13 research outputs found

    Task-Adaptive Robot Learning from Demonstration with Gaussian Process Models under Replication

    Get PDF
    Learning from Demonstration (LfD) is a paradigm that allows robots to learn complex manipulation tasks that can not be easily scripted, but can be demonstrated by a human teacher. One of the challenges of LfD is to enable robots to acquire skills that can be adapted to different scenarios. In this paper, we propose to achieve this by exploiting the variations in the demonstrations to retrieve an adaptive and robust policy, using Gaussian Process (GP) models. Adaptability is enhanced by incorporating task parameters into the model, which encode different specifications within the same task. With our formulation, these parameters can be either real, integer, or categorical. Furthermore, we propose a GP design that exploits the structure of replications, i.e., repeated demonstrations with identical conditions within data. Our method significantly reduces the computational cost of model fitting in complex tasks, where replications are essential to obtain a robust model. We illustrate our approach through several experiments on a handwritten letter demonstration dataset.Comment: 8 pages, 9 figure

    Learning of Gestures by Imitation in a Humanoid Robot

    Get PDF
    In this chapter, we explore the issue of encoding, recognizing, generalizing and reproducing arbitrary gestures. We address one major and generic issue, namely how to discover the essence of a gesture, i.e. how to find a representation of the data that encapsulates only the key aspects of the gesture, and discards the intrinsic variability across people motions. The model is tested and validated in a humanoid robot, using kinematics data of human motion. In order for the robot to learn new skills by imitation, it must be endowed with the ability to generalize over multiple demonstrations. To achieve this, the robot must encode multivariate time-dependent data in an efficient way. Principal Component Analysis and Hidden Markov Models are used to reduce the dimensionality of the dataset and to extract the primitives of the motion. The model takes inspiration in a recent trend of research that aims at defining a formal mathematical framework for imitation learning. In particular, it stresses the fact that the observed elements of a demonstration, and the organization of these elements should be stochastically described to have a robust robotic application. It bears similarities with theoretical models of animal imitation, and offers at the same time a probabilistic description of the data, more suitable for a real-world application

    Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations

    Get PDF
    Giese M A, Rizzolatti G. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations. Neuron. 2015;88(1):167-180

    Developmental learning of internal models for robotics

    No full text
    Abstract: Robots that operate in human environments can learn motor skills asocially, from selfexploration, or socially, from imitating their peers. A robot capable of doing both can be more ~daptiveand autonomous. Learning by imitation, however, requires the ability to understand the actions ofothers in terms ofyour own motor system: this information can come from a robot's own exploration. This thesis investigates the minimal requirements for a robotic system than learns from both self-exploration and imitation of others. .Through self.exploration and computer vision techniques, a robot can develop forward 'models: internal mo'dels of its own motor system that enable it to predict the consequences of its actions. Multiple forward models are learnt that give the robot a distributed, causal representation of its motor system. It is demon~trated how a controlled increase in the complexity of these forward models speeds up the robot's learning. The robot can determine the uncertainty of its forward models, enabling it to explore so as to improve the accuracy of its???????predictions. Paying attention fO the forward models according to how their uncertainty is changing leads to a development in the robot's exploration: its interventions focus on increasingly difficult situations, adapting to the complexity of its motor system. A robot can invert forward models, creating inverse models, in order to estimate the actions that will achieve a desired goal. Switching to socialleaming. the robot uses these inverse model~ to imitate both a demonstrator's gestures and the underlying goals of their movement.Imperial Users onl

    Human-robot interaction and computer-vision-based services for autonomous robots

    Get PDF
    L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la finalitat de desenvolupar mètodes pels quals les noves tasques es poden transferir als robots. Aquesta tesi està motivada per la pregunta genèrica de "què imitar?", Que es refereix al problema de com extreure les característiques essencials d'una tasca. Amb aquesta finalitat, aquí adoptem la perspectiva del Reconeixement d'Accions (AR) per tal de permetre que el robot decideixi el què cal imitar o inferir en interactuar amb un ésser humà. L'enfoc proposat es basa en un mètode ben conegut que prové del processament del llenguatge natural: és a dir, la bossa de paraules (BoW). Aquest mètode s'aplica a grans bases de dades per tal d'obtenir un model entrenat. Encara que BoW és una tècnica d'aprenentatge de màquines que s'utilitza en diversos camps de la investigació, en la classificació d'accions per a l'aprenentatge en robots està lluny de ser acurada. D'altra banda, se centra en la classificació d'objectes i gestos en lloc d'accions. Per tant, en aquesta tesi es demostra que el mètode és adequat, en escenaris de classificació d'accions, per a la fusió d'informació de diferents fonts o de diferents assajos. Aquesta tesi fa tres contribucions: (1) es proposa un mètode general per fer front al reconeixement d'accions i per tant contribuir a l'aprenentatge per imitació; (2) la metodologia pot aplicar-se a grans bases de dades, que inclouen diferents modes de captura de les accions; i (3) el mètode s'aplica específicament en un projecte internacional d'innovació real anomenat Vinbot.El Aprendizaje por Imitación (IL), o Programación de robots por Demostración (PbD), abarca métodos por los cuales un robot aprende nuevas habilidades a través de la orientación humana y la imitación. La PbD se inspira en la forma en que los seres humanos aprenden nuevas habilidades por imitación con el fin de desarrollar métodos por los cuales las nuevas tareas se pueden transferir a los robots. Esta tesis está motivada por la pregunta genérica de "qué imitar?", que se refiere al problema de cómo extraer las características esenciales de una tarea. Con este fin, aquí adoptamos la perspectiva del Reconocimiento de Acciones (AR) con el fin de permitir que el robot decida lo que hay que imitar o inferir al interactuar con un ser humano. El enfoque propuesto se basa en un método bien conocido que proviene del procesamiento del lenguaje natural: es decir, la bolsa de palabras (BoW). Este método se aplica a grandes bases de datos con el fin de obtener un modelo entrenado. Aunque BoW es una técnica de aprendizaje de máquinas que se utiliza en diversos campos de la investigación, en la clasificación de acciones para el aprendizaje en robots está lejos de ser acurada. Además, se centra en la clasificación de objetos y gestos en lugar de acciones. Por lo tanto, en esta tesis se demuestra que el método es adecuado, en escenarios de clasificación de acciones, para la fusión de información de diferentes fuentes o de diferentes ensayos. Esta tesis hace tres contribuciones: (1) se propone un método general para hacer frente al reconocimiento de acciones y por lo tanto contribuir al aprendizaje por imitación; (2) la metodología puede aplicarse a grandes bases de datos, que incluyen diferentes modos de captura de las acciones; y (3) el método se aplica específicamente en un proyecto internacional de innovación real llamado Vinbot.Imitation Learning (IL), or robot Programming by Demonstration (PbD), covers methods by which a robot learns new skills through human guidance and imitation. PbD takes its inspiration from the way humans learn new skills by imitation in order to develop methods by which new tasks can be transmitted to robots. This thesis is motivated by the generic question of “what to imitate?” which concerns the problem of how to extract the essential features of a task. To this end, here we adopt Action Recognition (AR) perspective in order to allow the robot to decide what has to be imitated or inferred when interacting with a human kind. The proposed approach is based on a well-known method from natural language processing: namely, Bag of Words (BoW). This method is applied to large databases in order to obtain a trained model. Although BoW is a machine learning technique that is used in various fields of research, in action classification for robot learning it is far from accurate. Moreover, it focuses on the classification of objects and gestures rather than actions. Thus, in this thesis we show that the method is suitable in action classification scenarios for merging information from different sources or different trials. This thesis makes three contributions: (1) it proposes a general method for dealing with action recognition and thus to contribute to imitation learning; (2) the methodology can be applied to large databases which include different modes of action captures; and (3) the method is applied specifically in a real international innovation project called Vinbot

    Collaborative Motion Planning

    Get PDF
    Planning motion is an essential component for any autonomous robotic system. An intelligent agent must be able to efficiently plan collision-free paths in order to move through its world. Despite its importance, this problem is PSPACE-Hard which means that even planning motions for simple robots is computationally difficult. State-of-the-art approaches trade completeness (always able to provide a solution if one exists or report none exists) for probabilistic completeness (probabilistically guaranteed to find a solution if one exists but cannot report if none exists) and improved efficiency. These methods use sampling-based techniques to design a sequence of motions for the robot. However, as these methods are random in nature, the probability of their success is directly related to the expansiveness, or openness, of the underlying planning space. In other words, narrow passages, complex systems, and various constraints make planning with these methods difficult. On the other hand, humans can often determine approximate solutions for these difficult solutions quickly. In this research, we explore user-guided planning in which a human operator works together with a sampling-based motion planner. By having a human-in-the-loop, a human can steer a sampling-based planner towards a solution. This strategy can provide benefits to many applications such as computer-aided design and virtual prototyping, to name a few. We begin by classifying and creating simple models of common user-guided and heuristic-guided motion planning methods. Our models encompass three forms of user input: configuration-based, path-based, and region-based input. We compare and contrast these approaches and motivate our choice of a region-based collaborative framework. Through this analysis, we gain insight into user-guided planning and further motivate methods that harness low interface complexity and work entirely in workspace, which is most natural to a human operator. Further, we extend the theory of expansiveness to analyze the various types of user inputs. Our novel region-based collaboration framework takes advantage of human intuition by allowing a user to define regions in the workspace to bias and/or constrain the search space of a sampling-based motion planner. This approach allows a user to bias a high dimensional search with low dimensional input, supports intermittent user hints, and empowers a user to customize motion solutions. Finally, we extend region steering to both non-holonomic robotic systems and a human-inspired approach to motion planning. Our results show that this region-based framework can aid many variants of sampling-based planning, reduce computation time, support solution customization, and can be used to develop advanced heuristic methods for solving motion planning problems. We provide experiments exemplifying our approach in planning motions for complex robotic applications such as mobile manipulators, car-like, and free-flying robots

    Metrics to Evaluate Human Teaching Engagement From a Robot's Point of View

    Get PDF
    This thesis was motivated by a study of how robots can be taught by humans, with an emphasis on allowing persons without programming skills to teach robots. The focus of this thesis was to investigate what criteria could or should be used by a robot to evaluate whether a human teacher is (or potentially could be) a good teacher in robot learning by demonstration. In effect, choosing the teacher that can maximize the benefit to the robot using learning by imitation/demonstration. The study approached this topic by taking a technology snapshot in time to see if a representative example of research laboratory robot technology is capable of assessing teaching quality. With this snapshot, this study evaluated how humans observe teaching quality to attempt to establish measurement metrics that can be transferred as rules or algorithms that are beneficial from a robot’s point of view. To evaluate teaching quality, the study looked at the teacher-student relationship from a human-human interaction perspective. Two factors were considered important in defining a good teacher: engagement and immediacy. The study gathered more literature reviews relating to further detailed elements of engagement and immediacy. The study also tried to link physical effort as a possible metric that could be used to measure the level of engagement of the teachers. An investigatory experiment was conducted to evaluate which modality the participants prefer to employ in teaching a robot if the robot can be taught using voice, gesture demonstration, or physical manipulation. The findings from this experiment suggested that the participants appeared to have no preference in terms of human effort for completing the task. However, there was a significant difference in human enjoyment preferences of input modality and a marginal difference in the robot’s perceived ability to imitate. A main experiment was conducted to study the detailed elements that might be used by a robot in identifying a “good” teacher. The main experiment was conducted in two subexperiments. The first part recorded the teacher’s activities and the second part analysed how humans evaluate the perception of engagement when assessing another human teaching a robot. The results from the main experiment suggested that in human teaching of a robot (human-robot interaction), humans (the evaluators) also look for some immediacy cues that happen in human-human interaction for evaluating the engagement
    corecore