1,966 research outputs found

    Estudo de modelagem de veículos elétricos e estratégia de controle de torque para sistemas de frenagens regenerativa e antitravamento

    Get PDF
    Orientador: José Antenor PomilioTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Os veículos elétricos têm despertado crescente interesse devido à sua capacidade para reduzir a poluição no meio ambiente, usando elementos de energia elétrica acumulado em baterias e supercapacitores para o acionamento da máquina elétrica no lugar de um motor de combustão interna. Por outro lado, a baixa autonomia do veículo elétrico continua sendo uma barreira para seu sucesso comercial. Instituções automobilísticas junto com a Academia enfrentam esse desafio com diversas soluções para aumentar a energia disponível. Entre as possibilidades está a frenagem regenerativa. A frenagem regenerativa é um processo no qual recupera-se energia de um veículo durante as desacelerações. Esta pesquisa se concentra nas frenagens para diversas condições com mudanças da superficie da estrada, considerando o sistema de frenagem regenerativo e o sistema de antibloqueio. Analisamos e revisamos os aspectos básicos da modelagem de um veículo com/sem ABS, assim como o comportamento dinâmico das rodas e mostramos uma contribuição para o estudo do controle de torque na máquina e estratégias de controle para o torque distribuído na combinação e cooperação entre o torque elétrico e o mecânico, mesmo com mudanças do solo e de métodos de operação, como descidas, obtendo estabilidade do veículo e recuperação de energiaAbstract: The interest in electric vehicles has grown worldwide due to their efficiency for reducing environmental pollution, by using energy elements such as batteries and supercapacitors to drive the electric machine, instead of an internal combustion engine. Contrarily, the low vehicle autonomy remains a barrier to their commercial success. Therefore, automotive institutions together with academics face the challenge through various solutions to increase the available energy. The regenerative braking is one of the implementations that helps a better use of the stored energy. Regenerative braking is a process in which energy is recovered from a vehicle during decelerations. This research focuses on braking for various road surface conditions. Furthermore, it considers the regenerative braking and the anti-lock braking systems regarding energy recovery performance for friction coefficient changes. In this work, we will review and analyze the basic aspects of the modeling of a vehicle with or without ABS, as well as the dynamic behavior of wheels. We will also present a contribution to the study of torque control and control strategies for the torque distribution regarding combination and co-operation between electric and mechanical torque. This process is done despite changes in ground surfaces and operating methods such as downhill, leading to better performance in the flexibility of vehicle stability and in the recovery of powerDoutoradoEnergia EletricaDoutora em Engenharia Elétrica149810/2013-0CAPESCNP

    Phase 1 of the near term hybrid passenger vehicle development program

    Get PDF
    In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year

    The Application of Regenerative Braking System to the Commercial Hybrid Vehicles with All-Wheel Drive System

    Get PDF
    The growing issues of energy shortage and the environmental crisis has resulted in new challenges for the automotive industry. Conventional commercial vehicles, such as refuse trucks and delivery vehicles, consume significantly more energy than other on-road vehicles since they have the characteristic of frequent start/stop with high moment of inertia and drive at low speeds on designated city routes. It is important to make these vehicles more fuel efficient and environmentally friendly. The hybrid commercial vehicle is a promising solution to reduce emissions and to meet the future vehicle emission standard since it is generally equipped with braking energy regeneration systems to recover the kinematic loss from frequent braking. This paper introduces a type of all-wheel drive hybrid concept suggested by Dr. Leo Oriet; the new concept allows commercial vehicles to have a significant improvement in kinetic braking energy recovery without sacrificing braking safety. Without mechanical connection involved to transfer energy within the powertrain, greater powertrain efficiency can be achieved. The research is based on the all-wheel drive with a two-axles regenerative braking strategy and driveline control unit. The vehicle model and driveline control unit were executed using AVL CRUISE to demonstrate its reliable braking energy regeneration system, effective energy management and emission reduction. Finally, the power system and engine operating condition, as well as vehicle driving mode, were analyzed after simulation to ensure the whole powertrain component functions together with high efficiency and significant reliability

    Adaptation of hybrid five-phase ABS algorithms for experimental validation

    Get PDF
    International audienceThe Anti-lock Braking System (ABS) is the most important active safety system for passenger cars, but unfortunately the literature is not really precise about its description, stability and performance. This research improves a five-phase hybrid algorithm based on wheel deceleration and validate it on a tyre-in-the-loop laboratory facility. Five relevant effects are modelled so that the simulation matches the reality. Two methods to deal with the time delays are proposed. It can be verified that the limit cycle of the ABS encircle the optimal braking point without having any tyre parameter a priori known

    Data-Driven Modeling and Regulation of Aircraft Brakes Degradation via Antiskid Controllers

    Get PDF
    In ground vehicles, braking actuator degradation and tire consumption do not represent a significant maintenance cost as the lifespan of both components, at least in common situations, is rather long. In the aeronautical context, and for aircraft in particular, instead, braking actuator degradation and tire consumption significantly contribute to an aircraft maintenance cost due to the frequency of their replacement. This is mainly due to the fact that aircraft braking maneuvers last significantly longer than those in the automotive context. So that the antilock braking system is always active during the braking maneuver, making its impact on the consumption of the two components significant. This work proposes an innovative data-driven model of brake and tire degradation, showing how they are related to the antiskid controller parameters. The analysis is carried out in a MATLAB/Simulink environment on a single wheel rigid body model, validated experimentally, which includes all the nonlinear effects peculiar of the aeronautic context. The results show that by using an appropriate antiskid control approach, it is possible to directly regulate the consumption of these components while at the same time guaranteeing the required braking performance

    Jumps and synchronization in anti-lock brake algorithms

    Get PDF
    International audienceThe aim of our paper is to provide a new class of anti-lock brake algorithms (that use wheel deceleration logic-based switchings) and a simple mathematical background that explains their behavior. These algorithms extend those proposed in our previous work [6], and consider cases where there might be discontinuities of road characteristics or where it is intended to synchronize the ABS strategies on several wheels of the vehicle

    Phase 1 of the near term hybrid passenger vehicle development program. Appendix B: Trade-off studies, volume 1

    Get PDF
    Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined
    corecore