonomy was seen to be a source of high risk and unreliability, autonomous 

features similar to an autopilot were demonstrated. These hybrid control features relieved an 

overloaded operator, allowing full focus on the survey data while basic manoeuvres or station-

keeping were performed autonomously. 

Finally, the requirement for and benefits of sensor fusion were demonstrated in the open ocean 

kelp beds. This sensor fusion spanned both navigation and habitat mapping sensors. Long term 

navigation using solely a low budget INS was demonstrated to be impossible due to drift, yet 

short term inertial measurements of wave-induced motion fused with regular updates from 

landmark based sonar observations to bound the drift were investigated. Fusion of video for 

short-range, high-detail identification with sonar for long-range low-detail detection was also 

demonstrated. 
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3.2 Requirements 

Based on the literature review, the opportunity for a compact, highly-manoeuvrable vehicle 

capable of kelp bed mapping in the nearshore was recognised. The need for a low initial cost to 

suit small-scale coastal research groups was also identified, as was the need for sufficient 

flexibility and modularity to later expand the capabilities of the vehicle as required. These were 

formalised into the following requirements specification for the test vehicle Hawthorne 2.0.  

1. An underwater vehicle capable of mapping the density and distribution of bull kelp with an 

operational depth of 30m and a safety limit of 50m. 

1.1. A vehicle sufficiently rugged and reliable to be launched and recovered from a small surface 

vessel in open ocean conditions. 

2. Operation from a tether with remote realtime high-level control and supervision of results. 

3. Sensors capable of underwater positioning and navigation in nearshore environments. 

4. A propulsion system with sufficient power to operate in the currents of the nearshore, and 

sufficient manoeuvrability for confined environments, precise positioning and accurate transects. 

5. A flexible, easily modified test platform for the development of holonomic control and navigation 

algorithms and sensor hardware. 

3.3 Test platform: Hawthorne 2.0 

In response to the requirements specification above, the underwater vehicle Hawthorne 2.0 was 

designed and built. To accelerate the production of the test platform and development towards 

the objectives of this research it was decided to reuse a chassis and pressure vessel from a 

previous vehicle, Hawthorne pictured below in Figure 3.1 [318]. The limitations and restrictions 

from the previous design were removed and this allowed the test platform to be completed and 

operational relatively quickly. A full electrical and software redesign and a mechanical rebuild 

from the previous chassis were performed to adapt the vehicle to the requirements specified 

above to produce a reliable, adaptable and versatile test platform. 

 
Figure 3.1 - The underwater vehicle Hawthorne (pictured) provided the chassis and pressure vessel for 
Hawthorne 2.0. Image from [318].  
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 Specification 3.3.1

An overview of the specification of Hawthorne 2.0 follows in Table 3.1. 

Table 3.1 - Hawthorne 2.0 specifications 

Frame: Reconfigurable aluminium open-frame, bolted together to allow for easy collapse and reassembly 
(for shipping), modules supported on brackets.  

Pressure vessel: 200mm diameter PVC cylinder 

Mass in air: 50kg fully equipped 

Control: EPIA PX10000G Pico-ITX motherboard with 8GB SSD, 1GB RAM, ARTiGO housing 

Visual Processing: EPIA EN15000PD mini-ITX motherboard with 2GB SSD, 1GB RAM, PicoPSU 

Software: Microsoft Windows XP Professional, National Instruments LabVIEW 

Sensing: Imagenex Delta T 837 Multibeam sonar 
Forward & downward facing Logitech QuickCam S5500 Cameras 
NASA NMEA Gimbal-stabilised marine compass 
SparkFun 6DoF v2 IMU (3DoF Gyroscopes, 3DoF Accelerometers) 
Keller PAA21SR 0-2.5bar absolute external pressure transducer 
Forward facing Navman 3100 echosounder for target ranging (adjustable to face downwards) 
SiRFstar II GPS Receiver 
Extensive machine health & diagnostic sensors (temperature, voltage, current, pressure) 

DAQ: NI USB-6009 Data Acquisition 

Connectivity: Surface: Wi-Fi Remote Desktop 

Submerged: Umbilical LAN Remote Desktop 

Thrusters: Horizontal: 4 ×  Maxon RE36 118798 70W Brushed DC Motors 
4 ×  Rivabo Brass 535-075 M5 75mm Propellers 

Vertical: 2 ×  Maxon RE36 118798 70W Brushed DC Motors 

2 ×  Rivabo Brass 535-075 M5 75mm Propellers 

Propulsion: Holonomic propulsion in horizontal plane, vertical translation (depth), stable in pitch and roll. 

Motor Control: 3 × Polulu dual-channel MD03A Reversible H-Bridges driven by custom AVR motor controller 

Power: Computers and 
sensors: 

2S 12V 4Ah SLA batteries (24V 4Ah overall) 1h30 runtime 
(2.5A) 

Motors: 2S 12V 12Ah SLA batteries (24V 12Ah overall) 0h25 minimum runtime 
(30A) 

Umbilical power supplied at 24V external connection 

Pressurisation: Main body, battery box and motor modules maintained at slightly above ambient pressure at 
depth and regulated with an external pressure regulator and compressed air cylinder. 

Buoyancy: Buoyancy compensation and trim provided by extruded polystyrene foam. 

 

 Design concepts 3.3.2

When developing the vehicle for operation in the nearshore kelp beds, every feature was 

designed with three concepts in mind: reliability, flexibility and budget. An overview of some of 

the major features of the vehicle is presented in this section. 

3.3.2.1 Reliability 

The primary concern when designing an underwater vehicle is its operational reliability (including 

survivability). For field operations, downtime caused by an unreliable vehicle can be costly in 

terms of time, money and lost research data. Furthermore, the sensors and equipment carried are 

often of high-value and their safe recovery is essential. For this reason, several safety features 

were built into Hawthorne 2.0. 

Machine health sensors were used to continually report the state of the vehicle, allowing 

problems to be identified early, and action taken to avoid risking the vehicle. These machine 

health sensors included battery voltage and current, ambient temperature of the main pressure 

vessel and key components, internal pressure and leak detection. Further reliability was provided 

by the onboard power supply. Even when the vehicle was operating with a tether, the onboard 
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batteries allowed for the safe recovery of the vehicle and data if the tether became damaged or 

had to be disconnected. 

The main pressure vessel comprised a 200mm PVC tube, sealed at one end, with a precisely 

machined insert containing the electronics. This insert was sealed with double barrel O-rings and 

locked in place with a retaining clip. The main pressure vessel, peripheral and thrusters housings 

were connected to a pressurised air system. This maintained the internal pressure of the vehicle 

at slightly above ambient throughout a survey using a SCUBA tank and regulator. When 

ascending, a dump valve released the excess air pressure. This failsafe system meant any minor 

leak would cause air to bubble out rather than allowing any ingress of water. As the hydrostatic 

pressure difference (pressure difference between the inside and outside of the hull when diving) 

was maintained at close to zero, the seals and pressure vessels did not need to be rated to the 

depth of operation. Instead, less-expensive IP678 solutions could be used. Whereas other small 

underwater vehicles often incorporate compressed air cylinders, for example the iROBOT 

Transphibian discussed in the previous chapter [290], these are used for buoyancy control rather 

than the novel approach to housing pressurisation used in Hawthorne 2.0 which allowed less-

expensive housings to be used with greater reliability. 

Although the 3 litre tank (pressurised to 220 bar, thus containing ≈660 litres) was a finite 

restriction on the operating time of the vehicle, under normal operation, this far exceeded a 

typical survey duration. When all of the seals were intact, air was only expelled when ascending, 

as the dump valve equalised the internal pressure to be slightly above ambient. For example, 

ascending from a submerged depth of 20m to 10m would cause an internal pressure change of 

the internal gas volume of all pressure vessels (of the order of a few litres) from ≈3 bar to ≈2 bar 

and the order of a few litres of air would be expelled. As kelp bed surveys were usually conducted 

at a constant depth to ensure repeatable results, the air capacity carried allowed for several 

surveys before it was depleted. In between surveys, the tank pressure was verified by a 

submersible pressure gauge fitted to the tank. When in operation, a depleted supply was sensed 

by monitoring any drop in the pressure differential maintained between the internal and external 

pressure. 

The vehicle was trimmed to be slightly positively buoyant so that, in the event of a failure, the 

vehicle would float to the surface, allowing for easy location and recovery. Although this required 

a small amount of energy to continually overcome this buoyancy using the vertical thrusters, the 

gain in reliability was preferable. 

3.3.2.2 Flexibility 

Both the hardware and software of Hawthorne 2.0 were designed to be as flexible as possible to 

allow straightforward reconfiguration. 

Similar to the ROVs discussed in Chapter 2, the chassis of Hawthorne 2.0 was built around an open 

frame to allow straightforward expansion and development with opposing thrusters for 

manoeuvrability. Mechanical flexibility was achieved through the modular, expandable frame 

allowing for straightforward reconfiguration or for different parts to be fitted or removed 

altogether. New hardware could be bolted onto the brackets provided. To compensate for the 

                                                           
8
The Ingress Protection (IP) rating defines a standard level of protection for an object from ingress of 

particles, liquids, etc. In this case, IP67 denotes protection from submergence in water up to a depth of 1 
metre, compared to the higher level of IP68 protection which denotes submergence in depths of greater 
than 1m, specified by the manufacturer. [319] 
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buoyancy effects of adding new hardware, the final buoyancy of the vehicle was trimmed by 

adding or removing small pieces of foam. 

Features to allow adaptation between different applications and environments included a 

modular design for sensors, actuators, peripherals and power supplies to be easily added, 

removed or upgraded. This was achieved through a common standard of plugs and interfaces for 

internal and external peripherals as described in Appendix A. Spare external sockets were 

provided for auxiliary peripherals and a 5V/12V/24V power bus together with a USB/LAN 

connection were readily available at each connection point. 

The software was written in National Instruments LabVIEW to be completely modular. Sensor 

subroutines could be started depending on which sensors were present and the overall mission 

planning program for task scheduling could be adjusted on-the-fly for redefining missions during 

operation. The vehicle was also re-configurable between autonomous and remote operation on-

the-fly as an initial implementation of the iROV concept developed in the introduction. Limited 

confined water field trials with energy and control autonomy are documented in section 3.4. 

The capability of holonomic movement and control also contributed to the overall flexibility of the 

vehicle. Complete freedom of movement underwater yielded benefits in sensing, mapping and 

survey operations as well as flexibility when navigating in confined environments. Holonomic 

motion facilitated careful and precise movement to reduce the risk of entanglement when 

operating in environments such as kelp beds, of particular importance when operating with a 

trailing tether. 

3.3.2.3 Budget 

Hawthorne 2.0 was built with limited research funds therefore the budget for parts had to be 

considered. The total cost of the base platform was approximately £2500. This made the benefits 

of underwater vehicles readily available to small-scale research groups where existing 

commercially-available solutions would be out of their budget. The base sensor-package of 

Hawthorne 2.0 was simple, but allowed for more complex sensors (such as the Imagenex Delta T 

Multibeam sonar, used later) to be added and easily interfaced. 

 Design summary 3.3.3

With reference to the requirements specification in section 3.2 the following features of 

Hawthorne 2.0 are highlighted: 

1. The 30m depth rating was achieved by a combination of suitably specified pressure vessels and 

reliability ensured by a dynamic air-pressurisation system.  

1.1. The vehicle was designed to be of lightweight yet strong and rugged construction with an 

aluminium frame supporting a fibreglass cover. For field use, an alternative aluminium 

protective frame was fitted as detailed below. 

2. The vehicle was capable of energy autonomy and freedom from a tether by carrying sufficient 

battery power onboard the vehicle for 1h30 of runtime or unlimited operation via the tether. The 

batteries could either be recharged in-situ in 4 hours or trickle charged when the vehicle was on 

standby between missions. When conditions or the application dictated, the vehicle was able to 

operate on a combined power and communications tether, capable of sustaining the power 

requirements for continuous unlimited operation, while providing realtime feedback of all results 

for operator intervention / control if required. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

80/347 

2.1. When a tether was not being used, a wireless communication link was available. This 

allowed autonomous operation: the vehicle could dive, carry out its mission and then, upon 

surfacing, the data could be downloaded and the next mission initiated over the wireless 

link. 

3. The sensor suite used for underwater positioning and navigation was listed in Table 3.1. 

3.1. Using a combination of the positional information provided by the navigation sensors and 

the science sensors (dual cameras and the multibeam sonar), the vehicle was capable of 

gathering the kelp bed visual and sonar survey data required for the kelp bed mapping 

application. 

4. Hawthorne 2.0 used a combination of four opposing thrusters for holonomic horizontal 

movement (as per Figure 2.8 earlier) and two vertical thrusters for depth control. This system of 

opposing thrusters provided great manoeuvrability underwater (section 2.3.2.9.1). Speeds of 

approximately 1ms-1 could be achieved, with a turn speed of approximately 90°s-1. 

3.4 Confined water trials 

Hawthorne 2.0 underwent successful testing and development before being modified to have 

basic autonomous capabilities, including path-following, sonar and vision image processing and 

feature recognition and basic mission planning. The vehicle secured joint-second place at the 

2008 Student Autonomous Underwater Challenge-Europe (SAUC-E) [320, 321] as detailed in the 

co-authored paper [322]. 

The 2008 SAUC-E competition was hosted by DGA (Direction Générale pour l’Armement) and held 

at IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer), Brest, France. The 

competition was held in the deep wave basin, a saltwater tank 12.5m wide by 50m long and 

varying in depth from 10m to 20m [323]. The deep water and the visibility and corrosion issues 

associated with salt water provided a realistic test environment for the open ocean field 

application. 

Six university teams from across Europe competed in a challenging event with tasks involving 

underwater search and localisation, passing through confined spaces and gates, identifying and 

avoiding decoy gates and objects, mapping the underwater environment and surfacing in specific 

locations. With success in the competition judged by quality of design, ingenuity of solutions, 

quality of engineering, communication and documentation as well as successfully and accurately 

completing the tasks in the shortest possible time, Hawthorne 2.0 was awarded joint second 

place. 

For an initial entry, Hawthorne 2.0 demonstrated accurate control and good manoeuvrability. 

Preliminary development into vision [143] and sonar [324] image processing was carried out, with 

the vehicle able to recognise underwater targets, the first step in autonomously navigating an 

underwater course. 
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Figure 3.2 - Hawthorne 2.0 at the surface of the competition tank ready for launch with the data cable connected. 

 

 

 

Figure 3.3 - Hawthorne 2.0 at the competition on its qualifying run. The vehicle is seen submerged to about 2 metres 
in autonomous mode without a tether attached and about to navigate through the qualifying gate. 
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3.5 Modifications for open ocean: Hawthorne 2.1 

Following these successful confined water trials, Hawthorne 2.0 underwent a series of extensive 

modifications before sea trials towards the development of a vehicle capable of kelp bed 

mapping. 

Although the competition was designed to simulate real-life applications of AUVs, the 

requirements of the vehicle for field operations were still very different from the closed, stable 

environment of the competition test tank. With depths of up to 30m, poor visibility, rough ocean 

conditions, saltwater operation, a damp service & repair environment and water & air 

temperatures as low as 8°C, the field conditions were hostile. With these harsh conditions in 

mind, some of the modifications made in response to these conditions are discussed in this 

section. 

 Redesigned hull and protective frame 3.5.1

The relatively sleek and streamlined hull shown in Figure 3.1 was used to enter the competition. 

Points in the competition were available for a lightweight vehicle; therefore Hawthorne 2.0 was 

designed not only to be as light as possible but also to have the smallest possible main hull 

volume (pressure vessel). This reduced the overall buoyancy of the vehicle and meant that extra 

weight did not need to be added to achieve neutral buoyancy. In actuality, the vehicle was slightly 

positively buoyant for safety reasons. 

Although this hull design achieved success in the competition it would have restricted field 

operations; internal space for electronics was limited and the frame was not suitable for rough 

handling on the deck of the research vessel, and so several changes were necessitated. The hull 

and superstructure of the vehicle were replaced with a much stronger rigid frame as shown in 

Figure 3.4 below and the vehicle revised to Hawthorne 2.1. 

This provided a much more rugged vehicle and afforded more protection to the delicate 

components enclosed by the frame. The frame allowed for protected transport and storage of the 

vehicle on deck as well as easier launching and stowage onboard the support vessel with several 

lift points for manoeuvring the vehicle on deck. The frame also provided a useful mounting point 

for future additional components, thus adding to the flexibility of the vehicle. 

Although the new layout reduced the hydrodynamic efficiency of the vehicle slightly, as most of 

the kelp mapping was conducted on a tether, the energy available for continual manoeuvring, 

station keeping and navigating was in effect unrestricted when the surface tether was present. 

An external battery pack was added, seen in yellow in Figure 3.5 below. Moving the batteries to 

this external housing created more space in the main pressure vessel and allowed rapid changes 

(within a few minutes) of discharged batteries without having to wait for the batteries to be 

recharged. 

The new frame also allowed a larger main pressure vessel to be fitted. Although this increased the 

buoyancy of the vehicle, this was partly offset by the increased frame weight and it provided 

much needed internal space for the added electronics required for field operations, such as the 

INS. By using the same diameter pressure vessel, the previously used insert and back panel could 

simply be slid out of the old pressure vessel and sealed into the new housing (much like a piston). 
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Figure 3.4 - The modifications made to Hawthorne 2.0 for ocean use included the addition of an aluminium frame 
enclosing the vehicle for ease of lifting and protection of the fragile components and connectors (seen on the left of 
this picture). A larger main pressure vessel was mounted into the strengthened chassis. The clear plastic PVC tubes 
running to each thruster were used for air pressurisation, using the yellow air tank seen at the base of the vehicle. 

 

 

Figure 3.5 - Preparing to launch Hawthorne 2.1 from the 37ft research vessel Stardust in Rivers Inlet, British 
Columbia, Canada. The yellow battery pack fitted to the top of the vehicle allowed for fast (<60 seconds) changes of 
the batteries without interrupting power to the computers using a dual connector design (make-before-break).  



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

84/347 

Figure 3.5 above shows the vehicle being prepared for launch on the deck of the research vessel 

Stardust, and Figure 3.6 below shows the vehicle captured by a diver about to commence a survey 

in the sea trials conducted on 12-Sept-2008. 

 

Figure 3.6 - Hawthorne 2.1 is seen at the surface commencing a dive to approximately 20 metres to conduct a video 
survey of the kelp bed during sea trials on 12/09/08. A support diver was on standby for this initial test. Image credit 
Templeton, 2008. 
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 Custom host vessel for launching, tracking and operations 3.5.2

For testing and deployment of Hawthorne 2.1 in the field, a custom host vessel was designed for 

launching, operation and recovery of the vehicle. The key requirement of the vessel was a stable 

platform from which the vehicle could be raised and lowered in and out of the water in a 

controlled fashion for testing. It was also necessary to carry a surface power supply (in the form of 

sealed lead acid batteries) and provide a platform for the laptop(s) used for operator control and 

feedback. This allowed straightforward testing, research and development on the prototype 

vehicle. 

Based on these requirements, the custom host vessel shown in Figure 3.7 was constructed. It is 

based on the materials already available to the research group and provided a stable, low-budget 

platform which could carry 4 passengers, the vehicle and all of the necessary support equipment. 

 

Figure 3.7 - The ZapCat, used for deploying and operating the underwater vehicle during sheltered testing. 

The vessel was based on a catamaran design for stability when lifting the vehicle, with a two-

person kayak used for each hull. A superstructure made of wood rested on the kayaks with foam 

padding used to prevent damage to the fibreglass kayak hulls. The superstructure was strapped 

onto the kayaks using ratchet straps such that any shifting of the frame or straps would not 

release the kayaks, allowing the kayaks to be held securely without applying excess pressure to 

the hulls. 

A wooden A-frame was mounted over a removable deck allowing the ≈50kg vehicle to be raised 

and lowered via a block and tackle. The removable deck could be inserted to transport the vehicle 

and allow basic servicing to be carried out at sea. A 5hp outboard engine was fitted to the 

transom to propel the vessel at up to 9 knots. Paddles were also carried for close manoeuvring. 

The vessel had a very shallow draft with a tilting outboard engine, allowing operation in shallow 

coastal waters, as well as in kelp beds without the risk of becoming entangled. Although not 

suitable for rough seas, the vessel was capable of operating in and around sheltered kelp bed 

research sites. The high degree of manoeuvrability of the ZapCat allowed the holonomic motion 

of Hawthorne 2.1 to be easily tracked from the surface during development. However, for ocean 

deployments, the stable platform of the larger research vessel pictured in Figure 3.9 was used. 
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 Addition and integration of an inertial navigation system 3.5.3

Navigation in the closed, uniform SAUC-E competition environment (a tank of predefined 

dimensions) was relatively straightforward. A horizontally mounted echosounder, which 

measured the distance to the nearest wall straight ahead, coupled with the compass bearing, the 

pressure sensor measuring depth, and prior knowledge of the tank dimensions allowed a full 3D 

positional fix to be made at any time. 

Figure 3.8 shows this principle, where a 360° rotation of the vehicle in any position in close 

enough range to a wall was sufficient to localise the vehicle. This was dependent on the maximum 

range (150m) of the horizontally mounted echosounder; the useful range reduced significantly as 

submerged depth reduced. The principle is similar to that of spin-mapping employed by DepthX 

[288, 303] discussed in 2.3.2.8. Although the sensing employed by DepthX was more sophisticated 

(arrays of ranging echosounders) and the environment complexity greater (flooded tunnels and 

caves), the principle of exploiting holonomic movement to aid mapping is similar. 

360° scan (vehicle 
rotates on the spot)

Wall detected

 

Figure 3.8 - The mapping technique used for Hawthorne 2.0. Each time an object is discovered, the vehicle rotates 
360° while scanning its distance from the wall and compass bearing. This information is then integrated into the map. 

However, in an open environment (non-uniform, no prior knowledge, or no known fixed 

landmarks), 3-D navigation is much more challenging. The difficulties of underwater open ocean 

navigation were discussed earlier. In developing a navigation system for Hawthorne 2.1, GPS data 

was available at the surface and accurate to within a few metres. A low-budget inertial navigation 

sensor was added to evaluate the performance of 'dead reckoning' of vehicle position to allow 

navigation between surface GPS fixes. One of the objectives of the field trials was to evaluate 

what useful data could be gained from the INS, for both long term underwater navigation (and 

how this translated into real-world accuracy), and for short term detection of sea movements 

(tides, currents and swells) with an eventual aim of underwater station keeping. 

  



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

87/347 

3.6 Sea trials 

The sea trials were seen as an opportunity to verify the operation of the vehicle in its target 

environment as a useful field research vehicle as well as a test bed to identify limitations and 

opportunities for development. 

Further objectives included: 

1. To discover the issues involved with deploying and operating an underwater vehicle from the 

research vessel in the target nearshore environment. 

2. An evaluation of the performance and applicability of the newly fitted prototype INS. 

3. To investigate the challenges of obtaining useful scientific video footage in an ocean setting 

compared to the previous tests which had all been performed in closed tanks and pools. 

a. This included adapting the movement control and guidance subroutines for use in the 

rough ocean conditions to obtain steady video footage. 

b. It also included an investigation and measurement of currents and swells with an eventual 

aim of station keeping and correcting both course and heading by gathering sensor data for 

these movements. 

The 2008 field season ran from August to September and the vehicle was successfully deployed 

several times off the Pacific coast of Canada. The culmination of the formal sea trials of 

Hawthorne 2.1 were carried out over 5 separate days in September 2008 off the coast of British 

Columbia. A brief description of these tests and the conditions and location are noted in Table 3.2 

for reference. 

Prior to these tests, several preliminary trials were performed to check the operation and 

reliability of all components and to fine tune the sensing and control subroutines. A methodical 

and incremental approach was used for testing and, where possible, systems were tested 

independently of each other. This ensured that each system was performing correctly before 

integrating the next system. This not only ensured that a failure or error in one system would not 

compromise other parts of the vehicle, but also aided in troubleshooting. 

 

Table 3.2 - Index of 2008 field trials 

01-Sept-2008 03-Sept-2008 09-Sept-2008 11-Sept-2008 12-Sept-2008 

Evening test in 
sheltered water of 
Skull Cove, Bramham 
Island. 
 
IMU logs basic 
movement 
subroutines, video 
log recorded by 
onboard colour 
camera. 

Evening test in 
sheltered water of 
Skull Cove, Bramham 
Island. 
 
Increased video 
resolution and low-
light optimisation. 
 
Tuning of PID control 
subroutines for 
following a compass 
course & holding a 
depth 

Afternoon test in 
sheltered water of 
Skull Cove, Bramham 
Island. 
 
Video log recorded 
by IR underwater 
camera mounted to 
vehicle frame. 

Deep water tests 
from Stardust 
moored at Dawson’s 
Landing, Rivers Inlet. 
 
Movement routines 
at 20m depth, video 
logged by IR 
underwater camera. 

Open water tests 
from Stardust at 
(51°02.659N 
127°32.711W) in a 
10m depth kelp bed. 
Sea swells 0.5m. 
 
Logging of vehicle 
movement in rough 
seas at and below 
surface with 
compensation of 
movement 
subroutines. Video 
logged by IR 
underwater camera. 
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Figure 3.9 - Deploying Hawthorne 2.1 off the research vessel Stardust into a kelp bed in the 2008 field trials (image 
credit, Templeton 2008). The yellow battery box mounted on top of Hawthorne 2.1 can be seen in the foreground 
between the camera and Stardust. A support diver is on hand in the water and the surface support crew can be seen 
on deck manning the tether, remote monitors and on hand for launch and recovery via the boom. 

 

Figure 3.9 above shows a successful deployment viewed from the water just before Hawthorne 

2.1 commenced a dive. When considering the general objectives to ‘verify the operation of the 

underwater vehicle in its target environment as a useful field research tool’ as well as ‘a test bed 

to identify limitations and opportunities for development’ then the field trials can be considered a 

success and provided great benefit to the development of subsequent generations of vehicles.  

The operation of Hawthorne 2.1 was verified several times in a variety of nearshore environments 

typical of the field application, including the target environment of a kelp bed. The benefits of 

underwater vehicles as a research tool to the coastal ecosystems research group were 

demonstrated. Several opportunities for development were identified and are considered in the 

following sections. 
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 The performance, accuracy and benefits of the INS 3.6.1

As described in section 3.5.3, a low budget Inertial Navigation System (INS) was added to 

Hawthorne 2.1 to compensate for the reduced visual navigation information available from the 

cameras in turbid water, the lack of visual landmarks in the natural environment, and when 

operating without GPS information underwater. 

The objective was to investigate what useful data could be gained from the INS for long term 

underwater navigation and 3D position estimation, and how this translated into real-world 

accuracy as well as a quantitative evaluation of the performance, accuracy and applicability of the 

INS to direct future development into the navigation hardware and software. Additionally, short 

term detection of sea movements (tides, currents and swells) was investigated with an eventual 

aim of facilitating underwater station keeping. 

3.6.1.1 IMU hardware 

The Inertial Measurement Unit (IMU) used was a 6 Degree-of-Freedom (DoF) board manufactured 

by SparkFun Electronics, USA, and sold as a ‘SparkFun 6Dof v2’. The IMU used a triple axis 

accelerometer (Freescale MMA7260Q) [325] and three orthogonally mounted MEMS gyroscopes 

(Analog Devices ADXRS300) [326]. 

The gyroscopes had a dynamic range of ±300°/s and the accelerometers had an adjustable 

sensitivity of ±1.5g, ±2.0g, ±4.0g or ±6.0g (for all tests performed on Hawthorne 2.1, the sensitivity 

was set to ±1.5g for maximum small-scale accuracy). These ranges were appropriate to the 

maximum accelerations encountered by the vehicle while in operation. Strapdown calculations 

were performed to remove the component of gravity seen in each accelerometer axis depending 

on vehicle operation – the algorithm details are discussed later in section 4.6.5.4.1. 

The sensor outputs, temperature and reference voltages from the gyroscopes and accelerometers 

were multiplexed (Texas Instruments CD74HC4067) to the 10-bit ADC on the microcontroller 

(Microchip PIC16F88). If all data channels were used, sampling occurred at approximately 107Hz. 

The microcontroller then transmitted the data as a continuous ASCII stream over a RS-232 

connection [327]. To interface with the rest of the vehicle electronics, this data stream was either 

read by another microcontroller for pre-processing or transmitted directly to the onboard control 

PC via a TTL to RS-232 converter (Maxim MAX232) at 57600bps. 

3.6.1.2 Data logs 

All mission parameters, telemetry data and navigation readings from the INS were logged for 

diagnostic purposes and to allow playback and review of missions once the vehicle had been 

recovered. All mission data, sensor data, video recordings and optional sonar data were logged 

with a timestamp to allow for synchronised playback of all of the data simultaneously. When all of 

the subroutines were running on the underwater vehicle control PC, data logging occurred at 

approximately 18Hz. Onboard video capture reduced the mission log frequency to 16.4Hz. 

Table 3.3 below lists the data recorded in each log using the naming conventions of linear and 

angular accelerations of the underwater vehicle, as defined in Figure 2.7 earlier. With this logged 

data, realtime analysis could be performed while the mission was in progress as well as full post-

processing analysis. Playback of the log files also allowed simulation and algorithm development 

without having to deploy the vehicle. 
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Table 3.3 - Logged data 

Mission Log: Inertial Navigation System Log: 

Timestamp 
 
Compass heading 
Desired course 
Fly by compass (T/F) 
 
External pressure 
Target depth 
Fly by depth (T/F) 
 
Individual motor thrust values 
Horizontal movement command 
Vertical movement command 
Front thruster turn (T/F) 
 
GPS latitude & longitude 
GPS time & date stamp 
GPS HDOP

9
 

GPS Speed over ground 
 
Fly by camera (T/F) 
 

Timestamp 
 
Pitch Rate 
Pitch Voltage Reference 
Pitch Gyro Temperature 
 
Roll Rate 
Roll Voltage Reference 
Roll Gyro Temperature 
 
Yaw Rate 
Yaw Voltage Reference 
Yaw Gyro Temperature 
 
X Acceleration 
Y Acceleration 
Z Acceleration 
 
Supply voltage reference 
 

 

3.6.1.3 Error detection and correction 

Although errors in the data stream were rare, error detection and correction routines were used 

to prevent errors from having an effect on the output data. Each sample in the data stream was 

time-stamped by the receiving program as it arrived in synchronism with the rest of the mission 

log. If a sample failed any part of the error check, it was simply discarded and the next sample 

used instead. This did not affect the accuracy of any subsequent integration of the IMU data as 

the timestamp of dataset was used as the time-base for the integration. This provided a simple, 

yet effective error correction method for datasets where the error rate was low. 

Errors were detected in a number of ways using a custom error detection algorithm. This included 

parsing errors in the data-stream (incorrect data length, number of items, absence of start and 

terminating character), checking each sample was within the bounds of the ADC limits as well as a 

user defined rate threshold which specified the maximum amount a sample can change by from 

one time period to the next. This was usually defined by the maximum rate of the sensor. 

  

                                                           
9
 Global Positioning System (GPS) Horizontal Dilution of Precision (HDOP) is a term used to describe the 

geometric strength of satellite configuration on GPS horizontal positioning accuracy. Closely spaced 
satellites, obstructions to the signal and a lack of satellites all increase the value of HDOP and reduce the 
accuracy of a horizontal position fix. An error estimate of a position fix can be made using the value of 
HDOP. [86] 
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3.6.1.4 IMU calibration 

The first step of integrating the INS into the control and navigation systems of the underwater 

vehicle was to calibrate the IMU sensors. 

3.6.1.5 Accelerometers 

The accelerometers were supplied with a 3.3V regulated supply and output a zero value of 1.65V. 

In the ±1.5g sensitivity setting, the output varied by 800mV/g with a linearity of 1% of full scale 

output [325]. 

Therefore, as the acceleration varied by ±1.5g, the voltage output varied by: 0.8×±1.5g = ±1.2V 

with 1.65V as a centre point, giving an overall voltage output range of 0.45-2.85V. When 

approximated to a digital value by the 0-5V window 10-bit ADC, this voltage range corresponded 

to values of 0.45/5×1024=92 and 2.85/5×1024=584 with a centre point for zero acceleration of 

1.65/5×1024=338. This is represented in Figure 3.10 below. 

0 1024512

10-bit ADC, 0-5V window

±1.5g Accelerometer
0.45-2.85V window

1.65V zero value

92 338 584

 

Figure 3.10 - ADC conversion of accelerometer values. 

For the range of ±1.5g this gave an output range of 584-92=492. Therefore the resolution, or 

smallest noticeable component linear acceleration of the system, was 

±1.5g/492=3g/492=0.00610=6.10mg over the range ±1.5g. This corresponded to a resolution of 

0.0598m/s² over the range ±14.71m/s². 

Therefore:    Linear Acceleration (m/s²) = (Raw ADC Value – 338)*0.0598 

3.6.1.5.1 Gyroscopes 

The gyroscopes were supplied with a 5V regulated supply and output a zero value of 2.5V. They 

operated over the range of ±300°/s with a sensitivity of 5mV/°/s and a linearity of 0.1% of full 

scale output [326]. 

Therefore, as the angular velocity varied by ±300°/s, the voltage output varied by: 300×0.005 = 

±1.5V with 2.5V as a centre point, giving an overall voltage output range of 1-4V. When 

approximated to a digital value by the 0-5V window 10-bit ADC, this voltage range corresponded 

to values of 1/5×1024=205 and 4/5×1024=819 with a centre point for zero angular velocity of 

2.5/5×1024=512. This is represented in Figure 3.11 below. 
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0 1024512

10-bit ADC, 0-5V window

±300°/s Gyroscope
1-4V window

2.5V zero value

205 512 819

 

Figure 3.11 - ADC conversion of gyroscope values. 

For the range of ±300°/s this gave an output range of 819-205=614. Therefore the resolution, or 

smallest noticeable component angular velocity of the system, was 

±300°/s/614=600°/s/614=0.977°/s over the range ±300°/s. 

Therefore:   Angular Velocity (°/s) = (Raw ADC Value – 512)*0.977 

The temperature output from each gyroscope could be used to correct for the effects of 

temperature drift. The temperature sensor provided a 2.5V output at 25°C which varied by 

8.4mV/°C. This corresponded to a change in ADC output value of 1.72/°C. Although not used, this 

feature is ready to be used for software compensation of the gyroscope rate output if required in 

future developments and all temperature data was logged during missions. Continual monitoring 

of the ambient temperature inside the main pressure vessel using the machine health sensors 

verified any temperature fluctuations were less than a few degrees Celsius. 

3.6.1.5.2 Verification 

In the absence of any laboratory force calibration equipment or tilt tables, the datasheet 

calibrated values were assumed with an accuracy, known sensitivity and known (limit of) 

nonlinearity. In-situ verification to an absolute reference source was possible for some axes of 

movement as detailed below in Table 3.4. 

Table 3.4 - Reference data sources available for IMU calibration 

Linear acceleration Angular acceleration 

X & Y acceleration – GPS sensor on the surface outputs 
latitude and longitude 
 
X & Y acceleration – forward facing multibeam sonar unit 
(integrated later) measures acceleration towards a known 
stationary object in the water 
 
Z acceleration – pressure sensor (calibrated for sea water 
temperature and salinity) measures depth 
 
Z acceleration – depth sounder measures altitude (height 
above seabed) 

Yaw – electronic compass provides a gimbal-stabilised 
(±30° in pitch and roll) reading of magnetic north 
 
Pitch and roll – were neither measured nor controlled at 
this stage. The vehicle was trimmed to float with 0° of 
pitch and roll and would return to this upright position 
from any deviation in attitude. 

 

Two of the simplest and most accurate verifications were comparing integrated yaw angular 

acceleration against the absolute compass data and comparing integrated linear z-axis 

acceleration against the absolute pressure sensor. 
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Figure 3.13 below shows an example dataset for yaw rate and compass from a relatively long test 

(35 minutes) on the 9-Sept-2008 in sheltered waters, removing rough seas as one potential source 

of error in the calibration process. Although the compass sensor updated slowly (2Hz) it was 

useful for calibration as it provided absolute reference data compared to the relative (dead 

reckoning) data from the gyroscopes. A series of clockwise and anti-clockwise turns were 

performed with periods of holding a heading to simulate a typical mapping mission. 

The colour code shown in Figure 3.12 applies to this plot and to all following plots. 

 

Acceleration

Velocity (Rate)

Displacement (Position)

Absolute Reference Data
 

Figure 3.12 - IMU graph colour code – applies to angular and linear measurements. 

 
Figure 3.13 - A long duration (35min) gyroscope test in sheltered waters comparing the yaw angle integrated from 
the gyroscope (shown in blue) with the yaw angle from the compass.  

The gyroscope output (rate of turn, shown in red) was integrated once (shown in blue) to give 

angle of turn from a starting position zeroed with respect to the compass data for comparison. 

For computational simplicity, a cumulative trapezium integration [328] using the difference in 

timestamps from one sample to the next was used. The compass data (shown in green) was 

converted from a wrapped 0-360° range to continuous heading data to track the number of turns. 

When the vehicle turned clockwise and the bearing increased from 358° to 359° the bearing 

would then normally reset to 0°. Instead, when using continuous degrees, the heading continued 

to 360° and 361° thus recording that one complete clockwise rotation had been made. Figure 3.14 

below shows the yaw angle (the integrated yaw rate) and the compass data plotted using 

continuous degrees. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

94/347 

 

Figure 3.14 - Comparing the integrated yaw angle from the gyroscope with the reference compass data using the 
dataset shown in Figure 3.13 previously. Angles were converted to continuous (wrapped) degrees. 

As can be seen by inspection of Figure 3.14, even over the relatively long 35 minute duration of 

this test, there was a relatively good correlation between the absolute compass data and the 

dead reckoning IMU data. Further verification runs were performed and the dataset above 

represents typical performance. However, two limitations on performance were noted. 

Due to the gyroscope sensitivity and the ADC quantisation resolution of 1°/s, quantisation errors 

were significant at low turn rates. A slow turn of less than 1°/s was underestimated (or missed) by 

the gyroscopes and slow turns at a rate of a few degrees per second were quantised to the 

nearest degree. Thus, a sustained slow turn caused a significant drift. This can be seen to some 

extent in the plot above in Figure 3.14 as periods of discrepancy between the absolute compass 

data and the dead reckoning INS data. It was only through approximately symmetrical clockwise 

and anticlockwise movements that the drift remained close to zero after 35 minutes. In the 

opposite conditions, high-rate short-duration turns (up to 20°/s) could also be missed due to the 

sampling rate (logging at >20Hz). 

In both cases, although the INS data was immune to interference from operating close to ferrous 

structures and updated at a faster rate than the 2Hz compass, the measurements were subject to 

the same limitations of all dead reckoning data, cumulative errors. The data presented in Figure 

3.14 was from a relatively long duration test of 35 minutes. This was representative of a typical 

dive length for the underwater vehicle.  

The accuracy can be improved by a higher resolution ADC and a more accurate gyroscope, both at 

a higher budget. However, as can be seen from the figures, the current hardware provides a good 

approximation of yaw angle during high-turn rates, yet requires absolute yaw angle updates from 

the compass at regular intervals to correct drift, particularly during periods of slow turn rate. 

From this example, the drift (up to approx. 50° in places) is unsuitable to navigation and mapping. 
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Thus the benefits of sensor fusion using complementary sensors demonstrated through the 

combination of the absolute drift free compass data with the high update rate, electromagnetic 

immune gyroscope data. A useful addition to this basic INS (which is addressed in Chapter 4) is a 3 

DoF magnetometer, to remove the reliance on the mechanically gimballed marine compass used 

(described later) and to allow gyroscopic measurements to be regularly corrected with a high-rate 

absolute 3D estimation of inclination. 

The second verification example proposed integrating the z acceleration data to estimate vertical 

position (depth) for comparison to the external pressure sensor, again a comparison of a dead 

reckoning sensor with an absolute measurement. The three plots below in Figure 3.15 compare 

the integrated z acceleration data (velocity) and the double integral (position) with the external 

pressure sensor. The three plots represent different dive profiles to a range of depths (0-16m) and 

over a range of durations up to 700s to provide an extensive comparison. The 0.5m discrepancy in 

the zero point of the external pressure sensor curve (green) represents the calibrated zero point: 

when the top of the vehicle hull was at the surface, the pressure sensor was submerged by 0.5m. 

The first set of plots show a typical dive profile during mapping operations. As can be seen from 

the external pressure (the lowest part of the graph), this test contained a deep dive to over 15 

metres over a total duration of 7.5 minutes with a maximum dive rate of 0.13m/s and a maximum 

ascent rate of 0.29m/s. The plateau at 15m on the pressure sensor graph represented the 

maximum pressure readable by the pressure sensor. As discussed in the introduction, bull kelp 

grows in water depths of 10-17 m [1], and so while the vehicle was rated to depths of 30m for 

safety, accurate mapping was not required at depths of >15m. Thus the 2.5 bar absolute pressure 

sensor was selected to maximise sensitivity (and therefore accuracy) over the required range. The 

IMU Z position graph shows a truer representation of the continued dive to approximately 18m, 

albeit underestimating the rate of descent and ascent. Comparing the IMU estimate of Z position 

to the absolute reference data from the pressure sensor, shows that an approximation of the dive 

profile could be made using just the INS. However, no accurate measurements of small 

movements could be made, and all of the subtle characteristics of the dive profile shown by the 

pressure sensor were lost in the IMU data. 

The same effect can be seen on the second set of plots in Figure 3.15, this time for a shallower 

(3m), shorter (200s) dive. Again, the INS Z-axis accelerometer (blue) provided an approximation of 

the true dive profile (green), but with a very low accuracy and a large drift over these 200s. The 

inaccuracies were again due to the large cumulative error from the double integration. Fine level 

detail of the dive profile was lost in the double integration due to the large amount of noise 

obscuring the small accelerations. The double integral averaged the acceleration data giving the 

smooth curve shown for Z position, as seen in the third set of plots in Figure 3.15 for a longer 700s 

dive. Underestimates of the dive and ascent rate could be attributed to quantisation errors and 

non-linearity as previously discussed. 
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Figure 3.15 - Comparing the INS measurement of depth (z position) with the external pressure measurement across 
three different depth ranges and time durations. Integrated accelerometer data (velocity) is shown in the top plot 
(red) in each case, and the double integral (position) is shown in blue. The green plot shows the external pressure 
sensor calibrated to vehicle depth in metres. 
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Figure 3.16 shows an example of the raw data output from the IMU ADC for Z acceleration. The 

example shows the same period as that shown in the first set of plots in Figure 3.15 (so this 

represents a gradual dive to 18m from 0-250s and then a gradual ascent from 250-500s). As can 

be seen from the graph, there was a large amount of noise present which obscured the data – this 

was electrical noise rather than just movement of the vehicle in the water – the pressure sensor 

updated at a similar rate and at a comparable resolution and did not show these oscillations. 

 

Figure 3.16 - Example raw IMU data for Z acceleration showing the same period as the first plot in Figure 3.15. 

It can be seen that INS data alone could not provide the small-scale accuracy required for 

underwater navigation in confined environments. The lack of accuracy was further compounded 

by the sensitivity of the ADC. Even at this most sensitive setting of ±1.5g, the accelerations 

produced by the vehicle used only a small part of the ADC window. This introduced a large 

quantisation error and reduced accuracy. 

A high-linearity, low-noise amplifier between the accelerometers and ADC was later implemented 

to amplify the accelerometer output to fill more of the 10-bit ADC window (±1.5g over 0-1024 

levels), reducing quantisation errors and in effect increasing sensitivity. The compromise was that 

the accelerometer could be more easily saturated by large accelerations, requiring careful 

selection of the amplifier gain. This amplifier was implemented post-season, together with the 

addition of a superior, low-noise, high-sensitivity INS detailed later in section 4.6.5. 

The accelerometers used for all three axes in Hawthorne 2.1 were identical, the magnitudes of 

acceleration were also comparable and so a similar result and degree of accuracy was seen for all 

three axes. It was difficult to present a signal to noise ratio as the amplitude of the signal 

constantly varied depending on the movement of the vehicle. However, bench tests of the IMU 

sensor (while powered up in the vehicle enclosure to simulate the operating conditions in terms 

of temperature, interference, power supply fluctuations, etc.) were used to observe the noise 

present on the ADC outputs. The noise was a random fluctuation, individual to each output from 

the ADC (therefore individual to each channel of the multiplexer – the ADC only has a single 

channel). The fluctuations were always within certain limits about the zero value, an average of 

which can be seen as ±2 levels on the ADC output. When considered over the entire 10-bit 

window of the ADC, this represented a relatively small error of ±0.2%. However, considering this 

error over the smaller ADC window of each sensor, this equates to an error of ±0.41% on the 

accelerometer and ±0.33% on the gyroscope. 
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In practice, the error was even larger than this as even the largest active accelerations the 

underwater vehicle was capable of, or the roughest sea movements it was likely to encounter 

(passive accelerations), were smaller than the maximum operating range of the sensor. Therefore 

the full scale deflection of the ADC window was never used for each sensor. The effect of the 

noise on the results was compounded when the constant value of noise was applied to the much 

smaller scale changes in ADC value encountered under normal operating conditions of the 

vehicle. This can be seen in Figure 3.16 - even the maximum accelerations experienced by the 

vehicle when performing this dive used only a fraction of the total ADC window (0-1024).  

Noise filtering algorithms could be applied (and indeed, the double integration serves to average 

the data), however, any averaging performed would risk obscuring the details which are already 

obscured by noise. 

3.6.1.6 INS data for long term navigation and short term station 

keeping 

In Chapter 2, the importance of combining drift free allothetic information with the more robust 

dead reckoning idiothetic information from INS was identified. The difficulties of navigating from 

INS dead reckoning data alone, even with very high budget sensors was also shown. 

The results presented in this chapter, detailing the trials of an INS in Hawthorne 2.1 for navigation 

in the nearshore environment have demonstrated the approximate accuracy and performance 

which can be achieved with a very low budget sensor. While useful to provide an approximation 

of movement, due to the drift inherent in any INS coupled with the high-noise and low-sensitivity 

present in this IMU, inertial navigation systems are not suitable as a single source of long term 

underwater navigation. 

As identified in Chapter 2, this supports the argument for sensor fusion, integrating the idiothetic 

robust INS data into the sensor fusion framework with regular updates from an absolute (drift-

free) sensor. The fusions presented in this chapter (compass and pressure sensor) work well to 

demonstrate the benefits of sensor fusion, but for some axes (e.g. x and y position) an absolute 

position estimate is not always available – e.g. no GPS underwater, and landmarks not always 

available for navigation. In these cases, the reliance of the navigation algorithm on the dead 

reckoning high-drift INS data becomes greater in between absolute position updates; even with 

its high drift, the INS is the only available data source in some instances. 

While the data shown in the previous section shows that the accelerometers cannot be used for 

long term position estimation due to the large drift errors, they can be used for short term 

measurement of ‘impulse’ forces applied to the vehicle. The importance of station keeping has 

been identified previously, including when capturing video footage and generating sonar maps of 

the environment, as well as reducing operator load in the nearshore. In each case, it is necessary 

to hold a position and attitude (angular position), despite ocean currents and swells and to be 

able to track an accurate and steady course in rough conditions. For the example of station 

keeping, when the vehicle is trying to maintain a position despite external forces, the 

accelerometers are poor at detecting gradual movements in position from tides and currents due 

to the cumulative effects of drift masking any movement estimate. However, for detecting the 

sudden (often periodic) movement due to waves and swells, the accelerometers are ideal. Figure 

3.17 shows the raw accelerometer output over 12 seconds measuring the passive movement of 

Hawthorne 2.1 in relatively rough seas from a test carried out in open water on 12-Sept-2008. 
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For the reasons discussed previously, the IMU data cannot be calibrated to any specific unit; 

additionally clipping in the negative x and z directions can be seen from miscalibration of the 

offset zero point saturating the ADC. However, in each of the 3 axes of movement, the vertical 

and horizontal components of the wave motion can be seen. The data shown here was captured 

close to the water surface in the nearshore causing increased disturbances. Although the 

disturbances from wave action reduce with increasing depth, the need for either correcting the 

movement of the vehicle (station keeping) or correcting the data gathered (tracking underwater 

position) is still present. 

A significant advantage of the holonomic movement capabilities of Hawthorne 2.0 and Hawthorne 

2.1 is that a perturbation of the vehicle in any direction by ocean currents and swells can be 

corrected for by simply applying thrust in the opposite direction. Provided sufficiently accurate 

and responsive data is available from the IMU and the thrust capabilities of the vehicle exceed the 

swell states, it is possible for the vehicle to hold station in rough conditions. 

The short time duration means drifts will not accumulate and the nature of the forces mean that a 

general indication of the force needs to be measured as quickly as possible in order to provide 

sudden short burst of corrective thrust. An exact measurement of each periodic deviation is not 

absolutely necessary, it only needs to be as accurate as the corrective force which can be applied 

by the thrusters. Thus this rapid measurement is ideally suited to the characteristics of the 

accelerometer data.  

 

Figure 3.17 - Example 3-axis linear accelerations measured in rough sea states. A 12 second excerpt from a test on the 
12/09/08 is shown. 

This is an example of the second level to the proposed sensor fusion algorithms – a strategic level 

above the signal fusion level as discussed in section 2.3.2.4 [15]. This strategic level needs to be 

aware of the characteristics of each sensor and the situations when it can be of use. This means 

exploiting positive characteristics of sensor data while rejecting a sensor’s characteristics when 

they are a detriment (e.g. not using accelerometers for long term position information due to 

drift), it is also important to realise the benefits of each sensor and the situations when it can be 

employed to great effect in improving the navigation capabilities. 

The strategic level of the sensor fusion algorithm needs to be capable of dynamic adjustment of 

the biasing of the algorithm in response to changing conditions and therefore the changing 
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characteristics of the sensor. For example, sudden movements would call for an increase on the 

bias of the accelerometers but a reduction in sonar bias (the sudden movements would be missed 

by the slower response sonar). Conversely, when operating close to the water surface in turbulent 

conditions, the effectiveness of the sonar is impaired so the bias on sonar information needs to be 

reduced. Sensor fusion algorithms exist which are capable of performing this biasing, for example 

the extended Kalman filter introduced earlier (section 2.3.2.4.2.2). 

A dual-level sensor fusion algorithm is proposed, capable of low-level numerical fusion of sensor 

data, but also with a strategic level capable of assessing both environmental conditions and the 

task at hand and dynamically adjusting the sensor bias to maintain an optimal position estimate 

by exploiting sensor characteristics. 

 The challenges of obtaining useful scientific video / sonar footage 3.6.2

The third objective of the sea trials was an evaluation of the challenges of obtaining useful 

scientific video / sonar footage in an open ocean setting. Several adaptations were made for this 

purpose, including adapted movement and guidance subroutines for use in the open ocean 

conditions in order to obtain steady footage and to track an accurate course despite currents and 

swells. Studies into station keeping, including the correction of swells and wave action, as well as 

techniques to track underwater position are discussed in other sections. 

A variety of imaging devices were fitted to Hawthorne 2.1 for imaging and recording of the 

underwater environment, including colour video cameras and monochrome infrared cameras 

depending on the conditions specific to each kelp bed. Section 2.2.3.2 identified the need to 

supplement video footage with sonar scans, both to increase range and coverage, but also when 

operating in turbid water or in areas of poor illumination [9]. Initial trials were conducted using 

the Imagenex Delta T multibeam sonar to supplement the video footage, of particular use at 

depth and when operating in poor visibility under the kelp canopy. The integration of the Delta T 

is detailed in later chapters and becomes a focus of this research. 

Frameworks to support both the low level direct fusion of idiothetic and allothetic sensors, as well 

as the high level fusion of sonar and video were introduced in section 2.3.2.4 [15]. The principle of 

this multi-level fusion is that each sensor has individual qualities and optimum operating 

conditions. However, often the best dataset is comprised of imagery captured from more than 

one of these devices simultaneously [9]. This helps to overcome both the limitations of finite-

performance sensors, low-budgets, and the limitations of the underwater environment. For 

example, video can be used to add detail to sonar logs, infrared cameras can improve visibility 

and the sonar and video cameras provide a complement of detail, resolution and range. 

Whether the data is forward facing video and sonar to be played back later with location 

information for identifying positions, or downward facing video and sonar for generating a mosaic 

map of the seabed, underwater positional information is crucial. This localises any footage and 

allows accurate comparisons to be made between different areas, observations to be made on 

the conditions and habitat of each location, and for accurate maps to be generated. It also allows 

comparisons to be made between surveys conducted at different times but known to be in the 

same place. Accurate position information is required to turn the vehicle from simply an 

inspection tool to a useful biological / ecological / geographical research tool capable of gathering 

useful survey data. Techniques towards underwater navigation were provided in part by the INS, 

compass and pressure sensor already fitted to Hawthorne 2.1. However, accuracy improvements 

were an important opportunity for development in subsequent vehicles 
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3.7 Conclusions 

Hawthorne 2.0 was completed in July 2008 and included a basic underwater navigation system. 

The vehicle served its purpose as a test bed for the development of underwater navigation and 

control strategies and demonstrated the benefits of holonomic motion. With its single sensor 

navigation system, the vehicle highlighted several opportunities for development and provided a 

baseline for comparison of the sensor fusion navigation and holonomic control algorithms 

developed later in this research. The test bed also allowed new systems to be trialled in the open 

ocean without having to rely solely on simulation and informed the development of future 

generations of underwater vehicles including formalising several of the standards developed in 

Appendix A. 

Hawthorne 2.0 saw initial development into autonomous operation. The techniques and 

advantages of operating both as an AUV at the SAUC-E competition and as ROV during the field 

season were both seen. At the competition, basic autonomous navigation techniques were 

demonstrated in the confined environment [322]. In the summer of 2008, the vehicle underwent 

several modifications for the field operations, including a redesigned hull and protective frame, 

redesigned tether, software flexibility between ROV and AUV modes, additional underwater 

imaging devices and expanded underwater navigation sensors. The upgraded vehicle, Hawthorne 

2.1, saw successful deployment as an ROV supporting grey whale habitat and coastal ecosystems 

field research in Canada. 

The field season was dual-purpose; one aim was to demonstrate the feasibility and benefits of 

using underwater vehicles for the study, inspection and survey of kelp beds. In this respect, 

Hawthorne 2.1 successfully proved the feasibility of operation in the open ocean and gathered 

several useful video datasets of the kelp beds, both in colour and in IR illuminated monochrome. 

The advantages of using underwater vehicles to perform the surveys over divers, camera drops 

and tows were demonstrated with benefits of financial and time savings as well as increased 

coverage and detail [11, 13]. The coastal ecosystems research group committed to the future 

development and use of underwater vehicles. Gathering scientific video footage was 

demonstrated, together with the manoeuvrability provided by holonomic propulsion [288] and 

the importance of realtime supervision and control to data validity [22]. However, several 

opportunities for development were identified. 

 Opportunities identified for development in future vehicles 3.7.1

There are general improvements to be made with each new revision of underwater vehicle 

including extended efficiency, miniaturisation without sacrificing strength, speed, endurance, 

manoeuvrability, sensing capabilities and accuracy. Based on the field trials of Hawthorne 2.1, 

three specific areas for development for nearshore habitat mapping were identified to inform 

development of the next generation of vehicle detailed in Chapter 4. These comprised 

development of the underwater navigation system including sensor fusion, the integration of 

sonar for kelp bed mapping and the development of the holonomic iROV concept. 

3.7.1.1 Development of underwater navigation and sensor fusion 

As highlighted in section 3.6.1, the most important improvement to be made was to increase the 

capabilities and performance of the navigation system. Improvements to the underwater 

positional accuracy of the vehicle would yield benefits in a host of other areas. These included 

improving the usefulness of sensory data captured through improved positional data [69] and 
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station keeping [263], improvements in the manoeuvrability of the vehicle from an increased 

integration of the navigation system and movement control algorithms [288] and an increased 

reliability when operating for long periods underwater. An increase in efficiency from effective 

path-planning, in reliability from improved collision avoidance and in the autonomy of the vehicle 

would all be facilitated by improvements in the navigation capabilities [157]. Improving the 

accuracy and reliability of the underwater navigation system, without sacrificing the low-cost and 

flexibility of the existing system, was the immediate focus of vehicle development, covering both 

navigation hardware and software. 

Hawthorne 2.1 demonstrated the capabilities of single sensor navigation using a suite of unlinked 

sensors comprising a compass, GPS, pressure sensor and an echosounder to measure altitude. A 

low budget INS was added to evaluate its performance in the nearshore. In summary, the 

gyroscopes provided a useful measure of inclination and provided a complementary dataset to 

the mechanically gimballed compass, while the accelerometers were not accurate enough for 

underwater position tracking alone. However, short-term accelerometer measurements of wave-

induced disturbances were demonstrated with a view to station keeping [261]. 

The test bed Hawthorne 2.1 showed that navigation of an underwater vehicle using solely an INS 

of this order of magnitude of budget was infeasible. The drift, errors and noise were too large to 

allow accurate tracking of position for any useful length of time underwater. The isolated sensor 

system was not sufficient for underwater positioning, and it was this premise which directed the 

research and development of a combined, ‘sensor-fusion’ approach to the underwater positioning 

and navigation system [15]. 

This single-sensor navigation system provided a baseline of performance from which later 

improvement could be measured. As discussed in later sections, the proposed improvements 

were twofold: to supplement the existing INS with a higher specification model to improve the 

quality of the INS data, and to supplement the INS data with navigation data from additional 

complementary sensors [15]. 

This sensor fusion was proposed at two levels. The first, a low-level combination of absolute and 

relative sensors to combine the robustness of dead reckoning with drift free absolute updates 

[89], together with a second strategic level which was able to assess the changing conditions and 

make continual decisions as to which sensor combinations are the most reliable and accurate 

given the current environment, conditions and mission [160]. 

This process of ‘sensor-fusion’ underlies the principle of this work and is discussed in depth in 

later sections: improvements in underwater navigation and mapping can be gained using a 

complementary set of sensors [167]. Reliability and flexibility could also be added by mitigating, at 

least in part, the effects of sensor failure and varying sensor availability (e.g. changing conditions, 

depth, etc.) [329]. 

3.7.1.2 Integration of sonar for kelp mapping 

A development of the proposed sensor fusion was at the feature level [15], to supplement the 

existing successful video mapping of kelp stipes with sonar scans, as identified in the literature 

review. As discussed in section 2.2.3.2, this complementary pair of sensors had the potential to 

increase coverage, detail and reliability when operating in the hostile nearshore conditions [329]. 

The limitations of kelp bed visual surveys were seen, in particular in poor visual conditions and 

with limited coverage. The addition of sonar mapping to augment visual mapping had great 

potential [11], enabled by the manoeuvrability benefits of the holonomic sensor platform [288]. 
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3.7.1.3 The holonomic iROV concept 

Finally, flexibility between ROV and AUV operation with a ‘hybrid mode’ of autonomous-assisted 

remote operation was demonstrated in the field trials of Hawthorne 2.1 as essential to ensuring 

reliable operation and data validity in the dynamic nearshore environment [249]. As conditions 

could quickly alter within a few metres and within the duration of a few minutes, realtime 

feedback of the results and operating environment to a remote operator was essential. Basic 

hybrid control techniques to reduce the operator load were demonstrated on Hawthorne 2.1 

exploiting the holonomic capabilities of the vehicle, including holding a heading and depth despite 

external disturbances. Further development of both the navigation system and hybrid iROV 

control system was used to aid these station keeping operations, with development towards 

scheduling basic manoeuvres into complete survey patterns [249]. 

The importance of selecting either remote control, autonomous control or a hybrid operating 

mode which best suited the operating environment and dynamic conditions was identified in the 

literature review [21] and during the field trials. This was used to inform development of the 

hybrid iROV concept. For example, when operating in a complex environment with no prior 

knowledge, complete remote control was maintained. Then, when the operator needed to focus 

their attention on another task, for example inspecting the video or sonar data, a position could 

be held or a course steered autonomously [256, 263]. Thus, the reliability and security of remote 

monitoring and high-level control was maintained but low-level control could be automated. 

Similarly, through the hybrid power supply, a thin, flexible tether could be used while allowing full 

manoeuvring thrust and an unlimited mission duration. 

Coupled with further development of the hybridised control system, further development to 

exploit the benefits of holonomic motion was also proposed. Although the thrusters fitted to 

Hawthorne 2.0 and Hawthorne 2.1 were capable of holonomic propulsion, the hull designs were 

not complementary to holonomic manoeuvrability, in particular the oblong open frame of 

Hawthorne 2.1. The development of a more streamlined hull which maintained the flexibility and 

modularity of upgrades had the potential to improve manoeuvrability when operating within the 

kelp beds and to reduce the chance of tangling. The benefits of an axisymmetric hull to enable 

unrestricted panning of directional sensors was recognised from other vehicles [288], however 

has not been implemented for vehicles of the size, budget and capabilities suitable to nearshore 

mapping developed in this research. 
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Chapter 4 Test Platform: the iROV SeaBiscuit 

4.1 Introduction 

Based on the requirements identified in the literature review in Chapter 2, with the concluding 

section proposing the opportunity for a hybrid solution for kelp bed surveying and mapping, and 

the background work presented in Chapter 3, this chapter details the development of the iROV 

SeaBiscuit. 

In Chapter 3, Hawthorne 2.0 demonstrated preliminary autonomous capabilities at the SAUC-E 

2008 competition and its revision, Hawthorne 2.1, demonstrated the benefits of using underwater 

vehicles for kelp bed mapping during sea trials. The challenges identified in the literature review 

of navigating in the nearshore environment were explored, together with the limitations of a 

single-sensor underwater navigation system. These limitations highlighted the benefits and 

application of a multi-sensor approach to nearshore navigation and the benefits of holonomic 

motion both for station keeping and for manoeuvrability. 

This background work informed the development of the holonomic, intelligent, position-aware 

hybrid ROV (iROV) SeaBiscuit, completed in 2009. SeaBiscuit was designed for the same nearshore 

application as Hawthorne 2.1, yet built on the strengths of flexibility between ROV/AUV 

operation, holonomic propulsion and navigation, and the flexibility of a modular, re-configurable, 

multi-purpose frame, hardware, sensing and software. This chapter provides a design overview of 

SeaBiscuit across the areas of mechanical, electrical, machine health, sensing and software. 

SeaBiscuit was designed with several novel features to address the limitations identified with 

Hawthorne 2.1 and alternative habitat mapping techniques discussed in the literature review. 

Chiefly, these comprised improvements to the navigation and mapping sensor suite in terms of 

accuracy, extended coverage and modality, the combination of absolute and relative sensors, a 

sensor-fusion algorithm designed to combine data from multiple sensors to improve the quality of 

navigation, and improved autonomous holonomic control algorithms. 

Hybrid iROV control provided a novel solution to reliable operation in the nearshore, relieving the 

operator of low level control while allowing realtime data supervision and survey direction. This 

was complemented by a hybrid power supply, providing an onboard energy buffer for high power 

manoeuvring thrust with an unlimited survey duration using a thin flexible tether. The technique 

of spin mapping identified in the literature review was extended from a single high-budget vehicle 

designed for closed static environments [29] to the challenging conditions of the nearshore using 

a multibeam sonar with vertical resolution and a scanning sonar with a scanning sector 

independent of vehicle heading. The cylindrical hull and complementary holonomic propulsion 

system were designed to exploit maximum habitat mapping and navigation information from a 

limited budget sensor suite to enable 3D mapping and localisation while underway. The 

opportunity identified to integrate sonar mapping of the kelp stipes to augment video footage 

was also implemented in SeaBiscuit. 
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4.2 Overview of SeaBiscuit design 

Named after both the round, flat marine animal that its circular shell resembles and the champion 

racehorse, the intelligent, position-aware iROV SeaBiscuit represented many significant advances 

over its predecessors. The aim was to build upon the requirements identified from Hawthorne 2.0 

and 2.1 to provide a survey sensor platform capable of operating and navigating in the nearshore 

environment. Figure 4.1 below shows the finished iROV and Figure 4.2 on the following page gives 

a systems overview of SeaBiscuit, together with the specifications in Table 4.1. 

 

Figure 4.1 - The iROV SeaBiscuit, the second generation underwater vehicle pictured in Canada, ready for field trials. 
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Pressure, INS & 
compass sensors

Battery and electronics 
pressure housings

Forward facing multibeam sonar 
and camera

360°  scanning sonar 
& downward facing 
camera (underneath)

4 thrusters for holonomic horizontal movement
2 vertical thrusters for depth control

Rotationally symmetric shell 
for horizontal manoeuvrability 

& rotation, vertical stability
 

Figure 4.2 - A summary of the key features of the iROV SeaBiscuit. 

Table 4.1 - SeaBiscuit specifications 

Dimensions: 850mm L × 950mm W × 460mm H assembled overall 
65kg in air fully equipped 

Frame: Reconfigurable aluminium open-frame, bolted together to allow for easy collapse and reassembly 
(for shipping), modules supported on brackets. 
45° motor frame and sensor mountings are welded aluminium to ensure repeatable mounting. 
Protective and hydrodynamic fibreglass shell encasing all items except for thrusters. 

Pressure Vessels: Dual 225mm diameter HDPE cylinders with aluminium bulkheads contain batteries, computing, 
signal processing and communications equipment. 
Custom made aluminium peripheral housings for cameras, navigation equipment, antennas, tether 
& switch box, cable junction boxes. 

Computing: Dual EPIA PX10000G Pico-ITX motherboards with 8GB SSD, 1GB RAM, ARTiGO housing 

Software: Microsoft Windows XP Professional, National Instruments LabVIEW, C++, OpenCV 

Sensing: Imagenex Delta T 837 Multibeam Sonar 
Imagenex Model 852 Ultra-Miniature Scanning Sonar 
Forward & downward facing Logitech QuickCam S5500 Cameras 
NASA NMEA Gimbal-stabilised marine compass 
SparkFun 6DoF v2 IMU (3DoF Gyroscopes, 3DoF Accelerometers) 
Xsens MTi 6DoF IMU (3DoF Gyroscopes, 3DoF Accelerometers, 3DoF Magnetometers) 
Keller PAA21SR 0-2.5bar absolute external pressure transducer 
SiRFstar III GPS Receiver 
Extensive machine health & diagnostic sensors (temperature, humidity, voltage, current, leak 
detection, housing pressure) 

DAQ: National Instruments USB-6008 and USB-6009 USB Data Acquisition Units (Analogue Input 14-bit, 
48kS/s, Analogue Output, Digital I/O) 

Connectivity: Surface: Wi-Fi (dual) Remote Access (Control, Data, Telemetry, Mission Data) 

Submerged: Umbilical LAN Remote Access (Control, Data, Telemetry, Mission Data) 

Thrusters: Custom built aluminium oil filled thruster housings. 

Horizontal: 4 ×  Maxon RE36 118798 70W Brushed DC Motors 

4 ×  Rivabo Brass 535-075 M5 75mm Propellers 

Vertical: 2 ×  Maxon RE36 118798 70W Brushed DC Motors 
2 ×  Rivabo Brass 535-075 M5 75mm Propellers 

Propulsion: Holonomic propulsion in the horizontal plane, vertical translation (depth), stable in pitch and roll. 

Motor Control: 3 × Polulu dual-channel MD03A Reversible H-Bridges driven by custom AVR motor controller 

Power: Computers and 
sensors: 

2S 12V 4Ah SLA rechargeable batteries 
(24V 4Ah overall) 

1h30 runtime 
(2.5A) 

Motors: 2S 12V 12Ah SLA rechargeable batteries 
(24V 12Ah overall) 

0h25 minimum runtime 
(30A) 

Umbilical power supplied at 32V external connection 

Buoyancy: Buoyancy trim provided by extruded polystyrene foam moulded under the shell. 
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4.3 Mechanical systems 

SeaBiscuit used the same motor layout as its predecessors, Hawthorne 2.0 and Hawthorne 2.1 to 

achieve the same benefits of redundant holonomic movement (section 2.3.2.8). However, the 

frame, shell and internal configuration were completely redesigned. As seen in the following 

sections, this redesign allowed greater reliability and flexibility when operating in the kelp beds. 

 Frame and shell 4.3.1

All components were contained within a 700mm diameter circular, fibreglass hull, formulated to 

give the iROV homogenous drag in the horizontal plane. This simplified the holonomic control 

algorithms and allowed great flexibility for maximising the benefits of omnidirectional horizontal 

movement exploiting the axisymmetric hull. The shell also provided protection of the delicate 

internal components when deploying, operating and recovering the vehicle. 

All stages of manufacture of the upper and lower shells were conducted ‘in-house’, from the 

initial development of a polystyrene plug (Figure 4.3) through to building the mould from which 

identical shells could be produced. Layers of gel coat, fibreglass matting and epoxy resin were 

used to create a strong but lightweight final shell of approximately 4mm in thickness. This in-

house manufacturing allowed complete customisation of shell (and indeed most of the other 

parts used on the vehicle, including the frame, peripheral housings, thrusters and pressure 

vessels). 

The fibreglass shell was supported by a strong but lightweight aluminium frame. Aluminium, 

stainless steel and brass were used throughout construction to limit corrosion depending on the 

qualities of material required (lightweight, strength, and low-friction & non-ferrous strength 

respectively). A sacrificial zinc anode provided protection from the damage due to seawater 

through galvanic corrosion. 

Emergency switches were easily accessible at the rear of the vehicle for safety reasons. The 

heavier battery housing was positioned at the rear of the vehicle to counteract the pitching 

moment forces generated by the heavy multibeam sonar mounted forward on the vehicle. 

 

 

Figure 4.3 - The polystyrene foam plug used to form the hull mould, finished with filler to remove surface 
irregularities. 
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Figure 4.4 - The unpainted fibreglass shell showing the internal aluminium frame and two pressure vessels. 

 Pressure vessels 4.3.2

The watertight containers used to house the batteries and the bulk of the electronics were 

designed and manufactured in-house. The two containers consist of ID 195mm plastic pipe 

400mm long with 15mm wall thickness. These pipes, originally designed for water transport, are 

rated to pressures of up to 10bar. In order to create watertight housings, the ends were sealed 

with bespoke aluminium top hats, each possessing a nitrile barrel O-ring situated within recesses 

on each of the end caps (see Figure 4.5). The tapers included in the lips of the pipe ensured a 

watertight seal which became increasingly effective at greater depths as the external pressure 

compressed the O-ring into the taper. The caps were secured with adjustable latches (Figure 4.5) 

as an additional precaution against the end caps being accidentally knocked off. 

 

 
 

Figure 4.5 - The sealing arrangement of the main pressure vessels (L) Pipe section with O-ring and end cap detail (R) 
The adjustable-tension end cap retaining latch (4 per end). 
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The peripheral housings are of a similar design to the proven main pressure vessels but of smaller 

dimensions as shown below in Figure 4.6. These smaller housings used a transparent 

polycarbonate faceplate to allow cameras to be mounted inside the housings or to allow 

inspection or diagnostic lights. The housings were sealed with a nitrile O-ring. Re-usable silica gel 

sachets were installed in all of the housings to prevent humidity from the damp sea air 

condensing at low temperatures at depth and causing corrosion or damage to the electronics. 

Polycarbonate/PVC 
faceplate

5mm wall thickness, 58mm 
internal diameter, 90mm 
internal length aluminium 
housing with threaded through 
hull machined for cable gland/
connector

M4 stainless steel screws 
clamp faceplate onto 
nitrile O-ring

Figure 4.6 - Example aluminium peripheral housing with a clear polycarbonate faceplate sealed by an O-ring. 

An option when designing the pressure vessels was to fill them with an electrically inert fluid, for 

example mineral oil. This incompressible fluid would allow thinner-walled, smaller, lighter-weight 

housings. However, the benefits gained for this shallow water, therefore relatively low pressure, 

application were deemed negligible when compared to the added difficulty of adjusting, 

upgrading and altering the internal components of what was still a system under development. 

This technique was however implemented on the thruster housings (section 4.3.5). In this case, 

the benefits gained were significant as the thrusters represented a more finished product with 

less ongoing development and therefore less frequent access was required, and sealing a rotating 

thruster shaft is more complex. 

 Connectors and through-hulls 4.3.3

A serious reliability issue with Hawthorne 2.0 and 2.1 was the risk of water ingress through the 

bulkhead connectors. Although the connectors used were of the correct pressure specification, 

they were mechanically fragile and if damaged, would allow water into the pressure vessels. 

To provide electrical and waterproofing reliability, SEACON WET-CON connectors were fitted to 

SeaBiscuit. Wet-mateable connectors were used in applications where the components needed to 

be frequently removed from the vehicle for testing and development. This supported the design 

principle used throughout of flexible, modular, reconfigurable systems and also simplified repair 

and replacement. A common standard of connectors was used throughout the vehicle (detailed in 

section 4.4.4). 10-bar rated nickel-plated brass cable glands were used of varying sizes for the 

through-hulls which did not need to be disconnectable. 
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 Buoyancy and pressurisation 4.3.4

Hawthorne 2.0 and 2.1 used an active pressure compensation system to maintain the internal 

pressure of all housings and thrusters at slightly above ambient pressure throughout a mission. 

This system reduced the weight and manufacturing complexity of the housings as they could be 

rated for a much smaller pressure differential than the true vehicle depth. However, the weight 

added by the air cylinder offset any gain. The air supply was also finite and, as it was exhausted, 

the weight of the vehicle changed by a few hundred grams thus altering the buoyancy and 

requiring corrective thrust. 

To increase the efficiency and reliability of the vehicle, the active pressure compensation system 

was removed in SeaBiscuit. All pressure vessels and peripheral housings were replaced with >5 

bar rated housings, thus allowing unlimited runtime (using the tether to charge the batteries) 

without having to refill air cylinders. The buoyancy of the vehicle was still trimmed to 0.5% 

positive buoyancy using polystyrene foam to enable straightforward recovery of the vehicle 

should systems fail. 

 Thrusters 4.3.5

SeaBiscuit used six reversible variable speed thruster units arranged in the same layout as on 

Hawthorne 2.0 and 2.1 to provide holonomic movement in the horizontal plane and vertical 

control of depth. This system of using opposing thrusters to achieve holonomic motion was 

discussed previously in section 2.3.2.9.1. 

The thrusters were upgraded from the PVC housings containing lower power and lower efficiency 

12V brushed motors used on Hawthorne 2.0 and 2.1. These required an external air supply to 

prevent water ingress and the lower efficiency reduced the runtime of the vehicle considerably. 

Significant reliability, power and efficiency gains were made from the upgrade to these 24V 

thrusters. Each motor could be adjusted to run at any percentage of the top speed of 

approximately 1500 RPM, and was capable of producing 15N of thrust at top speed. 

To increase the reliability and performance of the thrusters over those used on Hawthorne 2.0 

and 2.1, a new thruster housing was designed and built in-house to suit SeaBiscuit. Through in-

house design and machining, the cost was kept significantly lower than a commercial thruster unit 

and the parts could be customised exactly to suit the requirement. Aluminium housings were 

used to enclose DC brushed motors as shown in Figure 4.7. 

Threaded shaft for 
propeller and locking nut

Conical housing allows 
unrestricted flow to propeller

Differential facing lip seals 
with a bilge cavity in between

O-ring seal between the two 
housing parts

Maxon motor

Motor pin connector and 
receiver in nylon holder

 
Figure 4.7 - Section view of thruster housing [322]. 
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A thruster unit consisted of a 70 mm brass, three-blade propeller attached to a high-torque 

Maxon RE36 70W DC graphite brushed motor in a sealed aluminium housing, shown in Figure 4.7. 

The conical shaft seal unit used a bayonet fitting to secure the motor to the rear of the housing 

with a locking key for a quick, reliable fastening. A replaceable brass bushing was pressed into the 

aluminium conical end cap to support the propeller shaft. This held the shaft straight in the lip 

seals to minimise vibration and therefore the possibility of water ingress. 

The tapered motor housing reduced hydrodynamic drag as water was accelerated over the 

housing by the propeller thus improving efficiency. It also allowed a larger intake for better 

reverse thrust efficiency [322]. 

The housings consisted of two main parts, bolted together and sealed with a compressed O-ring. 

With the correct manufacturing tolerances, the O-ring seal between the two sides of the housing 

was reliably waterproof. To prevent water ingress around the rotating propeller shaft, two lip 

seals were used, with an oil-filled bilge cavity between them. One lip seal faced outwards to resist 

the increased water pressure upon diving and a second lip seal faced inwards to prevent the oil 

leaving the housing in the case of a reverse pressure differential – e.g. temperature changes (hot 

thrusters, cool ambient temperature) or transporting the vehicle by airfreight at high altitudes. 

To allow the motors to be run at high power (>300W) to provide the sudden impulses of thrust 

required for station keeping in rough conditions without overheating, the motors were sleeved 

into the aluminium housing to allow a good thermal conductivity with the housing wall. As the 

housing was cooled by the water flowing over it, it acted as a large heat sink. The thruster 

housings were also oil filled to cool and lubricate the motors. 

Propeller nozzles were fitted increasing the performance of the motors through thrust 

augmentation by concentrating the flow aft, in addition to being a crucial safety feature. A fine 

mesh screen was also fitted around both sides of the nozzles to prevent any foreign bodies 

entering the thrusters, of particular importance when operating in the kelp beds. 

The thruster housings were filled with lightweight hydraulic oil designed to inhibit rust and 

oxidation. This not only prevented corrosion when operating in the damp environment but also 

protected the motor from any ingress of water. The oil was virtually incompressible compared to 

air and so resists the deformation of the seals under high external pressures allowing the 

thrusters to operate at a much greater depth than if they were air filled. 

The oil was inspected and changed together with the lip seals on a regular service schedule; 

typically the oil was inspected after each series of deployments and the lip seals changed if water 

ingress detected. An inspection point via the easily removable cable gland allowed the oil level 

and quality to be examined without having to disassemble the motor and disturb the seals. This 

allowed a failing seal to be changed in plenty of time without risking damage to the motor. 

A sensor framework and associated wiring is in place (although not yet implemented) to 

complement the existing machine health system by sensing the motor temperature to detect 

sticking or overloaded thrusters and also to measure the conductivity of the oil, thus alerting the 

system to water ingress. 

The four horizontal thrusters were mounted with their propellers facing forwards so that when 

the vehicle was moving with a forward component, the propellers were leading. This allowed a 

relatively undisturbed flow of water to reach the propellers; in reverse, the flow has to pass over 

the thruster housing, and various mounting brackets. It was proved experimentally that the 
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thrusters were more efficient in this orientation with the propeller leading [330]. As the vehicle 

was expected to spend more time moving with a forward component than a backward 

component, the thrusters were mounted for maximum efficiency most of the time. 

The vertical thrusters were mounted with the propellers facing downwards which maintained the 

propellers submerged in the water when the vehicle was floating at the surface. This downward 

mounting orientation allowed a high waterline, thus enabling surface wireless transmission with 

the antennae out of the water while still submerging the propellers to allow the vehicle to dive 

when required. In addition, the propeller units are more efficient when the water enters the 

propeller through the nozzle and is accelerated out through the back of the nozzle and over the 

motor housing [330]. The vehicle was designed to be positively buoyant as a failsafe and so, 

because much of the time is spent driving the vehicle downwards to counteract this buoyancy, 

the vertical propeller units were orientated to provide maximum efficiency when driving the 

vehicle downwards (the most common direction). 

4.4 Electrical systems 

The electronics and electrical systems in SeaBiscuit underwent a complete redesign and rebuild 

from those which were tested in Hawthorne 2.0 and 2.1. This built on the strengths of Hawthorne 

2.0 and 2.1 yet increased reliability, performance, efficiency and sophistication. A brief summary 

of the electronic systems is contained in the following sections. 

 Systems overview 4.4.1

Figure 4.8 shows the overall systems layout of SeaBiscuit. To improve reliability, wherever 

possible the high current components such as the motor drive and battery charging circuits were 

isolated from the sensitive sensing and control systems, either by ensuring physical separation of 

the cabling as far as possible, or by using separate pressure vessels. 

The ‘Battery Tube’ contained all of the high-current, high-heat output heavy electrical systems 

such as the batteries, charging systems, surface/battery changeover relays, battery isolators and 

motor drive electronics. This was physically isolated from the ‘Computer Tube’ which contained 

all of the computers, microcontrollers, signal processing, auxiliary navigation equipment and 

communications equipment. The sensitive navigation equipment was further isolated from all 

electrical noise and electromagnetic interference from high-current cabling, ferrous materials and 

the thrusters in a third aluminium housing underneath the vehicle. This modular design afforded 

reliability but also flexibility in testing, repairs and upgrades. 

For safety, emergency power switches were fitted on the rear of the vehicle with a separate 

isolator for the motors and for the computers. This allowed the motors to be stopped in an 

emergency without necessarily stopping the computers. Magnets affixed to emergency pull cords 

activated reed switches which in turn operated the battery isolators. 

The physical separation of each peripheral housing and the use of bulkhead connectors rather 

than cable glands also improved reliability when considering fault propagation. For example, 

water ingress from the exposed and easily damaged antenna box, could not spread through cable 

glands to more crucial components. In the case of the tether box, plugs were connected and 

removed regularly and therefore it was most susceptible to damage. However, by the provision of 

a separate tether box, any water ingress could not propagate further, avoiding damage to the 

contents of the computer or battery tubes. 
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The overall electrical layout is split into sub-systems and is discussed briefly in the following 

sections. 

The iROV SeaBiscuit
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Figure 4.8 - Summarised systems overview of SeaBiscuit showing opportunity for expansion via auxiliary actuators 
and peripherals. 
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 Tether and communications 4.4.2

The tether provided three functions: power for charging the onboard batteries, communications 

and control and a safety line. Figure 4.9 shows the key functionality and full details are provided 

in the standards detailed in Appendix A. 

iROV
Surface 

Operator

Safety Line

Control

Telemetry & Mission Feedback

Power

Video Feedback

 

Figure 4.9 - The functions performed by the tether. 

An onboard Local Area Network (LAN) was used to interface the high-bandwidth devices 

contained on the vehicle (control PC, vision PC, sonar) and indirectly all sensors and actuators. 

This onboard LAN was linked to the surface station router via the communications line (CAT6 

Ethernet) where one or more laptops on the surface connected via cables or surface wireless. 

The Ethernet tether facilitated straightforward testing and diagnostics, control, programming, 

sensor feedback and viewing sonar/video data in realtime. A Graphical User Interface (GUI) 

(discussed in the software section 4.7) allowed full remote control from the surface and sensor 

feedback. The network was also used to download data, to plan and initiate the next mission and 

to toggle the various autonomous functions. 

LEDs on the rear of the vehicle, mounted behind the clear tether box cover, provided simple 

diagnostic information (power on, charge on). These were controlled via a USB data acquisition 

board on the vehicle. Ethernet independent diagnostic lines allowed these to be monitored at the 

surface via unused conductors in the communications tether. 

Via the surface (optionally wireless) network, the sensor data was archived and streamed about 

the vessel, allowing researchers to view the incoming data and to direct the survey. Additionally, 

when operating with a live surface vessel (not-anchored) the skipper was able to view the survey 

in progress and position the surface vessel accordingly. 

A wireless (Wi-Fi) data link replicated all of the tether communication functions when the vehicle 

was at the surface for flexibility through a high-gain waterproof antenna mounted in a separate 

antenna box on top of the vehicle connecting to the surface station router. This separate antenna 

enclosure was partly to raise the GPS and Wi-Fi antennas out of the water for increased signal 

strength while still keeping the sonars underwater, but also meant if the antenna became 

damaged and leaked, the leak would not compromise the main computer housing. 

A 4-core 6A power cable provided a dual surface supply and charge line to both vehicle power 

circuits. SEACON WET-CON wet-mateable connectors were used to terminate the tether with 

automatically isolated pins on the vehicle, allowing for underwater connection and disconnection 

in the water. 

Finally a safety line was attached to the vehicle, allowing it to be towed or recovered while 

providing strain relief for the tether cables. 

The tether used for initial trials was 30m however, longer tethers are possible, limited by the 

100m maximum length IEEE 802.3ab Ethernet specification [331]. For operation in the nearshore 
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environment, the surface vessel was always in close proximity and the maximum tether length 

was not a restriction on operation; longer tethers would also increase the risk of tangling. 

Although power was carried by the tether, the battery pack on the vehicle was always present 

onboard. This was partly for reliability reasons and partly for performance issues. By carrying the 

battery power onboard, should the tether become damaged or disconnected then the vehicle 

could continue to function safely and be recovered without losing data. 

The onboard battery pack also allowed a much smaller diameter cable to be used in the tether – 

the power supplied from the surface was current-limited to the diameter of the cable. This power 

was used to run the computers and to continuously trickle charge the batteries on board. When 

the high-current motors were run, the onboard batteries supplemented the tether power supply. 

The voltage drop over the length of the tether was also less of a problem with the low current 

trickle charge as the voltage drop is proportional to current.  

Foam buoyancy floats were fitted along the length of the tether to maintain neutral tether 

buoyancy. This meant the weight of the tether would not prevent the vehicle from descending 

and ascending freely. A minimum tether thickness was also important as the tether thickness 

determines its drag; in order to maintain manoeuvrability, the vehicle still needed to be able to 

turn freely and quickly without the tether pulling on the vehicle [25]. The lighter, smaller diameter 

tether reduced the control issues with towing a long cable behind the vehicle. 

 Power supply and distribution 4.4.3

Onboard power was provided by two independent Sealed Lead Acid (SLA) battery packs as 

detailed in Table 4.2. The batteries were recharged in-situ via the surface tether. One battery pack 

was used to power the 24V thrusters and the other used for the sensitive computers, control 

electronics and sensor systems. This dual supply system isolated the sensitive electronics from 

electrical noise, interference and voltage sags caused by the high current operation of the 

thrusters. The system improved reliability and improved the quality of sensory measurements. It 

also allowed the computers to operate independently of an exhausted motor battery pack, 

allowing the vehicle to return to the surface passively, signal the end of its mission and then 

download the mission data before being recharged ready for the next mission. 

Table 4.2 - Battery pack specifications 

 Batteries used: Capacity: Runtime off batteries: 

Computers, sensors 
and control electronics: 

2 * Yuasa NP4.0-12 24V (2*12V) 4Ah (48Wh) 2hours assuming maximum loading 

Motors: 2 * Yuasa NP12-12 24V (2*12V) 12Ah (144Wh) 40mins assuming 18A [20% thrust] 
continuous running at 100% duty cycle 

The surface tether was capable of fast charging the batteries and supplying sufficient power for all 

computers and sensors, together with moderate thruster use. The runtime figures provided above 

are conservative estimates based on maximum loading if the tether was not used. In reality, a 

longer duration running off batteries could be achieved if sensors were only turned on when 

required and the motors rarely ran continuously at 100% duty cycle. All circuits were fused, 

including the surface supply and an overall fuse protected each battery supply. Battery isolators 

allowed maintenance to be carried out safely. 

The batteries were contained in a separate housing to the computers and sensors to provide as 

much isolation as possible between the high current drive systems and the sensitive electronics. 

However this also allowed the vehicle specific batteries, motor drivers and cabling to be semi-

permanently installed in the vehicle whereas the separate computer unit and sensors could be 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

117/347 

removed, either for development and upgrades or to be used on a separate vehicle using the 

common interface standards detailed in Appendix A.  

The battery housing also contained the isolation relays, the custom built microcontroller used to 

generate the high frequency motor Pulse Width Modulation (PWM) signals, the motor drivers, 

and a variety of sensors to monitor the state of charge and condition of the batteries. 

Sealed Lead Acid (SLA) batteries were initially selected for their low cost and straightforward 

charging methods [332]. However, it was recognised that much higher energy densities were 

available from alternative battery chemistries such as Lithium Polymer (LiPo) cells. However, 

these space and weight savings, or alternatively longer runtimes, came at a price [333]. The cost 

of LiPo cells was considerably higher and the charging methods more complex. The power 

distribution system was designed to be adaptable between cell chemistries and voltages so the 

battery type can easily be swapped in the future if required. 

A complex arrangement of changeover and isolator relays (section Appendix B) ensured the 

exposed pins on the tether box at the rear of the vehicle remained automatically isolated and 

unpowered until the tether was connected. This not only ensured safety if the pins were 

accidentally shorted during launch or operation, but also prevented electrolysis and corrosion of 

the pins when connected/disconnected underwater. A blanking plug was provided for additional 

protection. 

The tether was powered at 32V DC and switch mode power supplies converted this to the various 

voltage levels required throughout the vehicle, thus mitigating any problems with a variable 

voltage supply or voltage drop. The supply voltage input was also wide-range. This allowed a 

coarse power supply to be used to run and charge the vehicle – for example, the 12/24V 

alternator output typical of a research vessel could be used directly. 

The machine health system, discussed later in section 4.5, measured voltage and current 

throughout the vehicle, which allowed both the remote operator and the machine health 

algorithms to monitor the system. 

 Standard connectors and protocols 4.4.4

The common standards and protocols for connectors and interfaces implemented on Hawthorne 

2.0 and 2.1 were implemented on SeaBiscuit with some revisions. These standards have been 

adopted on all other pieces of underwater equipment and instrumentation built in the Ocean 

Technologies Laboratory at the University of Bath. Further details are contained in Appendix A. 

The standard for connectors uses the SEACON WET-CON series of wet-mateable connectors. All 

connectors are keyed to ensure the correct orientation of insertion, with different pin 

configurations signifying different interfaces. Peripherals, actuators and sensors could all be 

swapped and interchanged between positions on SeaBiscuit and other vehicles and equipment. 

Table 4.3 - Standard connectors and protocols 

3 pin 24V PWM and polarity controlled actuator with optional data feedback, e.g. a thruster, lights 

4 pin USB with a high-current 5V line capable of powering peripherals and sensors 

5 pin RS485 with an optional 24V power supply 

6 pin USB connection with the high-current 5V line and an additional 12V option 

8 pin Ethernet with an optional 24V Power over Ethernet option (e.g. tether, sonar) 

4 pin (large) Dual-circuit power distribution (tether, battery and computer tube input / outputs) 
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Wherever possible, two data protocols were used. USB was used for low-bandwidth peripherals 

for the ease of multiplexing many peripherals using USB hubs. To allow for many peripherals on 

one bus, the 5V USB line was boosted with a high current supply. Ethernet was used when high-

bandwidth was required (e.g. multibeam sonar, inter-computer communication) or long cable 

runs were necessary (e.g. tether). 

By using these common standards for connectors and communication protocols, the principle of 

reliability of ‘if it fits, it works’ was applied throughout for simplicity of field operation.  

 Motor drivers 4.4.5

SeaBiscuit used a custom motor controller, built around an Atmel AVR Microcontroller to receive 

commands from the computer over an RS232 connection to control the speed and direction of 

each motor with 500 possible speed levels in each direction. The microcontroller generated the 6 

simultaneous PWM signals required to drive the motors. 3 × Polulu dual-channel MD03A 

Reversible H-Bridges (VHN3SP30) were used to drive the 6 thrusters. These motor drivers were 

fitted with heat sinks and cooled by a recirculating fan.  

 Battery management 4.4.6

Each battery was charged with a constant current for the bulk charge, then a constant voltage for 

the float charge as detailed in Appendix B. Charger temperature, charge and discharge current, 

voltage, battery temperature and the housing pressure from any hydrogen gas given off were 

monitored during charge/discharge operation. A low-voltage cut off circuit protected the 

batteries from deep discharge.  

 Computers and control system 4.4.7

The proven dual computer setup from Hawthorne 2.0 and 2.1 was used in SeaBiscuit, but 

upgraded to dual EPIA PX10000G (1 GHz, speed stepped for efficiency) Pico-ITX Series 

motherboards with 8GB SSD, 1GB RAM in an ARTiGO housing. When compared to the previous 

Mini-ITX boards, the Pico-ITX series were approximately 25% of the footprint and had a lower 

power consumption (<10W) for a comparable processing power. Both computers ran Windows XP 

Professional for ease of development and remote management and used solid state hard drives 

for reliability (mitigation of problems associated with humidity, condensation, pressure changes, 

vibrations, shocks) and for performance and efficiency. 

One onboard computer performed high-level control, mission-planning, mapping, navigation and 

machine health while a second computer performed the processor-intensive vision and sonar 

processing. The computational load was redistributed depending on the mission in progress and 

the sensors in use. All algorithms were written to run on either computer with a full 

communication system established between the two computers to allow seamless 

interoperability. Space and wiring was provided for a third computer of the same form factor to 

provide increased onboard processing power, for example, separating vision, sonar and mapping, 

or increasing the frame rates of both sonars while mapping. 

All timing critical operations, such as generating the motor control PWM signals and navigation 

timing were offloaded to dedicated microcontrollers. This allowed for realtime operation where 

necessary but retained the flexibility of interfacing with the main control computer. In the case of 

the navigation timing, the vehicle’s heading and position were estimated from an integration of 
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angular velocity and linear acceleration respectively. Therefore the accuracy of the vehicle’s state 

estimate depended not only on the accuracy of the measurement, but also crucially on the timing 

of the integration operation. Future developments could offload the machine health core systems 

to dedicated microcontrollers for further reliability. 

4.5 Machine health 

Recalling the literature review in Chapter 2 into the principle of machine health, and techniques 

for fault detection, fault reaction and fault tolerant control, an extensive network of machine 

health sensors, controllers and algorithms was built into SeaBiscuit, demonstrating significant 

advances over Hawthorne 2.0 and 2.1. 

 Fault detection 4.5.1

Each sensor used an appropriate interface circuit to drive and read the sensor, and if necessary 

condition and amplify the output. The analogue or digital sensor outputs were then interfaced to 

a set of National Instruments USB Data Acquisition (DAQ) Cards (USB-6008 and USB-6009) 

strategically placed throughout the vehicle in each of the three main pressure vessels (navigation, 

computer and battery containers). These DAQ cards allowed the data to be read directly into 

LabVIEW control programs where additional filtering was performed. 

For each sensor, an upper (and lower if necessary) working limit and a safety limit were defined 

from a combination of operational testing under normal conditions and from the sensor 

datasheet. The sensors implemented in SeaBiscuit are listed below: 

Water ingress: 

Humidity detectors were installed in each pressure vessel to detect slow leaks, the potentially 

damaging effect of condensation and saturation of the silica gel desiccant sachets. Leak detectors 

measured continuity across separated conductors to detect the more rapid ingress of water. 

Communication failure: 

A communication failure to a peripheral was assessed based on the importance of that peripheral 

for the current mission. If the peripheral was essential then the mission was aborted. For a non-

essential peripheral, the fault was logged to be inspected after the mission completed. 

A communication failure to the surface operator when operating in iROV mode terminated the 

current mission, turned off all motors for safety and implemented an ascent either for recovery or 

for diagnostics using the surface wireless connection. A continual ping (a ‘heartbeat’) monitored 

the communication link with a timeout period to allow for momentary interruptions. 

Navigation sensor failure: 

If a fault with a navigation sensor was not detected then it could either reduce the navigation 

capabilities of the vehicle, or in the worst case, provide otherwise unnoticed false readings, 

causing errors in mapping and localisation. If uncorrected, this could cause the vehicle to exceed 

its safe operating depth or cause a collision, both of which would lead to more serious problems. 

The sensor fusion navigation algorithm continually compared estimates of the same state from 

multiple sensors (e.g. vertical position was measured by external pressure, dead reckoning, sonar-

detected altitude etc.). If a discrepancy arose between sensors then the incorrect readings were 
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discounted. This was realised by a simple voting algorithm (section 2.3.2.4.2.1). In the case of a 

faulty sensor, provided sufficient information was available from other sensors, the mission could 

continue using the built in redundancy of the design. 

Overheating: 

Thermistors and Resistance Temperature Detectors (RTDs) were installed on all key components 

to measure ambient temperatures in several zones. Overheating could cause damage to 

components or incorrect readings from sensors such as those used for navigation. 

Overheating electronics or navigation sensors were shut down and, provided sufficient systems 

remained, the mission continued with reduced capabilities. The computers were ‘speed-stepped’ 

which reduced processor speed either on overheating or when at idle to reduce energy 

consumption and heat output. 

Thrusters: 

A framework was designed to measure the temperature of both the motors and the motor drivers 

to throttle back overheating motors/drivers using the built in redundancy of the system. Wiring 

was installed to measure motor temperature and rotational speed, however these sensors have 

not yet been implemented. 

Sticking or jammed motors were detected by monitoring the current drawn by each motor with 

respect to the PWM voltage applied. At a later stage, speed feedback of the motors could also be 

used to detect sticking or jammed thrusters. A short burst in the opposite direction was 

sometimes enough to clear the propeller mesh screen of seaweed or debris. A persistent jammed 

or sticking motor was disabled and the built in redundancy of the propulsion system allowed the 

mission to continue to some extent. 

Internal pressure: 

The internal pressure of the main housings was monitored – any increase in pressure at depth 

(after temperature compensation) indicated a failing seal and the mission was aborted. The 

internal pressure of the battery tube was monitored to verify that any hydrogen gas given off by 

the sealed lead acid batteries was being correctly vented by the pressure relief valve. 

Power Supply: 

The surface power supply was continually monitored when present as was the battery voltage 

and current. The battery charge voltage, current and temperature were also monitored and the 

charger output thermally ramped to protect the chargers. 

The state of charge of the batteries was monitored by voltage measurements but also by 

monitoring the charge and discharge currents over time. This allowed mission decisions to be 

made by monitoring the amount of energy remaining. For example, when operating from the 

tether, the vehicle speed could be reduced to allow the onboard battery buffer to recharge. 

 Fault reaction 4.5.2

Fault reaction is the second part of the machine health system. If a working limit was exceeded 

then corrective action was taken to try to bring the fault back within working limits. If the fault 

continued to develop, and the safety limit was exceeded, then an emergency mission abort was 

performed. 
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In the case of hybrid user-operated mode, a series of dials and warning lights on the graphical 

user interface provided a clear, concise and easy to see at a glance overview of the essential 

systems of the vehicle. Temperature, humidity, pressure and leak detection for all key systems 

were displayed and, if warning limits were exceeded, the user was notified and encouraged to 

adjust the operation to bring the levels back under control. If the fault continued to develop then 

the system was overridden by the machine health algorithm which safely aborted the current 

operation, allowing the vehicle to surface for recovery. 

The fault specific reaction is briefly summarised in the section above which discussed individual 

sensors. In the case of a communications failure, the algorithms were written to be ‘failsafe’ – i.e. 

if a positive acknowledgement that the system is ok was not received then a fault is assumed to 

be present and the appropriate corrective action taken. 

4.6 Sensing and algorithms 

Based on the observations and conclusions from the test bed underwater vehicle Hawthorne 2.0 

and 2.1, the navigation suite underwent a complete redesign with the addition and integration of 

several new sensors: 

1. Upgraded forward and downward facing cameras – increased resolution and improved low-

light sensitivity. 

2. The addition of an Xsens MTi 6DoF Inertial Measurement Unit (3DoF Gyroscopes, 3DoF 

Accelerometers, 3DoF Magnetometers). 

3. The use of the Imagenex Delta T multibeam sonar for navigational data as well as gathering 

scientific survey data. 

4. The addition of an Imagenex 360° Model 852 Ultra-Miniature Scanning sonar for 360° 

horizontal plane long range detection. 

This section provides a brief summary of the various navigation sensors fitted to SeaBiscuit. The 

hardware specifications are provided together with the software algorithms required to extract 

useful navigational data from each sensor. A measure of the uncertainty associated with each 

sensor is also considered, together with an approximation of the sensor characteristics. The 

sensor characteristics include modelling the environmental conditions which affect the 

performance of each sensor. The effect of changing environmental conditions on the dynamic 

accuracy and reliability of each sensor is also considered, including techniques for assessing the 

dynamic accuracy and reliability autonomously. 

At this stage, each sensor is considered individually and it is not until the following chapter that 

the sensor fusion algorithms are introduced. The chapter on sensor fusion details the algorithms 

used to evaluate each estimate based on an uncertainty value and then use its contribution to 

update the vehicle position. 

 Navigation sensor suite overview 4.6.1

Table 4.4 provides a summary of the type of navigational data each sensor was most commonly 

used for and where possible a brief summary of any conditions required for the sensor to operate. 

The distinction between absolute and relative sensors or idiothetic and allothetic is also included. 

The diagram should be interpreted in conjunction with the notes following it. 
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Table 4.4 - A matrix overview of the navigation sensor suite showing the data most commonly used from each 
sensor. The red, green blue colour coding is used to discriminate between x, y and z position respectively, and roll, 
pitch and yaw angle respectively. See following text for detailed discussion.  
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The axes referred to in Table 4.4 were defined earlier in Figure 2.7 (page 66), where the origin of 

the z-axis (vertical) is defined as water surface. This is important when considering the depth of 

the vehicle beneath the water surface versus the altitude of the vehicle above the seabed. For 

example, when calculating Z position with the Delta T sonar, it is the altitude rather than the 

depth which is measured (provided the seabed is visible). The seabed is rarely flat and a uniform 

distance from the water surface, making inference of the depth from sonar measurements 

difficult unless the water surface can be reliably detected on the sonar scan. However, the 

external pressure sensor provides an accurate and reliable complementary measurement of 

submerged depth. 

Considering the Delta T sonar, if θx θy θz are known, then the X, Y and Z position of the vehicle can 

be calculated if known stationary sonar targets are observed, or stationary sonar targets are 

reobserved and corresponded between successive frames. Conversely, if the X, Y and Z position of 

the vehicle is known relative to a known sonar target, then θx θy θz can be calculated. This second 

case however is less useful when considering what information is usually known from other 

sensors. Hence Table 4.4 only shows the most common information extracted from each sensor. 

Further details associated with each sensor are presented in the sensor specific following 

sections. 

The greyed out sensors to the right in Table 4.4 show sensors which are not currently fitted to the 

vehicle. The CMPS03 compass sensor and the SparkFun 6 DoF IMU were both superseded by 

more accurate and reliable models (details of which are discussed in following sections). Stereo 

vision cameras to add depth perception to visual data have not yet been implemented. 

The final dashed entry to the right in Table 4.4 represents the ease with which additional sensors 

can be integrated into the hardware and software framework. For example, as and when the 

budget allows or the application dictates, supplementary higher quality sonar and INS units could 

be added. Sensors such as Doppler Velocity Loggers (DVL), USBL (Ultra Short Base Line) units or 

GIB (GPS Intelligent Buoy) surface markers could also be integrated. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

123/347 

When considering if the sensor framework is complete, or at least adequate for a mission, a scan 

across each row of the matrix in Table 4.4, (representing each degree of freedom or axis of 

movement) quickly highlights any sensory shortcomings. A good mix of relative and absolute 

measurements of each degree of freedom can be verified. The trade-off between relative and 

absolute sensors (drift versus robustness to external disturbances and a requirement for external 

landmarks / satellites / etc.) was explored in previous sections. 

The omission of a DVL is noted given the literature review in Chapter 2 identifying possible 

benefits for nearshore navigation. Although subject to cumulative errors due to dead reckoning, 

with limitations on operating in shallow water with turbulence and midwater vegetation and with 

size and budget constraints, the use of DVL navigation was considered for SeaBiscuit. However, it 

was the budget limitation which prevented its integration, in trying to maintain the total cost of 

the vehicle suitable to small-scale field research operations and in trying to achieve optimum 

navigation capabilities in the nearshore on a budget. A DVL would have perhaps provided more 

useful positional information than the Imagenex multibeam Delta T sonar, and would not have 

required sonar landmarks to navigate from. However, the budget was not available for both of 

these relatively expensive instruments and the multibeam sonar was required anyway for habitat 

mapping. Therefore, the focus was to use the multibeam sonar for these dual purposes – habitat 

mapping and navigation information, which followed the design principle of trying to achieve 

optimum navigation on a budget through innovative techniques. 

The following sections provide an overview of the each sensor’s hardware, software, application 

suitability and characteristics. 

 Magnetic compass 4.6.2

A NASA Marine Instruments NMEA (National Marine Electronics Association) Marine Compass 

Sensor provided a mechanically gimballed fluxgate reading of yaw angle (θz), giving a stable 

reading in up to ≈±30° of pitch and roll of the vehicle. However, although this provided a stable 

reading, it had a relatively slow update rate of ≈2Hz and a relatively slow response time to sudden 

angular accelerations (mechanical damping). These characteristics are complementary to the 3D 

magnetometers discussed in section 4.6.5 and, when coupled using the sensor fusion algorithm, 

provide a reliable estimate of yaw under all conditions of operation. 

The accuracy of the compass is quoted as ±1° and the resolution as 0.1° [334]. In section 3.3.2.3 

the aim of providing accurate and reliable navigation on a low budget, and using innovative 

algorithms to supplement low-end sensors was discussed. This compass was a relatively 

inexpensive unit representing only one class higher than the non-gimballed hobbyist unit which 

the NMEA compass superseded. The previous model fitted, a Devantech CMPS03 electronic 

compass using a Philips KMZ51 magnetic field sensor, provided a much faster update rate of 

≈85Hz, however errors were quickly introduced if a pitch or roll angle was applied. The 

combination of the NMEA compass and the 3D magnetometer (detailed below in section 4.6.5) 

provided a superior output in every respect, hence the removal of the CMPS03 sensor. 

The NMEA 0183 output was interfaced through an RS232 to USB converter into the navigation 

USB bus. Power was provided via a 12V supply at <0.1A. A simple NMEA 0183 sentence parser 

read the data stream, performed basic error detection and then output the bearing with a 

timestamp to the navigation algorithms. 

The data provided by the compass sensor was absolute meaning that each new reading did not 

depend on a previous reading. This meant the positional information was not prone to drift 
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causing large cumulative errors to build up over time. However, the measurement was dependent 

on external factors (the Earth’s magnetic field) thus making it susceptible to interference or 

errors. This was a trade-off with relative sensors which can be seen in the matrix in Table 4.4. 

The compass output a bearing relative to magnetic north and in normal ocean environments the 

output was reliable. However, when operating in industrial or commercial environments, for 

example, docks, piers, harbours and tanks, or when operating close to a surface support vessel, 

interference from these nearby ferrous structures could affect the reading. The sensor fusion 

algorithms were used to evaluate the magnetic compass reading against other measures of yaw 

angle to detect and mitigate the errors. 

 External pressure sensor 4.6.3

The external pressure sensor (Keller, PAA21SR, 0-2·5 bar absolute) was used to estimate the 

submerged depth of the vehicle. The centre of the blue fibreglass shell (and thus the welded 

aluminium frame beneath) was defined as the centre of the X and Y axis of the vehicle. The top of 

the blue shell was defined as the zero point in the Z axis. Thus, when the vehicle was at zero 

depth, the waterline was level with the top of the shell. The vertical motors were submerged 

ready for diving, the sonar units were submerged for scanning and the GPS and Wi-Fi antennas 

were out of the water for communication. 

The pressure sensor was calibrated for each operating environment. For the kelp bed mapping 

operation the vehicle was typically operating in 11°C, 3% salinity sea water. Different calibration 

values were used in different environments to allow for the varying water density. 

The analogue output voltage was read by a National Instruments DAQ (Data Acquisition) card 

(USB-6009). The analogue voltage was converted to a depth reading and basic error detection was 

performed. The sensor was typically sampled at 10Hz and has an error band of <2% over 0-50°C 

(1% typical – error band included linearity, hysteresis, zero and span offsets, temperature effects 

and repeatability) [335]. 

The pressure measurements were absolute, therefore each new reading did not depend on 

previous values. The effects of vehicle movement affecting the measured pressure were avoided 

to some extent by housing the pressure sensor within the fibreglass shell. However, the sensor 

was susceptible to wave motion causing an increased water pressure, hence mapped data was 

referenced in the z-axis to the seabed where possible as the tide and wave height determined 

how high (in altitude) the vehicle was able to ascend. It was possible to estimate wave height and 

sea state while underwater by combining the multibeam sonar measure of altitude to the external 

pressure sensor measurement of depth. 

 Global Positioning System (GPS) receiver 4.6.4

SeaBiscuit was fitted with a SiRFstar III GPS receiver which was mounted in the antenna housing 

on top of the vehicle. A USB interface connected the GPS unit to the navigation computer. The 

accuracy of the GPS system was primarily dependent on the number of satellites available and 

typically a few metres at best. The antenna housing was mounted as high as possible on the 

vehicle to ensure the best possible satellite reception when the vehicle was at the surface. The 

SiRFstar III receiver was also WAAS/EGNOS enabled (Wide Area Augmentation System / European 

Geostationary Navigation Overlay Service) which allowed for enhanced accuracy when operating 

in areas with WAAS/EGNOS coverage. 
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 Inertial navigation system 4.6.5

As originally described in section 3.6.1.1, the test bed Hawthorne 2.1 was fitted with a SparkFun 6 

Degree of Freedom (DoF) Inertial Measurement Unit (IMU) for the 2008 sea trials. At the end of 

section 3.6.1 it was proposed to use an additional amplifier to amplify the analogue output of the 

accelerometers to improve the sensitivity of the accelerometers and allow small accelerations 

typical of underwater navigation to be detected by the ADC.  

A suitable 3-channel low-noise amplifier was designed and fitted. This amplifier did increase the 

sensitivity of the accelerometer circuit and reduced the quantisation error of the ADC by allowing 

the small magnitude accelerations to fill the full 10-bit ADC window, reducing drift to some 

extent. However, the accuracy was still deemed insufficient for the navigation of Hawthorne 2.1 

and later vehicles. 

The overall Signal-to-Noise Ratio (SNR) was not improved. The amplifier, although low-noise, still 

introduced further noise onto the signal. From the conclusions drawn in section 3.7 the SparkFun 

IMU was shown to be insufficient as a sole source of navigation information. The SparkFun IMU 

was replaced with a more accurate and sophisticated IMU, the Xsens MTi and the data used by 

the sensor fusion algorithm rather than independently for navigation. As discussed in section 

3.3.2.3, with the aim of using innovative algorithms to achieve a high level of underwater 

navigation on a restricted budget, the Xsens MTi INS was a relatively low budget unit and was one 

of the cheapest INS units commercially available above the hobbyist class of units. 

A brief comparison of the specifications to justify this upgrade follows in Table 4.5. This table is 

only a brief overview to demonstrate that the Xsens MTi INS was a more accurate, reliable and 

capable INS which also included calibrated 3-axis magnetometers. More detailed specifications 

can be found in the Xsens MTi technical documentation [336]. 

Table 4.5 - A comparison of IMU hardware 

 SparkFun 6DoF v2 IMU Xsens MTi INS 

Gyroscopes: 300°/s max turn rate 
Sensitivity: 0.977°/s 

300°/s max turn rate 
Sensitivity: 0.0092°/s 

Accelerometers: ±1.5g maximum 
Sensitivity: 0.0598m/s² 

±1.7g maximum 
Sensitivity: 0.000505m/s² 

Magnetometers: Not present 3 axis calibrated magnetometer 

Update rate: 107Hz 120Hz 

Factory 
calibration: 

No, raw ADC output, requires 
calibration 

Yes, calibrated output values 

Internal filtering: 
 

None Internal Kalman filtering (user selectable scenarios) of 
gyroscope and magnetometer data to orientation output 

Approx. cost: £200 £2,000 

 

The Xsens MTi INS was mounted in the isolated navigation tube underneath the vehicle, centred 

on the vehicle frame and mounted rigidly and in an accurately repeatable position. The 

magnetometers were separated as far as possible from ferrous materials and electromagnetic 

interference. 

The effect of constant ferromagnetic materials on the vehicle was corrected for in 3 dimensions 

by performing a ‘hard and soft iron calibration’ on the MTi using an Xsens software module 

‘Magnetic Field Mapper’. This updated the calibration values stored on the device. Non-

deterministic electromagnetic or ferromagnetic disturbances, for example caused by high-current 

cabling, or when operating in close proximity to ferromagnetic structures, could not be corrected 

for but the effect of this was largely avoided by the internal filtering which combined readings 
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from the gyroscopes and magnetometers to give an output inclination. This filtering technique 

aimed to avoid the drift of the relative gyroscopes while avoiding the external interference 

affecting the magnetometers and is discussed further in section 4.6.5.2. 

The Xsens MTi was connected to the navigation tube USB bus via the Xsens-supplied RS232 to 

USB converter. The filtering, smoothing, temperature and voltage compensation and calibration 

operations which were previously performed on the SparkFun IMU data output were not required 

as they were all performed internally to the Xsens MTi. Instead, a simple parsing algorithm read 

the output data stream to extract the acceleration, inclination (either separate gyroscope and 

magnetometer data or the internally filtered combined estimate) and status measurements. Basic 

error detection was performed on the output data stream before the parsing algorithm output 

the data with a timestamp to the navigation algorithm. 

As the accelerometers and gyroscopes were relative sensors, each new integrated position 

estimate depended solely on the previous (t-1) estimate. This made the positional information 

robust to external interference but prone to large cumulative errors and drift. The 

magnetometers were the opposite; they were susceptible to external electromagnetic 

interference, but did not exhibit any drift as each new reading was an absolute reading of the 

Earth’s magnetic field and not dependent on any previous cumulative estimate. 

The software operations to convert the INS data into useful navigation information are now 

considered. The data processing and sensor fusion algorithms were expandable to all inertial 

navigation sensors to improve code reuse and efficiency. 

4.6.5.1 Orientation output 

The standard orientation output of the Xsens MTi sensor was three Euler angles, defined in 

Euclidean space in a right-handed coordinate system, as the orientation of the sensor coordinate 

system (S) in the earth coordinate system (G) as follows. 

  
                                                                             

  
                                                                            

  
                                                                            

There is a mathematical singularity in the definition of Euler angles when the pitch angle 

approaches ±90°, so called gimbal lock. Other output methods of expressing orientation, such as 

direction cosine matrices and quaternions [336], can be used to overcome this singularity by 

providing a redundant and complete representation of the orientation of the sensor. However, 

the conceptual simplicity, human readable for operator-in-the-loop control and straightforward 

integration of Euler angles into the SLAM and sensor fusion algorithms can all be maintained by 

mitigating the effect of this singularity. This is commonly achieved by preventing the vehicle from 

ever deviating far from 0° in pitch [337, 338], thus ensuring that during normal operating the pitch 

angle never approaches ±90°. In SeaBiscuit, this was achieved through a high metacentric height, 

coupled with the wide cylindrical shape, which both ensured that the pitch and roll angles of the 

vehicle never deviated far from 0° during normal operation and thus the vehicle attitude was 

maintained with maximum separation from the singularity. 
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4.6.5.2 Internal filtering of gyroscope and magnetometer data 

The gyroscope (angular velocity) and magnetometer (angular position) outputs were internally 

filtered by proprietary Xsens MTi algorithms to give an overall inclination output of pitch, roll and 

yaw angle in degrees. A detailed specification is provided in the Xsens MTi Technical 

Documentation [336] and a brief summary is provided here. 

The filter, a 3 DoF Xsens Kalman Filter (XKF-3), used the signals from the gyroscopes, 

accelerometers and magnetometers to compute a ‘statistical optimal 3D orientation estimate of 

high accuracy with no drift for both static and dynamic movements’. The XKF-3 filter, similar to 

the EKF discussed in the sensor fusion section 2.3.2.4, used measurements of gravity (from the 

accelerometers) and magnetic north (from the magnetometers) to compensate for the drift in 

inclination estimate using integration of the gyroscopes alone. This drift compensation is 

otherwise referred to as an Attitude and Heading Reference System (AHRS). 

The assumption was made that the average acceleration due to movement was zero, and thus the 

direction of gravity was observed and used to stabilise the attitude estimate of the gyroscopes. 

The orientation of the MTi in the gravitational field was accounted for so that centripetal 

accelerations or asymmetrical movements did not cause a degraded orientation estimate. This 

assumption of zero mean acceleration was valid for most moving objects, provided the time 

period over which this zero mean was considered was correct for the object in question. 

During this time period the rate gyroscopes must have been able to track the orientation to a high 

degree of accuracy. In practice, this limited the amount of time over which the assumption held 

true. For the class of miniature MEMS rate gyroscopes used in the MTi this period of time was 

about 10‐20 seconds maximum. 

For applications when the operating scenario did not adhere to the assumption of the internal 

filter, the accuracy of orientation estimates using the XKF-3 would be severely degraded. When 

the movement did again match the assumptions, the XKF-3 would recover and stabilise over time. 

To optimise the assumption for different operating applications, a series of user selectable 

scenarios was available, including a marine option. This option was optimised for low, long term 

accelerations and mild magnetic disturbances. Further details on the XKF-3 filtering process are 

contained in the Xsens MTi Technical Documentation [336]. 

4.6.5.3 Vector navigation 

Some common definitions of vector navigation are introduced below to support the processing of 

the INS data. These are available in many engineering textbooks, or in the Xsens MTi technical 

documentation [336]. The unit vectors  ,̂  ̂ and  ̂ are defined as vectors with unit length (1) and 

being codirectional with the X, Y and Z axis as follows: 

 ̂  [
 
 
 
]     ̂  [

 
 
 
]    ̂  [

 
 
 
] 

The rotation of a vector around a specific axis can be achieved by multiplying the vector by the 

appropriate rotation matrix defined below to yield the new rotated vector. 

  
  [

   
          
         

] 
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  [

         
   

          
] 

  
  [

          
         

   
] 

These rotation matrices can be combined by multiplying them together: 

  
   

   
  [

                                                  
                                                  

                     
] 

This combined rotation matrix allows for any combination of rotations about any of the three 

axes. For example, an alternative orientation output of the Xsens MTi was the above rotation 

matrix providing the unit-vector components of the sensor coordinate system S expressed in the 

earth coordinate system G, that is RGS. Thus, the output RGS defines the orientation of the sensor 

(S) expressed in the earth coordinate system (G) by specifying a series of rotations of a vector in 

the sensor coordinate system (S) to the earth coordinate system (G). The unit vectors of S are 

found in the columns of RGS, so column 1 of the rotation matrix RGS is XS expressed in G and so on 

for the other two columns. If the sensor (coordinate system S) was aligned with the earth 

coordinate system G, then the output rotation matrix would be as follows: 

    [
   
   
   

] 

This shows each of the unit vectors, so XS expressed in G has a unit component of X and zero 

components of Y and Z, showing that the coordinate systems are aligned. 

Two properties of a rotation matrix are that the norm of the matrix is always equal to 1 and a 

rotation (e.g. RGS) followed by the inverse rotation (e.g. RSG) naturally yields the identity matrix I3 

(any rotation performed is undone by its inverse yielding no-rotation – the identity matrix is 

simply each of the unit vectors, so when used as a rotation matrix, no rotation is performed). 

‖ ‖                 [
   
   
   

] 

A vehicle coordinate system (V) was also defined, which was referenced to the rigid aluminium 

frame of the vehicle. As is was the orientation and the position of the vehicle (V) with reference to 

the world around it (G) that is required, rather than the movement of each sensor (S), it was more 

useful to convert each piece of sensory information from the individual sensor coordinate system 

(S) to the vehicle coordinate system (V). Provided that the mounting of the sensor onto the 

vehicle’s chassis remained constant, the rotation matrix to convert the Xsens output data to the 

desired vehicle coordinate system (RVS) was a one off calibration process. The following rotation 

matrices were used to convert the sensor coordinate system to the world coordinate system: 

Sensor to World

RGS

≡Xsens Output

Sensor to Vehicle

RVS

≡One-off Calibration

Vehicle to World

RGV

 

Similar calibration and coordinate system transformations were applied to the other sensors to 

abstract sensor mounting from the high-level navigation of the vehicle.  
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4.6.5.4 Linear accelerations 

The Xsens MTi measured linear acceleration in the three orthogonal axes of the sensor coordinate 

system (S). Two operations were needed to process this data. Firstly a strapdown algorithm was 

used to subtract the acceleration due to gravity from the sensor readings to estimate the ‘free’ 

acceleration (2nd derivative of position). Secondly the linear acceleration data was converted from 

the sensor coordinate system (S) into the more useful world coordinate system (G). 

4.6.5.4.1 Strapdown operation 

The acceleration due to gravity ( ) was subtracted from the accelerometer readings in order to 

estimate the acceleration of the vehicle (2nd derivative of position). This ‘strapdown’ operation is 

named thus because the Inertial Measurement Unit (IMU) is ‘strapped down’ to the vehicle [76] 

and so the INS is subjected to the same rotations as the vehicle. The alternative is to mount the 

inertial measurement unit on a gimballed platform, such that it is always flat and level with the z-

axis of the sensor always aligned with  . The advantage of a gimballed system is computational 

efficiency in that the strapdown calculations need not be performed. The disadvantages however 

are the mechanical complexity and cost of creating an accurate, rugged, low-friction gimbal 

system capable of transmitting power and data to the circuitry on the measurement platform. 

The gravity vector can be defined (in ms-2) in the world coordinate system (G) as the following (a 

static value of 9.81m/s² is assumed for this operation): 

   [
 
 

     
] 

As the positive direction of Z is defined as being skyward, gravity has a negative component of Z 

only. This needed to be subtracted from the accelerations measured by the INS. If the sensor was 

upright and stationary then it would be a trivial matter of subtracting -9.81 from the 

measurement of -9.81 which would be measured by the Z accelerometer. However, this case only 

applies when the sensor was flat in attitude. Although the vehicle was stable in pitch and roll, 

some deviation was inevitable. In this case, there would be a component of gravity appearing in 

each of the other axes in varying magnitude and direction. Therefore the gravity vector needed to 

be rotated from the earth coordinate system (G) to the sensor coordinate system (S) by the 

appropriate angle in each axis where it was subtracted before any further operations were 

performed. The operation was thus: 

         

RSG is the inverse of the rotation matrix discussed earlier and was used to rotate a vector in the 

earth coordinate system to the sensor coordinate system. The inverse of a rotation matrix is 

simply its transpose such that RSG could be calculated from RGS discussed previously, as follows: 

       
      

  

As the orientation output of the Xsens sensor was RGS this could simply be transposed (the rows 

became the columns and vice-versa) to yield RSG which was then used to rotate the gravity vector. 

The resultant gravity vector GS was then subtracted from the linear acceleration output. 
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4.6.5.4.2 Output coordinate system 

Following the strapdown operations, the output accelerations were converted from the sensor 

coordinate system to the world coordinate system. This was done using a similar calibration 

matrix which represented the mounting of the sensor with respect to the vehicle, as was used for 

the output orientations previously. 

Post-strapdown acceleration measurements were in the sensor coordinate system (S) output in 

the vector AS: 

   [

  

  

  

] 

This vector was multiplied by the rotation matrix RGS to yield the accelerations of the sensor in the 

world coordinate system (G). A further (previously determined) rotation matrix RVS was used to 

correct for the mounting of the sensor on the vehicle to give the accelerations of the vehicle in 

the world coordinate system (G) as follows: 

            

4.6.5.4.3 Integration method 

The accelerometers were used to measure linear acceleration in each axis of the sensor 

coordinate system (as discussed above). The conversion from acceleration to position was 

performed using a cumulative double integration. It was here that any small error in acceleration 

was increased in magnitude and became a large cumulative error (drift) in position if not 

otherwise corrected. This emphasised the importance of combining the relative accelerometer 

data with a drift free absolute position estimate. 

For computational simplicity, a cumulative trapezium integration was used where the time base 

was the difference in timestamps from one sample to the next [328]. This allowed the cumulative 

position estimate to continue even if an accelerometer measurement was delayed. This 

integration method was suitable provided that the time interval between samples was short and 

the rate of change was low [328] and worked well in this application of SeaBiscuit. Alternative 

numerical integration methods are available, many of which sacrifice computational cost for 

integration accuracy [339]. However, for this application, integration errors tended to have zero 

mean and were negligible compared to the noise and accuracy of the IMU. 

 Sonar 4.6.6

SeaBiscuit was fitted with two Imagenex sonar units as pictured in Figure 4.10, deliberately 

selected to provide different but complementary characteristics. These sonars were used to 

provide realtime information on the location and orientation of the vehicle with respect to its 

surroundings, as well as any objects or landmarks surrounding it. The sonar was complementary 

to vision in that, although it had a relatively low detail and resolution, it could operate over long 

(100m) ranges, provide depth perception and ranging and did not require clear water or 

illumination, thus providing robustness when integrated with the cameras. The navigation 

information from the sonar units was integrated into the sensor fusion network for the overall 

navigation of the iROV as well as for object detection, identification and mapping. 
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Figure 4.10 - Two sonar units were fitted to SeaBiscuit, the Imagenex Model 837 Delta T Multibeam Sonar (left) and 
Imagenex 852 Ultra-Miniature Scanning Sonar (right), both used for navigation and habitat mapping. 

4.6.6.1 852 scanning sonar 

The Imagenex Model 852 Ultra-Miniature Digital Scanning Sonar fitted to the underside of the 

vehicle emitted a single beam 22° high in the vertical plane and 2.5° wide in the horizontal plane 

which was mechanically panned through a full 360° around the vehicle in a similar fashion to a 

radar on a boat. A frequency of either 675kHz or 850kHz was selected depending on the 

application. Higher frequencies generally gave better resolution but a shorter range.  

With an adjustable range of up to 50m, adjustable resolution, gain, and the ability to complete a 

full 360° scan of 120 pings (3° per step) in approximately 6 seconds, this unit was ideal for 

generating a map of the immediate surroundings of the vehicle. Individual pings could be selected 

and scheduled as required, allowing a specific sector to be scanned. Alternatively, to increase the 

scanning speed, the polar resolution could be reduced to 6° per step which allowed a full 360° 

scan containing 60 individual sonar pings to be completed in 3 seconds. 

If the vehicle was passing an area of interest on one side, then the scanning sector could be 

directed to focus on the area of interest with only an infrequent verification over the remainder 

of the radius to check that there were no new objects present. This provided a higher scanning 

speed of the sector of interest. 

For each sonar ping, 500 bytes were returned, with each byte representing a distance from the 

sonar head up to the maximum selected range. For example, if the maximum range of 50m was 

selected, then each byte represented 10cm radial increments extending outwards from the sonar 

head (the worst-case resolution). Using the 5m range setting, the radial resolution was 

theoretically 1cm. Each of these bytes, or range bins, contained an intensity value representing 

the strength of the acoustic return for that range. Calibration is discussed in a later section (6.3.5), 

but these intensity values were initially used for relative comparison only. 

Although in theory, if the vehicle was held stationary, the sonar could quickly (in 6 seconds) build 

up a map of the vehicle’s immediate surroundings, in practice, several items had to be taken into 

account. The fundamental problem was movement of the vehicle with respect to its surroundings 

during a scan. These vehicle movements were split into translation and attitude effects. 

Translation during a scan, particularly horizontally, would have resulted in map errors if 

uncorrected, most commonly the resulting map becoming ‘smeared’ with targets recorded with 

incorrect absolute and relative positions and incorrect dimensions. The robot either needed to 
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hold a stationary position while a scan was in progress, or more realistically, needed to be capable 

of correcting each individual sonar ping for any movement of the vehicle [16]. 

Algorithms were written to register individual radial pings from the 852 sonar into an overall 2D 

scan to allow object detection and mapping. Each individual ping was registered using the vehicle 

attitude; pitch and roll angle were used to correct pings and yaw angle was used to register the 

individual ping on the 2D scan. The 852 sonar provided scans in 2D (no vertical resolution) which 

were registered in 3D, with vertical position provided by other sensors, such as the pressure 

sensor (depth) and multibeam sonar (altitude). When registering radial pings from the 852 sonar 

into an overall 2D scan, an input was also provided to register each ping with an x and y vehicle 

position to allow correction for vehicle movement. As discussed previously, the INS was used to 

provide short (i.e. the 6 seconds scan duration) estimates of vehicle movement, with accuracy 

compromised by drift, yet sufficient for short duration estimates of vehicle movement. Longer 

duration (i.e. greater than 6 seconds) estimates of vehicle movement, with greater accuracy 

independent of drift, were provided by the localisation algorithms discussed in Chapter 5. These 

localisation algorithms used the relative movement of landmarks which could be identified to be 

stationary and apparent in successive scans to estimate vehicle movement. 

4.6.6.2 Delta T profiling sonar 

The second sonar unit fitted to SeaBiscuit was the Imagenex 837 Delta T Multibeam Profiling 

sonar, trialled briefly on Hawthorne 2.1. A 260kHz beam, 3° wide in the horizontal plane and with 

a spread of 120° in the vertical plane, was used to detect objects on the seafloor, in the midwater 

ahead of the vehicle through to objects floating on the sea surface. 

The multiple receiver system meant an entire frame was captured simultaneously, eliminating any 

problems from the vehicle moving during a sonar scan, as experienced with the 852 scanning 

sonar. Each Delta T ping was corrected for vehicle attitude and images were captured, viewed and 

stored at up to 20 frames per second. 

The Delta T sonar measured the backscattering strengths (in dB) of all targets, relative to a source 

level of 190 dB re. 1 μPa at 1 m (Patterson, pers. comm., 2012). Pulse lengths varied with the 

range setting (for example, 0.12 ms at 20 m range). Data was received at a resolution of 480 

beams spread over a 120° beamwidth and parsed to 120 beams giving an angular resolution of 1°. 

There were 500 range bins for each beam, with a maximum range of 100m, giving a radial 

resolution of 0.2% of the range, or 1-20cm depending on which range setting was used. 

Similar image processing algorithms were used to detect objects or features using the forward 

facing profiling sonar as for the 360° scanning sonar. These algorithms are discussed in following 

sections. This allowed information from the either sonar to either corroborate or correct the 

other. 

Although the forward sonar was fixed facing in one direction and had to be panned with the 

vehicle, when compared to the 852 scanning sonar, the Delta T had an increased range, better 

resolution and the ability to distinguish objects in the vertical plane. A similar 360° scan about the 

vehicle periphery was achieved by panning the vehicle through 360° and recording data from the 

profiling sonar while tracking the heading of the vehicle, which also allowed landmarks to be 

registered in 3D with a vertical height. Although SeaBiscuit was capable of completing a full 360° 

rotation in a few seconds due to the low rotational drag, panning at a lower rotational speed 

allowed a greater radial resolution of Delta T pings with a ping repetition rate of up to 20 Hz. 
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4.6.6.3 Complementary holonomic propulsion system and navigation 

sensor suite 

The two sonar units were selected and mounted as shown in Figure 4.11 to extract maximum 

navigational information using the complementary holonomic propulsion system and navigation 

sensor suite. The 120° swath of the Delta T was normally centred with ±60° about the horizontal 

plane. However, in some applications, it was advantageous to decline the sonar downwards. For 

this purpose, a series of calibrated mounting positions were available, the most common being 

40° of declination. When operating near the surface, this reduced the number of beams exiting 

the water surface and directed more of the centre beams downwards towards the kelp bed. It 

also allowed the bathymetry directly below the vehicle, and to some extent (10°) behind the 

vehicle, to be imaged. 

 

Figure 4.11 - The dual-sonar scanning technique of SeaBiscuit allowed for 360° object detection and for 3D object 
profiling and identification while underway. It also allowed for co-registration of objects in 3D between the two 
sonars. The 360° scanning sonar panned around the periphery of the vehicle independently of the direction the 
vehicle was facing in a 2D plane and the forward facing multibeam sonar allowed objects to be co-registered with the 
scanning sonar for identification in 3D. Using the holonomic propulsion capabilities, the forward facing directional 
sensors could survey an object as it was passed without adjusting the original course – i.e. the vehicle was capable of 
omnidirectional movement in the horizontal plane while independently facing in a different direction. Image render 
Snider, 2010. 

Mounting the Delta T in a forward facing position with the multibeam swath aligned vertically, as 

shown in Figure 4.11, allowed a 3D representation to be built up for identification of objects 

detected using the 852 sonar. This dual-sonar arrangement also allowed for objects to be co-

registered in 3D allowing a 3D representation to be built up for profiling applications and provided 

inspection with multiple frequencies (260, 675, 850 kHz). 

The capability of holonomic motion also aided navigation in-transit by allowing the directional 

sensors (sonars and cameras) to be panned independently of course. This allowed a 3D 

representation to be gathered of the environment, without deviating from a pre-planned straight 
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transit, by rotating the iROV about its axis while underway. The benefits of generating a 3D map 

from several panned Delta T scans registered with the INS and 852 sonar allowed the benefits of a 

3D imaging sonar to be achieved (and more) without the typically high cost. 

3D imaging sonars, such as the Echoscope manufactured by CodaOctopus Ltd. [129], typically 

retail for $165,000+ [130]. This unit provides a 50×50° angular coverage with 128×128 beams 

resolution. Similar results were gained for a fraction of the cost, using the complementary 

holonomic propulsion and navigation system on SeaBiscuit to provide 120° vertical by 360° 

azimuth angular coverage, thus furthering the design concept of using innovative algorithms and 

techniques to extract the maximum benefit from a limited budget vehicle. Chapter 6 and Chapter 

7 contain some of the results of the sonar mapping capabilities of SeaBiscuit. 

To record underwater landmarks with an absolute reference in real-world latitude and longitude, 

this sensor arrangement allowed the GPS receiver to be operational at the surface but with the 

sonars underwater and facing downwards (with the Delta T at 0° or 40° of declination). In normal 

sea states, the ≈40cm submerged depth of the two sonar units when the top of the vehicle was at 

the surface was sufficient for basic close range (<10-20m) mapping. This allowed the registration 

of an observed underwater sonar target with a GPS fix by sonar scans at the surface, before the 

vehicle dived and used this absolute reference to build up a drift-free map using sonar 

mosaicking, all with an absolute reference to a GPS latitude and longitude. Using the sensor fusion 

algorithms to weight a GPS update with a high certainty, regular updates by surfacing to update 

the GPS fix were also possible. This technique is demonstrated in Chapter 6 for the mapping of a 

piling dock.  

Similar to the hybrid ROV Latsis [27] discussed earlier, SeaBiscuit was also ideally positioned at the 

surface to either commence a scan, or to carry out a surface survey: the horizontal motors were 

submerged for manoeuvring, the vertical motors were submerged ready for diving, the sonar 

units were submerged for scanning and the GPS and Wi-Fi antennas were out of the water for 

communication. 

4.6.6.4 Sonar image pre-processing 

Pre-processing converted polar data from each sonar (a series of range bins for each ping) into a 

2D Cartesian array. Two arrays were produced, a ‘Not-Filled Array’ and a ‘Filled Array’. 

The ‘Not-Filled Array’ (NOF) mapped each polar range bin for each sonar beam to the nearest 

neighbour (NN) Cartesian coordinate as shown in Figure 4.12 below. This provided a 

computationally efficient method for mapping polar data into Cartesian space. Taking the Delta T 

sonar as an example, with 120 beams each with 500 range bins, this required 60,000 operations 

per sonar image. However, as shown in Figure 4.12, the distance between beams towards the 

outer part of the scan represented continuous objects as disjointed features, potentially causing 

one large object to be detected as several smaller objects by the image processing algorithms. 

The ‘Filled Array’ (FIL) represented the divergence of beams with increasing range by ‘filling’ the 

gaps between beams, providing a truer representation of the sonar return. The exaggerated 

example shown in Figure 4.12 below illustrates this. The simplest method interleaved each main 

beam with several interpolated sub-beams. This increased computational complexity. For the 

Delta T example, interleaving each main beam with three interpolated sub-beams spaced at 0.25° 

increased computational complexity to 120 × 500 × 4 = 240,000 operations per sonar ping. 
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An alternative, which provided a complete FIL array for any beam spacing, was to set each 

element of the filled Cartesian array to the nearest neighbour value when the polar data was 

mapped to Cartesian space. Cartesian elements outside of the sonar swath were set to zero. This 

FIL mapping was the inverse of the NOF array: the FIL array iterated through every Cartesian 

element, setting the value to the NN polar value; the NOF array iterated through every polar 

element, setting the corresponding value of the NN Cartesian coordinate. The NN FIL array 

incurred further computational complexity. The 120 beam, 500 range bin Delta T sonar data was 

mapped onto a Cartesian array of dimensions 868 × 500 pixels, thus requiring 434,000 operations 

per sonar image. This was still feasible for realtime operation using the onboard controllers.  

Incorporating bilinear interpolation, rather than just selecting the NN element, can provide 

increased accuracy when mapping polar data into Cartesian space. However, the accuracy 

benefits were deemed marginal compared to the overall sonar accuracy, and the additional 

computational overhead significant for realtime operation. 

At 20m range, radial resolution 
between 1° beam centres is ≈0.35m
(scale exaggerated)

Filled (FIL) array interpolates 
between beams to aid object 

detection

Filled Array (FIL)Not-Filled Array (NOF)

For example, detecting this 
object

For some image processing algorithms, in particular 
after conversion to Cartesian coordinates and when 
searching for ellipses, this is an easier target to detect.  

Figure 4.12 - Polar sonar data was compiled and converted to Cartesian coordinates and stored in an array (NOF) for 
image processing. To aid with image processing, in particular, searching for ellipses, a second filled array (FIL) was 
created by interpolating 3 beams at equally spaced intervals between the 1° spaced multibeam pings and the 3° 
spaced 852 sonar pings (using the mean values of surrounding cells). This assisted with feature detection at high 
range where the Cartesian resolution was low, as shown in the lower part of the diagram. 

Each NOF/FIL array was timestamped to relate it to position and inclination data gathered 

simultaneously (see section 4.6.8 on the timing of sensor data from asynchronous sensors with 

different timebases and sampling intervals). An entire NOF/FIL array was created at the same time 

by the Delta T multibeam sonar. For the 852 scanning sonar, each ping was corrected for pitch, 

roll, yaw and position, taking potentially 6 seconds to compile a 360° NOF & FIL array using these 

corrected pings. The NOF/FIL arrays were compiled incrementally as data was gathered. Any gaps 

in the data were either intelligently filled by selective ‘re-scanning’ or left to be filled in by 

subsequent scans. However, the important distinction was made in the data between a zero 

return due to an area which had not yet been scanned, and an area which had been scanned and 

confirmed to be empty. 
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4.6.6.5 Sonar image processing 

Given the corrected NOF/FIL arrays from each sonar, a variety of image processing methods were 

used to extract useful navigation data from each sonar. Feature extraction and tracking 

algorithms were used to extract useful information from the often noisy and incomplete sonar 

images. Algorithms were written in LabVIEW and using the IMAQ Vision and Motion toolbox. 

Sonar image processing algorithms for navigation in the competition environment were developed 

in conjunction with two undergraduate Masters student projects supervised by the author [324, 

340]. The algorithms developed were capable of recognising artificial landmarks from a pre-

defined catalogue using the Delta T sonar and provided a useful demonstration of sonar 

navigation in a structured environment. However, for operation in the field environment, 

recognisable landmarks were sparse, not known a priori and often dynamic. 

Thus, the algorithms presented here were developed for kelp bed habitat mapping and nearshore 

sonar-aided navigation, integrating the 852 sonar and navigation suite, as well as providing SLAM 

capabilities in the open ocean environment. This section presents an overview of the sonar image 

processing operations performed, the techniques and algorithms developed, and the 

implementation, integration and adaptation of the algorithm outputs to the specific navigation of 

the iROV SeaBiscuit. 

The sonar image processing tasks were split into two sections: general sonar-aided navigation and 

application-specific sonar tasks. 

1. General sonar-aided navigation algorithms were used to search the sonar scan for landmarks of 

any type that were stationary and uniquely identifiable which could be used for navigation. 

2. Application-specific sonar processing algorithms were applied when a specific target known a 

priori needed to be found, mapped and/or tracked given the application. This included several of 

the SAUC-E competition targets (e.g. walls, corners, pipelines, buoys). 

The two sonar image processing tasks are considered in turn in the following sections. 

4.6.6.6 Sonar-aided navigation 

General sonar-aided navigation algorithms were written to search the sonar scan for features that 

were stationary and uniquely identifiable and thus could be used as landmarks for sonar-aided 

navigation. Object identification, tracking, correspondence to other objects and registration on 

the map were all performed by the SLAM algorithms discussed in section 5.3. Further details of 

the sonar image processing and feature detection algorithms are considered in the context of the 

nearshore application using a piling dock (Chapter 6) and kelp bed (Chapter 7). Several pre-

processing operations were performed to reduce the chance of landmarks being misidentified and 

to reduce the computational load when searching for landmarks to enable processing at a high 

frame rate. These pre-processing algorithms are considered in the following paragraphs. 

Figure 4.13 below shows a typical raw Delta T sonar scan with the seabed and water surface 

annotated. In each 852 and Delta T sonar scan, the seabed was detected and delineated (if 

observable). All regions below the seabed (including secondary echoes) were zeroed to reduce 

the computational load of detecting false-positive landmarks only to later reject them. Allowances 

were made for the seabed not being a straight line and approximations of an uneven seabed were 

made using a series of ellipses, discussed in later sections. The algorithm required tuning, 
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depending on the bathymetry and the strength of reflection, including correctly setting the gain of 

the Delta T sonar, as well as the tolerance and threshold levels for seabed detection. 

The water surface was also calculated using a combination of the pitch and roll sensors and the 

pressure sensor which allowed the reflections from the water surface to be delineated and any 

secondary echoes above the surface to be zeroed. 

Surface water level at 

1.73m above sonar

Sea floor

iROV with forward 

facing Delta T Sonar

120° Sonar Forward Field of view

Range in metres

20m 16m 12m 8m

4m

4m

8m

12m16m20m
 

Figure 4.13 - An annotated forward facing Delta T sonar scan with the water surface and seabed indicated. 

With the water surface and seabed removed, any objects visible in the field of view were then 

analysed with the aim of finding uniquely identifiable and distinguishable stationary objects. 

To ensure a high-level of integration between the sonar image processing and the overall iROV 

navigation code, the tasks of identifying objects and relating them to previously mapped objects 

were performed in the higher-level navigation code. This allowed an awareness of the other sonar 

and navigation sensors to determine whether the observed objects were stationary and suitable 

for use as navigational landmarks. For sonar-aided navigation, the output of the image-processing 

algorithm for each sonar was the position of any observed objects in the sonar coordinate system, 

together with several defining characteristics as shown in Table 4.6 below. 

The communication protocol shown in Table 4.6 was developed in conjunction with Webster 

[324] and Birtles [340] to abstract the sonar image processing algorithms from the high-level 

navigation code. This allowed development of the sonar image processing algorithms 

independently of the high-level navigation algorithms, and allowed complete modularity when 

developing algorithms for the competition-specific targets or for operation in the nearshore. 

Abstraction was also provided between the sonar type, allowing the same protocol to interface 

with the navigation algorithms for both the Delta T and 852 sonar, together with any further 

sonar units which may be used in the future. 

  



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

138/347 

Table 4.6 - Sonar object detection - data output protocol 

ID: Class: Description: 

0 Object 
Number 

When multiple objects were observed on a single scan they were numbered consecutively. When 
sonar based tracking was performed, each new object was assigned a new number. 

1 Bearing The bearing (°) of the object to the vehicle in the sonar coordinate system. The higher-level 
navigation algorithms converted this to a global bearing. 

2 Range The range (m) to the centre-of-mass of the object, corrected for the sonar range setting.  

3 Orientation Objects were approximated as ellipses. The orientation of the long axis of the ellipse which 
approximates the current object was returned. Complex or disjointed landmarks (or the seabed) 
were represented by many ellipses which are returned as distinct objects. 

4 Area The area (mass) of the object in pixels, specific to the sonar gain setting. 

5 Ellipse Ratio The ratio of the long axis of the ellipse to the short axis, e.g. a circular object would have an 
ellipse ratio = 1. 

6 Identifier For mission/application specific sonar image processing (discussed below), the sonar image 
processing code attempted to identify the object based on its characteristics. 

0 = unidentified or the object did not match any catalogued objects 
1 = seabed (complex seabeds were represented by several ellipses) 
2 = pipeline on the seabed 
3 = midwater object 
4 = wall 
5 = piling 
6 = gate 
7 = corner 

7 Identifier 
confidence 

The confidence with which the object was identified. For example, for a wall, the confidence was 
the ratio of the solid portion observed to the non-solid portion. 

8 Partially 
observed 

This returned true if the object extended to the edge of the scan, suggesting that it was part of a 
larger partially-observed object and required further investigation to be able to identify it 
completely. 

9 Tracking 
score 

When tracking was performed by the sonar algorithm rather than the supervisory navigation 
algorithms, the tracking score represented the certainty with which and object was being tracked. 
It ranged from -5 to +5. If an object was not tracked between frames, the score was 
decremented. Every time it was reobserved, the score was incremented. If the score fell below -5 
it was removed from the list of tracked objects. 
 
To avoid compounding errors, tracking and map maintenance was usually performed by the 
higher-level navigation algorithms which had the advantage of knowing the location and 
orientation of the vehicle, its movement and the data from all of the other sensors.  

10 Tracking 
confidence 

The tracking confidence related the accuracy of the predicted tracked position of the object with 
the actual measurement seen by the vehicle 

 

4.6.6.7 Application-specific sonar image processing 

Application-specific sonar image processing algorithms were used in addition to the standard 

landmark detection algorithms used for general navigation. The application-specific algorithms 

searched for specific objects or patterns which matched a predefined application-specific 

catalogue or set of characteristics. In the SAUC-E competition (section 6.2) this included pipelines 

on the seabed, objects tethered in the midwater (designed to simulate mines), surface vessels or 

walls, and corners of harbours and tanks to be surveyed [324, 340]. Further object-specific image 

processing for the dock survey and kelp bed mapping field applications are discussed in Chapter 6 

and Chapter 7.  

As an example of Delta T application specific image processing, the detection of a corner is 

considered here. Figure 4.14 below shows an example image of the corner of a tank imaged by 

the Delta T sonar [324]. Although the concrete walls of the tank were continuous, the noise, 

ghosting, distortion and incomplete data can all be seen. The sonar image-processing algorithms 

were robust in a variety of conditions and were still able to recognise the data shown below as a 

corner, a useful navigational landmark. 
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Figure 4.14 - The difficulties of accurately locating a corner from a typical sonar image [324]. The raw image is shown 
in the left figure, and the corner and noise are annotated in the right figure. 

Corners were identified by finding two pairs of particles or features that formed an inclusive angle 

close to 90° and fell within a similar orientation. A corner was then located by plotting a line 

through the centre of masses of the pairs of particles, as illustrated by Figure 4.15. 

 
Figure 4.15 - Detecting and calculating the orientation of a corner from a sonar image [324]. 

Further details of the competition-specific object detection algorithms are provided in the 

references [324, 340] and are not directly relevant to the open ocean kelp bed mapping 

application. 

 Cameras 4.6.7

Two cameras were used to provide visual feedback of the vehicle’s environment, to record 

scientific video footage, to assist a remote operator in iROV mode and for navigation using visual 

landmarks. One camera was mounted centrally at the front of the vehicle facing forwards and 

covered a similar field of view to the forward facing multibeam sonar. The second camera was 

mounted centrally underneath the vehicle facing downwards. This combination allowed objects 

and obstacles to be detected both in the midwater ahead of the vehicle as well as on the seafloor 

underneath the vehicle and provided good visual coverage for both the competition and field 

applications. 

The cameras used were Logitech QuickCam S5500 webcams capable of capturing either video at a 

resolution of 640×480 pixels at up to 30fps or high resolution stills at resolutions up to 1280×1024 

pixels. The footage was either captured and processed onboard or encoded and streamed in 

realtime over the network to a surface operator. 

Although the cameras were capable of capturing colour video at a resolution of 640×480 pixels at 

30 frames per second (fps), the vision processing and video encoding software operated at a 

slower rate. The computers used in the vehicle were deliberately selected to be low-power 

consumption small-form-factor (SFF) computers and so the processing power available was not 

high. This limited the rate of processor intensive operations, including vision processing. However, 

due to the relatively slow dynamics of the vehicle, the slower rate of vision processing and 

capture (≈15fps) was sufficient for smooth and accurate control. The cameras were interfaced by 
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USB to the dedicated vision processing computer which ran the processor intensive image 

processing algorithms at this high frame rate without slowing down other mission critical 

operations. 

The dual webcam arrangement provided good results for user feedback and scientific video 

capture, as well as enabling steps towards autonomous visual navigation in artificial environments 

such as the SAUC-E competition. Under suitable conditions (range, illumination, visibility) the 

cameras were capable of imaging the kelp stipes. This was used for density estimates using 

manual image processing techniques similar to Wladichuk [1] (section 2.2.3.3) and for user 

confirmation of sonar targets (e.g. mysids, fish, kelp stipes, benthic composition) either in 

realtime or in post-processing. Some example image captures are shown in Figure 4.16 and Figure 

4.17 below. 

   
The forward facing video camera were used to identify, delineate and estimate the density of swarms of mysids. 
Video was recorded at 10-30 fps. Although the mysids are visible in these low-resolution 320*240 video snapshots, 
they were easier to distinguish in the video. 

   
Fish species identification and abundance estimates were also possible. 

   
Jellyfish were frequently observed, again species identification was possible. The cameras were also used for benthic 
species and habitat identification. 

   
Kelp species identification, together with density and distribution estimates were possible where visibility permitted, 
within a range of a few metres. 
 
Figure 4.16 - A series of example images captured by SeaBiscuit in typical visibility during the 2011 field trials. 
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Figure 4.17 - The downward facing camera was also used for detecting the presence of mysids as well as benthic 
habitat and species identification. The upper images show swarms of mysids in varying densities, whereas the two 
lower images on the right hand side show seabed images from the forward facing camera for comparison. 

 

An infrared illuminated (IR) underwater camera was added to augment imaging in low-light 

conditions. The reduced light levels were influenced by a number of factors, including: turbidity 

(particles / plankton suspended in the water), weather conditions, time of day, operation at 

greater depths and under the kelp canopy. 

The IR camera not only had better performance at low light levels, but also included a set of IR 

LEDs to provide illumination. The disadvantage of the IR camera was the information lost in 

transition to monochrome. The lower quality of the scientific video footage captured 

compounded difficulties in recognising objects underwater, for both the operator and the vision 

processing software. Figure 4.18 shows an example image showing part of a kelp bed which can 

be compared to Figure 4.16 to see the loss of information in monochrome. 
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Figure 4.18 - A sample image captured with the IR camera showing a pair of kelp stipes and trailing fronds. The IR 
image can be compared to Figure 4.16 to see the information lost in monochrome. 

4.6.7.1 Visual navigation 

While the cameras were mainly used for recording scientific data, as a navigation aid for the 

remote operator and for identifying sonar targets, some initial development towards visual 

navigation was also conducted. This was prompted by the entry of Hawthorne 2.0 and SeaBiscuit 

into the SAUC-E competitions. When operating in the relatively clear and well-illuminated tanks, 

particularly at the depths required for the competition (<10m), the video quality was sufficient for 

navigation as shown by Figure 4.19 to Figure 4.21 on the following pages. 

A common communications protocol between the self-contained image processing algorithms, 

the sonar image processing algorithms and the overall SLAM and sensor fusion algorithms 

ensured modularity, allowing visual navigation to be used when conditions permitted. Due to the 

limited application of visual navigation in the kelp beds, the focus of this research was not 

specifically to develop image processing algorithms. Of more interest was how the navigation 

information from the cameras could be integrated into the sensor fusion algorithms to improve 

the overall navigation capabilities of the vehicle. In future development, if water clarity and 

illumination permit, there is the opportunity to aid navigation in the kelp beds by deploying 

artificial visual markers for recognition as navigational landmarks [135]. 

The development of image processing algorithms for competition-specific visual navigation was 

the focus of several Masters projects [142-145], the latter three co-supervised by the author. A 

brief overview of the integration of the self-contained image-processing algorithms developed by 

Ruckser [144] to the target applications of SeaBiscuit is presented here. The algorithms were used 

to search for objects and landmarks, either to identify observed objects against a known 

catalogue based on feature extraction and pattern recognition, or to store new unidentified 

objects in the catalogue for later re-identification and correction. The competition-specific object 

recognition algorithms included detecting gates as shown in Figure 4.19, used in conjunction with 

the sonar for navigating the vehicle autonomously through confined spaces. 

Algorithms were also written to detect coloured markers or flashing beacons on the floor / 

seabed (Figure 4.20) or coloured buoys and flashing lights in the midwater (Figure 4.21). Figure 

4.21 also highlights the difference in visual quality between detecting targets in clear chlorinated 

tanks and in murky saltwater environments. The image processing algorithms were robust (and 
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included a learning capability) for colour variations and worked well in low light environments. 

Additionally the algorithms could be used with illuminated targets such as flashing beacons to 

improve long range detection. 

 

 
Figure 4.19 - The gate finder algorithm used to navigate the vehicle through confined spaces at the competition. 
Gates were detected, in conjunction with the sonar, using at least three edges to allow for the gate being partially 
observed [142]. 

 

  
Figure 4.20 - The image processing algorithm searching for a visual marker on the floor / seabed (either a coloured 
marker or a flashing beacon) using the colour difference between the marker and the surroundings [142]. 

 

  
Figure 4.21 - The difference between locating a red marker buoy in clear chlorinated water and murky saltwater. This 
highlighted the need for adaptable, robust image processing algorithms and the usefulness of underwater beacons 
and strobes. Left SAUCE-E test image credit [341]. The right image shows the red buoy at a range of several metres, 
imaged by Hawthorne 2.0 in the saltwater test tank at the SAUC-E 2008 competition. 
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4.6.7.1.1 Detecting, identifying and tracking objects by vision 

Vision processing algorithms were written in C++. The Open Source Computer Vision Library 

(OpenCV) already contained many of the appropriate filters and algorithms implemented in 

C/C++, thus reducing development time. 

Underwater objects were detected by a combination of colour, shape, position and relative 

movement. Detected features were then compared to existing tracked objects to provide reliable 

detection and identification of objects, robust to the effects of murky water, poor illumination 

and the absorption and scattering of light underwater. The colour change and degradation, noise, 

blurring and poor contrast (all increasing with target distance and depth) were mitigated as far as 

possible by the robust algorithms. 

Considering analysis by colour, the image was segmented using an a priori colour sample of the 

object which was being searched for. An eigenmodel was built for the sample colour to ensure 

that the colour classification was robust against the significant colour changes with distance 

underwater. Each colour was treated as a point in a multi-dimensional space, and in order to 

classify a colour, the Mahalanobis distance [173] was calculated to decide whether a given colour 

was the target colour. If the distance was small enough, the respective colour was added to the 

eigenmodel, thus allowing the model to evolve and to learn new shades belonging to a colour 

group [342]. This ‘learning’ capability added robustness and reliability to the vision processing 

algorithms when operating in a variety of environments and conditions. After the image was 

segmented by colour, the shape of the identified segments was analysed to determine if it 

matched the target’s shape. 

A Kalman filter was then used to track the object and to predict the target location if the visual 

track was lost or the target was moving. The Kalman filter, as discussed previously, predicted the 

object location based on the uncertain and often incomplete information available to the vision 

system and applied a correction when the object was reobserved [342]. At each time interval, if 

the object position was known, the filter was provided with the object’s location along with a 

confidence measure of the correctness of the measurement. This allowed the vision system to 

maintain a continuous estimate of the target's location, and provided robustness to interference, 

short occlusions and reflections. 

Whereas the object tracking and recognition capabilities of the sonar code were integrated into 

the higher level SLAM code, some object tracking capabilities were left in the vision processing 

code. As autonomous visual navigation was not used in the field application, such tight integration 

was not necessary. The self-contained vision processing software also allowed the processor-

intensive processing to be offloaded to the second onboard computer. The data gathered from 

the sonar units was of a lower resolution, lower bit-depth and lower frame rate than the visual 

data from the two cameras and thus the processor usage was much lower. 

4.6.7.1.2 Navigating confined spaces by vision 

For navigating through confined spaces and openings, for example in between the pilings of a 

dock, or through the gates in the competition, an algorithm was developed with Ruckser to detect 

and identify underwater ‘gates’ by vision [144]. Due to the small surface area and potential for its 

outline to be confused with other parts of the scene, the gate required a less generic approach 

than the general object detection algorithms discussed above. The Discrete Hough Transform 

[343] was used to create a set of the lines in the image in conjunction with a quality measure (a 
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mixture of the expected trigonometric properties of the gate) to identify the lines most likely to 

represent the gate. The quality measure operated on three randomly selected lines at a time, so 

that the gate could be partially obscured/off-screen and still be recognised. The distance to and 

orientation of the gate was then calculated from the estimated location of its four corners. With 

this estimate, the vehicle could then map and attempt to navigate through the gate, using the 

downward facing camera to confirm when the gate was passed [144]. Figure 4.19 above shows a 

screenshot of the algorithm in operation. 

 Timing of sensor data 4.6.8

Synchronism of all sensor readings was essential to high-accuracy navigation. When comparing 

readings taken by different sensors at slightly different points in time, then unless the vehicle and 

its entire surroundings were constant, a difference in readings would be expected. The difficulty 

was compounded with multiple sensors, each with a different (and often varying) timebase. One 

option was to attempt synchronous updates to synchronise all sensor readings. If, for example, a 

positional update was calculated every second and a compass provided a bearing every second 

but not synchronised with the first time interval, then the reading could be interpolated in 

between samples to synchronise the timebases. 

The alternative approach was an asynchronous (event driven) update of the navigation system. In 

this case, the navigation algorithm only updated the positional estimate every time a new piece of 

information became available. For continuous sensors, these were still sampled at a pre-selected 

timebase. However, for discrete, varying timebase sensors, information was integrated into the 

algorithm as and when it became available. 

Using an asynchronous update, the most up-to-date positional estimate was always available to 

the navigation and path-planning algorithm, together with the timestamp when it was calculated, 

so that the user and any mission planning code was aware of any delayed readings. The 

asynchronous update allowed the optimal use of each piece of sensory information and allowed 

greater flexibility when dealing with dynamic sensing capabilities, varying sensor availability and a 

varying amount of computational power available. 

The clocks of the two computers were prone to drift by several seconds per hour depending on 

temperature. To ensure that logged data recorded on the two onboard computers, as well as any 

surface computers, was synchronised for later post-processing and analysis, a third party software 

tool was used to regularly (every minute) compare the timestamps between the computers and 

to correct any drift. The software ‘ClockWatch Star Sync’ developed by Beagle Software also 

allowed synchronisation to GPS time, either using regular GPS updates of the surface control 

computer, or when the underwater vehicle surfaced and regained a GPS signal itself. 

 Calibration of sensor data 4.6.9

Two calibration operations needed to be considered for each sensor to ensure reliable and 

accurate data. The first, where required, was calibrating an output in arbitrary units (e.g. volts, 

pixels) to useful navigational units (e.g. degrees, metres). The second was calibrating the 

mounting of each sensor to a common reference frame on the vehicle. 

The first operation, calibration to real units, was covered on a sensor-specific basis in the above 

sections. In many cases, the operation of a sensor varied depending on the operating 

environment, for example, calibrating the pressure sensor for salinity and depth, tuning the gain 
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and frequency of the sonar or calibrating the magnetometers for the soft and hard iron fields on 

the vehicle. These calibration operations were performed independently and when required, for 

example when changing operating environment. The usual calibration process was to examine 

datasheet values – for example, the pressure sensor, in salinity s and temperature T, an output of 

v volts corresponded to a depth of d metres. These values were then validated by 

experimentation. For the pressure sensor, the vehicle was submerged to a number of precise 

depths over the full scale range and the ground truth depth was measured by alternative means, 

for example a tape measure. 

The second operation, calibrating the mounting of each sensor with respect to a common 

reference frame on the vehicle, was performed each time the vehicle configuration was changed. 

This was avoided to some extent by repeatable, fixed sensor mounting positions. Alternatively, 

when flexibility of mounting was required, the sensor was mounted in a series of selectable, 

definite discrete positions which were easily confirmed in software without requiring recalibration 

– for example the declination angle of the Delta T multibeam sonar. 

As discussed previously, much of the frame and structure of SeaBiscuit was bolted together to 

allow reconfiguration in the field and easy shipping. However, when trying to calibrate several 

sensors to a known reference frame on the vehicle it was important to use a reference which was 

not going to change. Therefore, all navigation sensors were calibrated (aligned and positioned) 

with respect to the rigid welded aluminium octagonal frame. The vehicle coordinate system x and 

y axes were defined as aligned with this frame and the origin of each axis was centred within it. 

The top of the blue shell was defined as the zero point in the z axis (section 4.6.3).  

The following table summarises the calibration process for each of the navigation sensors: 

Table 4.7 - Navigation sensor calibration operations 

Sensor: Calibration Required: 

NMEA Compass Yaw angle of mounting on vehicle 
(Pitch and Roll are mechanically gimballed) 

Pressure Position on vehicle relative to defined zero depth point 
Calibration of measured volts to metres of water pressure 
Calibration factor for salinity and water temperature (≈3% and 11°C) 

Cameras Calibration of position and mounting angle of both cameras on vehicle 
Field of view calibration (therefore relation of screen pixels at a given resolution to measured 
angle which was combined with range using the sonar to give an object size) 

Sonar Calibration of position and mounting angle of both sonars on vehicle 

Inertial Navigation Pitch, Roll and Yaw angle of mounting on vehicle 

 

Calibration of the mounting position and angle of sensors on the vehicle either involved manual 

measurement using external instruments, or holding the vehicle at a known position/attitude and 

reading the sensor value. The values were then recorded in a calibration matrix in the software.  

4.7 Software 

The software was re-written for SeaBiscuit to account for the limitations observed on the test bed 

vehicles Hawthorne 2.0 and 2.1. The algorithms required to read, process and extract useful 

positional information from the navigation sensors were summarised above in section 4.6. The 

sensor fusion algorithms are discussed in section 5.2 and the autonomous navigation algorithms, 

including simulation, are presented in section 5.3. This section provides an overview of the 

general software architecture together with details of the iROV control system. 
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 Graphical User Interface and iROV control 4.7.1

The main program was written in National Instruments LabVIEW with the same benefits of 

modularity, code reuse and flexibility described in the sections on Hawthorne 2.0 and 2.1. The 

overall structure was written as a series of interacting projects to allow deployment between the 

different controllers available. The two computers fitted onboard (a third was briefly fitted to 

increase onboard processing power) and any number of surface computers can all run the 

different pieces of code, and a full communications system of software variables was set up, 

allowing all variables to be accessed from any machine. Thus, depending on the task at hand, the 

processing power could be allocated to favour sonar image processing, for example, to yield a 

higher frame rate, or to favour video image processing, etc. 

Figure 4.22 below shows the overall program architecture (the simulation and playback software 

is not shown – see section 4.7.6 for details). Working downwards from the top of Figure 4.22, the 

top section shows the interaction of low, medium and high-level sensing and control with the 

iROV Operator Graphical User Interface (GUI). Interaction (input and output) was provided across 

all three levels of the hierarchical software architecture and is discussed in more detail below. 

The central blocks shown in the program architecture in Figure 4.22 represent the centralised 

control, in increasing levels of autonomy shown by the green arrow. These ranged from basic ROV 

control by a remote operator, to enabling various autonomous features for hybridised AUV/ROV 

control, to using SLAM to provide a position-aware intelligent semi-autonomous vehicle (iROV) 

through to the final option for full autonomy (AUV). Full autonomy was not suitable for operation 

in the kelp beds as discussed previously, and remains an opportunity for future development. 

Low-level 

At a low-level, sensor-specific subroutines read the sensor data. The filtered, error-checked, 

parsed and calibrated data was displayed on a series of easy to read indicators on the operator 

GUI pictured below in Figure 4.23. This displayed the navigation sensors, for example showing all 

telemetry, depth, compass, attitude, accelerations and GPS surface position. The GUI also 

included the machine health sensors, arranged to present a summarised, easy to see at a glance 

indication of the operating state of the vehicle, rather than confusing the operator with a 

multitude of data. 

Clear, easy to read dials showed normal operating conditions, warning levels and safe operating 

limits while battery meters showed how much energy was remaining. Various alarms were 

implemented to alert the user of faults, e.g. leaks, over-temperature situations, etc. A turn count 

indicator was also implemented to record the number of rotations of the vehicle to prevent the 

tether becoming unduly twisted and restricting movement. 

All mission data, telemetry, sensor readings, video and sonar footage and user commands were 

synchronised, time-stamped, recorded and archived, either onboard or over the network. This 

allowed both later inspection and playback as described in section 4.7.6 and kelp bed maps to be 

compiled from post-processing survey data.  

Low-level control allowed a remote operator (either via the wireless or wired link) to control all 

movements of the vehicle. Individual thruster control was abstracted from the lowest level to a 

simple holonomic control system of horizontal translation direction (0-360°) and speed (0-100%), 

(optionally simultaneous) turn rate (100% anticlockwise to 0% through to 100% clockwise) and 
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vertical movement (100% descend to 0% through to 100% ascend). This interfaced with the 

holonomic movement control algorithms discussed shortly in section 4.7.4. 
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Figure 4.22 - The iROV software architecture for SeaBiscuit. All code shown was written in National Instruments 
LabVIEW, with the video image processing algorithms interacting with C++ subroutines. The code was structured into 
self-contained projects with a full communication system between projects, allowing code to be flexibly deployed 
between the different controllers available. 

Mid-level 

Mid-level sensor feedback included indicators showing the state of enabled autonomous features, 

for example, the accuracy of holding a depth, or holding a heading. The raw output from the 

scientific mapping sensors was also displayed; dual camera displays were available, the 

multibeam display was shown as each image arrived in realtime and the 360° scan from the 852 

echosounder was overlaid ping by ping to show the 6-second scan and head angle. 
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Mid-level control allowed the various autonomous movement features to be toggled and set 

points controlled to allow the vehicle to hold a course/position despite external influences (water 

movement, tether drag, etc.). These mid-level autonomous control features included: 

 hold a depth while either stationary or moving, 

 hold a heading while stationary, diving or manoeuvring (the vehicle always faces in the same 

direction), 

 traverse a compass course while rotating (the vehicle always moves (translates) in the same 

direction, despite rotating about its axis to orientate the sensors and face in different directions). 

These mid-level control features were easily sequenced to build up basic missions or transect 

courses. For example: dive to 10 metres while holding a heading (to avoid the tether tangling), 

rotate 360° to scan the environment, then translate north west while facing east with a 30° 

oscillating pan to scan the sensors over a target while transiting a course. 

High-level 

High-level sensor feedback included processed images, from the sonar and video, with features or 

landmarks highlighted showing the location of detected objects which were used (either by the 

autonomous navigation algorithms, or the iROV operator) to aid with reactive navigation. The 

features included detected landmarks on the video, the seabed detected on the Delta T 

multibeam sonar, or targets in the midwater on the 852 sonar. 

High-level control included scheduling the autonomous movement features (hold a depth, hold a 

heading, etc.) described above. This also included searching for or tracking objects using the 

sonars or cameras, or the sophisticated mission planning algorithms described later in section 

4.7.3. However, the mission planning algorithms were only implemented for the competition 

environment for the reasons discussed in the introduction considering the challenges of fully 

autonomous navigation in kelp beds. 

 

Figure 4.23 - The iROV Remote Operator GUI for SeaBiscuit. The video feeds from the two sonars and two cameras 
were available separately (usually viewed on multiple monitors) streamed over the network and optionally archived. 
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Through the three levels of control and sensor feedback discussed above, optimal operation of 

the iROV was achieved. Based on the literature review in Chapter 2 covering the challenges of 

navigation in kelp beds, this hybridised autonomous control represented the optimal compromise 

between complete operator control and full independent autonomy. 

The final stage in autonomy, to relieve the operator completely, was deemed unsuitable for 

operation in the kelp beds. It would have required anticipation of all possible situations that the 

vehicle could encounter, such that the vehicle could autonomously select an action to maximise 

its chance of success. For reliable operation in the complex and confined kelp bed environment, 

fully autonomous operation was deemed too unreliable. However, semi-autonomous operation 

was shown to have great benefits for long and repetitive missions such as searching for a target, 

traversing survey patterns, mapping areas, and sensor recordings. 

The second part of the software architecture diagram shown in Figure 4.22 shows the general 

framework of sensing, control and actuation. Each block in Figure 4.22 represents a software sub-

project of the control architecture dealing with a different category. For each sub-project, the 

entries beneath the sub-project represent the different categories (e.g. different sensors, or 

different thrusters) considered, and the entries to the right of the sub-project represent an 

overview of the operations performed. Thus, for each sub-project the matrix of intersections from 

the entries at the bottom and the right represent the complexity of the code implemented. It is 

through the hierarchical program structure, modularity and efficient code-reuse that overall 

organisational simplicity was preserved. 

Considering each block shown: 

 The machine health software is discussed in section 4.5 

 The navigation sensor software is discussed in section 4.6 

 The sonar software is discussed in 4.6.6 

 The video software is discussed in section 4.6.7 

 The holonomic movement control software is discussed in 4.7.4 

 The algorithms for sensor fusion and SLAM are discussed in Chapter 5. 

 Software stability and performance 4.7.2

Two x86 computers running Microsoft Windows XP and software written in LabVIEW were used 

for adaptability and flexibility of development and operation. Development was also accelerated 

by using existing LabVIEW libraries without having to write low-level code from scratch for 

commonly used operations. Development was simplified through the version control system 

implemented. Incremental image based software deployment allowed easy recovery to previous 

versions of both the iROV software and the entire operating system. Each major change was 

imaged to a separate backup and a version control system was used for minor software updates. 

This ensured a stable software environment was always available. 

 Mission planning algorithms 4.7.3

Initial development towards overall autonomous operation at the SAUC-E competitions was 

mentioned earlier in section 3.4 as part of the confined water trials of Hawthorne 2.0. SeaBiscuit 

also successfully competed at SAUC-E 2009 and the results are discussed later in section 6.2. 

Although autonomous operation at the competition provided a useful set of confined water trials, 

the task scheduling and autonomous low-level control also proved essential for operation as an 
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iROV in the eventual nearshore application. Task scheduling in the iROV mode used the same 

framework as the mission planning for basic autonomous operation at the SAUC-E competition, 

with software written in LabVIEW for adaptability and flexibility of development. Building on the 

literature review into mission planning in Chapter 2, the mission planning algorithms for 

SeaBiscuit were implemented in three layers as follows: 

 Strategic level – provided a mission framework. Tasks were organised in a rational order, allowing 

for completion in an efficient and effective manner depending on environmental circumstances. 

 Tactical (task) level – used for completing individual tasks within a mission. This level sequenced a 

series of operations to complete a given task. 

 Actuation level – converted tasks from the tactical level into low-level actuation commands. 

This tri-layer hierarchical structure afforded robustness in the face of unpredictable conditions 

and was also reconfigurable, modular and upgradeable for a changing vehicle, changing suite of 

actuators and peripherals, and for different scenarios. 

At the competition, high-level control relied on following a pre-determined mission plan. The 

current state of the vehicle was compared to the desired state (by fusing the various sensory 

systems) and the motion required to achieve the desired state was calculated. This recursive 

process was run continuously until either the desired state was reached, or the system moved 

onto the next task. This level which provided exploration as well as task selection and scheduling. 

Although not fully implemented at the SAUC-E competition, this level was replaced by the high-

level remote control when operating as an iROV in the nearshore. In the iROV mode, the 

hierarchical object-orientated modular control system was used to provide hybridised 

autonomous control while overall supervisory control was maintained by the remote operator. 

Tasks were scheduled and reconfigured by the operator to build up surveys. 

The actuation level determined the thrust vectors required to achieve the desired position 

change, before finally the low-level control system generated the necessary motor control strings 

and PWM values. In terms of sensing, the low-level code read and calibrated the sensor data. The 

mid-level algorithms then converted this sensor data into useful positional information before 

finally the high-level algorithms performed mapping, localisation and navigation.  

Although not fully implemented, some example mission plans to demonstrate the adaptability of 

the mission planning structure from the SAUC-E competitions are shown in the following figures. 

Figure 4.24 below shows an example mission plan from SAUC-E 2008 and Figure 4.25 shows the 

mission plan from SAUC-E 2009. The actuation level is omitted from these diagrams for simplicity. 

As discussed above, the sub-objectives (the actuation level) were a series of blocks available to 

the user when defining the mission which reflected the sensing and actuation (including 

movement) capabilities of the vehicle. 

The individual blocks of the flowchart represent sub-VIs (virtual instruments) in the LabVIEW 

code, which perform different sub-tasks. Each sub-task ran once a series of predefined conditions 

were met and had a given set of inputs, executed a task and had a set of outputs. This modularity 

allowed for ease of programming, testing and debugging as well as straightforward task 

reassignment within the program. 

Using the graphical programming language and predefined mission building blocks, building a new 

mission, or redefining an existing one (on-the-fly) was as simple as drawing a flowchart similar to 

the one shown in Figure 4.24 into the LabVIEW interface. Predefined mission building blocks 

represented common sensing, control and actuation tasks and allowed fast definition of a 
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mission. Blocks ranged in sophistication from ‘hold a depth’ ‘hold a compass heading’ to ‘move 

forward at speed x for n seconds’ and ‘hold a position’ or ‘map an area using x exploration 

method’. As more sensory and actuation capabilities are added to the vehicle in future, the 

palette of mission building blocks can be expanded to exploit these new capabilities. This 

programming structure also allowed for simulation of the sensing, control and actuation blocks 

without having to deploy the vehicle. 
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Figure 4.24 - An example mission plan for the 2008 SAUC-E competition which required a number of underwater 
tasks to be completed. The green boxes show the strategic level and the blue boxes show the tactical layer.  
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Figure 4.25 - An example mission plan for the 2009 SAUC-E competition which increased the complexity of tasks from 
previous years to include tracking a moving midwater target and autonomous docking to a box on the seabed.  
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 Holonomic movement control algorithm 4.7.4

Several improvements to the holonomic control algorithm were implemented since the version 

deployed on Hawthorne 2.0 and 2.1. More sophisticated and efficient control was achieved by 

allowing for the nonlinear relationship between electrical power supplied and motor thrust 

generated, and for the unequal thrust generated when a motor was used in reverse. The 

redundancy built into the system was also exploited by the machine health system. Motor thrust 

scaling allowed an overheating motor or driver to operate at a reduced power until the 

temperature returned to normal with the other motors providing the supplementary thrust 

required. Additionally, if a motor or driver failed, the control system could be adapted to exploit 

the built in redundancy and allow the mission to continue using the remaining functional 

thrusters. As discussed in section 4.5.1, the wiring was in place but the thruster speed sensors not 

yet implemented to detect a failed thruster. 

The holonomic movement control algorithm directly interacted with the higher-level navigation 

and control algorithms to provide the required movement despite external (often dynamic) 

influences such as drag, the effect of the tether and external currents. Horizontal holonomic 

movement was independent of vertical movement. The control algorithm resolved the desired 

horizontal translation and the desired horizontal rotation from the world coordinate system into 

component thrusts in the vehicle coordinate system which were provided by each of the 4 

horizontal thrusters. A Proportional Integral Derivative (PID) control system was used to compare 

the desired heading, bearing and depth with the actual measured values. This allowed for 

accurate and efficient control with minimal overshoot and fast response. 

Different control profiles (PID gain values) were stored for different operating modes. For 

example, when the tether was detected, the appropriate control profile was used to counteract 

for the increased drag of the tether, but to provide faster response at the expense of efficiency 

given that unlimited surface power was available. Higher level control responses to the presence 

of the tether involved basic items such as maintaining a turn counter to avoid twisting the tether 

and performing wide sweeping turns to avoid the tether becoming entangled with the vehicle. 

Control effects included the spring-like nature of the tether, and tail-like effect which served to 

straighten the vehicle, and pull it backwards and either upwards or downwards at the rear 

depending on the buoyancy of the tether. In other tasks, a slow response but with little overshoot 

was more preferable, for example detailed mapping in confined environments. The different 

control profiles allowed a compromise to be made and adjusted between efficiency, accuracy and 

speed of response. 

 Station keeping 4.7.5

The improved holonomic motor control algorithms and navigation accuracy allowed for enhanced 

station keeping capabilities, allowing the vehicle to hold a position in 3D to a given tolerance 

despite external forces. These external forces were characterised into two categories. 

1. Short term impulses, such as wave movements, swells or sudden forces on the tether 

2. Long term drifts such as tides and currents, or a continuous pull from the tether 

In each case, there was a trade-off to be made between positional accuracy and energy expended 

holding the position to a given threshold. Short-term impulses such as wave motion were 

generally repetitive and comprised swells back and forth (as shown in Figure 3.17 earlier). In this 

case, it was significantly more energy efficient to correct the sensor data rather than try to correct 
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the actual movement of the vehicle. As the movement was repetitive and periodic, overall the 

average position of the vehicle did not change. Station keeping or course holding was more useful 

to maintain a position or course despite a long-term drift. The station keeping system was used 

with great effect to maintain a steady heading, course or position, all to within tolerances 

determined by the accuracy of the navigation system, despite these long-term drifts. 

When the flow rate was too high to hold a position or course, the alternative was a controlled 

downstream drift. In this case, the support vessel anchored upstream of the survey area, 

deployed the vehicle and the tether (having strain relief built in) was gradually paid out. As the 

vehicle moved downstream in the current, its thrusters were used to hold a depth, and to 

manoeuvre to accurately follow the required transect while tracking its course. At the end of the 

downstream transect, the vehicle was recovered by the tether. This overcame the limitation of 

operating in currents greater than the vehicle’s propulsive power. 

 Mission playback and data analysis 4.7.6

During every iROV survey, all navigation data, control data, machine health, telemetry, sonar and 

video data was recorded and time stamped to allow post processing and review for inspection or 

analysis of the maps and footage generated. Software was written to index and playback the 

logged data (sonar, video, navigation sensors) and telemetry in synchronism. For playback, the 

results were presented in a similar GUI to the mission control interface shown in Figure 4.23 

previously, with the addition of an indexed scroll bar to allow missions to be played back at a 

given speed, stepped through frame by frame, or excerpts to be examined in detail. A version 

without the GUI also allowed rapid batch processing of results. 

Recording the raw footage, as well as processed information, allowed any future development of 

the analysis and processing software to be applied retrospectively to previous mission data to 

realise any advances in processing for all previous datasets. The playback software was developed 

in conjunction with the simulation capabilities discussed in section 5.4 to allow raw data already 

gathered to be used to aid development of the sensor processing, navigation and exploration 

algorithms. This permitted algorithm development without necessarily having to deploy the 

vehicle, of great use given the remote field site. 

4.8 Discussion 

The benefits of using underwater vehicles for nearshore habitat mapping were established in the 

literature review presented in Chapter 2. Advantages of coverage and a reduction in labour 

requirements and cost were discussed over diver surveys [11] and camera drops, and an 

increased level of survey detail was shown over surface vessel surveys and aerial imaging [13]. 

From this, the limitations of existing ROVs and AUVs for nearshore operation were explored, 

trading the risk of autonomous operation with no feedback with the limitations associated with a 

tethered remote-controlled vehicle [25]. The optimal compromise of a hybrid solution, an 

intelligent, position-aware ROV (iROV), was proposed to mitigate the limitations from each, and 

to combine the benefits from both. 

The iROV concept combined low-level autonomous control and navigation while maintaining the 

reliability and data validity from remote operator control and supervision. The security of energy 

autonomy and the high thrust available from an onboard power supply was combined with the 

unlimited operating duration in the high currents of the nearshore from a thin, lightweight and 
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flexible tether providing surface power. With this concept, and building on the background 

development work into the underwater vehicles Hawthorne 2.0 and Hawthorne 2.1, the iROV 

SeaBiscuit was designed and developed specifically for nearshore habitat mapping. 

SeaBiscuit built on the previous strengths and successes of Hawthorne 2.0 and 2.1 including 

modular design, holonomic movement and multipurpose flexibility while addressing all of the 

limitations from these previous generation vehicles. A critical redesign of the mechanical, 

electrical and software systems specifically to improve operation in the nearshore yielded 

improved performance, reliability and flexibility over Hawthorne 2.0 and 2.1, including: 

 Reliability – rugged, reliable SEACON wet-mateable connectors, removal of the air 

pressurisation system, custom made HDPE and aluminium housings, oil-filled thrusters, a re-

designed electrical distribution system, extensive machine health and diagnostic sensors, 

redundant sensing and propulsion and robust, modular communication architectures all 

extended the reliability of the hybrid iROV concept. 

 Sophistication – greatly expanded navigation and survey sensor suite (dual sonar & cameras, 

INS, GPS, pressure), sophisticated navigation algorithms designed for the target nearshore 

application, modular & upgradeable sensor/accessory suite. 

 Performance – improved accuracy and efficiency of movement from an upgraded sensor suite 

(hardware upgrades and improved navigation algorithms), a complementary navigation and 

holonomic propulsion system to extend the benefits of mapping sensors and to enable 

reliable nearshore navigation. 

Considering the specific objectives identified in section 3.7.1 as opportunities for further 

development from the test bed vehicles Hawthorne 2.0 and 2.1: 

1. Improvements to the navigation system were provided by an increased sensor suite (section 

4.6), using a variety of absolute and relative sensors together with a sensor fusion algorithm 

(detailed later in Chapter 5) to combine the navigation data from multiple complementary 

sensors to improve the overall navigation capabilities of the vehicle. 

2. Kelp mapping was provided (and later demonstrated in Chapter 7) by a combination of a 

forward facing multibeam sonar and a 360° scanning sonar to provide quantitative kelp 

mapping, using video for realtime target validation. 

3. 3D mapping while in transit, independent of station keeping and course holding was enabled 

by the improvements to the holonomic movement control algorithms (section 4.7.4), the 

novel sensor arrangement and complementary axisymmetric hull shape and holonomic 

propulsion system. 

SeaBiscuit was built to a total parts budget of approximately £3000, excluding the sonar units. 

Although this budget included sponsorship of loaned, discounted and evaluation parts, this still 

represented at least an order of magnitude reduction in cost compared to the commercial 

offerings described in Chapter 2 with comparable performance [14]. When compared to the 

objective identified in section 3.3.2.3 of using innovative techniques and sensor fusion to increase 

the performance of a lower budget vehicle, success can be concluded as the budget was realisable 

to the target end users, a typical small-scale academic research operation [30, 146]. 

In many cases, there are significant opportunities for development in the next revision of vehicle. 

The focus of this research was to develop an iROV prototype to demonstrate the feasibility and 

benefits of using an iROV for nearshore habitat mapping. As such, generic components such as 

the thrusters and battery packs were not necessarily optimal, but fit for purpose and designed 

with a budget constraint. For example, further development to the thrusters to yield a thrust to 
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electrical power efficiency comparable to similar thrusters of this size [344, 345] will increase the 

speed of response of the vehicle and permit operation in higher tide speeds. However, the 

present thrusters were demonstrated as fit for purpose, low-budget and adequate for operation 

in the kelp beds and station keeping in minimal currents. Techniques were also developed to 

operate in currents higher than the thrusters can overcome (section 4.7.5). Similarly, higher 

energy density batteries are available at a significant price increase [333]. However, through the 

techniques developed using an energy buffer and continual recharge, the relatively small battery 

capacity has been demonstrated as suitable for the high-power manoeuvring thrust required to 

operate in the kelp beds, with mission durations of several hours detailed later in Chapter 7. 

From the limitations for nearshore habitat mapping identified across the field of existing 

underwater vehicles, applicability, novelty and benefits have been demonstrated over alternative 

solutions to nearshore habitat mapping. These are considered across the following key areas of 

novelty. 

 iROV hybrid control system 4.8.1

The application and environment determine if control (and energy) autonomy are a benefit or a 

limitation. The intelligent, position-aware iROV SeaBiscuit represented an optimal compromise for 

the target nearshore environment between remote operator control and full autonomy. 

Compared to a basic ROV, which can simply be regarded as a movable sensor platform [25], 

adding intelligence and position-awareness greatly increased the capability and sophistication of 

the vehicle, increasing performance and productivity in surveying and mapping underwater 

environments. Positional awareness allowed survey data to be compiled into useful maps of the 

environment, both for navigation, scientific comparison and user feedback, rather than simple 

chronological survey footage [69]. The continual localisation and mapping also allowed realtime 

feedback to the user of position, exploration and the surrounding environment. 

The operator could turn on varying levels of autonomy, for example to hold a position or course 

despite tether drag and water movement. This allowed a remote operator to focus on the mission 

and incoming data in realtime, essential to ensuring data validity in the highly dynamic nearshore 

environments [22]. Whereas a basic ROV is controlled using teleoperation, the iROV concept 

added sufficient intelligence to allow teleprogramming [264], allowing missions to be compiled 

from a library of elemental manoeuvres and recompiled on the fly in response to changing 

conditions or scientific data. Further levels of intelligence were transparent to the operator, such 

as reactive machine health and fault tolerant control, used to increase the reliability and 

robustness of the vehicle in the hostile nearshore environment. 

The additional computational and sensing complexity required to achieve reliable fully 

autonomous operation in the target nearshore environment would have increased operational 

unreliability [21], vehicle complexity and most significantly vehicle cost [11]. In high risk areas, or 

highly dynamic environments, the need for remote operator control and supervision to ensure 

high quality datasets without redeployments is still (as of 2011) recognised as essential [21]. 

Based on the justification provided in section 2.3.2.6, a vehicle which was capable of making all of 

its own decisions unsupervised (exploration, navigation, survey completion and mission planning) 

for an unknown target application and environment was deemed infeasible for operation in the 

nearshore environment and not necessarily of benefit. 

Instead, the optimal combination of remote supervision and control, yet with varying levels of 

onboard autonomy, provided a useful scientific and commercial tool for surveying and mapping 
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the nearshore environment, building on existing hybrid control vehicles [263-265]. As well as 

reducing vehicle complexity, high-level remote control and supervision ensured data validity, 

avoiding the need for repeat deployments, as the mission parameters could be adjusted on-the-

fly in response to either unexpected or dynamic conditions. 

The novel program structure, implemented in LabVIEW, defined missions as flowcharts, with 

either sequential or conditional transitions between steps intuitively compiled in the ‘flowchart’ 

structure of the LabVIEW control system. The inherently modular program structure also allowed 

data sharing between different program subroutines, and between any number of onboard or 

surface networked computers. Whereas resource adaptive algorithms are capable of adapting the 

algorithm (e.g. map resolution) to the computational resources available [150], the novel 

approach implemented on SeaBiscuit through fully networked variables allowed the entire 

software architecture to be resource adaptive between the onboard (1, 2 or 3 computers) and 

surface computational power available. For example, if a poor-visibility operating environment 

favoured sonar operation over video, then the sonar algorithms could be distributed to run on 

each computer available to maximise the sonar processing frame rate, while continuing to run the 

lower priority video processing software at a lower frame rate. 

The data flow computational model of LabVIEW [346] is inherently parallelisable, for efficient 

multi-threaded operation when running multiple tasks (e.g. sonar, video, IMU processing), yet 

also allowing independent (and parallel) deterministic operation when reliable control or data 

acquisition is required [347]. Through inherent resource management, the architecture developed 

is scalable, allowing the different computationally intensive (e.g. 1 or 2 cameras, 1 or 2 sonars) to 

be enabled or disabled with a corresponding increase or decrease in the frame rate of the 

remaining enabled algorithms, rather than a single sensor causing all other processing to halt. 

Thus seamless adaptation between the dynamic environmental conditions was ensured and 

survey speed could be adjusted in realtime by the operator to maintain an acceptable spatial 

survey resolution rather than just a temporal resolution. 

 iROV hybrid energy system 4.8.2

For the target application in the nearshore environment, energy autonomy with no tether would 

have imposed a restrictive limitation on survey duration and coverage [13]. The currents and 

turbulent flow of the nearshore would rapidly exhaust the finite onboard energy supply of 

batteries of an untethered vehicle. Traditional AUVs are limited to moderate or low current 

environments and are unable to hold a position or transit an accurate course in the currents 

typical of kelp beds [13]. For nearshore habitat mapping, the iROV was required to operate in high 

current tidal conditions, requiring a high degree of manoeuvrability to navigate in and around the 

kelp beds and to position the sensors in a confined environment surrounded by kelp. 

Long mission durations and station-keeping in currents dictated surface power supplied by a 

tether. However the manoeuvrability required to operate within and map the kelp beds dictated 

high power thrusters, and thus would have required a thick diameter tether to provide these 

bursts of high power from the surface. A thick diameter tether would itself have further reduced 

the manoeuvrability of the vehicle. 

Existing hybrid vehicles often offer distinct AUV/ROV modes [266] operating with or without a 

tether, or provide a lightweight data only tether [251, 252, 267-269]. However, the novel solution 

implemented on SeaBiscuit used a hybrid power supply combining an onboard battery buffer with 

a continual recharge via a thin lightweight tether. The onboard energy buffer provided the bursts 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

159/347 

of power required for manoeuvring, together with the security and data reliability of an onboard 

power supply in case the tether was damaged or cut. Additionally, the tether afforded security, 

reducing the risk of data loss when operating in the difficult and challenging shallow water and 

high current conditions, also allowing recovery of the vehicle by retracting the tether, or by a 

diver following and disconnecting the tether should the vehicle become entangled. 

The thin, lightweight tether allowed an unlimited mission duration and station-keeping in the 

flows of the nearshore without compromising manoeuvrability. The problems often caused by a 

trailing tether were also mitigated by the holonomic manoeuvrability of the vehicle, allowing a 

carefully controlled and recorded path to be navigated to reduce the risk of tangling. Tether drag 

was reduced by the nature of the thin tether, mitigated by the unlimited energy supply and the 

control effects overcome by an exact corrective force applied by the holonomic propulsion 

system. The tether limit on operating range from the surface vessel was not an issue for the small-

scale high-detail kelp bed scans. The surface vessel could also be repositioned in the immediate 

vicinity to extend the survey range without having to recover and redeploy the vehicle. 

 Complementary holonomic propulsion and navigation system 4.8.3

In the case of surveying and mapping complex nearshore habitats, a high degree of 

manoeuvrability is required. There is less of a requirement for long distance propulsive efficiency 

due to the presence of the trickle charging tether discussed previously. Manoeuvrability was 

realised in SeaBiscuit with thrust controlled in 4 degrees of freedom (DoF) and holonomic 

movement in the horizontal plane, coupled with a complementary 6 DoF navigation system and 

an accurate and robust control system.  

This manoeuvrability had benefits throughout operation, allowing confined spaces and complex 

3D environments to be entered and mapped in close proximity increasing survey detail and 

resolution over surface vessel surveys [10, 247], while maintaining reliability and safety of 

operation. Reliability was enabled by the novel control system developed in this research to 

exploit the manoeuvrability, redundancy and fault tolerance of the vehicle. Finally, through the 

accurate and precise control resulting from the complementary holonomic propulsion and 

navigation system, SeaBiscuit was capable of station keeping and tracking an accurate course in 

the unsteady flows, tides and currents often found in the target nearshore environment 

compared to other vehicles [297, 307]. 

The unique cylindrical shell complemented holonomic movement with homogeneous horizontal 

drag properties, allowing independent panning of the directional sensors in-transit and provided 

vertical stability. The holonomic propulsion system also allowed for the novel combination of 2D 

sonars in the horizontal and vertical planes to be co-registered to provide the benefits of 3D 

scanning [129, 130], even while the vehicle was in motion. This technique exploited the vehicle 

configuration, cylindrical hull and holonomic propulsion system to extract maximum benefit from 

the finite performance limited budget sensors. Sonar frequency separation was used to minimise 

interference and sonar ping scheduling techniques were developed to mitigate the effects of any 

interference [132]. 

In many cases, the drag of ROVs is simply overcome by increased thrust, and little is done to 

optimise the hydrodynamics of ROVs for manoeuvrability. Similar axisymmetric vehicles exploit 

homogeneous horizontal drag characteristics to allow movement in any direction [348], yet 

exploiting an axisymmetric hull and holonomic propulsion to enable 3D ‘spin mapping’ while in 

transit is rare, with only one vehicle known, the AUV DepthX [288]. The vehicle DepthX uses 
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planar arrays of discrete narrow beam (2°) sonars to provide vertical mapping resolution, 

registered by a radial spin of the vehicle. Although the technique used by DepthX is to rotate 

while descending/ascending in subterranean flooded tunnels and caves, the principle of panning 

tightly bound (2° beamwidth) sensors while registering the returns in 3D [303] is similar to that 

used by SeaBiscuit. 

SeaBiscuit uses a forward facing multibeam sonar to provide a similar narrow beam (3°) vertical 

swath. However, the sonar arrays fitted to DepthX were primarily used for obstacle avoidance 

[289]. Significant problems from acoustic noise and interference were encountered using these 

32* 600KHz and 24* 300kHz pencil beam sonars, as the entire bank had to be fired at once, 

particularly in shallow water operation [303]. Conversely, the multibeam sonar fitted to SeaBiscuit 

provided a complete vertical swath at the same time, with no interference or crosstalk. 

Furthermore, the multibeam fitted to SeaBiscuit provided a far greater vertical resolution with 1° 

vertical beam spacing, compared to the 18° beam spacing of the sonars arranged in three 

perpendicular rings on DepthX. A later fitted downward facing multibeam sonar was used for 

benthic mapping on the revised vehicle ENDURANCE and briefly used in a forward facing 

orientation for mapping glacier and quarry walls [289]. 

However, the technique implemented on SeaBiscuit allows independent panning of the 

navigation and mapping sensors and a higher resolution [303]. SeaBiscuit uses the forward 

camera and multibeam sonar to aid navigation, but primarily these are used for habitat mapping, 

panned with the vehicle yet independently of vehicle course. However, the additional degree of 

freedom provided by the independently actuated 852 scanning sonar is used for both obstacle 

avoidance as well as habitat mapping with a far greater angular resolution than the periphery 

pencil beam sonars used on DepthX and ENDURANCE, and crucially, with an independent 

controlled heading. This allowed objects to be scanned while being passed, or sonar contact 

maintained for absolute drift-free navigation despite movement of the vehicle for either 

navigating a course or panning the multibeam sonar independently for habitat mapping. 

Maintaining sonar contact with a landmark for relative sonar-aided navigation raises another 

significant advantage of SeaBiscuit over vehicles of a similar design. Navigation is performed 

independently of the expensive Doppler Velocity Log (DVL) solutions often used [258] with no 

reliance on clear visibility for optical station keeping [305] and no need for expensive or often 

unreliable acoustic baseline navigation in the nearshore kelp beds [71]. On a lower budget than 

DepthX, but still significantly higher than SeaBiscuit [28], the axisymmetric AUV Charybdis realises 

underwater navigation using a DVL, pressure and altimeter sensor to aid visual waypoint 

navigation [348]. However, no acoustic navigation is implemented, and there is no documentation 

of exploiting the axisymmetric hull shape to pan directional sensors, such as the multibeam sonar 

used on SeaBiscuit. 

The flat saucer shape of Charybdis is possible due to the more compact components, for example 

higher energy density LiPo batteries rather than SLA and a significantly smaller navigation and 

mapping sensor payload [348]. Although the saucer shape incurs a lower hydrodynamic drag for 

horizontal translation than the cylindrical shell of SeaBiscuit, a saucer hull of dimensions to 

include the electronic systems of SeaBiscuit would be impractical for navigation of a compact 

vehicle in the confined kelp beds. 

Similar to the ROV Latsis [27] but significantly smaller, less-expensive and more manoeuvrable, 

the buoyancy of SeaBiscuit was reconfigurable, allowing the vehicle to be operated from the 

surface or submerged. Surface operation was used to extend the survey capabilities of the surface 
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vessel into inaccessible (e.g. shallow water), or high risk inaccessible areas (e.g. rocks, kelp, under 

docks), providing downward facing sonar and video surveys from the surface. SeaBiscuit could 

also be towed at slow speeds (<2 knots) in calm waters between surveys sites to avoid the need 

for recovery and redeployment between nearby sites. In terms of navigation, a GPS position fix 

could be obtained at the surface with the sonar units submerged to register sonar targets with a 

geodetic GPS position, before diving and generating a drift free map of targets relative to the 

original sonar landmark. 

A similar comparison with existing vehicles can be made In terms of budget, dimensions and 

applicability to habitat mapping in the nearshore kelp beds. The significantly larger DepthX and 

ENDURANCE vehicles provide additional payload space for more sophisticated navigation sensors 

(DVL, precision ring laser gyroscope IMU, USBL) and a much (100 times) larger battery bank of 

3.8kWh [288] compared to 0.38kWh used on SeaBiscuit. Although well suited to their target 

environment of still water and deep water operation, the size (2.13m diameter, 1.52m height) of 

the DepthX and ENDURANCE vehicles [29, 288] render them highly unsuitable to operation within 

the cluttered and complex kelp stipes. Additionally, the size and dry mass in air of 1272kg render 

them physically impossible for deployment from the size of the research vessels designed to 

operate in the shallow water coastal kelp beds. 

Instead, the 0.7m diameter shell (excluding external peripherals) and a dry mass of 65kg in air of 

SeaBiscuit allowed rapid deployment with a small crew from coastal research vessels. More 

importantly, rapid, safe and straightforward recovery using a single lift line was possible in the 

case of changing tides and weather conditions. Not only was the total development cost of 

SeaBiscuit several orders of magnitude lower than the $5m of DepthX [349], deployment from a 

smaller surface vessel also reduces ongoing operational costs. 

Similar to other low-cost underwater vehicles [30, 146], SeaBiscuit uses a combination of a basic 

IMU and regular GPS updates to bound errors. However, the example referenced here [30, 146] 

uses vision to aid IMU/GPS navigation, requiring proximity to a sufficiently diverse seabed and 

adequate visibility. Instead, to allow operation of SeaBiscuit in the kelp beds, steps towards sonar-

aided navigation to allow reliable and accurate mapping in poor visibility or from the midwater 

are later demonstrated using the same sonars used for habitat mapping to minimise cost. Sonar-

aided navigation in unmodified environments is used elsewhere, yet often utilises a horizontal 

swath for tracking benthic features [118]. The novel dual-sonar configuration of SeaBiscuit, 

coupled with the holonomic mapping technique designed specifically for operation in the 

nearshore and kelp bed habitat mapping does not appear to have been documented elsewhere. 

As the DepthX and ENDURANCE vehicles have no need to manoeuvre in flows their cruising speed 

of 0.2m/s is acceptable. However, this, coupled with their 4 hour mission duration before the 

batteries require recharging renders these larger vehicles unsuitable for operation within the 

currents of the kelp beds [303]. The static and relatively uniform flooded cave and under ice 

environments into which DepthX and ENDURANCE were deployed facilitate autonomous control 

and mapping, and energy and control autonomy leave the vehicle free from the restrictions of a 

tether to conduct surveys of up to 1000m depths in sinkholes [288], and over several thousand 

metres horizontally under ice [29]. However, the dynamic and complex kelp beds dictated remote 

control and supervision, together with a remote trickle battery recharge as discussed above. 

Mapping kelp beds of Nereocystis luetkeana still poses such a challenge from the full height 

stipes, canopy [14] and challenging conditions such that modified surface vessels are still widely 

(as of 2012 [10]) used for survey and mapping of this environment [247]. The field trials 
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documented in Chapter 6 and Chapter 7 provide a demonstration of using the holonomic iROV 

SeaBiscuit as a successful proof of concept to provide reliable and detailed kelp bed mapping with 

full manoeuvrability from the midwater. Furthermore, steps towards the outstanding (2011) 

challenge [210] of sonar aided navigation in an unmodified environment are demonstrated in the 

absence of a DVL, USBL or precision IMU. The challenges associated with system integration of a 

variety of devices, interfaces and protocols [240] and sonar integration [27] have been overcome 

through the novel modular LabVIEW control software. 
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Chapter 5 Development of Underwater Navigation 

5.1 Introduction 

The challenges of underwater navigation were identified in Chapter 2, many of which are 

compounded in the nearshore. The background work in Chapter 3 described the development of 

a test bed vehicle as a point of comparison from single-sensor navigation and to inform 

development of the iROV SeaBiscuit detailed in Chapter 4. This chapter describes the design and 

implementation of a complementary nearshore navigation system capable of localisation and 

mapping in the nearshore. 

The justification and implementation of probabilistic sensor fusion are detailed, together with 

probabilistic characterisation of the navigation sensors. Gaussian functions are used to represent 

the uncertainty associated with measurements from each sensor, allowing a weighted fusion of 

multiple measurements, rather than simpler techniques such as voting or a single ‘best guess’. 

This probabilistic framework is extended to simultaneous localisation and mapping (SLAM), 

allowing the vehicle to correspond observations to previously mapped features in order to 

compile a map and localise itself, with the uncertainty of each piece of information tracked. 

Various algorithms for SLAM are considered for suitability to nearshore navigation, including 

robust methods for establishing landmark correspondences, together with techniques to use 

nonlinear data. The extended Kalman filter algorithm for probabilistic SLAM is described and a 

novel implementation programmed in LabVIEW for use on SeaBiscuit. The modular software 

architecture developed allowed alternative algorithms to be trialled. A simulation environment 

was constructed as a modular wrapper for the navigation software, using simulated noisy sensor 

measurements, vehicle motion and environmental variation such as water movement. This 

allowed the navigation algorithms to be thoroughly tested prior to deployment. 

5.2 Sensor fusion 

The benefits of sensor fusion in response to the challenges of nearshore navigation were 

established in the literature review in Chapter 2. In particular the opportunity to use sensor fusion 

to extend the performance of a limited budget of sensors, together with the requirement to 

combine absolute and relative measurements were identified. Sensor fusion was used on the 

iROV SeaBiscuit to combine estimates from a variety of sensors, each with different 

complementary characteristics (e.g. update frequency, noise, accuracy, etc.). In summary: 

 Each sensor’s estimate was assigned a reliability: 

o this determined its weighting (influence) on the overall positional estimate when 

combining conflicting data 

 As environmental conditions changed, the weightings were adjusted (manually at present): 

o turbid water (murky so lower weighting of vision) 

o turbulent water (increased sonar noise) 

o magnetic disturbances (reduced magnetometer accuracy) 

 The overall position estimate was provided with an accuracy or uncertainty estimate 

Figure 5.1 below shows the fusion of sensors fitted to SeaBiscuit, with the information provided 

by each sensor described previously in section 4.6. 
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Figure 5.1 - The principle of sensor fusion on the iROV SeaBiscuit. 

 Justification 5.2.1

Considering the simple example of two sensors measuring the yaw angle of the vehicle, the 2Hz 

update, mechanically gimballed NMEA compass and the faster yet noisier Xsens IMU (120Hz 

update, unsynchronised with the 2Hz NMEA compass), then each produced independent 

observations of the same state, with disparate yet complementary characteristics. Figure 5.2 

represents the arrival times of the different measurements. 
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Figure 5.2 - Fusion of the 2Hz NMEA compass the 120Hz Xsens IMU measurements (not to scale). 

More frequent estimation of yaw angle was required than the 2Hz update of the NMEA compass, 

and due to potentially sudden movements of the vehicle, interpolating between observations was 

not reliable. Instead, the noisier (more uncertain) measurements from the Xsens were used to 

update the estimate in between NMEA compass updates. Then, each time (every 0.5s) a lower 

uncertainty NMEA measurement was received, either: 

1. the current Xsens estimate was rejected and the NMEA value trusted completely, 

2. or, the estimates from each sensor were fused. 

The simplistic approach in scenario ‘1’ suggested assuming that the state of the vehicle was the 

most recent measurement, with the NMEA compass measurement taking priority (when 

available) over the more uncertain Xsens measurement. Scenario ‘2’ which required fusing the 

data from every measurement from both sensors into an overall estimate had two benefits. No 

information was ‘wasted’ or discarded, and if an error, or unnoticed deviation occurred with one 

sensor, this could be allowed for by comparing and fusing data with the other sensor, rather than 

just trusting a single measurement or sensor. 

Therefore the technique of recursively fusing each measurement (from either sensor) into a 

maintained state estimate, rather than just accepting a single measurement at each time step, is 

illustrated in Figure 5.3 below. 
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Figure 5.3 - The principle of recursively fusing measurements into the state estimate. An ongoing state estimate was 
maintained, and each time a new measurement was available, it was fused into the state estimate. 

A variety of fusion techniques were identified in the literature review in Chapter 2. Probabilistic 

methods, including the compact and efficient Extended Kalman Filter (EKF), were proposed to be 

most applicable for implementation on SeaBiscuit for nearshore navigation. The EKF, a parametric 

filter, represented states, measurements and landmarks as Gaussian (normal) probability density 

functions which were compactly and efficiently stored with a mean and (co)variance. 

 Implementation example: fusion of yaw angle (vehicle heading) 5.2.2

Vehicle heading, referred to as the vehicle yaw angle in the World Coordinate System (WCS) is 

considered here as an example of sensor fusion. The mechanically gimballed NMEA compass and 

the gyroscopes and magnetometers built into the Xsens Inertial Measurement Unit (IMU) were 

both capable of measuring yaw angle directly. 

In addition to these direct measurements of yaw angle, indirect yaw angle estimates could be 

made from several of the other sensors. However, these indirect estimates were all reliant on 

some form of a priori information. For example, given a known map and a uniquely distinctive 

arrangement of features in the map, subsequent observations of these features could be used to 

orientate the vehicle using the sonar or vision. Alternatively, assuming stationary landmarks, 

autocorrelation between sonar scans alone could be used to extract change in yaw angle.  

Using the sensor fusion framework, the uncertainty associated with each measurement, 

landmark, etc. was tracked and data from both direct and indirect sources could be reliably fused. 

Tracking this uncertainty allowed one sensor to correct another. For example, measurements 

from the NMEA compass and Xsens IMU were used to estimate the orientation of the vehicle 

(while tracking the uncertainty of each). Additionally, sonar observations were registered using 

the orientation estimate. Thus the uncertainty of mapped sonar targets combined the uncertainty 

from the orientation sensors and the uncertainty associated with the sonar itself. When revisiting 

and recognising the same location, any observed landmarks which were previously mapped could 

be used for localisation (with an associated uncertainty) together with the most recent compass 

and Xsens orientation estimate. Mapped landmarks could also be updated upon reobservation 

with a lower uncertainty as the position is corrected and confirmed. 

This process of constantly using and reusing direct and indirect estimates of state was common to 

all sensors and the example of fusion of yaw angle is considered here. The first step was 

determining the magnitude of the uncertainty associated with each measurement for a given set 

of operating conditions. 

5.2.2.1 Yaw sensor characterisation 

In order to use the probabilistic framework for sensor fusion and navigation introduced in section 

2.3.2.4, the uncertainty associated with each measurement was required. The framework 
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presented by Thrun et al. [150] stated that ‘measurements    are usually noisy projections of the 

state   ’. Thus, the measurement probability was the probability that the state    , given that 

the value of the measurement    . Therefore the measurement probability        for each 

source of information was required, in this case, each sensor used to measure yaw angle. 

The measurement probability was represented with a probability density function (PDF) over the 

continuous measurement/state space. Although measurements were discrete, limited by the 

sensor resolution, they were represented by a continuous PDF. The EKF framework required the 

assumption that the uncertainty associated with measurement data was normally distributed, 

allowing a Gaussian, or normal PDF to represent the measurement data. Using the canonical 

parameterisation, this normal PDF was specified by the mean and variance of the normal 

distribution to provide a concise and efficient representation of the measurement data which 

accounted for uncertainty. 

In order to make these assumptions the following steps were required for each sensor, each 

change of mounting position, change of sensor setting and each change of operating environment 

and conditions: 

1. Firstly the accuracy of representing the uncertainty associated with the measurement data 

with a normal distribution was verified analytically by plotting the sensor data for a known 

position and approximating the data by fitting a normal distribution. 

2. The parameters of the normal distribution (mean and variance) were then estimated. 

It is important to note the difference between calibration and the more detailed characterisation. 

Calibration refers to the process of relating the sensor output to real-life units (section 4.6.9). For 

example, the offset between the compass output and the direction the vehicle is facing caused by 

sensor misalignment in mounting, or the ratio of voltage output and the zero point from the 

pressure sensor to the vehicle depth. This provided the mean value for the PDF. 

Characterisation includes this calibration process (to obtain the mean value for a given state), but 

also considers the uncertainty (variance) associated with each measurement. The sections below 

use the example of characterising the NMEA compass and Xsens IMU to allow fusion of the yaw 

angle of the vehicle. This example describes static characterisation for simplicity in providing a 

known ground truth measurement for characterisation. This required the assumption that the 

uncertainty (variance) for each sensor during operating conditions was the same as the 

uncertainty experienced during static characterisation. 

Further developments discussed in Chapter 8 consider improvements to this process, for example 

automating the characterisation and calibration process to autonomously vary the weighting of 

each sensor in response to dynamic conditions: e.g. in murky water, vision has a higher 

uncertainty, when the tether is attached, the control probability is lower, etc. 

5.2.2.1.1 NMEA compass characterisation 

For the static NMEA compass characterisation, the vehicle was held flat, level and in a known 

orientation and the output from the NMEA compass was captured over a suitable period. 

Therefore the state    of the robot (the stationary heading of the vehicle) was known and the 

measurement data    was recorded. 

Although the accuracy of this calibration process when considering the zero point was not 

particularly high due to the inevitable error in manually aligning the vehicle, for the purposes of 
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zeroing the sensor in field conditions it was sufficient. The accuracy of the calibration process only 

affected the zero-point heading of the map and had no effect on the accuracy of the mapped data 

as the linearity of the compass was already pre-calibrated to a high accuracy. Additionally, the 

accuracy of aligning the robot to a known angle had no effect on the accuracy of calibrating the 

various sensors to each other (co-registration). The same applied to the calibration of the Xsens 

INS. 

Taking the NMEA compass data as an example, several calibration datasets were gathered which 

recorded the compass data for a known static vehicle position and orientation. Figure 5.4 below 

shows an example calibration dataset. The vehicle was stationary for a period of approximately 

300 seconds with all electrical systems running to simulate electrical and electromagnetic noise 

during operation. 

 

Figure 5.4 - Calibration of the NMEA compass heading. The vehicle was left running in a stationary position on the 
dock and the (electrical and electromagnetic) noise was recorded. 

The calibration dataset shown above in Figure 5.4 is plotted as a histogram in Figure 5.5 below 

and a Gaussian distribution fitted to it using the MATLAB statistical toolboxes for histogram fitting 

and normal parameter estimation. The normal distribution shown was parameterised by a mean 

of 141.2° and a variance of 0.1402. 

 

Figure 5.5 - A histogram plot of the NMEA compass calibration dataset shown above in Figure 5.4 with a normal 
probability density function fitted to the dataset. 

The variance was used as a baseline measure of the uncertainty associated with measurements 

from the NMEA compass in the sensor fusion algorithms as the measurement probability 

variance. Several factors increased the variance during operation, including operation in close 
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proximity to ferromagnetic structures and operation of the vehicle’s thrusters. However the 

baseline measure presented above from noise in the sensor was present in all readings. For 

simplicity at this stage, a static variance for each sensor was assumed, with each sensor 

characterised under the same conditions. Techniques to detect and correct for dynamic 

uncertainty are discussed in section 8.3. 

5.2.2.1.2 Xsens IMU orientation characterisation 

This calibration procedure was repeated for the other navigation sensors and further probabilistic 

characterisation results are included in Appendix C. To continue the example of fusing yaw angle 

measurements from the Xsens IMU and NMEA compass, the characterisation of the Xsens 

orientation measurement is shown below in Figure 5.6. This Xsens orientation measurement was 

the output of the internally filtered gyroscope and magnetometer readings, as discussed in 

section 4.6.5.2. 

Calibration and characterisation data was acquired for the Xsens IMU simultaneously with the 

NMEA compass data acquired above to ensure the same conditions throughout, and to calibrate 

the mounting offset between the two sensors. Although this example only considers the yaw 

angle measurements from the Xsens IMU, the pitch and roll characterisation values are included 

for completeness. 

 
 

  
Figure 5.6 - The Xsens orientation characterisation process. The vehicle was held in a stationary position with all 
electrical systems running to simulate operating conditions and the output from the Xsens inclination estimate was 
recorded under the same conditions and at the same time as the NMEA compass discussed previously. The top left plot 
shows the recorded dataset over a period of >700s. The pitch, roll and yaw data are plotted as a histograms. The red 
trace shows the normal probability density function fitted, the parameters of which are shown inTable 5.1 below. 

 
Table 5.1 - Probabilistic characterisation of the static Xsens and NMEA compass measurements 

 Pitch Roll Yaw 

Mean: Variance: Mean: Variance: Mean: Variance: 

Xsens IMU: 5.97° 3.0474 268.55° 0.1018 199.09° 2.9779 

NMEA Compass:      0.1402 

100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

300

350

AUV Orientation Plot - Chains off

Time (s)

E
ul

er
 a

ng
le

 (
)

 

 

Xsens Pitch

Xsens Roll

Xsens Yaw

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

14-Sep-09 Calibration - Pitch Angle

PitchAngle (deg)

Fr
eq

ue
nc

y

268.1 268.2 268.3 268.4 268.5 268.6 268.7 268.8 268.9
0

5

10

15

20

25

30

35

14-Sep-09 Calibration - Roll Angle

RollAngle (deg)

Fr
eq

ue
nc

y

185 190 195 200 205 210
0

5

10

15

20

25

30

35

14-Sep-09 Calibration - Yaw Angle

YawAngle (deg)

Fr
eq

ue
nc

y



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

169/347 

When measuring discontinuous wrapping functions such as orientation, as the orientation 

reached the range limits e.g. 358°, 359°, 0°, 1°, there was a discontinuity as the function wrapped. 

The definition of cyclic data (or circular distributions) is that the value (or density) at any point   

on the real line is the same as that of      where   is any integer and   is some real number 

[350]. This was corrected by the use of ‘continuous degrees’. As the orientation increased as the 

vehicle turned clockwise, e.g. 358°, 359°, etc. and crossed past the zero point, the values 

continued to be added in the form of 360°, 361°, etc. This allowed the number of rotations to be 

counted as well – an important point when operating with a tether. The same was true in reverse: 

for an anticlockwise rotation with the heading decreasing from 2°, 1°, 0°, instead of wrapping, the 

values continued into negative headings in the form -1°, -2°, etc. 

5.2.2.1.3 Characterisation conclusions 

The variance (uncertainty) associated with the Xsens IMU orientation measurements was in 

general higher than that with the NMEA compass, exhibiting greater noise when stationary. 

However, this did not necessarily mean that the NMEA compass was a ‘better’ sensor. The NMEA 

compass exhibited a large degree of mechanical damping which decreased the speed of response 

but provided a smoothed output. This same effect was demonstrated on the Xsens sensor by 

applying a moving average filter to the high sample-frequency data. The Xsens had a much faster 

update (120Hz instead of 2Hz), faster reaction than the mechanically gimballed NMEA compass, 

could be tilted more than 30° and could measure orientation in 3 DoF (pitch, roll and yaw) rather 

than just 1 DoF (yaw) as for the NMEA compass. Additionally the Xsens IMU provided robustness 

to transient magnetic disturbances using the internally filtered combination of magnetometers 

and gyroscopes to estimate orientation. 

Therefore, although the two sensors had disparate characteristics they were an ideal complement 

to each other through sensor fusion. Gaussians (normal distributions) were also shown to be an 

adequate approximation of the uncertainty associated with each sensor, allowing representation 

by a compact computationally-efficient parametric model. 

 Fusion of Gaussian functions 5.2.3

Techniques for the fusion of normal functions and many of the Gaussian filters based on these 

principles (e.g. the Kalman filter), required the assumption that the continuous probability 

distributions were linear not cyclic. If nonlinear wrapped data was used, for example an 

orientation dataset comprised of alternating values of 359° and 0° would have a high variance as 

there was a large numerical separation between the values, when in actuality the values were 

closely spaced by only a degree of orientation. Similarly, if the orientation of the vehicle was 

represented by a normal distribution with a mean centred on 5°, then there was a relatively high 

probability that the orientation of the vehicle was 355° (a turn of just 10° anticlockwise). 

However, when using the standard normal distribution, the probability that the vehicle is at 355° 

would be appear to be very low (appearing as a turn of 350° clockwise). 

The need for circular statistics has long been realised. Techniques such as the circular normal 

distribution described by Gumbel et al. [351] allow the uncertainty associated with directional 

data in robotics to be represented, and thus the Gaussian filters discussed in previous sections 

adapted to problems involving directional statistics. A further discussion on directional statistics & 

cyclic probability distributions is provided in Appendix D. 
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One technique which is expanded upon later on to allow the non-linear orientation data to be 

used with a Gaussian filter is to ‘linearise’ the data before passing it through the filter. For 

simplicity in the following few sections, the development of the sensor fusion algorithms 

continues assuming linear data. An evaluation of techniques to perform this linearisation are 

presented shortly and developed in further detail in section 5.3.6 which considers the extended 

Kalman filter. 

Given Xsens IMU and NMEA compass orientation estimates characterised by Gaussians, each with 

a respective variance (uncertainty) and complementary characteristics, several techniques exist to 

intelligently fuse or combine the data from two observations of the same state. For simplicity, the 

following examples abstract from the specific sensor data provided above and use unit Gaussians 

to allow the fusion techniques to be easily represented and compared. 

The simplest method (introduced previously) accepted the most recent measurement available. 

When two measurements from different sources arrived at the same time, the measurement with 

the lower uncertainty was favoured. A development of this based the current estimate on the 

result of a moving average filter over the previous   measurements, to reduce the effect of 

spontaneous erroneous results. 

The more sophisticated and robust method utilised the probabilistic framework introduced in 

section 2.3.2.4. Realising that every measurement from every sensor had an associated 

uncertainty, the amount of uncertainty associated with each measurement determined its 

influence on the overall position estimate. Representing each measurement as a normal 

(Gaussian) probability density function (PDF) with a mean   and variance  , two techniques were 

considered for fusion of the normal distributions: 

1. The addition of normally distributed PDFs 

2. The multiplication of normally distributed PDFs 

The following two sections consider each of these techniques in summary. The variance is 

represented by   for consistency in the matrix notations developed later rather than the usual   . 

5.2.3.1 Addition 

Figure 5.7 below shows a generalised continuous example for the addition of two normally 

distributed probability density functions. The red and blue dashed lines represent two sensor 

measurements characterised by normal PDFs. The red function has a low variance and therefore a 

high peak, the blue function has a much higher variance and therefore a lower peak and a broader 

distribution. In this case, the two functions have a coincident mean. 

Addition of the two functions yielded the green curve which was normalised to have an integral of 

1 (in order to be a valid PDF). However, the result of the addition (the green curve) was no longer 

a Gaussian. To address this, the black curve was obtained by fitting a Gaussian normal function to 

the result of the addition using the LabVIEW ‘Gaussian Peak Fit Coefficients’ subVI, which can be 

thought of as the Gaussian sum of the two input normal functions. Two scenarios were 

considered: 

1) The current belief of the state was Sensor 2 (blue-dashed), a relatively uncertain estimate and 

the measurement (Sensor 1, red-dashed) was obtained which had the same mean as the current 

estimate but a lower uncertainty. As expected, this corroborating measurement served to 
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reinforce belief about the current estimate as the mean was the same. The state estimate 

therefore increased in certainty to the black curve, partway between the two estimates. 

2) The opposite scenario was that the current belief was that of Sensor 1 (red-dashed) and a 

measurement (Sensor 2, blue dashed) was obtained which had the same mean as the current 

estimate but a larger variance. This would be expected to increase the certainty about the current 

belief, as re-measuring the same mean was expected to reinforce belief. Instead it weakened 

belief and the uncertainty increased from the red-dashed function to the broader black function. 

This suggested that there was no point in taking the measurement (blue-dashed) as, although it 

confirmed the current belief (same mean), it weakened the belief distribution. Even though 

corroborating evidence was received, it lessened belief. 

The justification for this can be seen by examining the curves. By taking the measurement (blue-

dashed), the explanation was that although the mean was the same as the current estimate (red-

dashed), the measurement could be anywhere within the blue-dashed distribution. The result of 

adding the functions was therefore correct, but in terms of the robot, there would be no benefit 

gained in taking the measurement (blue-dashed). The opposite effect was seen when considering 

combining normal distributions by multiplication in the following section. 

 

Figure 5.7 - The sum of two normal distributions with a coincident mean. 

 

The case of summing two functions which overlapped but did not have a coincident mean is 

considered in Figure 5.8 and Figure 5.9 below. Considering Figure 5.8, the current state estimate 

was centred at ‘0’ (blue-dashed) and had a relatively large uncertainty. If a measurement was 

taken which suggested that the state was actually centred at ‘3’ (red-dashed), then upon updating 

the state estimate by summing the two distributions and renormalising, the black curve was 

obtained. Each new estimate at position ‘3’ pulled the estimate closer and closer to the mean of 

3; the higher the certainty of the estimate, the quicker the state estimate converged on ‘3’. 
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Figure 5.8 - The sum of two normal distributions with an overlapping but non-coincident mean. 

Figure 5.9 below shows the same principle, but starting with a relatively certain state estimate 

(red-dashed) centred at ‘0’ and taking a relatively uncertain (high variance, blue-dashed) 

measurement at ‘3’. The effect primarily increased the uncertainty of the state estimate (black-

line) but also had the effect of slightly moving the mean of the state estimate towards the new 

measurement ‘3’. The speed at which the state estimate converged on ‘3’ depended on the mean 

and variance of subsequent measurements. 

 

Figure 5.9 - The sum of two normal distributions with an overlapping but non-coincident mean. 
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5.2.3.2 Multiplication 

The same example used for combination of normal functions by addition (Figure 5.7 previously) is 

repeated below as Figure 5.10 to show the fusion of two normal functions with a coincident 

mean, one with a small variance, the other with a higher variance, but this time combining the 

two normal functions through multiplication. Considering the same two scenarios from Figure 5.7 

when two measurements with coincident means might occur: 

1. The current belief of the state was Sensor 2 (blue-dashed), a relatively uncertain estimate and 

the measurement (Sensor 1, red-dashed) was obtained which had the same mean as the 

current estimate but a lower uncertainty. The green solid curve shows the result of 

multiplication of the two measurements to obtain the product. This was normalised to have 

an integral of one in order to conform to the law of total probabilities and is shown by the 

black dashed curve. This implied that an uncertain measurement followed by another 

coincident measurement reinforced belief as the mean was the same. The second 

measurement therefore increased the certainty of the state estimate to the black curve, more 

certain than either of the two original estimates. Therefore, both estimates ‘improved’ 

knowledge and there was benefit in taking both measurements. (The black dashed curve is 

coincident with the pink dashed curve, discussed shortly.)  

2. The opposite scenario was that the current belief was that of Sensor 1 (red-dashed) and a 

measurement (Sensor 2, blue dashed) was obtained which had the same mean as the current 

estimate but a larger variance. Although the second measurement had a high uncertainty, it 

still suggested that the mean was in the same place and still reinforced the current belief to 

yield the black-dashed line. 

 

Figure 5.10 - The product of two normal distributions with a coincident mean (red dashed and blue dashed). The 
green curve represents the numerical product of the two distributions, which was normalised to the black dashed 
line. This is identical to the pink curve representing the analytical product of the two curves. 

The numerical product from element-by-element multiplication of the two distributions in the 

plot above (the green function) was normalised to obey the rule of total probabilities (the black-

dashed function). The shape of the green curve was already a Gaussian, it simply required a 

scaling factor, the normalisation constant   discussed in more detail in later sections. It was 

however computationally more efficient to perform the multiplication of normal distributions 

analytically using the following equation [150]: 
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Equation 5.1

 
This states that if two normally distributed functions are multiplied, the resulting function will be 

normally distributed and that the parameters of the resulting function can be determined 

analytically. As can be seen above in Figure 5.10, the pink line (the analytical multiplication) 

coincides with the black dashed line (the numerical multiplication), showing that the discrete 

element-by-element technique was correct (provided sufficient samples were taken), yet the 

analytical solution was much more computationally efficient. 

The combination of two normal functions with a different mean using the multiplication function 

is considered in Figure 5.11 and Figure 5.12 below. 

Considering Figure 5.11, the current state estimate was centred at ‘0’ (blue-dashed) and had a 

relatively large uncertainty. If a measurement which suggested that the state was actually centred 

at ‘3’ was taken (red-dashed), then upon updating the state estimate by multiplying the two 

distributions and renormalising, the black curve was obtained. Each new measurement at position 

‘3’ pulled the state estimate closer to the mean of 3; the higher the certainty of each new 

measurement, the quicker the state estimate converged on ‘3’. Due to the overlap of the normal 

functions, the certainty of the estimate also increased with each new measurement. 

 

Figure 5.11 - The product of two normal distributions with an overlapping but non-coincident mean. 

Similar results can be seen in Figure 5.12 below, this time starting with a relatively certain state 

estimate (red-dashed) centred at ‘0’ and taking a relatively uncertain (high variance, blue-dashed) 

measurement at ‘3’. The new measurement shifted the belief slightly towards the new mean, the 

amount determined by the variance of the new measurement and, due to the overlap of the 

normal functions, increased the certainty. 
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Figure 5.12 - The product of two normal distributions with an overlapping but non-coincident mean. 

As the normal function never decays completely to zero over the range    to   , any 

measurement will always overlap to some extent with the existing belief distribution and there 

will always be some reinforcement of belief. For example, in Figure 5.13 below, two normal 

functions were combined using the product combination. As expected, the introduction of the 

blue-dashed function shifted the estimate to the right where the red-dashed estimate was 

updated as the black solid line. However, the certainty of the black solid line was also increased by 

the introduction of the blue-dashed function. 

 

Figure 5.13 - The product of two normal distributions with a non-coincident and widely separated mean. 
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5.2.3.3 Conclusions 

From the examples above, it was concluded that the multiplication of normal distributions was an 

efficient and valid method for combining the measurements from two sensors, or combining the 

measurement from a sensor with an existing belief. Using the uncertainty (variance) associated 

with each sensor reading, or associated with the prior belief, to weight the effect of each input on 

the combined belief was also demonstrated. 

This principle of the weighted combination of normal (Gaussian) functions forms the basis of the 

Bayesian filtering techniques which are discussed in the following section. The sensor fusion 

techniques developed above are extended to navigation using Kalman filters to develop the 

probabilistic representation of uncertainty to localisation and mapping, by including control 

updates and kinematic models rather than just sensor fusion. 

5.3 Theory of Simultaneous Localisation and Mapping (SLAM) 

From the techniques for SLAM discussed in the literature review in Chapter 2, the Extended 

Kalman Filter (EKF) was established as conceptually straightforward and the most applicable to 

nearshore navigation provided that a series of conditions could be adhered to. The most 

significant of these was that the state could be accurately represented using Gaussians. 

This section begins by establishing the theory required to implement EKF SLAM which is based on 

the widely accepted theory presented in the recent work by Thrun, Burgard and Fox titled 

‘Probabilistic Robotics’ [150]. This section then continues by detailing the implementation specific 

to SeaBiscuit with results of field trials presented Chapter 6. 

 State 5.3.1

State is defined as the collection of all aspects of the robot and its environment that can impact 

the future [150]. The combined state vector at time   comprises state    of the robot at time   

and a map   maintained by the robot. 

             

Where,  ,  , and   are the coordinates and bearing of the robot respectively for localisation in 2 

dimensions. This vector, and those used to map landmarks, can be expanded to 3 dimensions as 

necessary. The map   is comprised of: 

                                                

Where,           are the coordinates of the  -th landmark, for         and    is the signature. 

The signature can be expanded to include any number of defining features of the landmark used 

to distinguish it from other landmarks. For example, this can be, the colour of the landmark if 

seen by vision, or the mass and ellipse ratio of an object viewed by sonar, or a unique identifier 

transmitted by a beacon. The overall combined state vector thus becomes 

(
  

 
)                                                        

Thrun et al. [150] define a state as being complete if it is the best predictor of the future. This 

entails that knowledge of past states, measurements or controls carry no additional information 

that would be useful to predict the future more accurately. The concept of state completeness is 

known as the Markov assumption which states that past and future data are independent if one 
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knows the current state   . This does not require the future to be a deterministic function of state 

– the future may be stochastic, but no variables prior to    may influence the stochastic evolution 

of future states, unless this dependence is mediated through the state    [150]. 

The following factors identified by Thrun et al. [150] may have a systematic effect on sensor 

readings and thus they induce violations of the Markov assumption: 

 Unmodelled dynamics in the environment not included in    for example moving targets 

 Inaccuracies in the probabilistic models 

 Approximation errors when using representations of belief functions, e.g. Gaussians 

In principle, many of these variables can be included in state representations. It is nearly 

impossible to specify a complete state for any practical robot system. Instead, for practical 

implementations, often an incomplete state is known – a small subset of all state variables [150]. 

Incomplete state representations are often preferable to more complete ones to reduce 

computational complexity. In practice, Bayes filters have been found to be surprisingly robust to 

such violations. As a general rule, the state of    should be defined so that the effect of 

unmodelled state variables has close-to-random effects [150]. 

5.3.1.1 Environment interaction 

There are two fundamental types of interactions between a robot and its environment: sensor 

measurements and control actions. The two way interaction is detailed in Figure 5.14 below. 

Robot Environment

CONTROL DATA

Motion

Decreases knowledge

MEASUREMENT DATA

Perception

Increases knowledge

Perception influences motion

Directed motion 

increases perception 

Automation or

operator-in-the-loop

 

Figure 5.14 - Environment interaction relies on reading sensor measurements (perception), a decision process, which 
then influences the control action (actuation). In the case of the hybrid iROV, this decision process is a combination 
of autonomy with the operator-in-the-loop. Figure adapted from [150]. 

Sensor measurements (perception) are the measurements obtained from the sensors about the 

state of the environment some time ago. Control actions (actuation) include robot motion which 

includes passive or unintended motion such as drift. These two actions co-occur and automation 

uses sensor measurements to influence control actions. The red dashed automation line which 

closes the loop between sensor measurements and control actions includes the operator-in-the-

loop principle of the iROV. 

Two data streams are generated. Measurement data provides information about a momentary 

state of the environment at discrete time  , denoted   . This includes camera images, sonar scans, 

etc. The notation    
    

 denotes the set of measurements acquired from time    to time    as 

follows: 
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Control data includes the movement of the vehicle, measured either as the commands sent to the 

motors, odometry or accelerometer data. While odometers and accelerometers are sensors, the 

data is treated as control data as its main information conveys an action which caused a change of 

state. Control data is treated as continuous data represented at discrete time intervals. The 

variable    corresponds to the change of state in the time interval        . As before, the 

notation    
    

 denotes the set of controls from time    to time    as follows: 

   
    

    
      

      
      

 

Primarily, measurement increases knowledge by gathering data about the environment whereas 

motion decreases knowledge due to the uncertainty of robot movement and the change of 

position to a new location. However, if intelligent control is used to allow perception to influence 

motion, then directed motion (exploration) can be used to increase perception. 

5.3.1.2 Probabilistic generative laws 

If it is assumed that the state    is conditioned on all past states ( ), measurements ( ) and 

controls ( ), then the following probability distribution characterises the evolution of state: 

                         

Equation 5.2 

Where:        defines all past states prior to the state in question    from when the robot 

started its operation at     

       defines all measurements taken from    , the first measurement up until 

the most recent measurement before time   

     defines all control actions from the first control action at time     up until 

the current control action 

It is assumed that the robot executes a control action    first, then takes a 

measurement    

If the state   is complete then      is a sufficient summary of all that has happened in previous 

time steps        (the Markov assumption discussed in section 5.3.1.) and it is a sufficient 

representation of all previous controls and measurements up to this point, i.e. the state      

represents the datasets        and       . Therefore Equation 5.2 can be simplified; if the state 

     is known, then only the control    matters, and the equation is simplified as follows: 

                                       

Equation 5.3 

The probability              y expressed in Equation 5.3 is the state transition probability. It 

specifies how environmental state    evolves over time as a function of robot controls   . Robot 

environments are stochastic, which is reflected by the fact that               is a probability 

distribution, not a deterministic function. 

The property expressed by this simplification in Equation 5.3 is an example of conditional 

independence. It states that certain variables are independent of others if the values of a third 

group of variables are known, the conditioning variables. 
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Conditional independence can be used again to model the process by which measurements are 

being generated. If    is complete, the knowledge of the state    is sufficient to predict the 

(potentially noisy) measurement    without the need for knowledge of any other variable, such as 

past measurements, control or even past states. 

                                

Equation 5.4 

This probability          is called the measurement probability. It may not depend on the time 

index   in which case it is further simplified to       . The measurement probability specifies the 

probabilistic law according to which measurements   are generated from the environment state 

 . Measurements    are usually noisy projections of the state   . 

The state transition probability and the measurement probability defined above together describe 

the dynamic stochastic system of the robot and its environment. Figure 5.15 illustrates the 

evolution of states and measurements, defined through these probabilities. 

 

Figure 5.15 - The evolution of states and measurements. In principle, the current state (xt) can be predicted based on 
the previous state (xt-1) and the control applied (ut). This predicted current state can be confirmed / corrected by a 
measurement (zt). 

Two important relationships from Figure 5.15 are identified: 

1. The state at time   is stochastically dependent on the state at time     and the control   . 

2. The measurement    depends stochastically on the state at time  . 

To specify the model fully, an initial state distribution       is also required. 

5.3.1.3 Belief distributions 

A belief represents the robot’s internal knowledge about the state of the environment. As state 

cannot be measured directly, it must be inferred from the data available. Thrun et al. [150] 

therefore distinguish the true state from the robot’s internal belief, or its state of knowledge. 

Probabilistic robotics represents beliefs through conditional probability distributions. A belief 

distribution assigns a probability (or density value) to each possible hypothesis with regards to the 

true state. Belief distributions are posterior probabilities over state variables conditioned on the 

available data. If ‘belief of a state variable   ’ is denoted by        , then: 

Belief:                           

Equation 5.5 

This posterior is the probability distribution over the state    at time  , conditioned on all past 

measurements      and all past controls     . This assumes that the belief is generated after 

incorporating the measurement   . 

State at time t

xt

State at time t-1

xt-1

Control at time t

ut

Measurement 

at time t

zt
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To calculate the posterior before incorporating the measurement    but instead straight after 

executing the control    then the posterior is defined by    ̅̅ ̅̅      as follows: 

  Prediction:     ̅̅ ̅̅                        

Equation 5.6 

This probability distribution is referred to as the prediction, as    ̅̅ ̅̅      predicts the state at time   

based on the previous state posterior, before incorporating the measurement at time  . 

Calculating         from    ̅̅ ̅̅      is called correction or the measurement update. 

 Localisation 5.3.2

From the definitions provided by Levitt and Lawton [201] and Balakrishnan [202], localisation is 

the process of estimating a robot’s position in an external reference frame from sensory data 

when the robot is placed at an unknown location and has to localise itself from scratch using a 

map of the environment. Therefore, localisation in its isolated form assumes that a complete 

map of the environment is available and the aim is an estimation of the pose of the robot 

                    relative to the map given the robot’s perceptions of the environment and its 

movements. 

The difficulty of localisation is that pose can often not be sensed directly. Instead, the robot often 

has noisy, imperfect and often incomplete sensor measurements of its surroundings and its 

approximate position. To localise itself, the robot needs to associate these observations with the 

appropriate part of its map. 

Given a map of real-life complexity, a single sensor measurement is often insufficient to 

determine pose on its own. Instead, the robot often has to use the combination of several sensor 

measurements and integrate data over time until it has enough information to be able to uniquely 

identify a single position on the map which corresponds to its current location. 

5.3.2.1 Scope 

Thrun et al. [150] provide a series of definitions which allow the scope of the localisation problem 

to be classified across three areas which are applicable to this research. 

Local versus global localisation 

Global localisation implies the robot begins its mission with no a priori information of its location 

on the map (there is an equal probability that the robot could be in any location). With each 

subsequent observation, the global localisation algorithm seeks to reduce the number of possible 

hypotheses of the robot’s pose. 

Local localisation is a simpler problem and assumes some a priori knowledge of the robot’s 

position with a given uncertainty. The robot seeks to maintain an accurate estimate of its pose 

given the errors introduced from subsequent movement and sensing, otherwise known as 

position tracking. Unimodal distributions are appropriate as long as the uncertainty associated 

with the robot’s pose remains local and confined to the region surrounding the robot. If the 

uncertainty grows too large, or the pose is lost then the problem becomes global localisation. 

To be able to recover from a localisation failure is referred to as the ’kidnapped robot problem’ 

[150], where the robot goes from local localisation to beginning global localisation again. The 
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difficulty is often detecting the localisation failure. The robot may continue to believe that it 

knows its position and not realise that it has suffered a localisation failure (being ‘kidnapped’ and 

transported to an unknown position without its knowledge). The ability of the localisation 

algorithm to recognise and recover from failure is essential to robust autonomous operation. 

Static versus dynamic environments 

When operating in closed tanks it is often possible to make the assumption of a static 

environment which makes localisation significantly easier. In this case, it can be assumed that the 

only part of the state which varies is the robot pose and that the position and characteristics of all 

landmarks remain constant. 

However, it is unlikely that a static environment can be assumed in the nearshore environment 

with the position, configuration and relative position changing of moving boats, debris, wildlife 

and tethered objects moving in the tides and currents. The tide height also has a large effect on 

tethered and flexible objects such as kelp stipes. At high water, the kelp stipes appear vertical and 

at rising and falling tides they appear at an angle depending on tide height and flow. At slack 

water, and exaggerated at low slack water, the stipes ‘flop’ over on the water surface in a 

disorganised arrangement. 

The localisation algorithm therefore needs to be robust when presented with a dynamic 

environment and capable of detecting which objects are static and suitable as navigation 

landmarks and when an object becomes dynamic. Several techniques exist for dealing with 

dynamic environments which either rely on including dynamic entities in the state at the expense 

of additional computational and modelling complexity, or filtering out dynamic entities from the 

sensor data [150]. However, for simplicity in developing the navigation system for the target 

application, at present, environments will be assumed to be either static over the short scan 

duration of a typical mission or that any dynamic conditions are momentary and do not persist for 

more than a few observations and therefore can be accommodated as noise. Long term slow 

disturbances such as tides are accommodated at a later stage (7.3.4.1). 

Passive versus active approaches to localisation 

The distinction between passive and active approaches to localisation depends on whether or not 

the localisation algorithm controls the motion of the vehicle. Passive localisation algorithms 

observe the environment and the motion of the vehicle without interacting. As the robot is either 

controlled by an operator, or by the mission planning algorithm, the localisation algorithm seeks 

to localise the vehicle as well as it can with whatever information is available to it. 

The opposite is active localisation, where the localisation algorithm controls the movement of the 

robot to minimise the localisation error and/or the costs arising from moving a poorly localised 

robot into a hazardous location [150]. Active localisation can provide a lower localisation 

uncertainty, for example by avoiding long traverses across sparse landscapes and staying close to 

distinguishable landmarks (coastal navigation) or, when a high localisation uncertainty develops, 

seeking a nearby distinctive landmark to resolve any ambiguity. However, active localisation adds 

complexity to the overall control of the vehicle, requiring a trade-off in time and energy to be 

made between actively localising the vehicle to an acceptable uncertainty level and carrying out 

the original mission. 

A combination can be used of passive localisation until the uncertainty grows unacceptably large, 

and then active localisation until the ambiguity regarding the pose of the vehicle is resolved. In 
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the context of SeaBiscuit, a simple example of this occurs when navigating by INS and sonar 

landmarks when available using passive localisation during a mission. When the error grows too 

large from a lack of sonar landmarks, active localisation is used and the vehicle surfaces to update 

a GPS position, thus re-bounding the localisation error. 

 Mapping 5.3.3

The principle of pure mapping is the opposite to that of pure localisation, hence the 

complementary nature of simultaneous localisation and mapping. Mapping assumes that the 

position of the robot is known and allows observed objects to be recorded on a map. Critical 

considerations include: only mapping landmarks or other points of interest rather than spurious 

observations and sensor noise; mapping objects with a sufficiently high accuracy and with 

sufficient data for later re-identification; navigation and localisation from the stored map; and 

finally, data association and correspondences (avoiding mapping the same object on the map 

several times). 

Mapping using multiple sensors is particularly useful when different sensors are sensitive to 

different features. Multiple maps can be maintained and combined when navigating by 

techniques such as a logic AND operation for sensors of the same modality or more 

conservatively, if the sensors are sensitive to different obstacles, by a logic OR operation. 

5.3.3.1 Map representation 

As introduced earlier, there are several options for representing the map of the environment. 

These can be loosely grouped into metric and topological frameworks. 

The metric mapping framework is how humans generally consider their surroundings – either a 2 

or 3 dimensional space is populated with objects and landmarks. Each map feature is placed with 

precise coordinates. From an accurate map, the distances between objects can be accurately 

measured and the optimal route between objects calculated, all dependent on the accuracy with 

which the map was generated. 

The topological framework considers objects and the relations between them. In a similar manner 

to a wiring diagram, every object is identified with the connections from one object to another. 

The map is stored as a graph in which the nodes correspond to locations and the arcs correspond 

to paths between these locations. In this manner, the length of each arc can be used to record the 

distance between objects. 

When considering the map representation and which landmarks to include on the map, there is 

often a distinction between the maps which the underwater vehicle can use for autonomous 

localisation and navigation, and maps for user feedback of survey data. These two maps do not 

necessarily have to be distinct if the survey points of interest are also used for navigation. 

However, it does have an effect on the map representation and map maintenance. 

Whereas landmarks are often only stored with a position and various descriptors, it is possible to 

recreate a full 3D representation of the environment following a mission to allow user feedback 

and inspection. For example, in the dock survey and mapping application discussed in section 6.3, 

the robot is able to navigate from the fixed dock pilings and thus stores the position and 

configuration of each landmark (dock piling). However, for user feedback of the survey results, a 

3D reconstruction may be more useful. 
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As Thrun et al. [150] highlight, the relative positions of landmarks can be determined with 

asymptotic certainty, as each re-observation serves to reduce the uncertainty. However, the map 

is created relative to the coordinate system defined by the initial robot pose. A GPS fix from the 

surface at the start and end of every mission was used to geodetically register underwater maps 

in the world coordinate system of latitude and longitude. 

 Simultaneous Localisation and Mapping 5.3.4

In pure localisation (5.3.2) it is assumed that the map is complete and in pure mapping (5.3.3) it is 

assumed that the position is always known. However, for mobile robots operating in real-world 

environments, these assumptions can rarely be made. Instead, the robot is usually faced with the 

problem of concurrently estimating its position and mapping its surroundings, often with no initial 

a priori knowledge, hence the problem of simultaneous localisation and mapping (SLAM) [171]. 

5.3.4.1 Mathematical definition 

The SLAM problem can be defined as: 

                   

Equation 5.7 

Which states that the most recent pose of the robot    at time   and the map   is estimated 

given all measurements      and control actions     , where     denotes from the start of 

operation until the current time  . This is referred to as the online SLAM problem as it only 

involves estimation of variables which persist at time   [150]. Past measurements and controls are 

discarded once they have been processed (otherwise known as a filter). 

The alternative is referred to as the full SLAM problem and seeks instead to expand the pose 

estimation    to include a posterior probability10 of the entire path taken by the robot since the 

start of operation. Thus, for the full SLAM problem,    becomes      as follows: 

                     

Equation 5.8 

Estimating the full posterior probability provides the maximum possible information and captures 

all there is to be known about the map and the pose of the robot over all time. However, in 

practice, the full posterior is rarely calculated due to the large computational complexity which 

grows rapidly with map complexity in real-world environments.  

Thus, online SLAM is performed for navigation of the iROV SeaBiscuit. The course of the vehicle 

can still be recorded by incrementally amending a track – online SLAM simply means that previous 

positions are not amended after being recorded. In a similar manner to the Markov Assumption 

(5.3.1), it is assumed that past and future data are independent if the current state    is known. 

5.3.4.2 Data association 

Data association is defined as the process of identifying correspondences between landmarks 

observed by the sensors and landmarks recorded on the map. Robustness needs to be achieved 

                                                           
10

 To infer the probability of event   prior to incorporating data   is the prior probability     . The posterior 
probability after incorporating the data   is therefore        or ‘the probability of event   given data  ’. 
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despite imperfect sensing and imperfect representations by approximation to avoid mapping the 

same landmark twice as two distinct objects, or from confusing two similar landmarks and 

introducing a localisation error. As Thrun et al. [150] state, the key to successful localisation lies in 

successful data association. 

Correspondences are usually established by a combination of the position of the landmark, its 

configuration with respect to nearby landmarks and any defining characteristics of the landmark. 

The formal definition of the SLAM problem introduced earlier as Equation 5.7 is redefined to 

include correspondences as follows: 

                           

The SLAM problem now seeks to estimate the pose of the robot    at time  , the map   and the 

correspondence    of all observed landmarks to those recorded on the map, given all 

measurements      and controls      since the start of operation until time  , using the previous 

map      to establish correspondences to previously mapped features. 

In some cases, the correspondences are known; this means that every landmark observed is 

uniquely identifiable and therefore its correspondence with the correct mapped landmark is 

known. This can often be achieved by artificially placing uniquely identifiable landmarks or 

locating beacons in the environment. However, in unmodified environments, correspondences 

are often not uniquely identifiable and in this case the correspondence variable must be 

estimated. 

Two of the most commonly used methods to estimate landmark correspondences are the nearest 

neighbour (NN) [150] and the joint-compatibility branch and bound (JCCB) [352] algorithms. Each 

method aims to establish the most-likely correspondence between observation and landmark by 

minimising the Mahalanobis distance between the observation and the predicted observation 

based on the mapped landmark being considered. Whereas the Euclidean distance defines the 

metric distance between two points, the Mahalanobis distance takes into account the 

correlations and covariance between variables and is scale-invariant [173]. For uncorrelated 

variables with unit variance, the Mahalanobis distance simplifies to the Euclidean distance. 

Using the NN method for estimating correspondences, for each new observation at each time 

step, a new landmark hypothesis is added to the map using the current estimate of vehicle 

position, and the range and bearing to the new observation. The correspondence between the 

new landmark hypothesis and all existing landmarks on the map is calculated using the 

Mahalanobis distance. The maximum likelihood (ML) estimator then selects the correspondence 

vector which maximises the likelihood of the measurement. The most common implementation 

of a ML estimator simplifies maximum likelihood to select the correspondence with the lowest 

Mahalanobis distance [353]. A new landmark is created if the Mahalanobis distance from the new 

landmark hypothesis to all existing landmarks in the map exceeds a threshold value α. 

Implementing the full ML estimator incurs a small computational overhead as it includes 

calculating the Mahalanobis distance. 

Various techniques to select the optimal value of the threshold α, or gating function, exist. The 

value typically used in the literature is the chi-squared inverse cumulative distribution function 

    
  for a desired confidence level (c), for example c=95%, where d represents the dimensionality 

of the observation vector [353]. More simply, if false positives are to be avoided, the value of α 

must be set higher than the smallest expected distance between landmarks plus the vehicle and 

sensor uncertainty, for a given confidence level. 
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The ML estimator is prone to errors if there are several similarly-likely hypotheses for the 

correspondence variable, as it simply uses the most-likely value [150]. Techniques to perform 

tracking of multiple hypotheses significantly increase complexity, as it is necessary to maintain 

one map per hypothesis until less-likely hypotheses can be pruned [354]. If the sensor noise plus 

the vehicle uncertainty is always below the typical distance between a pair of landmarks then the 

risk of establishing false correspondences is reduced [353]. Thus, errors using the ML-NN 

estimator from multiple similarly-likely hypotheses can be avoided, to some extent, by 

maintaining the vehicle localisation error to a minimum and selecting landmarks which are either 

sufficiently unique and/or far enough apart from each other to avoid confusion. If the 

environment is to be unmodified, then detecting sufficiently unique landmarks dictates the 

sensing requirements. Additionally, sufficiently accurate localisation and landmark measurement 

sensors are required to allow a low threshold value α to be used reliably. 

The joint-compatibility branch and bound (JCCB) algorithm accounts for correlation between 

measurement prediction errors and provides a more robust solution in complex, cluttered 

environments. When using the NN algorithm, spurious correspondences are easily formed, due to 

the sensitivity of the NN algorithm to vehicle and sensor errors, and are never reconsidered. The 

JCCB algorithm allows the validity of correspondences to be reconsidered, providing a more 

robust rejection of spurious matchings [352]. However, the computational complexity of 

implementing the JCCB algorithm over the NN algorithm is significantly higher. Implementation 

for realtime operation is still feasible, provided the algorithm is implemented correctly, which 

includes processing a limited number of observations using the JCCB algorithm, before associating 

the remaining observations using the NN algorithm [352]. 

More recent alternatives have proposed techniques such as the negative logarithm of the 

matching likelihood (NLML) algorithm. These claim statistically better matching of 

correspondences with a reduction of false-positive correspondences over using the Mahalanobis 

distance when operating with higher levels of sensor noise [353]. A small computational overhead 

is incurred with the higher conceptual complexity of the NLML algorithm. 

As an initial implementation of data association for SLAM in this research, the nearest neighbour 

algorithm [150] was used to estimate landmark correspondences. Although not necessarily 

optimal [353], the NN algorithm was selected for its conceptual and computational simplicity and 

ease of implementation [352]. Later sections on implementation (6.3.3.2) demonstrate the 

suitability of the NN algorithm for the applications of underwater navigation considered in this 

research. By the nature of the modular algorithms developed, alternative methods for estimating 

correspondences can be simply ‘slotted-in’ to the simulation and navigation programs in future, 

and optimisation of the data association algorithm is considered as further research (6.3.5.4). 

5.3.4.3 Dimensionality 

The initial implementation of the EKF SLAM algorithm with unknown correspondences operated 

in 2D. All sensor data was still recorded and registered in 3D. However, navigational landmarks 

were mapped with an x and y coordinate and the position of the robot was tracked using SLAM in 

2D as x-position, y-position and yaw angle. Depth was accurately available using the pressure 

sensor and continually recorded, and pitch and roll were accurately measured by the gyroscopes 

and magnetometers. Thus sensor data was recorded in 3D for later inspection, but the EKF SLAM 

provided 2D localisation and mapping of navigational landmarks. 
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This meant all landmarks observed had to either be assumed constant over the entire z direction 

(depth) for example, dock pilings and upright kelp stipes, or that the vehicle maintained a 

constant depth during a survey. In effect, a combination of the two were used. The wide, flat 

cylindrical shape of the iROV shell afforded high vertical stability for maintaining a constant depth. 

Furthermore, high vertical thrust with accurate sensing, a fast response and tuned control loops 

provided good vertical station keeping. 

A constant survey depth was not restrictive of scientific results, given that the sonars and cameras 

were still recording data in 3D. For example the forward-facing Delta T profiling sonar was still 

recording data over the entire vertical water column for later 3D reconstruction; it was simply 

that the navigation algorithms for underwater positional estimation (SLAM) were only using 2D 

planar data to register the x and y position of the vehicle when registering successive sonar scans. 

 The Kalman filter 5.3.5

The Kalman filter uses multivariate (multi-dimensional) normal distributions to represent beliefs 

using the moments representation of Gaussian distributions. At time  , the belief is represented 

by the mean (first moment)    and the covariance (second moment)    of a Gaussian. The Kalman 

filter alternates a prediction step (or control update step), which modifies the belief in accordance 

to an action, with a measurement update step, in which sensor data is integrated into the present 

belief. 

The control update (prediction) estimates the belief of state    ̅̅ ̅̅      based on the control 

measurements    and the previous belief of the state     , prior to the sensor measurement. 

   ̅̅ ̅̅      ∫                          

Equation 5.9 

The belief    ̅̅ ̅̅      which the algorithm assigns to state    is obtained by the integral (sum) of the 

product of two distributions: 

 the prior belief of the state denoted by           

 and the probability that the control    induces a transition from      to    

The measurement update (correction) updates the belief of state         as sensor 

measurement data    becomes available (see Equation 5.6). 

                      ̅̅ ̅̅      

Equation 5.10 

The algorithm multiplies the belief    ̅̅ ̅̅      by the probability that the measurement may have 

been observed. It does this for each hypothetical posterior state   . The result is normalised by 

the normalisation constant   to integrate to 1. 

The algorithm is recursive in that, the belief         at time   is calculated from the belief 

          at time    . To calculate the posterior belief recursively the algorithm requires an 

initial belief         and time     as a boundary condition. Figure 5.16 shows the principle of 

combining prediction (control) information with updates (sensor measurements). 
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Figure 5.16 - Recursively fusing measurements and control commands into the state estimate. A control command is 
combined with the kinematic model to predict the effect it will have on the vehicle’s state. A measurement can be 
taken to confirm or correct (update) this predicted change of state and the fusion algorithm combines a weighted 
combination of this prediction and update with the previous state estimate to recursively calculate the new state. 
The weightings used for the combination are determined by the uncertainty associated with movement and 
measurement respectively. 

5.3.5.1 Kalman filter assumptions 

In addition to the Markov assumption (section 5.3.1 – the complete state assumption: past and 

future states are independent if one knows the current state), the following three assumptions 

must be adhered to if the Kalman filter is to be used: 

5.3.5.1.1 Assumption 1 – linear dynamics 

The next state probability                must be a linear function in its arguments with added 

Gaussian noise. This is expressed by the following linear Gaussian equation: 

                    

Equation 5.11 

Here    and      are state vectors and    is the control vector at time  .    and    are both 

matrices, where: 

    is a square matrix of size    , where   is the dimension of the state vector    

    is of size     with   being the dimension of the control vector    

By multiplying the state and control vector by the matrices    and    respectively, the state 

transition function becomes linear in its arguments. Thus, Kalman filters assume linear system 

dynamics. The random variable     in Equation 5.11 is a Gaussian random vector that models the 

randomness in the state transition. It has the same dimensions as the state vector      , its 

mean is zero and its covariance is denoted   . 

A multivariate normal distribution is defined as: 

               
 
     { 

 

 
              } 

Equation 5.12 
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And Equation 5.11 defined the state transition probability:               . 

Values from Equation 5.11 can be substituted into Equation 5.12 as follows, allowing Equation 

5.12 to be rewritten as the linear state transition probability: 

                The mean of the posterior state 

        The covariance of the additive Gaussian noise   

Performing this substitution  

                         
 

 
     { 

 

 
                 

   
                   } 

Equation 5.13 

5.3.5.1.2 Assumption 2 – linear measurement functions 

The measurement probability           must also be linear in its arguments with added Gaussian 

noise: 

           

Equation 5.14 

Where: 

   is a matrix of size     where   is the dimension of the measurement vector   . 

   is a multivariate Gaussian used to describe the measurement noise.    has zero mean 

and its covariance is denoted   . 

The measurement probability is thus given by the following multivariate normal distribution 

(constructed in the same manner as Equation 5.13): 

                    
 

 
     { 

 

 
         

   
           } 

Equation 5.15 

5.3.5.1.3 Assumption 3 – normally distributed initial belief 

The final assumption to be made if the Kalman filter is to be used is that the initial belief          

must be normally distributed. This can be expressed in the following equation, where the mean of 

this initial belief is     and the covariance is   : 

                   
 

 
     { 

 

 
         

   
           } 

Equation 5.16 

By making these three assumptions, it is ensured that the posterior belief          is always a 

Gaussian for any point in time  . The proof of this, and the mathematical derivation of the Kalman 

filter is commonly available, for example in section 3.2.4 of the work by Thrun et al. [150]. 
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5.3.5.2 Kalman filter algorithm 

Figure 5.17 shows the recursive algorithm for Kalman filtering. 

Recursive update every time step t

Kalman filter: Update rule

Update current belief of state

Previous Mean

μt-1

Previous 

Covariance

Σt-1

Most recent 

control

ut

Most recent 

measurement

zt

Current 

Covariance

Σt

Current Mean

μt

 

Figure 5.17 - The recursive algorithm for Kalman filtering for linear Gaussian state transitions and measurements. 

Lines 1 and 2 of the algorithm predict the mean  ̅   and covariance  ̅  to represent the belief 

   ̅̅ ̅̅      using the control    but before incorporating the measurement   . The mean is updated 

using the deterministic version of the state transition function (Equation 5.11) with the mean      

substituted for the state     . The update of the covariance  ̅  considers the fact that states 

depend on previous states through the linear matrix   . This matrix is multiplied twice into the 

covariance, since the covariance is a quadratic matrix. 

Lines 3, 4 and 5 transform the belief    ̅̅ ̅̅      into the output for that iteration         by 

incorporating the measurement   . 

The variable    defined in line 3 is called the Kalman gain. It specifies the degree to which the 

measurement is incorporated into the new state estimate. 

Line 4 manipulates the mean, by adjusting it in proportion to the Kalman gain    and the 

deviation of the actual measurement,    from the measurement predicted according to the 

measurement probability defined in Equation 5.14. 

The difference between the actual measurement    and the expected measurement    ̅  is 

defined as the innovation. 

Finally the covariance of the posterior belief    is calculated in line 5 adjusting for the information 

gain resulting from the measurement. 

To summarise: 

   Matrix       that describes how the state evolves from   to     without controls or 
noise. 

   Matrix       that describes how the control    changes the state from   to    . 

   Matrix       that describes how to map the state    to an observation   . 

   Random variables representing the process and measurement noise that are assumed to 
be independent and normally distributed with covariance    and    respectively.    
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 The extended Kalman filter 5.3.6

The assumptions imposed by the Kalman filter, chiefly linear state transitions and linear 

measurements with added Gaussian noise, are rarely fulfilled in practice. Observations are rarely 

linear functions of the state and the next state is rarely a linear function of the previous state. 

This, as Thrun et al. state [150], renders plain Kalman filters inapplicable to all but the most trivial 

robotics problems. 

However, it is preferable to keep the computational efficiency of the Kalman filter, which arises 

from performing state estimation using Gaussians: as any linear transformation of a Gaussian 

random variable results in another Gaussian random variable, the Kalman filter is able to compute 

the parameters of the resulting Gaussian in closed form. Therefore a way to linearise the 

transformation is required so that the computationally efficient Kalman filter can continue to be 

used. It is this linearisation process which allows non-linear data to be used with the techniques of 

the Kalman filter. This is achieved by the Extended Kalman Filter, albeit by only calculating an 

approximation of the true belief rather than the exact belief as with the Kalman filter. 

In the EKF, the assumption is that the next state probability    and the measurement probability 

   are governed by nonlinear functions   and  , respectively: 

                 

Equation 5.17 

            

Equation 5.18 

This model generalises the linear Gaussian model underlying Kalman filters introduced in Equation 

5.11 defining    and Equation 5.14 defining   . The function   replaces the matrices    and    in 

Equation 5.11 and the function   replaces the matrix   . However, by using these arbitrary 

functions   and  , the belief is no longer a Gaussian. 

Taking Equation 5.17 which defines the next state based on a nonlinear function   applied to the 

control variable    and the previous state, then a Gaussian projected through this function is 

typically non-Gaussian. This is because the nonlinearities in   alter the belief such that the 

Gaussian shape is distorted. 

Figure 5.18 (adapted from Figure 3.3a in [150]) shows the linear transformation of a Gaussian 

random variable. The original Gaussian random variable (red) shown in the lower right graph is 

‘updated’ using the linear function (blue) shown in the top right graph to give the resulting density 

function (green) shown in the top left graph. As the update function is linear, the resulting density 

function is still of Gaussian form, displaying an example of a Kalman filter update. 
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Figure 5.18 - Linear transformation of a Gaussian random variable (figure adapted from [150]). The Gaussian 
distribution in the lower right (red) is updated by the linear update function (blue) to give the (still Gaussian) density 
function (green) shown to the top left. 

However, if the update function is non-linear, then the resulting random variable is no longer of a 

Gaussian nature, and a Gaussian is a poor representation of the resulting function as shown in 

Figure 5.19 (adapted from Figure 3.3b in [150]). 
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Figure 5.19 - Nonlinear transformation of a Gaussian random variable (figure adapted from [150]). As before, the 
Gaussian in the lower right (red) is updated by the function shown in the centre (blue), in this case a nonlinear 
update function. This gives the resulting non-Gaussian density function (green) shown in the top left. 

In order to apply the Kalman filter, the update function   is approximated by a linear function. By 

projecting the Gaussian through this linear approximation, the posterior is Gaussian and the belief 

propagation is equivalent to the Kalman filter. The same technique is applied to the measurement 

function   (Equation 5.17 and Equation 5.18). Again the EKF approximates   by a linear function 

tangent to  , thereby retaining the Gaussian nature of the posterior belief. 
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5.3.6.1 Linearisation techniques 

EKFs linearise nonlinear functions using a method called (first order) Taylor expansion which 

constructs a linear approximation to a function   from the value and slope of  . The slope is given 

by the partial derivative: 

            
           

     
 

Equation 5.19 

Figure 5.20 below, adapted from [150], shows an example of linearisation by Taylor expansion of 

a Gaussian and demonstrates the approximation error resulting from this linearisation against a 

highly accurate Monte Carlo estimation. 
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Figure 5.20 - Linearisation applied by the EKF of a nonlinear function g (adapted from [150]). Rather than passing the 
Gaussian shown in the bottom right (red) through the nonlinear function g (blue solid), it is passed through a linear 
approximation of g (blue dashed), as calculated by first order Taylor expansion to yield the tangent to g at the mean 
of the original Gaussian. The resulting linearisation is shown in the upper left plot as the blue dashed Gaussian. This 
linearisation incurs an approximation error indicated by the mismatch between the blue dashed line and the solid 
green Gaussian computed by the highly accurate Monte-Carlo estimation. 

It can be seen that the actual value of   and its slope (the tangential line, given by Equation 5.19 

above) depend on the argument of   (the functions contained within the parentheses). The value 

of the argument is selected to be the state deemed most likely at the time of linearisation. For 

Gaussians, the most likely state is the mean of the posterior      as shown by Figure 5.20.  

In other words  , is approximated by its value at      (and at   ), and the linear extrapolation is 

achieved by a term proportional to the gradient of   at      and   : 

                    ⏟        
               

            ⏟      
    

           

                  

 

                          



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

193/347 

Written as a Gaussian, the next state probability is approximated as follows: 

                        
 

 
     { 

 

 
                             

   
     

                         } 

Equation 5.20 

   is called the Jacobian matrix and is of size    , where   denotes the dimension of the state. 

The value of the Jacobian depends on    and      hence it differs for different points in time. 

EKFs implement the same linearisation for the measurement function  . Here the Taylor 

expansion is developed around   ̅, the state deemed most likely by the robot at the time it 

linearises  : 

          ̅ ⏟  
               

      ̅ ⏟  
    

      ̅  

      ̅          ̅  

Where        
      

   
 

Written as a Gaussian, the measurement probability is approximated as follows: 

                   
 

 
     { 

 

 
        ̅          ̅  

   
          ̅          ̅ } 

Equation 5.21 

The ‘approximately equal to’ symbol remains in both the next step probability (Equation 5.20) and 

the measurement probability (Equation 5.21) as a reminder that the linearisation process is an 

approximation. 

5.3.6.2 Extended Kalman filter algorithm 

The mathematical derivation of the EKF is available in section 3.3.4 of the work by Thrun et al. 

[150] and an overview of the algorithm is shown below in Figure 5.21. 
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Figure 5.21 - The Extended Kalman Filter algorithm. 
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The algorithm for implementing the EKF is similar to that for the Kalman filter presented in 

section 5.3.5.2 except for the following differences: 

Table 5.2 - Differences in implementation between the Kalman filter and EKF. Table adapted from [150]. 

 Kalman Filter (Figure 5.17) EKF (Figure 5.21) 

State Prediction 
Line 1 

                        

Measurement Prediction 
Line 4 

   ̅       ̅    

 

To summarise, the linear predictions in the Kalman filter are replaced by their nonlinear 

generalisations in the EKF. Additionally, EKFs use Jacobians    and    instead of the 

corresponding linear system matrices   ,    and    in Kalman filters. The Jacobian    corresponds 

to the matrices    and    and the Jacobian    corresponds to   . 

   is defined as: 

   
           

     
 

   is defined as: 

   
    ̅  

   
 

The accuracy of the linear approximation depends on two main factors: the degree of uncertainty 

and the degree of local nonlinearity of the functions being approximated. These are considered in 

turn in the following two sections. 

5.3.6.2.1 Dependency on uncertainty 

The two graphs in Figure 5.22 illustrate the dependency of the accuracy of the linear 

approximation on uncertainty. Here, two Gaussian random variables (red) were passed through 

the same nonlinear function (blue solid) in the same manner as the previous plots. While both 

Gaussians have the same mean, the variable shown in Figure 5.22a has a higher uncertainty than 

the one shown in Figure 5.22b as denoted by the wider Gaussian curve (both Gaussians have the 

same mean, but the one shown in Figure 5.22a has a larger variance).  

However, as the Taylor expansion only depends on the mean, both Gaussians were passed 

through the same linear approximation (blue dashed). The purple lines in the upper left plots of 

each of the two figures show the densities of the resulting random variable computed by Monte 

Carlo (MC) estimation. Therefore the green lines (with the mean shown by the black line) 

represent the resulting Gaussian if the Gaussian in the lower right plot for each figure were 

accurately passed through the nonlinear function. The blue dashed graphs in the upper left show 

the Gaussians estimated by the linearisation. 

A comparison to the Gaussians resulting from the Monte Carlo (MC) approximations (green) 

illustrates the fact that higher uncertainty (left plot) typically results in less accurate estimates of 

the mean and covariance of the resulting random variable. In detail, if the dashed blue line in the 

upper left plots is compared with the solid green line, that is the Gaussian computed with the EKF 

compared to the actual MC Gaussian, then it can be seen in Figure 5.22a (high uncertainty) that 

the EKF provides a poor estimation of the MC Gaussian. However, in Figure 5.22b where the 

uncertainty is lower, the EKF provides a much better estimation of the resulting Gaussian. 
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Figure 5.22 - The approximation quality of linearisation by Taylor expansion depends on uncertainty (figure adapted 
from [150]). In both the left and right plots, the Gaussian in the lower right position (red) is passed through the same 
linear approximation (blue dashed). The approximation quality can be seen in the upper left plot in each case by any 
mismatch between the dashed blue line and the solid green line showing the Gaussian of the accurate Monte Carlo 
estimation. The significantly poorer approximation quality for figure (a) for the high uncertainty case can be seen. 

5.3.6.2.2 Dependency on local nonlinearity 

The lower plots of Figure 5.23a and Figure 5.23b below show two Gaussians (red) with the same 

variance but with a slightly different mean. Each Gaussian was passed through the same random 

variable (blue) shown in the upper right plot (in the same manner as for previous figures). The 

mean of the first Gaussian (Figure 5.23a) falls in a more nonlinear region of the function   than 

the second Gaussian (Figure 5.23b). 

The mismatch between the Gaussian from the accurate Monte Carlo estimation (green) and the 

Gaussian resulting from the EKF linear approximation (blue dashed) shows that higher local 

nonlinearities result in larger approximation errors. The EKF Gaussian underestimates the spread 

of the resulting density. 
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Figure 5.23 - The dependence of EKF approximation quality on local nonlinearity can be seen (figure adapted from 
[150]). The right plot considers the mean of the Gaussian at a locally linear region of the function g (blue), and 
correspondingly provides a relatively good approximation, whereas the left plot considers a locally nonlinear region 
of the function g (blue) with a corresponding poorer approximation quality. 
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5.4 Implementation 

The widely accepted algorithm provided by Thrun et al. [150] for EKF SLAM with unknown 

correspondences was adapted to the specific application of the underwater navigation of the 

holonomic iROV SeaBiscuit. The algorithm is reproduced below in Table 5.3 and a line-by-line 

explanation adapted for this application follows in Table 5.4. The full derivation of the EKF SLAM 

algorithm is commonly available, for example in the work by Thrun et al. [150]. 

Table 5.3 - The EKF SLAM algorithm with ML correspondences and outlier rejection as presented by Thrun et al. [150] 

1 Algorithm EKF SLAM       ∑                 : 
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Table 5.4 - A description of EKF SLAM with ML correspondences and outlier rejection presented above in Table 5.3 
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4 Manipulate the mean of the belief in accordance with the motion 

model. This only affects elements of the belief distribution 

concerned with the robot pose; all mean variables for the map are 

unchanged. 

  

5    

6 Manipulate the covariance of the belief in accordance with the 

motion model. This only affects elements of the belief distribution 

concerned with the robot pose; all covariance variables for the map 

are unchanged, as are pose-map covariances. 
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8 For each observed feature, a hypothesis is created that the feature 

is a new landmark with index      (an index of one larger than the 

current number of landmarks tracked in the map).  
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9 The location and signature of the new landmark is initialized by 

calculating its expected location given the current estimate of the 

robot’s position and the range and bearing to the landmark. 

 

10 Then, for all      possible landmarks, including the ‘new’ 

hypothesised landmark, various update quantities are calculated. For 

computational efficiency when operating in large environments, this 

loop can be restricted to landmarks which are close to the robot. 

F
o
r
 
a
l
l
 
l
a
n
d
m
a
r
k
s
 
i
n
c
l
u
d
i
n
g
 

t
h
e
 
n
e
w
 
h
y
p
o
t
h
e
s
i
s
 

11  

12  

13 For each measurement, an expected measurement is calculated. 

14  

15  

16  

17 The Mahalanobis distance (section 5.3.4.2) between the observed 

landmark and all mapped landmarks is compiled in an array   indexed 

by   the loop of all tracked landmarks including the new hypothesis. 

18  

19 If the Mahalanobis distance between the current observed feature to 

all existing landmarks in the map exceeds the threshold value   then 

a new landmark is created from the hypothesis of a new landmark. 

 

20 The ML correspondence between the current observed landmark and all 

mapped landmarks is selected by selecting the minimum Mahalanobis 

distance. If a new landmark was created in the previous line then 

the Mahalanobis distance to this will be 0 and this will be the 

corresponding landmark. 

 

21 If the current measurement was associated with a new landmark then 

the landmark counter    is incremented and the various vectors and 

matrices are enlarged accordingly (not shown). 

 

22 For each measurement, the Kalman gain is calculated which determines 

the weighting to assign to the predicted (control) position of 

mapped the landmark it corresponds to, given the robot’s motion and 

the observed measured position (update) of the landmark. The Kalman 

gain is a matrix of size   by     . The matrix is usually not 

sparse and information is propagated through the entire state 

estimate. 

 

23 The EKF mean is updated by folding the innovation weighted by the 

Kalman gain back into the belief. (If the map has just been extended 

then the participating vectors and matrices are extended to suit.) 

 

24 The EKF covariance is updated by folding the innovation weighted by 

the Kalman gain back into the covariance. (If the map has just been 

extended then the participating vectors and matrices are extended to 

suit.) 

 

25   

26     

27     

28 The mean   , the covariance    and the number of landmarks    are 

returned from this time interval. 
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Line 22 above, where the Kalman gain is calculated, highlights an important benefit of SLAM using 

Kalman filters. As Thrun et al. [150] state, the fact that the Kalman gain is fully populated for all 

state variables, and not just the currently observed landmark and the robot pose, is important. 

Observing a landmark and reducing uncertainty about the robot’s pose does not just reduce 

uncertainty about the position estimate of this landmark, but also of other landmarks as well. This 

propagation of information back through the entire state estimate allows maximum use of the 

information gathered by observing a landmark. 

The important benefit in using Kalman filters for SLAM is that, to achieve this reduction in 

uncertainty for all landmarks by just observing a single landmark, past poses do not have to be 

modelled explicitly. As Thrun et al. [150] describe, this would involve the full SLAM problem as 

described in section 5.3.4.1 and make the EKF a non-realtime algorithm. Instead, the dependence 

(covariance) between the observed landmark and other landmarks is captured in the Gaussian 

posterior (defined earlier) by the off-diagonal elements of the covariance matrix   . 

The EKF ML SLAM algorithm was implemented in LabVIEW with MathScript nodes used for the 

matrix manipulation. The modular hierarchical iROV program structure allowed straightforward 

interfacing to provide the required measurement and control inputs and allowed the output state 

and map to be plotted in realtime. The modular program nature also allowed development to 

begin using manually identified correspondences, before development of the maximum likelihood 

correspondence estimator detailed above. 

5.5 Simulation 

Throughout development, the algorithms were simulated and tested, where possible with 

hardware in the loop testing. In previous sections, this focussed on simulation of the sonar and 

vision image processing algorithms and feature extraction with real-life recorded data used to 

allow development and tuning. This section details the simulation of the navigation algorithms for 

SLAM. 

The simulation environment generated movement and measurement data with the same 

uncertainty characteristics as real-life operation. The simulation also allowed real-world data to 

be played back, to allow tuning, development and an assessment of the performance of the 

navigation algorithms without having to deploy the vehicle. 

The navigation algorithms used on the vehicle were directly interfaced to the simulation 

environment. The simulation algorithm wrapped around the navigation algorithm, providing 

simulated inputs, and tracking the vehicle and environment state based on controlled outputs, 

replacing real world operation in 2 dimensions and 3 DoF as discussed previously. 

The actual position of the vehicle and all landmarks were tracked and controlled by the simulation 

environment exactly, however the exact movements and measurements were corrupted by 

additive Gaussian noise of the same magnitude and characteristics of the real-world sensor and 

movement uncertainty. Drift and deviations in the position of the robot from external water 

movements and uncertain movements of the robot from controlled thrust using additive Gaussian 

noise were also simulated. Although the kinematics of the vehicle were not included in the 

simulation, this was tested using hardware in the loop testing. 

Landmarks were simulated and observations generated with a range and bearing simulating the 

output of the sonar units. This range and bearing was generated by the simulation loop based on 

the measurement the robot would expect to see from its current position and the relative 
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position of the landmark and combined with additive Gaussian noise to simulate measurement 

noise (uncertainty). Varying sensor availability, varying landmark observations, dynamic 

landmarks and unexpected position changes (localisation failures) were also investigated.  

In addition to the simulated range and bearing measurement, a signature variable was also 

simulated with each landmark observation to describe the landmark characteristics. In vision 

applications, this represented the colour of the object; in sonar applications it comprised the 

object size and shape. 

This signature variable was used, together with the x and y position of the observed landmark, to 

calculate the maximum likelihood correspondence between an observed landmark and a 

previously mapped landmark, as described in section 5.3.4.2. The value of   (the threshold for 

creating a new landmark) was set depending on the expected spacing between landmarks and the 

sensing error and noise, such that re-observations of the same landmark, but in apparently 

slightly differing positions, were still corresponded correctly as the same landmark. 

 Simulation example 5.5.1

Table 5.5 below shows an example of the EKF SLAM algorithm with unknown (ML estimator) 

correspondences. In this example, operation took place across a Cartesian X-Y plane centred at 

(0,0). Four landmarks were present at fixed locations (50, 50), (-50, 50), (50, -50) and (-50, -50) 

respectively. As the robot moved throughout the environment, it could observe any number (or 

none) of these landmarks. The robot had full x y movement capabilities including yaw angle, 

although yaw is not shown in the figures below. In addition to continually localising the robot 

(using the landmarks if present), the SLAM algorithm also mapped and tracked the position of 

each individually identified landmark continuously. 

The colour-coded key to the visualisation is shown in Figure 5.24. The actual (static) position of 

the landmarks is shown by the black dots. In this example, the static landmarks did not vary in 

position, however the number (if any) of landmarks observed at each time step varied. If a 

landmark was observed, a simulated measurement was generated. The actual position of the 

robot is tracked by the green trace which was maintained by the simulation algorithm. 

The EKF ML SLAM algorithm fused the simulated measurements and the control commands and 

maintained a position estimate which is displayed by the red trace. The difference in position 

between the red trace and the green trace is the localisation error. 

Together with the position estimate (the red trace) the SLAM algorithm provided an estimate of 

the uncertainty of the position estimate by plotting an ellipse. The size of the ellipse in the x and y 

directions is proportional to the covariance of the position estimate in each axis. 

In a similar manner, as landmarks were observed and the position of these mapped, landmarks 

were tracked by a series of coloured ellipses according to the key. Again, the size of the ellipse is 

proportional to the covariance. The position and covariance of each tracked landmark estimate 

was maintained, even if it was not observed at that time interval. This allowed the effect of a 

change in the covariance of the robot’s position on the covariance of a landmark to be seen. This 

effect is discussed below. In the simplified example below, the covariance in the x and y directions 

is assumed to be equal and so the uncertainty is represented by ellipses with equal proportions, 

i.e. circles. 
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Figure 5.24 - Key to EKF ML SLAM Visualisation. 

 

Table 5.5 - Example simulation implementation of EKF ML SLAM 

 

 
 

Frame 1) The robot began operation at coordinates (-
30, -70). 
 
The position of the 4 stationary landmarks is shown on 
the map with black dots at the coordinates (50, 50) … 
etc. However, the robot had no prior knowledge of its 
position or the position of these landmarks. The 
simulation environment was however aware of the 
robot and landmark positions. 
 
The robot’s initial estimate of its position serves only 
to register the map in the WCS, but for this example it 
was assumed that it started with a GPS position fix on 
the surface before diving. The uncertainty associated 
with the initial starting position estimate was relatively 
low, hence the relatively small red circle (covariance) 
surrounding the initial position estimate. 
 

 

 
 

Frame 2) The robot has not moved under its own 
power. It has however been moved by external water 
movements and is now actually at (-32, -68). This 
movement is shown by the green simulation line. As 
the robot could not currently observe any landmarks 
to localise from and has not commanded this 
movement it had no knowledge that the movement 
had occurred. Hence its position estimate remained at 
(-30, -70). (In real life, the INS would still be providing 
an estimation of movement.) 
 
Due to the increasing uncertainty of this positional 
estimate over time however, the red circle 
surrounding its position estimate (covariance) has 
increased in size. 
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Frame 3) The robot commanded a position change of 
(+10, +10). As the robot could not currently observe 
any landmarks, it was only able to predict this position 
change, hence the red position estimate changed to (-
20, -60). Because a change in position introduces a 
greater uncertainty than just remaining stationary, the 
red circle (position estimate uncertainty) also 
increased in size dramatically. 
 
The green trace shows that the commanded change in 
position was not executed perfectly, and the final 
actual position was (-18, -56). The red circle of position 
uncertainty still encompasses the actual position. 

 

Frame 4) In this frame the robot remained stationary 
with a corresponding increase in positional 
uncertainty. A small drift in position occurred which 
the vehicle was not aware of. 
 
If this operation was to continue in a sparse operating 
environment with no landmarks to navigate by, the 
uncertainty associated with the robot position is 
unbounded and would quickly grow. Although 
operation could continue, any mapped data would 
have to be recorded with a very high positional 
uncertainty. 
 
Landmark 1 (LM1) was observed in this frame. A 
measurement was simulated by calculating the 
predicted measurement the robot would see based on 
its actual simulated (green) position and the relative 
position of the landmark. This simulated measurement 
was then corrupted with additive Gaussian noise 
based on the sensor characteristics (for the sonar, a 
greater uncertainty at greater range). 
 
The position of LM1 was thus recorded based on the 
current position estimate of the robot and the 
simulated measurement. It can be seen that because 
the position of LM1 could only at this stage be 
referenced to the current robot position which has a 
high uncertainty, the uncertainty associated with the 
position of LM1 was equal to the current robot 
positional uncertainty combined with the uncertainty 
associated with the measurement. 
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Frame 5) The robot continued to remain stationary 
and so there was only a small deviation in position 
from external water movements. 
 
However, the robot re-observed LM1 in approximately 
the same position (from another simulated 
measurement from the simulation loop). This allowed 
it to significantly reduce the uncertainty associated 
with both its current position estimate and also the 
uncertainty associated with the mapped position of 
LM1. 
 
This effect was discussed at the end of section 5.4, but 
in summary: using Bayesian SLAM, observing a 
landmark does not just improve the position estimate 
of this landmark, but also of other landmarks as well. 
This back propagation of information allows maximum 
exploitation of information gathered by observing a 
landmark. It not only reduces the uncertainty of other 
observed landmarks, but also of mapped landmarks 
which are not observed in this iteration. The benefits 
occur when a landmark is observed, the robot 
navigates away from this landmark observing and 
recording other landmarks, but when the first 
landmark is reobserved the uncertainty associated 
with the entire map and the robot position is greatly 
reduced. 
 
LM2 and LM3 were also observed at a distance greater 
than α from existing mapped landmarks so these were 
recorded as new landmark hypotheses with an 
uncertainty reflected by the current robot position 
uncertainty and the respective range of the robot to 
the landmark. 

 

Frame 6) The robot continued its movement while 
continuing to observe the 3 existing landmarks and 
observing LM4 for the first time. As the robot 
approached the landmarks, the error in measurement 
and the uncertainty associated with the 
measurements reduced. 
 
Although motion of the robot introduced a larger error 
in position rather than just remaining stationary, 
because by this stage, several landmarks were visible 
and tracked as absolute position references, the 
localisation error and uncertainty was maintained at a 
low-level despite continued motion. 
 
The effect of re-observing all landmarks back 
propagated and reduced the positional uncertainty 
associated with all tracked landmarks. 
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5.6 Discussion 

The literature review in Chapter 2 developed the justification for sensor fusion to both increase 

the reliability of navigation in the hostile challenging conditions of the nearshore [15], to provide 

robust navigation combining idiothetic and allothetic sensors [157] and to maximise the 

information available from a limited budget of sensors [156]. The benefits of a probabilistic 

approach to vehicle localisation and mapping, in terms of robustness, applicability to nearshore 

navigation and computational efficiency were also evaluated [355]. 

 Using sensor fusion to aid navigation in the nearshore 5.6.1

The improvement in navigation made possible by combining the data from multiple 

complementary navigation sensors over using a single isolated sensor for navigation was 

discussed in section 2.3.2.4. The underlying principle was that, the more sources of information, 

the more reliable the overall perception of the environment [15]. 

The benefits were an increase in reliability (including exploiting sensor redundancy), a reduction 

in navigation uncertainty (localisation and mapping) and sensor resolution and detail usually only 

possible from a much higher budget sensors. However, care must be taken to avoid compounding 

errors, unnecessarily increasing computational complexity [165] and any advantages gained must 

be weighed against the finite cost, space, weight and power budgets available [200] without 

compromising the low-cost, highly manoeuvrable vehicle. The sensor fusion implemented on 

SeaBiscuit is considered in the following two sections on high-level and low-level sensor fusion 

and its benefits. 

5.6.1.1 High-level sensor fusion 

High-level sensor fusion allows the combination of different sensor modes or different sensor 

coverage, either to increase sensing capabilities, or to enable reliable sensing in challenging 

conditions [15]. 

An example implemented on SeaBiscuit was the fusion of video and sonar data. Here the 

complementary modes and advantages of each sensor [156] were combined to allow for 

operation in challenging conditions such as dark or turbid water. The sonar units provided long 

range detection and depth perception while the video cameras provided short range identification 

including colour and detailed shape information, whether this was autonomously using the 

techniques developed for the SAUC-E competition (sections 4.6.6, 4.6.7 and 6.2), or manually for 

sonar target validation using remote operator control and supervision of the iROV. 

The coverage of different sensors was also combined, for example combining the forward facing 

Delta T profiling sonar with the radial 852 scanning sonar allowed objects to be registered in both 

planes, developing a 3D representation of the environment, even while the vehicle was in motion. 

Techniques to perform this comparison between sonars are demonstrated in the context of the 

dock mapping as described in section 6.3.4. Using the complementary holonomic navigation and 

propulsion system, this enabled the benefits of a 3D imaging sonar at a fraction of the price [129, 

130]. 

Combining the coverage of different sensors extended to maximise both submerged and surface 

sensing. Through the innovative design of SeaBiscuit, and the positioning of its angled sonar units 

and high-profile antennas, the vehicle was able to successfully manoeuvre at the water surface 

performing detailed sonar scans of the underwater environment while receiving GPS position 
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updates and communicating via wireless with a remote operator. This bridging of the air-water 

interface had significant benefits to sensing capabilities, providing drift free absolute GPS 

registration of sonar targets. The vehicle was capable of observing a sonar landmark underwater 

from the surface while simultaneously using a GPS position fix to register this object in the world 

coordinate system. The vehicle could then dive and relate further underwater targets to the 

originally observed landmark, thus propagating the GPS position fix to all subsequent observed 

landmarks. 

High-level sensor fusion also allowed sensors with complementary characteristics to be combined 

[157], for example, the positional estimates made by the accelerometers in the INS and estimates 

made from tracking the successive observation of sonar landmarks. In this case, the 

accelerometer data was always available, did not require the presence of any external landmarks 

or features, could be updated as fast as the hardware allowed (120Hz) and was not subject to 

outside interference such as sonar landmarks moving, or acoustic interference and errors. 

However, the dead reckoning accelerometer data only estimated position from a previous 

estimate plus or minus a small measured deviation. While this made it immune to outside 

interference or errors, it could quickly introduce large cumulative errors, or drift. 

In this manner, the sonar unit was complementary; the readings were absolute not relative and 

thus drift free (the error in each scan was independent and not cumulative with previous 

measurement errors). However, the sonar required static landmarks to be readily observable and 

corresponded to subsequent scans, so positional estimates were not always available and are 

updated much less frequently than the accelerometer data.  

Therefore, each of these sensors on their own were not sufficient for robust, reliable underwater 

navigation. Elsewhere this problem is solved for sparse environments by placing artificial sonar 

landmarks [17], however the solution implemented on SeaBiscuit was required to operate 

without the additional logistics of environment modification. Instead, the combination of the long 

term accuracy of the sonar and the short term dynamic response of the INS provided a 

complementary system. 

5.6.1.2 Low-level sensor fusion 

Low-level sensor fusion refers to the benefits provided by the probabilistic fusion of different 

sensor measurements. The precursor to this was to accept that every measurement has an 

uncertainty associated with it and that any positional estimate, however uncertain, can be useful. 

Low-level sensor fusion provided a probabilistic framework to combine multiple estimates of the 

same state from a variety of sensors to reduce the overall uncertainty associated with underwater 

navigation compared to using the individual sensor measurements in isolation. 

Again, the benefit was to make optimal use of all of the information available to the navigation 

algorithms in the often dynamic conditions of the nearshore environment. Through the 

algorithms employed, even the location estimate gained from a single sensor observation could 

be folded back into the algorithm and serve to reduce the uncertainty associated with all mapped 

features, and hence all future mapped landmarks as well [355]. 

Alternatives to probabilistic fusion were considered in Chapter 2, including the Dempster Shafer 

theory [180] and fuzzy set theory [178]. Probabilistic fusion was adopted for its computational 

simplicity [186] and ease of integration with the algorithms for EKF SLAM. 
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 The design, implementation and simulation of EKF SLAM 5.6.2

Given the suitability of clusters of kelp stipes (and the dock pilings used to test the SLAM 

algorithms) to a parametric representation and the ability to represent uncertainty, Gaussian 

filters, in particular the EKF were found to be an efficient and effective solution to nearshore 

SLAM compared to the higher detail but significantly higher computation complexity of non-

parametric filters [139]. The Extended Kalman Filter (EKF) algorithm for SLAM [355] was 

implemented for the nearshore navigation of SeaBiscuit. The benefits of sensor fusion and 

probabilistic navigation, including an awareness of sensing, movement and environment 

uncertainty, together with computational efficiency and robustness were all realised. SLAM 

relative to landmarks with unknown correspondences observed primarily using the two sonars 

but also using visual landmarks was implemented using the nearest neighbour maximum 

likelihood estimator [352, 353]. 

The EKF SLAM algorithm was selected over alternatives such as Graph SLAM [206] for reasons of 

computational and conceptual simplicity. Although the EKF SLAM algorithm has quadratic 

complexity with respect to the number of landmarks tracked [208], careful map management and 

landmark selection, including a correctly set threshold value for associating observed features to 

tracked landmarks and voting algorithms to avoid mapping spurious noise, were all used to 

ensure an efficient map, and therefore a map update feasible for computation in realtime. 

Although the algorithms for EKF SLAM are long established and widely used for the navigation of 

mobile robots, the novelty of the modular, flexible implementation in LabVIEW for direct 

interfacing to the rest of the iROV control system was described in this chapter. In section 

2.3.2.5.4 the general consensus was discussed that SLAM for basic structured environments with 

good sensing is solved as far as basic research is concerned [171], at least at a theoretical and 

conceptual level [212]. However, SLAM with imperfect sensing in large and/or dynamic 

environments and without frequent regular landmarks is still a challenge facing mobile robots. In 

the dynamic nearshore environment with often dynamic sensing and varying sensor availability, 

and crucially with the constraints of a limited budget and imperfect sensing underwater, SLAM 

becomes an important and contemporary area of research. It is against this, that novelty in the 

implementation of EKF SLAM on SeaBiscuit is demonstrated in this research. A real world, robust 

implementation has been developed complementary to the sensing and navigation techniques for 

the nearshore, with steps towards kelp bed mapping on a limited budget with imperfect sensing 

demonstrated in the field trials later in Chapter 6 and Chapter 7. 

In particular, the ability to not only ignore the effects of dynamic objects but to include them in 

the model, to monitor and update changes in the environment and to compute semantically 

meaningful models not just geometric maps of the environment were all identified as 

opportunities for research [225]. 

Although significant progress in underwater navigation has been made in recent years, there 

remain several exciting opportunities for development. Many underwater vehicles do not use 

sonar/video landmark aided navigation, but instead use DVL or precision INS units [117]. DVL 

aided sonar navigation has been demonstrated for structured environments [16], or 

environments modified with sonar markers [211]. Sonar aided SLAM using both multibeam [126] 

and mechanically panned sonars [125] has also been successfully demonstrated, yet the 

combined dual-sonar approach implemented on SeaBiscuit exploiting holonomicity brings 

significant benefits, in terms of coverage, robustness, mapping speed and the ability to 

independently perform 3D habitat mapping while also performing SLAM / obstacle avoidance. 
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When the environment and application permit, the multi-modal approach of SeaBiscuit to register 

sonar targets with the GPS at the water-air interface, then to navigate from these sonar targets 

while underwater provides sufficient navigational information at a fraction of the price of 

comparable DVL and precision INS solutions [63, 77, 82, 83]. 

It is against this proposition that the research and development into SLAM for nearshore habitat 

mapping sought to advance the state of the art – to achieve reliable SLAM in the dynamic, 

unstructured nearshore environment and with the imperfect sensing available in the kelp beds, to 

achieve robust, reliable results on a low budget through innovative solutions. 

It was recognised that there are more efficient and robust algorithms available for SLAM, 

including those which trade computational efficiency for map detail [206, 355]. Many impose 

certain assumptions or restrictions on the state, landmarks or operating conditions. This research 

has investigated the suitability of the EKF ML SLAM for nearshore navigation, demonstrated in the 

following chapter, and provided both simulation and control software which is modular for the 

straightforward integration, testing and operation of alternative methods for SLAM. Thus the 

comparison of alternative algorithms and their potential benefits to nearshore navigation are left 

as opportunities for further research. In a similar manner, the scalable sensor fusion algorithms 

allow straightforward integration of either additional sensors or alternative sensors in the future, 

should the operating environment or budget constraints vary, with a corresponding 

increase/decrease in performance. 

The algorithms were tested in a custom LabVIEW simulation environment which provided a 

framework where different SLAM algorithms were tested with the benefit that the actual ground 

truth position of the robot and landmarks were known for comparison to the SLAM algorithm 

estimates. This allowed the performance, robustness and computational complexity of different 

algorithms to be tested and accurately compared under different conditions, as algorithms could 

be ‘slotted in’ to the simulation environment and the vehicle navigation software using a common 

interface to ensure interoperability. Future development of the simulation environment could 

include a kinematic model of the vehicle’s movement, together with development of the 

simulation to operation in full 3D. However, neither of these features were required for the 

algorithm verification performed in 2D [215] and these remain as opportunities for further work. 

With the algorithms demonstrated in simulation, the following two chapters describes a staged 

series of field trials, culminating in the demonstration of SLAM off a piling dock and kelp bed 

mapping capabilities. 
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Chapter 6 Field Trials 

6.1 Introduction 

Following the demonstration in simulation of the navigation algorithms in the previous chapter, 

the mechanical, electrical and software development from all of the previous chapters were 

combined for the real-world sea trials of the iROV SeaBiscuit. The following two chapters 

document a real-world successful demonstration of operation in the target nearshore 

environment. 

A staged testing methodology was used, and field trials were conducted over four stages of 

increasing complexity to ensure reliability throughout. 

The first was confined water testing in the SAUC-E competition introduced previously for the 

vehicle Hawthorne 2.0 in section 3.4 and now detailed for SeaBiscuit in section 6.2. Operation in 

the closed environment with artificial markers provided a good systems test and allowed the 

navigation sensors and feature extraction algorithms to be tuned. 

Following this, a known but open-water environment was considered. This allowed the 

performance and navigation (SLAM and sensor fusion) of the vehicle to be assessed under real-

world conditions and compared to a ground truth – an absolute position reference and user 

generated map. For this purpose, the surveying and mapping of a piling dock is documented in 

section 6.3. The navigation hardware and software developed and simulated over previous 

chapters was combined with the holonomic motion of the vehicle to provide a capable 

underwater survey tool. The improvements made from the sensor fusion SLAM algorithms 

combined with the complementary holonomic navigation and propulsion system were 

demonstrated. Mapping was achieved using the novel combination of the forward facing 

multibeam sonar panned by the holonomic propulsion system, and independent control of the 

852 scanning sonar, coupled with the LabVIEW implementation of EKF SLAM algorithms. 
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6.2 Artificial environment: SAUC-E Competition 

An exhaustive staged test schedule ensured the iROV SeaBiscuit was as ready and reliable as 

possible for the ocean surveys. The testing started in a laboratory 5m swim flume tank, graduating 

to a 25m swimming pool, then a 4m deep SCUBA training pool. Finally, as a proof of readiness and 

as preliminary ocean trials, SeaBiscuit entered the annual Student Autonomous Underwater 

Challenge-Europe (SAUC-E) in 2009. 

The SAUC-E competition was sponsored by the Defence Science and Technology Laboratory 

(DSTL) and the UK Ministry of Defence together with a number of industrial partners [320]. Bath 

University Racing Submarine Team (BURST) has entered the competition since its inception, 

competing in 2006, 2007, 2008 and 2009 with increasing degrees of success each year. 

The competition involved several AUVs designed by multi-disciplinary student teams from across 

Europe. Success in the competition was achieved by completing several underwater missions 

autonomously with speed and accuracy. Marks were also allocated for design and technical merit. 

The missions included passing through gates, identifying, locating and marking targets and 

mapping the competition environment [321]. In more recent years, as the field has advanced, so 

has the standard of the competition and the complexity of the tasks to now involve tracking 

moving targets, intervention with objects, docking in confined spaces, etc. [356]. 

Figure 6.1 to Figure 6.3 below show some of the competition targets in a swimming pool clear 

water test environment while Figure 6.4 shows the typical sonar data available. Competition 

specific sonar and video image processing and feature extraction algorithms were discussed 

previously in section 4.6.6 and 4.6.7 respectively, including example footage for each. 

  

Figure 6.1 - Some of the SAUC-E competition targets. Left: the midwater marker, an air-filled red buoy, Right: the 
bottom target, both of which had to be detected, identified, mapped and tracked autonomously using video and/or 
sonar. These images were gathered with a high-resolution camera in the clear waters of a swimming pool test 
environment. They were intended to illustrate the targets, however the visual quality of operation in the competition 
environment was significantly lower as seen in previous images. (Image credit [357]). 
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Figure 6.2 - The underwater docking box at the SAUC-E competition. The entrance was marked with red and white 
LEDs; one of the more challenging tasks was to autonomously dock into this box as a move towards automatic 
recharging and energy autonomy. As above, these sample images were gathered in clear shallow water and the 
visual quality of operation in the competition environment was significantly lower. (Image credit [357]). 

 

Figure 6.3 - A typical gate at the SAUC-E competition, designed to test navigation and manoeuvrability [358]. 

 

Figure 6.4 - A sample Delta T sonar image of the corner of a test tank in the enclosed SAUC-E competition – range 
scale is in metres. 
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The 2009 SAUC-E competition was held at the Ocean Basin Hydrodynamic Test Tank at Qinetiq 

Haslar, Gosport. This large test tank consisted of relatively clear water, enclosed on all sides and 

of dimensions 122m long, 61m wide and 5.5m deep [359]. With the addition of some relatively 

simple mission planning algorithms (section 4.7.3), the competition provided an initial 

demonstration of autonomy while also demonstrating the field-readiness of the vehicle. Figure 

6.5 below shows some images of SeaBiscuit at the 2009 competition. 

The vehicle demonstrated successful control, manoeuvring, basic sensing capabilities and simple 

autonomous navigation, including holding and navigating a pre-programmed course in 3D using 

the navigation sensors. 

SeaBiscuit was awarded first place in the second division of vehicles, a successful result and an 

excellent start to the trials of the vehicle given its rapid development from design to working 

prototype. 

 

  

  

Figure 6.5 - SeaBiscuit at the SAUC-E 2009 Competition, Portsmouth, UK. This was a sucessfuly precursor to the 2010 
field trials and provided an intial demonstration of autonomy and field-readiness as an iROV. The upper two images 
show the vehicle being prepared for an untethered launch, with the yellow tether removed in the upper left image 
and a final check made of the thrusters in the upper right. The vehicle was then lowered into the water using the 
elevator shown in the bottom left. The lower right figure shows an initial calibration run with the tether attached and 
support divers on standby. 

Following this initial demonstration of basic autonomy and proof of field readiness at the SAUC-E 

2009 competition SeaBiscuit was flown out to the field site in British Columbia, Canada to begin 

open ocean trials in the summers of 2009, 2010 and 2011. 
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6.3 Sheltered environment: Dock survey and mapping 

As an initial field trial, the robot was deployed off the dock pictured in Figure 6.6 located close to 

the field site for the coastal ecosystems research group in Clayoquot Sound, as shown in the map 

of Flores Island, British Columbia, Canada in Figure 6.7. 

 

  
 

Figure 6.6 - The docks at Ahousat, the site for the dock survey and mapping field trial. The left figure shows the 
sheltered inlet with the docks in the distance. The right figure shows the piling dock from the shore. The dock is 
aligned north-south with the boom lift crane at the northern most end of the dock facing the open ocean. The 
walkway leads out from the shore in a north-easterly direction. 

 

 

Figure 6.7 - The location of the dock survey and mapping field trials, Ahousat Docks, Flores Island, British Columbia, 
Canada. The two main grey whale study areas are also shown for reference in the later sections on kelp bed mapping. 
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This dock provided an ideal operating environment to test the nearshore navigation techniques. A 

combination of a piling dock in 2-10m of water, a series of floating pontoons anchored by chains, 

a nearby rocky shoreline with a muddy shallow area, a series of semi-submerged tree trunks and a 

deep water channel provided a wide variety of targets in close proximity as shown below in Figure 

6.8. 

 

 

  
 

Figure 6.8 - The dock survey test environment. The top image shows the piling dock from the shore, i.e. with the 
camera facing east. In the foreground the floating dock and shallows approaching the shore can be seen. The zoom of 
the top figure focuses on the left hand end of the dock, close to the crane used for deployments to show the 
arrangement of pilings. The lower left figure shows the piling dock from the deep water channel facing into the inlet 
(south), with the crane end of the dock closest to the camera. Finally, the lower right figure shows a close up facing 
west, in the middle of the channel looking through the dock towards the shoreline. The floating dock can be seen 
behind, and further back, the shoreline. Cross pilings and half-height pilings which have broken off can also be seen. 
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A geometric map of the operating environment was manually surveyed, including the position of 

all major underwater features, the shoreline and an approximation of the bathymetry. The 

diagrams in Figure 6.9 below show the configuration of the dock pilings with respect to an 

approximation of the sloping seafloor. The schematic is geometrically correct except for the 

approximated seafloor. Double pilings were recorded and a more detailed representation of this 

diagram shows the cross pilings, and the relative location of the shoreline, the floating docks and 

other midwater targets. Figure 6.8 above showed underneath the dock at low tide demonstrating 

the complex configuration of cross pilings and half height vertical pilings. 

This manually surveyed geometric map was compared with the datasets gathered by the robot 

underwater to evaluate the accuracy and performance of the navigation system. The vertical 

pilings allowed the SLAM and sonar algorithms to be calibrated in real life against a ground truth. 

The boom lift crane on the end of the dock (shown in Figure 6.10) was also modelled, allowing the 

robot to be held at known, fixed positions in x, y and z and moved through known arcs of motion. 

This allowed the comparison of the localisation output to the measured path of the crane, 

evaluating the SLAM algorithms against a ground truth map and location. 

 

Figure 6.9 - The user generated to-scale map of the docks [340] shown with the sloping seabed from the shore to the 
deeper water. For scale, the rectangular section of the dock is approximately 31m long by 12m wide. The wooden 
pilings are approximately 0.3m in diameter and spaced orthogonally at approximately 3m intervals with double 
pilings along the deep water outside edge and triple pilings on the deep water corners. Cross pilings were present but 
are not shown in this map for clarity, The dock is aligned north-south with the boom lift crane at the northern most 
end of the dock facing the open ocean. The walkway leads out from the shore in a north-easterly direction. 

 

Figure 6.10 - Deploying the iROV SeaBiscuit from the boom lift crane in British Columbia, Canada. 
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 Generation of ground truth map 6.3.1

The ground truth map, initially in 2D, recorded the centre positions of all of the pilings from the 

upper level of the dock using measurements made from a square reference frame orientated with 

the dock and referenced to magnetic north. Figure 6.11 below shows the 2D dock piling map. The 

position of all features in the water in the vicinity of the dock was included, including the tree 

stumps, floating docks (including their range of movement on their moorings in the tide), dock 

ladders descending into the water and the shoreline and shallows. 

 

Figure 6.11 - The 2D map of dock piling centres observed at the upper dock level. Alternating double pilings on the 
outside deep water (right) edge and triple pilings on the deep water corners can be seen. The scale is in metres. The 
green marker seen at (4.78m, 0m) is the dock ladder. 

This map was then extended to 3D by measuring the angle of key pilings to allow for non-vertical 

leaning pilings. Cross pilings used to brace the vertical pilings together with any half height pilings 

which had been broken off were also recorded. Measurements from water level using kayaks or a 

small inflatable boat as well as photographs taken at low tide with a known position reference in 

the field of view for later analysis and dimensioning were used to validate the map. An example of 

the structured image used for measurements verification is shown below in Figure 6.12. The 

effect of perspective was minimised by ensuring perpendicular observations. 
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Figure 6.12 - An example of the structured image used for verifying dimensions of the dock. A dimensioned marker 
with metre gradations highlighted in red was held off the dock edge with a series of pictures taken from water level 
around the dock periphery to ensure a perpendicular image to minimise perspective errors. Dimensions were then 
approximated in later analysis. 

Water depth measurements were also taken at a series of key points around the survey area and 

the bathymetry interpolated in between. Finally, objects on the seafloor were recorded as far as 

possible, either by visual surveys using the iROV, or by diver surveys. These objects included 

discarded equipment and general dock paraphernalia which would either be seen on the sonar 

surveys and/or which would cause a ferromagnetic disturbance. 

 Operation 6.3.2

This section provides an overview of the operation of the vehicle off the dock demonstrating the 

performance of the SLAM algorithms. Although the cameras were used in iROV mode for manual 

corroboration of sonar targets and for user navigation, due to very poor visibility surrounding the 

dock, autonomous visual recognition of pilings was not feasible. The SLAM algorithms used only 

the sonar data for this application. Example data from the two sonar units is considered in turn. 

6.3.2.1 Example 852 sonar data 

Figure 6.13 below shows an example 10m range scan from the 852 sonar. A full 360° scan was 

performed while suspended on the boom lift crane to maintain a static x & y position together 

with pitch, roll and yaw angle as close to constant as possible. The raw sonar scan shows a ‘haze’ 

around the periphery of the scan caused by the diverging conical beam of the sonar interacting 

with the water surface; the vehicle was relatively close to the surface for this scan, at a depth of 

approximately 1m. 

Several different scan ranges were available with the optimum range selected based on the task, 

operating conditions, and submerged depth (to reduce reflections from the water surface). The 

gain was also tuned experimentally based on the range, operating conditions and the expected 

maximum target strength. The standard method was to maximise the gain to improve detection 

without saturating the strongest target expected. Values were manually tuned for detecting kelp 

stipes and dock pilings. 
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Figure 6.13 - An example 10m range (radius) 852 sonar scan showing a 360° scan around the vehicle. The strong 
returns with sonar pixel intensity as indicated correspond to dock pilings, spaced approximately 3m apart as shown 
by the ground truth dock map overlaid onto the sonar scan. Pilings and the dock ladder are shown in red, cross 
pilings incident on this horizontal plane in orange, and the position of SeaBiscuit in blue. Interactions with water 
surface around the periphery of the scan can also be seen. 

The green outline in Figure 6.13 shows the 10m radius sonar scan centred on SeaBiscuit. The 

ground truth dock map was overlaid onto the sonar scan to aid identifying features. The grid of 

red circles are the dock pilings, correct in scale and position, with the presence of double or triple 

pilings to strengthen the dock shown, as well as one of the dock ladders. 

The yellow circles indicate the typical form of cross pilings which form a diagonal brace between 

upright vertical pilings. If the cross piling was incident on the current altitude of the vehicle, it 

appeared as a piling in between the vertical pilings. Were the altitude of the vehicle to change, 

the apparent x and y position of these diagonal pilings would appear to vary. If SLAM was only 

being performed in 2D, these would be rejected as dynamic objects. However, when measuring 

altitude and optionally using the Delta T sonar to image the vertical water column as 

demonstrated in section 6.3.4, the diagonal nature of these cross pilings becomes apparent. The 

vehicle was able to utilise non-vertical targets as navigational landmarks rather than having to rely 

solely on vertical pilings. 

Figure 6.14 below shows the same scan registered on the overall dock piling map. The scale is in 

metres and the ladder (marked as orange) can also be seen just below the x-axis 5m marker in 

between the regularly spaced pilings. A close correlation between the actual position of the dock 
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pilings and the sonar scan can be observed. The red overlay omits cross pilings, hence the position 

of some objects which are seen in between pilings on the sonar scan. 

The small differences in position between the ground truth map observed across the sonar scan 

were caused by uncorrected water movements affecting the vehicle position throughout the 6 

seconds required to complete a scan and by any inaccuracies in the ground truth map. These 

inaccuracies are quantified in section 6.3.5. 
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Figure 6.14 - The geometrically correct ground truth dock map was overlaid onto the 10m range (radius) sonar scan 
from Figure 6.13 showing the presence of multiple clustered pilings. Cross pilings are not indicated. The dock ladder 
is shown directly underneath the x-axis 5m label in position (4.78m, 0m) as an orange marker. 
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6.3.2.2 Example long range 852 sonar data 

The following two figures show an example scan at a higher range setting of 30m instead of 10m. 

As before, the vehicle was held in a near-stationary position for the duration of the scan on the 

boom lift crane. Figure 6.15 shows the raw sonar scan with the approximate perimeter of the 

dock indicated by the green outline. At close ranges the pilings were clearly visible. As the range 

increased, occlusion, noise, surface interactions and the poorer spatial resolution caused by 

diverging beams meant the pilings were less distinct, yet still observable. At this higher 30m 

range, an area of shoreline and shallows can also be seen in the upper right corner of the scan. 
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Figure 6.15 - An example 30m range 852 sonar image showing a 360° scan around the vehicle. The strong returns are 
the dock pilings shown approximately 3m apart, as indicated by the green outline. Double pilings and cross pilings 
can be seen. The return in the top of the image is an area of shallow water where the seabed was detected. 

 

Figure 6.16 below shows the geometrically accurate map of vertical dock pilings superimposed 

onto the raw sonar scan. Disparity between the ground truth map and the scan was caused in part 

by unmapped cross pilings being imaged in between the vertical pilings. This was combined with 

the occlusion of vertical pilings from this slightly different scan position which caused vertical 

pilings to not be imaged, but cross pilings to appear as targets in between the mapped position of 

vertical pilings. The effect of this occlusion and cross pilings was most apparent in the upper 

pilings of the rightmost column. Techniques to mitigate the effects of occlusion by combining 

scans from different locations while rejecting cross pilings are covered in the following section on 

SLAM (6.3.3). Techniques to map cross pilings and other non-vertical targets using the Delta T 

sonar are then considered in section 6.3.4. 
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Figure 6.16 - The full geometrically accurate dock map was overlaid onto the 30m range (radius) sonar scan from 
Figure 6.15 showing the presence of multiple clustered pilings and the geometrically correct spacing of pilings. Cross 
pilings are not indicated. The dock ladder is shown directly underneath the x-axis 5m label in position (4.78m, 0m) as 
an orange marker. 

Although utilising the higher range setting shown above (and further up to 50m maximum range) 

reduced the short-range accuracy and resolution, when conditions permitted, long range scans 

provided much more navigational data in a single scan. This reduced survey effort where 

conditions allowed, and generated a broad overview map to be later improved with several short 

range scans of areas of interest while avoiding wasting time generating high-resolution maps of 

areas with no landmarks. 
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When considering the 852 sonar scans, often the area of interest (the piling dock) only occupied a 

small sector of the sonar scan – thus large amounts of the 360° sonar scan and the full 6 second 

scan period were ‘wasted’ imaging empty space. This was largely because the scans shown were 

taken from the periphery of the dock looking inwards. This was improved by taking an initial 

single long range scan to identify the sector(s) of interest, and then focusing the sonar scan down 

from the full 360° to a smaller sector which was directed on the area of interest. This reduced the 

duration of each scan from the full 6 seconds, thus increasing survey speed. 

Using the highly manoeuvrable mobile robot rather than a surface vessel allowed further benefits 

as the vehicle was able to enter the dock structure to scan from within. In this way, the internal 

structure was scanned at a low range to give a high scan resolution. Objects which might 

otherwise be occluded or obscured were discovered and scanned. This technique was applicable 

to both the dock mapping and the kelp mapping discussed later. 

6.3.2.3 852 sonar image processing and feature extraction 

Image processing algorithms were used to autonomously detect navigational landmarks from 

both the Delta T and 852 sonar, either in realtime or during post-processing for sonar-aided 

SLAM. Using the algorithms described in section 4.6.6, the seabed was detected and the water 

surface calculated from the vehicle attitude and submerged depth. The position and 

characteristics of useful navigational landmarks were then extracted from the midwater region of 

interest (ROI). To demonstrate the sonar image processing algorithms, the vehicle was positioned 

using the crane off the piling dock in three survey positions as shown in Figure 6.17 below. 
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Figure 6.17 - A schematic plan view of the dock pilings (geometrically accurate) with the x and y position of the crane 
hoist used to hold SeaBiscuit at each scan position, 45° apart. The coordinate system origin was defined as the centre 
of the top left piling as shown. The positive y axis was aligned with magnetic north. Pilings were numbered as shown. 
When several pilings were clustered in a single position, they were numbered as a single feature. 
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Figure 6.18 below shows the 852 sonar scans from each survey position. By inspection, several 

features can be seen in each of the raw scans. The series of images demonstrate the algorithm 

steps to extract and identify useful features while rejecting the noise present in the image. A 

range (radius) of 20m and a gain of 15dB were used. The range and gain were tuned in 

conjunction with the image processing algorithms, operating conditions and expected target 

strengths. If the gain was set too high, then the scan would be saturated and the intensity of 

strong returns clipped. Alternatively, if the gain was set too low, then features would be missed. 

Instead, the aim was to ensure that the strongest expected return used the full intensity scale so 

that minor details and weak returns would have the best chance of being detected. 

 Crane at 45° left Crane centred Crane at 45° right 

Raw 852 sonar images  

   

Threshold applied 
(100) 

   

Periphery mask calculated 
to remove regions where 
the sonar beams interact 
with the water surface. 
 
Mask radius calculated 
from depth and ±11° 
vertical divergence of 
sonar beam. Mask shape 
from vehicle attitude. 

   

Dilation (3*3, 2 
iteration) 

   

Mass threshold (40 
pixels), count and 
parameterise objects 

   

Figure 6.18 - A of three example raw 852 sonar images captured off the end of the piling dock at a range (radius) of 
20m and a gain of 15dB to demonstrate the image processing and feature extraction. 
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The final step in Figure 6.18 above parameterised the scan, labelling each feature, and recording a 

number of characteristics for each feature (detailed later). Several features which resemble the 

dock pilings can be seen upon enlarging each of the parameterised scans in turn. Figure 6.19 

below shows the parameterised scan from the centre station, registered on the ground truth map 

of vertical dock pilings using the vehicle navigation sensors. The detected sonar targets are 

outlined in black and labelled with a red bounding rectangle and a red letter. 
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Figure 6.19 - The dock pilings detected from the centre (straight) 20m range sonar scan are shown in black and the 
geometric dock map is overlaid for comparison. Red bounding rectangles identify each detected sonar target with an 
identifier and the centre of mass of each target is shown with a red dot. By inspection, there is a good 
correspondence between the sonar scan and the ground truth map. 
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By inspection, the agreement between the dock pilings extracted from the sonar scan and the 

geometric map of the dock was good over approximately 15m of the 20m radius scan. The 

accuracy is quantified in the following section on SLAM. The dock ladder was also imaged, 

included in feature ‘f’. The effects of occlusion, causing some pilings to not be imaged, can be 

seen. The range (radius) was set to 20m and the entire plot area is 500*500 pixels, thus making 

each metre equal to 12.5 pixels (a resolution of 8cm). 

Two targets, labelled ‘a’ and ‘b’, were detected at a range of approximately 8m in the upper right 

corner of the scan. These targets were transient, and appear only in the scan taken from the 

straight position, despite the left and right scans imaging the same volume of water. They were 

assumed to either be objects in the water column, or noise from water surface interactions 

caused by operating close to the surface combined with either uncorrected vehicle attitude 

deviations, or wash from a passing boat. Although the SLAM algorithms demonstrated in the 

following section removed transient features using voting techniques, these spurious features 

were left in the scan here to demonstrate the characteristics of noise features, both in the raw 

data, and when spurious features propagate through to the extracted features. 

Although the dock map continues much further south beyond the feature identified as ‘p’, these 

pilings were not detected in this scan. This was partly due to occlusion and the long range which 

caused weaker returns, but more so, the close proximity of the sonar to the water surface. At this 

long range, a large amount of the beamwidth was interacting with the water surface and weaker 

returns were obscured by surface noise. 

The elliptical shape of several of the targets was partly caused by clusters of dock pilings in close 

proximity. Half-height broken pilings which do not extend above the waterline were not included 

in the ground truth map. Additionally non-vertical pilings, such as cross-pilings appeared as 

ellipses in the sonar scan. The shape of pilings can also be distorted by uncorrected vehicle yaw 

deviations from one ping to the next. For example, if the vehicle rotated in the opposite direction 

to the sonar scan and this was not detected, targets would be overestimated, such as target ‘p’ 

above. An undetected turn in the same direction as the sonar scan would cause targets to be 

underestimated. 

A positional error was also unavoidable between the true centre of a piling and the measured 

centre of the detected sonar target. For any object of non-negligible thickness, the sonar could 

not measure the true depth of the object and the centre of the recorded feature appeared closer 

to the sonar that its true position. In effect, the closest edge of the target was being imaged, thus 

the error was greater for clusters of pilings or larger targets, for example target ‘c’ above. As seen 

in the maps compiled from several scans in the following section, this was corrected by scanning 

targets from several different positions to estimate the true target centre. 

The parameterised results of the scan in Figure 6.19 are shown in Table 6.1 below: 

 

 

 

 

 

 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

224/347 

Table 6.1 - Output characteristics of sonar features from the centre scan location. Explanatory notes follow. 
Id

e
n

ti
fi

e
r:

 

C
o

rr
e

sp
o

n
d

e
n

ce
  

(L
M

 #
):

 

R
an

ge
 (

m
):

 

B
e

ar
in

g 
(°

):
 

Actual  
(ground truth) 
measurement: 

Position 
Error: 

A
re

a 
(p

ix
e

ls
):

 

O
ri

e
n

ta
ti

o
n

 (
°)

: 

A
sp

e
ct

 R
at

io
: 

C
o

m
m

e
n

t:
 

Range 
(m): 

Bear-
ing (°): 

(m): (%): 

a None 7.86 53.1     70 135 0.7 Spurious anomaly 

b None 8.79 57.5     70 135 0.7 Spurious anomaly 

c 1 5.87 226.0 6.22 232.2 0.74 12.6 222 153 0.5  

d 
2 4.56 206.7 4.28 207.0 0.28 6.2 

49 151 1 Targets combined (mean) 
to piling #2 e 165 151 0.706 

f 3 3.76 167.9 3.95 164.5 0.30 7.9 279 86 1 Large error, includes ladder 

g 4 6.01 130.6 5.62 133.7 0.50 8.3 174 28 1.417  

h 5 8.22 120.0 8.22 118.8 0.17 2.1 171 38 1.333  

i 7 7.22 194.1 7.27 195.5 0.18 2.5 117 117 0.714  

j 8 7.41 170.0 7.05 171.4 0.40 5.4 75 180 1  

k 9 8.41 145.2 8.10 149.3 0.67 7.9 141 64 1.364  

l 11 10.92 207.9 11.14 206.2 0.39 3.6 146 133 0.421  

m 12 10.19 190.0 10.30 190.9 0.19 1.9 87 111 0.818  

n 13 10.22 174.1 10.07 174.0 0.15 1.5 101 96 0.917  

o 14 11.10 158.0 10.84 157.6 0.27 2.4 187 72 1.357  

p 17 13.18 188.4 13.16 188.5 0.03 0.2 275 102 0.75  

 Average: 0.33 4.8  

 

In Table 6.1, the identifier corresponds to the red labelling of detected targets in Figure 6.19. The 

sonar scan was registered in the world coordinate system at the x and y coordinates determined 

by the position of the crane hoist at the centre position. Each ping of the 852 scan was registered 

in yaw angle using the vehicle navigation sensors. The correspondence describes which vertical 

piling the sonar target matches, according to the numbering scheme in Figure 6.17 previously. 

There was little ambiguity in the manually established correspondences due to the good matching 

between sonar scan and ground truth map. 

The range and bearing column of Table 6.1 provide the range and bearing to the centre of mass of 

each feature detected, indicated by the red spot at the centre of each target. The range was 

measured relative to the vehicle position. The bearing was registered in the global coordinate 

system, with every ping corrected for vehicle yaw angle (and attitude) when the scan was taken. 

The bearing was calculated w.r.t. magnetic north, where clockwise angles increase from 0° (north) 

along the positive y-axis, as indicated on the figure. 

The actual range and actual bearing column indicate the distance to the matching piling on the 

ground truth map, again with range relative to the assumed vehicle position on the crane, and 

bearing w.r.t. magnetic north. The mean (centre) position of multiple clustered pilings was used. 

Hence, the position error lists the difference in metres, and as a percentage of the true range, 

between the observed position on the sonar and the true position of the target on the ground 

truth map, both relative to the assumed vehicle position on the crane hoist. 

The area, orientation and ellipse ratio were also recorded for each sonar target detected. The 

area was measured in pixels, used for relative comparisons at the same range and gain 

configuration. Each feature was approximated by an ellipse during parameterisation. The ellipse 

ratio defined the ratio of the long axis of the ellipse to the short axis, so a circle was defined as 1 

and a long thin ellipse with a ratio that was noticeably higher or lower than 1. The orientation 

defined the orientation of the long axis of the ellipse over the range 0-180° in the world 

coordinate system w.r.t. magnetic north. 
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In summary, the accurate registration of the sonar scan with the ground truth map seen in Figure 

6.19 was confirmed, with correspondences established for all sonar targets except features ‘a’ 

and ‘b’ and an average position error of 0.33m, or 4.8%. Features ‘d’ and ‘e’ were manually 

corresponded to piling #2 due to their close proximity.  

The wide shape of feature ‘f’ was caused by the dock ladder being included in this target, as 

shown in Figure 6.19. The position errors of >0.5m seen for features ‘c’, ‘g’, and ‘k’ were most 

likely caused by cross pilings and/or the non-vertical angle of the main pilings. The larger area of 

feature ‘p’ was caused in part by the spreading of the sonar beam in both the vertical and 

horizontal direction with range, causing a larger volume of water to be insonified, and hence a 

larger proportion of the piling and surrounding cross pilings to be detected. In general, pilings off 

the central axis of the dock (the central column) were imaged over a greater area caused by the 

angle of the cross pilings relative to the sonar scan. 

The scans presented here were taken in calm water with the x, y and z position constrained by the 

crane, and corrected for vehicle attitude. However, a small uncorrected movement was inevitable 

and is quantified later in section 6.3.5.2.1, together with an estimation of the uncertainty 

associated with the method and ground truth map. 

The same techniques were applied to the scans taken with the crane at 45° left, as shown below 

in Figure 6.20 and Table 6.2, and at 45° right, as shown in Figure 6.21 and Table 6.3. 

From the left station, as shown in Figure 6.20, fewer landmarks were detected (10 total) with a 

50% higher positional error than the straight position. This was partly caused by less of the sonar 

scan area overlapping the dock, and by the greater effects of occlusion at this closer position. 

Imaging targets ‘c’, ‘e’ and ‘d’ (which included the dock ladder), all at an oblique angle caused 

large regions of the cross pilings to be detected. These elliptical returns shown below occluded 

the majority of the west side of the dock, as seen in the figure by ray tracing the sonar beams. 

Targets ‘a’, ‘g’ and perhaps part of ‘b’ and ‘h’ were all in the shallow region of water to the east. A 

floating dock anchored there, together with large areas which dried out at low tide caused these 

additional targets, as evident in the original raw sonar scan at the left position in Figure 6.15. 

Target ‘i’ by inspection appeared to be a cross piling, distinct from target ‘j’ over LM6. However, 

due to its close proximity to target ‘j’ (0.97m separation) the two targets were grouped and an 

average position recorded, hence the very high (0.97m or 18.8%) positional error to the ground 

truth map. If the targets were not grouped, and ‘i’ was discounted as a cross piling, then the 

positional error of ‘j’ on its own became 0.63m or 11.3%, with a corresponding slight reduction in 

the average positional error for the right hand scan, from 0.43m to 0.39m. 

In the right hand scan shown in Figure 6.21, as with the left hand scan, fewer targets (11 total) 

were detected with a similar 50% higher positional error than the centre position. For the same 

reasons as the left hand scan, this was most likely due to the oblique angle, occlusion and less of 

the sonar scan overlapping the dock. Again, the ladder was imaged, and the effect of beam 

spreading causing apparently larger targets at high ranges can be seen. Target ‘e’ by inspection 

appears to be a cross piling as it was distinct from target ‘d’ over LM4. However, due to its close 

proximity to target ‘e’ (0.97m separation) the two targets were grouped and an average position 

recorded, hence the very high (0.8m or 28.1%) positional error to the ground truth map. If the 

targets were not grouped, and ‘e’ was discounted as a cross piling, then the positional error of ‘d’ 

on its own became 0.51m or 21.4%, with a corresponding slight reduction in the average 

positional errors for the right hand scan from 0.47m to 0.44m. 
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Figure 6.20 - The detected features from the 20m range dock scan with the vehicle aligned at 45° left on the crane are 
shown in black and the geometric dock map is overlaid for comparison. Red bounding rectangles identify each 
detected sonar target with an identifier and the centre of mass of each target is shown with a red dot. 

Table 6.2 - Output characteristics of objects detected in the scan from the vehicle aligned at 45° left on the crane. 
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Range 
(m): 

Bear-
ing (°): 

(m): (%): 

a None 3.59 281.7     69 34.2 1.125 
Shallows & floating 
dock 

b 1 2.25 216.3 2.88 212.8 0.65 28.8 254 165.2 0.6 
Large error, includes 
floating dock 

c 2 2.98 148.7 2.80 149.6 0.19 6.2 235 57.2 1.769  

d 3 4.78 118.5 5.04 118.7 0.26 5.5 318 121.2 0.731 
Large error, includes 
ladder 

e 4 8.12 111.1 7.87 107.9 0.51 6.3 237 50.2 1.917  

f 5 10.71 104.0 10.87 103.7 0.17 1.6 82 42.2 1.375  

g None 5.62 218.1     115 154.2 0.6 
Shallows & floating 
dock 

h None 4.22 201.7     63 141.2 0.778 Cross piling 

i 
6 5.16 188.4 5.85 195.5 0.97 18.8 

63 141.2 0.778 Targets combined to 
include cross piling ‘i’ j 75 128.2 0.8 

k 8 7.30 140.0 7.12 141.6 0.27 3.7 189 80.2 1.286  

l 11 8.61 187.1 8.74 190.3 0.50 5.8 82 132.2 0.727  

m 13 9.87 150.4 9.69 152.9 0.46 4.7 237 50.2 1.917  

n 18 12.57 158.0 12.46 159.2 0.28 2.3 182 82.2 1.286  

 Average: 0.43 8.4  
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Figure 6.21 - The detected features from the 20m range dock scan with the vehicle aligned at 45° right on the crane 
are shown in black and the geometric dock map is overlaid for comparison. Red bounding rectangles identify each 
detected sonar target with an identifier and the centre of mass of each target is shown with a red dot. 

Table 6.3 - Output characteristics of features detected in the scan from the vehicle aligned at 45° right. 
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Range 
(m): 

Bear-
ing (°): 

(m): (%): 

a 1 8.07 251.2 8.62 253.7 0.66 8.2 84 158.7 0.9  

b 2 5.52 245.8 5.82 245.5 0.30 5.5 128 176.7 0.929  

c 3 3.33 231.8 3.34 223.5 0.48 14.5 290 107.7 0.714 
Large error, includes 
ladder 

d 
4 2.85 146.5 2.54 162.3 0.80 28.1 

146 31.7 1.25 Targets combined to 
include cross piling ‘e’ e 85 40.7 1.375 

f 5 4.47 125.2 4.63 123.7 0.20 4.5 132 57.7 1.5  

g 6 9.54 237.7 10.02 235.7 0.59 6.2 88 136.7 0.727  

h 7 7.54 224.5 7.72 223.3 0.24 3.2 142 140.7 0.529  

i 9 5.56 167.7 5.61 172.1 0.43 7.8 185 61.7 1.583  

j 11 11.79 224.8 11.94 223.9 0.24 2.0 108 136.7 0.75  

k 17 12.62 206.4 12.78 204.5 0.45 3.6 114 123.7 0.6  

l 19 11.66 172.4 11.70 176.2 0.78 6.7 246 71.7 1.529  

 Average: 0.47 8.2  
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Finally to conclude the example 852 sonar image processing example, Figure 6.22 below shows all 

three scans registered on the same plot as different colours, as a comparison between the 

information gathered in the parameterised scan from each of the three locations. The targets in a 

direct line of sight and close to the vehicle were reliably detected from all three positions. 

However, the effects of occlusion and observing the non-vertical cross pilings from different 

angles can be seen. The following section uses SLAM techniques to integrate the information 

gains from several scans to compile a more reliable and more complete map, while 

simultaneously allowing vehicle localisation. 

Observed from 
45° left position

Observed from 
centre position

Observed from
45° right position

2m

 

Figure 6.22 - The scans from all three stations are registered on the same plot. Targets observed from the 45° left 
position are shown in red, from the centre position in green, and finally from the 45° right position in blue, 
demonstrating the information gains and mitigation of occlusion from combining several scans from different 
positions. 

 SLAM operation and results 6.3.3

The piling dock, with its regular and repeated semi-uniform targets, provided an ideal 

development environment to test the SLAM algorithms in open water conditions. The ground 

truth dock map allowed a quantified evaluation of the mapping accuracy, while the geometric 

model of the crane allowed the position of the vehicle to be continually monitored 

simultaneously. With the above demonstration of sonar image processing and feature extraction 
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algorithms, the following sections utilise this information to perform sonar-aided localisation and 

mapping in 2D. 

The measurements obtained from each of the three scans in the previous section were used to 

run the SLAM algorithm step-by-step in an offline mode. The vehicle began at 45° left, then 

moved to the centre position, before finally to 45° right to demonstrate localisation against the 

ground truth of crane position and mapping against the user generated dock map (without cross 

pilings). The results were then compared back to the geometric dock map and the known change 

in position to evaluate the performance of the algorithms. 

6.3.3.1 Landmarks observed 

Table 6.4 below shows the observed features at each of the scan positions, according to the 

numbering of dock pilings shown previously in Figure 6.17. 

Table 6.4 - The observed features at each of the three scan positions, using the piling numbers in Figure 6.17. The 
observed range and bearing in the world coordinate system is shown (0 degrees is along the positive y-axis, that is 
north). Grey entries were not observed, white landmarks observed from one position only, and orange rows highlight 
landmarks observed from more than one location. 

LM 

List: 

45° Left: Straight: 45° Right: 

Range (m): Bearing (°): Range (m): Bearing (°): Range (m): Bearing (°): 

1 2.25 216.3 5.87 226.0 8.07 251.2 

2 2.98 148.7 4.56 206.7 5.52 245.8 

3 4.78 118.5 3.76 167.9 3.33 231.8 

4 8.12 111.1 6.01 130.6 2.85 146.5 

5 10.71 104.0 8.22 120.0 4.47 125.2 

6 5.16 188.4   9.54 237.7 

7   7.22 194.1 7.54 224.5 

8 7.30 140.0 7.41 170.0   

9   8.41 145.2 5.56 167.7 

10       

11 8.61 187.1 10.92 207.9 11.79 224.8 

12   10.19 190.0   

13 9.87 150.4 10.22 174.1   

14   11.10 158.0   

15       

16       

17   13.18 188.4 12.62 206.4 

18 12.57 158.0     

19 
  

  11.66 172.4 

20 
      

 

In Table 6.4 above, for each scan position, a different set of landmarks were observed. The 

landmarks closer to the vehicle (lower LM numbers) were reliably observed from all stations, with 

fewer detections at higher ranges. Of importance are the rows highlighted in orange, where a 

landmark was observed from multiple positions. These multiple observations of the same 

landmark from different locations were the most useful to localisation; if the SLAM algorithm 

could establish that the landmark observed in the current scan corresponded to one which had 

been previously observed, then the robot could use this to estimate a change in position. 
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6.3.3.2 Establishing landmark correspondences 

In section 5.3.4.2, the maximum likelihood (ML) estimation method of establishing landmark 

correspondences was introduced. Using this method, the position of a newly observed landmark 

was converted into the world coordinate system and associated to the closest previously-mapped 

landmark, within a threshold distance ( ). This threshold distance provided robustness to 

realworld sensing inaccuracies. If no previously mapped landmark was detected within the 

threshold  , then a new landmark hypothesis was created and the new landmark was added to 

the map. In section 5.5, the ML estimation technique was extended to include landmark 

signatures and demonstrated in simulation. 

However, in section 6.3.2.3, the signature variables extracted for the dock pilings (sonar target 

characteristics, e.g. area, orientation, ellipse ratio) were deemed too variable with the angle at 

which the target was imaged. Additionally, the pilings were too similar for the signature variable 

to be used to establish landmark correspondences. Instead, as Figure 6.22 previously shows, 

establishing landmark correspondences using relative position alone provided little ambiguity for 

navigation around the dock. 

Taking the three scans presented in Table 6.4 as an example, the vehicle began with no landmarks 

recorded on its map. The landmarks from scan 1 (the left scan) were initially recorded relative to 

the vehicle’s best estimate of its position at that time. In the open ocean, this could be a surface 

GPS fix before diving, or if the vehicle was already submerged, the map could be registered in a 

local coordinate system until surfacing. While in the local coordinate system, full mapping and 

navigation is still possible, the map is just not registered in a realworld latitude and longitude. In 

the case of the example above, the initial position estimate was based on the crane position at 

the left station, thus the relative positions of the landmarks observed from the left scan were 

recorded on the map. 

When integrating the landmarks observed from scan 2, again the relative range and bearing to 

each landmark was converted to the world coordinate system using the predicted new position of 

the vehicle. In the open ocean, a combination of the onboard INS, dead-reckoning and GPS 

updates can be used for the predicted position. For the example here, the predicted new position 

was the modelled crane centre position. The second stage of the EKF SLAM algorithm later 

updated the map and position with the updated position estimate using the mapped 

measurements, after data association. 

With the second set of landmarks registered using the estimated current vehicle position, the 

distance from each newly observed landmark to all existing mapped landmarks was considered in 

turn. If less than the threshold distance ( ), the landmark was associated to its nearest neighbour, 

if greater than  , then a new landmark was added to the map. 

The value of   was tuned experimentally for the typical landmark spacing, landmark detection 

and localisation and mapping uncertainty for operating around the dock. The typical sonar 

measurement error included the vehicle position estimate uncertainty, as a position estimate is 

required to register relative range and bearing sonar measurements to the world coordinate 

system. A value of  =1m was found to provide robustness to sensing uncertainty, while providing 

reliable mapping results given the typical piling spacing of 3m, excluding cross pilings. Recalling 

Table 6.1, Table 6.2 and Table 6.3 previously, the position error (the difference between the 

measured and mapped position of landmarks) was always less than 0.97m with an average of 

0.39m, reinforcing the suitability of a value of  =1m. The minimum position difference between 

landmarks correctly rejected from correspondence to mapped targets (including spurious targets, 
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cross-pilings, etc.) was 1.22m (feature ‘e’ on the right hand scan), therefore demonstrating that 

no-false correspondences were created using a value of  =1m for the example scans above. 

When evaluating sonar targets obtained in a single scan, before attempting correspondence to 

previously mapped targets, the value of  =1m was used to group nearest neighbour targets with 

a separation of <1m into a combined target. In the example scans above, targets ‘d’ and ‘e’ were 

combined in the centre scan in Table 6.1 and also in the right hand scan in Table 6.3 and targets ‘i’ 

and ‘j’ were combined in the left hand scan in Table 6.2. In each case, targets with a small 

separation distance (0.92, 0.97 and 0.94m respectively, all < ) were observed. 

To the user, by inspection these were most likely either cross pilings, or pilings from the same 

cluster with either a slight separation, or disjointed in the sonar scan and could easily be removed 

from the correspondence with a resulting increase in both map and later localisation accuracy. 

However, to the correspondence algorithm with a separation distance of < , these were 

corresponded to their nearest neighbour, rather than recording a new feature representing the 

cross pilings on the map. Combining features in the raw scan with a separation of <  before 

establishing correspondences both reduced computational complexity and avoided maintaining a 

map of several features representing the same landmark. 

Figure 6.23 below shows an example for associating landmark 8 between two scans. In the figure, 

a landmark observed was registered into the map coordinate system using the new predicted 

vehicle position. The distance to all nearest neighbours of existing mapped landmarks was 

evaluated. If the newly observed landmark was closer to a previously mapped landmark based on 

the current predicted vehicle position than the threshold  , then it was associated to its nearest 

neighbour. The later update step of the EKF SLAM algorithm then combined the previous and new 

position estimates of LM8 and updated the map accordingly. The figure caption provides a full 

explanation. 

2mc d e

k

m

4.19m

2.68m

α=1m

3.66m4.55m

0.31m
j

 

Figure 6.23 - Using the maximum likelihood estimator to establish correspondence to a mapped landmark. The left 
figure shows a zoomed section of the map centred on LM8 after the scan from the left position. The targets detected 
from the left scan are labelled in red and registered onto the ground truth map for reference. The right hand figure 
adds one of the features observed on the subsequent scan from the centre position, feature ‘j’ shown in green. The 
distance from feature ‘j’ to all previously mapped landmarks was evaluated (distances shown in blue) and the closest 
landmark selected (0.31m). Provided the distance to the closest previously mapped landmark was less than the 
threshold for creating a new landmark hypothesis ( =1m, shown by the blue dashed circle) then correspondence was 
assumed to the reobserved landmark. 
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A second example in Figure 6.24 below shows the case for adding a new landmark to the map. 

Feature ‘i’ observed on the scan at the centre position was compared to all existing landmarks 

recorded on the map from the initial scan from the left hand position. As the threshold   was 

exceeded, feature ‘i’ was added to the map as a new landmark hypothesis. 
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Figure 6.24 - Using the ML estimator to determine the observation of a previously unmapped landmark. The left 
figure shows a zoomed section of the map centred on LM7 after the scan from the left position. The targets detected 
from the left scan are labelled in red and registered onto the ground truth map for reference. The right hand figure 
adds one of the features observed on the subsequent scan from the centre position, feature ‘i’ shown in green. The 
distance from feature ‘i’ to all previously mapped landmarks was evaluated. As no landmarks fell within the blue 
dashed circle (the threshold  =1m for establishing a landmark correspondence), the feature ‘i’ was assumed to be 
previously unmapped and was added to the map as a new landmark hypothesis. 

The plot in Figure 6.25 below verifies the selection of  =1m by tracking the change in observed 

landmark position throughout the three scans, and with reference to the ground truth map 

position. Each observed landmark is plotted using a different marker, and the apparent mapped 

positional change between observations of the same landmark is shown. The maximum positional 

change between observations of the same landmark was verified to be always <1m and with an 

average of <0.4m. 

Of the five sonar targets detected which did not correspond to dock pilings (either anomalies or 

parts of the floating dock), these all had a positional difference of significantly greater than 1m 

compared to their nearest neighbour, either previous observations or the ground truth map (2.6, 

3.7, 4.5, 8.7, 8.8m) and no false correspondences were established using a threshold of  =1m. Of 

the four landmarks which were observed only once (the white entries in Table 6.4), these too 

were consistently observed at >1m from their previously mapped nearest neighbours, validating 

the selection of  =1m to ensure robust correspondence estimation. 

The left hand series of points in Figure 6.25 below shows the position difference between the 

observations from the left scan position and the ground truth map, with an average of 0.43m. The 

centre series of points then shows the position difference between landmarks observed in the 

centre and left hand position with an average change in mapped positions of 0.38m. Finally, the 

right hand series of points shows the change in mapped position between landmarks observed in 

the centre and right scans, with an average change in mapped position of 0.37m. Therefore, 

landmarks were mapped in slightly different positions from each station, of a comparable 

magnitude difference between stations and compared to the ground truth map. 
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Figure 6.25 - Tracking LM position variation between scans confirmed the selection of  =1m, as the apparent 
variation in position of correctly corresponded landmarks was consistently <1m. Each coloured marker represents an 
observed dock piling as indicated in the key, as per the numbering in Figure 6.17. Markers not present correspond to 
dock pilings not observed. The lines show sequentially observed landmarks. The vertical axis is positional change in 
the observed position of a landmark between observations, and the horizontal axis shows the evolution of scans. 

6.3.3.3 Tracking landmarks to estimate localisation 

If a landmark was only observed from a single position then it was mapped for navigational 

purposes including collision avoidance. In addition, if the landmark was reobserved upon the 

robot returning to the same position, then it was a useful confirmation of the robot returning to 

the same location and was used to correct any errors accumulated in moving away and returning. 

Furthermore, if the robot maintained a position, then this singularly observed landmark could be 

used to aid or confirm station keeping, while other features were being mapped or evaluated to 

see if they were stationary (i.e. static objects suitable for use as landmarks). 

Given the correct correspondence, any landmark seen in more than one position (highlighted in 

orange in Table 6.4 previously) was used to estimate a change in position of the vehicle, or 

localisation estimate. At least one landmark needed to be tracked between each scan position in 

order to localise by sonar alone. The more reobservations available, the more robust the 

localisation and thus, through back propagation in the EKF SLAM algorithm, the more reliable the 

map of other objects. The more times a landmark was observed, the more useful it was to the 

mapping algorithm, thus landmarks seen in all three positions were most useful. 

The predicted movement of the vehicle from the left crane position ( ̅) to the centre position ( ̅) 

can be expressed in vector form as  ̅   ̅, or as Cartesian coordinates as    ̅   ̅    ̅   ̅  . 

Each of the   landmarks corresponded between the crane position  ̅ and  ̅ were used to update 

the predicted movement. For a landmark   observed in the vehicle coordinate system from the 

left position at     
    

  and the centre position     
    

 , the change in vehicle position 

indicated by corresponding these landmarks was: 

LM Indicated Change =     
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For each of the landmarks observed from more than one position, the effect of each reobserved 

landmark on the localisation process in estimating the change in vehicle position is shown in blue 

in Table 6.6. The actual movement of the vehicle, using the modelled crane positions, was used to 

ground truth the localisation estimates indicated by tracking landmarks between scan locations. 

The difference between the change indicated by reobserving the same landmark (the LM 

indicated change) and the change predicted by the actual movement of the crane shown in Table 

6.5 is presented as the position error in Table 6.6. 

Position Error  = Indicated Change - Predicted Change from crane movement 

=     
    

    
    

  -    ̅   ̅    ̅   ̅   

Table 6.5 - The actual position change between scan positions according to the movement of the crane. 

 
45° Left: Straight: 45° Right: 

Actual position 
change (m): 

(Δx = 3.36, Δy = 1.39) (Δx = 3.36, Δy = -1.39) 
 

Table 6.6 - The relative movement of each tracked landmark between scan positions and the position error compared 
to the actual crane movement. 

LM List: 

45° Left: Straight: 45° Right: 

Range (m): Bearing (°): Range (m): Bearing (°): Range (m): Bearing (°): 

1 2.25 216.3 5.87 226.0 8.07 251.2 

LM Indicated (m): (Δx = 3.83, Δy = 0.52) (Δx = 3.30, Δy = -1.30) 

Position Error (m): (0.47, -0.87) = 0.99 (-0.06, 0.09) = 0.11 

2 2.98 148.7 4.56 206.7 5.52 245.8 

LM Indicated (m): (Δx = 3.12, Δy = 1.25) (Δx = 3.73, Δy = -0.97) 

Position Error (m): (-0.24, -0.14) = 0.28 (0.37, 0.42) = 0.56 

3 4.78 118.5 3.76 167.9 3.33 231.8 

LM Indicated (m): (Δx = 3.31, Δy = 1.38) (Δx = 3.31, Δy = -1.16) 

Position Error (m): (-0.05, -0.01) = 0.05 (-0.05, 0.23) = 0.24 

4 8.12 111.1 6.01 130.6 2.85 146.5 

LM Indicated (m): (Δx = 3.71, Δy = 1.79) (Δx = 3.73, Δy = -1.25) 

Position Error (m): (0.35, 0.40) = 0.53 (0.37, 0.14) = 0.40 

5 10.71 104.0 8.22 120.0 4.47 125.2 

LM Indicated (m): (Δx = 3.44, Δy = 1.26) (Δx = 3.25, Δy = -1.25) 

Position Error (m): (0.09, -0.13) = 0.16 (-0.11, 0.14) = 0.18 

6 5.16 188.4 

  

9.54 237.7 

LM Indicated (m): (Δx = 6.12, Δy = 0.01) 

Position Error (m): (-0.59, 0.01) = 0.59 

7 
  

7.22 194.1 7.54 224.5 

LM Indicated (m):  (Δx = 3.19, Δy = -1.16) 

Position Error (m):  (-0.17, 0.23) = 0.29 

8 7.30 140.0 7.41 170.0 

  LM Indicated (m): (Δx = 3.31, Δy = 1.07)  

Position Error (m): (-0.05, -0.32) = 0.32  

9 

  

8.41 145.2 5.56 167.7 

LM Indicated (m):  (Δx = 3.10, Δy = -1.31) 

Position Error (m):  (-0.26, 0.08) = 0.19 

11 8.61 187.1 10.92 207.9 11.79 224.8 

LM Indicated (m): (Δx = 2.67, Δy = 1.67) (Δx = 3.52, Δy = -1.50) 

Position Error (m): (-0.69, 0.28) = 0.74 (0.16, -0.11) = 0.47 

13 9.87 150.4 10.22 174.1   

LM Indicated (m): (Δx = 2.89, Δy = 1.20)  

Position Error (m): (-0.47, -0.19) = 0.51  

17 

  

13.18 188.4 12.62 206.4 

LM Indicated (m):  (Δx = 3.03, Δy = -1.05) 

Position Error (m):  (-0.33, 0.34) = 0.30 
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The average localisation estimate between scan locations is presented in Table 6.7 below and 

compared to the actual change in vehicle position from the movement of the crane. 

Table 6.7 - Comparing the average estimated position change with the ground truth actual movement of the vehicle. 

 From 45° Left to Straight: From Straight to 45° Right: 

Actual position 
change (m): 

(Δx = 3.36, Δy = 1.39) (Δx = 3.36m, Δy = -1.39m) 

Position change 
indicated by sonar 
(m): 

(Δx = 3.29, Δy = 1.27) 
(8 LM used for estimate) 

(Δx = 3.35, Δy = -1.22) 
(9 LM used for estimate) 

 

From 45° Left directly to 45° Right: 

Actual position 
change (m): 

(Δx = 6.72, Δy = 0) 

Position change 
indicated by sonar 
(m): 

(Δx = 6.12, Δy = 0.01) 
(1 LM used for estimate) 

 

With consideration of the number of landmarks used for the position change estimates above, 

Table 6.8 below lists the average position error in the localisation estimate using the crane 

modelled positions as a ground truth. 

Table 6.8 - Comparing the average position error for movement between each scan position. 

 
45° Left: Straight: 45° Right: 

Average Position 
Error (m): 

From 45° Left to Straight: 0.45m From Straight to 45° Right: 0.30m 

From 45° Left to 45° Right: 0.59m (using single landmark (#6) not observed from centre) 
From 45° Left to 45° Right: 0.09m (using the cumulative localisation estimate) 

 

The position estimates were compared to the actual position of each scan location in Table 6.9: 

Table 6.9 - A comparison of the actual vehicle position on the crane with the localisation estimates. The SLAM 
algorithm assumed an initial location of the left position with prior knowledge (e.g. surface GPS) to zero the map in 
the Dock Coordinate System. The straight scan position estimate was calculated using the change in position 
estimate from left to centre (Table 6.7) and the right position estimate was calculated using the cumulative change in 
position to the straight station and the subsequent estimated change in position to the 45° right position. 

 Actual crane position: Position estimate using the sonar scans of landmarks and localisation: 

45° Left: (1.56, 2.26) (1.56, 2.26) – a priori knowledge of the initial state was assumed (for example a 
surface GPS fix used to register the map in the world coordinate system) 

Straight: (4.92, 3.65) (4.85, 3.53) – this was the original position + the estimated change in position 
using the localisation algorithms 

45° Right: (8.28, 2.26) (8.20, 2.31) – the original position + the estimated change in position to the 
straight position + the estimated change in position to the 45° right position = 
the cumulative localisation position. 
(7.68, 2.27) – this was the position estimate using just the single LM observed 
from 45° left and 45° right but not observed in the straight position 

 

6.3.3.4 Mapping features 

The EKF SLAM algorithm allowed tracked landmarks to be used for localisation while 

simultaneously mapping landmarks. At each station, the map of tracked landmarks was updated 

and new landmarks were recorded with an uncertainty estimate as discussed previously. In the 

example discussed here, the covariance in the x and y directions was assumed to be equal and so 

the uncertainty was represented by ellipses with equal proportions – circles. During operation, 

the uncertainty associated with each mapped landmark was proportional to the number of times 

it was reobserved in the ‘same’ position, and the uncertainty associated with the location 
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estimate of the robot each time the landmark was observed (the position of a landmark can only 

be mapped as accurately as the current robot location is known). Figure 6.26 below integrates the 

localisation process shown previously with the SLAM algorithm and overlays the results onto the 

ground truth dock map. 

1 2 3
5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

x

y

2m

Key:

Colour indicates the update from each scan position

Information from the 1st scan (Left)

Information from the 2nd scan (Straight)

Information from the 3rd scan (Right)

Dashed circles indicate the ground truth robot position on the crane

The radius of a circle indicates the covariance (uncertainty) associated with 
that feature or localisation estimate of the vehicle

The geometrically correct dock map (Ground Truth)

A large circle indicates a high uncertainty, a small circle 
represents a lower uncertainty (lower covariance)

Re-observing a feature causes:
the uncertainty to reduce (circle radius reduces)
the colour to change indicating subsequent scans

 
 

 

Figure 6.26 - The sequential compilation of a dock map and localisation estimate using SLAM. For a full description, 
see the text below. 
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Figure 6.26 above shows the evolution of the localisation estimate and dock map between the 

three stations using the SLAM algorithm. The cumulative SLAM process is shown using sonar 

tracked landmarks corrected by the vehicle navigation sensors. The localisation estimate of the 

vehicle using observed landmarks between scans is shown at the top of the plot by the shaded 

vehicle positions. As before, the hashed green vehicle position was estimated using only the 

hashed green landmark (LM6) which was only observed in the 45° left and the 45° right position, 

i.e. localisation without any landmarks observed in the straight position. As only a single landmark 

suggested the green hashed vehicle position, this had little effect on the final localisation estimate 

(1 landmark weighted against 10 landmarks which suggested the green non-hashed estimate). 

The localisation error at each station is the difference in the coloured position of SeaBiscuit from 

each of the crane positions (dashed circles). The reduction in localisation uncertainty at each 

station as more landmarks were reobserved is represented by the reducing radius of the 

localisation estimates. This reduction in localisation uncertainty had a corresponding effect on the 

mapping uncertainty of observed landmarks. 

The coloured landmarks correspond to the station from which they were observed. Red 

landmarks were observed at 45° left, yellow landmarks from the straight position and green 

landmarks from 45° right. The manually mapped positions of the dock pilings from the ground 

truth map are shown in white. A reduction in the radius of shaded landmarks represents a 

reduction in mapping uncertainty, caused by reobservations of a successfully corresponded 

landmark from different stations. Each reobservation reduced the mapping uncertainty. 

From the left station (red), the vehicle recorded all observed landmarks with a high uncertainty 

corresponding to the high uncertainty of its location estimate and the fact that all LM had only 

been seen once (high uncertainty = large covariance circles). 

At the centre station (yellow), newly observed landmarks were added to the map with a high 

uncertainty. Several landmarks which corresponded to LM observed in previous scans were 

reobserved. The position of these was corrected based on the reobservation and the mapped 

uncertainty reduced from reobservation with a lower localisation uncertainty. Concurrently, the 

position of the vehicle was estimated by tracking these reobserved landmarks and the uncertainty 

associated with the localisation estimate was reduced accordingly. Whereas movement of the 

vehicle increased localisation uncertainty, the large number of landmarks tracked throughout this 

movement reduced the localisation uncertainty. 

At the right station (green), the position of landmarks which were reobserved was adjusted and 

the uncertainty reduced. New landmarks were recorded and LM which had been previously 

observed but not seen on this scan remained at the same position with the same uncertainty. The 

position and uncertainty of the vehicle was also updated based on the tracked landmarks. 

Figure 6.26 above showed the observations taken at each of the three stations by overlaying the 

different scans. The SLAM algorithm combined the information at each time step with the 

previous knowledge of the map and vehicle location to produce an overall updated state 

estimate. This is referred to as online SLAM (5.3.4.1). The combination process avoided the need 

to store all previous states of the vehicle and map, which would use large amounts of memory. 

Figure 6.27 below shows the result of the combination process, previously demonstrated in 

simulation in section 5.4. Successive observations of landmarks were corresponded to previously 

observed features and their mapped position and uncertainty updated, while simultaneously 

using these landmarks to localise the vehicle and to track the localisation uncertainty. 
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Information from the 2nd scan (Straight)

Information from the 3rd scan (Right)

Dashed circles indicate the ground truth robot position on the crane

The radius of a circle indicates the covariance (uncertainty) associated with 
that feature or localisation estimate of the vehicle

The geometrically correct dock map (Ground Truth)

A large circle indicates a high uncertainty, a small circle 
represents a lower uncertainty (lower covariance)

Re-observing a feature causes:
the uncertainty to reduce (circle radius reduces)
the colour to change indicating subsequent scans

 

Figure 6.27 - The combined SLAM dock map and localisation estimate upon reaching the final station. At each station, 
the new information was integrated and a single updated state estimate was maintained (online SLAM). Reducing 
circle radii (of mapped landmarks and the vehicle) shows the reduction in mapping and localisation uncertainty. The 
red-yellow-green colour transition represents the different stations for vehicle localisation shown at the top, and 
from where the most recent landmark observation occurred for landmarks.  
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 Integrating Delta T sonar data 6.3.4

Data from the forward facing multibeam Delta T sonar was complementary to the 852 sonar data 

in many respects. The update rate was much faster (up to 20 scans per second), the range was 

higher (up to 100m) and the sonar imaged the entire vertical water column, rather than just the 

±11° vertical beam opening of the 852 sonar. Figure 6.28 below provides an example 20m range 

raw image from the forward facing Delta T sonar with a user generated overlay. Different ranges 

were selected depending on the application and conditions. 

In Figure 6.28 below, the horizontal line of intermittent returns at the bottom of the image is the 

seabed and the vertical returns extending up from this are the dock pilings spaced approximately 

3 metres apart in a uniform pattern. The reflections of objects and the seabed above the 

waterline are also identified. Although this overlay was user generated, it was the task of the 

Delta T sonar image processing algorithms to extract the same features for survey, localisation 

and mapping purposes – these algorithms are discussed in the following section. 

At higher ranges, the dock pilings provided a weaker return and were harder to detect. However, 

the spacing shown correctly matches the ground truth map of the pilings observed. This scan was 

taken with the vehicle very close to the surface of the water. The faint horizontal line at the 

centre of the scan is the water surface. This was barely visible and only for the first few metres of 

range. The much stronger horizontal line at the top of the image is a reflection of the seabed. 

Figure 6.28 is the raw data capture and is shown before any image processing or filtering 

operations have been performed. Additionally, the image has not been corrected for the pitch 

and roll of the vehicle; the image shows the vehicle pitched up by 7° so the water surface and the 

seabed extend away from the vehicle in a slight upward inclination. Correction of vehicle 

inclination is applied before the image processing algorithms to aid in detection of the water 

surface. All returns above the water surface, the reflection of the seabed, and all noise below the 

seabed (secondary echoes) were removed by the sonar image processing software to leave the 

water column region of interest. 

Surface water level
(blue dashed line)

Sea floor
(orange dashed line)

120° Sonar field of view

Range in metres 20m

iROV with forward 
facing Delta T Sonar

(inclined 7° upwards)

Reflection of sea floor and pilings 
(above the waterline)

Dock pilings at 3m intervals
(blue shaded outline)

 

Figure 6.28 - An example annotated 20m range Delta T image of the dock pilings. The seabed, water surface and dock 
pilings are highlighted with the user generated overlay, together with the reflections shown above the waterline. The 
iROV is not shown to scale. 
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6.3.4.1 Delta T sonar image processing 

Depending on the range setting of the Delta T sonar, the vehicle depth and altitude, it was 

expected to see the seabed and/or the water surface. In Figure 6.29 below the Delta T was 

orientated so that 60° of the beamwidth went upwards and 60° downwards. This was optimal 

when the vehicle was operating at depth. However when operating close to the surface, the sonar 

was usually orientated at 40° downwards. This allowed the vehicle to image more of the seabed 

and objects directly beneath it, and reduced the amount of ‘wasted’ beams exiting the water 

surface. 40° was selected rather than 60° so that there were still some upward facing beams to 

allow for semi-submerged operation, while still imaging directly below the vehicle. 

Various image processing and feature extraction algorithms were applied to the raw sonar data 

from the Delta T, as described in section 4.6.6. The principle was to calculate the position and 

angle of the water surface, given the attitude and depth of the vehicle (from other sensors), and 

remove any regions above this. The seabed was then detected if in range, and any secondary 

echoes below this removed. Finally, any features (objects, landmarks) were extracted for 

navigational purposes. 

These features were split into objects either connected to the seafloor, such as the dock pilings 

dimensioned below in Figure 6.29, or objects which were distinct from the seafloor, such as 

midwater targets, cross (diagonal) dock pilings and floating objects. Cross pilings appeared as 

‘floating’ objects which appeared to change in depth as the vehicle panned the sonar across the 

diagonal target. Targets which were connected to the seafloor were detected by segmenting the 

continuous return into separate features comprising a separate floor and object. Sufficiently 

prominent bathymetric features, such as rocks, were also segmented into distinct landmarks. 

Figure 6.29 below shows the example scan used previously and adds dimensions extracted from 

the sonar scan. Table 6.10 below compares the dimensions extracted from the sonar scan with 

the ground truth values from the manually dimensioned dock map. 
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Figure 6.29 - An example dimensioned Delta T image taken with the dock pilings (P1, P2, …) in view. The seabed, 
water surface and dock pilings are highlighted with the user generated overlay, together with the reflections shown 
above the waterline. The Delta T sonar image processing algorithms were used to extract this information for survey, 
localisation and mapping purposes. The iROV is not shown to scale. 

Table 6.10 - Example output data (summarised) from the Delta T scan shown in Figure 6.29. The range to the seafloor 
was combined with the mounting position of the sonar and the depth estimated using the external pressure sensor, 
and used to estimate water depth at the current position. 

Object: Range from sonar image 
processing algorithm (m): 

Range from ground truth 
(m): 

Position error to ground 
truth (m): 

Range to seafloor 
(converted to water depth 
at current state of tide) 

Combined to give water 
depth of 4.81 

  

Piling 1 
(defined as zero point) 

0.00 0.00  

Piling 2 3.41 3.32 +0.09 

Piling 3 6.44 6.36 +0.08 

Piling 4 9.17 9.39 -0.22 

Piling 5 Object not detected 12.40 N/A 

 

Column 3 of Table 6.10 contains data from the manually generated geometric dock map as 

described in section 6.3.1. This was used as a ground truth estimate for the sonar data (column 2). 

The increasing error with range can be seen, as it was harder for the algorithm to detect the 

pilings given the irregular shape and lower intensity return on the weaker (higher range) sonar 

returns. In the scan shown above, particularly due to coincident pilings occluding others, piling 5 
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was almost completely indistinguishable. Whilst the user is able to ‘fill in the gaps’ in the sonar 

image, the algorithm was operating without any a priori knowledge of the pattern and shape of 

the dock. It was impossible for the current algorithm to detect this piling without detecting many 

other false positives. However, the general accuracy was good with an average error of 0.13m 

which was within the map ground truth uncertainty discussed later in section 6.3.5.1. 

The first step in integrating the Delta T multibeam compressed the 3D data from the vertical 

water column to 2D which allowed co-registration and correlation with the 852 sonar scans. The 

examples below used the dock pilings but the technique was later successfully applied to kelp 

mapping. Taking the example Delta T scan shown previously in Figure 6.28 and Figure 6.29, the 

compression to 2D algorithm first corrected the scan for pitch angle. This was important, 

otherwise a vertical piling would appear as a large weak return when compressed to 2D if it was 

at an angle, potentially causing it to be overlooked if it blurred into the background noise. 

The second step removed the reflections caused by the beams interacting with the water surface 

and removed the scan region above the surface (above the green dashed line in Figure 6.29). The 

surface was approximated as a flat line, with an adjustable threshold used to remove the effects 

of rough surface conditions. The surface intersection was calculated using the vehicle inclination 

from the attitude sensor and depth from the pressure sensor. 

The third step removed the seabed using automated image processing algorithms as discussed in 

section 4.6.6.6. The result at this intermediate stage is shown below in Figure 6.30 using data 

from the example image above in Figure 6.28. 
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Figure 6.30 - The stages in compressing the 3D Delta T scans to a 2D representation. The upper figure shows the 
example Delta T scan from Figure 6.28 with the region of interest (ROI) between the water surface and the seabed 
extracted and corrected for vehicle pitch. The image was then compressed to 2D and the intensity varying with range 
is shown below. Landmarks were detected using a peak detection algorithm from the low pass filtered intensity data. 
The colour bar at the bottom represents the sonar intensity compressed to 2D over range using an intensity plot. 
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Figure 6.30 above shows three plots. The upper plot shows the example Delta T sonar scan from 

Figure 6.28 with the region of interest (ROI) between the water surface and the seabed extracted, 

other regions removed and the image corrected for the pitch of the vehicle to extract the 

rectangular ROI shown above. The horizontal scale shows the range in metres. This ROI was 

compressed into 2D, where the sonar scan shown in the upper part of the image was converted 

to an array, and each column represented the mean of all entries in that column.  

The middle figure then shows a plot of these mean values using the same horizontal range scale 

and a vertical scale of the 2D sonar intensity. The blue dashed line in this middle plot shows the 

raw sonar intensity varying with range and the green line shows the result of a 50-tap FIR low pass 

filter corrected for phase. The red dots highlight the result of a peak detection algorithm, which 

searched the green filtered data for peaks exceeding a threshold minimum width and height. 

These threshold values were application-specific to the background noise present on the sonar 

and the typical characteristics of landmarks present. The red dots highlight the 5 peaks detected, 

and the red dashed lines correspond correctly to the 5 dock pilings which can be recognised in the 

top sonar scan by inspection. 

The extraction of the ROI, including tuning the parameters of the seabed and surface removal 

routines, as well as tuning the low pass filter parameters were important as these steps increased 

the signal to noise ratio (SNR) of the feature detection algorithms. If there was a large level of 

background noise in the intensity plots shown in the lower parts of Figure 6.30, then this could 

obscure faint features, or cause false detection of objects. 

If the scan was parameterised at this stage, the output from the peak detection algorithm was a 

list of the landmarks detected, their range and intensity. These values were registered in the 

world space and either passed to the SLAM algorithm for navigation, or used to generate the map 

for user inspection. However, more reliable landmark detection and identification of 

correspondences was possible if several Delta T scans of the water column compressed to 2D 

were combined and registered into a radial plot before parameterisation.  

6.3.4.2 Combining several 2D scans 

The colour bar at the bottom of Figure 6.30 above shows the sonar intensity compressed to 2D 

and varying with range as an intensity plot, using the same colour scale as the top plot of Figure 

6.30. Figure 6.31 below registers several-hundred of these Delta T scans compressed to 2D in the 

world coordinate system to build up a radial 2D scan as shown. The vehicle was suspended using 

the dock crane at a stationary x y position and a constant depth. This allowed the 852 sonar to 

pan over the dock from a known stationary position, but also allowed the vehicle to rotate about 

its axis using its thrusters to pan the Delta T sonar over the dock at approximately 1°/second. With 

a repetition rate of 13 Hz, this equated to an angular resolution of 0.08°, or one Delta T scan at 

every 0.08° of pan.  
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Figure 6.31 - Several hundred Delta T pings were compressed to 2D and registered into a 2D radial scan of the dock 
pilings. The red circles indicate the geometrically accurate position of the near-vertical dock pilings from the ground 
truth map. The red rectangles indicate cross pilings which diagonally brace between the vertical pilings, often 
spanning three pilings. Dashed red rectangles show fainter cross pilings, either at higher ranges or partially occluded. 

The 20m range compiled scan in Figure 6.31 was overlaid onto the ground truth dock map which 

included the position of the vertical dock pilings surveyed at the dock walkway level. Considering 

the not exactly-vertical angle of these pilings, and that the Delta T sonar was scanning the 

midwater ROI as indicated in Figure 6.28 earlier, the agreement between the ground truth map 

and the Delta T scan is generally very good, with the typical position error between the observed 

and ground truth piling centre <1m. 

Cross pilings were also apparent on the scan and are highlighted by red rectangles. These cross 

pilings generally spanned three vertical pilings at a diagonal angle close to 45°. The cross pilings 

on the Delta T map above are more apparent than the 852 sonar scans previously shown, again 

due to the greater vertical ROI surveyed by the Delta T. The 852 sonar scanned a sector ±11° 

vertically, centred on the horizontal plane only imaging cross pilings almost directly incident on 

the same horizontal plane as the vehicle. However, the Delta T sonar imaged the entire water 

column, and diagonal cross pilings were imaged over their entire height. 

Some occlusion can be seen when pilings are occluded behind larger, closer range targets. 

However, techniques to reduce the effects of occlusion by integrating several scans from different 

locations using SLAM have been demonstrated in the previous section. The same techniques used 

for the 852 sonar in the previous section for landmark detection, parameterisation and 

identification were applied to the Delta T radial scans to provide an additional source of 

information, as shown in Figure 6.32 below. The figure uses similar image processing algorithms 

to parameterise targets above a certain pixel mass threshold within the closest 10m range of the 

vehicle. The threshold and range mask were adjustable depending on operating conditions, 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

245/347 

however for the dock scan shown below, the variability of target position was minimised within 

this 10m range due to reduced beam spreading and therefore greater spatial resolution. 

The use of cross pilings for navigation with the 852 sonar is limited as the position of non-vertical 

landmarks will appear to change when imaged from different heights and will be discounted as 

dynamic landmarks in the SLAM algorithm. However, cross pilings and other non-vertical targets 

can be used as a navigational landmarks when imaged with the Delta T sonar as the entire water 

column is imaged. 

1m

 

Figure 6.32 - Image processing and feature extraction algorithms were used to extract navigational landmarks from 
the compiled Delta T scans, similar to those used for the 852 sonar. The blue pixels show the compiled 20m range 
Delta T scan, overlaid onto the green map of dock pilings (without cross pilings shown). The red targets show 
features above a certain mass threshold detected as navigational landmarks within a 10m radius of the vehicle, 
where there was higher reliability of detecting landmarks. 

The information gains by integrating data from the Delta T sonar scans in addition to the 852 

sonar scans can be seen by comparison to Figure 6.33 below. In this plot, a 20m 852 scan taken 

from approximately the same position as the Delta T scan above was registered onto the same 

ground truth map of the dock pilings, demonstrating relatively good (<1m average) 

correspondence between the mapped piling position and the sonar scan. 

Together with a controllable scan direction independent of vehicle heading, the other information 

gains from the 852 sonar arose from imaging a different ROI of the water column. Given the ±11° 

ROI imaged by the 852 sonar about the horizontal plane compared to the adjustable vertical ROI 

of the Delta T sonar, several objects were present in the 852 scan shown in Figure 6.33 below, 

which were not present in the Delta T scan in Figure 6.32 above. The area of strong returns to the 

left, delineated by a green line in Figure 6.33 below, is the shallow water and shoreline, where a 

floating dock was anchored. These were not surface interactions or noise at higher ranges as they 

were not present on the right hand side in deeper water. 
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The region of shallow water and the seabed was excluded from the Delta T scan by tuning the 

vertical ROI extracted. The semi-circular ring in the centre of the scan was caused from water 

surface interactions from a slight attitude deviation of the vehicle. Again, this was excluded from 

the Delta T scan by selecting the ROI to exclude the water surface. However, for the 852 sonar, 

the vertical ROI could not be adjusted. Instead, an annulus mask was calculated based on vehicle 

depth and 852 sonar range, and excluded in the image processing algorithms. It was left in the 

raw scan in Figure 6.33 below to show the differences between the two sonar returns including 

(albeit removable) noise. 

1m

 

Figure 6.33 - An example 20m range 852 scan taken from approximately the same position off the dock. Relatively 
good (<1m) correspondence between observed pilings and the ground truth piling centres shown by red circles can 
be seen, as can the presence of several cross pilings between the vertical dock pilings. The area bounded by the green 
line to the left is the shallow shoaling seabed and shoreline, with a floating dock anchored in shallow water. 
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The differences between the Delta T sonar scans and the 852 scans were partly due to the 

different frequencies of the sonars, 260 and 675/850 kHz respectively, causing a different return 

strength from different targets. However, the most significant difference resulted from the sonars 

imaging different regions of the water column. Figure 6.34 below shows a view from the side of 

the vehicle representing the ±11° vertical beam opening of the 852 sonar and the 120° vertical 

swath of the Delta T sonar. The beamwidth over increasing range is shown represented at the 

depth and altitude which the above scans were taken. 

Surface water level 1.8m 
above Delta T

Sea floor at 3.7m below 
Delta T and 9° inclination

120° Delta T vertical swath

22° 852 vertical opening

 

Figure 6.34 - The 852 and Delta T sonars image an overlapping volume of the water column. Of the 120° vertical 
swath of the Delta T, a region of interest is calculated between the surface and seabed using vehicle altitude, depth 
and attitude, with threshold values set to exclude seabed and surface noise. 

Although, as Figure 6.34 shows, the two sonars overlapped, they were imaging different aspects 

of the same spatial area and thus providing different yet complementary information. Rather than 

just using the 2D 852 data, the Delta T profiling sonar, even in this compressed 2D mode, added 

useful additional information. At the very least, the Delta T sonar provided corroborating 

information of the same space imaged by the 852 sonar, provided a higher sampling rate, a 

different frequency for reliable detection, and imaged a far greater vertical swath, which was 

particularly useful when operating in deeper water than the 5-6m shown above. 

Figure 6.35 below provides a comparison of the 2 sonar scans, by displaying the presence of 

thresholded returns on the 852 sonar in blue, thresholded returns on the Delta T sonar in red and 

thresholded returns on both sonars (i.e. targets observed in exactly the same location on both 

sonars) in green. The information gains from using each sonar to image different ROI of the water 

column can be seen as distinct areas of red and blue, while corroboration between the sonars is 

possible using areas of green shading. In particular, the Delta T sonar was able to accurately map 

non-vertical targets and to discriminate between the seabed and water column in areas of 

shallow water by varying the vertical ROI. Conversely, the large regions of blue shading to the left 

of Figure 6.35 below indicate that the 852 sonar was unable to discriminate between the seabed 

due to the fixed vertical beam opening, but had a better performance of imaging dock pilings at 

higher ranges, with pilings imaged over the entire 20m range setting. 
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Figure 6.35 - The combined dock scans from the 852 and Delta T sonar registered on the same map. Thresholded 
returns from the 852 sonar are shown in blue, from the Delta T sonar in red and thresholded returns from both 
sonars shown in green. The information gains from each sonar can be seen as distinct areas of red and blue, while 
corroboration between the sonars was possible using areas of green shading. The difference between the ground 
truth piling positions and the positions detected using the 852 and Delta T sonar is shown in the inset table. 

The combined 2D scan was parameterised and landmarks detected using both the Delta T and 852 

sonar scans, using the techniques described previously. The position error between the pilings 

detected using each sonar and the ground truth mapped position of each piling is shown in the 

inset table. 
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Several conclusions can be drawn from Figure 6.35. The 852 sonar provided more reliable 

detection of dock pilings, in particular at higher ranges for this water depth, with a comparable 

position accuracy to the Delta T sonar. The reduced detection on the Delta T sonar was in part 

due to occlusion, but also due to a narrow water column ROI. If the ROI was set to a wider vertical 

region of the water column, sensitivity was increased at high ranges, but errors and noise from 

the water surface and seabed easily caused false detection of pilings.  

However, the lack of vertical resolution on the 852 sonar caused errors when imaging non-vertical 

targets from different altitudes (the scans above were taken at a constant altitude). For the scans 

taken above, cross pilings could be excluded from the detection algorithms using an ellipse ratio 

threshold, but are left in the scan shown in Figure 6.35. 

Additionally, 852 sonar scans taken in shallow water were masked by the seabed, as shown to the 

left part of the scan, which required the region to be excluded. Using the Delta T sonar allowed 

the water column to be reliably extracted, even in shallow water, and allowed non-vertical targets 

to be accurately imaged. 

Given the comparable mean position difference for both sonars, it was proposed that the errors 

present in the ground truth map were comparable to the errors in the sonar position estimation 

of piling centres. These errors in the ground truth map are discussed further in section 6.3.5.1.3. 

In brief, they comprised errors from unmodelled underwater half-height or broken pilings, 

unmodelled cross pilings and biological growth on pilings (verified by video and diver inspection). 

Additionally, the ground truth map was measured from the piling centre at the dock walkway 

level and pilings assumed to be vertical. A small off-vertical angle of a piling of just a few degrees 

caused a large positional error at depth, several metres below. Finally, visual inspection using the 

iROV of the seabed surrounding the dock discovered large amounts of unmapped debris, 

including submerged engine blocks and sections of iron railway tracks. 

 Discussion 6.3.5

The previous section has detailed the field trials of the iROV SeaBiscuit in the sheltered waters of 

a piling dock. The shallow water conditions were similar to nearshore kelp beds, yet the vertical 

dock pilings presented a series of clearly detectable near-vertical sonar targets as analogues to 

the kelp stipes, in a regular pattern. The mapping results were compared to a known ground truth 

map of the piling positions. Modelling of the crane was used to constrain the vehicle position 

during the survey, allowing ground truthing of the vehicle localisation estimate. 

6.3.5.1 Mapping performance and accuracy 

A map of the dock was surveyed using the 852 sonar from three different positions from the 

midwater. A total of 16 out of a possible 20 vertical pilings within range were successfully mapped 

(Table 6.4), with the remaining 4 pilings occluded at high ranges by closer pilings (Figure 6.27). 

Correspondences were correctly identified for all pilings observed from more than one position, 

using the nearest neighbour maximum likelihood method for establishing landmark 

correspondences. The pilings were mapped with an average position error from the ground truth 

map of 0.40m or, expressing the positional error as a percentage of target range, 7%. 

When interpreting the mapping error seen in Figure 6.27 previously, two observations were 

made. The first was that the landmark mapped error correlated very poorly (R² = 0.02) with the 

number of times the landmark was observed, as shown below in Figure 6.36. However, it was 
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expected that the more times a landmark was reobserved, the more accurate the mapped 

position would be, as errors were averaged out with each observation. The poor correlation 

suggests that another source of errors outweighed the mapping uncertainty. Outliers with 

particularly high position errors in Figure 6.36 below were caused by adjacent cross pilings being 

included in the piling position. 

 
Figure 6.36 - Plotting the mapped position error of landmarks against the number of times a landmark was observed 
for the map shown in Figure 6.27 shows a very poor correlation. It would be expected that the more times a 
landmark was observed, the more accurate the mapped position would be, averaging both spurious errors and mis-
measurements of the centre of non-negligible diameter sonar targets. 

The second observation was that the mapped position error was not correlated with target range, 

as shown in Figure 6.37 below. This is the opposite of what was expected, as the diverging sonar 

beams at greater ranges imaged a greater height of non-vertical targets and a greater volume of 

adjacent cross pilings, coupled with unremovable beam interactions with the surface. As with 

Figure 6.36 above, this suggested that another source of error was outweighing the typical sonar 

measurement uncertainty. 

 
Figure 6.37 - Plotting mapped position error against target range shows no correlation. This is the opposite to what 
was expected, given the diverging sonar beams at greater ranges imaging a greater water volume with a poorer 
spatial resolution, coupled with increased noise, weaker returns and beam interactions with the water surface. 

R² = 0.0246 
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Although the accuracy of mapped landmarks compared to the ground truth map was relatively 

poor (0.4m averaged for all LM and all stations), the mapped repeatability between scans, or the 

accuracy with which a landmark was remapped in the same location was slightly better (0.38m), 

as shown in Figure 6.25 previously. However, generally landmarks were mapped in slightly 

different position from each station, of a comparable magnitude difference between stations and 

compared to the ground truth map. 

The following three subsections propose three sources of these errors in addition to the typical 

sonar measurement uncertainty model, and attempt to quantify the effect of each error source. 

6.3.5.1.1 Errors from uncorrected vehicle position deviations 

Wherever possible, the effect on the sensor measurements of deviations in vehicle position and 

attitude was corrected. This included, for example, registering every Delta T and 852 sonar ping 

for yaw angle, correcting Delta T pings for vehicle attitude and examining 852 pings against a pitch 

and roll threshold. Attempts were also made to correct for external water movements varying the 

x, y and z position of the vehicle. This is the principle of the SLAM algorithms discussed previously 

which were able to estimate the vehicle position change as well map the landmark position. 

The relatively still water and use of the crane hoist ensured that dynamic transient pitch and roll 

deviations were minimised during the surveys. However, uncorrected pitch and roll deviations 

from 0° will cause position errors between landmarks observed on the same scan. For example, if 

on the same scan, some landmarks appear too close and some too far from the vehicle, but for a 

subsequent scan this pattern changes, then this suggests an uncorrected vehicle attitude angle as 

the LM positions relative to each other vary within a scan. 

Even if the deviation in attitude remains constant between scans, because the dock pilings change 

in yaw angle with respect to the vehicle between scans as the vehicle is moved on the crane, 

image distortion will occur. An example static distortion caused by an uncorrected pitch would 

cause objects in front of and behind the vehicle to appear further away whereas objects on either 

side of the vehicle would appear at the correct distance, thus severely distorting the image. 

However, as the vehicle moves on the crane and the relative position of the dock pilings change 

with respect to the yaw angle of the vehicle, different pilings will be in front of the vehicle in the 

new scan position and so the distortion will be applied to a different set of pilings. For example, 

an uncorrected variation of ±5° in pitch would cause vertical targets directly in front of and behind 

the vehicle at a range of 20m to appear with a position error of +8cm, but if the 852 sonar was 

panning rather than the vehicle, this error would not appear on targets imaged to the side of the 

vehicle. 

A combination of pitch and roll, either varying in between scans, or even worse, varying during a 

scan can introduce serious errors. An uncorrected attitude deviation can cause as many errors as 

an uncorrected change in position, and the distortion method is more complex. 

6.3.5.1.2 Measuring the centre of non-negligible thickness sonar targets 

Sonar is incapable of measuring the true depth of objects incident with a beam, and instead 

detects the abrupt change in density from the surrounding water column [11]. Therefore, the true 

centre of an object of non-negligible thickness will not be correctly measured, as instead, the 

return will be centred on the closest boundary of the density change. This causes objects of a non-

negligible density (for example the 0.32m diameter dock pilings) to be mapped closer to the sonar 
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than the true centre. This can be corrected by scanning from angles around the periphery of the 

landmark and averaging the detected position to the true centre. However, the scans taken off 

the dock were only taken from a 90° arc around the landmarks as shown in Figure 6.38 below, 

with several landmarks occluded from one or more positions. 

Piling

SeaBiscuit

Se
aBisc

uit SeaBiscuit

Sonar beam

Sonar returns estimate closer than 
true distance to true piling centre

 

Figure 6.38 - Imaging a target of non-negligible thickness from a variety of angles will result in differing (all incorrect) 
estimates of the target centre position as it is the density change from the water to the target which is being 
detected. If the target is imaged from all sides, the average position will converge on the true centre for a 
symmetrical target. 

This explains in part, the trend for objects to be detected at ranges closer to their true range, as 

shown in Table 6.11 below. Apart from outliers caused by cross pilings seen in the final map in 

Figure 6.27, the average positional error seen in Figure 6.36 is close to the radius of the pilings 

(>0.32m). The negative number for the centre scan in Table 6.11 (targets imaged at higher ranges 

on average than their mapped position) could be attributed to either a mispositioning of the 

vehicle on the crane (discussed below) or one of the other error sources discussed in this section. 

Table 6.11 - Comparing the average error between mapped and measured range across all three stations. A positive 
number means landmarks were, on average, measured at a closer proximity than the ground truth map suggested. 

Survey station: Average LM map range – LM measured range (metres): 

Left 0.10 

Centre -0.07 

Right 0.16 

6.3.5.1.3 Errors in the ground truth map, including unmapped features 

The accuracy of the manually generated ground truth map itself is also considered. The map used 

for 2D SLAM ground truthing has the known limitation of not modelling cross pilings or old pilings 

which have broken off beneath the waterline. This includes those which have since been replaced 

with adjacent clustered pilings but the original half height piling remains. 

These unmapped pilings can appear as anomalies in a scan. More importantly, if they appear in 

close proximity to a piling which is modelled, they cannot be distinguished by the sonar and so 

will cause the modelled piling to appear as one large feature, encompassing the un-modelled 

piling. This is acceptable until the large feature is approximated by a centre of mass. The effect of 

the additional pilings will distort the centre of mass from the centre of the modelled piling and 

thus introduce a systematic error in the x-y position of that piling. 
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Further errors can be introduced from observing the same feature from different angles using the 

sonar. The far side of the object, including unmapped cross pilings or half height pilings can be 

occluded from some angles, or the overall size obscured, both causing apparent errors when 

compared to the ground truth map. The SLAM map was updated as the same landmark was 

reobserved from different angles and the position incrementally corrected to the true object 

centre. Should cross pilings only be present on one side of a vertical piling, then imaging the 

target from different sides will not necessarily cause the mapped position to converge on the true 

vertical piling centre. Instead the mapped position will converge on the centre of mass of the 

cross piling and vertical piling combined, causing an error when the map is compared to the 

ground truth map which includes only vertical pilings. This effect occurs in both the 852 and Delta 

T scans, but is particularly noticeable on the Delta T scans, for example Figure 6.32 previously. 

Additionally, as shown in particular by the Delta T plots (6.3.4 earlier in this section), there are a 

large number of underwater targets which are not included in the manually gathered ground 

truth map. As the ground truth map only includes full-height vertical pilings, these ‘unmapped’ 

targets appear on the scans yet are not corresponded to pilings on the ground truth map. 

However, these are mapped in a repeatable and reliably constant position, (as shown by Figure 

6.35 earlier) and so will not introduce errors in the iROV maintained SLAM map. 

The case of pilings not being exactly vertical is also important to consider, either from inaccurate 

installation or from damage by boats, tides and subsidence over time. Over the entire 8-10 metre 

height of a piling, a vertical misalignment of even a few degrees will cause the position of the top 

of the piling (where the ground truth map was measured) to the middle of the piling (where the 

sonar map was surveyed) to differ by several centimetres. For example, the row of pilings on the 

edge of the dock underneath the crane (and therefore the closest targets to the vehicle) were 

surveyed to have alignment errors in various directions of up to 3°. This caused a ≈21cm error in 

various directions in the ground truth position of the corresponding piling at the survey height, an 

important source of error to consider when evaluating the SLAM positional errors in Table 6.8. 

The results of the SLAM proof of concept can be interpreted with an awareness of these sources 

of error, and any estimates of the vehicle mapping accuracy need to consider the accuracy of the 

ground truth map it is being evaluated against. Measurement of the ground truth map from the 

midwater would be required to increase the accuracy of the ground truth map, with a 

corresponding potential increase in the apparent accuracy of mapping performed by the vehicle 

for the reasons discussed above. Incorporation of the non-vertical nature of pilings, half-height 

broken pilings and cross pilings into the ground truth map will provide a more complete measure 

of the ground truth. At present, the vehicle mapping is proposed to have better small scale 

accuracy than the ground truth map, however, the ground truth map does show pilings which 

were occluded and therefore not mapped by the vehicle. 

6.3.5.2 Localisation performance and accuracy 

Simultaneous localisation was also performed, using landmarks associated between more than 

one scan to estimate the movement of the vehicle. An overall localisation error of 0.09m was 

calculated with respect to the modelled ground truth position of the crane used to constrain the 

movement of the vehicle through an arc of motion between three stations spaced at 3.62m apart 

(Table 6.8). This overall localisation error of 0.09m expressed as a percentage of the total vehicle 

displacement through the arc of 6.72m is 1.3%. This error is attributed to the differing apparent 

position of non-negligible thickness sonar targets observed from different angles and the effect of 

adjacent cross pilings observed and occluded from different angles, both of which are discussed 
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above. In the same manner as errors in the manually surveyed map used for ground truthing the 

mapping process were analysed above, errors in the ground truth location are analysed here as 

inaccuracies and errors in positioning of the vehicle on the crane. 

The significantly lower localisation error than the mapping error is primarily attributed to the fact 

that errors in the ground truth mapped position of pilings (which dominate the mapping error 

above) have no effect on the localisation error as only the relative observed piling positions were 

used for the localisation estimate. Crucially, compared to localisation performed by inertial 

navigation alone, this localisation error is independent of drift, provided that sonar targets can be 

reliably observed. GPS updates from the surface were used to register the map in the world 

coordinate system, with an accuracy associated with the GPS position fix, typically of the order of 

a few metres. Thus the average map accuracy of 0.4m above was an average local map accuracy 

of the relative positions of landmarks, and the map was globally registered with an accuracy of a 

few metres. 

6.3.5.2.1 Errors in the positioning of the vehicle on the crane 

By the nature of aligning the crane to the 3 scan positions, there was an inevitable source of 

position error in the ground truth position measurement which introduced apparent errors in the 

results from the SLAM algorithm. 

The boom lift crane had three controlled degrees of freedom comprising the pivot angle of the 

base, the lift angle of the boom and the height of the crane hook (connected to the vehicle). The 

pivot angle of the base determined the x and y position of the vehicle, tracing an arc through the 

water. 

The boom lift angle also determined the x and y position of the vehicle as the radius of the arc 

varied in x and y. The boom lift angle also varied the height of the vehicle (z position), although 

the vehicle height was controlled and corrected independently by the hoist. The boom lift angle 

was controlled by a cable, thus the position was measured and controlled by the amount of cable 

released from the winch. 

Although the crane hook was on a pivot, and the vehicle was suspended on a rope such that it 

could rotate independently of the crane boom tracing a radial arc, the pivot did not rotate freely 

and the radial arc of the crane affected the vehicle yaw angle to some extent. 

The position of the three controlled aspects of the crane (yaw angle, boom lift angle and hoist 

height) were measured and controlled. However, the accuracy at which they could be positioned 

was relatively poor and no instrumentation was present on the crane. An approximation of 

uncertainty of these three controls is provided in the table below: 

Table 6.12 - A measure of crane positional errors and their effect on the positional accuracy of the vehicle. 

Controlled crane 
degree of freedom 

Local positional accuracy Effect on vehicle position Transferred effect on vehicle 
position accuracy 

Boom pivot angle ±3° X & Y position in a radial arc 
around crane centre 

±24.9cm in X & Y position in a 
radial arc around crane centre 

Boom lift angle ±1° X & Y position in a radius 
extending out from the crane 
centre 
 
Z position 

±0.7cm in X & Y position in a 
radius extending out from the 
crane centre 
 
±8.3cm in Z position 

Hoist height ±1cm Z position ±1cm in Z position 
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From Table 6.12 it can be seen that the uncertainty in boom pivot angle had a large effect 

(±24.9cm) on the vehicle X and Y position and that the cumulative total of these positional errors 

was comparable to the SLAM positional error of 0.09-0.45m in (x,y) position observed in Table 6.8 

at the end of the SLAM results (section 6.3.3.3) earlier. 

Although the errors introduced in z position shown in Table 6.12 are smaller in magnitude, and 

did not directly affect the (x,y) position, they could still have a significant effect on the (x,y) 

position estimate. In particular, the vertical error is significant when considering non-vertical 

targets, including cross pilings. When viewed from a different height, these diagonal targets 

appear to have a different (x,y) position in the 2D plane, thus introducing an error to the (x,y) 

position estimate of the vehicle and targets. 

This error is compounded by any off-horizontal mounting angle of the base of the crane as it will 

introduce the same effect: a change in (x,y) position will introduce a change in z position as the 

boom rotates. The angle of the crane mount could not be accurately measured in the field using 

the tools available; it was assumed to be close to level, yet should still be considered. 

There are also errors caused by unconstrained degrees of freedom. These included external water 

movement, turbulence and drag from the tether pulling the vehicle to be not directly underneath 

the hook, a sustained flow of tide causing the same effect, and a non-level attitude when 

suspended on the harness underneath the hook. 

While every effort was taken to minimise these during the ground truth process, such as 

operating under constant minimal tide and weather conditions, in calm water and suspending the 

scan during boat wakes, inevitably some errors were still introduced. Table 6.13 presents 

estimates of the magnitude of some of these errors. 

Table 6.13 - Positional errors and their effect on the uncertainty of the positional estimate of the vehicle. 

Positional error Effect on vehicle position estimate Transferred effect to vehicle 
position estimate uncertainty 

Boat wakes, 
waves and 
turbulence 

Scan suspended if ≥±0.25m in (x,y,z) vehicle position or ≥±15° of 
vehicle pitch, roll & yaw angle. 
 
Errors highly transient and dependent on instantaneous scan 
conditions. High-speed movement can be missed by sensors. 
 
Also causes significant movement (apparent as positional errors) 
in observed non-fixed targets, either free-floating or anchored. 

<±0.25m in (x,y,z) position or 
<±15° of pitch, roll & yaw angle 

Tidal flow A sustained drag with the vehicle moving as a pendulum on the 
crane hoist. Scan suspended if ≥±0.25m in (x,y,z) vehicle position 
or ≥±15° of vehicle pitch, roll & yaw angle. 
 
Errors are sustained and predictable to some extent. 
 
Also causes significant movement (apparent as positional errors) 
in observed non-fixed targets, either free-floating or anchored. 

<±0.25m in (x,y,z) position or 
<±15° of pitch, roll & yaw angle 

Cable drag Errors are sustained with periods of high-dynamics (as coiled 
cable ‘snaps’ around) and depend on vehicle movement. High-
speed movement can be missed by sensors. 

<0.05m in (x,y,z) position or 
<±15° of pitch, roll & yaw angle 

Harness attitude 
deviations 

Caused by mounting error on the 4-point harness used to hoist 
the robot. Errors are sustained and dependent on vehicle 
movement. 

<0.05m in (x,y,z) position or 
<±5° of pitch, roll angle 

 

Although attitude errors will not directly cause a position error, in the same manner as errors in z 

position can introduce an error in the (x,y) position estimate as previously discussed, uncorrected 

vehicle attitude deviations can have a similar effect. 
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It can be seen that the combined effect of the errors in Table 6.13 above, even more so when 

combined with those in Table 6.12, can approach the positional error measurement of the SLAM 

ground truth. Thus the apparent errors when comparing the results to the ground truth map and 

location estimate can be explained by a number of factors, both inherent in the vehicle and its 

operation but also to the method of ground truthing the navigation system. 

Alternative methods of ground truthing vehicle position are possible, including laser tracking of a 

surface marker [30], USBL and DVL solutions. However, the crane provided a rapid and zero-

expenditure method to quickly verify the principle of sonar-aided SLAM of the iROV SeaBiscuit. 

Although the accuracy was relatively low, the uncertainty with each degree of freedom was 

quantified, allowing the results to be interpreted accordingly. 

6.3.5.3 Sonar fusion 

Data from the Delta T multibeam sonar was used to provide vertical discrimination of the seabed, 

non-vertical targets and the water surface, as well as imaging a far greater volume of the water 

column (Figure 6.34). Techniques to correct and extract the water column and compress the Delta 

T data to 2D for registration with the 852 sonar map were demonstrated, together with 

algorithms to extract navigational landmarks from the scan (Figure 6.32). Fusion of the data from 

the two sonars provided a more complete map of the piling dock (Figure 6.35). The information 

gains from using each sonar were seen, including the higher range and scan angle independent of 

vehicle heading of the 852 sonar, together with the vertical discrimination, higher resolution and 

faster mapping speed of the Delta T sonar. 

As shown in Figure 6.35, this sonar fusion, exploiting the holonomic axisymmetric mapping 

technique, not only provided information gains, but also allowed corroboration and correction of 

targets co-registered on both sonars. The difference between the ground truth mapped position 

of landmarks and that observed with the Delta T sonar (0.30m) and the 852 sonar (0.29m) was 

comparable. This suggested that the actual mapping accuracy was very good, of the order of the 

difference between these two values, but that other errors were causing these large deviations.  

These errors included the average piling diameter of 0.32m causing an inaccurate measure of the 

true centre position, the effect of non-vertical pilings causing errors in the ground truth map 

surveyed from the dock walkway and the effect of cross pilings and broken-off half-height pilings 

adjacent to the vertical pilings. Each of these error sources affected both sonars in a similar 

manner, and it was estimated that the errors associated with the ground truth map were larger 

than any true mapping errors. 

6.3.5.4 Development of landmark association 

As well as considering positional accuracy, it was also important to consider landmark 

correspondence accuracy. Techniques to autonomously establish the correspondence of observed 

landmarks to previously observed mapped features were implemented using the maximum 

likelihood nearest neighbour estimation technique, described in section 5.3, demonstrated in 

simulation in section 5.5 and demonstrated off the piling dock here. Using the threshold value of 

   , correct correspondences were established with zero false positives / negatives. The value 

of   was chosen to be higher than the smallest expected distance between landmarks plus the 

sensor and vehicle uncertainty [353]. 
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A common limitation of the ML estimator occurs if there are several similarly-likely hypotheses 

[150]. However, for the sea trials of navigation off the piling dock, the dual sonar system provided 

reliable detection of distinct, stationary landmarks, allowing the ML estimator to be used without 

the need to track multiple correspondence hypotheses [354]. Should future deployments require 

navigation in more complex, cluttered environments, alternative techniques such as the joint-

compatibility branch and bound (JCCB) algorithm and the negative logarithm of the matching 

likelihood (NLML) algorithm are able to provide more robust estimation of landmark 

correspondences [352, 353], at the expense of increased computational complexity. The modular 

navigation algorithms provide a common interface for alternative correspondence estimators to 

be ‘slotted in’ in future operation. 

The implementation of EKF ML SLAM included the option of recording each landmark with a 

signature variable (section 5.5) to describe additional features of the landmark to aid with feature 

correspondence beyond simply relying on observed position. The characteristics commonly 

extracted to define sonar features vary with the sonar configuration and typical landmark form 

[360]. However, these commonly comprise: perimeter, area, area-to-perimeter ratio and radial 

signature (the distance from the feature’s centroid to its boundary as a function of angle, a more 

detailed measure of shape than the ellipse ratio described previously) [361]. 

The sonar measurement of area, orientation and ellipse ratio was comparable between scans for 

the same object, under the same conditions, at the same range and imaged from the same angle. 

However, too many factors affected the sonar return to reliably use these characteristics to 

identify landmark correspondences alone, particularly with an unknown catalogue of similar 

targets (dock pilings or kelp stipes). Landmark descriptors are less reliable when the landmarks 

have similar characteristics; the example of pier legs is given [362] similar to the dock pilings 

presented here. Instead, an opportunity for future work uses these characteristics in conjunction 

with the feature position to aid estimating landmark correspondences. 

6.3.5.5 Development of landmark weighting 

The effect of each individual estimate on the overall localisation estimate from tracking each 

landmark would usually be determined by the weighting assigned to each estimate, according to 

the EKF framework introduced in 5.3.6. This weighting is calculated by the uncertainty associated 

with the measurement. Therefore, landmarks where the measurement is uncertain (for example 

due to high range) or where the correspondence is uncertain (for example due to few unique 

features) would have a low weighting. That way, their uncertain estimate of the change in 

position would have a lesser effect than landmarks which were deemed to be more reliable 

indicators. However, in this example, as the uncertainty of measurements taken by the sonar was 

not weighted according to range, each position estimate had an equal weighting. 

As the uncertainty of all measurements was assumed to be equal, the uncertainty of the position 

estimate was inversely proportional to the number of tracked features (the more features tracked 

between positions, the less uncertain the position estimate was). When presenting the estimated 

position change in Table 6.7, the number of LM used by the SLAM algorithms to calculate the 

localisation estimate was also presented. This value determined the uncertainty associated with 

the localisation estimate, for example a single LM was tracked from left to right but which was not 

observed in the intermediate straight position. Although only a single LM was tracked and there is 

only a relatively uncertain localisation estimate from this single observation, it still reinforced the 

estimate from the other landmarks tracked between consecutive stations. 
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Further characterisation and ground truthing of the uncertainty associated with each sonar 

measurement has the potential to increase navigation robustness, by allowing landmark (and 

localisation) uncertainty to be correctly weighted. 

6.3.5.6 Development to 3D mapping 

For nearshore navigation, 2D SLAM was justified to be adequate in section 5.3.4.3. The 2D SLAM 

implementation tracked position in x, y and vehicle yaw angle. However, the vehicle still had a 

highly accurate and reliable estimation of depth (pressure sensor) and altitude (Delta T sonar). 3D 

orientation was also measured (Xsens INS & magnetometers) and stability in pitch and roll 

ensured through the high metacentric height and cylindrical hull design. 

All survey and map data was still gathered in 3D (for example the 3D Delta T sonar scans), it was 

just the SLAM navigation system which navigated and localised from landmarks in 2D. 

Simplification of SLAM to 2D without simplifying operation to 2D afforded a significant reduction 

in computational complexity using a pair of assumptions to avoid perceptual aliasing [74]: 

a) the vehicle operates at a constant height, referenced to the seabed if there are significant 

variations in tide height or referenced to the surface if the bathymetry is very uneven, 

b) or, that all landmarks are uniform over the entire vertical height. 

For the dock survey and mapping, both of these assumptions were valid, with the exception of 

cross (diagonal bracing) pilings. For the kelp bed application, landmarks were not necessarily 

vertically uniform, requiring more accurate depth holding during a survey. 

Referring back to the original requirement which prompted the development of sonar-aided 

SLAM, the need for a combination of absolute and relative sensors for each degree of freedom 

was established in Chapter 2. The navigation sensor suite on its own can provide accurate and 

absolute (drift free) measurements of z position and pitch, roll and yaw angle. However, sonar 

aided SLAM was required to provide absolute position data in x and y. The 2D sonar-aided SLAM 

implementation fulfilled this requirement precisely. Sonar-aided SLAM for nearshore 

environments provided the solution to drift free navigation in x and y thus completing the 

navigation system without the need for 3D SLAM. 

Further benefits are also available as the algorithm development advances to realise sensor fusion 

of the full Delta T 3D vertical swath data. The limitation with compression to 2D is that only 

vertical features can be reliably identified. A diagonal feature which is parallel to the sonar swath, 

i.e. a piling aligned with the vehicle and leaning either directly towards the vehicle or away from 

it, will appear as a ‘smeared’ feature on the intensity plot, a large object of a lower intensity, 

when in fact this is a distinctive landmark when viewed in 3D. Although this limitation is mitigated 

by overlaying several scans from various directions taken from various locations, it would be 

avoided altogether by techniques for full 3D object detection and registration in 3D space using 

the vehicle’s navigation sensors. 3D object detection is considered as future development. 

6.3.5.7 Comparison with existing nearshore survey and mapping 

The dock surveying and mapping application discussed here provided an excellent test of the 

hardware and software systems and demonstrated many successes, including providing an 

evaluation of the performance of the navigation system against a ground truth. When compared 

to the results available from dead reckoning INS navigation between GPS fixes alone (including 

the results discussed in Chapter 3), sonar-aided SLAM provided a significant improvement. From 
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the individual position changes and the associated errors shown in Table 6.6 and from the 

summaries shown in Table 6.7 and Table 6.8, it can be seen that the average localisation error was 

0.45m at the intermediate station and 0.09m overall (1.3% of the total arc of displacement). 

When compared to the equivalent positional estimates which could be gained from dead 

reckoning INS sensors alone, this is very good, and more importantly, this is independent of drift 

over time and does not require high-rate detectable movements. Typical high budget INS systems 

exhibit a drift of approximately 1100 metres / hour CEP [79] and the low budget Xsens IMU used 

on SeaBiscuit is several orders of magnitude worse. 

SLAM using a scanning sonar in structured shallow water environments has been demonstrated 

elsewhere. However, this often uses a DVL to aid navigation [16] in the absence of clearly defined 

landmarks such as the dock pilings. In this case [16], a 50 minute duration, 600m transect was 

performed in a marina, with the vehicle always operating with at least one marina wall in range of 

the scanning sonar. Drift-free localisation over the 50 minute survey was maintained with an x, y 

error of <±5m evaluated against a GPS ground truth, and SLAM was used to register maps of the 

marina walls. Although the accuracy and scanning sonar technique of SeaBiscuit is comparable, 

the frequent sonar landmarks present on the dock survey allowed accurate drift-free operation 

without an expensive DVL, which has the potential for unreliability in the kelp beds discussed in 

section 2.3. When sufficient sonar landmarks are available, DVL free navigation using artificially 

deployed sonar landmarks has also been demonstrated elsewhere with an accuracy of 

approximately 5m [211]. 

A comparable accuracy is possible using DVL-aided visual seafloor tracking to provide time-

independent (drift-free) error characteristics [147], or in the absence of a DVL [30]. Similar to the 

sonar-aided SLAM requirement for sonar landmarks, visual seafloor tracking requires operation in 

proximity to a sufficiently diverse seafloor, coupled with good visibility, both of which render 

visual seafloor tracking unsuitable to operation in kelp beds. Similarly, bathymetric-aided SLAM is 

feasible to provide a drift-free source of information to augment navigation [126], yet requires an 

unobstructed sonar view of a sufficiently bathymetrically diverse seabed. Although this may be 

possible in the kelp beds, it cannot be solely relied upon due to the risk of the vegetation 

obscuring the seabed. 

The axisymmetric hull and holonomic motion of SeaBiscuit allowed the integration of vertical 

multibeam sonar data, to both expand the sonar coverage and angular resolution and to provide 

vertical resolution. On a budget several orders of magnitude greater than SeaBiscuit, with 

dimensions and weight infeasible for deployment and operation in the kelp beds, the AUV DepthX 

provided a demonstration of axisymmetric holonomic spin mapping [288]. DepthX uses a 

navigation sensor suite comprising an INS, DVL, a 56-beam radial sonar array and USBL as 

described previously. Accuracy measures are not well documented from the significantly more 

sophisticated (and higher budget) sensing suite, in particular due to the lack of ground truth 

available during the field trials of DepthX. The accuracy is however sufficient to create high detail 

maps of vertical flooded cave environments, operating to depths of several hundred metres [288]. 

The later revision of DepthX to ENDURANCE quotes a nominal navigation accuracy of 0.04% of the 

distance travelled [29], but again there is little further documentation of operational navigation 

accuracy. Whilst the quoted figure is significantly better than that of SeaBiscuit, the budget and 

sensor suite dimensions are also significantly higher. In the case of DepthX and ENDURANCE, drift-

free navigation is realised from the USBL update relative to a surface transmitter, deemed 

infeasible for operation in the kelp beds, as discussed in section 2.3. 
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 Conclusions 6.3.6

These field trials have demonstrated SLAM with previously acquired survey footage. Through the 

common standard of log files and time stamping, survey footage can be gathered from any 

location, and reprocessed at a later date as more advanced algorithms are developed. In this way, 

any development to the SLAM and habitat mapping algorithms can be applied retrospectively to 

all previously gathered datasets with the corresponding benefits, without the need for a costly 

and time consuming redeployment. Although only a single proof of concept is presented here, 

datasets were gathered for a variety of conditions, depths and positions around the dock, 

including a variety of movements, including pans at stationary positions, oscillating and 

continuous pans while translating around the dock. Processing of these datasets is left as future 

work, coupled with the further development of the SLAM algorithms. The SLAM and image 

processing algorithms are feasible for realtime operation given the onboard computing power 

and a map of this complexity, allowing the opportunity for online realtime SLAM around the piling 

dock in future deployments. 

Overall, the piling dock field trial provided a successful proof of concept of the benefits of the 

holonomic iROV mapping technique for a structured environment. The information gains from 

using sensor fusion, and a mapping accuracy comparable to the individual sensor resolution and 

accuracy were demonstrated. Thus accurate mapping was achieved on a budget, with the 

accuracy of results proposed to be scalable with an increased sensing budget, with 

straightforward integration of alternative sensors facilitated by the modular hardware and 

software structure. The near-vertical pilings provided a useful proof of concept of nearshore 

navigation and mapping prior to the first kelp bed deployments of the iROV SeaBiscuit in an 

unstructured open ocean nearshore environment. 
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Chapter 7 Kelp Mapping 

7.1 Introduction 

Following the demonstration using the iROV to survey a dock in the previous chapter, the focus 

moved to kelp bed mapping to support a coastal ecosystems research group. As part of the staged 

field trials, SeaBiscuit was initially calibrated and tested on an ‘artificial’ kelp bed of kelp stipes 

transplanted to a sheltered but open-water real-world environment, described in section 7.2. 

Calibration and verification of detection using a known dimensioned arrangement of kelp stipes 

reduced uncertainty and increased accuracy when compared to methods which do not compare 

detection against an exact sonar target, such as diver surveys and camera drops in the general 

area surveyed, or manually surveying areas which dry out at low tide [20]. The only reference in 

the literature to using a known arrangement of kelp stipes as verification refers to a different 

species (giant kelp) and was only used to verify manual detection using a single beam 

echosounder log from a ship based survey [8]. The process described later in this chapter was 

extended to bull kelp, to multibeam sonar surveys from the midwater, used not only to verify 

detection but also to tune autonomous detection and parameterisation algorithms, and to relate 

a sonar measurement to an absolute measure of kelp biomass and biovolume. 

In the summer of 2011, the first successful open ocean kelp bed maps were gathered. It was 

possible to identify clusters of stipes, to convert this into a useful measure of biomass and to 

generate a density surface across the kelp bed as discussed in section 7.3. Autonomous kelp 

detection algorithms were used to detect and parameterise kelp stipes mapped using both 

sonars, and manual registration was used to mosaic scans from surveys taken on different days of 

the same kelp beds. Areas of rock and raised bathymetry were delineated by target mass, and 

realtime verification of kelp stipe targets was provided by co-registered dual video feeds.  

Referring back to the original research aim in section 1.1, to develop a tool capable of detailed 

mapping of kelp beds from the midwater with a resolution of individual stipes, the iROV 

SeaBiscuit was a successful proof of concept. Comparing the iROV solution to alternative 

techniques discussed in the literature review in Chapter 2, detail and resolution benefits were 

demonstrated over ship based [7, 8] and aerial surveys [4, 5], and cost, coverage and positioning 

benefits were demonstrated over divers [1, 11] and camera drops / tows [3], providing 

quantitative mapping of kelp stipes from the midwater. 

Compared to existing ROVs and AUVs which often specifically avoid operating under canopy 

forming kelp [14], the hybrid iROV technique developed ensured reliable and robust kelp 

mapping. A hybrid control architecture, combining onboard position-awareness and low-level 

autonomy, allowed survey data to be registered with a position reference and relieved the 

operator of station-keeping and course-holding. Data validity in dynamic conditions was ensured 

by remote supervision and realtime data verification. Robust, reliable high-level control was 

provided by maintaining the operator-in-the-loop. A hybrid power-supply also provided the 

unlimited mission duration and security of a tethered vehicle, with the high-powered 

manoeuvring thrust required to navigate reliably in and around the full height kelp stipes. 

Mapping in transit, independent of course was enabled by sonar fusion, exploiting the holonomic 

movement capabilities of the vehicle, and realtime validation of the exact sonar targets reduced 

ambiguity when mapping kelp stipes and allowed reliable autonomous detection. 
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7.2 Calibration and test: Artificial kelp bed 

Following the successful proof of underwater navigation and mapping in sheltered waters with 

clearly defined semi-structured targets (dock pilings), the staged sea trials continued with 

mapping an artificial kelp bed, still in sheltered waters. This allowed calibration of the habitat 

mapping sensors in constant ground truth conditions to relate sonar scans to an absolute kelp 

biomass and biovolume estimate, rather than just measurements of relative density. 

The sonar image processing algorithms could also be tuned in constant ground truth conditions to 

enable optimal and reliable detection of the kelp stipes for autonomous mapping. Manual visual 

validation was also employed, both for the artificial kelp bed and for open ocean scans, as an aid 

to tuning the image processing and feature extraction algorithms to reliably extract kelp stipes, 

and to ground truth the density estimates. Video footage was reviewed, either in realtime or 

during later analysis to confirm that (visibility and target range permitting) the targets observed 

on the sonar (kelp stipes, fish, jellyfish, mysids, seabed) were correctly identified. 

 Calibration kelp bed setup 7.2.1

A known quantity and known arrangement of intact kelp stipes were anchored in a known 

position in sheltered waters off the calibration piling dock discussed in the previous section. The 

five kelp stipes used were transplanted to a comparable water depth and care was taken to 

ensure that the stipe and pneumatocyst structure remained intact. 

Figure 7.1 below shows the arrangement of the kelp stipes relative to the calibration piling dock. 

The position was measured from the surface relative to the dock pilings, and verified by divers 

underwater. The figure is to scale and geometrically accurate. The five individual stipes are 

numbered in this diagram and dimensioned in the following section. 

The stipes were anchored to a circular frame, 1.08m in diameter and at known positions around 

the frame circumference. A 10mm diameter nylon rope holding a marker buoy at the water 

surface was anchored to the centre of the frame. 
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Figure 7.1 - The location of the artificial kelp bed at a known position and known orientation/arrangement off the 
calibration piling dock. The figure is to scale and geometrically accurate from diver surveys and surface 
measurements. Dimensions are shown in metres. 

 

7.2.1.1 Kelp measurement 

The 5 stipes forming the artificial kelp bed were fully dimensioned, both upon installation, and 

after a period of 4 days to ensure that no degradation had occurred. No measurable change in 

dimensions was observed between measurements taken when the kelp was first transplanted to 

when it was removed for dissection. The gas volumes were also intact. Therefore, it was assumed 

that no significant change in biovolume or gas volume occurred during the 4 days in which 

calibration scans took place [363]. 

The overall height, diameter across this height at 30 cm intervals, wall thickness, longitudinal 

cavity volume, pneumatocyst volume, tissue density, biomass and biovolume were all measured. 

The internal measurements required dissection of the kelp and were performed only once during 

recovery of the artificial kelp bed. Figure 7.2 below shows the internal and external diameter of 

the 5 stipes, measured at 30cm intervals from the seabed up to and including the pneumatocyst. 
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Figure 7.2 - The artificial kelp bed was made up of 5 stipes, shown here drawn to scale. The lower section (0.25-
4.75m) of the kelp stipes (the majority of which was not gas-filled and followed the same trend as above) is omitted 
from the diagram in order to preserve image scale and clarity. Although internal and external diameter, 
pneumatocyst internal and external dimensions, overall height and gas volume are all drawn to scale, the minimum 
line thickness has been increased for clarity in print, hence the very thin walls and very thin diameter stipes appear 
slightly thicker in this diagram. 
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Figure 7.3 below shows a zoomed in detail of the pneumatocyst of stipe 5 showing the 

measurements taken. The varying wall thickness including at the widest and narrowest point (the 

neck) of the stipe were dimensioned, as were the pneumatocyst inside and outside horizontal and 

vertical diameters. 

The kelp fronds are not shown, nor were these dimensioned – the fronds had a much weaker 

acoustic target strength compared to the gas-filled stipe and pneumatocyst, and were not 

considered at this stage of the model. 

 

Figure 7.3 - A zoomed in dimensioned diagram showing the pneumatocyst of stipe 5. The labelled dimensions are 
below in Table 7.1. 

 

Table 7.1 - Pneumatocyst detailed dimensions for stipe 5. 

a 

Pneumatocyst 

External width 73.8 mm 

b Internal width 54.4 mm 

c External height 91.0 mm 

d Internal height 71.7 mm 

e Neck (narrowest point internally) Internal diameter 16.2 mm 

f Neck (narrowest point externally) External diameter 35.8 mm 

g Widest point internally Internal diameter 25.5 mm 

h Widest point externally External diameter 46.0 mm 
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 Sonar calibration 7.2.2

The dimensioned artificial kelp bed allowed the sonar units to be calibrated, allowing the open 

ocean kelp bed scans to be related to actual estimates of biomass and biovolume. 

Figure 7.4 below shows an example 10m range sonar scan of the artificial kelp bed using the 852 

sonar. The raw scan is shown on the left, an overlay identifying the targets in the middle and a 

zoomed detail of the artificial kelp bed on the right. The 5 stipes with numeric identifiers arranged 

radially around the central rope marker can be seen. These numbers match the stipe numbers in 

Figure 7.2. This scan was taken at an approximate height of 4.5m above bottom of the kelps stipes 

shown in Figure 7.2, the lowest point where all 5 stipes had a measurable gas pocket. 

10m range sonar scanSeaBiscuit

Dock outline

2

3

4
5

1

Rope

 

Figure 7.4 - Example 852 10m range sonar scan showing the 5 stipes of the artificial kelp bed arranged radially around 
a central rope marker adjacent to the piling dock. The raw scan is shown on the left, an overlay identifying the 
targets is shown in the middle and the right hand scan shows a zoomed detail of the artificial kelp bed. Each stipe is 
identified as per the numbering system developed in Figure 7.2 and continued into Table 7.2 below. 

The stipe and gas pocket cross sectional area (CSA) for each stipe at this height are shown in Table 

7.2 below, as is the ‘pixel mass’ of the kelp stipes as detected by the sonar scan. The ‘pixel mass’ 

in this case was defined as the sum of the intensities of the pixels making up that feature. 

Table 7.2 - Kelp stipe data at 4.5m above the base of the stipes, from the 852 sonar scan shown in Figure 7.4. 

Feature: Tissue 
CSA 
(mm²): 

Gas pocket 
CSA (mm²): 

Sonar 
Pixel 
Mass: 

Sonar Pixel Mass / 
Gas Pocket CSA: 

Sonar Pixel Mass / 
Tissue CSA: 

Sonar Pixel Mass / 
Overall (Gas + 
Tissue) CSA: 

Stipe 1 345.63 174.60 350 2.00 1.01 0.67 

Stipe 2 61.97 37.90 819 21.61 13.22 8.20 

Stipe 3 18.00 1.24 745 600.34 41.38 38.71 

Stipe 4 417.60 86.32 819 9.49 1.96 1.63 

Stipe 5 85.96 7.69 849 110.34 9.88 9.07 

Rope 10mmØ 78.54mm² CSA 397   5.05 

 

As seen from the zoomed detail in Figure 7.4 and the data in Table 7.2, the resolution of the 852 

sonar was sufficient to distinguish individual stipes, yet too poor to accurately quantitatively 

represent the individual stipes. This was compounded at greater ranges as the radial beams 

diverged reducing spatial resolution, and compounded further at higher range settings as the 

same number of range bins were used to represent greater spatial areas. While the scans above 

show a 10m range, the majority of scans taken at sea used a 20m range to increase coverage rate.  

However, although the resolution limited individual stipe measurement, in practical open-ocean 

settings, this was not a problem. Due to the turbulent nature of the kelp beds, stipes were often 

twisted and intertwined, presenting a cluster of stipes, indistinguishable by sonar. Instead the 
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broader density and distribution of kelp stipes was more important for the ecological surveys of 

the kelp beds. This density and distribution data was represented as a surface, an average of each 

cluster of kelp stipes, to give the overall density and distribution picture, accounting for the 

clusters of intertwined kelp stipes as well as individual stipes. 

For the example calibration kelp bed shown above, the stipes were combined into a cluster of 5 

stipes and the rope was subtracted to provide a calibration value to relate kelp tissue CSA and 

kelp gas pocket CSA in the plane with pixel mass. 

The acoustic characteristics of the kelp at the scanning frequency, (675kHz and 850kHz in this 

case), the output power and gain of the sonar and the image processing algorithms all affected 

the sonar return. The calibration process was repeated for a series of ranges, range settings and 

gain values to generate several calibration datasets which were then applied to scans taken in the 

open ocean. For the examples presented above taken under the conditions detailed, the following 

calibration values were obtained. 

Table 7.3 - Summary of 852 sonar kelp stipe calibration values. 

Sonar 
Parameters: 

Σ Sonar 
Pixel Mass 
(w/o rope): 

Σ Tissue CSA 
(mm²): 

Σ Gas pocket CSA 
(mm²): 

Sonar Pixel 
Mass / 
Tissue CSA: 

Sonar Pixel 
Mass / Gas 
Pocket CSA: 

Sonar Pixel Mass 
/ Overall (Gas + 
Tissue) CSA: 

R10 G10 F675 3582 929.2 307.8 3.85 11.64 2.90 

R20 G10 F675 2390 929.2 307.8 2.57 7.76 1.93 

 

In Table 7.3 above, the sonar parameters in column 1 are designated as follows: R = range in m, G 

= gain in dB, and F = frequency in kHz. The sonar pixel mass refers to the sum of the intensities of 

all pixels which made up the 5 stipes of the artificial kelp bed from the scan taken at this specific 

height with the pixels which made up the marker rope removed by inspection. Σ Tissue CSA refers 

to the sum of the cross sectional area (CSA) of the tissue of all 5 stipes at this height, Σ Gas pocket 

CSA to the gas pocket cross sectional area. From these figures, the calibration values relating pixel 

mass to tissue CSA and gas pocket CSA were calculated. 

Although the calibration model was made up of a low number of samples, the process 

demonstrated using the 852 scanning sonar for kelp detection and identification, as well as 

relating the strength of the return to kelp biomass / biovolume. Expansion of the table shown 

above and a more detailed calibration model are discussed as future work in section 8.2. 

An accurate measure of the entire biomass / biovolume of the kelp stipe depended on the 3D full 

shape of the kelp stipe (i.e. its thickness over the entire vertical height). However, planar scans 

still provided a useful comparative estimate. For preliminary results, the 2D planar data gathered 

at a constant and repeatable depth under constant repeatable conditions was used for direct 

comparison of density and distribution between kelp beds. The constant survey height was 

chosen to be representative and to provide good scan results. 

In the same manner as for the dock survey and mapping application, the Delta T sonar allowed 2D 

planar maps of the kelp distribution to be registered in 3D and expanded to include the full 

vertical characteristics of the kelp bed. Initially the same technique compressing the Delta T data 

to 2D using the algorithms discussed in section 6.3.4 was used to incorporate the additional 

information provided by the Delta T profiling sonar. These information gains, realised through 

sensor fusion, included imaging of the entire water depth, an alternative frequency to the 852 

sonar and a much faster sampling rate. Additional calibration datasets were gathered using the 

Delta T sonar and for correlation with the scans obtained with the 852 sonar. 
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7.3 Open ocean: Kelp bed mapping 

The initial field trials off the dock demonstrated the mapping accuracy, reliability and benefits of 

the intelligent, position-aware iROV. They allowed the performance of the vehicle to be assessed 

under real-world conditions and compared to a ground truth, an absolute position reference and 

the user generated geometric dock map. 

Following the successful results described above, the focus shifted to the surveying and mapping 

of kelp beds. The aim was to use the iROV to provide a useful underwater survey and mapping 

tool while also developing and evaluating the mapping and navigation algorithms for operation in 

the target nearshore ocean environment. The kelp beds, vast underwater forests of seaweed, 

extending from the seabed up to the surface in shallow waters (<30m) support populations of 

mysids, one of the food sources of grey whales. 

 Grey whale research in Canada 7.3.1

The pacific population of grey whales (Eschrichtius robustus) are migratory animals, which travel 

north from their breeding grounds in Mexico to the coast of British Columbia, Canada and beyond 

into Alaska to feed over the summer months [364]. Relatively little is still known about the 

feeding habits, food sources, activity budgets and behaviour of these great mammals. More 

importantly in recent years, their interaction with the increasing volume of whale-watching 

tourism boats has become a further topic for study, with some concerns that these whale-

watching boats may be affecting the behaviour of the grey whales [365]. 

 

Figure 7.5 - Map of Vancouver Island, Canada showing the Cape Caution and Clayoquot Sound study areas. The 
zoomed section shows Flores Island, the location of the dock survey application discussed in the previous section. 
The dotted line shows the grey whale transect, a route surveyed bi-weekly during the grey whale feeding season to 
evaluate the abundance, distribution and behaviour of any grey whales present [2]. This transect route passes 
several large kelp beds. 
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For nearly 20 years, the Coastal Ecosystems Research Foundation (CERF) has combined grey whale 

research with a successful eco-tourism venture focusing on the Cape Caution area of British 

Columbia, Canada [366]. In recent years, CERF joined with a group from the Department of 

Geography at the University of Victoria [367] and moved its operations to Clayoquot Sound off 

the coast of Tofino, Vancouver Island, British Columbia, Canada. Figure 7.5 above shows the 

location of the two study areas in relation to Vancouver Island, Canada. 

The research operation consisted of a small group of researchers and crew (typically 5-10) and 

various small boats. The fleet comprised Stardust, a 37ft research vessel, Drifter, a 22ft aluminium 

speedboat, a fleet of four kayaks and a small dinghy, Silvia. This was representative of the typical 

intended users of the underwater vehicle developed – a relatively small-scale research group 

working on a limited budget. 

Much of the existing underwater surveying and mapping conducted by the group was performed 

by either SCUBA divers or by instruments lowered from the boats. The use of an underwater 

vehicle had the potential to both improve the data quality and to increase the survey coverage. 

Using the iROV SeaBiscuit as a position-aware steerable instrument platform, under remote 

control from the surface provided realtime video and sonar feedback of the underwater 

environment, allowing the survey to be directed in realtime. Using sonar fusion, both the area and 

the density of the kelp beds was measured. Concurrent video was also used for an insight into the 

contents of the kelp beds, for example species distribution. Further work to extend the sonar 

mapping to estimate the volume and density of mysid swarms is discussed in section 8.6.2.  

 Study site overview 7.3.2

The open ocean kelp bed sea trials were intended to provide a useful scientific dataset, while also 

evaluating the performance of the vehicle in the target nearshore environment. Three of the kelp 

beds surveyed in the Clayoquot Sound study area are shown below in Figure 7.6. The dataset was 

extended to approximately ten further kelp beds in 2011. 

These kelp beds were selected with the research scientists to be kelp beds where grey whales had 

been seen feeding, and were therefore of interest in terms of the kelp and mysid abundance and 

distribution. These kelp beds were also selected for the initial trials due to their relatively small 

and manageable size, both for this mapping application, but also for several of the related 

acoustic experiments investigating ambient noise. These acoustic experiments (discussed in 

section 8.6.1) also required a map of the distribution of kelp stipes. 
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Figure 7.6 - The location of three of the kelp beds surveyed in Clayoquot Sound. The GPS marked kelp bed perimeters 
are shown on the inset in red, yellow and green tracks. 

 Objective and context 7.3.3

Kelp beds range in size from a few tens of square metres up to square kilometres. Their 

occurrence is widely dispersed along the coast where conditions permit (water depth, tide and 

current speed, benthic composition, etc.) and the location of most of the major kelp beds in the 

study area was known. However, relatively little was known beyond this, and it was this extended 

information and understanding which could be used to support the other coastal ecosystems 

research. Specific to the tasks performed by the underwater vehicle, the objectives were to: 

1. Generate a map of the kelp bed perimeter (delineate). 

2. Add the topography of the seafloor (bathymetry). 

3. Populate the map with an estimate of the density and distribution of kelp. 

The outcome of the research was thus a populated kelp bed map which could be used for 

inspection, calculating spatial and temporal trends and populated with further data. For example, 

whale feeding and behaviour observations, other marine life, change in mysid/kelp density and 

makeup over time (e.g. with whale feeding and over winter), diver collected samples, water 

chemistry (conductivity, temperature, fluorometry) could all be added and co-registered on the 

kelp bed map. Many of these additional modes of data could be gathered by the underwater 

vehicle simultaneously to compiling the kelp map through the modular expansion of the sensing 

system of the SeaBiscuit. For example, sensors to measure conductivity, temperature, 

fluorometry as well as high-resolution cameras can all be easily interfaced. 
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 Methods 7.3.4

As an example and proof of concept of the benefits of using the iROV SeaBiscuit for kelp bed 

mapping, the method and example results are presented below for the Leeke Island kelp bed. 

Taking each of the objectives listed above, an overview is provided of the data gathered, the data 

processing and analysis techniques, and examples of the integration of the data from different 

sensors to construct the overall populated map. Figure 7.7 documents deploying the iROV 

SeaBiscuit into the kelp beds from the research vessel Stardust during the 2010 field season. 

 

Figure 7.7 - Deploying the iROV SeaBiscuit into the Leeke Island kelp bed, British Columbia, Canada (2010). 

7.3.4.1 Mapping the kelp bed perimeter 

The first stage of mapping the kelp bed was to establish the perimeter, or delineate the boundary. 

As seen in Figure 7.6 earlier, although some kelp beds are indicated on marine charts, there is no 

information covering their expanse or perimeter. Delineating large kelp beds using the 

underwater vehicle was time consuming. It was usually more efficient to map an approximate 

perimeter at the surface by manoeuvring the surface vessel around the perimeter of the kelp bed 

while recording position using GPS. For complex perimeters, or in shallow water, the small 

inflatable boat and kayaks were used to establish the perimeter using a handheld GPS receiver. 

Given the approximate perimeter created by the surface vessel, the scan areas of interest were 

then established and accurately mapped from the midwater using the underwater vehicle. 

The effect of external water movement and tides on the flexible kelp stipes was considered on 

two different scales. The effect of water movement on individual kelp stipes, including techniques 

to correct for deviations during a survey are discussed in later sections. However, on a larger 

scale, tidal flows also had a significant effect on the kelp bed perimeter, as shown in Figure 7.8 

below. 
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Figure 7.8 - Surveying the perimeter of the Leeke Island kelp bed at different tide heights and directions. Surveys 
were taken using a surface vessel or a kayak [1] as indicated in the key. The tide heights for the perimeter survey are 
shown in the lower plot [368]. The time and duration of the perimeter scan was compared against this and used to 
estimate the height and the flow speed/direction of the tide. 
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The effect of the tide height and flow speed/direction can be seen in Figure 7.8 above. The 

different colour plots indicate the kelp bed perimeter observed at different tide heights and 

directions according to the key shown. The red then orange plots show a rising tide until a 

minimum deviation was reached at the dark blue plot a few minutes after high slack water. The 

pale blue plot shows the reverse sway of the kelp bed approximately 1 hour after high-slack water 

and the turquoise plot 3h30 after high slack water. The perimeter measured by Wladichuk using a 

kayak and a handheld GPS receiver is shown in orange [1]. 

The plot in the lower part of Figure 7.8 shows the tide heights for the local port, Tofino, 

approximately 10 nautical miles away for the days on which the scans were conducted. 

The large deviation in perimeter with tide height and flow can be seen. Tidal flow caused the 

flexible kelp stipes to drift over a large radius, all in the same direction. When viewed underwater, 

the vertical kelp stipes appeared at an angle, the obliqueness of the angle dependent on the 

height of the tide and the strength of the current. When viewed from above, for example when 

taking aerial or surface photographs to ground truth the sonar and maps, the strength of the flow, 

and particularly low tide heights caused the canopy of stipes and fronds to ‘flop over’ at the 

surface, thus reducing the accuracy of aerial photography mapping techniques. 

Several techniques were used to ensure data quality and validity in tidal areas. The first was to 

ensure that all surveys were taken at the same conditions, the same tide height and the same 

flow. This was either at slack water (when the tide direction was changing and thus there was no 

flow), or at the same strength of flow and tide height. This required careful synchronisation of the 

tides with wind to ensure repeatable conditions. 

When operating in approximately the same conditions proved too restrictive, the alternative was 

to model the effects of tides on the kelp stipes. The tide height and flow was predictable at every 

site, either interpolated from tide tables of surrounding areas or measurable on site. The trends in 

movement seen on Figure 7.8 were compared with the tide curves to generate an approximate 

model to correct scans taken at different times on subsequent days. However, a full tidal model of 

the kelp stipes is complex, requiring inputs of tide height, direction and flow speed to determine 

both the drift causing movement of the kelp stipes, but also the water height available to support 

the buoyant stipes. The effects of wind speed and sea state would also need to be considered. 

Research into modelling kelp stipes to determine wave and current interactions was reviewed in 

Chapter 2, yet a full tidal model of the kelp was considered infeasible at this stage, given the 

potential inaccuracies of using an overly simplistic approximation. Steps towards modelling the 

kelp stipes are discussed as future work in section 8.2. 

Instead, for the surveys presented here, scans were taken at a repeatable tide state. High slack 

water was often used as this also provided the highest water level to ensure that the stipes were 

as vertical as possible. Using the tide plots shown above in Figure 7.8, a comparable tide height 

and flow could be found between different days. Subsequent plots detailing the map of the Leeke 

Island kelp bed as an example use the dark blue perimeter from the above map in Figure 7.8 (the 

perimeter at high slack water). To mitigate the effect of wind, scans were taken under repeatable 

(usually negligible) wind conditions.  
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7.3.4.2 Seafloor topography (bathymetry) 

Given the delineated kelp bed perimeter in the x and y axes, the next step was to map the 

seafloor topography (bathymetry) in the z-axis over the kelp bed. During normal survey operation, 

many of these tasks were performed concurrently to improve efficiency and are only discussed 

separately here for clarity. 

The bathymetry not only defined the operating region in the z-axis when surveying the kelp bed, 

but also provided useful scientific data. Benthic composition was estimated by video. Several 

techniques were used to provide bathymetric data, either corrected for, or at constant tides. 

Although SeaBiscuit could estimate water depth while underwater by adding the submerged 

depth (pressure sensor) to the distance to the seafloor (altitude) estimated using the Delta T 

sonar to get total water depth, it was as straightforward to perform this operation from the 

surface, which allowed the map to be registered using GPS. 

The bathymetry was also surveyed from a kayak or a small RIB, using a handheld depth sounder, 

or by the surface support vessel Stardust using its echosounder. Each technique provided an 

increase in map coverage and survey speed over the underwater vehicle bathymetric survey, but 

with a corresponding decrease in map resolution. As the data output was of a common form 

(water depth measured at a series of points), different techniques were used depending on how 

varied the bathymetry was, the kelp density, and the map resolution required. The depth 

measurements taken by the surface vessels were also used for ground truthing and verification of 

the measurements made by SeaBiscuit. 

The techniques to extract the seafloor and to estimate altitude from the Delta T sonar data were 

the same as those used for the dock survey and mapping application as shown in Figure 6.29 in 

the previous chapter. Figure 7.9 below shows an example bathymetric map presented as a 2D 

surface in MATLAB for the Leeke Island kelp bed. The 2D plot can also be viewed in 3D showing 

the peaks and troughs of the seabed by panning and rotating the camera. The markers shown on 

the plot represent manual depth measurements made throughout the kelp bed from a surface 

kayak survey in conjunction with the acoustic studies performed by Wladichuk [1] on the same 

kelp bed. Depth measurements were made over three days and were corrected for tide height. 

The colour bar describes the bathymetry, where redder colours indicate shallow water at rocky 

peaks within the kelp bed and bluer colours indicate deeper water towards the periphery of the 

kelp bed. From diver inspection, the interpolation between this resolution of sampling was 

deemed to be a valid representation. 
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Figure 7.9 - The combined 223 point bathymetric survey of the Leeke Island kelp bed corrected for tide height. The 
kelp bed perimeter is shown in blue and the red, green and yellow markers represent depth measurements gathered 
over three days corrected for tide height. The colour bar describes the 2D surface plot of bathymetry. This 
bathymetric data was gathered in conjunction with Wladichuk [1]. 

7.3.4.3 Density and distribution of kelp 

Given the bathymetric map of the kelp bed, with the perimeter delineated, the map was then 

populated with an estimate of the density and distribution of kelp. SeaBiscuit used the 852 sonar 

to detect objects in the horizontal plane while correcting observations for vehicle attitude and 

storing them with the vehicle position. The Delta T sonar was used, as before, to co-register 

objects from the 2D horizontal scan in the vertical plane, providing a faster update rate and 

allowing different regions of the vertical water column to be extracted for mapping. Finally, the 

cameras were used for realtime target identification and confirmation to verify close range sonar 

targets, when visibility permitted. 

7.3.4.3.1 Acoustic mapping of kelp stipes 

Figure 7.10 below shows an example 20 metre range (radius) 852 sonar scan in the centre of the 

Leeke Island kelp bed. This example scan was performed with SeaBiscuit suspended from the 

boom of the surface vessel (shown in orange) to allow a stationary known GPS reference position 

to be held during testing. The typical appearance of kelp stipes is highlighted by the green circles 

distributed throughout the left half of the scan. The blue shaded sector is the region of the kelp 

bed which was partially occluded by the surface vessel hull. The kelp stipes provided an acoustic 

return distinct from any background noise, facilitating reliable detection, either by manual 

inspection or by autonomous image processing. 
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Figure 7.10 - An example 20m range 852 sonar scan of the Leeke Island kelp bed. The overlay highlights areas of kelp 
stipes with green circles and shows the launch configuration of the underwater vehicle. The blue shaded sector is the 
region of the kelp bed which was partially occluded by the surface vessel hull. 

7.3.4.3.1.1 Manual extraction of kelp stipes 

The development of techniques for manual extraction of kelp stipes enabled robust development 

of later autonomous feature extraction routines, allowing comparison of the autonomous 

estimates with a ground truth estimate of the same scan area. In challenging conditions, the data 

was still processed manually to ensure reliable operation or for validation of the autonomous 

algorithms. To enable efficient manual extraction of kelp stipes from a large number of sonar 

scans in post-processing, a graphical user interface (GUI) was written in LabVIEW. The GUI, as 

shown below in Figure 7.11, presented the user with a series of sonar scans while displaying the 

sensor data for that time (depth, attitude, position). 

A number of steps were prompted. Firstly, the user defined a circular mask to represent the 

radius of useful scan information (for example, when operating close to the surface or with large 

scan ranges, the periphery of the scan can become corrupted with noise). Regions outside the 

mask were discarded. Secondly, an optional sector mask (or multiple sectors) was applied to 

exclude regions of the scan, for example the area of the kelp bed in the acoustic shadow of the 

surface vessel as shown in Figure 7.10 previously. 

The remaining unmasked area was the area scanned for kelp stipes, and the region marked as 

‘surveyed’ on the overall kelp bed map. The important distinction was made between areas 

surveyed to have no kelp stipes present, and areas which had no stipes recorded on the map as 
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they had yet to be surveyed. The next step of the GUI prompted the user to identify the position 

and size of kelp stipes by defining a series of circles of varying radii similar to those shown in 

Figure 7.11. The parameterised results were recorded, either for further analysis or to compile the 

overall map. 

 

Figure 7.11 - The GUI for manual kelp stipe extraction is shown for the Leeke Island kelp bed scan used previously. A 
sonar scan and the corresponding vehicle sensor data is displayed, and the user is prompted to identify the radius 
and position of any kelp stipes present, together with the useful range of the sonar scan. 

7.3.4.3.1.2 Autonomous extraction of kelp stipes 

Given the large areas of kelp bed to cover, autonomous image processing and feature extraction 

algorithms provided great benefits in reducing the labour requirements for post-processing scans. 

Many of the techniques and algorithms used for extracting the density and distribution of kelp 

were similar to those used for the dock piling survey application. The parameters and specific 

details were tuned to reflect the change in conditions, target strength, acoustic characteristics 

and the non-uniformity of the kelp stipes. The image processing algorithms were required to 

estimate the position and ‘mass’ (area & density) of the kelp stipes and the navigation sensors 

and algorithms were used to register the individual sonar scans to create the overall map. It was 

assumed that any object present in the midwater above a given intensity threshold was kelp (seen 

either on the Delta T sonar or the 852 sonar). Filtering was used to eliminate the majority of 

noise, and it was unlikely that spurious features (e.g. fish) were present on successive scans. 

The steps detailed above in the manual image processing were replicated in the autonomous 

feature extraction algorithms. A brief overview using the same example scan from the Leeke 

Island kelp bed is presented below in Table 7.4. 

The manually processed scans were used to tune and verify the development of the autonomous 

kelp stipe detection algorithms. To ensure robust, reliable and accurate estimates of the kelp 

density and distribution, the sonar image processing and feature extraction algorithms were also 

verified against video footage gathered concurrently by the iROV (some example images were 

shown in Figure 4.16). 
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Table 7.4 - An example of autonomous image processing and feature extraction to estimate kelp density and 
distribution from the Leeke Island kelp bed sonar scan. 

 

Raw sonar scan. 

 

Threshold (100) to remove noise. 

 

Circular mask to remove noise at the periphery of the scan, for 
example water surface interactions for scans at a shallow depth 
and regions where beams have exited the water surface. The 
mask radius was calculated from the submerged depth and the 
22° vertical divergence of the sonar beam. The shape of the 
mask (circular or elliptical) was calculated from the attitude of 
the vehicle as each ping was acquired. 
 
Automatic inspection routines were used to detect noise in the 
immediate periphery of the vehicle and to apply an annulus 
mask to remove this. 

 

Dilation (3*3, 2 iteration) 
 
The features in the dilated image are then labelled with a 
unique identifier as shown below in Figure 7.12. 
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Figure 7.12 - An example output of the autonomous kelp stipe detection algorithm. Each stipe was recorded with a 
numeric identifier, together with its range, bearing, pixel mass, bounding ellipse ratio, orientation, etc. No mass 
threshold was applied as specific known objects (such as pilings) were not being searched for; provided the noise was 
reliably removed, any return, however small, was a valid midwater target. 

The parameterised results of the autonomous kelp detection algorithm were stored in an array, 

with each stipe or cluster of stipes labelled with a unique identifier. The first 10 objects detected 

are listed below in Table 7.5 out of a total of 94 for the scan shown in Figure 7.12. This data was 

saved, together with the scan location and time, to be able to recreate an overall map of the 

density and distribution of kelp throughout the kelp bed. Efficient mapping and storage was 

achieved by processing the data and recording features with appropriate descriptors to enable a 

full reconstruction without having to store the memory-intensive raw sonar scans. 

Table 7.5 - A summary of the feature data from the Leeke Island kelp bed scan shown above in Figure 7.12. 

Object Identifier X Centre (m): Y Centre (m): Pixel Mass: Orientation (°): Aspect Ratio: 

1 9.53 0.84 0.061 0 2.40 
2 7.08 2.32 0.067 27 1.22 
3 4.25 2.84 0.070 26 1.44 
4 11.12 3.06 0.053 169 1.83 
5 13.41 3.14 0.042 162 1.33 
6 8.68 3.67 0.126 9 3.00 
7 12.77 3.69 0.035 173 1.60 
8 5.58 3.86 0.051 33 1.25 
9 2.44 3.82 0.022 0 1.25 
10 6.92 3.88 0.048 27 1.29 
…continues to object 94 
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In Table 7.5 above, detailing the information associated with each kelp stipe, the x and y positions 

are listed in the coordinate system shown in the sonar scan above in Figure 7.12, with the origin in 

the top left corner as shown. These local sonar coordinate system locations were then combined 

with the current estimate of the robot position and orientation to record the position of objects in 

the global coordinate system. The 4th column of Table 7.5 lists the pixel mass of the observed 

feature, or the number of pixels comprising the feature (as the image is binary). 

The aspect ratio was the ratio of the long side to the short side of the ellipse used to represent 

each cluster of kelp stipes. The orientation of this bounding ellipse is listed in column 5 and is the 

orientation of the long axis of this bounding ellipse relative to the local coordinate system axis. 

For the purposes of labelling features in Figure 7.12, a bounding rectangle was used together with 

the numeric object identifier. 

Figure 7.13 below compares the results of the autonomous image processing algorithms to detect 

the kelp stipes with the manually generated overlay for the same scan. By inspection, the 

algorithms were seen to be a reliable and accurate autonomous measure of the kelp present in 

the image. 

 

20m range sonar scan

SeaBiscuit

Stardust (surface support vessel) 
shown with boom extended

Sonar shadow from surface vessel hull

xy

Processed scan with stipes 
detected, labelled and measured

Kelp

 

Figure 7.13 - Comparing the autonomous kelp detection algorithms with the result of the manually processed scan. 
By inspection, the autonomous estimate (shown on the right) was a reliable and accurate measure of the kelp 
distribution and density. 
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7.3.4.3.2 Integrating Delta T multibeam data 

As demonstrated in the dock mapping application, data from the forward facing multibeam sonar 

was used to map the entire vertical water column of the kelp bed, and to confirm and corroborate 

the mapping using the 852 sonar. Using the techniques discussed in section 6.3.4, the Delta T data 

was initially compressed to 2D to provide an additional source of mapping information, imaging a 

greater volume of the water column as shown in Figure 6.34, and providing a faster update rate of 

up to 20Hz. Once compressed to 2D, the data was directly integrated with the 852 sonar scans. 

Figure 7.14 below shows an example 20m range Delta T scan taken from the midwater from 

within a kelp bed. The water surface is indicated by the blue line, calculated by the pressure 

sensor and vehicle attitude. The bathymetry was approximated by the orange line, and detected 

by the algorithms discussed previously in the dock mapping section to be 1.1m below the vehicle 

at an angle of 12.6°.  

Water surface 
3.55m above Delta T

Seabed 1.1m below
12.6° inclination

120° Delta T vertical swath

 

Figure 7.14 - An example 20m range Delta T kelp bed scan in shallow water (approximately 4.6m water depth). The 
water surface is indicated by the blue line and the bathymetry approximated by the dashed orange line. 

As with the dock survey, the water column was bounded vertically by the calculated surface and 

the detected seabed as the region of interest for mapping. This region of interest was compressed 

to 2D using the same techniques discussed earlier in section 6.3.4. Figure 7.15 below shows the 

compression to 2D process for the example scan shown above in Figure 7.14. The water column 

was extracted as the region of interest between the seabed and water surface, before being 

compressed to 2D. The middle graph plots pixel intensity (the sum of pixel intensity at that range 

bin) against range. Point features seen in the raw sonar plot can be matched to peaks in the 

graph, which is also displayed as a colour bar at the bottom of the figure. 
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Figure 7.15 - Compression of forward facing Delta T multibeam kelp scans to 2D. The upper plot shows the region of 
interest (ROI) between the seabed and water surface extracted from the example scan shown above in Figure 7.14. 
The middle plot shows the ROI compressed to 2D and plots pixel intensity against range. The colour bar at the 
bottom of the plot represents increasing intensity with darker colours. 

Although the compression to 2D process was similar to the dock survey application, the filtering 

and image processing performed after compression was different when mapping kelp stipes. The 

dock pilings provided a large, fixed and high intensity return which could be detected by peak 

detection algorithms, given a threshold amplitude and peak width. However, in the kelp mapping 

application, all midwater targets were mapped. Parameterisation and detection of the kelp stipes 

was not performed until successive Delta T compressed 2D scans were registered using the 

vehicle position and attitude into a 2D radial scan. 

Figure 7.16 below shows an example 20m radial Delta T scan which was compiled of 307 

individual Delta T scans over a sector of 309°. For each scan, the water column region of interest 

(ROI) was extracted as shown in Figure 7.14 and the ROI compressed to 2D as shown in Figure 

7.15 before being registered in yaw angle on the radial scan shown in Figure 7.16 below. The red 

sector indicated in Figure 7.16 below was the individual ping used in the examples above 

demonstrating the ROI extraction and compression to 2D. The intensity characteristics varying 

with range can be verified between the plots. 
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Figure 7.16 - An example 20m radial scan compiled from successive Delta T scans compressed to 2D and registered 
with vehicle attitude. The highlighted sector shows the single ping used in the previous example and shown in Figure 
7.14 and Figure 7.15. 

The compiled Delta T radial scan was either recorded on the map in its raw form, or 

parameterised using similar autonomous kelp detection algorithms as used for the 852 sonar 

image processing. Figure 7.17 below shows the result of parameterising the example Delta T 

radial scan shown above in Figure 7.16. The sonar scan is shown in the background and the 

overlay shows the result of the kelp stipe detection algorithm. As for the 852 sonar scans 

previously, each feature was labelled with a unique identifier and the output was an array of all 

relevant characteristics. 

As before, the benefits of parameterisation were computational and memory efficiency, provided 

that the object detection was reliable and sufficient data was preserved to enable a full 

reconstruction of the kelp bed from the parameterised data output. 
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Figure 7.17 - Autonomous kelp stipe detection from a radial Delta T scan. The background shows the scan from the 
previous example in Figure 7.16. The red overlay shows the result of the autonomous kelp detection algorithm set 
with a relatively high pixel mass threshold for clarity. All objects (kelp stipes) detected in the scan were 
parameterised and recorded with their characteristics. 

7.3.4.3.3 Combining several 2D scans 

As the majority of kelp beds were larger than a single scan radius, registration of several 

overlapping scans allowed an overall map of the kelp bed to be compiled. 

Whether 852 radial scans, Delta T radial scans or Delta T vertical scans were used, the correct 

registration of successive scans was important to avoid over-estimating kelp density. Figure 7.18 

below shows this effect. If the apparent kelp density increased with the number of scans 

performed then the scan registration was likely to be incorrect. The exception to this was the 

occlusion of stipes which may become observable as the vehicle and targets move between 

successive scans. Figure 7.18 demonstrates one method to avoid recurring targets in successive 

scans being interpreted as an overly high density estimate. Provided correspondence can be 

achieved between successive observations of the same target in slightly different positions, the 

recurring targets were mapped only once at a mean observed position. 
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Figure 7.18 - Correct registration of successive scans was important to avoid over-estimating kelp density. The left 
figure shows two successive scans which overlapped with the same arrangement of 3 targets observed in green in 
the first scan and blue in the second scan in a slightly different position. If the scans were simply overlaid, with 
vehicle movements not corrected, then the top right figure shows the over-estimation of kelp density resulting from 
incorrect registration. The lower right figure shows one solution: provided correspondence between scans could be 
achieved, the mean observed position of the targets was used. 

A combination of accurate measurement of vehicle position, an understanding of the periodic 

wave movement of the kelp stipes, and registration of uniquely identifiable patterns within the 

scan were used to register maps of several successive scans. For the kelp bed scans, initially this 

registration was performed manually using a GUI written specifically for this task, part of which is 

shown below in Figure 7.19. The software processes 852 and Delta T pings into radial 2D plots, 

each corrected for vehicle attitude and orientation while displaying the vehicle depth over time. 

The scans were initially registered using the estimated vehicle position recorded during the 

survey. The user then toggled the scans over time, while adjusting the threshold and fine control 

of the scan x and y position and yaw angle correction to verify the alignment. 

Correct registration of mosaicking was ensured by monitoring a series of plots of the compiled 

map. In environments when a high accuracy was possible, the logic AND of all scans displayed 

pixels which were above a preset thresholded level in either all scans, or more than one scan. For 

lower accuracy scans (e.g. more water movement, more flexible targets, higher sonar ranges), the 

thresholded pixel frequency (as shown in the top left plot in Figure 7.19) displayed the sum of 

pixels above a threshold level from all scans. Whereas the AND plot was maximised from 

mosaicking, the thresholded pixel frequency was maximised with high intensity point targets 

rather than low intensity coverage, thus showing targets which were present in the same position 

on multiple scans. 

The upper right plot of Figure 7.19 shows the mean pixel value for all enabled scans and the larger 

lower plot shows the colour coded occurrence of pixels above a thresholded level in different 

scans. 
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Figure 7.19 - Scan mosaicking was performed manually using the GUI shown. The vehicle position estimate was used 
as a starting point, with confirmation in post-processing (right hand data array and toggle switches) using a 
combination of the thresholded pixel frequency (top left), the mean pixel intensity (top right) and the thresholded 
presence of returns (lower left). This example shows four 20m range 852 sonar scans over partially overlapping 
sectors, taken from three stations approximately 5 metres apart. The majority of returns present were verified by 
diver inspection to be kelp stipes. 

Techniques to perform this registration and mosaicking autonomously, are discussed in future 

work section 8.1. As an initial proof of concept of kelp bed mapping, the process continued using 

the vehicle position estimate, together with manual scan mosaicking and correction when 

required. Given the compiled map, registered from several mosaicked scans, the final step was 

calibration of the relative pixel intensities to an actual estimate of kelp biomass and biovolume 

using the calibration processes discussed in section 6.3.5. 

7.3.4.3.4 Survey methods 

A variety of survey methods were employed as the incremental development and field trials 

advanced. Initial scans were performed in calm waters by suspending the vehicle from the 

research vessel boom. These scans were either performed at the surface utilising the adjustable 

declination angle of the Delta T, or from the midwater. The surface vessel boom provided a 

known x, y position, tracked using the surface vessel GPS, with the surface vessel either in transit 

or at anchor. A swivel harness and the holonomic propulsion capabilities allowed the vehicle to 

rotate about its axis to pan the sensors across the kelp beds and generate a series of radial pans. 

The vehicle could also move in the proximity of the boom hoist to mitigate occlusion of kelp stipes 

by scanning from a slightly different x, y position. 

Operation then moved to free transects through and around the kelp beds, with survey methods 

dependent on the current and conditions. When operating at slack tide or in regions of low 

current, the vehicle was launched and transited a course around the periphery of the kelp bed 
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facing in. Facing a constant position in the centre of the kelp bed provided a complete map or an 

oscillating pan of the directional sensors across the kelp bed while in transit increased coverage 

and reduced occlusion. Straight transects around the perimeter of the kelp bed to form a 

bounding polygon were also performed, using the vehicle’s holonomic capabilities to maintain the 

directional sensors facing a constant heading (or an oscillating pan back and forth) facing the kelp 

bed, while transiting a course around the kelp bed. Alternatively, the vehicle entered the kelp bed 

orientating the directional sensors outwards to increase survey detail. 

In regions of low current, the holonomic propulsion system was used to make course corrections 

to mitigate external water movements. However, in higher currents (limited by the available 

vehicle thrust), the surface vessel anchored upstream of the kelp bed and allowed the iROV to 

drift, either past or through the kelp bed, using its onboard thrusters for course corrections. The 

speed of the iROV was controlled by gradually paying out the strain-relieved tether from the 

surface vessel and the thrusters used to effect minor movements and course corrections, rather 

than attempting to move directly against the overall current. When large distances had to be 

covered, it was normally more time efficient to manoeuvre the surface vessel to the approximate 

position, anchor and drift to a stable anchorage before launching the underwater vehicle. 

As discussed throughout Chapter 4 and Chapter 5, the iROV navigation system is in development. 

Realtime navigation using the kelp stipes as landmarks remains an opportunity for further work 

(section 8.1). Instead, a variety of techniques were used to supplement and corroborate the 

navigation of the vehicle while developing the iROV concept and habitat mapping techniques in 

the absence of a DVL or USBL navigation system. Frequent GPS updates from the surface, as well 

as registering sonar targets from the surface using GPS before diving and navigating relative to 

these GPS referenced targets were both discussed earlier. These were used to bound the drift 

from navigation using dead-reckoning alone, and to bound the search area when manually or 

autonomously mosaicking the sonar scans. 

During development, external position observations synchronised with the onboard vehicle clock 

were also frequently used to supplement the onboard vehicle navigation to aid post-processing 

when compiling the map. In the same manner as above, these observations were used to bound 

cumulative errors and the search area for sonar mosaicking and allowed confirmation of the 

vehicle navigation estimates. Relative vehicle position estimates were made from the stern of the 

research vessel at approximately 15-30 seconds intervals. These relative estimates, e.g. (x=-5m, 

y=10m), were combined with the surface vessel GPS and compass in post-processing to convert to 

absolute vehicle position. Tracking of the vehicle while underwater using a surface vessel such as 

a kayak or small RIB to allow movement over the kelp stipes also allowed the vehicle position to 

be tracked using a synchronised GPS log. 
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 Results 7.3.5

Figure 7.20 below shows an example kelp bed map taken by SeaBiscuit from the midwater, at an 

altitude of approximately 1m, in a water depth of 5m. A series of nine scans taken by the 852 

scanning sonar were compiled from single pings into radial scans, each made up of over 120 radial 

pings corrected for vehicle attitude. These scans were taken at five stations spaced approximately 

5m apart and were manually mosaicked using the GUI shown earlier to maximise regions of local 

pixel intensity which represented kelp stipes. 

The plot in Figure 7.20 shows the mean pixel intensity when all 9 scans are combined, using the 

pixel intensity scale shown, where darker colours indicate a stronger acoustic return. The 20m 

radius of each individual scan is shown by the colour key on the right. The zoomed section shows 

a region of distinct kelp stipes, apparent in the same location on several successive scans. 1 pixel 

in all of the 20m range 852 sonar scans presented here is equal to 8cm. 
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Figure 7.20 - A kelp bed scan compiled from 9 overlapping mosaicked 852 sonar scans taken at 5 stations, spaced 
approximately 5 metres apart. The plot shows the mean pixel intensity from all 9 registered scans, as per the key on 
the right. The zoomed inset shows a region of distinct kelp stipes. 
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Figure 7.21 below shows the same kelp bed map, but compiled using the maximum pixel intensity 

rather than the mean pixel intensity between scans. Comparison between Figure 7.20 and Figure 

7.21 shows the effect of spurious or dynamic targets causing an overestimation of the kelp 

density if the maximum pixel intensity was used. The same intensity scale was used in both plots, 

yet in the maximum pixel intensity plot shown in Figure 7.21 below, a spurious target appearing in 

a single scan has a large effect on the overall compiled map and, if undetected, could also lead to 

incorrect mosaicking. 
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Figure 7.21 - The 9 scan kelp bed map shown earlier is presented as maximum pixel intensity. Comparison with the 
mean pixel intensity shown in Figure 7.20 above shows the effect of spurious or dynamic targets causing an 
overestimation of the kelp density if the maximum pixel intensity was used. The intensity scale used here was the 
same as in Figure 7.20 above. 
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Figure 7.22 below shows the thresholded pixel count between the 9 overlapping scans of the kelp 

bed map shown earlier. The green and red pixels, in particular in the zoomed section, show the 

occurrence of targets present in exactly the same location in at least one successive scan. 

10m

2m

Station 1 – Scan 1

Station 2 – Scan 1

Station 2 – Scan 2

Station 3 – Scan 1

Station 3 – Scan 2

Station 4 – Scan 1

Station 4 – Scan 2

Station 5 – Scan 1

Station 5 – Scan 2

3

0

P
ix

e
l C

o
u

n
t

2

1

 

Figure 7.22 - The pixel colour shows the thresholded pixel count from the 9 overlapping scans of the kelp bed map 
shown earlier. The green and red pixels, in particular in the zoomed section, show the occurrence of targets present 
in exactly the same location in at least one successive scan. 1 pixel is equal to 8cm. 

The large amount of blue pixels in Figure 7.22 above shows thresholded pixels present in only one 

scan. However, the grouping of these into coherent targets between scans, often with some 

overlap, even if not exactly overlapping, shows the small scale movement of the vehicle and kelp 

stipes during operation. Although Figure 7.22 shows a relatively small number of thresholded 

pixels present in exactly the same location in successive scans, coherent targets were formed 

from stipes appearing in approximately the same location in several scans. This was verified by 

the high intensity targets in the mean plot shown earlier in Figure 7.20 and in Figure 7.23 below. 
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Figure 7.23 below shows the occurrence in each scan of pixels above a thresholded level as per 

the key on the right. Stipes made up of several colours represent recurring targets observed in the 

same place, as seen in Figure 7.22 above showing the thresholded pixel count. These recurring 

distinct targets, for example in the zoomed inset, were used to guide the registration and 

mosaicking of the successive scans. Targets made up of fewer colours were either dynamic targets 

only present on some scans, or targets only visible from some positions due to occlusion. A 

combination of successive overlapping scans, together with the thresholded pixel count shown 

above were used to aid this distinction. The principle is similar to the voting techniques 

introduced earlier in map management. 
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Figure 7.23 - The occurrence of pixels above a thresholded level on each scan as per the key on the right. The zoomed 
inset shows a region of distinct kelp stipes demonstrating the mosaicking and registration between different scans. 
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The Delta T was used to aid distinction in the 852 scans between spurious, dynamic and occluded 

targets. Figure 7.24 below shows the mean pixel intensity from thirteen Delta T 20m range scans 

acquired concurrently with the previous 852 sonar data. The vehicle held an approximately 

stationary position for the radial 852 sonar pan, before rotating about its axis to pan the Delta T 

sonar over the kelp bed at each station, before a further 852 sonar scan, and then moving to the 

next station approximately 5m away. All Delta T pings were registered and corrected for vehicle 

attitude, compressed to 2D and used to reconstruct a radial Delta T scan. The zoomed section 

shows the same region as above in the 852 sonar scans where distinct kelp stipes can be seen. 
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Figure 7.24 - The mean pixel intensity from 13 Delta T 20m range scans taken at stations overlapping with the 852 
kelp bed map. Darker colours correspond to higher sonar pixel intensities. The zoomed section shows a region of 
distinct kelp stipes.  
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The occurrence of each target on the 852 and Delta T sonar scans can be seen below in Figure 

7.25. The thresholded returns from the Delta T sonar scans in red have been overlaid onto the 

blue 852 sonar scans and the region mapped for each sonar is shown. Thresholded returns 

present on both sonars are shown in green. 
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Figure 7.25 - The combined scans from the 852 and Delta T sonar registered on the same map. Thresholded returns 
from the 852 sonar are shown in blue, from the Delta T sonar in red and thresholded returns from both sonars shown 
in green. The zoomed section shows several of the kelp stipes have been imaged by both sonars at the same location. 
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The zoomed section in Figure 7.25 above shows several of the kelp stipes have been imaged by 

both sonars at the same location (green pixels). This was used to aid map registration and 

mosaicking, as well as distinguishing between spurious targets by using a combination of the 

mean, thresholded pixel count, maximum and thresholded colour coded scans for each sonar 

individually, and for the combined results. 

Differences between the thresholded returns from each sonar and between stations were 

attributed to a number of factors. Although the scans spatially overlapped they were conducted 

at different times. The total survey lasted 20 minutes, including periods in between when these 

scans were taken, with slow movement between stations while scanning. As the Delta T scans 

were taken during a vehicle pan, but the 852 scans taken before and after the vehicle pan, 

differences between the targets observed in each were partly due to movement of the stipes back 

and forth in the water, together with any uncorrected vehicle movements. 

As Figure 6.34 on page 247 illustrated, the 852 and Delta T sonars imaged different but 

overlapping regions of the water column. Thus the red and blue returns shown in Figure 7.25 

above, in particular at higher ranges, were imaging different regions of the water column, and so 

an overlap (green pixels) was not necessarily expected. Instead, the complementary information 

from each sonar was integrated into the map, and targets at a closer range where the two sonars 

do overlap were used to aid registration between scans from the two sonars. 

In particular, at higher ranges, the 852 beams interact with the seabed as seen by faint blue 

shading at high ranges. For the example scans shown here, at an altitude of 1m above an assumed 

flat seabed, the outer 852 vertical beams interacted with the seabed after 11m. The Delta T 

multibeam sonar provided vertical resolution and the seabed was excluded by restricting the 

vertical region of interest, resulting in much less seabed interaction seen on the red Delta T 

return.  
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Figure 7.26 below shows the final kelp bed map compiled from the registered set of 852 and Delta 

T sonar scans presented as mean pixel intensity. Noise at long ranges and spurious targets were 

minimised using the mean pixel intensity and the combined dual-sonar scan provided clear, 

distinct mapping of kelp stipes, as seen in the zoomed inset. 
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Figure 7.26 - The final kelp bed map, compiled from the registered set of 852 and Delta T sonar scans presented as 
mean pixel intensity using the scale shown. Noise at long ranges and spurious targets were minimised using the 
mean pixel intensity. The zoomed inset shows a region of distinct kelp stipes. 
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For comparison, Figure 7.27 below shows a map of a different region of the same kelp bed 

surveyed on a different day, presented as mean sonar pixel intensity. The map below was 

compiled from nine 852 20m range sonar scans and twelve Delta T 20m range scans, again all 

corrected for vehicle attitude, compiled into 2D radial scans and registered into the map shown. 

The scans were taken at 4 stations, approximately 5m apart with the overlapping regions used for 

registration. Although there was a greater water movement on this day, the zoomed inset still 

shows a region of distinct kelp stipes observed between both sonars, on all scans. 
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Figure 7.27 - The combined map of a different region of the kelp bed mapped previously but surveyed on a different 
day is presented as mean pixel intensity from nine 20m range 852 sonar scans and twelve 20m range Delta T sonar 
scans, taken from 4 stations, each spaced approximately 5m apart. 
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The scans from each sonar, including the overlapping region used for scan registration is shown 

below in Figure 7.28. 
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Figure 7.28 - The scan data from each sonar across all scans is identified by colour, with pixel returns present on both 
sonars shown in green. Although the conditions were not as calm as for the previous survey, sufficient regions of 
distinct kelp stipes are still present for manual mosaicking of the sonar scans. 

The two scans shown previously were taken on different days but of the same kelp bed. On the 

second day, the surface support vessel anchored 16.25m away from the anchorage on the first 

day and SeaBiscuit was deployed in approximately the same region of the kelp bed. The figures 

below demonstrate registration between the kelp bed scans from the two different days using 

manual sonar mosaicking, given sufficient overlap. The offset in registration between the plots 

was calculated to be 19.78m which was plausible given, the tether length and surface support 

vessel anchored positions. The registration between sonar plots on different days was performed 

using the mean pixel intensity from all 852 and Delta T scans combined on each day. 
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This provided the most reliable map of stipes, with spurious and dynamic targets minimised. The 

registration can be seen in Figure 7.29 below in particular in the zoomed inset, using a colour 

code for thresholded pixel intensity from each day. The green pixels represent targets observed in 

the same location between the two days once each day was registered. Although not all of the 

targets were observed in exactly the same location, many further targets were observed in 

sufficiently close proximity between days to be used for manual registration. These can be seen as 

coherent distinct clusters of red and blue pixels, in particular in the zoomed inset. 
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Figure 7.29 - The scans of the same kelp bed from two separate days are registered on the same map. The zoomed 
section shows the region primarily used for manual sonar mosaicking of the two scans, where several coherent 
targets were observed in a similar location between days. The upper left region of the zoomed section shows the 
same seabed feature, but imaged from a different (45°) angle and different position. The lower right region of the 
zoomed section shows a region of kelp stipes imaged over the two days.  
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The final combined kelp bed map plotted using mean pixel intensity from both days can be seen 

in Figure 7.30 below. The zoomed inset shows the same region as above, where the lower right 

region of the inset shows the kelp stipes. 
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Figure 7.30 - The final combined kelp bed map from 2 days, 2 sonars and several mosaicked scans is plotted using 
mean pixel intensity. The zoomed inset shows the same region as above, where the lower right region of the inset 
shows the kelp stipes imaged between days. This manually interpreted map delineates regions of kelp with a green 
line and rocks / raised areas of bathymetry with orange lines. Noise at high sonar ranges is indistinguishable, and 
other unidentified targets require confirmation (either by video or further inspection) to reliably identify kelp stipes. 
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Figure 7.30 above shows the region of kelp stipes manually delineated by a green perimeter, and 

significant rocks and regions of raised bathymetry delineated with an orange line. 

The Delta T vertical region of interest was selected to exclude the average seabed height. 

However, significant outcroppings and areas of raised bathymetry were still detected where they 

entered the midwater, coincident with the same depth as kelp stipes elsewhere. The large oblong 

rock in the centre of the scan was observed on the scans on both days. 

These rocks and outcroppings were not removed from the final scan, both forming important 

habitat information, as well as being useful static navigational landmarks. The regions of kelp and 

rocky outcroppings in Figure 7.30 above were identified manually, using information gathered by 

diver surveys in the same area and video footage gathered concurrently by the iROV during the 

survey as ground truthing tools. However, the distinction was not absolute –noise at high sonar 

ranges is indistinguishable, and other unidentified targets on the scan require confirmation, either 

by video or further inspection, to reliably identify kelp stipes. 

When operating at this altitude (1m in a total water depth of 6m), the kelp stipes appear as 

distinct targets, as seen in Figure 7.30 above. These were notably distinct from rocks and seabed 

outcroppings which appear as much larger mass targets. This distinction was used to aid 

autonomous distinction of kelp stipes. 

Figure 7.31 below shows the result of a basic operation to detect large mass objects. Sonar 

targets larger than a typical kelp stipe were assumed to be rocks, or seabed features. The image 

shown above in Figure 7.30 was thresholded and objects above a specified pixel mass (in this case 

250 pixels) were identified by a brown bounding rectangle. These rocks (as with kelp stipes) were 

represented as ellipses, with an associated x and y coordinate, pixel mass, ellipse ratio and 

orientation – the bounding rectangle was simply used below for labelling. Features labelled ‘0’ 

through to ‘8’ match up correctly with seabed features confirmed as rocks by ground truthing. 
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Figure 7.31 - Rocks and seabed features were detected autonomously based on a thresholded pixel mass. The brown 
bounding rectangles added to the kelp bed map delineate rocks detected by the algorithm using a pixel mass 
threshold of >250 pixels. The rocks were labelled with red numeric identifiers. 

The resulting map thus comprised three areas, delineated either manually or using the steps 

towards autonomous detection discussed above. These three regions were seabed features, kelp, 

and areas which required further investigation to confirm the contents. In particular, regions at 

the periphery of the overall map, which were only scanned a few times, often required further 

scans to reliably distinguish clusters of kelp stipes from seabed features. 

The regions identified as kelp above were quantified and parameterised using the techniques 

demonstrated in section 7.3.4.3.1.2, and the results are shown below in Figure 7.32. The 

algorithm detected 576 kelp stipes, or clusters of kelp stipes, within the manually delineated 

region of kelp shown by the green perimeter. Each stipe is highlighted in red, and bounded by a 

black rectangle for labelling purposes. The stipes were represented as ellipses, and recorded with 

a numeric identifier, x and y coordinates, pixel mass and ellipse ratio for each stipe allowing 

efficient storage. The steps towards a calibration model established in section 6.3.5 were used to 

relate the detected stipes to a real life estimate of kelp biomass and biovolume. 
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Figure 7.32 - Kelp stipes were detected and parameterised autonomously using the algorithms developed earlier. The 
green line delineates the manually identified kelp perimeter, and the red targets bounded in black bounding 
rectangles are autonomously detected kelp stipes. 
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 Discussion 7.3.6

The summer of 2010 saw the first open ocean field trials of the iROV SeaBiscuit, deployed to map 

the density and distribution of kelp beds in the nearshore. 

7.3.6.1 Survey methods 

A variety of survey methods was used to provide the full spectrum of coverage versus detail. At 

the upper end of the spectrum, high coverage was achieved by instrumenting the surface vessel 

Stardust with the same habitat mapping multibeam and navigation sensors as used on SeaBiscuit 

to provide high-coverage surface transects around the kelp beds. The autonomous sonar 

processing algorithms for kelp detection and quantification developed for SeaBiscuit were applied 

to the sonar data gathered by Stardust and full motion correction from the SeaBiscuit navigation 

sensor suite was used to provide small scale correction of the GPS track. Individual clusters of 

stipes were mapped, and a measure of kelp density and distribution was possible with higher 

detail than other ship based kelp bed mapping [8], made possible using the Delta T multibeam 

sonar. However, as with other ship based habitat mapping, the lack of small scale 

manoeuvrability, restrictions imposed by the canopy forming kelp and need to conduct surveys 

from the surface looking downwards rather than from the midwater all reduced detail [48]. 

Using reconfigurable buoyancy to provide flotation, surface scans using the iROV were also 

performed, providing the holonomic manoeuvrability of the iROV and freedom to operate around 

the kelp canopy and in shallow water, while providing surface GPS updates. Other significantly 

larger and higher-budget ROVs are able to perform this surface mapping, bridging the air-water 

(or GPS-sonar) boundary [27], yet none are able to offer the holonomic axisymmetric spin 

mapping technique of SeaBiscuit.  

Midwater scans provided a significantly increased level of detail, allowing quantification of kelp 

stipes, rather than occlusion from the canopy. Similar vehicles of this size are typically limited to 

operation in currents of 1 knot or less [13], and the relatively high lateral translation drag of 

SeaBiscuit coupled with sub-optimal thrusters [344, 345] imposed a similar limit on the currents 

which could be overcome by the onboard thrusters. Through the hybrid power supply, combining 

an unlimited operating duration with a thin, flexible tether and the onboard energy buffer for high 

powered manoeuvring thrust, missions of unlimited duration were possible in current speeds up 

to this limit. 

Midwater operation in currents beyond this would normally exclude the use of underwater 

vehicles of this size and manoeuvrability [13] and towfish are often used to provide high-coverage 

midwater habitat mapping [9]. However, given the full height stipes and canopy, coupled with the 

requirement for small-scale high-detail maps, towfish were unsuitable due to the lack of small 

scale manoeuvrability and the high risk of tangling. Instead, the surface vessel anchored upstream 

of the kelp bed and allowed the iROV to drift, either past or through the kelp bed, using its 

onboard thrusters for course corrections and controlling the downstream speed of the iROV using 

the strain-relieved tether. 

Finally, free-swimming midwater mapping with concurrent video feedback to the remote 

operator was demonstrated using vertical station keeping and course holding to navigate through 

kelp beds. When larger coverage was required, the surface support vessel either followed or 

towed the underwater vehicle at slow speeds between transect sites [14]. 
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7.3.6.2 Evaluation 

The habitat mapping was split into three objectives: delineation, bathymetry estimation and 

populating the map with stipe density. 

Surface vessel transects were often used to delineate the perimeter of the kelp beds, registering 

the boundary using GPS and allowing regions of interest to be defined for high-detail midwater 

mapping using the iROV. The significant effect of tides on the kelp stipes, both on the kelp bed 

perimeter and the angle of the kelp stipes was investigated with initial steps towards modelling 

the effect of tides (Figure 7.8). Techniques for bathymetric mapping of the kelp beds were also 

demonstrated (Figure 7.9), again using either the surface vessel or the iROV depending on the 

area to be covered. 

Finally, reliable and quantitative acoustic kelp detection was demonstrated using sonar fusion of 

the 852 and Delta T sonar units. Techniques for manual extraction of the kelp stipes were 

developed (Figure 7.11) which also allowed verification of later autonomous detection algorithms. 

While manual processing of sonar footage to extract the density of other kelp species is common 

[8, 19], the advantages of autonomous image processing providing a reduction of labour 

requirements and potential increase in accuracy were clear given the large areas to be covered. 

The 852 (Figure 7.13) and Delta T (Figure 7.17) image processing algorithms were adapted from 

those developed earlier for landmark sonar-aided SLAM to isolate and extract kelp stipes for 

mapping and parameterisation. As with landmark SLAM, the benefits of parameterisation are 

computational and memory efficiency, allowing a full reconstruction of the kelp bed map without 

having to store the memory intensive raw sonar scans. 

Techniques for registration of more than one overlapping scan, from both the 852 and Delta T 

sonar were developed (Figure 7.19), including metrics for evaluating the quality of registration 

(mean pixel intensity, maximum pixel intensity, thresholded pixel count). Using a common scan 

format, coupled with scale and attitude correction, registration of several scans from different 

positions, different sonars and even different days were all demonstrated (Figure 7.29). 

Exploiting the information gains from each sonar, including the different region of water imaged 

and the vertical discrimination of the Delta T, regions of kelp and seabed features were identified 

and delineated both manually (Figure 7.30) and basic autonomous techniques were also 

demonstrated (Figure 7.31). From this, the delineated regions of kelp were parameterised and the 

algorithm results evaluated against the raw sonar scans (Figure 7.32). 

The parameterised maps allow the calibration methods developed in section 7.2 to be applied to 

the open ocean kelp bed surveys to provide a quantitative estimate of kelp density. Additionally, 

the parameterised kelp maps enable the future work proposed towards using the kelp stipes 

themselves as navigational landmarks (section 8.1). 

This section has used two examples from the datasets gathered to demonstrate successful open 

ocean nearshore kelp mapping, compiling a map from two surveys conducted on different days. 

The holonomic axisymmetric survey technique was exploited and sonar fusion, together with 

techniques for autonomous map interpretation and kelp detection, served as a proof of concept 

of the benefits of using the iROV SeaBiscuit for nearshore habitat mapping. 
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7.3.6.3 Validation 

Ground truthing was performed across two stages, calibration and validation [20].  

Calibration against a known ground truth was used to confirm sonar target identification and to 

provide a quantitative estimate of kelp biomass / biovolume. The transplanted artificial kelp bed 

provided a known quantity and arrangement of fully dimensioned kelp stipes to validate 

detection, similar to the work performed by Zabloudil et al. for an alternative species (Macrocystis 

pyrifera) [8]. This allowed the manual detection criteria of kelp stipes to be verified and the sonar 

settings tuned with a known target presence [8]. However, the artificial kelp bed in this research 

also allowed development and verification of the autonomous kelp detection algorithms, used for 

later autonomous kelp bed surveys, and calibration of the sonar returns to a known biovolume 

and biomass of kelp at that height. With further calibration datasets to expand the model, this 

novel technique has the potential to apply real life kelp biovolume estimates to all previously 

gathered sonar kelp bed maps. 

Validation was performed during each survey, to verify the quality of data and interpretations and 

to resolve ambiguous target classification. Data quality verification included both identifying the 

number and position of stipes correctly, together with verification of localisation estimates used 

to register the sonar scans into an overall map. A combination of diver verification, concurrent 

video verification and camera drops / tows were used to verify habitat classification and to verify 

sonar target identification, in particular in areas of ambiguous targets or challenging conditions. 

The staged development in the confined environment, through to navigation off the piling dock 

and calibration of the sonars to the artificial kelp bed allowed comparison to a known ground 

truth at each stage of development. For the open ocean field trials, several validation techniques 

were employed to verify correct operation. 

Realtime video verification of sonar targets was possible for both the 852 and Delta T sonar when 

visibility and range permitted using the realtime feedback of video footage from the forward and 

downward facing cameras, as seen earlier in section 4.6.7. 

Diver kelp bed surveys, coupled with camera drops of the kelp beds were also used to provide 

verification. Ground truth positioning for calibration and verification of the scans was also 

performed using diver support as pictured in Figure 7.33 below. 

   
 

Figure 7.33 - Diver positioning of the vehicle at a series of known pre-measured positions at a known distance and 
orientation from the kelp bed was used to ground truth the kelp bed surveys and navigation. 

The vehicle was held at a series of pre-measured positions, referenced to the surface via marker 

buoys and thus to GPS, and a series of controlled known movements performed for comparison 

to the results obtained. These included holding stationary positions over a grid of known positions 

measured and marked on the seafloor in a known kelp bed arrangement, or performing a series 

of constrained scans, for example a 360° scan, or an oscillating pan, either stationary or any 
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combination of these while moving at a known speed between stations. Visual communication 

between the divers to the surface operator and the logged data for later reference of the 

operations performed was provided by the onboard cameras, which also allowed verification of 

the movements and sonar targets observed. It is this diver ground truthing which forms the basis 

towards sonar-aided SLAM from kelp discussed in section 8.1. 

7.3.6.4 State of the art 

The suitability of using a holonomic highly-manoeuvrable underwater vehicle for operating in the 

difficult and complex, often enclosed, hostile nearshore environment of kelp beds has been 

demonstrated. The manoeuvrability provided allowed detailed sonar and video scans to be taken 

at-depth and from within the kelp bed, thus increasing the coverage and detail when compared to 

surface vessel scans [8, 48]. It also allowed an accurate course to be transited despite external 

water movement. Holonomic movement and the axisymmetric shell allowed the directional 

sensors to be exploited and was used to extend the coverage of the limited-budget sensor suite to 

gather results typical of a much higher budget sensor. This included extending the 2D multibeam 

footage to register full 3D maps of the environment while the vehicle was independently in-transit 

[129, 130]. 

Through the results achieved from the field trials, an improvement in the coverage, quality and 

detail of the kelp bed maps gathered using the iROV has been demonstrated over SCUBA diver 

transects or kayak surveys [1]. iROV surveys provide time and labour savings when compared to 

other methods and fulfil the niche in between the level of detail provided by a manual diver 

survey and the speed of a surface vessel sonar survey [11]. Sonar mapping provided increased 

coverage over diver surveys [11], particularly in low visibility. This is of particular importance in 

the high biological intensity, therefore high turbidity kelp beds [49, 50]. Furthermore, sonar scans 

performed by an underwater vehicle rather than a surface vessel increase manoeuvrability and 

provide independence from surface conditions. It also allows horizontal scans to be taken through 

the kelp bed, station keeping, operation in shallow water and controlled movements with a lower 

risk of damage or tangling [13]. 

The compromise between the security and control of a tether with remote high-level operator 

control, realtime feedback & supervision and on-the-fly reaction to changing conditions provided 

a reliable nearshore survey method when evaluated against AUV/ROV techniques for nearshore 

habitat mapping in Chapter 2 [251, 252, 267-269]. Operational reliability was ensured in the 

dynamic conditions of the nearshore, and crucially data validity could be verified during 

acquisition. This avoided only discovering errors or reduced quality during post-processing, both 

costly in time and budget if a redeployment was required [11]. Coupled with the buffered high-

power holonomic thruster system, the benefits of an intelligent, position-aware iROV have been 

demonstrated for operation in the hostile nearshore environment. 

Long established [369] methods for estimating canopy forming kelp distribution still rely on 

surface vessel sonar surveys [8] using manual processing of results to estimate kelp density and 

distribution. Due to the survey method, which requires either the surface vessel to pass over the 

canopy forming kelp, or to image stipes from an oblique angle using side-looking sonar, clutter 

and occlusion cause inaccuracy in the kelp estimate in areas of high plant density, quoted as >20 

stipes / 100m² [8]. This is chiefly caused by the beam spreading of the surface mounted 

echosounders requiring a clear beam in between positive kelp returns to distinguish one stipe 

from another. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

307/347 

Instead, the iROV survey method, using a combination of scanning and multibeam sonar footage 

gathered from the midwater, was capable of distinguishing greater stipe densities using the 

adjustable range of each sonar, and vertical and horizontal discrimination. Small scale 

manoeuvrability was also used to mitigate the effects of occlusion. Surface sonar techniques also 

risk underestimating density for juvenile or small stipes [8], yet it is proposed that mapping from 

the midwater, with video verification provides a more reliable method to ensure all stipes are 

detected. 

Whereas other underwater vehicles utilise video for nearshore habitat mapping and classification 

[12], the combined dual-sonar and dual-video approach used on SeaBiscuit allows robust 

operation in a greater variety of environments, including turbid water, under the kelp canopy and 

with greater penetration of the kelp beds from the periphery, both increasing coverage and 

reducing the risk of tangling. More traditional AUV torpedo hull configurations for operation in 

the nearshore have a known susceptibility to significant pitch and roll due to wave action with a 

corresponding reduction in survey data quality [12]. However the high metacentric height [297] of 

SeaBiscuit coupled with the holonomic propulsion system and cylindrical hull minimised the effect 

of wave action, allowing station keeping and course holding in flows with the onboard inertial 

sensors used to correct for wave action. Habitat mapping was performed in the absence of 

acoustic navigation transponders and without environmental modification often used in the 

nearshore [11]. 

Surface canopy area is used to describe the distribution of kelp, on a scale typical of an entire kelp 

bed or series of kelp beds [369]. On a smaller scale, at higher detail, the distribution of kelp is 

presented as an averaged density surface, with the resolution varying with the application, 

typically as stipes per 100m² [8]. On a smaller scale again, the results of diver surveys and manual 

video processing are typically processed at 10 second intervals along an assumed constant diver 

transect speed between two surface markers, with the stipes visible in each video frame counted 

assumed to be a 4m² area using a SCUBA diver for scale [1]. However, the assumed swim speed 

and course, lack of a position reference, visibility dependent observability, grouping of several 

clustered stipes into a single target and lack of stipe size measurement all present opportunities 

for accuracy improvements using the iROV, coupled with the benefits of coverage, detail and 

labour reduction from autonomous processing. 

Using the iROV method, kelp bed area and stipe density as an averaged surface are both possible, 

yet with a proposed higher detail from midwater scans. Furthermore, at the very high-detail level 

to augment the diver video surveys discussed above [1], the iROV allows surveys of this detail, 

with stipes registered with a positional accuracy of <1m, yet with a coverage of >20m per scan, a 

continual position estimate and realtime video footage for verification using the method 

discussed above [1]. 

A relative measure of stipe diameter is also provided using the iROV method, allowing clustered 

stipes to also be quantified. The calibration techniques discussed in section 7.2 provide a method 

to convert this relative measure to a real life estimate of kelp biomass / biovolume as the 

calibration dataset is extended. 

Although the capital cost of an underwater vehicle is high, through the exploitation of sensors for 

both habitat mapping and navigation and the hybrid iROV techniques, the cost of SeaBiscuit has 

been minimised, and is significantly less than vehicles of a comparable specification and 

functionality [14]. When compared to the commercial costs of diver surveys, quoted at up to $10k 

per day [11], the financial benefits of the iROV for habitat mapping can also be seen. 
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Chapter 8 Conclusions and Future Work 

Practical evaluation of existing techniques for nearshore habitat mapping throughout four field 

seasons has provided a demonstration of the limitations of existing solutions as well as an insight 

into the dynamic conditions and challenging environment of kelp beds. The extensive literature 

review in Chapter 2 into existing methods and applicable techniques from similar fields, coupled 

with the field trials of Hawthorne 2.1 described in Chapter 3, informed the development of a 

solution to this challenging problem. 

The iROV SeaBiscuit, described in Chapter 4, exploited hybrid techniques from the fields of AUVs 

and ROVs to provide a robust solution for mapping the challenging kelp bed environment. A 

hybrid control architecture, combining onboard position-awareness and low-level autonomy, 

allowed survey data to be registered with a position reference and relieved the operator of 

station-keeping and course-holding. Data validity in dynamic conditions of tide, waves, visibility 

and kelp density was ensured by remote supervision and realtime data feedback. Robust, reliable 

high-level control was provided by maintaining the operator-in-the-loop. A hybrid power-supply 

also provided the unlimited mission duration and security of a tethered vehicle, with the high-

powered manoeuvring thrust required to navigate reliably in and around the full height kelp 

stipes despite currents. 

Designed on a budget feasible for small-scale research teams, and utilised for three field seasons 

by the Coastal Ecosystems Research Foundation in Canada, SeaBiscuit was designed to exploit the 

maximum benefit from a limited budget. The complementary axisymmetric hull, holonomic 

propulsion system and sonar-fusion allowed 3D mapping while in transit, with station-keeping and 

course-holding provided independently of panning the directional sensors over the kelp stipes. 

Utilisation of the same sensors for navigation as well as mapping was developed in Chapter 5 and 

later demonstrated off a piling dock. 

Sensor fusion provided benefits over using a single sensor, or using sensors in isolation. These 

benefits included combining drift-free navigation with the robustness and availability of idiothetic 

information, the combination of detail and coverage by fusing sonar for detection and video for 

identification, the extended coverage and resolution in 3D realised by sonar fusion and bridging 

the air-water boundary to register sonar targets with an absolute GPS position. 

A staged series of field trials of increasing complexity guided the development of the iROV 

SeaBiscuit while ensuring reliable progress as described in Chapter 6 and Chapter 7. These began 

as confined water trials with the addition of basic mission planning algorithms demonstrating a 

move towards autonomy at the SAUC-E competition. Following confined water trials, the benefits 

of sensor fusion and SLAM were shown in the sheltered waters of the dock survey and mapping 

application, allowing the sonar feature extraction algorithms to be tuned to autonomously detect 

and map underwater vertical targets. Successful simultaneous localisation and mapping off the 

dock demonstrated the capabilities of nearshore navigation using a combination of sensors to 

provide drift free reliable underwater navigation. 

The move towards kelp bed mapping started with calibration and verification of a known 

arrangement of kelp stipes to ground truth the sensors and mapping algorithms, detailed in 

Chapter 7. Following this, several successful field trials deploying the vehicle in a variety of 

conditions demonstrated the capability and benefits of kelp bed mapping using an iROV. 

Techniques were developed and demonstrated to delineate the kelp bed perimeter, to map the 

bathymetry while correcting for tide height and to map the density and distribution of kelp stipes 
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using co-registered data from the Delta T multibeam and 852 scanning sonars. Methods were 

proposed to calibrate the acoustic data to an estimate of kelp biomass and biovolume using the 

artificial kelp bed. Validation and verification of the results were also explored, using realtime 

video validation of sonar target classification and ground truthing using diver surveys and camera 

drops / tows.  

Compared to the existing field of nearshore habitat mapping, the iROV SeaBiscuit provided a 

compromise between detail and coverage which was ideally suited to navigation in the kelp beds 

of Nereocystis luetkeana. A significant increase in coverage was demonstrated over diver surveys, 

with financial savings and an unlimited survey duration. Data gathered using video was of a 

comparable detail to that gathered by the divers, yet a continuous position estimate was 

provided. However, sonar fusion provided high coverage rates of data co-registered with video, 

with a quantitative estimate of the position and size of each stipe or cluster of stipes. 

Although acoustic mapping from surface vessels provided high-coverage surveys complementary 

to the iROV surveys, the level of detail available from midwater mapping using the iROV was 

much greater. Data was acquired free from the occlusion and restrictions of imaging through the 

kelp canopy, and without the movement and shallow water restrictions of a surface vessel 

transecting through the kelp bed. Furthermore, small-scale manoeuvrability provided data with a 

greater spatial resolution and reduced the effects of occlusion, decoupling the survey data from 

surface conditions. 

Several general opportunities for further development were identified earlier. These included 

improvements to the known limitation of the existing thrusters to yield more efficient operation 

and a higher thrust to allow surveys and station-keeping in higher currents. Improvements to the 

ruggedness of the prototype vehicle to allow reliable deployment, operation and recovery in the 

open ocean conditions are also required. In future, as either the mapping requirement dictates or 

budget permits, the addition and integration of either further or alternative sensors is also 

straightforward due to the inherently scalable algorithms and software. Through the matrix 

orientated SLAM and sensor fusion algorithms, provided any additional sensor is properly 

characterised, integration can be as simple as another element in the matrix or recursively fusing 

an additional sensor measurement to incorporate the benefits.  

However, as a proof of concept of the benefits of iROVs for nearshore habitat mapping, the 

current iROV prototype SeaBiscuit has been proven successful through a staged series of field 

trials. Several opportunities for further research are identified below towards full-scale open 

ocean kelp bed mapping, together with several further applications of the iROV. 

8.1 Autonomous kelp scan registration 

In section 7.3.4.3.3, the technique for registering (mosaicking) several overlapping sonar scans of 

the kelp bed to form a larger overall map comprised of several scans was described. During the 

initial kelp bed deployments, this registration was performed manually during post-processing, 

using the GUI shown in Figure 7.19. This GUI presented the operator incrementally with a series of 

sonar scans, allowing different scans to be toggled and registered onto the overall compiled map. 

The x and y position of scans could be adjusted and the yaw angle corrected to optimise 

registration. The estimated vehicle position for the time when the scan was taken was used to 

bound the search space for registration and a variety of metrics were used to evaluate the quality 

of fit and to confirm the optimum estimate of registration. Registration was compounded by 

errors from either dynamic targets, movement of the flexible stipes either between scans and/or 
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during a scan and uncorrected vehicle movement during a scan. Manual registration was 

demonstrated for several kelp bed scans in section 7.3.5 as an initial solution to compiling kelp 

bed maps. 

However, the opportunity for autonomous kelp scan registration has the potential to reduce 

error, reduce labour requirements by eliminating manual processing and to allow the realtime 

compilation of a kelp bed map during a survey. Bounding the search area from a global search 

with an initial ‘best guess’ of the registration using the estimated vehicle position, to a far 

computationally simpler local search, is equally applicable to autonomous registration. The extra 

step required is the algorithm to autonomously evaluate the different possibilities of registration 

and use the ‘quality of fit’ metrics to select the optimum registration. 

Techniques to estimate the relative vehicle movement from successive sonar scans are already 

well established, including probabilistic techniques specifically optimised for mechanically 

scanning sonars [124, 125]. An opportunity for future work is to develop these algorithms for the 

dual sonar geometry of SeaBiscuit using the combination of the 852 scanning and Delta T 

multibeam sonar, specifically for operation in the kelp beds. Autonomous registration of 

successive sonar scans enables the exciting opportunity of ‘SLAM from kelp’ or using the kelp 

stipes themselves to aid navigation. 

Using the probabilistic framework for SLAM and sensor fusion developed in Chapter 5, it was 

proposed that any piece of navigational information could be used to further knowledge, if it was 

correctly characterised. Dynamically estimating the uncertainty of position estimation from the 

kelp stipes during operation is required, in order to correctly weight any localisation information 

inferred from the kelp stipes. 

The targets are non-uniform, of varying size and far from being in a regular ordered pattern. Not 

only do the kelp stipes tangle and clump together, but unlike a dock piling, the kelp stipes sway 

back and forth in waves, currents and tides. This effect can cause the kelp stipes to appear as 

dynamic objects. The exceptions to this are in calm water, when the kelp stipes remain still 

enough for the duration of a survey that they can be used for navigation, or when the current is 

strong enough, and steady enough in direction and magnitude that the stipes are pulled in a 

single, repeatable and constant direction. 

In these cases, the kelp stipes may be static enough to navigate from. A sonar scan at the surface 

can relate a known arrangement of stipes to the world coordinate system using GPS and then the 

vehicle can dive and the underwater scan can begin. A sustained current providing repeatable 

navigation from kelp stipes can be verified by surfacing regularly to compare the positional 

estimate with a GPS update and by monitoring the relative position of stipes with respect to each 

other to detect random, turbulent or periodic flow. 

An apparent shift in position of all of the kelp stipes can be compared to short duration 

accelerometer readings to decide if it is a shift in the position of the vehicle, an external water 

movement shifting the kelp bed, or a combination of the two. An apparent positional change of a 

single area of kelp stipes can be interpreted as external water movement, these targets can then 

be regarded as dynamic and not used for navigation. In this way, even in high currents, provided 

that the currents are sustained and relatively constant, the kelp stipes themselves can be used for 

brief navigation and localisation, to correct for drifting INS data in between GPS updates. 

Initial work towards investigating the feasibility of SLAM from kelp was performed during the 

2011 field season which included generating a ground truth dataset of a kelp bed using diver held 
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positions. The next stage considers the processing of this ground truth data to investigate the 

feasibility of recognising patterns of kelp stipes as navigational landmarks. As with the dock survey 

and mapping, sonar-aided SLAM has the potential to provide drift free position information to 

reduce positional uncertainty when surveying and mapping the kelp beds. 

8.2 Kelp modelling 

In section 6.3.5, the dimensioning and arrangement of a series of five kelp stipes was described to 

provide an ‘artificial’ kelp bed of known characteristics to calibrate the sonars. Within the main 

document, the target strength (recorded as intensity on the sonar bitmap) at different ranges, 

gains, depths and angles was used to generate a calibration dataset. This lookup table related a 

given sonar intensity under the specified conditions to a corresponding amount of kelp (gas 

pocket cross sectional area, biomass and biovolume) in the current horizontal plane imaged by the 

swath. Provided the same horizontal height was maintained throughout a survey, this allowed 

relative comparisons to be made. 

An opportunity for further work seeks to create a generalised model for kelp stipes, to allow 

interpolation within the calibration lookup table already created. If a sufficiently reliable and 

accurate model is possible, this could also allow an observed biovolume / biomass at the current 

depth, coupled with vehicle altitude and water depth to be extrapolated to estimate the overall 

kelp stipe biovolume / biomass which would relax the requirement of operating at a constant 

vertical height. This generalised model could then be applied to all Nereocystis luetkeana kelp in 

open ocean scans to augment and correct measurements from the Delta T sonar over the entire 

vertical height of the kelp stipes. 

8.3 Dynamic evaluation of sensor noise and uncertainty 

The nearshore environment is highly dynamic and environmental conditions can change quickly 

with little warning. The aim of future work is to develop a dynamic model of sensor uncertainty, 

which can adapt on-the-fly while a mission is in progress to autonomously adjust the uncertainty 

characteristics in response to changing environmental conditions. 

This allows the navigation algorithm to respond to changes in environmental conditions and 

reactively shift the weighting of the sensor fusion algorithms to ensure the most reliable and 

robust navigation at all times, despite dynamic environmental conditions. Robustness and 

reliability is gained over assuming that a single static model of sensor uncertainty is valid for all 

conditions; an improvement in navigation accuracy will result from the optimal weighting of each 

sensor by the sensor fusion algorithms. Additionally, the navigation and mapping algorithms will 

be aware of the variation in overall localisation uncertainty caused by the variation in 

environmental conditions and can act accordingly. 

For each sensor, techniques need to be developed to autonomously estimate the sensor noise 

and uncertainty. For some sensors, for example the compass, this is relatively straightforward and 

a low-level evaluation of sensor noise can be applied – the compass output can be monitored for 

a known yaw angle measured by another mode of sensing, for example the INS or 852 sonar. 

However, for more sophisticated sensors, such as the cameras and sonar units, more complex 

high-level autonomous evaluation of noise and uncertainty are required. As environmental 

conditions change, the weightings are adjusted, for example: 

 turbid water (murky so lower weighting of vision) 

 turbulent water (increased sonar noise) 
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 magnetic disturbances (reduced magnetometer accuracy) 

For the cameras, a reduction in light level and an increase in water turbidity can be detected 

which will both serve to increase visual uncertainty. For the sonar units, increasing sea-state, 

operation close to the water surface and long range landmarks will all increase uncertainty. 

Finally, for the accelerometers, long, gentle slow movements will all increase uncertainty through 

undetected drift. The equivalent high-level evaluation of noise and uncertainty for the earlier 

compass example is to detect operation in rough seas using the INS which will affect the 

gimballed compass. Additionally, sonar scans and deviations in orientation between the 

gyroscopes and compass can be used to detect when the vehicle is in close proximity to large 

ferromagnetic objects, for example the surface support vessel or underwater structures. 

If a sensor is deemed either to have failed or to be temporarily unusable due to a change in 

conditions, then the bias can be adjusted to zero so as to ignore that sensor. The failure of a 

sensor which is still generating measurements but which are incorrect (the opposite to fail-silent 

behaviour) can be detected through the co-registration of common states between sensors. If 

sensing redundancy exists, the mission can continue despite failures. 

8.4 SLAM controlled sensor focussing 

The benefits of extending the coverage of directional sensors using the complementary navigation 

and holonomic propulsion capabilities were explored earlier in this document. These included the 

ability to extend the coverage of the 2D forward facing Delta T multibeam sonar towards the 

results available from a 3D imaging sonar, as well as the ability to independently orientate and 

pan the directional sensors independently of the vehicle’s course or transect. 

At present, high-level control of the sensor orientation, scan mode and vehicle movement is 

performed manually with low-level autonomy. This means the operator selects the vehicle course 

(the translation direction) and the vehicle heading (the angle the vehicle will face while transiting 

this course, or the movement while transiting, e.g. an oscillating pan or slow rotation) and the 

vehicle carries out these movements using feedback from the navigation sensors (INS, compass, 

depth, etc.) to close the feedback loop. 

In developing the autonomy of the vehicle for operation in the nearshore while maintaining the 

security of remote high-level control and supervision, one exciting area of research is SLAM 

controlled sensor focusing. This allows the autonomous navigation algorithms to influence the 

direction of the sensors to autonomously seek to reduce ambiguity about the information 

gathered or the map created. 

To consider an example: if the vehicle is transiting through open water seeking to map its 

surroundings with no a priori information, then typically the Delta T will be facing forward to 

provide information on the bathymetry and for collision avoidance, and the 852 sonar will be 

continually scanning around the vehicle every 6 seconds. 

If an object is detected on the 852 sonar, the sector of interest of the 852 sonar can be 

immediately reduced to focus on this object, reducing from the full 360° to for example ±45° 

about the object with a corresponding increase in update rate to 1.5 s. This increase in update 

rate provides faster feedback, and reduces mapping uncertainty. An occasional full 360° scan can 

still be performed intermittently to ensure no other objects are missed. A second stage can then 

be to pan the vehicle and the forward facing Delta T sonar (including the forward facing camera if 

in range) over the object of interest while still transiting the original course. 
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In principle the sensors, holonomic movement capability and software frameworks are in place to 

achieve this SLAM controlled sensor focusing and it is already performed manually to some extent 

by the remote operator. The additional autonomy required to enable this is an exciting 

opportunity for development of the control architecture. 

8.5 Active buoyancy control 

Efficiency benefits can be realised by coupling the vertical thrust system with an active buoyancy 

control system. A buoyancy control system will eliminate the difficulties of trimming the buoyancy 

and vehicle attitude each time a peripheral is changed (such as a new sensor or actuator), or the 

vehicle moves from saltwater to freshwater operation, and will also yield efficiency gains. The 

existing fixed buoyancy provides a small positive buoyancy for reliability, which is continually 

countered with a small amount of downward thrust. However, if reliability can be achieved 

otherwise, then a buoyancy control system can provide vertical station holding and depth control 

using changes in buoyancy rather than thrust. This will yield significant energy savings, particularly 

for vertical station keeping when the energy expenditure to hold a position is zero. 

The optimal solution to provide long-term efficient vertical station keeping while maintaining the 

instantaneous high-thrust required for manoeuvring in the nearshore environment is a hybrid 

system coupling the benefits of both a buoyancy control system with a vertical thruster system. In 

this way, manoeuvring and reaction to sudden water movements can be provided by the 

thrusters while the buoyancy control system provides long-duration station keeping. 

8.6 Further applications 

Given the delineated kelp bed, the underlying bathymetric data and the density and distribution 

of kelp stipes, the further development of the map depends on the application. This can include 

further sonar and visual surveys, the addition of species identification by diver surveys and towed 

nets, or benthic composition from ponar grabs. Two studies being supported are an investigation 

of the underwater acoustics of kelp beds and the corresponding navigation of grey whales by 

ambient noise, and a study of the density and distribution of mysid shrimp in the kelp beds, the 

food source of the grey whales as introduced in Chapter 2. 

 Kelp bed acoustics 8.6.1

Grey whales are known not to use active echo-location like other marine mammals and are 

thought to navigate using ambient noise [1, 41]. Research is underway into the underwater 

soundscape in proximity to and within kelp beds, including acoustic transmission and attenuation 

through the kelp beds [1]. In each case, the density and distribution of the surrounding kelp bed is 

required to be able to correlate any acoustic measurements made. Both the overall general map 

of the kelp bed is important, but also high-resolution transects in specific regions. 

Figure 8.1 shows a typical experimental setup for acoustic transmission experiments through the 

kelp bed. In these experiments, a known acoustic signal was broadcast from a known point and 

the received signal was recorded for analysis at a series of known distances away. The attenuation 

of different frequencies can be compared to the density and distribution of kelp along the 

transmission path. For this experiment, the blue circles show the centres of 4 scan locations 

where high-resolution 2D maps, of the form shown in Figure 7.17 earlier, were generated of the 

distribution of the kelp stipes to provide an indication of the transmission pathway. All points 

were GPS referenced and were recorded at equivalent tides to ensure repeatability. 



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

315/347 

From the kelp bed maps created to support the acoustic research, significant benefits from the 

iROV survey method were seen. Compared to surface observations using kayaks and handheld 

GPS units [1], the actual midwater stipe position was measured using the iROV rather than surface 

canopy position. Compared to surface vessel sonar scans, the iROV provided a more directed, 

controllable sensor platform which could be positioned accurately and manoeuvred within the 

kelp bed easily. As with other applications, when compared to diver transects, significant time and 

labour savings from using the iROV were seen, allowing for a greater coverage with the same 

resources [1, 11]. Through the optimal compromise of a tethered, yet intelligent iROV, the 

underwater vehicle was capable of surveying and mapping continuously without interruption for 

extended periods of time and manoeuvring to a new site without requiring recovery and 

redeployment. 

Leeke Island Kelp Bed – Acoustic Transects
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Figure 8.1 - An experimental setup for acoustic transmission experiments in the Leeke Island kelp bed. Green dots 
mark an approximate perimeter of the Leeke Island kelp bed, pink markers show the source of several transmissions 
and the yellow markers show corresponding receiver stations [1]. For this experiment, the 4 blue circles show the 
centres of 4 scan locations where high-resolution 3D maps were generated of the distribution of the kelp stipes to 
provide an indication of the transmission pathway. 

 Density and distribution of mysids 8.6.2

Grey whale feeding ecology studies [3, 40] are investigating the temporal and spatial relationship 

between the distribution of grey whales, the distribution of kelp and the distribution of mysid 

shrimp, the food source of the grey whales. The kelp bed maps are a useful tool for supporting 

research into the population distribution of mysid shrimp which occupy the kelp beds. Other 

studies have demonstrated detecting swarms of mysids with a 110kHz and 220kHz single beam 

echosounder using surface vessel surveys [2]. Post-processing software was developed in 

conjunction with Feyrer [2] to extract the mysid density and to co-register it with the surface 

vessel track information to convert the density estimate to a mapped distribution of mysids. 

Future work could include overlaying the mapped distribution of mysids onto the kelp bed map 

for analysis of the density and distribution of the grey whale food source on a temporal and 

spatial scale. 

As the mysid swarms are often found close to the seabed, in 10+ metres of water with poor 

visibility, visual validation that the target being insonified is actually a mysid swarm is not possible 
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from the surface vessel surveys. Instead validation presently relies on net drops and diver surveys 

in the coarsely approximate area. 

The modular hardware and software design of SeaBiscuit allows straightforward integration of 

other instruments such as these 110/220kHz echosounders. Surveys can then be performed from 

the midwater, with a corresponding increase in detail and manoeuvrability within the complex 

kelp bed environment, independent of any constraints of the surface vessel. The attitude and 

position of the vehicle is continually recorded allowing the mysid data to be registered on a 3D 

world coordinate system map with the kelp bed map. On-the-fly target validation of mysid 

swarms using realtime video feedback is also possible. 

Promising initial results using the 260kHz Delta T multibeam sonar currently fitted to SeaBiscuit 

for mysid detection have been demonstrated in the 2012 field trials. Using the same multibeam 

sonar simultaneously for kelp mapping, mysid mapping and to aid navigation minimises the 

overall cost, but also automatically co-registers all maps. 

Figure 8.2 below shows an example sonar scan using the Delta T multibeam sonar mounted on a 

keel pod on the surface support vessel as an initial demonstration of mysid detection at 260kHz. 

Although full 3D water column data was gathered, for simplicity here the results are presented as 

an echosounder plot using the central beams. Water depth is on the vertical axis, time is on the 

horizontal axis and the backscatter intensity is represented using the pixel intensity as shown. The 

surface vessel was instrumented using the navigation sensors and algorithms from SeaBiscuit for 

positioning in 3D. The visual display of backscatter intensity is shown with a mysid swarm 

highlighted above the seabed. The strong continuous red line of high intensity is the seabed, the 

largely white area above is the midwater. The position of the surface vessel was recorded with a 

synchronised timestamp to allow the swarm density to be mapped, and estimates of the biomass 

/ biovolume to be generated. 
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Figure 8.2 - Mysid swarms, detected with the Delta T sonar in an area free from kelp, are highlighted on the two 
scans adjacent to the seabed. These were gathered with the Delta T sonar keel-mounted on the surface vessel facing 
downwards, with attitude and position registered using the navigation sensors from SeaBiscuit. The central beams of 
the multibeam return were used to form the echosounder plot as shown. The backscatter intensity scale is shown, 
with the display gain increased for printing. 
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Similar results are proposed with SeaBiscuit and mysid specific survey data has been gathered in 

several of the kelp beds surveyed in 2012. Using the iROV trades reduced survey coverage for a 

greatly increased small scale manoeuvrability and also allowed target corroboration using video. 

Using the onboard cameras fitted to SeaBiscuit, any potential echosounder return could be 

quickly verified by the operator visually to ensure the correct target classification. Realtime 

autonomous extraction of mysid density from video footage is still in development. Figure 8.3 

shows a set of example images during a mysid sampling dive, and Figure 8.4 shows a series of 

images detailing the mysid swarms. 

 
 

 

Figure 8.3 - Two sample images captured using SeaBiscuit showing the mysid sampling process using a net. By co-
registering video and sonar data in both time and space, with a continual log of position as the mysid sampling is 
carried out, the density and distribution of mysids from the sample area can be mapped. 

 

 
 

 

 
 

 

Figure 8.4 - Four sample images captured using SeaBiscuit showing the density and distribution of mysids extending a 
few metres above the seafloor in regions of kelp and rocky pinnacles. The swarm boundary can be delineated by 
video and the pressure sensor, and the extent mapped in a similar manner to kelp stipes using visual and acoustic 
techniques. 
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Appendix A Standards 

One of the design concepts of SeaBiscuit was flexibility to adapt between operating modes, 

environments, applications and to support additional peripherals and sensors. To enable this 

flexibility, as well as allowing the power, navigation, control and propulsion suite of SeaBiscuit to 

be applied to other vehicles, a series of standards were developed over the course of this 

research. These standards defined electrical, mechanical, and software protocols and interfaces, 

adapting recognised best practice to the underwater environment allowing components to be 

easily interchanged in the field, or redeployed in other applications. For example, the navigation 

suite of SeaBiscuit was regularly used to augment the navigation suite of the research vessel 

Stardust, and there are plans to deploy it to other underwater vehicles developed in the Ocean 

Technologies Laboratory at the University of Bath. 

The three most applicable standards for reuse throughout the vehicle, and beyond to other 

underwater vehicles and instrumentation are the standards developed for underwater peripheral 

interfaces, inter-device communications and the tether. These three are detailed in the following 

sections.  

A.1 Peripheral interface 

A 4 pin waterproof connector was used as a general peripheral interface providing power to the 

USB bus and peripherals at 5V DC at up to 6A per root host connector (on the main computer 

tube). The USB bus allowed devices to be multiplexed using USB hubs, and non-USB peripherals 

(RS232 and RS485) were easily converted to USB using commercial off the shelf converters. The 

USB bus provided sufficient bandwidth (480Mb/s) for multiple video streams. The typical power 

limitation of USB (0.5A) was overcome by replacing the USB controller supplied current with a 

high-current (6A) 5V line. Peripherals included machine health USB DAQ boards, cameras and 

RS232 and RS485 sensors & motor controllers via converters. 4 pin waterproof bulkhead 

connectors used male pins, peripheral cables used sockets as shown in Figure A1 below. Blanking 

plugs are available for each. 

5V DC 6A (High-current USB Bus power)

Power ground

USB Data +

USB Data -  

Figure A1 - 4 pin USB peripheral interface (connector images adapted from [370]). Dimensions shown are in mm 
except the imperial thread. 
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A 6 pin revision to include 12V at 6A was developed for devices which required higher power than 

the 5V 6A from the 4 pin standard defined above. This was used for the 12V NMEA peripherals 

(e.g. compass). The pinout is shown below in Figure A2. 

5V DC 6A (High-current USB Bus power)

Power ground

USB Data +

USB Data -

12V DC 6A (High current device power)

12V Power ground

 

Figure A2 - 6 pin USB peripheral interface with 12V power line (connector images adapted from [370]). Dimensions 
shown are in mm except the imperial thread. 

A.2 Communications interface 

For higher bandwidth peripherals, an Ethernet interface was used for the multibeam sonar, inter-

computer communication and developed later to the surface tether. Auto-configuring MDI/MDIX 

(straight through Ethernet or cross-over wired cables) switches were used. Ethernet used 4 

connectors and the remaining 4 were used to transmit 24V and 12V power for Ethernet 

peripherals (e.g. the 24V multibeam Delta T sonar). This was limited to 6A by the waterproof 

connectors and where standard Category 5/6 cabling was used, limited to 0.5A per cable. The 

pinout is shown in Figure A3 below. 

Ethernet RX+

Ethernet RX-

24V DC 6A

24V DC 6A Ground

Ethernet TD+

Ethernet TD-

5V DC 6A

5V DC 6A Ground  

Figure A3 - 8 pin Ethernet communications interface with 24V and 5V power lines (connector images adapted from 
[370]). Dimensions shown are in mm except the imperial thread. 
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A.3 Tether 

The 8 pin Ethernet standard developed above was extended to provide the communications link 

for the tether. The power and communications tether was split into distinct cables to reduce 

interference, and to allow operation with just power, just communications or the full combined 

tether. This also allowed inexpensive cable to be used for the tether (6A 4-core mains flex and 

standard Category 5/6 Ethernet cable, often bound together to form a single tether with strain 

relief and flotation). This inexpensive cable was used in lengths of up to 100m (determined by the 

Ethernet specification for communications, and by voltage drop for power). Tether lengths over 

100m are possible using Ethernet repeaters, fibre optic transceivers and DC-DC converters but are 

not currently implemented. 

There was no need to separately stream video over expensive and fragile coaxial cable, as 

multiple video streams could be encoded, streamed and archived over Ethernet for lossless 

transmission to multiple clients. 

The pinout for the communications cable is shown below in Figure A4. Standard Ethernet signals 

were transmitted over 4 of the cores, and the remaining 4 cores were used to provide low-level 

(computer independent) communication of a remote reset of the computers, remote toggling of 

the power to the vehicle and a remote power good indicator for diagnostics. 

Ethernet RX+

Ethernet RX-

Diagnostic Ground

Remote Computer(s) Reset Switch

Ethernet TD+

Ethernet TD-

Remote Power Switch

Remote Power Good Indicator

 

Figure A4 - 8 pin Ethernet tether interface with low-level power, diagnostic and reset lines (connector images 
adapted from [370]). Dimensions shown are in mm except the imperial thread. 

As mentioned above, power was transmitted using a separate optional cable with a distinct 

connector, as shown in Figure A5 below. In some circumstances, for example for short mission 

durations when high tether flexibility was required, the power tether could be removed, using just 

the lightweight highly flexible communications tether. However, in the nearshore environment, 

this was rare. 
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15-38V DC Supply (Motor 24V circuit)

15-38V Ground

13-18V DC Supply (Computer 12V circuit)

13-18V Ground
 

Figure A5 - 4 pin power tether interface with combined charge and supply lines for the 15-38V (27.6V nominal) motor 
circuit and 13-18V (13.8V nominal) computer circuit (connector images adapted from [370]). Dimensions are in mm. 

The 4-core 6A cable provided two power circuits. This separate power supply system isolated the 

sensitive computers, sensors and signal processing from any noise introduced on the motor 

circuit, and ensured data and mission integrity if the motor batteries were inadvertently 

exhausted faster than they could be recharged. 

DC-DC converters onboard the vehicle allowed a flexible supply voltage to be used, allowing the 

system to be charged from an alternator output or battery bank and mitigating any effects of 

voltage drop in the tether. 

A series of relay isolators disconnected the pins on the rear of the vehicle when the tether was 

unplugged preventing electric shocks and avoiding electrolysis of the pins. This allowed the tether 

to be removed or refitted underwater. Blanking plugs were available. 

 

  



Developing a holonomic iROV as a tool for kelp bed mapping  Benjamin Williamson 

336/347 

Appendix B Power distribution system 

Figure B1 on the following page details the circuit diagram for the motor power distribution 

system (PDS). Working from the left hand side (the tether) to the right (the vehicle), the systems 

are detailed as follows: 

The surface tether supplies DC power over the range of 15-38V at a 6A maximum determined by 

the tether cable and connectors, fused on the surface. The input passes through a high efficiency 

(90%) DC-DC converter which provides a stable 13.8V output. 

The surface isolator relays disconnect the entire downstream (vehicle side) of the circuit from the 

exposed tether connector on the rear of the vehicle until the tether power source is connected 

avoiding electrolysis of the pins on the rear of the vehicle. 

The dual battery system has an 80A fuse to protect the high current output and lower current 

fuses to protect the lower current circuitry (represented by the thinner wires in Figure B1). The 

batteries are charged separately as 12V units for safety and to maximise the life of the batteries. 

Charging is controlled using a PICO UPS 120 battery charger [371] configured for a 1.2A constant 

current, constant voltage charge which bulk charges the batteries quickly, then maintains them on 

a float charge. 

The relay labelled centre breaker in Figure B1 separates the batteries for charging at 12V when 

the surface power is applied, and reconnects them in series to provide 24V to the motors when 

the surface power is disconnected. 

When the surface power is connected, as well as powering the battery chargers, the batteries are 

disconnected from the load to avoid them being discharged during charging. The small remainder 

of the 6A supply current not being used for charging the batteries is available for manoeuvring the 

vehicle in a specific low power mode where motor thrust commands are limited. Should full 

manoeuvring thrust be required, the surface charge is quickly toggled by a single switch on the 

surface station. 

Finally, the output, either from the surface power supply or the batteries is controlled by a double 

pole relay isolator to disconnect the supply to the vehicle. These relays are toggled by a reed 

switch operated by magnets from the outside of the vehicle. This can be operated by a diver for 

safety, and the motors can be isolated for servicing without interrupting the supply to the 

computers. 

The output of the isolators is distributed to the motor drivers via a fused distribution block. 

Individual fuses prevent a fault with one thruster from affecting the redundancy of the vehicle 

propulsion. 
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The computer power distribution (PDS) is a simplified version of the motor PDS. As the peak 

current is much lower, all circuits are rated at 6A with lower rated relays, cabling and fuses. The 

structure of the circuit is the same, but as the computers are configured to run off a 12V bus, a 

single battery, single battery charger and single low-voltage disconnect are used, removing the 

need for the relay labelled centre breaker in Figure B1. 

The low voltage disconnect for the motor batteries was implemented through the machine health 

system, warning the user when the motor battery voltage reaches a low-level at risk of damaging 

the batteries. 

As the current draw of the computers is lower than that of the motors (<6A) the Vout terminal of 

the PICO UPS battery charger board [371] was used to supply the computers, providing a 

continuous power supply to the computers when the surface tether was connected and 

disconnected. Any interruption would cause the computers to reset and so a smooth supply was 

essential. Through the MOSFET design of the PICO UPS units, there is no interruption to the 

power (switching time 100ns [371]). 

The higher current motor circuit tolerates a momentary break in power to avoid the need to 

potentially sustain a 24V 80A load. This would otherwise either require large and expensive power 

electronics, or a large and therefore bulky smoothing capacitor to sustain power during the relay 

changeover. 

The computer PDS uses the same arrangement as the motor PDS of surface isolator relays, a 

charger disconnect and overall isolators controlled by the reed switches on the rear of the vehicle. 

For safety, the remote low-level power switch can only be toggled using the diagnostic lines on 

the tether when the magnets controlling the reed switches are inserted. The output still goes to a 

fused distribution block, however rather than high current motor drivers, the outputs are the 

computers, networking and signal processing equipment, with DC-DC converters stepping from 

12V down to 5V and up to 24V for the various buses required.  
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Appendix C Navigation sensor probabilistic characterisation 

Probabilistic characterisation of the pressure sensor and Xsens accelerometers are presented 

below as further examples to those in the main document. 

C.1 Pressure sensor calibration & characterisation 

Calibration of the pressure sensor was performed for the mounting position on the vehicle, and to 

relate the output voltage to submerged depth (incorporating pressure, salinity, temperature). 

Constant values of an average salinity of 3% and an average temperature of 11°C were assumed 

and verified regularly. As with other sensors, different operating conditions required recalibration. 

The pressure sensor was characterised by taking a static evaluation of the noise measured by the 

sensor in a tank of still water with all other electrical systems running. Calibration was performed 

by lowering the vehicle to depths measured by an external reference (tape measure) while 

recording the voltage change. The measurement probability was thus determined for the state 

being a certain depth, given the voltage observed from the sensor. 

Noise and therefore uncertainty was present from a number of sources including, nonlinearities 

inherent in the sensor, electrical noise, water height fluctuations caused by waves and movement 

of the vehicle (although this was mitigated as far as possible by shrouding the sensor inside the 

fibreglass hull). 

Figure C1 below shows the raw pressure measurement over a 15 minute duration, which is 

plotted as a histogram on the right. Gaussian noise was verified and the data approximated by the 

normal distribution function shown in red. 

 

Figure C1 - Pressure sensor characterisation. The left plot shows the raw data recorded in still water over 15 minutes. 
This data was plotted as a histogram and approximated by a normal distribution as shown in the right plot. 

The characterisation was repeated several times to ensure valid data. The results from three 

examples are shown in Table C1 below as parameterised normal distributions. The final row uses 

the data from Figure C1 above. 

Table C1 - Probabilistic characterisation of pressure sensor measurement uncertainty. 

 Calibrated Depth (m) 

Mean: Variance: 

13-Sep-09 
120sec run 

0.278m 0.013357 

14-Sep-09 
300sec run 

0.187m 0.012444 

14-Sep-09 
900sec run 

0.170m 0.011139 
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C.2 Xsens accelerometer characterisation 

Static calibration of mounting angle and noise characterisation of the Xsens accelerometers was 

performed under the same conditions as above. However, the raw output from the Xsens IMU 

was not the strapdown accelerations (with gravity removed), but the raw measurements which 

still included the acceleration due to gravity. Therefore the measurement probability for the raw 

accelerations and for the orientation outputs was required to calculate the strapdown 

accelerations – the mean of each was used and the uncertainty associated with each original 

measurement propagated through to the strapdown acceleration estimate.  

Figure C2 below shows an example characterisation dataset. The top left figure shows the raw 

data from a >700s recording when the vehicle was static on the dock with all electrical systems 

running to simulate operating conditions. The acceleration data is plotted as a histogram and the 

distribution was approximated by a normal distribution function shown by the red curve. 

  

  
Figure C2 - An example probabilistic characterisation of the Xsens accelerometer measurement uncertainty. The top 
left figure shows raw data from a static >700s recording. Noise was observed in the X, Y and Z accelerometers. The 
data was plotted as a histogram in the remaining three plots. Using the methods described earlier in the main body 
of this document, the distribution was approximated by a normal distribution function shown by the red curve. (The 
acceleration due to gravity of 9.81m/s² appears in the x-axis due the sensor mounting orientation for this 
characterisation run. The mounting was later corrected.) 

 
The characterisation was repeated over several datasets to ensure repeatability. Table C2 below 

summarises the parameters of the normal Gaussian distributions used to represent the 

measurement probabilities. A high degree of repeatability was seen, and as with the other 

sensors, the variances shown below were used as the measurement uncertainty when weighting 

the effect each sensor had on the overall position estimate.  

Table C2 - Xsens accelerometer characterisation summary. 

 X Acceleration Y Acceleration Z Acceleration 

Mean: Variance: Mean: Variance: Mean: Variance: 

13-Sep-09 -9.8118m/s² 0.009957 -0.0447m/s² 0.014798 -0.2662m/s² 0.027645 

14-Sep-09 -9.8153m/s² 0.016393 -0.0257m/s² 0.017726 -0.2484m/s² 0.027180 
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Appendix D Directional statistics & cyclic probability 

distributions 

The definition of cyclic data (or circular distributions) is that the value (or density) at any point   is 

the same as that of      where   is any integer and   is some real number [350]. 

Circular statistical techniques, such as the circular normal distribution described by Gumbel et al. 

[351], allow the uncertainty associated with directional data to be represented. 

D.1 Circular mean 

In many cases the arithmetic mean of angles is an inconsistent representation of the mean 

(average direction) of the set of angles. With reference to Batschelet section 1.3 [372], a method 

for calculating the circular mean using vectors can be derived. 

If a sample of 3 angles is considered, (                      as shown in Figure D1 then 

the arithmetic mean is 135°. 

0°

90°

315°

0° 90°

315°

Circular 

Mean

Arithmetic 

Mean

 

Figure D1 - Calculating the arithmetic and circular mean of 3 angles. 

If each angle in the sample is plotted as a vector of unit length and of angle specified by the angle 

of the sample (as shown in Figure D1) then it can be seen by inspection that the arithmetic mean 

(plotted in green) is an incorrect measure of the ‘average direction’. However, if the vectors are 

drawn one after another, then the overall resultant vector can be calculated. The angle of this 

resultant vector (plotted in red in Figure D1) is the circular mean. 

As Batschelet describes [372], if a rectangular coordinate system is considered with   and   axes 

and origin  . Additionally,    is one of the   angles in the sample, and    is therefore the vector of 

unit length which corresponds to the sample   . Therefore the corresponding   and   

components of the vector in question can be calculated using the following equations: 
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If all of the vectors are summed (as in the right hand side of Figure D1) but additionally divided by 

the number of samples ( ) then the rectangular coordinates of the centre of mass of all of the 

vectors ( ̅ and  ̅) is obtained, as follows: 

 ̅  
 

 
             

 

 
                      

 ̅  
 

 
             

 

 
                      

From these two resultant vectors  ̅ and  ̅ the mean angle of the sample denoted by  ̅ can be 

calculated using the following equations: 

 ̅  

{
  
 

  
      (

 ̅
 ̅⁄ )     ̅   

          (
 ̅

 ̅⁄ )     ̅   

        ̅         ̅   
         ̅         ̅   
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D.1.1 Circular variance and circular deviation 

If the length of the resultant vector which is the sum of all of the individual vectors is defined as   

with components ∑   and ∑   then the length of the mean vector is defined as    
 ⁄  with 

components  ̅ and  ̅. Therefore, the length of the mean vector is: 

    ̅   ̅  
 
  

And as    
 ⁄ , the length of the resultant overall vector is: 

  [(∑  )
 

 (∑  )
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Which can also be expressed as: 
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A special case occurs when  ̅    and  ̅    and thus    . In this case the mean vector is equal 

to the zero vector. However, for all other cases   is defined. 

The length of the mean vector   can be used as a measure of concentration and thus, from this, 

the circular variance introduced. 

Considering some examples, if all of the samples lie in the same direction then the length of the 

mean vector   is equal to 1. If the samples all lie in roughly the same direction, e.g. within an arc 

of 20°, then the   value is still close to 1. As the concentration reduces and the samples become 

more disperse, then the   values reduces. When     then there is no concentration of samples 

around a single direction. 

Therefore if   is a measure of concentration,     can be thought of as a measure of dispersion. 

However, in equations 1.4.5 and 1.4.6 presented in Batschelet [372], it is demonstrated that 
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       is equal to the angular variance (otherwise referred to as the circular variance), defined 

as: 

          

In the same way that the square root of the variance is taken in linear statistics to obtain the 

standard deviation, the square root of the circular variance is taken in circular statistics to obtain 

the following measure of dispersion: 

          
 

 ⁄  

Or in degrees: 

           
    

 
        

 
 ⁄  

This measure was introduced by Batschelet in 1965 [373] and is now widely used. 

The MATLAB Circular Statistics Toolbox 2010b [374] provides program code for calculating the 

circular mean and variance from a population of samples using MATLAB. In particular 

‘circ_mean.m’ and ‘circ_var.m’. These algorithms were translated to LabVIEW code ‘Circular Mean 

and Variance.vi’ for integration with the navigation software. 

D.2 Circular distributions 

In the same manner as samples are represented in linear statistics with a probability density 

function (PDF) to aid data reduction and efficiency, samples from a circular space can be 

represented with a circular distribution. 

Circular distributions are finite (ranging from 0 to 360° or 0 to 2π) and continuous in that there 

exists a probability density for every angle  ): 

            

Additionally, the density is always positive (or zero) and the integral over the whole range equals 

the total probability 1: 

∫         

  

 

 

In the same manner as for linear statistics, the distribution used to represent the entire 

population needs to be verified as an appropriate representation. As with all probability density 

functions, either linear or circular, representing the population by a PDF is an approximation and 

it needs to be ensured that it is a valid approximation. This can either be verified by inspection or 

by applying ‘goodness of fit’ tests. 

As much of the uncertainty associated with the sensors, state estimation and map representation 

is unimodal, symmetric and normally distributed, it makes sense to use a circular version of the 

normal distribution. The most commonly used circular normal distributions is the von Mises 

distribution which is discussed in the following section. A discussion of alternative circular 

unimodal symmetric distributions follows in section D.2.2 and includes the wrapped normal 

distribution. 
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D.2.1 The von Mises distribution 

The von Mises distribution is a unimodal probability distribution defined over a cyclic space and is 

discussed in section 15.3 of reference [372]. In the same manner as for linear statistics, the 

parameters of the von Mises distribution can be estimated and then suitability verified by using 

statistical tests for goodness-of-fit. Chapter 4 of reference [372] provides an overview of these 

statistical tests. These tests of goodness-of-fit can also be applied to the application of linear 

statistics to the other probabilistic representations used in Chapter 5. 

The von Mises distribution was introduced in 1918 [375] and is frequently used in the analysis of 

directional statistics as the closest analogue to the normal distribution. For this reason, the von 

Mises distribution has also been named the ‘circular normal distribution’ [351]. However, this 

should not be confused with a bivariate normal distribution with         and correlation 

coefficient    . In this case, the contour lines of the probability distribution are circles. 

The von Mises distribution is defined over a cyclic space by the distribution: 

     
 

       
                

The distribution is characterised by two parameters: the mean angle    and the parameter of 

concentration,  . 

The function takes on its maximum value at      hence   is the mode, and, as the distribution 

is symmetric and unimodal about the mode,    is therefore also the mean angle. 

  is the ‘parameter of concentration’ and the larger   is, the more concentrated the distribution is 

about the mean angle. If    , the von Mises distribution becomes a uniform distribution. 

      is the modified Bessel function of order 0 and is described elsewhere, including section 16.4 

of reference [372]. 

As stated in section D.1.1, the length of the mean vector   of a population defines a parameter of 

concentration. In terms of the von Mises distribution, a ‘mass’ of unit size spread over the 

circumference of a unit circle can be considered (see figure 15.1.2 from reference [372]). The 

mean vector    of the von Mises distribution (with angle   ) points to the ‘centre of mass’ of the 

mass drawn. The length of this mean vector    is defined by    and is a measure of concentration 

(as with  ): 

        

The length of the mean vector    can be converted into  , the von Mises parameter of 

concentration, by using the function      as follows: 

             

     is discussed as equation 16.4.13 in reference [372] and again involves modified Bessel 

functions. The equation is reproduced below. Lookup tables are provided in reference [372] or the 

solution can be computed. 
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D.2.1.1 Generating von Mises distributions 

The MATLAB Circular Statistics Toolbox 2010b [374] provides program code ‘circ_vmpdf.m’ for 

generating a von Mises distribution from a specified parameter of mean angle    and the 

parameter of concentration,  . These algorithms have been translated into LabVIEW code in 

‘Create and Analyse von Mises Distribution.vi’. 

This LabVIEW program allows a von Mises PDF to be generated and compared to a linear (non- 

circular, non-wrapped) normal distribution centred on the same mean angle. The total probability 

(integral) can also be inspected and verified to be equal to 1 for a variety of different parameters 

of    and  . 

D.2.1.2 Estimating the parameters of von Mises distributions 

The aim of modelling populations with a probability density function is to assume that the sample 

is an accurate representation of the entire population and to then estimate the parameters of the 

model, in this case, the von Mises distribution. This data redundancy adds efficiency to the 

representation but the assumption that the sample accurately represents the population must be 

valid and the parameters of the model must be accurately estimated. 

Given a pre-existing sample of angles (e.g. sensor measurements) the following notation can be 

used for the hypothetical parent population: 

 Statistic (sample) Parameter (population) 
Mean vector      
Mean vector length      
Mean angle  ̅    
 

The subscript ‘1’ is from the theory of trigonometric moments of the distribution discussed in 

section 16.2 of reference [372] and is included here for consistency only. 

The estimates of the parameters of the population are defined by the ̂  notation, therefore the 

estimates of   ,    and   are defined by  ̂ ,  ̂  and  ̂ respectively. 

Provided that the sample is a sufficient representation of the entire population, it is plausible to 

base the estimates of the parameters on the corresponding statistics. Therefore, in accordance 

with section 3.2 of reference [372], it may be tentatively suggested that: 

 ̂    

 ̂    

 ̂   ̅ 

These assumptions can be made for a von Mises distribution by finding a maximum likelihood 

estimate of the theoretical population mean vector length    and the theoretical population 

mean angle   . Section 17.2 of Batschelet [372] provides a detailed discussion of the parameters 

of a von Mises distribution. 

The maximum likelihood estimations,   and  ̅ respectively, are therefore accepted as valid 

estimates. As Batschelet [372] states in section 3.2, maximum likelihood estimates are ‘consistent, 
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efficient and sufficient’ for estimating the parameters of a von Mises distribution to represent an 

existing sample. 

However, as Batschelet [372] highlights, biasing of the estimates can occur. The estimate of the 

theoretical mean angle is unbiased in that it is always valid that the mean angle of the sample is 

the mean angle of the population, given that the sample is an accurate and representative one. 

However, in the same manner as for calculating the variance of a sample in linear statistics, for 

the estimate of  , the theoretical mean vector length, is heavily biased. On an average of many 

samples,   is too large. This is especially true for a small sample size. 

Batschelet [372] discusses the problem of biasing in detail and reviews a number of possible 

solutions. However, Fisher [376] provides an alternative approach to parameter estimation for a 

von Mises distribution which is more recent, and builds upon the previous work. The method is 

adapted from section 4.5.5 in reference [376] as follows: 

Using the same notation as previously in this section, the (maximum likelihood) estimate  ̂  of the 

mean direction of the population    can be assumed to be the mean direction of the sample  ̅ 

(the circular mean is calculated of all of the angles in the sample using the method discussed in 

section D.1). 

The maximum likelihood estimate of   is given by  ̂   as follows: 

    ̂      

Where   is the mean vector length of the sample and the function    is defined as the ratio of 

two modified Bessel functions as follows: 

                  

Equation D1 

These Bessel functions can be calculated programmatically, or an approximation to the solution is 

given by Fisher in equation 4.40 in reference [376] as follows: 

 ̂   {

           
                     

             

    
      

           
      

 

Equation D2 

This method discussed by Fisher is valid, however Fisher notes the same problem with biasing as 

Batschelet in that  ̂   can be seriously biased when the sample size   and the mean vector length 

of the sample   are small (      and particularly       ), in that it can substantially over-

estimate the true value of  . For     , the following estimate is preferred: 

 ̂ {
     ̂       ̂   

     

       ̂     
    

     
 ̂    
 ̂    

 

Equation D3 

In section 4.5.5(i) of reference [376], Fisher discusses two approaches to calculating the 

confidence interval for the mean direction. 
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D.2.1.2.1 Parameter estimation in LabVIEW and MATLAB 

The file ‘circ_vmpar.m’ in the MATLAB Circular Statistics Toolbox 2010b [374] provides program 

code for estimating the parameters of a von Mises distribution for a given sample of data. The 

output is  ̂  (the estimated mean angle of the population) and  , the concentration parameter. 

The LabVIEW file ‘Von Mises Parameters.vi’ implemented the above in LabVIEW. 

 ̂  is estimated using the method for calculating the circular mean as described in section D.1.   is 

calculated using the method specified in Equation D2 and D3 above. Equation D2 estimates the 

value of   using an approximation instead of calculating the ratio of the two modified Bessel 

functions as described by Equation D1. Equation D3 then attempts to remove the effect of biasing 

on the value of   when     . 

D.2.2 Alternative symmetric unimodal distributions: 

From section 15.4 of reference [372] it can be seen that there are several alternatives to the von 

Mises distribution for unimodal symmetric probability distributions. These include the wrapped 

normal distribution, wrapped Cauchy distribution and the cosine distribution (otherwise called 

the sine-wave or cardioid distribution). In Figure D2, the mean in all four plots is zero, the mean 

vector is of length 0.4464, and so the four distributions correspond in angular deviation. 

Specifically to the von Mises distribution, the parameter of concentration discussed earlier    . 

The symmetric pair of dots on each plot are at the points of inflection. Although the shapes of the 

distributions are similar, the points of inflection are closest in the wrapped Cauchy distribution 

but separated much further in a cosine distribution. 

cosine

von Mises

wrapped
normal

wrapped
Cauchy

-180° 0° +180° 
 

Figure D2 - Four common unimodal symmetric circular distributions, the cosine, wrapped normal, von Mises and the 
wrapped Cauchy distribution. The mean in all four plots is 0, the mean vector length is 0.4464, and so the four 
distributions correspond in angular deviation. The von Mises distribution parameter of concentration    . The 
symmetric pair of dots on each plot at the points of inflection. Figure adapted from [372]. 

Thus these four unimodal symmetric probability distributions, and others, provide alternative 

distributions to represent uncertainty when using circular distributions within the probabilistic 

framework discussed in Chapter 5. However, principally for computational simplicity, and as 

discussed in further detail in Chapter 5, the linearisation step of the Extended Kalman Filter was 

used to linearise non-linear data to allow the linear Kalman filter to be used. Thus these circular 

distributions are not considered in further detail at this stage, but provided here for comparison. 
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