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Jordi Bautista i Ballester para la obtención del t́ıtulo de Doctor, ha sido realizado bajo mi dirección
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i

Abstract

Imitation Learning (IL), or robot Programming by Demonstration (PbD), covers

methods by which a robot learns new skills through human guidance and imitation.

PbD takes its inspiration from the way humans learn new skills by imitation in order

to develop methods by which new tasks can be transmitted to robots. This thesis is

motivated by the generic question of “what to imitate?” which concerns the problem

of how to extract the essential features of a task. To this end, here we adopt Action

Recognition (AR) perspective in order to allow the robot to decide what has to be

imitated or inferred when interacting with a human kind.

The proposed approach is based on a well-known method from natural language

processing: namely, Bag of Words (BoW). This method is applied to large databases

in order to obtain a trained model. Although BoW is a machine learning technique

that is used in various fields of research, in action classification for robot learning it

is far from accurate. Moreover, it focuses on the classification of objects and gestures

rather than actions. Thus, in this thesis we show that the method is suitable in action

classification scenarios for merging information from different sources or different

trials.

This thesis makes three contributions: (1) it proposes a general method for

dealing with action recognition and thus to contribute to imitation learning; (2)

the methodology can be applied to large databases which include different modes

of action captures; and (3) the method is applied specifically in a real international

innovation project called VinBot.

Keywords: Imitation Learning, Sensor Fusion, Robotics, Action Recognition,

Human Robot Interaction, Computer Vision, Bag of Words, Multikernel SVM.
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Chapter 1

Introduction

“Begin at the beginning, and go on till you come to the end: then

stop.”

- Lewis Carroll, Alice in Wonderland

Since the 1980s research into Programming by Demonstration (PbD) has grown

steadily and become a central topic in robotics. Complex platforms that interact in

complex and variable environments are faced with two key challenges when learning

robot skills.

First, the complexity of the task is such that learning only by trial-and-error

would be impractical. Therefore, PbD is a strategy that can speed-up and facilitate

the process of learning by reducing the search space and allowing the robot to

refine its model of demonstration by trial-and-error. PbD also permits the robot

to incorporate usual tasks by means of a non-specialized instructor.

Second, PbD favors a closer relation between the learning process and the control

stage, so the latter can be adapted in real time to perturbations and changes that

are likely to happen in the environment.

PbD covers methods by which a robot learns new skills through human guidance

and imitation. Also referred to as imitation learning, lead through teaching, tutelage,

or apprenticeship learning, PbD takes inspiration from the way humans learn new

skills by imitation in order to develop methods by which new tasks can be transmitted

1
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2 Chapter 1. Introduction

to robots. In this paradigm, the programmer becomes an instructor who is either a

human being or another robot. The skill is then decomposed and programmed by

observation of a demonstration performed by this instructor .

The challenges faced by PbD were enumerated in Nehaniv and Dautenhahn

(2001) as a set of key questions: What to imitate? How to imitate? When to

imitate? Whom to imitate to? To date only the first two questions have actually

been addressed in PbD.

In a similar manner, Breazeal and Scassellati (2002) went further into how, in fact,

a robot can know what elements to imitate when attempting to learn the movements

of a human being, what perceptual aspects are relevant to this task and how a robot

can distinguish the parts that will be emulated once a particular action is perceived,

as well as the moment the robot must convert this perception into a sequence of

motor responses in order to achieve the same result.

According to the work by Argall et al. (2009), PbD can be divided in two stages,

namely, the collection of examples, which contain all the information that make up

a demonstration, and the derivation of a policy, also known as mapping, by which a

set of examples is used to define a group of actions that can reproduce the behavior

outlined in the demonstration.

Hence, video analysis has become critical in human robot interactions, from which

a robot must make a decision by considering the information extracted from robot

joints sensors, accelerometers, cameras or lasers. In this context, our research focuses

recognizing action in videos containing multimodal and contextual information.

Furthermore, we extend the traditional Bag of Words (BoW) approach: first, to

a descriptor encoder, adding contextual information extracted from RGB sequences,

second, to a fusion of multiple information sources, incorporating information coming

from non visual sensors, and third, to an incremental learning approach, so that

new data can be incorporated to the trained model. The approach is applicable

to different fields of research: for example, imitation learning, where the approach

allows the robot to learn even from its own performance of an imitation, or in such

other real applications as action segmentation.
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3

In order to test this new approach we focused on experimentation and made

use of well known recorded and collected databases. Public databases are usually

made up of a set of videos where scenes and parameters such as illumination, focus,

distance, and viewpoints are mostly controlled, and there is little information about

the tools and objects that are involved in the action. For example, the Kungliga

Tekniska Hogskolan (KTH) database created by Schuldt et al. (2004), a popular

choice for testing action recognition techniques, contains this kind of information

but not much about of color, context and modes. Furthermore, as the need for more

sophisticated data increases in some fields of research (e.g. in robotic environments)

multimodal information, provided by distance laser sensors or by 3D cameras such

as Kinect, has been incorporated into more recent databases.

One of the most complete database is the Caltech Action Database (CAD120)

created by Koppula et al. (2013). It is recorded in a high controlled environment,

which is ideal for human-robot interactions and it includes both contextual and

multimodal information. The database contains 10 high level actions performed by

4 different subjects which in total make up 124 manually annotated videos.

However, in order to go beyond the current state of the art in action recognition

for real videos, more realistic databases have increasingly been employed, including

videos that stage more realistic actions. The Human Motion Database (HMDB) by

Kuehne et al. (2011), is one of the largest action video database to-date with 51

action categories, which in total contains 6766 manually annotated clips extracted

from a variety of sources ranging from digitized movies to YouTube. This database

has been created to evaluate the performance of computer vision systems for action

recognition and explore the robustness of these methods under various conditions

such as cluttered backgrounds, fast irregular motions, occlusions and camera motion.

Although no multimodal recording is available, actions with contextually connected

objects can be found in this database.

From the Human Motion Database (HMDB), we selected a subset of actions

that are performed using a tool or object. This contextual information allows the

computer to discriminate apparently similar actions such as shooting a gun or a bow.
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4 Chapter 1. Introduction

The biggest difference between these similar actions lies in the tool used to carry out

the action.

In this thesis, the different sources of information in the databases -depth, 3D and

objects- are combined in a richer description of human actions that permits higher

recognition rates. In order to increase the robustness of the recognition of actions

in more challenging situations, we weight different sources of information that can

be used to discriminate actions: namely, the spatio-temporal features that describe

motion by RGB, depth and 3D modes, and the contextual information that explains

how an action is carried out by object features. Finally, one of the most interesting

contributions of the work is the proposal of an incremental approach that makes it

possible to add new training data to the classifier without having to train it again

from batch, something that is usually required when learning from demonstration.

1.1 Motivation

This thesis was motivated by our current research on envisaging the most relevant

techniques that allow us to teach and share skills with a group of autonomous outdoor

mobile robots called VinBot2.

The purpose of the project is to provide the necessary navigation and behavioral

skills to a number of agriculture robots so they can perform tasks such as monitoring

the growth of crops and estimating such valuable information as yield. These robots

will be networked: that is, they will be connected to a cloud-based service which

will provide the off-board computational resources and all the necessary tools for

communicating, storing, processing and sharing the data obtained by the on-board

sensors.

VinBot robots must be capable of learning certain skills involved in autonomous

outdoor navigation, such as creating maps of fields and coping with changes in this

mutable environment while moving through them in different periods of time. Also

2VinBot is an European project from the 7th Framework Program (FP7) starting in 2014 whose
main object is to develop a cloud-based mobile robotic system for agricultural applications. This
project is explained in detail in Appendix C.
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1.1. Motivation 5

avoiding unknown obstacles and potential risks to the integrity of the robot will

require learning new skills or, at least, sharing sets of strategies already acquired

from other sources. Finally, we need natural ways to specify and control the missions,

and to be able to teach certain tasks so that they can tend a specific crop.

Here the importance of autonomously learning skills from demonstrations is even

more evident since interaction will mostly be with users who are unaware of robot

programming and who might not even be in the same place as the robot. Our aim

is also for this newly acquired knowledge to benefit other robots in the system. This

implies that the representation of skills must be such that it can be transferred not

only to similar robots but also to those that are not strictly identical, and it must

also be shared and replicated among a number of units.

Figure 1.1: Robot understanding of reality. Learning a new task can be done by PbD: (a) from
a video database of demonstrations, extracting macro actions or (b) from a set of demonstrations,
composing basic actions in order to find an appropriate policy for the reproduction of the task.
Afterwards, the learned task can be shared through the cloud to other robots with the same or
different embodiment.
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6 Chapter 1. Introduction

Consequently, we intend to use Programming by Demonstration to learn and

transfer skills in the context of networked autonomous mobile robots. Thus, PbD

is the natural approach to the problems of learning skills from demonstrators and

representing skills among different robotic embodiments. The Figure 1.1 illustrates

the problem statement that motivates this thesis. Although most of the approaches

analyzed are usually applied to more human-like platforms, such as humanoids or

robotic arms, we also investigate what type of approaches best fit our specific mobile

robot platform.

1.2 Objectives

Bearing in mind the above discussion about PbD methods applied in robotics and

the Action Recognition (AR) in computer vision, the goals of this thesis are:

• To assess the state of the art in PbD and understand which techniques are used

to identify and extract the information required in order to make an inference

or imitation. Furthermore, as we focus on the “what to imitate?” part of PbD,

we move on to action recognition computer vision topic in order to respond to

the more recent and challenging unsolved problems.

• To develop and validate an action recognition engine to solve the “what to

imitate?” question in PbD by proposing a method of imitation learning based

on instructional videos, in which the robot can learn a new skill from a set of

videos. To do so, a machine learning approach will be used to extract actions

from the instructional videos.

• To adapt the engine developed in real applications. The aim is to take

advantage of the Industrial nature of this thesis to carry out experimentation

in real applications. Furthermore, the theoretical approach developed and

validated in this dissertation is adapted to a complex industrial project with

promising results. However, its industrial property protection means that the

results are not provided here: a mere overview of the experiments is given.
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1.3. Overview 7

1.3 Overview

The rest of this thesis is organized as follows:

Chapter 2 introduces some fundamental concepts and notation and reviews the

relevant literature on both PbD and AR.

Chapter 3 presents the traditional BoW approach, analyzing its three specific

phases with particular emphasis on the parameter variation in each of the following

phases: interest points detection and descriptor extraction; codebook generation;

pooling and classification.

Chapter 4 presents and validates the introduction of context information relevant

to the action into the BoW-based representation of action. Specifically, the context

used in the chapter concerns the objects that are related to the action performed.

Chapter 5 presents and validates how the best information related to the action

performed can be autonomously fused and selected by means of a BoW-based

representation of the action.

Chapter 6 presents and validates an incremental approach that allows new

training data to be incorporated into the classifier without having to train it again

from batch.

Finally, Chapter 7 summarizes the contributions of the thesis and proposes future

research directions and applications of the new concepts introduced in this thesis.

Additionally, we enclose four appendixes which are organized as follows:

Appendix A presents the databases used by the scientific community to

experiment for action recognition purposes and specifically, it details the databases

used in this dissertation.

Appendix B summarizes the contributions done to the scientific community in

the form of book chapters, conference proceedings and journal papers.

Appendix C presents the industrial projects in which our scientific contributions

have been adapted for real applications. In particular, we have been working in

VinBot project for two and a half years as well as in RoboHow project for three

months.
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8 Chapter 1. Introduction

Appendix D summarizes the experience obtained by having performed this thesis

in its industrial format.
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Chapter 2

Fundamentals

“Those who do not want to imitate anything, produce nothing.”

- Salvador Daĺı,

2.1 Imitation Learning

The challenges faced by PbD were enumerated in Nehaniv and Dautenhahn (2001) as

a set of key questions: What to imitate? How to imitate? When to imitate? Whom

to imitate to? To date, only the first two questions have actually been addressed in

PbD.

2.1.1 What to Imitate: Collection of Examples.

In this first stage, a set of information from the demonstrator, be it a robot or human,

and possibly also from the environment, is collected from the readings of a capturing

system. This can be a device mounted either on the demonstrator or on the learner,

the commands of a remote control operated by the demonstrator, or a sensor located

externally in the environment, like a camera.

Due to the correspondence problem – i.e., how to correspond actions in

different embodiments and robotic platforms (Nehaniv and Dautenhahn, 2001) –

in the collection stage we must be aware of the particular structure for both the

demonstrator and the robot learner. Consequently, two successive mapping steps

9
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10 Chapter 2. Fundamentals

Table 2.1: What to imitate? Techniques in the first stage –Collection of Examples according to
Argall et al. (2009)–. The second column gives the method the demonstrator uses to convey the
information to the learner. The third and fourth columns show whether record or embodiment
mappings were used. The most extreme cases are teleoperation, which requires no mapping, and
external observation, which requires both mappings.

Demonstrator
Methods

Technique
Names

Record
Mapping

Embodiment
Mapping

Related Works

Robot Learner
Teleoperation No No

Pook and Ballard (1993);
Abbeel and Ng (2004);
Chernova and Veloso

(2008b); Breazeal et al.
(2006); Rybski et al.
(2007); Argall et al.
(2007); Grollman and

Jenkins (2007)

Shadowing Yes No
Nehmzow et al. (2007);
Ogino et al. (2006)

Externally

Sensors on
Instructor

No Yes

Ijspeert et al. (2002b);
Calinon and Billard
(2007); Aleotti and

Caselli (2006)

External
Observation

Yes Yes

Billard and Matarić
(2001); Ude et al. (2004);
Steil et al. (2004); Ratliff

et al. (2006)

are required: namely, record mapping and embodiment mapping. The former maps

sensor readings onto motor commands and the latter, maps motor commands from

the demonstrator’s body onto those of the learner.

Below we describe the techniques summarized in Table 2.1 showing their

requirements with respect of record and embodiment mappings. There are two main

groups of techniques which are differentiated by whether the demonstrator conveys

directly the learner.

In teleoperation, the demonstrator operates the robot learner and its sensors

capture the motion. No record mapping is necessary since the sensory system is the

robot learner’s. In shadowing, the demonstrator carries out the task and the robot

learner captures the motion with its sensors and attempt to repeat it. In this case, a

record mapping is necessary. Both in teleoperation and in shadowing no embodiment

mapping is needed since the robot captures information directly from its sensors.

If the instructor is wearing sensors, the recording comes directly from these

sensors and there is no need for any record mapping. With this imitation technique,
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2.1. Imitation Learning 11

Table 2.2: How to imitate? Methods in the second stage –Deriving a Policy according to Argall
et al. (2009)–. Most of the work done on PbD are in the Mapping Function category, and focus on
either Classification or Regression.

Approaches Learning Techniques Related Works

Mapping
Function

Classification

Low Level Robot
Actions

Chernova and Veloso (2007); Saunders
et al. (2006); Khansari-Zadeh and

Billard (2011)

Robot Movement
Primitives

Pook and Ballard (1993); Billard and
Matarić (2001); Kober and Peters
(2009); Calinon et al. (2010b)

High Level
Behaviors

Chernova and Veloso (2007); Rybski and
Voyles (1999); Lockerd and Breazeal

(2004)

Regression
(Mapping
Function
Approx.)

At Run Time
Argall et al. (2007); Ijspeert et al.

(2002a)

Prior Run Time
Calinon et al. (2010b); Vijayakumar and
Schaal (2000); Grollman and Jenkins

(2008)

Prior Execution
Time

Grollman and Jenkins (2007); Calinon
and Billard (2007); Ude et al. (2004);

Steil et al. (2004)

System
Models

Reward
Based
Learning

Engineering
Reward Function

Chersi (2012); Merrick (2012)

Learned Reward
Function

Abbeel and Ng (2004); Ratliff et al.
(2006); Guenter and Billard (2007);

Abbeel et al. (2007)

Plans Using a Planner
Rybski et al. (2007); Nicolescu and

Mataric (2003)

the demonstrator executes the task and the sensory system information is recorded.

If sensor readings come from an external observation, the demonstrator executes the

task and the external sensory system records the execution which will be translated

by means of a record mapping onto the learner motor commands. If the robot

learner has no sensory device, an embodiment mapping is also required in both

sensor-on-instructor and external-observation techniques.

2.1.2 How to Imitate: Derivation of a Policy.

The second stage consists of executing a group of actions that allows the robot to

reproduce the behavior that was demonstrated by a set of examples. The following

are the three most common approaches: 1) learning a function by mapping states to

actions; 2) learning a model of world dynamics; or 3) using a planner that produces

the sequence of actions after learning the model of an action.
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12 Chapter 2. Fundamentals

We list the most interesting studies on these issues in Table 2.2, and classify them

according to the learning approach used.

In the first approach, learning a mapping function, the algorithms can be grouped

in two different families depending on whether the output is discrete (classification)

or continuous (regression).

In the second approach, learning a model of world dynamics, a reward function

is maximized. It can be user-defined or learned in an optimization process. It is

typically formulated within the framework of Reinforcement Learning (RL).

In the third approach, goal executions can be represented as plans. Therefore,

the planning framework represents a policy as a sequence of actions leading from an

initial state to the target state.

2.1.3 Performance of Programming by Demonstration

Recent studies demonstrate that the performance of the techniques discussed

can vary substantially. Different metrics can be used to compute the imitation

performance for each of the approaches proposed. for example, Calinon et al. (2010a)

used several metrics to evaluate an attempt reproducing the set of demonstrations

(e.g. Root Mean Square Error (RMSE), Norm of Jerk, Learning Time and Retrieval

Duration).

Argall et al. (2009) discusses the limitations of the dataset provided in the

demonstration. The first limitation is caused by dataset sparsity, which can occur

when the demonstrator cannot demonstrate all possible states (underdemonstrated

states). To deal with this problem, Smart (2002) and Nicolescu and Mataric (2003)

proposed a generalization from existing demonstrations and Chernova and Veloso

(2008b), Grollman and Jenkins (2007) and Chernova and Veloso (2007), proposed

an acquisition of new demonstrations. The second limitation is caused by the

poor quality of a set of examples, which can happen whenever the instructor’s

demonstrations are ambiguous, unsuccessful or suboptimal in certain areas of the

state space.

Various solutions have been proposed for improving demonstration data when
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2.1. Imitation Learning 13

Table 2.3: Evaluation of the Apprenticeship. Two main reasons were identified in Argall et al.
(2009) as the cause of low performance: underdemonstrated states and poor quality data. We show
some of the works dealing with this problems and the approaches followed.

Reasons Approaches Related Works

Underdemonstrated
State

Generalization from
Existing

Demonstration
Smart (2002); Nicolescu and Mataric (2003)

Acquisition of New
Demonstrations

Chernova and Veloso (2008b); Grollman and
Jenkins (2007); Chernova and Veloso (2007)

Poor quality data

Suboptimal or
Ambiguous

Demonstrations

Pook and Ballard (1993); Breazeal et al.
(2006); Aleotti and Caselli (2006); Chernova

and Veloso (2007, 2008a)

Learning from
Experience

Smart (2002); Argall et al. (2007); Calinon
and Billard (2007); Nicolescu and Mataric

(2003); Chernova and Veloso (2008a)

the demonstration is suboptimal or ambiguous (Pook and Ballard (1993), Breazeal

et al. (2006), Aleotti and Caselli (2006), Chernova and Veloso (2007) and Chernova

and Veloso (2008a)) and attempts have been made to learn from experience by

means of feedback from the demonstrator or a reward function, likewise it is done in

Reinforcement Learning approaches (Smart (2002); Argall et al. (2007); Calinon and

Billard (2007); Nicolescu and Mataric (2003); Chernova and Veloso (2008a)). Table

2.3 shows the main studies on the causes of low performance.

2.1.4 Taxonomy of Programming by Demonstration

Many approaches have been proposed for PbD. In this section, we discuss the most

important ones (see Table 2.4) and we describe their advantages and drawbacks.

A vast majority of the approaches in PbD focus largely on the spatial position

and velocity of the end effector or the joint angles. The first attempts depended

on an explicit temporal indexing and virtually operated in an open loop. The main

drawback of these techniques is that time dependence makes them very sensitive to

both temporal and spatial perturbations.

To compensate these shortcomings, a heuristic is required to re-index the new

trajectory in time, and simultaneously optimize a measure of how well the new

trajectory follows the objective one. This heuristic search is highly task-dependent

and non-trivial and is less intuitive in high-dimensional spaces. One of these
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14 Chapter 2. Fundamentals

Table 2.4: Approaches to Programming by Demonstration. PbD has been used for two main sets
of applications, each one of which uses several metrics to evaluate how the techniques perform.
Each approach is listed alongside its corresponding reference.

Applications Metrics Approaches Related Works

Robot 3D position and
velocity coordinates of
end-effector and/or joint
angles

RMS, RMSE, Learning
Time, Norm of Jerk,
Retrieval Duration,
Max/Rel. Likelyhood,
Stability, External
Reward

HMM+GMR
Calinon et al.

(2010a)

DMP
Ijspeert et al.

(2001)

MoMP
Mülling et al.

(2013)

BM
Khansari-Zadeh

and Billard (2010)

SEDS
Khansari-Zadeh

and Billard (2011)

RL
Guenter and
Billard (2007)

Robot position,
orientation and velocity.
Obstacles distances and
discrete actions

Task Performance,
Instructor Evaluation,
Max. Reward Function

IRL
Abbeel and Ng

(2004)

RL
Nicolescu et al.

(2008)
Argall et al.
(2011a)

time-dependent approaches (Coates et al., 2008) uses Expectation Maximization

(EM) and an extended Kalman’s filter to follow a given trajectory. This algorithm

also learns a local model of the robot’s dynamics along the chosen trajectory.

EM was also used in Dempster et al. (1977) to optimize a Gaussian Mixture Model

(GMM) for the estimation of the parameters of existing models. In order to find a

statistical noise-free estimation of the dynamic model several approaches have been

proposed using either Gaussian Process Regression (GPR) (Williams and Rasmussen,

2006), Locally Weighted Projection Regression (LWPR) (Vijayakumar and Schaal,

2000) or Gaussian Mixture Regression (GMR) (Calinon et al., 2010a) were proposed.

GMM and GPR find a locally optimal model of the function by maximizing the

likelihood for a complete model to fit the data, while LWPR minimizes the RMSE

between the estimates and the data. One of the main drawbacks of these approaches

is that they cannot guarantee a stable estimate of the motion since there is no

stability constraint forced near the optimization attractor point.

Dynamic Movement Primitives (DMP) (Pastor et al., 2009), originally proposed

by Ijspeert et al. (2002b), is a method by which a non-linear dynamic model can be

estimated and global stability at the optimization attractor point ensured: that is to
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2.1. Imitation Learning 15

say, complex dynamics are robust and encoded precisely. DMP is also robust against

perturbations and makes it possible to change parameters in the trajectory without

altering the overall shape of the movement. These models are straightforwardly

learned by imitation and well suited for reward-driven self-improvement. Mixture

of Motor Primitives (MoMP) is an extension of these models recently proposed by

Mülling et al. (2013) to cope with complex motor tasks requiring several movement

primitives. MoMP creates a framework based on the idea that complex motor tasks

can frequently be solved using a relatively small number of movement primitives and

do not require a complex monolithic approach to cope with an entire task.

A different robust approach complementary to DMP is that of Stable

Estimator of Dynamical Systems (SEDS) by Khansari-Zadeh and Billard (2011),

which ensures time-independent learning generalized dynamics from multiple

demonstrations. SEDS also outperforms Binary Merging (BM), previously proposed

by Khansari-Zadeh and Billard (2010), in that it ensures globally asymptotic stability

instead of local stability and better generalizes the motion for trajectories far from

those in the demonstrations. BM is more accurate, more flexible and ensures that

motion is locally stable. SEDS is more constrained because it fits a motion with a

single globally stable dynamics. SEDS and DMP are complementary in the following

way. DMP must be used whenever a motion is intrinsically time-dependent and only

a single demonstration is available. In contrast, when the motion is time-independent

and multiple demonstrations are available, SEDS would be the choice. A third

time-independent approach based on Hidden Markov Models (HMM) and GMR has

been proposed in Calinon et al. (2010a). This method evaluates the eigenvalues

of each linear dynamic system and ensures that they all have negative real parts

(stable). Nevertheless, asymptotic stability is not guaranteed.

For objectives such as position, orientation, and velocity of the robot, distances to

the obstacles and a discrete set of actions, most of the techniques are reward-based:

that is, a known reward function is assumed to guide the exploration ((Nicolescu

et al., 2008; Grollman and Jenkins, 2010; Chernova and Veloso, 2009; Argall et al.,

2011a,b)). The robot’s policy will then consist of choosing actions that maximize
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16 Chapter 2. Fundamentals

an expected reward function. In order to avoid this choice, Inverse Reinforcement

Learning (IRL) (Abbeel and Ng, 2004) provides a framework for automatically

determining the reward and discovers the optimal control policy using a discrete

state action space. Alternative approaches derive a cost function in a continuous

space (Ratliff et al., 2006, 2009). Recent IRL studies discuss multiple experts and

identify multiple reward functions (Choi and Kim, 2012). The goal here is that this

multiplicity of policies will make the controller more robust by offering alternative

ways to complete the task whenever the context no longer allows the robot to perform

the task in the optimal way.

More recently, (Grollman and Billard, 2011) proposed an approach based on

learning from a set of failures in which the success of the learned task is represented

by a binary value. This paper offers an interesting alternative to approaches that

combine Imitation Learning and Reinforcement Learning since no reward function

needs to be explicitly determined.

2.2 Action Recognition

Action recognition has become a very important topic in computer vision, with

many fundamental applications, in robotics, video surveillance, human computer

interaction, multimedia retrieval, biometrics based on gait or face, and hand and

face gesture recognition among others. Today, the application to surveillance is

natural in environments where the tracking and monitoring people is becoming an

integral part of everyday activities. However, since our motivation relies on the aim

of answering the question of what to imitate?, we concentrate on approaches that

classifies full-body motions, such as boxing, kicking, bending, etc. and we categorize

them according to how they represent the spatial and temporal structure of actions.

A significant amount of progress on human activity recognition has been made

in the past 10 years, but it is still far from being an off the shelf technology. We

are at a stage where experimental systems are deployed at airports and other public

places. It is likely that more and more, such systems will be deployed.
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2.2. Action Recognition 17

Additionally, many approaches assume that the video is readily segmented into

sequences that contain one instance of a known set of action labels. Often, it is also

assumed that the location and approximate scale of the person in the video is known

or can easily be estimated. The action detection task is thus ignored, which limits

the applicability to situations where segmentation in space and time is possible.

While several works (Hu et al., 2009; Yuan et al., 2009) have addressed this topic, it

remains a challenge to perform action detection for online applications.

In this section we summarize the methodologies that have previously been

explored for the recognition of human activities, and discus advantages and

disadvantages of these approaches. An approach-based taxonomy is exposed and

applied to categorize previous works.

2.2.1 Image Representations

In human action recognition, the common approach is to extract image features from

the video and to issue a corresponding action class label. The classification algorithm

is usually learned from training data.

As stated in Poppe (2010), image representations can be divided into two

categories: local representations and global representations. On one hand, local

representations describe the observation as a collection of independent patches. The

calculation of local representations proceeds in a bottom-up fashion: spatio-temporal

interest points are detected first, and local patches are calculated around these points.

Finally, the patches are combined into a final representation. After initial success

of bag-of-feature approaches, there is currently more focus on correlations between

patches. Local representations are less sensitive to noise and partial occlusion, and

do not strictly require background subtraction or tracking. However, as they depend

on the extraction of a sufficient amount of relevant interest points, pre-processing is

sometimes needed, for example to compensate for camera movements.

On the other hand, global representations encode the visual observation as a

whole and they are obtained in a top-down fashion: a person is localized first in

the image using background subtraction or tracking. Then, the region of interest is
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18 Chapter 2. Fundamentals

encoded as a whole, which results in the image descriptor. The representations are

powerful since they encode much of the information. However, they rely on accurate

localization, background subtraction or tracking. Also, they are more sensitive to

viewpoint, noise and occlusions. When the domain allows for good control of these

factors, global representations usually perform well.

Considering the occlusions issue, although global image representations have

proven to yield good results, and they can usually be extracted with low cost,

their applicability is limited to scenarios where Region of Interests (ROI) can be

determined reliably. Moreover, they cannot deal with occlusions. These issues are

addressed with local representations. Initial work used bag-of-feature representations

but more recent work takes into account spatial and temporal correlations between

patches. Still, the question how to deal with more severe occlusions has largely been

ignored.

With respect to the point of view, most of the reported work is restricted to fixed

and known viewpoints, which severely limits its applicability. The use of multiple

view-dependent action models solves this issue but at the cost of increased training

complexity. Recently, researchers have begun to address the recognition of actions

from viewpoints for which there is no corresponding training data (Farhadi and

Tabrizi, 2008; Farhadi et al., 2009; Junejo et al., 2008).

Further, today’s environment for human activity recognition is significantly

different from the scenario at the end of the last decade. The cameras were mostly

fixed cameras and without pan-tilt-zoom adjustments. Today’s cameras may be

mounted on several types of moving platforms ranging from a moving car or a truck

to an Unmanned Aerial Vehicles (UAV). A global positioning system may be attached

to the camera system to pin-point its location. The recognition of activity from a

moving platform poses many more challenges. Noise, tracking, and segmentation

issues arising out of stabilization of video add to the difficulty of the problem of

the recognition of activities. Tracking is a difficult problem though animals and

human do it almost effortlessly. If the tracking algorithm does not extract the

object of the focus of attention, recognition of the activity being performed becomes
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2.2. Action Recognition 19

Figure 2.1: Extraction of spacetime cuboids at interest points from similar actions performed by
different persons (reprinted from Laptev et al. (2007), c©Elsevier, 2007).

enormously more difficult. Designing an activity recognition system which is able to

compensate for such low-level failures in those environments (i.e . moving platforms)

is an extremely challenging task.

Alternative approaches to segmenting body parts based on analyzing 3D XYT

volumes by extracting gross features are being developed. In particular, 3D

local patch features described in terms of Histogram of Gradients (HOG) and/or

Histogram of Optical Flow (HOF), such as cuboids (Dollar et al., 2005) and 3D

SIFT (Scovanner et al., 2007), are gaining popularity. A representation of these

cuboids is shown in Figure. 2.1. These approaches are motivated by the success of
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20 Chapter 2. Fundamentals

object recognition using 2D local descriptors (e.g. Scale Invariant Feature Transform

(SIFT) (Lowe, 1999)).

However, they involve long feature vectors obtained from a large 3D XYT volume

created by concatenating image frames, and are likely to have an impact on real

time analysis. The 3D search space is much larger than its 2D versions. Further,

the existing local space-time features generally require a non-textured background for

reliable recognition, such as the ones in the KTH (Schuldt et al., 2004) and Weizmann

(Blank et al., 2005) databases. Also, a limited amount of work has been published on

the 3D feature-based approaches for analysis of complex human activities. What one

needs is an approach which exploits the easy computation of SIFT, HOG, and HOF

operators and avoids the difficulties of segmentation of body parts and/or combines

the two approaches in a meaningful way.

2.2.2 Classification

There exists direct classification and temporal state-space models. In the former,

temporal variations are not explicitly modeled, which proved to be a reasonable

approach in many cases. For more complex motions, it is questionable whether this

approach is suitable. Generative state-space models such as Hidden Markov Models

(HMM) can model temporal variations but have difficulties distinguishing between

related actions (e.g. jogging and walking). In this respect, discriminating graphical

approaches are more suitable. Thus, the flexibility of the classifier with respect to

adding or removing action classes from the repertoire will play a more important

role.

2.2.3 Real-time Applications

One promising direction for enabling real-time implementation is the study of

hardware supports. Rofouei et al. (2008) have implemented a GPU-based version of

the cuboid feature extractor, utilizing Graphical Processing Unit (GPU) with tens

of cores running thousands of threads. The GPU-version turned out to be 50 times

faster than the CPU counterpart of it, while obtaining the same results. Modern
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2.2. Action Recognition 21

CPUs and GPUs are composed of multiple cores, and the number of cores is likely to

continually increase for the next few years, suggesting computer vision researchers

to explore the utilization of them.

2.2.4 Databases

The use of publicly available databases allows for the comparison of different

approaches and gives insight into the abilities of respective methods.

2.2.4.1 Collection of Videos

Publicly available databases have shaped the domain by allowing for objective

comparison between approaches on common training and test data. They also allow

for better understanding of methods since researchers are aware of the challenges of

each set. However, algorithms may be biased to a particular database. This may

lead to complex approaches that perform better on a specific database but may be

less generally applicable.

Also, given the increasing level of sophistication of action recognition algorithms,

larger and more complex databases should direct research efforts to realistic settings.

Initially, databases were not focused on an application domain. However, action

recognition in surveillance, human-computer interaction and video retrieval poses

different challenges. Human-computer interaction applications require real-time

processing, missed detection in surveillance are unacceptable and video retrieval

applications often cannot benefit from a controlled setting and require a query

interface (e.g. (Suma et al., 2008)). Currently, there is a shift towards a

diversification in databases. The HOHA database (Laptev et al., 2008) targets

action recognition in movies, whereas the UFC sport database (Rodriguez et al.,

2008) contains sport footage. Such a diversification is beneficial as it allows for

realistic recording settings while focusing on relevant action classes. Moreover, the

use of application-specific database allows for the use of evaluation metrics that

go beyond precision and recall, such as speed of processing or detection accuracy.

Still, the compilation or recording of database that contain sufficient variation in
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22 Chapter 2. Fundamentals

Table 2.5: The human activity recognition categorization for non-hierarchical approaches.

Human activity recognition.
Non-hierarchical. Single-layered.

Related Works

Space-time

Space-time
volume

Template
matching

Bobick and Davis (2001); Shechtman and
Irani (2005); Rodriguez et al. (2008)

Neighbor-based
(discriminative)

Ke et al. (2007)

Statistical
modeling

-

Trajectories

Template
matching

Campbell and Bobick (1995); Rao and Shah
(2001)

Neighbor-based
(discriminative)

Yilmaz and Shah (2005)

Statistical
modeling

Sheikh et al. (2005); Khan and Shah (2005)

Space-time
features

Template
matching

Zelnik-Manor and Irani (2001); Laptev
(2005)

Neighbor-based
(discriminative)

Schuldt et al. (2004); Dollar et al. (2005);
Blank et al. (2005); Laptev et al. (2008);

Ryoo and Aggarwal (2009b)
Statistical
modeling

Chomat and Crowley (1999); Niebles et al.
(2008); Wong et al. (2007); Lv et al. (2004)

Sequential

Exemplar-
based

Darrell and Pentland (1993); Gavrila et al. (1995); Yacoob
and Black (1998); Efros et al. (2003); Lublinerman et al.
(2006); Veeraraghavan et al. (2006); Jiang et al. (2006);

Vaswani et al. (2003)

State-based

Yamato et al. (1992); Starner and Pentland (1997); Bobick
and Wilson (1997); Oliver et al. (2000); Park and Aggarwal
(2004); Natarajan and Nevatia (2007); Moore et al. (1999);

Peursum et al. (2005); Gupta and Davis (2007)

movements, recording settings and environmental settings remains challenging and

should continue to be a topic of discussion.

2.2.4.2 Labels

Related is the issue of labeling data. For increasingly large and complex databases,

manual labeling will become prohibitive. Automatic labeling using video subtitles

(Gupta and Mooney, 2009) and movie scripts (Cour et al., 2008; Duchenne et al.,

2009; Laptev et al., 2008) is possible in some domains, but still requires manual

verification. When using an incremental approach to image harvesting such as in

Ikizler-Cinbis et al. (2009), the initial set will largely affect the final variety of action

performances. We discussed vision-based human action recognition in this survey but

a multi-modal approach could improve recognition in some domains, for example
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2.2. Action Recognition 23

Table 2.6: The human activity recognition categorization for hierarchical approaches.

Human activity recognition.
Hierarchical.

Related Works

Statistical

Human actions Nguyen et al. (2005)

Human- human
interactions

Oliver et al. (2002)

Human- object
interactions

Shi et al. (2004); Yu and Aggarwal (2006); Damen and
Hogg (2009)

Group activities
Cupillard et al. (2002); Gong and Xiang (2003); Zhang

et al. (2004); Dai et al. (2008)

Syntactic

Human actions -

Human- human
interactions

Ivanov and Bobick (2000); Joo and Chellappa (2006)

Human- object
interactions

Moore and Essa (2002); Minnen et al. (2003)

Group activities -

Description-
based

Human actions Pinhanez and Bobick (1998); Gupta et al. (2009)

Human- human
interactions

Intille and Bobick (1999); Vu et al. (2003); Ghanem
et al. (2004); Ryoo and Aggarwal (2009a)

Human-object
interactions

Siskind (2001); Nevatia et al. (2003, 2004); Ryoo and
Aggarwal (2007)

Group activities Ryoo and Aggarwal (2008)

in movie analysis. Also, context such as background, camera motion, interaction

between persons and person identity provides informative cues (Marszalek et al.,

2009).

2.2.5 Taxonomy of Action recognition

Following the work of Aggarwal and Ryoo (2011) the Action Recognition approaches

can be categorized into non-hierarchical approaches developed for the recognition

of gestures and actions as well as hierarchical approaches for the analysis of

high-level interactions between multiple humans and objects. Non-hierarchical

approaches are again divided into space-time approaches and sequential approaches,

and the similarities and differences of the two approaches are discussed

thoroughly. Additionally, previous publications following statistical, syntactic, and

description-based approaches for hierarchical approaches are compared.

Hierarchical recognition approaches are being studied intensively especially for

the recognition of complex multi-person activities. Particularly, description-based

approaches are gaining an increasing amount of popularity because of their
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24 Chapter 2. Fundamentals

ability to represent and recognize human interactions with complex spatio-temporal

structures. Activities with structured scenarios (e.g. most of surveillance scenarios)

require hierarchical approaches, and they are showing the potential to make a

reliable decision probabilistically. Hierarchical approaches have their advantages

in recognition of high-level activities performed by multiple persons, and they must

be explored further in the future to support demands from surveillance systems

and other applications. Both Tables 2.5 and 2.6 summarizes this categorization

and include some of the most representative studies of the state of the art for each

category.

Given the current state of the art and motivated by the broad range of

applications that can benefit from robust human action recognition, it is expected

that many of these challenges will be addressed in the near future. This would

be a big step towards the fulfillment of the longstanding promise to achieve robust

automatic recognition and interpretation of human action.
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Chapter 3

Analyzing Bag of Words

“Pain is temporary, glory is forever”

- Anonymous,

3.1 Outline of the Chapter

In computer vision, action recognition is a common topic of the State of the Art.

Bag of Visual Words (BoVW) method has been recently widely used for this topic.

The principal point of this chapter is to show the influence of parameter variation in

the traditional BoW approach for the three phases in which can be divided: first, the

interest points detection and descriptor extraction, second, the codebook generation,

and third, the pooling and classification phase. Specifically, we pay special attention

in varying methods for clustering information extracted from the image, i.e. to build

a good codebook, because the number of clusters has high influence over the results

and it should be estimated by the system. The chapter is organized as follows:

• Section 3.2 introduces the problem and the related work existing on this topic.

• Section 3.3 show the influence of proper interest points detection and descriptor

extraction.

• Section 3.4 show the influence of proper codebook generation.

• Section 3.5 show the influence of proper pooling and classification.

• Section 3.7 summarizes the contribution of the approach.

25
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26 Chapter 3. Analyzing Bag of Words

3.2 Introduction

Action recognition is a very active research topic in computer vision with many

important applications, including video surveillance, human computer interaction,

robotics and programming by demonstration among others. Action recognition is

the process of naming actions, usually as an action verb. To reach that goal, many

approaches typically make use of a combination of vision and machine learning

techniques. Vision techniques try to extract action features from the videos, while

machine learning techniques try to learn statistical models from those features, and

classify new features using the learned model. A wide range of Action Recognition

methods exists and they can be classified by spatial or temporal representations, as

we showed previously in Chapter 2.

In our approach we make use of a common approach called spatio-temporal

Bag of Words representation. In this method, spatial and temporal information

are extracted from the surroundings of an Interest Point (IP) in order to build the

feature descriptor. From this set of features a dictionary is computed and quantized

to represent each snippet of the video. To learn a model and further classification of

new features, a Support Vector Machine (SVM) is employed.

Related Work

Authors who make use of BoW approach, use to vary the three main phases: feature

extraction, vector quantization and pooling. In Laptev et al. (2008) an extended

Harris corners was employed to detect Spatio Temporal Interest Points (STIP), to

compute a descriptor composed by a Histogram of Gradients (HOG) concatenated

with a Histogram of Optical Flow (HOF) (HOG–HOF descriptor). They used a

K-means algorithm to cluster the features and a k-Nearest Neighbor (kNN) with

euclidean distance for pooling. Finally, a SVM with χ2 kernel was used to learn

a model and classify new instances. A novel approach were proposed in Wang

et al. (2011), in which they built a dense grid of Interest Points and extracted a
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3.3. Interest Points Detection and Descriptor Extraction 27

trajectory based descriptor (Dense trajectories). More recently, Zhang et al. (2012)

made use of sparse code to create the dictionary, a variant of the K-means clustering

algorithm where they tuned the constraint with a λ parameter in order to make it

less restrictive.

3.3 Interest Points Detection and Descriptor

Extraction

Figure 3.1: Interest Points from Harris corner detector for database frames. First row are the IPs
detected. Second row are the IPs randomly selected before clustering.

We extract Harris corners as Interest Points (IPs) in a similar way as it is done

in Laptev et al. (2008). Sample action frames from the database are shown in

Figure 3.1 in two rows: the top row shows frames with the detected corners, and

the second row shows the selected points that are going to be clustered. For a

sampling point s, position coordinates (xs, ys) are kept to which are added to them

the third dimension, which is the time (ts), i.e., the frame number, and the spatial

and temporal scale (σs, τs), both used to determine at which scale the descriptor

is computed. We use 3 Dimensional Histogram of Gradients (HOG3D) descriptor

(Kläser et al., 2008) to code the characteristics of these IPs. Histogram of Gradients

have been widely used for object recognition in static images, but, in our approach,

we need a descriptor which can relate spatial and temporal information. HOG3D is

similar to HOG descriptor, in the sense that it computes the gradient histograms of
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28 Chapter 3. Analyzing Bag of Words

a pixel surroundings, but with the main advantage that it generalizes the concept to

3D. The final descriptor ds for s is computed for a local support region rs with a width

(ws), height (hs) and length (ls) around the position s, given by ws = hs = σ0 ·σs and

ls = τ0 · τs, where σ0 and τ0 parameters characterize the relative size of the support

region around s.

This local support region rs is divided into a set of MxMxN cells ci. For each cell,

an orientation histogram is computed by hc =
S3

∑

i=1

qbi , where qbi is the quantization

employing a regular polyhedron for the subblock bi. Finally, all histograms are

concatenated to one feature vector ds = (d1, ..., dM2N )T . Final dimension of the

feature can be pre-calculated by dim{ds} = M2 · N · n, with n the number of

orientations, taking into account its full or half orientation. The relevance of this

value lies in the computation time when clustering, which considerably increases as

higher this dimension is.

3.4 Codebook Generation

The vast majority of proposals in this topic use a supervised clustering for codebook

generation. We analyze this procedure, which has been widely seen that it has

high influence to the final recognition performance. We know that the recognition

performance steadily grows with the size of the codebook, as observed, e.g. by

Csurka et al. (2004). To this purpose we compare three different methods. Firstly,

we use standard K-means (MacQueen, 1967), which is the most common clustering

algorithm for this topic. In this algorithm a K-value is needed to be provided as

the final number of words representing all data collected from videos. A principal

disadvantage of standard K-means is that clusters can only be separated by a

hyper-plane. Using a weighted kernel K-means (Dhillon et al., 2007), nonlinear

separators can be obtained. Secondly, we propose to use Meanshift (Comaniciu and

Meer, 2002), in which the final number of clusters is not previously determined. With

Meanshift approach, the algorithm determines itself the codebook size by just tuning

a bandwidth parameter. As the third option, we propose the random selection of
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3.4. Codebook Generation 29

Figure 3.2: Flow chart of the methodology used to evaluate the three proposed clustering methods
for action recognition.

the cluster centers. In the end, following BoW procedure, we find the word which

represents each snippet and we use a non-linear SVM classifier to classify the videos.

The method we propose can be seen in Figure 3.2. We firstly extract Interest

Points from video frames with Harris detector. Secondly, we compute the HOG3D

descriptor for each IP. To build the codebook, and due to the computing complexity,

we limit the amount of data to 100000 samples, and then it is computed by a

clustering algorithm, which gives a dictionary with a specific number of words. We

code, then, each snippet by a codebook word. Finally, a Support Vector Machine

classifier is used to evaluate the performance of the recognition, which is used as the

evaluation metric.

Traditionally, in action recognition, the codebook is generated by previously

setting the number of words that it is desired to have. In this sense, K-means

clustering algorithm gives quite good results. The intention of this work is to show

why K-means seems to be better for that purpose than algorithms that can decide

the number of clusters by themselves or selecting the clusters randomly.
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3.4.1 K-means

Given a set of vectors, the K-means algorithm seeks to find clusters that minimize

the objective function:

D({πc}
k
c=1) =

k
∑

c=1

∑

ai∈πc

‖ai −mc‖
2 (3.1)

where mc =
∑

ai∈πc
ai

|πc|

The centroid (or the mean) of the cluster πc is denoted by mc. A principal

disadvantage of standard K-means is that clusters can only be separated by a

hyper-plane.

3.4.2 Meanshift

The Meanshift algorithm is a non-parametric clustering technique which does not

require prior knowledge of the number of clusters, and does not constraint the shape

of the clusters. Given n data points xi, i = 1, .., n on a d−dimensional space Rd, the

multivariate kernel density estimate obtained with kernel K(x) and window radius

h is:

f(x) =
1

nhd

n
∑

i=1

K(
x− xi

h
) (3.2)

For radially symmetric kernels, it suffices to define the profile of the kernel k(x)

satisfying

K(x) = ck,dk(‖x‖2) (3.3)

where ck,d is a normalization constant which assures K(x) integrates to 1. The

modes of the density function are located at the zeros of the gradient function

∇f(x) = 0. The gradient of the density estimator is

∇f(x) =
2ck,d
nhd+2

n
∑

i=1

(x− xi)g(‖
x− xi

h
‖2) (3.4)
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where g(s) = −k′(s). The first term is proportional to the density estimate at x

computed with kernel G(x) = cg,dg(‖x‖2) and the second term

mh(x) =

n
∑

i=1

(x)g(‖x−xi

h
‖2)

n
∑

i=1

g(‖x−xi

h
‖2)

(3.5)

is the Meanshift. The Meanshift vector always points towards the direction of the

maximum increase in the density. The Meanshift procedure, obtained by successive

computation of the Meanshift vector mh(xt), and translation of the window xt+1 =

xt + mh(xt), is guaranteed to converge to a point where the gradient of density

function is zero.

The Meanshift clustering algorithm is a practical application of the mode finding

procedure: starting on the data points, run Meanshift procedure to find the

stationary points of the density function, and prune these points by retaining only

the local maxima. The set of all locations that converge to the same mode defines

the basin of attraction of that mode. The points which are in the same basin of

attraction is associated with the same cluster.

3.4.3 Random centers selection

When the amount of features extracted from videos is big enough, e.g. 100000

or more, it is reasonable to select the centers of each cluster randomly. However,

due to its randomness, non-representative selection can occur. This issue is solved

by iterating the selection after the classification stage by using Random Sample

Consensus (RANSAC) (Fischler and Bolles, 1981).

3.5 Pooling and Classification

We base our approach to the traditional Bag of Visual Words (BoVW), building a

codebook and representing videos with words of this dictionary. In this work we limit

the computation complexity using a subset of 100000 uniformly selected samples to

construct the codebook.
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Figure 3.3: Codebook words present in each action. First row: Interest points for frame extracted
with Harris corner detector. Second row: histogram of codebook words appearances in each frame.
This histogram, when normalized, is the image descriptor. Third row: cumulative histogram of
frequencies from first frame to the one shown in the first row.

We use a non-linear SVM classifier to recognize actions with a χ2 kernel likewise

Laptev et al. (2008),

K(vi, vj) = exp(D(vi, vj)) (3.6)

where D(vi, vj) is the χ2 distance between video vi and vj . Since our action

recognition is the multi-class classification, we use a one-against-all approach and

determine the class with the highest confidence score. The Figure 3.3 represents the

frame coding through BoW approach. The histograms from the second row, when

normalized, are the frame descriptors.
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3.6 Experimental Results and Discussion

We performed the experiments with a 8x i7-2600 CPU at 3.40GHz and developed

a visualization tool in which we could analyze the influence of the codebook words

over each frame of each video and over the entire sequence. The BoW descriptor of

each image is visualized with this tool as can be seen in Figure 3.4. Following we

summarizes of what is exposed in this results section: in Section 3.6.1 we present

a brief description of the dataset used for validating our method. In Section 3.6.2

the results obtained for each proposed clustering method are compared, using the

final recognition performance as a metric. Then, the influence of the codebook size

is evaluated in Section 3.6.3. Finally, the selection of the best kernel used for the

classifier is studied in Section 3.6.4.

IPs

#2238 IPs

Selected IPs

#229 selected points
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word appearances from the codebook

38 words
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word appearances from the codebook

Figure 3.4: Visualization tool. With this tool, every frame BoW coding and the cumulative BoW
for the video are visible as well as the values of each histogram bin in the most right tables. As can
be seen in the left lower part of the visualization tool, dataset name, video name, IP detector used
and size of the codebook are shown.
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Figure 3.5: KTH Dataset: boxing, hand waving and running are used in our experiments.

3.6.1 Datasets

The KTH dataset (Schuldt et al., 2004) contains six different human actions: boxing,

hand waving, hand clapping, walking, jogging and running. Each action is performed

by 25 subjects in 4 different scenarios. In our experimental setup, we only use

three of the six actions (boxing, hand waving and running) performed by randomly

selected performers. We evaluate a SVM classifier for each of these actions using a

one-against-all cross-validation. In Figure 3.5 we show the three actions taken from

the dataset.

3.6.2 Comparison between Methods

In our experiments, we follow the setup of Kläser et al. (2008), in which the HOG3D

parameters are optimized for KTH Dataset. We extract Harris corners as IP due to

these kind of points have shown better performance compared to DENSE sampling,

Features from Accelerated Segment Test (FAST) or Speeded Up Robust Features

(SURF) interest points, as can be seen in Table 3.1. Using a K-means codebook of

4000 words, DENSE sampling with a 9x9 grid gives 82.04% mean performance of

action recognition, better than FAST points extraction, with 81.66%. However, the

best results are obtained with Harris IPs, with 91.50% of accuracy.

Table 3.1: Comparison between IPs extraction methods using HOG3D descriptor. The values are
for a codebook size of 4000 words and linear kernel of the SVM.

Method No action Boxing Handwaving Running Mean
DENSE 9x9 83.3% 83.0% 79.4% 83.7% 82.04%

Harris 93.0% 94.1% 92.6% 87.8% 91.50%
FAST 87.3% 81.9% 82.1% 80.9% 81.66%
SURF 83.3% 78.8% 79.1% 77.9% 79.77%

For codebook generation, we set the number of words to 1000 and 4000, for
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K-means and random selection, and we have tuned the Meanshift bandwidth

accordingly to the number of clusters desired, i.e., around 4000 words. This

bandwidth value is set to 3. For K-means we guarantee the minimum clustering

error by setting the iterations to 10, and for random selection we iterate also 10

times to guarantee the best random sampling.

As it is shown in Table 3.2, Meanshift clustering takes the longest time to finally

give similar results to others. It can be seen also that despite the variation in the

number of words, K-means always outperforms random selection.

Table 3.2: Comparison between codebook generation methods: K-means, Meanshift and random
selection. Values obtained by using a Harris corner detector and HOG3D descriptor, with a SVM
classifier.

Cluster n◦ clusters n◦ iterations performance computation
time (s)

K-means 1000 10 83.4% 689
K-means 4000 10 91.5% 4656
Meanshift 3319 - 89.8% 42156
random 1000 10 79.4% 0
random 4000 10 90.3% 0

3.6.3 Codebook Size Influence

In order to see the influence of the codebook size, we compute nine different

dictionaries sizes for K-means and random, of 100, 500, 1000, 1500, 2000, 2500,

3000, 3500 and 4000 words. Meanshift is used once, with a bandwidth of 3. This

is due to we want a significant number of clusters, i.e. 4000. With this bandwidth

value we get 3319 clusters.

As can be seen in Figure 3.6, we need a large amount of words to get a good

recognition. This means that clustering process is so crucial, and it usually takes a

substantial quantity of time to compute this dictionary.

3.6.4 Kernel Selection

As soon as we decide to use the kernel trick for the SVM classifier, we discover

that there exists numerous possibilities that are good candidates to be a kernel
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Figure 3.6: Codebook size influence. Results obtained by using Harris corner detection, HOG3D
descriptor and SVM classifier. The higher the number of words belonging to the dictionary the
better the performance will be.

function. We only have to ensure that the function applied to two vectors u and

v is positive definite. Hence, linear kernel k(x, y) = u′ ∗ v is the most common

function used by the scientific community. However, non linear functions can be

used, like polynomials k(x, y) = (gamma ∗ u′ ∗ v + coef0)degree, RBF k(x, y) =

exp(−gamma∗|u−v|2), sigmoid k(x, y) = tanh(gamma∗u′∗v+coef0), chi-squared

k(x, y) = 1 − 2 ∗ sum((xi − yi)2/(xi + yi)) or exponential chi-squared k(x, y) =

exp(−gamma∗sum((xi−yi)2/(xi+yi))). Results for all these kernels are presented

in Figure 3.7. The results show that linear functions does not have constancy with the

increase of the codebook size, with a decrease of the performance starting from 1500

words. However, this curse of dimensionality can be avoided by using chi-squared

kernels. With these functions, the performance is even higher than any other kernel

functions type, reaching results close to the 100% with small codebook sizes. The

polynomial, RBF and sigmoid functions have shown not to be adequate to solve

action recognition problems with the traditional BoW.

3.7 Summary

In this chapter we have analyzed and compared three different clustering methods

to compute the codebook of the traditional BoW approach. We have used the final
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(a) linear (b) RBF (c) chi-squared

Figure 3.7: Kernel selection for the SVM classifier. The figures are obtained by using a dense
grid selection of IP with a HOG3D descriptor, a k-means clustering method and a SVM classifier.

action recognition performance as the evaluation metric to carry out our purpose

and, finally, we have evaluated our framework on a public action database. We

have discussed the importance of the clustering parameters selection to determine

their influence over the recognition results. In the end, we proposed to take into

account the random selection, by which a surprisingly good recognition performance

is achieved. In the next chapter, we will build a semantic relationship between objects

and actions, and we will need an efficient clustering method that be fast and good

enough for real-time applications.
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Chapter 4

Context Information

“When you see a good move, look for a better one”

- Emanuel Lasker,

4.1 Outline of the Chapter

Classifying web videos using a Bag of Words (BoW) representation has received

increased attention due to its computational simplicity and good performance. The

increasing number of categories, including actions with high confusion, and the

addition of significant contextual information has lead to most of the authors focusing

their efforts on the combination of descriptors. It is widely accepted that using

descriptors that give different kind of information tends to increase the performance.

In this field, we propose to use the multikernel Support Vector Machine (SVM) with

a contrasted selection of kernels introducing contextual information, i.e. objects

directly related to performed action by pre-selecting a set of points belonging to

objects to calculate the codebook. In order to know if a point is part of an object,

these items are previously tracked by matching consecutive frames, and the bounding

box is calculated and labeled. We code the action videos using BoW representation

with the object codewords and introduce them to the SVM as an additional kernel.

Experiments have been carried out on two action databases, KTH and HMDB, the

results provide a significant improvement with respect to other similar approaches.

39

UNIVERSITAT ROVIRA I VIRGILI 
HUMAN-ROBOT INTERACTION AND COMPUTER-VISION-BASED SERVICES FOR AUTONOMOUS ROBOTS 
Jordi Bautista Ballester 
 



40 Chapter 4. Context Information

The chapter is organized as follows:

• Section 4.2 introduces the problem and the related work existing on this topic.

• Section 4.3 presents the inclusion of context to the traditional BoW approach

making use of objects present in the action performed.

• Section 4.4 presents the experimentation and discussion.

• Section 4.5 summarizes the contribution of the approach.

4.2 Introduction

The number of videos uploaded online is increasing every day and recently the

analysis of their content has become an intense field of research. In this context,

our research focuses on the recognition of action in videos containing contextual

information about the means by which an action is carried out. Initially, the sort of

databases over which the actions were recognized conformed a set of videos where

scenes and parameters such as illumination, focus, distance, and viewpoints were

mostly controlled, and few or none data existed on the tools and objects that were

involved in the action. For example, the KTH database (Schuldt et al., 2004), a

popular choice to test different action recognition techniques, has not such kind

of information. In any case, we use this database in the present work to show

the performance of our approach in comparison to the rest of other state-of-the-art

approaches.

Recently, however, more realistic databases have increasingly been employed

in order to go beyond the current state of the art. These sets include videos

that stage more realistic actions. A relevant database, HMDB (Kuehne et al.,

2011), is one of the largest action video database to-date with 51 action categories,

which in total contain almost 7,000 manually annotated clips extracted from a

variety of sources ranging from digitized movies to YouTube. This database has

been created to evaluate the performance of computer vision systems for action

recognition and explore the robustness of these methods under various conditions

such as cluttered backgrounds, fast irregular motions, occlusions and camera motion.
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Several approaches have been proposed in the literature for the recognition of actions

in diverse real-world videos. In this database, actions that are contextually connected

to the tool or object employed in their performance can be found.

In order to increase the robustness of the recognition of actions in more

challenging situations, we propose an approach that is able to integrate two sources

of information relevant to discriminate actions, namely, the space-time data that

describes the motion and the contextual information that explains how the action

is carried out. Specifically, by using the HMDB (Kuehne et al., 2011) database, we

select a subset of actions that are performed using a tool or object, a contextual

information that allows to discriminate apparently similar actions such as shooting

a gun or a bow, which its biggest difference lies in the object employed to carry out

the action. We explain how these different sources of information can be combined

in richer description of human actions that permits higher recognition rates.

The main contributions of this chapter is dual: first, the introduction of

contextual information of actions into BoW-based descriptors, and second, a

recognition structure that allows the addition of new information using multichannel

SVM (Zhang et al., 2006). Multichannel SVM has previously proven very successful

in action recognition (Wang et al., 2013; Bilinski and Corvee, 2013) and we take

advantage of this structure by adding data which is not strictly a descriptor of

motion but contextual information describing the tool employed in the action, which

is a new way of using multichannel SVM.

Related Work

What concerns the type of action descriptor, local space-time features (Dollar

et al., 2005; Laptev, 2005) have shown to be successful for general action

recognition because they avoid non-trivial pre-processing steps, such as tracking and

segmentation, and provide descriptors invariant to illumination and camera motion.

In particular, HOG3D (Kläser et al., 2008) has proven to outperform most of this

sort of descriptors (Willems et al., 2008; Scovanner et al., 2007). Another approach
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42 Chapter 4. Context Information

has been trying to find the best combinations of different simpler descriptors. To

this end, Snoek et al. (2005) studied the different methods of descriptor fusion and

classified them into early or late fusion approaches. The former one consists in a

fusion before the training step, while the latter is a fusion afterwards.

With respect to the combination of features, Ikizler-Cinbis and Sclaroff (2010)

combined six different descriptors for three different contextual information, namely,

people (HOG and HOG3D), objects (HOF and HOG), and scene (GIST and color

histograms). Their combination is accomplished by using a multiple Multiple

Instance Learning (MIL) approach, which is a concatenation of bag representations

and classified with an L2-Regularized Linear SVM. On the other hand, Bilinski and

Corvee (2013) used relative dense tracklets for action recognition. They computed

two specific descriptors, Shape Multi Scale Tracklet (SMST) and Relative Multi Scale

Tracklet (RMST), in order to obtain information from the actions relative to the head

of the performer. Two more descriptors encoding space and time, HOG and HOF,

were employed. A multichannel χ2 kernel SVM was used for the combination of this

set of descriptors. Similarly, Wang et al. (2011) and later Wang and Schmid (2013)

computed dense trajectories and their descriptors –Histogram of Gradients (HOG),

Histogram of Optical Flow (HOF), and Motion Boundary Histogram (MBH)– to

finally combine them using a multichannel SVM. In contrast, using a late fusion of

the descriptors the approach of Reddy and Shah (2013) trained a SVM for a scene

context descriptor and another SVM for a motion descriptor, using a histogram

intersection kernel. The two probability estimates obtained separately from each

SVM were fused into one single recognition output afterwards.

In the work presented in this chapter, we use information describing the object

involved in an action using a BoW based action recognition approach. To this end,

we first detect the set of points belonging to the object by matching them to an

instance of the object. This process also labels the bounding boxes, which are later

used to compute a new codebook –the dictionary employed to compute the relative

frequencies in a BoW description–, and the information about the objects in the

actions is preserved as a consequence. Afterwards, we employ such codebook to
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Figure 4.1: Scheme overview in the proposed approach.

encode the video frames computing a BoW description. Finally, we combine the

two source of information, motion and context, by means of a multikernel SVM.

Experimental results show that this procedure improves the recognition of actions.

4.3 Using Action Objects contextual Information

This approach is divided in two phases: first, we detect and track the object that is

involved in the action performed, and second, we perform a BoW-based coding, with

an information fusion by means of the multikernel SVM framework. An overview of

the methodology is presented in Figure 4.1.

4.3.1 Object Detection and Tracking

In order to add contextual information related to the object appearing in an action,

we must find the object in the video sequence. Each video contains one action,

and we detect one object per action. Therefore, we obtain one instance image of

each object per video and use this image to find the object along the whole video

by matching a set of points previously extracted from the frame and the instance
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image. The matching procedure based on the epipolar geometry described in Hartley

and Zisserman (2004) is described in Figure 4.2. The points are extracted using

both Harris corner detector and described by SURF features. This way ensures a

large set of points belonging to the object, which is necessary to obtain good point

correspondences and compute a representative bounding box. Then, we compute

the point matching applying the k-Nearest Neighbor (kNN) algorithm and set a

threshold to select the strongest matches.

Finally, we compute the fundamental matrix –excluding outliers by using Random

Sample Consensus (Fischler and Bolles, 1981) – and use it to obtain a transformation

of the initial bounding box. This ensures more accuracy around the area that limits

the object in the frame. The result of this procedure is a bounding box enclosing the

object used in each action for each frame in the video as can be seen in Figure 4.2.

(a) Frame detected points (b) Object detected points

 

 

matchedBoxPoints
matchedScenePoints

(c) All matches

 

 

inliersIn
inliersOut

(d) Inliers (e) Bounding box

Figure 4.2: First row: point detection and descriptor extraction for a video frame and the object
image. Second row: matches and outlier filtering. Third row: transformed bounding box.

In order to add this information to the overall scheme, we first extract Spatio

Temporal Interest Points (STIP) (Laptev, 2005) from each frame and video and

compute their descriptor. Next, we select a maximum of 100k of object points

applying the bounding boxes labels. Then, we construct a codebook from the

pre-selected words belonging to objects and combine this codebook with others using
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Table 4.1: Descriptors used to encode frames.

Descriptor Characteristics Reference
trajectories KLT tracker or SIFT matcher Jiang et al. (2012)

HOG static appearance information Dalal and Triggs (2005)

from local gradients

HOF local motion information Lucas and Kanade (1981)

MBH separately computes vertical Dalal et al. (2006)

and horizontal OF components

HOG3D spatio-temporal extension Kläser et al. (2008)

of HOG

the multikernel SVM explained in the following section.

4.3.2 Multikernel for SVM

Visual features extracted from a video can represent a wide variety of information,

such as scene (e.g., GIST (Solmaz et al., 2012)), motion (e.g., HOF (Lucas and

Kanade, 1981), MBH (Dalal et al., 2006), HOG3D (Kläser et al., 2008)) or even just

color (color histograms). To classify actions using all these features the information

must be fused in an appropriate way. According to the moment of the combination,

Snoek et al. (2005) proposed a classification of the fusion schemes in early or late

fusion. In early fusion the descriptors are combined before training a classifier (e.g.,

concatenating (Ikizler-Cinbis and Sclaroff, 2010)), and in late fusion the classifiers

are trained for each descriptor and the fusion is done for the results of all these

classifiers (e.g., probabilistic fusion (Reddy and Shah, 2013)).

We use an early fusion in our approach since the combination is done before the

training. A SVM with a chi-squared kernel is used for classification,

χ2(hi, hj) =
1

2

n
∑

k=1

(

(hi(k) − hj(k))2

hi(k) + hj(k)

)

(4.1)

fusing all different descriptors by summing their kernel matrices normalized by

the average distance.
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K(hi, hj) = exp(−
∑

c

1

Ac
χ2(hc

i , h
c
j)) (4.2)

The value of Ac is the mean value of χ2 distances between the training samples

for the c-th channel (Zhang et al., 2006). All the weights are set to one, meaning

that none of the kernels is more discriminative than the others.

4.4 Experimental Results and Discussion

Experiments are presented in this section. Firstly, we explain how to perform the

setup, and secondly, the results are exposed in detail.

4.4.1 Experimental Setup

In this section object detection and tracking are considered in detail. Afterwards,

we introduce the feature encoding in our evaluation step. Finally, the databases and

their experimental setup are exposed.

4.4.1.1 Object Detection

The points used to identify and track the objects are a mixture of points obtained

with Harris corner detector and features computed applying SURF. We use a

threshold between 0,04 and 0,1 for Harris detector and a maximum number of

1000 points for SURF. This ensures enough quantity of points with enough quality

belonging to the object, even in the case the object appearing in the video sequence

is relatively small, like a ball or a sword. For the matching, we select the strongest

1% matches, which is restrictive but ensures better point correspondences.

4.4.1.2 BoW Based Encoding

To encode frames, we use the BoW approach. First, we make use of STIP points

following the work of Laptev (2005). We compute different descriptors for each

point, namely, HOG3D, trajectories, HOG, HOF, and MBH. In the case of HOG3D
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descriptors, we set the parameters optimized for the KTH database as described in

Kläser et al. (2008), resulting in 1008 dimensions in total. In the case of trajectories,

HOG, HOF, and MBH, we follow the work of Wang et al. (2011) and set the

parameters as they did. The dimensions of these descriptors are, respectively, 30

for trajectories, 96 for HOG, 108 for HOF and 192 for MBH, which are significantly

smaller than HOG3D. We also compute DENSE T, obtained as the concatenation

of trajectories, HOG, HOF and MBH, which represents an early fusion and its

dimension is 426. We train a codebook for each descriptor type using a maximum of

100k randomly sampled features. For the object kernel, we ensure the object point

selection using the method described in Section 4.3.

Afterwards, we group the points employing the k-Means clustering algorithm with

a maximum of 5 iterations. The size of the codebook is set to 500 words, following the

works of Reddy and Shah (2013) and Bilinski and Corvee (2013) where the codebook

size is limited to 500 or 1000 to avoid over-learning and despite the fact that the

larger the number of clusters employed, the better the performance is. Finally, a

SVM with an exponential chi-squared kernel is used for classification, combining all

different descriptors by summing their kernel matrices and normalizing the result by

the average distance. We use a 10 fold cross-validation with one-against-all approach.

For all the experiments we employ the default parameter values in the LibSVM

library (Chang and Lin, 2011).

4.4.1.3 Databases Used in the Experiments

As previously said, we test our approach with two different databases: KTH is

collected by Schuldt et al. (2004) and does not contain any tool or object related

to any action. Despite we can not take advantage of any contextual data, this

experimentation allows us to test whether our approach is comparable to these of

the state of the art. On the other hand, HMDB is collected by Kuehne et al. (2011)

and is a more challenging and realistic one where objects used in actions are present.

The KTH database consists of 6 actions performed by 25 actors in a structured

homogeneous environment with a total of 598 videos. The actions performed are
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(a) Boxing (b) Hand waving (c) Hand clapping

(d) Running (e) Walking (f) Jogging

(g) Ride bike (h) Shoot gun (i) Shoot bow

(j) Draw sword (k) Swing baseball (l) Kick ball

Figure 4.3: Example frames from KTH database (first and second rows) and HMDB database
(third and fourth rows). We use all the actions in KTH, that is, (a) boxing, (b) hand waving, (c)
hand clapping, (d) running, (e) walking, (f) jogging, and a subset of the 51 actions in HMDB that
include objects, (g) ride bike, (h) shoot gun, (i) shoot bow, (j) draw sword, (k) swing baseball, and
(l) kick ball.

boxing, hand-waving, hand-clapping, running, walking and jogging, with no object

involved in any of these actions. In order to reduce the computational burden,

we pre-select 12 videos for any action performed by randomly selected actors into

different environments, ensuring that as many variation as possible are employed, i.e.,

scene, person, illumination and camera distance, which makes a total of 72 videos.

The HMDB database consists of 51 actions from a total of 6,849 videos

collected from a variety of sources ranging from digitized movies to YouTube videos.
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Table 4.2: Comparison of different descriptors on the databases using our approach

Databases KTH HMDB HMDB ∆
+ obj

(%) (%) (%) (%)
trajectories 45.51 38.13 39.81 1.68
HOG 70.63 54.29 64.76 10.47
HOF 62.99 41.67 44.78 3.11
MBH 61.55 38.3 47.10 8.8
DENSE T 72.42 45.81 53.99 8.18
HOG3D 86.57 71.98 79.58 7.6

Considering that we need actions with object interaction, we do not follow the

original splits proposed by Kuehne et al. (2011). We reduce the computational cost

by pre-selecting 6 different actions with 20 videos per action, resulting in 120 videos

in total. The pre-selected actions are ride bike, shoot gun, shoot bow, draw sword,

swing baseball and kick ball. The purpose of this selection is dual: first, ensuring that

an object is involved in the action, and second, ensuring the presence of as many

variations as possible. Similar actions are also taken into account, a fact that makes

the set more challenging.

Better and exhaustive explanation of the databases used and how they are split

in affordable subsets is given in Appendix. A.

4.4.2 Experimental Results

We first analyze the use of multikernel SVM in Section 4.4.2.1. We want to know

whether there is a difference in using a single kernel or a multiple kernel. Also,

we compare the effect of different combinations of descriptors. In Section 4.4.2.2 we

evaluate the impact of the addition of contextual information, based on the detection

of the object related to the action.

4.4.2.1 Channel Selection

The use of a multikernel SVM allows us to add different descriptors into the

traditional BoW approach for action recognition. This approach permits to include

several descriptors into this scheme as explained in Wang et al. (2011), where a
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Table 4.3: Comparison of different descriptors combinations on the databases with our approach

Databases KTH HMDB HMDB + obj ∆
(%) (%) (%) (%)

trajectories + HOG 71.33 57.83 71.57 13.74
trajectories + HOF 62.77 43.00 48.64 5.64
trajectories + MBH 62.98 45.38 52.99 7.61
trajectories + HOG + HOF 79.83 64.67 69.39 4.72
trajectories + HOG + MBH 80.5 66.45 69.66 3.21
trajectories + HOF + MBH 74.68 53.44 57.45 4.01
trajectories + HOG + HOF + MBH 82.94 70.04 72.97 2.93
trajectories + HOG3D 73.67 61.56 64.07 2.51
HOG + HOF + MBH 81.66 68.09 70.23 2.14
HOG + MBH 77.13 60.39 66.92 6.53

combination of trajectories, HOG, HOF, and MBH is employed, and analyze how

their combination by means of a multikernel SVM improves the performance with

respect to any singular descriptor. In our work we do the same for a different set of

descriptors, including trajectories, HOG, HOF, MBH, DENSE T (an early fusion of

them) and HOG3D. Results for all these descriptors using our approach can be seen

in Table 4.2.

In our procedure, we have chosen a first descriptor and have progressively added

new ones in order to see the effect of including new information into the kernel. To see

the best improvements, we have chosen the descriptor that contributes the least, i.e.,

trajectories. These results can be seen in Table 4.3. Initially, this single descriptor

gives a performance of 38.13%. Adding a descriptor that contributes more, HOG,

the new value is 57.83%, which shows an improvement surpassing a 50% increase.

On the other hand, adding another weak descriptor, HOF, the new value becomes

43.0%, which represents an improvement of a 12.8%. This fact shows the importance

of choosing a good combination of descriptors. Almost all the additions improve the

results, but the question is which one provides the best results since adding new

channels results in higher computational costs. Therefore, we want the least number

of channels that obtains the best results.
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(a) HMDB (b) HMDB with objects (c) KTH

Figure 4.4: Confusion matrix for the (a) HMDB database using trajectories, HOG, HOF, MBH
descriptors as it is done in Wang et al. (2011) with average performance for 500 codewords: 68.09%,
(b) HMDB with our approach using the same configuration as (a), with average performance for 500
codewords: 70.23%, and (c) confusion matrix for the KTH database using trajectories, HOG, HOF,
MBH descriptors as it is done in Wang et al. (2011). Average performance for 1000 codewords:
81.66%

4.4.2.2 Evaluation of Adding Contextual Information

In the case of the KTH database, where no objects are available, the present method

equals the results of the multichannel approach in Wang et al. (2011). However, there

is a significant improvement in the case where contextual information is present.

In that case, our method outperforms the results obtained for all the descriptors,

ranging from a minimum increase of 1.68% (HOF) to a maximum of 10.47% (HOG).

The same happens when combination of descriptors are used and adding objects to

the HOG + trajectories combination generates the highest increase, 13.74%, which

also outperforms the rest of combinations. The highest value for each database is

highlighted in boldface in Table 4.3.

The idea of contextual information influence can be seen in the confusion matrices

in Figure 4.4. For example, shoot bow has confusions with the rest of actions, that

is, 7% with ride bike, 17% with draw sword, 29% with shoot gun, 22% with swing

baseball, and 5% with kick ball. After adding object information, these values are

all reduced: 5% with ride bike, 15% with draw sword, 24% with shoot gun, 20%

with swing baseball and 5% with kick ball, which means that the confusion of this

action with respect to the rest is smaller as a consequence of including contextual

information into the action description.
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HOG3D and DENSE T descriptors are used here to show two significant facts.

First, that using a unique optimal descriptor is better than a combination of several

descriptors that individually perform worse. This is apparent by the fact that

HOG3D, which fuses information of space and time in a single descriptor, obtains

a 71.98%. This result cannot be reached either by a concatenation of descriptors

–trajectories, HOG, HOF, and MBH– or by a multikernel combination of the same

descriptors, despite the latter is almost as good as HOG3D and reaches a performance

of 70.04% while the former can at most get a value of 45.81%. Moreover, despite that

no combination can outperform the best results reached by HOG3D, the addition

of object information is able to increase the HOG3D result an extra 7.6%, up to

79.58%. Therefore, it is clearly stated that including contextual information always

results in an improvement.
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Figure 4.5: Evaluation of our approach for the KTH database.

Secondly, that combining descriptors is something that should be done with

adequate criteria: Tables 4.2 and 4.3 show that early combination as a concatenation

perform worse (45.81%) than using a late composition of trajectories, HOG, HOF,

and MBH (70.04%) using a multikernel SVM. Figures 4.5 and 4.6 summarize all

these results.

From the results obtained in this Section, we can state that there is a clear

improvement in the action recognition task as a consequence of including contextual
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Figure 4.6: Evaluation of our approach using object detection for the HMDB database.

information in the action description and recognition. Moreover, the method

presented in this chapter allows the obtaining and addition of such information.

4.5 Summary

We have proposed a method to incorporate action contextual information that

extends a previous method used to combine motion related information into standard

action recognition scheme based on BoW. This approach allows the addition of

information related to the tool or object employ in the execution of an action and

shows an increment of the overall recognition performance. We have shown that

adding information without any specific purpose might lead to a lack of improvement

adding the consequent computational cost to the scheme. Our approach complements

space and time information and proposes a procedure to add any sort of contextual

information that can be further generalized to include other data apart from the

object used during an action. Additionally, the present approach shows that the

best results are obtained when kernels from spacial, temporal, and tool information

are combined into a multichannel SVM kernel. In this respect, the highest recognition

rates are 71.57% using a combination of trajectories, HOG and object.
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Chapter 5

Multimodal Sensoring

“The key to immortality is first living a life worth remembering.”

- Bruce Lee,

5.1 Outline of the Chapter

Understanding human activities is one of the most challenging modern topics for

robots. Either for imitation or anticipation, robots must recognize which action

is performed by humans when they operate in a human environment. Action

classification using a Bag of Words (BoW) representation has shown computational

simplicity and good performance, but the increasing number of categories, including

actions with high confusion, and the addition, especially in human robot interactions,

of significant contextual and multimodal information has led most authors to

focus their efforts on the combination of image descriptors. In this field, we

propose the Contextual and Modal MultiKernel Learning Support Vector Machine

(CMMKL-SVM). We introduce contextual information -objects directly related to

the performed action by calculating the codebook from a set of points belonging to

objects- and multimodal information -features from depth and 3D images resulting

in a set of two extra modalities of information in addition to RGB images-. We

code the action videos using a BoW representation with both contextual and modal

information and introduce them to the optimal SVM kernel as a linear combination

55
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56 Chapter 5. Multimodal Sensoring

of single kernels weighted by learning. Experiments have been carried out on two

action databases, CAD120 and HMDB. The upturn achieved with this approach

attained the same results for high constrained databases with respect to other similar

approaches of the state of the art and it is much better as much realistic is the

database, reaching a performance improvement of 14.27% for HMDB. The chapter

is organized as follows:

• Section 5.2 introduces the problem and the related work existing on this topic.

• Section 5.3 presents the inclusion of sensor modes to the traditional BoW

approach making use of contextual and multimodal information.

• Section 5.4 presents the experimentation and discussion.

• Section 5.5 summarizes the contribution of the approach.

5.2 Introduction

Analyzing video content has become critical in human robot interactions, where a

robot must make a decision considering the information extracted from sensors such

as cameras or lasers. In this context, our research focuses on the recognition of

action in videos containing multimodal and contextual information about the means

by which an action is carried out. Some public databases are conformed by a set

of RGB videos where scenes and parameters such as illumination, focus, distance,

and viewpoints are mostly controlled, and few information exits about the tools and

objects that were involved in the action. In robotic contexts, it is usual to have

multimodal information, provided by distance laser sensors or by 3D cameras such

as Kinect.

CAD120 database (Koppula et al., 2013) is recorded with a high controlled

environment, which is ideal for human-robot interactions, although it includes

both contextual and multimodal information. This database contains 10 high

level actions performed by 4 different subjects which in total corresponds to 124

manually annotated videos. However, in order to go beyond the current state of the

art in action recognition topic for real videos, more realistic databases have been
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5.2. Introduction 57

Figure 5.1: Multimodal database CAD120 with RGB (most left), Depth map (middle left), 3D
map (middle right), object context (most right).

increasingly employed, including videos that stage more realistic actions.

HMDB Kuehne et al. (2011), is one of the largest action video database to-date

with 51 action categories, which in total contains 6849 manually annotated clips

extracted from a variety of sources ranging from digitized movies to YouTube videos.

This database has been created to evaluate the performance of computer vision

systems for action recognition and explore the robustness of these methods under

various conditions such as cluttered backgrounds, fast irregular motions, occlusions

and camera motion. In this database, actions with contextually connected objects

can be found, although no multimodal recording is available.

Specifically, we select from the HMDB database a subset of actions that are

performed employing a tool or object. This contextual information allows the

computer to discriminate apparently similar actions such as the case of shooting

a gun or a bow. The biggest difference among these similar actions lies in the tool

employed to carry out the action.

In this chapter, we detail how these different sources of information -depth,

objects- can be combined in a richer description of human actions that permits higher

recognition rates. In order to increase the robustness of the recognition of actions

in more challenging situations, we propose to weight different sources of information

relevant to discriminate actions, namely, the spatio-temporal features that describe

motion by RGB and depth modes, and the contextual information that explains how

an action is carried out by object features. The Figure 5.1 shows sample images from

CAD120 database, representing the same frame of a video as four different sources

of information: RGB, depth and precomputed 3D images and the objects detected

in this frame.
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The main contribution of the work in this chapter is the fusion and discrimination

of new information sources for performed actions with a recognition structure that

weights the addition of new information using a multichannel SVM. The use of

the multichannel SVM has previously proven very successful in action recognition

(Wang et al., 2013; Bilinski and Corvee, 2013). Thus, we take advantage of this

structure in two ways: firstly, by adding data that is strictly not a descriptor of

motion but modal or contextual information obtained by segmenting the region where

the action takes place in three space dimensions and describing the tool employed in

the action. Secondly, by weighting the channels with a multikernel learning approach,

determining which channel has more non-redundant information.

Related Work

Local space-time features (Laptev, 2005) have been shown to be successful for

general action recognition because they avoid non-trivial pre-processing steps, such

as tracking and segmentation, and provide descriptors invariant to illumination and

camera motion. In particular, HOG3D (Kläser et al., 2008) has proven to outperform

most of the descriptors of the same kind.

Experimenting in robotic environments, contextual and multimodal information

have been considered in action recognition frameworks. Works of Pieropan et al.

(2014) and Tsai et al. (2013) fuse information into two different stages with respect

to the training, that is, before and after it respectively. Snoek et al. (2005) studied

the different methods of descriptor fusion and classified them into early fusion

and late fusion approaches. The former consists of a fusion before the training

step, while the latter is a fusion afterwards. In this context, Ikizler-Cinbis and

Sclaroff (2010) combined six different visual descriptors for three different contextual

information types, namely, people (HOF and HOG3D), objects (HOF and HOG), and

scene (GIST and color histograms) by using a multiple MIL approach, which is a

concatenation of bag representations and classified with an L2-Regularized Linear

SVM. In the work of Bilinski and Corvee (2013), a multichannel χ2 kernel SVM is
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used for the combination of a set of descriptors. Similarly, the work of Wang et al.

(2013) computes dense trajectories and their descriptors to finally combine them

using an averaged multichannel SVM.

Considering Multiple Kernel Learning (MKL) as an early fusion approach, it was

first proposed in Lanckriet et al. (2004). SVM approaches focus their efforts on

how to improve the classification accuracy by exploiting different formulations and

how to improve learning efficiency by exploiting different optimization techniques.

Bucak et al. (2014) showed that conflicting statements exist which are largely due

to the variations in the experimental conditions. In the work it is also stated that

while some studies reported that averaging kernels (same weight for each kernel) is

outperformed by SVM (Bucak et al., 2010), others conclude the opposite (Gehler

and Nowozin, 2009). Linear combinations do not have to deal with non-convex

optimization problems which would lead them to poor computational efficiency and

suboptimal performance. That is the reason why most of the authors prefer them

instead of non linear combinations.

Traditional kernel combination learning approaches based on the SVM wrapper

SimpleSVM (Rakotomamonjy et al., 2008) are mainly focused on the usage of the

same training data, making use of linear, polynomial or RBF kernels. This fact is

in contrast to recently published works on the multichannel approach in Wang et al.

(2011) and later Wang and Schmid (2013), which combined different training data

by kernel average.

In our work, unlike the aforementioned state-of-the-art methods, we consider

depth, 3D information, and image descriptors of the objects used in the actions

by means of a BoW-based action recognition approach. To this end, we first

detect the set of points belonging to the object as explained previously in Chapter

4. Then, we compute codebooks for each video mode and context descriptors.

Finally, we combine the three sources of information, motion, depth and objects,

by weighting a multikernel SVM using CMMKL-SVM. Experimental results show

that this procedure improves the recognition rate of actions.
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5.3 Combining Contextual and Modal Action

Information into a Weighted Multikernel

SVM

5.3.1 RGB, Depth and 3D Multimodal

RGB images are usually provided by a single camera mounted in the body of the

robot or in a fixed place in the space. That imposes the limitation of a single view

of the performed action. There exist databases which consider the possibility of a

multiple viewpoint, introducing more variability to the information captured. That

would be the case if different robots were analyzing the same action simultaneously

in different positions, but we consider human-robot interactions that involve just one

robot. Hence, we test our algorithm over a database which provides depth maps, i.e.

CAD120.

We make use of depth information in two ways: first, extracting descriptors

as done with the RGB video sequences. We have, then, a set of descriptors such

as trajectories, HOG, HOF, MBH for RGB and Depth. Depth sequences allow to

differentiate elements in the scene like background and objects over planes different

from the one in which the action takes place. Second, generating a RGB-D sequence

in which we can extract 3D spatial descriptors, such as FPFH. 3D sequences provide

3D spatial information combined in one descriptor. In the end, RGB, Depth and 3D

descriptors generate independent codebooks.

5.3.2 Object Detection and Tracking as Context

Following the work done in Chapter 4 and considering that each video contains

one action, we detect the objects that are employed in the performance of this

action. We make use of the matching procedure based on the epipolar geometry, that

computes the Fundamental Matrix between two consecutive frames and extracts the

bounding boxes for each object in each frame. The result of this procedure is a set
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of bounding boxes that enclose the objects used in each action for each frame in

the video ensuring high accuracy around the area that limits the objects. We also

limit the computational burden by keeping a maximum of 100k points belonging to

objects applying bounding box labels when creating the codebook. What contrasts

with the procedure described in Chapter 4 is that in this case more that one object

is involved when performing the action. Thus, all these objects are consequently

detected and tracked.

5.3.3 CMMKL-SVM

Visual features extracted from a RGB video can represent a wide variety of

information, such as scene (e.g., GIST (Solmaz et al., 2012)), motion (e.g., HOF

(Lucas and Kanade, 1981), MBH (Dalal et al., 2006), HOG3D (Kläser et al., 2008))

or even just color (color histograms). In our approach we include extra features, such

as depth and 3D scene information (e.g. FPFH (Rusu, 2009)), and object related

information. To classify actions using all these features, the information must be

fused in an appropriate way. According to the moment of the combination, Snoek

et al. (2005) proposed a classification of the fusion schemes in early or late fusion.

Multikernel approaches use early fusion since the combination is done before the

training.

The work of Wang et al. (2013) use a linear combination of different kernels,

calculated from a set of codebooks generated with different descriptors. A SVM

with a χ2 kernel for classification is used,

χ2(hi, hj) =
1

2

n
∑

k=1

(

(hi(k) − hj(k))2

hi(k) + hj(k)

)

(5.1)

ensuring that the kernel matrices are strictly positive definite. They fused

different descriptors by summing up the corresponding kernel matrices, normalized

by the average distance Ac of χ2 distances between the training samples for the c-th

channel. No kernel weighting is done, so no kernel is more discriminative than the

others.
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In our approach, given the base kernels

Kc(hi, hj) = exp(−
1

Ac
χ2(hc

i , h
c
j)) (5.2)

the optimal kernel of a certain descriptor is approximated as

Kopt =
∑

c

dcKc (5.3)

where dc is the kernel weight for c-th channel. Each Kc represents the precoded

c-th information referred to the action.

The optimization is carried out within a SVM framework that achieves the

best classification on the training set subject to a regularization scheme. In this

formulation, the objective function is near identical to the standard L1 C-SVM

objective function. The regularization prevents the weights from becoming too large,

although this could be achieved by requiring that the weights sum up to the unit

but also restricting the search space.

minimize
w,d,ξ

1

2
wtw + C1tξ + σtd

subject to yi(w
tKc + b) ≥ 1 − ξi

ξ ≥ 0, d ≥ 0, Ad ≥ p

(5.4)

The constraints are also similar to the standard SVM formulation, with the

addition of two constraints. First, d ≥ 0, which ensures that the weights can be

interpreted and also leads to a much more efficient optimization problem. Second,

Ad ≥ p, with some restrictions, that allow us to encode prior knowledge about the

problem.

In order to tackle large scale problems involving hundreds of kernels, we adopt the

minimax optimization strategy and solve the problem by using projected gradient

descent, taking care to ensure that the constraints dn + 1 ≥ 0 and Adn + 1 ≥ p

are satisfied. This algorithm proceeds in two stages. In the first one, weights dc are

maximized and Support Vectors (SV) are obtained. In the second stage, objective

function is minimized by projected gradient descent. The two stages are repeated
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until convergence or a maximum of the number of iterations is reached, at which

point the weights d and SV ′s are obtained.

5.4 Experimental Results and Discussion

Experiments are presented in this section. Firstly, we explain how to perform the

setup, and secondly, the results are exposed in detail.

5.4.1 Experimental Results

In this section, modal selection and object detection and tracking are considered in

detail. Afterwards, we introduce the encoding framework based on BoW. Finally,

the databases and their experimental setups are exposed.

5.4.1.1 Extracting Contextual Information: Objects

The points used to identify and track the objects are a mixture of RGB points

obtained using Harris corner detector and features computed applying SURF. We

use a threshold between 0,04 and 0,1 for Harris detector and a maximum number

of 1000 points for SURF. This ensures enough quantity of points with enough

quality belonging to the object, even in the case that the object appearing in the

video sequence is relatively small, like a ball or a sword. For the matching, we

select the strongest 1% of matches, which is restrictive but ensures better point

correspondences. These considerations refer mainly to HMDB database, which is

more realistic than CAD120. Object detection and tracking for CAD120 are more

accurate due to their highly controlled conditions.

5.4.1.2 Extracting Multimodal Information: RGB, Depth and 3D

We select three informational modes taking advantage of the RGB-D videos, forming

the set with RGB, depth and 3D videos.

First, for each point in RGB and Depth videos we compute different descriptors,

HOG3D, trajectories, HOG, HOF, MBH. In the case of HOG3D descriptors, we set
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the parameters optimized for KTH database as described in Kläser et al. (2008),

which have demonstrated a good performance not only for the KTH set, resulting in

1008 dimensions in total. In the case of trajectories, HOG, HOF and MBH, we follow

the work of Wang et al. (2013) and set the parameters likewise. The dimensions of

these descriptors are, respectively, 30 (trajectories), 96 (HOG), 108 (HOF) and 192

(MBH), which are significantly smaller than these of HOG3D. We set same parameter

values for both, RGB and Depth videos.

Second, we consider the FPFH descriptor (Rusu, 2009) of the 3D Point Cloud

Library. We configure the descriptor length to FPFHSignature33, that creates a

33 dimension descriptor. We set the FPFH radius search to 100 in order to ensure

enough valid descriptors.

5.4.1.3 Encoding Using BoW

We use the BoW approach to encode frames. First, we make use of STIP points

following the work of Laptev (2005). We compute different descriptors for each

point in RGB videos, Depth videos and 3D videos. We train a codebook for each

descriptor type using a maximum of 100k randomly sampled features. For the object

kernel, we ensure the object point selection using the method described in Chapter

4.

Afterwards, we group the points employing the k-Means clustering algorithm with

a maximum of 5 iterations which ensures enough convergence. In order to compare

results with the ones obtained in Chapter 4, the size of the codebook is set to 500

words, avoiding over-learning, despite the fact that the larger the number of clusters

employed, the better the performance is. Finally, a SVM with an exponential χ2

kernel is used for classification, using a 10 fold cross-validation method with the

one-against-all approach. For all the experiments we employ the default parameter

values in the LibSVM library (Chang and Lin, 2011).
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5.4.1.4 Multikernel Selection

We perform a CMMKL-SVM for classification that uses the default parameters in

Vedaldi et al. (2009). We precalculate each kernel based on image coders (objects,

3D, Depth, RGB descriptors) and perform a train in order to obtain the best

combination of weights.

In the comparison step, we also perform a uniformly weighted combination by

summing their kernel matrices and normalizing the result by the average distance as

in Wang et al. (2013).

5.4.1.5 Databases

We test our model with two different databases, CAD120 (Koppula et al., 2013)

and HMDB (Kuehne et al., 2011). CAD120 contains objects that involve actions

in a highly controlled environment and multimodal information such as RGB and

depth videos. HMDB is a more challenging and realistic one, where objects used in

actions are present. Although no 3D information exists, we use this dataset to test

our approach and compare the results to the state-of-the-art results. Sample frames

for each database are shown in Figure 5.2, in which three actions from the whole

collection are represented for both databases.

The CAD120 database contains 124 RGB-D videos of 4 different subjects

performing 10 high-level actions. Each action is performed three times with different

objects. It contains a total of 61585 3D video frames. The actions have a long

sequence of subactivities which might be considered in future work.

The 10 high-level actions performed are arranging objects, cleaning objects, having

meal, making cereal, microwaving food, picking objects, stacking objects, taking food,

taking medicine and unstaking objects.

The HMDB database consists of 51 actions from a total of 6,849 videos collected

from a variety of sources ranging from digitized movies to YouTube videos. The

action categories are grouped in five types: general facial actions, facial actions

with object manipulation, general body movements, body movements with object

interaction, and body movements for human interaction.
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(a) Microwave (b) Pick objects (c) Unstak objects

(d) Shoot gun (e) Draw sword (f) Kick ball

Figure 5.2: First row: example frames from the CAD120 database showing three out of ten
actions, (a) microwaving food, (b) picking objects, (c) unstacking objects. Second row: example
frames from three actions from the subset selected of the 51 actions in HMDB which include objects,
(d) shoot gun, (e) draw sword, (f) kick ball.

In order to obtain comparable results and considering that we need actions where

an object is used, we do not follow the original splits proposed by Kuehne et al.

(2011). Instead, we use the split detailed in Appendix A, which ensures the presence

of as many variation as possible by following a proportion of clips similar to that in

the complete database. These variations include what part of the body is shown, the

number of people involved in the action, the camera motion and viewpoint, and the

quality of the video.

The split consists of 6 different actions with 20 videos per action, resulting in 120

videos in total. These actions are ride bike, shoot gun, shoot bow, draw sword, swing

baseball and kick ball. The purpose of this selection is dual: first, ensuring that an

object always appears in the action, and second, ensuring the presence of as many

variations as possible. Similar actions like draw sword and swing baseball are also

taken into account, a fact that makes the set more challenging.

5.4.2 Evaluation and Discussion

In Section 5.4.2.1 we evaluate our CMMKL-SVM approach on CAD120 and HMDB

datasets. We first evaluate single descriptors in order to find the most significant
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Table 5.1: Comparison of different descriptors on the databases

Databases CAD120 HMDB
(%) (%)

RGB trajectories 32.30 38.13
RGB HOG 70.17 54.29
RGB HOF 49.02 41.6
RGB MBH 46.97 38.30
RGB HOG3D 83.94 71.98
Depth trajectories 56.34 n/a
Depth HOG 55.99 n/a
Depth HOF 56.47 n/a
Depth MBH 55.18 n/a
FPFH 60.51 n/a

ones. Later, we evaluate the combination of different kernels and obtain the weights

that informs us of the relevance of each kernel. In section 5.4.2.2 we compare our

results for each database with those of the state of the art.

5.4.2.1 Evaluating CMMKL-SVM

The use of CMMKL-SVM allows us to add different descriptors into the standard

BoW approach for action recognition. This approach permits the inclusion of several

image descriptors into this scheme as explained in Chapter 4, and reduces the effect

of information redundancy weighting a multikernel SVM. This approach improves

the performance with respect to any singular descriptor or an averaged combination

of them.

In our first experiment we calculate the average accuracy for each of the

following descriptors: trajectories, HOG, HOF, MBH, HOG3D, Depth trajectories,

Depth HOG, Depth HOF, Depth MBH, Depth HOG3D and FPFH. As we can see in

Table 5.1, HOG3D descriptor gives the best action recognition performance. HOG3D

avoid non-trivial pre-processing steps, such as tracking and segmentation, fuses 2D

space and time information, and provides descriptors invariant to illumination and

camera motion. This aspect shows that using a unique optimal descriptor can be

better than a combination of several descriptors that perform worse individually.
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Table 5.2: Context and modal influence on the databases using two approaches: ours (CMMKL)
and Uniformly Weighted (UW) likewise Chapter 4

CAD120 Database UW CMMKL Kernel
(%) (%) Weights

Object info. combined with RGB descriptor
obj+RGB traj. 36.34 56.57 0.5/0.7
obj+RGB HOG 75.21 86.32 0.2/0.8
obj+RGB HOF 54.78 74.94 0.4/0.8
obj+RGB MBH 54.50 68.32 0.4/0.6
Depth info. combined with RGB descriptor
Depth+RGB traj. 72.61 83.19 0.7/0.3
Depth+RGB HOG 81.63 89.59 0.9/0.9
Depth+RGB HOF 75.08 86.53 0.4/0.8
Depth+RGB MBH 79.03 87.96 0.1/0.4
3D info. combined with RGB descriptor
FPFH+RGB traj. 62.03 87.98 0.6/0.4
FPFH+RGB HOG 69.98 90.67 0.2/0.5
FPFH+RGB HOF 67.65 89.28 0.7/0.7
FPFH+RGB MBH 69.27 90.18 0.8/0.7

HMDB Databases UW CMMKL Kernel
(%) (%) Weights

Object info. combined with RGB descriptor
obj+RGB traj. 39.81 55.43 0.1/0.2
obj+RGB HOG 64.76 86.72 0.5/0.7
obj+RGB HOF 44.78 65.37 0.3/0.3
obj+RGB MBH 47.10 61.61 0.8/0.5

This is apparent in the fact that HOG3D obtains a 71.98% for HMDB and 83.94%

for CAD120.

An extra objective of our approach is to overpass this performance by using

CMMKL-SVM with the best weighted combination of descriptors using RGB videos,

Depth videos, 3D points and objects. That would considerably reduce the time of

the overall procedure, taking into account that HOG3D is quite computationally

expensive. Additionally, Depth descriptors give similar results, (55%), for each

single descriptor -trajectories, HOG, HOF and MBH- meaning that these descriptors

lose their singular characteristics when used for depth videos. On the other hand,

HOG and FPFH are the best choices when used as single descriptors, obtaining a
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recognition rate of 70.17% and 60.51% respectively in CAD120. This is due to the

fact that they give spatial information of the action, a fact that has been verified in

Chapter 4.

In the second experiment, our purpose is to observe the influence of the context

(objects) and modes (Depth, 3D) when employing single descriptors (trajectories,

HOG, HOF, MBH) on RGB videos. The results are shown in Table 5.2. We perform

the experiments with our approach CMMKL-SVM and the uniformly weighted

approach from Chapter 4. We show that the fusion of context and mode information

in a MKL framework is better than averaging kernels. Having a look at the

results in Table 5.2 we can observe that the addition of context, gives an important

improvement of 20% on the average recognition rate for every trial in HMDB when

using our approach. For CAD120, this improvement is much lower than for HMDB,

10% on average, due to the quality of the videos and the lack of extensive variability

in conditions such as illumination and viewpoint. In Table 5.2 we show how context,

depth or 3D information always outperforms the recognition accuracy reached using

a single descriptor.

The third experiment wants to find the best combination between all of the

descriptors. The experiment has been performed choosing a first descriptor and

progressively adding new ones in order to see the effect of the inclusion of this

new information into the CMMKL-SVM. To see the best improvements, we have

chosen the descriptor that contributes the least, i.e., trajectories. These results can

be seen in Table 5.3. Any additional information improves the results, but the

question is which one provides the best results since adding new channels results in

higher computational costs. Therefore, we want the least number of channels that

provides the best results. We can conclude from these results that the addition of

descriptors which provides redundant information leads to a lack of improvement.

For example, the addition of HOF, object or FPFH to the combination trajectories

+ HOG leads to no significant improvement. We must observe that HOF provides

temporal information in a similar sense as trajectories.
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Table 5.3: Using different descriptors combinations on the databases with our approach

Database CAD120
UW CMMKL Kernel
(%) (%) Weights

trajectories+HOG 71.04 83.24 0.2/0.6
trajectories+HOF 49.94 71.1 1.0/0.7
trajectories+Depth HOG 73.28 79.15 0.10/0.81
trajectories+HOG+HOF 75.10 85.94 0.5/0.5/0.1
trajectories+HOG+obj 71.40 83.60 0.8/0.9/0.4
trajectories+HOG+FPFH 71.90 90.33 0.8/0.4/0.6
trajectories+HOG+HOF+MBH 77.71 87.60 0.1/0.2/0.3/0.4
trajectories+HOG+HOF+obj 75.30 84.66 0.9/0.5/0.5/0.7
trajectories+HOG+HOF+Depth HOG 84.78 90.70 0.9/0.7/0.4/0.9
trajectories+HOG+HOF+FPFH 76.04 89.75 0.8/0.6/0.4/0.2
trajectories+HOG+HOF+MBH+obj 77.92 85.21 0.3/1.0/0.5/0.8/0.1
trajectories+HOG+obj+FPFH+Depth HOG79.73 92.83 0.0/0.6/1.0/0.8/0.5

Database HMDB
UW CMMKL Kernel
(%) (%) Weights

trajectories+HOG 57.83 82.24 0.3/0.4
trajectories+HOF 48.64 65.28 0.3/0.3
trajectories+HOG+HOF 64.67 85.82 0.1/0.8/0.3
trajectories+HOG+obj 71.57 85.84 0.3/0.7/0.1
trajectories+HOG+HOF+MBH 70.04 80.69 0.7/0.8/0.1/0.5
trajectories+HOG+HOF+obj 69.39 85.36 0.2/0.9/0.7/0.6
trajectories+HOG+HOF+MBH+obj 72.97 85.41 0.6/0.1/0.4/0.0/0.2

5.4.2.2 Discussion

Comparing to the state-of-the-art, on one hand, Koppula et al. (2013) obtained

a 93,5% in CAD120 database using a CRF-based approach. We obtain a similar

recognition accuracy of 92.83% using CMMKL-SVM. On the other hand, we

significantly improve the results for HMDB, where we used in Chapter 4 a fusion of

objects and RGB descriptors by averaging a multikernel SVM reaching 71,57%, much

lower than the present score of 85.41%. Table 5.4 shows this comparison for CAD120

and Table 5.5 for HMDB. The more realistic the database is the more relevant the

acquisition and weights of contextual and multimodal information are.

Referring to Table 5.3, we can see the importance of weighting channels. Using

a kernel averaging scheme likewise we did in Chapter 4 we always obtained a lower
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performance than this new approach, which takes into account the redundancy of

information introduced by similar descriptors. This can be seen in the combination

trajectories + HOG + HOF, where trajectories almost loses its importance (0.1)

because of other descriptors such as HOF (0.3), which also provides temporal

information like trajectories. However, HOG still remains the most significant

descriptor (0.8). This reinforces the hypothesis made in Chapter 4 that the strongest

descriptors are those that provide spatial information.

Finally, regarding the confusion of the actions, CMMKL-SVM reduces confusion

between actions, even for similar actions, as can be seen in Figure 5.3. For example,

Unstacking objects for CAD120 is easily confused with Stacking objects, a relation

that averaging kernels cannot break (1%) but our approach does (32%). The same

happens when kicking a ball, where averaging kernels performs a 24% and CMMKL

a 44%. In general, all actions in both databases have their confusion index reduced.

Therefore, the overall performance of our action recognition approach is higher than

other state-of-the-art approaches.

Table 5.4: Comparison to the state of the art on CAD120 database

Work Approach Avg. acc.
Koppula et al. (2013) CRF-based 93.50 %

Ours CMMKL-SVM 92.83 %

Table 5.5: Comparison to the state of the art on HMDB database

Work Approach Avg. acc.
Chapter 4 Multichannel UW 71.57 %

Ours CMMKL-SVM 85.84 %

5.5 Summary

In this paper we have proposed a methodology to combine different descriptors

within a standard action recognition scheme based on BoW. Our approach adds

information related to the objects, depth maps and 3D points, and shows an

increment of the overall action recognition performance. The addition of the extra
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(a) CAD120 UW (b) CAD120 CMMKL

(c) HMDB UW (d) HMDB CMMKL

Figure 5.3: Confusion matrices for: (a) CAD120 database using objects, FPFH, Depth
HOG, trajectories, HOG using UW approach (Chapter 4) with average performance for 500
codewords: 79.73%, (b) CAD120 with our approach using the same configuration as (a), with
average performance for 500 codewords: 90.83% (c) HMDB database using objects, trajectories,
HOG, HOF, MBH descriptors as it is done in Chapter 4 with average performance for 500
codewords: 72.97%, (d) HMDB with our approach using the same configuration as (a), with average
performance for 500 codewords: 85.41%.

image descriptors, either from RGB context or sensor modality, leads to an increment

of the computational cost. As a consequence, it is important to discriminate, or

even discard, the less important descriptors. Our approach complements space

and time information extracted with video descriptors, and proposes a procedure

to incorporate and weight any contextual and modal information that can be

further generalized to include other data provided by new context descriptors and/or

new devices. Additionally, the present approach also shows that the best results

are obtained when kernels from spatial, temporal, context, 3D points and depth

are combined within the CMMKL-SVM approach. In this respect, the highest

recognition rates (92.83%) have been obtained when a combination of trajectories,
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HOG, FPFH, Depth and object is used. Due to the relevant importance to intelligent

robots, our future work will focus on the improvement of multimodal fusion and

the reduction of the computational burden by exploiting different optimization

techniques for MKL, allowing a quicker response of the robot to interact with humans

by either imitating or anticipating actions.
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Chapter 6

Incremental Learning

“There is a difference between knowing the path and walking the path.”

- Andy and Larry Wachowski, The Matrix

6.1 Outline of the Chapter

This chapter presents an Incremental Weighted Contextual and Modal MultiKerneL

Support Vector Machine (IWCMMKL-SVM) approach for improving human action

recognition. Different frame coding is performed based on multiple information

sources, namely, RGB and Depth videos, 3D Videos, and context. This approach

allows for the incorporation of the new action demonstrations without performing

a new training from batch. During the incremental step, new frames are coded

likewise the previous training, and the action descriptors are merged with the Support

Vectors (SV) that characterize the old SVM classifier. The proposed approach

is evaluated over two datasets, HMDB and CAD120. The results indicate that

although the incremental procedure reduces the amount of information used for

classification compared to the batch learning method, the overall performance is

at least maintained thanks to the discriminatory capacity of the weighted support

vectors. The chapter is organized as follows:

• Section 6.2 introduces the problem and the related work existing on this topic.

75
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• Section 6.3 presents the incremental approach proposed based on the Support

Vectors of the SVM classifier.

• Section 6.4 presents the experimentation and discussion.

• Section 6.5 summarizes the contribution of the approach.

6.2 Introduction

Video analysis has become critical in human robot interactions, where a robot must

make a decision considering the information extracted from robot joint sensors,

accelerometers, cameras or lasers. In this context, our research is focused on the

recognition of action in videos containing multimodal and contextual information.

Furthermore, in this chapter we extend the traditional BoW approach to an

incremental one, so that new data can be incorporated in the trained model. This

feature is applicable to different fields of research, as for example in imitation

learning, where the approach allows the robot to learn from its own action

performance when performing an imitation.

In order to test this new approach we focused our efforts on experimenting

and making use of well known recorded and collected databases. Public databases

are usually conformed by a set of RGB videos where scenes and parameters such

as illumination, focus, distance, and viewpoints are mostly controlled, and little

information exists about the tools and objects that were involved in the action.

Furthermore, as the need for sophisticated gathered data increases in some fields

of research, e.g. in robotic environments, multimodal information, provided by

distance laser sensors or by 3D cameras such as Kinect, is incorporated in more

recent databases.

One of the most complete databases is CAD120 (Koppula et al., 2013). It

is recorded in a highly controlled environment, which is ideal for human-robot

interactions and it includes both contextual and multimodal information. This

database contains 10 high level actions performed by 4 different subjects which in

total corresponds to 124 manually annotated videos.
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However, in order to go beyond the current state of the art in the action

recognition topic for real videos, more realistic databases have increasingly been

employed, including videos that stage more realistic actions. HMDB (Kuehne et al.,

2011), is one of the largest action video databases to-date with 51 action categories,

which in total contains 6766 manually annotated clips extracted from a variety of

sources ranging from digitized movies to YouTube. This database has been created

to evaluate the performance of computer vision systems for action recognition and

explore the robustness of these methods under various conditions such as cluttered

backgrounds, fast irregular motions, occlusions and camera motion.

In this chapter, the different sources of information present in the databases

-depth, 3D and objects- are combined in a richer description of human actions

that permits higher recognition rates. In order to increase the robustness of the

recognition of actions in more challenging situations, we weight different sources of

information relevant to discriminate actions likewise we did in Chapter 5, namely,

the spatio-temporal features that describe motion by RGB, depth and 3D modes,

and the contextual information that explains how an action is carried out by object

features. Finally, the most interesting contribution is that the work of this chapter

proposes an incremental approach that allows the incorporation of new training data

to the classifier without having to train it again from batch.

Related Work

Despite the intensive work recently done with other learning algorithms, such as deep

learning, SVM remains as one of the most widely used kernel learning algorithm, and

it has been successfully used for many problems. The generalization property of an

SVM depends on its Support Vectors (SV), which is a good enough description of

the decision bound. Unfortunately, the traditional SVM approach is very time and

space consuming due to that the training is usually a Quadratic Programming (QP)

problem, a fact that makes it unaffordable for large-scale problems. SVM can actually

be improved in these two targets: first, by realizing online incremental learning, which
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is useful especially when all the data cannot be loaded into the memory at the same

time or under the online condition; second, by solving large-scale problem, which is

important because the real-world data are often large-scale data.

Furthermore, being able to adapt learning methods to online or incremental

learning is an important feature that makes them feasible for real world problems.

Some reasons to adopt incremental learning are: firstly, incremental learning may

be used to keep the memory and computing consumption at an accomplishable

level; secondly, incremental learning is appropriate when the useful training examples

cannot be collected before the learning process begins, for example the stream data.

Zhou and Chen (2002) classified incremental learning in three methods: example,

class and attribute incremental learning, which incorporate new examples, new

classes, and new attributes to the trained learning model respectively.

To evaluate the effectiveness of incremental training, Syed et al. (1999) proposed

an Incremental Support Vector Machine (ISVM), which is considered as one of the

first SVMs with incremental learning. However the work gives only approximate

results and has been then extended and developed, such as with the SV-L-incremental

algorithm (Rüping, 2001) and NORMA algorithm (Kivinen et al., 2004). Similarly,

Hai et al. (2010) exposed an incremental learning algorithm for SVM based on the

voting principle, and Wu et al. (2008) made use of the convex hulls algorithm in

order to reduce computational cost for SVM incremental learning, defining a new

approach called Convex Hull Support Vector Machine (HC-SVM).

With respect to the incremental learning approaches based on SVM, the works of

Cauwenberghs and Poggio (2001) and Frießet al. (1998) were two other alternatives

to Syed et al. (1999). The former proposed a way to incrementally solve the global

optimization problem in order to find the exact solution. Its reversible aspect allows

for decremental unlearning and to efficiently compute leave-one-out estimations. The

latter is the Kernel-Adatron algorithm, a very fast approach to approximate the

solution of the support vector learning. It had been successfully tested to dynamically

adapt the kernel parameters of the machine, doing model selection in the learning

stage.
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On the other hand, Zheng et al. (2012) designed an Online Incremental Support

Vector Machine (OI-SVM) which mainly consists of two components: the Learning

Prototypes (LP) and the Learning Support Vectors (LSV). LPs learns the prototypes

and during the learning process continuously adjusts prototypes to the data

concept and LSVs get a new SVM by combining learned prototypes with trained

SVs. Globally, OI-SVM can effectively deal with large-scale problems, incremental

problems, and online learning problems. Cauwenberghs and Poggio (2001) designed

an exact on-line algorithm of incremental learning SVM, which updates the decision

function parameters when adding or deleting one vector at a time. Later, Diehl and

Cauwenberghs (2003) improved the previous work and presented a framework for

exact SVM incremental learning, adaptation and optimization, in order to simplify

the model selection by modifying the SVM solution when changing kernel parameters

and doing regularization. The main drawback of most of these techniques is that

they allow only binary classification. Hence, in order to tackle the problem of on-line

multi-category classification, Boukharouba et al. (2009) proposed an incremental

multiclass support vector classifier and the experiments showed that it could provide

accurate results. Other techniques include Learning Active Support Vector Machine

(LASVM) in Bordes et al. (2005), and Kivinen et al. (2004) which considered

incremental learning in a Reproducing Kernel Hilbert Space using gradient descent

within a feature space.

More recently, Duan et al. (2009) proposed the online and batch incremental

algorithms for Lagrangian Support Vector Machine (LSVM). Their main contribution

is that it is not necessary to relearn the whole database while a new sample or

the new sample sets are incremented. In Liu and Yang (2010), they applied an

error-driven incremental learning for the SVM classification in the traditional BoW

approach. To limit the computation burden, they made use of a constraint on the

number of submodels. The work of Ralaivola and d’Alche Buc (2001) exploited the

characteristics of locality of RBF by re-learning only weights of training data that

lie in the neighborhood of the new data. Their algorithm was designed for RBF

kernel-based SVM, excluding multikernel SVM.
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To go beyond the controlled environments, for large-scale problems, it is possible

to scale down the problem size (down-sampling) and train with the representatives.

In this context, Cluster Based Support Vector Machine (CB-SVM) proposed by

Yu et al. (2003) recursively selects SV clusters along the cluster tree to get better

performance; Cluster-SVM (Boley and Cao, 2004) first trains an SVM with clusters,

then replaces the clusters containing only non-SVMs with its representative until each

sub-cluster is SVMs or non-SVs; Finally, Super Cluster Machine (SCM) by Li et al.

(2007) exploits a compatible Probability Product Kernel (PPK) which measures the

similarity between clusters and between clusters and vectors.

In the end, and coming back again to the traditional SVM based approaches,

Teixeira and Corte-Real (2009) made use of an ensemble based incremental algorithm

with SVM as the base classifier. However, its performance was far lower than the

model built with complete data. Considering that the model itself needs to store

a high dimension hyperplane norm vector while the BoW vectors are very sparse

with only hundreds of nonzero elements, to store part of previous data is not a very

time consuming approach in comparison. On-line methods are particularly useful

in the situations that involve on-line streaming data (Agarwal et al., 2008). The

authors Liang and Li (2009) had proved that incremental SVM is suitable for large

dynamic data and more efficient than batch SVMs in terms of the computing time.

Considering these facts, a model with incremental learning SVM as a solution is

implemented in our system, which, in contrast to the work of Teixeira and Corte-Real

(2009), it is capable to maintain the performance obtained with the batch learning.

6.3 Improving Action Classification with an

Incremental Learning

In this section we describe how information sources are incorporated within the

overall system. First, we expose in Section 6.3.1 how we take advantage of BoW

approach and how action objects from context information are incorporated to the
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Figure 6.1: Scheme overview with action objects detection.

overall system. Second, how the different informational modes are converted to image

coding by using BoW is described in Section 6.3.2. Finally, information fusion from

context and modes is described in Section 6.3.3 using either a batch and incremental

learning methods, exposed in detail in Section 6.3.4.

6.3.1 Feature Extraction from Contextual Information:

Objects

To encode frames using BoW, STIP points following the work of Laptev (2005) are

searched. Computing a descriptor for each point, a codebook is trained using a

maximum of 100k randomly sampled features. Afterwards, employing the k-Means

clustering algorithm the points are grouped. The size of the codebook is set following

Reddy and Shah (2013) and Bilinski and Corvee (2013) where the codebook size is

limited to 500 or 1000 to avoid over-learning and despite the fact that the larger the

number of clusters employed, the better the performance is.

Finally, a SVM with an exponential chi-squared kernel is used for classification,

combining all different BoW-based descriptors within a SVM classifier. We use a

10 fold cross-validation with one-against-all approach. An overall scheme of this
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(a) (b)
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Figure 6.2: Object point detection and matching. Firstly, point detection and descriptor
extraction for a video frame (a) and the object image (b) is released. Secondly, matches (c) and
outlier filtering (d) is performed and finally, the transformed bounding box (e) is computed and
labeled.

procedure can be seen in Figure 6.1

Concerning context, object information relevant to the action in RGB sequences

is assembled into the BoW based representation of this action, ensuring the object

point selection. To do so, we must find the object in the video sequence. Each video

contains one action, and we detect action related objects. Therefore, we obtain one

instance image of each object per video and use this image to find the object along

the whole video by matching a set of points previously extracted from the frame

and the instance image. The matching procedure, based on the epipolar geometry

described in Hartley and Zisserman (2004), is described in Figure 6.2. The points

are extracted using a Harris corner detector and described by SURF features. This

way ensures a large set of points belonging to the object, which is necessary to obtain

good point correspondences and to compute a representative bounding box. Then,

we compute the point matching by applying the k-Nearest Neighbor (kNN) algorithm

and setting a threshold to select the strongest matches.

Finally, we compute the fundamental matrix –excluding outliers by using Random

Sample Consensus (RANSAC)(Fischler and Bolles, 1981)– and use it to obtain a

transformation of the initial bounding box. This ensures more accuracy around the

area that limits the object in the frame. The result of this procedure is a bounding

box enclosing the object used in each action for each frame in the video, as can be

seen in Figure 6.2.

In the following step, we apply the BoW based representation and select a

maximum of 100k of object points employing the bounding boxes labels. In the
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Table 6.1: Descriptors used to encode sensor information.

Descriptor Characteristics Reference
trajectories KLT tracker or SIFT matcher Jiang et al. (2012)

HOG static appearance information Dalal and Triggs (2005)

from local gradients

HOF local motion information Lucas and Kanade (1981)

MBH separately computes vertical Dalal et al. (2006)

and horizontal OF components

HOG3D spatio-temporal extension Kläser et al. (2008)
of HOG

Depth XXX previous descriptors -
(trajectories, HOG, HOF, MBH) -
applied to depth images -

FPFH 3D appearance from local gradients Rusu (2009)

end, we construct a codebook from the pre-selected words belonging to objects and

combine this codebook with others using the multikernel SVM explained in the

Section 6.3.3.

6.3.2 Feature Extraction from Information Modes: RGB,

Depth, 3D

RGB images are usually provided by a single camera mounted in the body of the

robot or in a fixed place in the environment. This imposes the limitation of a single

view of the performed action. There exist databases which consider the possibility of

a multiple viewpoint, introducing more variability to the information captured. That

would be the case if different robots were analyzing the same action simultaneously

in different positions, but we consider human-robot interactions that involve just one

robot.

As explained in the previous subsection, we used BoW frame encoding by making

use of STIP points (Laptev, 2005). In this case, for RGB sequences, some descriptors

can be extracted, namely, HOG3D, trajectories, HOG, HOF, and MBH, whose
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Figure 6.3: Scheme overview including contextual and modal information.

main characteristics can be seen in Table 6.1. Computing a descriptor for each

point, a codebook is trained using a maximum of 100k randomly sampled features.

Afterwards, employing the k-Means clustering algorithm the points are grouped. The

size of the codebook is set likewise Section 6.3.1.

We make use of depth information in two ways: first, extracting descriptors as

done with the RGB video sequences. We have, then, a set of descriptors such as

trajectories, HOG, HOF and MBH for RGB and Depth. Depth sequences allow

for the differentiation of elements in the scene like background and objects over

planes different from the one in which the action takes place. Second, generating a

RGB-D sequence in which we can extract 3D spatial descriptors, such as FPFH. 3D

sequences provide 3D spatial information combined in one descriptor. In the end,

RGB, Depth and 3D descriptors generate independent codebooks. Finally, a SVM

classifier is trained for classification, combining all different BoW-based descriptors

within a SVM framework. An overall scheme of this complete procedure including

contextual and modal information can be seen in Figure 6.3.

In the end, our system includes RGB, Depth, 3D and action object as different

channels of information. Example frames of these sources can be seen in Figure
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Table 6.2: Comparison of different descriptors on the databases

Databases CAD120 HMDB
(%) (%)

RGB trajectories 32.30 38.13
RGB HOG 70.17 54.29
RGB HOF 49.02 41.6
RGB MBH 46.97 38.30
RGB HOG3D 83.94 71.98
Depth trajectories 56.34 n/a
Depth HOG 55.99 n/a
Depth HOF 56.47 n/a
Depth MBH 55.18 n/a
FPFH 60.51 n/a

6.4. Some basic results obtained with this collection of descriptors can be seen in

Table 6.2. These results show that the more complex the descriptor is, the higher

the performance is. Hence, the HOG3D descriptor, which combines both space and

time information has the best performance, but at the price of higher computational

complexity. Furthermore, we found that spatial descriptors –HOG, FPFH– give the

highest values comparing to others that give time information –trajectories, HOF,

MBH– or depth description due to the amount of information inherent in those

vectors.

Figure 6.4: Multimodal database CAD120 with RGB (most left), Depth map (middle left), 3D
map (middle right), object context (most right).
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6.3.3 Information Fusion with Weighted Contextual and

Modal Multikernel SVM

Visual features extracted from a RGB video can represent a wide variety of

information, such as scene (e.g., GIST (Solmaz et al., 2012)), motion (e.g., HOF

(Lucas and Kanade, 1981), MBH (Dalal et al., 2006), HOG3D (Kläser et al., 2008))

or even just color (color histograms). In our approach we include extra features, such

as depth and 3D scene information (e.g. FPFH (Rusu, 2009)), and object related

information. To classify actions using all these features the information must be

fused in an appropriate way. According to the moment of the combination, Snoek

et al. (2005) proposed a classification of the fusion schemes in early or late fusion.

Multikernel approaches use early fusion since the combination is done before the

training.

The work of Wang et al. (2013) uses a linear combination of different kernels,

calculated from a set of codebooks generated with different descriptors. A SVM

with a χ2 kernel for classification is used,

χ2(hi, hj) =
1

2

n
∑

k=1

(

(hi(k) − hj(k))2

hi(k) + hj(k)

)

(6.1)

ensuring that the kernel matrices are strictly positive definite. They fuse different

descriptors by summing up the corresponding kernel matrices, normalized by the

average distance Ac of χ2 distances between the training samples for the c-th channel.

No kernel weighting is done, so no kernel is more discriminative than the others.

In our approach, given the base kernels

Kc(hi, hj) = exp(−
1

Ac
χ2(hc

i , h
c
j)) (6.2)

the optimal kernel of a certain descriptor is approximated as

Kopt =
∑

c

dcKc (6.3)

where dc is the kernel weight for c-th channel. Each Kc represents the precoded
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c-th information referred to the action.

The optimization is carried out within a SVM framework that achieves the

best classification on the training set subject to a regularization scheme. In this

formulation, the objective function is near identical to the standard L1 C-SVM

objective function. The regularization prevents the weights from becoming too large,

although this could be achieved by requiring that the weights sum up to the unit

but also restricting the search space.

minimize
w,d,ξ

1

2
wtw + C1tξ + σtd

subject to yi(w
tKc + b) ≥ 1 − ξi

ξ ≥ 0, d ≥ 0, Ad ≥ p

(6.4)

The constraints are also similar to the standard SVM formulation, with the

addition of two constraints. First, d ≥ 0, which ensures that the weights can be

interpreted and also leads to a much more efficient optimization problem, and second,

Ad ≥ p, with some restrictions, that allow us to encode prior knowledge about the

problem.

In order to tackle large scale problems involving hundreds of kernels, we adopt the

minimax optimization strategy and solve the problem by using projected gradient

descent, taking care to ensure that the constraints dn + 1 ≥ 0 and Adn + 1 ≥ p are

satisfied. This algorithm proceeds in two stages. In the first stage, weights dc are

maximized and Support Vectors (SV) are obtained. In the second stage, objective

function is minimized by projected gradient descent. The two stages are repeated

until convergence or a maximum number of iterations is reached, at which point the

weights d and SV ′s are obtained.

6.3.4 Incremental Learning

Given that only a fraction of the training examples end up as support vectors

(Vapnik, 2000), the SVM classifier is able to summarize the data space in a very

concise manner, i.e., summarizing the data in a compact form and the selection of

Support Vectors form a minimal set (Syed et al., 1999).
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Figure 6.5: Incremental Learning workflow in comparison to the Batch Learning.

This suggests that we could partition a huge database and then incrementally

train the SVM classifier with the partitions. The training would preserve only the

support vectors and the classifier kernel weights at each incremental step and add

them to the training set for the next step. Once discarded, the vectors from the

previous training set are not considered again. The main purpose of this method

is that the model obtained should be the same or similar to what would have been

obtained using all the data together to train the model. The reason for this is that

the SVM algorithm will preserve the essential class boundary information seen so far

in a very compact form as support vectors, which would contribute appropriately to

deriving the new concept in the next iteration.

In order to carry out the incremental learning the training set is divided in n

subsets. We train a classifier (SVM1) in the first training subset (TSet1). From

this first training, we keep the support vectors (SV1) and the kernel weights ((dc)1),

adding them to the second training subset (TSet2). The weights are used to empower

the discriminating capacity of the model, which gives different importance to the

support vectors from each kernel. We then train a new classifier (SVM2) and we

keep the new set of support vectors (SV2) and kernel weights ((dc)2) in order to be

added to the third training subset (TSet3). This incremental step is repeated until

all the training subsets are used. The procedure is summarized in Figure 6.5.
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6.4 Experimental Results and Discussion

In this section, a description of both databases is given in Section 6.4.1. Then, the

setup of the proposed approach is explained in detail in Section 6.4.2. Finally, the

results obtained are presented in Section 6.4.3.

6.4.1 Databases

We test our model over two different databases, CAD120 (Koppula et al., 2013) and

HMDB (Kuehne et al., 2011). The former contains objects that involves actions in a

highly controlled environment and multimodal information such as RGB and depth

videos. The latter is a more challenging and realistic one, where objects used in

actions are present. Sample frames for each database are shown in Figure 6.6, in

which the actions used from the whole collection are represented for both databases.

The HMDB database (Kuehne et al., 2011) consists of 51 actions from a total

of 6,849 videos collected from a variety of sources ranging from digitized movies

to YouTube videos. The action categories are grouped in five types: general facial

actions, facial actions with object manipulation, general body movements, body

movements with object interaction, and body movements for human interaction.

Considering that we need actions with object interaction, we do not follow the

original splits proposed by Kuehne et al. (2011). We reduce the computational cost

by pre-selecting 6 different actions with 20 videos per action, resulting in 120 videos

in total. The pre-selected actions are ride bike, shoot gun, shoot bow, draw sword,

swing baseball and kick ball. The purpose of this selection is dual: first, ensuring that

an object is involved in the action, and second, ensuring the presence of as many

variations as possible. Similar actions are also taken into account, a fact that makes

the set more challenging. The split is detailed in Appendix A.

CAD120 database contains 124 RGB-D videos of 4 different subjects performing

10 high-level actions. Each action is performed three times with different objects.

It contains a total of 61585 3D video frames. The actions have a long sequence

of subactivities which might be considered in future work. The 10 high-level
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actions performed are arranging objects, cleaning objects, having meal, making cereal,

microwaving food, picking objects, stacking objects, taking food, taking medicine and

unstacking objects.

(a) Microwaving food (b) Make cereal (c) Unstacking objects (d) Placing

(e) Takeout (f) Taking medicine (g) Stacking objects (h) Picking objects

(i) Eating (j) Cleaning (k) Shoot bow (l) Shoot gun

(m) Swing baseball (n) Ride bike (o) Draw sword (p) Kick ball

Figure 6.6: Example frames from both databases showing all used actions: from CAD120
database, (a) microwaving food, (b) make cereal, (c) unstacking objects, (d) placing, (e) takeout,
(f) taking medicine, (g) stacking objects, (h) picking objects, (i) eating, (j) cleaning, and from
HMDB database, (k) shoot bow, (l) shoot gun, (m) swing baseball, (n) ride bike, (o) draw sword,
(p) kick ball.

6.4.2 Setup

The points used to identify and track the objects are a mixture of RGB points

obtained using Harris corner detector and features computed applying SURF. We
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use a threshold between 0,04 and 0,1 for Harris detector and a maximum number

of 1000 points for SURF. This ensures enough quantity of points with enough

quality belonging to the object, even in the case that the object appearing in the

video sequence is relatively small, like a ball or a sword. For the matching, we

select the strongest 1% of matches, which is restrictive but ensures better point

correspondences. These considerations refer mainly to HMDB database, which is

more realistic than CAD120. Hence, object detection and tracking for CAD120 are

more accurate due to their highly controlled conditions.

We select three informational modes taking advantage of the RGB-D videos,

forming the set with RGB, depth and 3D videos.

First, for each point in RGB and Depth videos we compute different descriptors,

HOG3D, trajectories, HOG, HOF, MBH. In the case of HOG3D descriptors, we set

the parameters optimized for KTH database as described in Kläser et al. (2008),

which have demonstrated a good performance not only for the KTH set, resulting

in 1008 dimensions in total. In the case of trajectories, HOG, HOF, and MBH,

we follow the work of Wang et al. (2013) and set the parameters likewise. The

dimensions of these descriptors are, respectively, 30 (trajectories), 96 (HOG), 108

(HOF) and 192 (MBH), which are significantly smaller than those of HOG3D. We

set the same parameter values for both RGB and Depth videos.

Second, we consider the FPFH descriptor (Rusu, 2009) of the 3D Point Cloud

Library. We configure the descriptor length to FPFHSignature33, that creates a

33 dimension descriptor. We set the FPFH radius search to 100 in order to ensure

enough valid descriptors.

We use the BoW approach to encode frames. First, we make use of STIP points

following the work in Laptev (2005). We compute different descriptors for each point

in RGB videos, Depth videos and 3D videos. We train a codebook for each descriptor

type using a maximum of 100k randomly sampled features. For the object kernel,

we ensure the object point selection using the method described in Section 6.3.1.

Afterwards, we group the points employing the k-Means clustering algorithm with

a maximum of 5 iterations which ensures enough convergence. According to Reddy
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and Shah (2013), the size of the codebook is set to 500 words, avoiding over-learning,

despite the fact that the larger the number of clusters employed, the better the

performance is. Finally, a multikernel SVM as described in Section 6.3.3 is used

for classification, using a 10 fold cross-validation method with the one-against-all

approach. For all the experiments we employ the default parameter values in the

LibSVM library (Chang and Lin, 2011).

To evaluate the effectiveness of incremental training, we compare the performance

of the incrementally trained model against the model trained with all the data so far

in one batch. More specifically, we need to compare the following two cases.

The first case is where we have only the learned model from the previously seen

data (preserved in the form of support vectors and kernel weights), and as new

information comes in, we want to know how does the classification algorithm do,

i.e., if the performance deteriorates as we keep discarding the redundant examples

at each successive incremental step, when the new examples come in.

In the second case, we save all the previously seen data, and as new information

arrives, we want to know how well does the classification algorithm (SVM) fare on

unknown data. This is effectively batch learning using all the data seen so far.

We perform experiments with 0, 2, 5, and 10 splits of the training set, where

0 means a batch learning. We compare the results obtained with all these four

experiments.

6.4.3 Recognition Outcome

The use of Contextual and Modal MultiKernel Learning Support Vector Machine

(CMMKL-SVM) developed in Chapter 5 allows the addition of different descriptors

into the standard BoW approach for action recognition. This approach permits the

inclusion of several image descriptors into this scheme as explained in Section 6.3.3,

and reduces the effect of information redundancy weighting a multikernel SVM.

This approach improves the performance with respect to any singular descriptor or

an averaged combination of them.

In our first experiment we calculate the average accuracy for each of the following
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descriptors: trajectories, HOG, HOF, MBH, Depth trajectories, Depth HOG,

Depth HOF, Depth MBH, Depth HOG3D and FPFH. As we can see in Table

6.2 from Section 6.3.2, HOG3D descriptor gives the best action recognition

performance. HOG3D avoids non-trivial pre-processing steps, such as tracking

and segmentation, fuses 2D space and time information, and provides descriptors

invariant to illumination and camera motion. This aspect shows that using a unique

optimal descriptor can be better than a combination of several descriptors that

perform worse individually. This is apparent in the fact that HOG3D obtains a

71.98% for HMDB and 83.94% for CAD120.

An extra objective of our approach is to surpass this performance obtained with

HOG3D descriptor by using CMMKL-SVM with the best weighted combination of

descriptors using RGB videos, Depth videos, 3D points and objects. That would

considerably reduce the time of the overall procedure, taking into account that

HOG3D is quite computationally expensive. Additionally, Depth descriptors give

similar results (55%), for each single descriptor -trajectories, HOG, HOF and MBH-

meaning that these descriptors loose their singular characteristics when used for

depth videos. On the other hand, HOG and FPFH are the best choices when used

as single descriptors, obtaining a recognition rate of 70.17% and 60.51% respectively

in CAD120. This is due to the fact that they give the spatial information of the

action, a fact that has been verified in Chapter 4.

In the second experiment, our purpose is to observe the influence of the context

(objects) and mode (Depth, 3D) when employing single descriptors (trajectories,

HOG, HOF, MBH) on RGB videos. The results are shown in Table 6.3. We perform

the experiments with our approach CMMKL-SVM and we show that the fusion

of context and mode information in a MKL framework improve the recognition

performance. Having a look at the results we can observe that the addition of

context, gives an important improvement of 20% on the average recognition rate for

every trial in HMDB when using our approach. For CAD120, this improvement is

significantly lower than for HMDB, 10% on average, due to the quality of the videos

and the lack of extensive variability in conditions such as illumination and viewpoint.
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In Table 6.3 we show how context, depth or 3D information always outperforms the

recognition accuracy reached using a single RGB based descriptor.

Table 6.3: Context and modal influence on the databases using batch learning (CMMKL)

CAD120 Database CMMKL Kernel
(%) Weights

Object information with RGB descriptor

obj + RGB trajectories 56.57 0.5/0.7
obj + RGB HOG 86.32 0.2/0.8
obj + RGB HOF 74.94 0.4/0.8
obj + RGB MBH 68.32 0.4/0.6

Depth information with RGB descriptor

Depth + RGB trajectories 83.19 0.7/0.3
Depth + RGB HOG 89.59 0.9/0.9
Depth + RGB HOF 86.53 0.4/0.8
Depth + RGB MBH 87.96 0.1/0.4

3D spatial information with RGB descriptor

FPFH + RGB trajectories 87.98 0.6/0.4
FPFH + RGB HOG 90.67 0.2/0.5
FPFH + RGB HOF 89.28 0.7/0.7
FPFH + RGB MBH 90.18 0.8/0.7

HMDB Databases CMMKL Kernel
(%) Weights

Object information with RGB descriptor
obj + RGB trajectories 55.43 0.1/0.2
obj + RGB HOG 86.72 0.5/0.7
obj + RGB HOF 65.37 0.3/0.4
obj + RGB MBH 61.61 0.8/0.5

Furthermore, in Table 6.4, we can see the importance of weighting channels, which

takes into account the redundancy of information introduced by similar descriptors.

HOG remains the most significant descriptor and this reinforces the hypothesis that

the strongest descriptors are those that provide spatial information.

Finally, considering the fusion of space, time, depth, 3D and objects, we perform

an experiment which could give us feedback about incremental learning. We took

trajectories, HOG, Depth HOG, FPFH and object descriptors in order to obtain the

performance using a batch learning and using an incremental learning, which was

characterized by using three different numbers of subsets: n = 2, n = 5 and n = 10.
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The results in Table 6.4 also show the evolution of the performance in each case.

When starting, the performance is high because the amount of data is limited and

as this amount gets larger, the performance become increasingly smaller.

Table 6.4: Performance and Kernel weights evolution through the incremental learning when
n = 0, n = 2, n = 5 and n = 10, where n = 0 equals to batch learning. In order to get the
best performance we combined all information sources available in each database, i.e., trajectories,
HOG, FPFH, Depth HOG, and objects for CAD120 and trajectories, HOG and objects for HMDB.

Databases CAD120 HMDB
# IWCMMKL Kernel IWCMMKL Kernel

subsets (%) Weights (%) Weights

n = 0 92.83 0.6/1.0/0.8/0.1/0.5 85.84 0.3/0.7/0.2
n = 2 96.47 0.6/0.9/0.1/0.2/0.5 92.73 0.5/0.4/0.4

89.39 0,8/0,9/0,8/0,5/0,8 87.12 0.2/0.6/0.1

n = 5 95.44 0.7/0.6/0.5/0.1/0.2 96.93 0.3/0.3/0.3
97.84 0.3/0.4/0.7/0.4/0.5 96.38 0.8/0.4/0.1
96,29 0.1/0.1/0.1/0.4/0.9 94.62 0.9/0.1/0.4
95.82 0.8/0.5/0.8/0.1/0.7 92.73 0.5/0.4/0.1
89.12 0,4/0,9/0,8/0,1/0,9 87.86 0.1/0.9/0.1

n = 10 88.56 0.2/0.4/0.5/0.1/0.6 96,66 0.1/0.6/0.2
95.80 0.4/0.5/0.6/0.3/0.7 96,78 0.6/0.7/0.7
98.49 0.7/0.2/0.7/0.4/0.4 96,33 0.1/0.5/0.9
96.81 0.5/0.8/0.6/0.5/0.3 94,84 0.2/0.1/0.2
97.39 0.9/0.1/0.1/0.4/0.8 94,96 0.3/0.8/0.1
98.21 0.8/0.2/0.2/0.6/0.9 87,74 0.1/0.1/0.9
97.82 0.2/0.6/0.5/0.3/0.9 92.93 0.9/0.1/0.5
97.24 0.8/0.2/0.7/0.3/0.3 91.61 0.8/0.3/0.7
95.49 0.4/0.3/0.2/0.9/0.3 90.27 0.1/0.9/0.1
92.54 0,6/0,8/0,6/0,2/0,6 87.50 0,80/0,17/0,94

What is relevant in our approach is that thanks to the recursive adaptation of

the kernel weights, the final percentage obtained is always equivalent to the one

obtained with batch learning. Thus, considering CAD120 database results, batch

learning value is 92.83%, for n = 2 the value is 89.39%, for n = 5 is 89.12% and for

n = 10 is 92.54%. On the other hand, considering the HMDB database, those vales

are 85.84%, 87.12%, 87.86% and 87.50% respectively. The results are summarized

in Table 6.5 and they show that with our approach the learning does not degrade

the performance obtained by all the trained data as a whole, therefore allowing the

incorporation of new data without having to learn from batch again.
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Table 6.5: Comparison between different subset number n on training set. We took n = 0, n = 2,
n = 5 and n = 10 for our experiments, where n = 0 equals to batch learning. Experiments were
repeated 10 times in order to see the consistency and repeatability of the results.

Database CAD120 HMDB

n = 0 92.83 ± 1.23 85.84 ± 1.19
n = 2 89.39 ± 1.61 87.12 ± 0.96
n = 5 89.12 ± 1.28 87.86 ± 1.05
n = 10 92.54 ± 1.42 87.50 ± 1.30

To summarize, in terms of the confusion of the actions, Incremental Weighted

Contextual and Modal MultiKerneL Support Vector Machine (IWCMMKL-SVM)

reduces confusion between actions, even for similar actions, as can be seen in Figure

6.7 and 6.8. For example, Unstacking objects for CAD120 is easily confused with

Stacking objects, a relation that the approach breaks (32%). In general, all actions

in both databases have their confusion index reduced. What is important to see in

the Figure 6.7 and 6.8 is that when performing the experiments with the incremental

approach IWCMMKL-SVM the relation between similar actions remain broken, and

the confusion rate is similar to the one obtained using a batch approach.

(a) HMDB with Batch learning (b) HMDB with Incremental
learning (n=5)

Figure 6.7: Confusion matrices for HMDB database using objects, trajectories and HOG,
descriptors, with an average performance of (a) 85.84% on batch learning and (b) 87.86% using
incremental learning with 5 subsets.
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(a) CAD120 with Batch learning (b) CAD120 with Incremental
learning (n=5)

Figure 6.8: Confusion matrices for CAD120 database using objects, trajectories, HOG,
Depth HOG and FPFH descriptors, with an average performance of (a) 92.83% on batch learning
and (b) 89.39% using incremental learning with 5 subsets.

6.5 Summary

We have introduced a method to incrementally add new information to the trained

system and we have demonstrated that it has no significant loss in the performance

when compared to the batch training. The system splits the training set into equally

divided subsets and successively trains each subset with the support vectors from the

classifier trained with the previous one. We take advantage of the fact that Support

Vector Machines are able to summarize the data space in a compact form and the

selected Support Vectors form a minimal set.

The experiments were carried over two relevant databases, CAD120 and HMDB.

The former includes Modal information, from depth sensors particularly, and both

databases include actions with object interaction. This fact allows us to perform

the experiments using a fusion of information sources, i.e., space-time from RGB

videos, depth, 3D space from a previously produced 3D sequences and objects

used to perform the action by computing its bounding boxes. The results show

that when using a batch learning the weight of the different kernels allows the

proper discrimination of the redundant information and that when the incremental

approach is used, those weights change its value because they have been calculated

recursively and the redundant information has been filtered in n steps. This fact
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98 Chapter 6. Incremental Learning

avoids the deterioration of the performance obtained with our approach, allowing

the incorporation of new data without having to compute a training with the whole

amount of data.

Considering that the approach allows the addition of new data without a loss

of the overall performance, the next steps would be to improve this approach by

allowing the incorporation of new class data. This means that new actions could be

demonstrated to a robot and it would be able to learn incrementally in data and

actions.
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Chapter 7

Discussion and Further Work

“All we have to decide is what to do with the time that’s given to us.”

- J.R.R. Tolkien, The Fellowship of the Ring

7.1 Outline of the chapter

In this thesis, a general method to recognize actions that need to be imitated is

developed. It responds to the question of What to imitate? present in PbD. The

model is trained over large datasets and validated over subsets of them, and it is

capable to differentiate similar actions considering the multiple information sources

that a robot have, such as depth sensors, visual sensors, and context. Furthermore,

the recognition engine can recognize both objects and actions present in a video

sequence and can intensively be used in a variety of robot applications, such as

VinBot and RoboHow projects, which are explained in detail in Appendix C.

In addition, this dissertation introduces a method to incrementally add new

information to the trained system based on the fact that Support Vector Machines are

able to summarize the data space in a compact form and that the selected Support

Vectors form a minimal set. The model ensures high accuracy, reversibility and high

rate of action differentiation.

This final chapter presents a summary of the contributions and final remarks of

this thesis and suggests future research directions.

99
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7.2 Summary of Contributions

As seen in Chapter 2, the selection of one PbD approach or another must take into

account various steps. First of all, we must consider what information provided

by the instructor during a demonstration will be recorded and used to teach our

robot learner. Choosing one particular approach will be determined, for example,

by whether the capturing system can be used directly on the instructor or whether

the information can be obtained from the cameras looking at the scene. There are

several possibilities and the actual task to be learned will determine to a great extent

the most suitable way of capturing the movements.

Creating a set of policies to control the robot depends on the type of information

we obtain from the sensors and the quality of this information, and also the algorithm

that performs the learning process. Data can be continuous or discrete, but it also

has different levels of quality, from motor commands to higher semantic behavioral

levels, such as ’bring an apple from the kitchen’. On the other hand, considerations

about the construction of the learning algorithms –e.g., the mapping functions– and

at what precise moment the resulting actions will be required also determine the

approach to chose.

A series of drawbacks must be taken into account when designing the PbD

procedure. Since the learning process usually consists of iterative algorithms which

will adjust the results according to some objective function until a goal is met, it

is important to keep several measures of performance in mind in order to reach

the appropriate solution, as for example, the total time and convergence speed of a

particular algorithm, the robustness to perturbations and precision of the solutions

obtained in the demonstrations and the possibility of adding new examples to

the learning process. In this respect, stability is a key element for most current

approaches. However, stability can sometimes only be maintained locally, while

at other times it can be maintained globally. Two of the most important aspects

that generate low performance are under-demonstrated states, which turn into poor

generalizations and problems when new data is incorporated, and when data is of
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poor quality from ambiguous and irrelevant demonstrations.

Looking at the taxonomy of the leading current approaches to PbD discussed in

Chapter 2, we can appreciate that the two important steps that need to be resolved

are the measure of the performance of the result and the procedure to model the

dynamic of the system with respect to the learning algorithm. For the former,

most approaches use norms that measures the discrepancy with respect to the ideal

demonstration provided by the instructor. The advantage of this approach is that

we can rely on the instructor’s experience and goodwill, but the dependence on the

instructor might also limit the overall performance of the system if the instructor

is less competent or tasks are more complex and it is more difficult to give correct

demonstrations. For the second problem, the main limitation is the scope of the task,

i.e., a combination of primitives that can be learned independently and generalized

or a longer task involving more extensive behaviors. This might compromise not

only the stability of the solution but also the codification of the task into primitive

ones, if there are large differences between instructor and learner embodiment.

7.2.1 A New Methodology for Action Recognition

In Chapter 3 we analyzed and compared three different methods for computing the

codebook of the traditional BoW approach. We used the final action recognition

performance as the evaluation metric and, finally, we evaluated our framework using

a public action database. We discussed the importance of selecting the clustering

parameters and determining their influence on the recognition results. In the end,

we considered using the random selection, with which recognition performance was

surprisingly good.

In Chapter 4 we proposed a method to incorporate action contextual information

that extends a previous method used to combine motion related information into a

standard action recognition scheme based on BoW. This approach allows the addition

of information related to the tool or object employed in the execution of an action

and shows an increment of the overall recognition performance. We have shown that

adding information without any specific purpose might lead to a lack of improvement
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adding the consequent computational cost to the scheme. Our approach complements

space and time information and proposes a procedure to add any sort of contextual

information that can be further generalized to include other data apart from the

object used during an action. Additionally, the approach shows that the best results

are obtained when kernels from spatial, temporal, and tool information are combined

into a multichannel SVM kernel.

In Chapter 5 we proposed a methodology to combine different descriptors within

a standard action recognition scheme based on BoW. The approach adds action

contextual information about objects, depth maps and 3D points, and shows an

increment in overall action recognition performance. The addition of the extra

image descriptors, either from RGB context or sensor modality, increases the

computational cost, so it is important to discriminate, or even discard, the less

important descriptors. Our approach complements space and time information

extracted with video descriptors, and proposes a procedure for incorporating and

weighting any contextual and modal information that can be further generalized to

include other data provided by new context descriptors and/or new devices. The

approach also shows that results are best when kernels from spatial, temporal,

context, 3D points and depth are combined within the CMMKL-SVM approach.

In this respect, recognition rates were highest when a combination of trajectories,

HOG, FPFH, Depth HOG and object is used.

In Chapter 6 we have introduced a method to add new information incrementally

to the trained system and we have demonstrated that it has no significant

performance loss when compared to the batch training. The system splits the training

set into equally divided subsets and successively trains each of them with the support

vectors from the classifier trained with the previous one. We take advantage of the

fact that Support Vector Machine can summarize the data space in a compact form

and the selected Support Vectors form a minimal set. The results show that when

a batch learning is used the weights of the different kernels make it possible to

discriminate the redundant information and that when the incremental approach is

used, these weights change their value because they have been calculated recursively
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and the redundant information has been filtered in n steps. This means that the

performance obtained with our approach does not deteriorate, and makes it possible

to incorporate new data without having to compute a training with all the data.

7.2.2 Application to Public Databases

The most preliminary experimentation was carried out on the KTH database in which

basic variations are employed, i.e., scene, person, illumination and camera distance.

This database was used to check that the results we were obtaining made sense and

to compare our approach with a commonly used database. However, we could not

experiment with the KTH database for too long because of its simplicity. Hence,

we also experimented on two relevant databases, CAD120 and HMDB. The former

contains modal information, particularly from depth sensors, and both databases

contain actions with object interaction. This allows us to merge information sources,

i.e., space-time from RGB videos, depth, 3D space from previously produced 3D

sequences and objects used to perform the action by computing their bounding boxes.

The latter is a highly challenging database because of its realistic videos.

7.2.3 Real Applications to Innovation Projects

Video demonstrations of robot-assisted procedures can be used for Learning from

Demonstration (LfD), developing finite state machines, assessing surgical skills, and

calibrating. Due to the industrial nature of this dissertation, we used our approach

in two real situations: VinBot and RoboHow. Both of these projects needed to tackle

a learning process and they are presented in the Appendix C.

The VinBot project had two problems in facing navigation and grape production.

They are both recognition problems because robots have to avoid obstacles when

navigating and to recognize grapes along the canopy row in order to calculate

production. Our approach propose an object recognition framework based on

different information sources that include context and modes.

In the RoboHow project, we provide visual information to a kinesthetic teaching

framework in order to auto-segment the high level task into atomic actions.
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Robot kinesthetic and dynamic information were not enough to perform this

auto-segmentation task, so we used the action recognition engine of our approach.

7.3 Future Lines of Research

The concepts and the results presented in this dissertation pave the way for

new applications and solutions to different action learning and imitation learning

problems. Some future research directions are summarized below.

7.3.1 Programming by Demonstration

With respect to the future of Programming by Demonstration (PbD), Cangelosi

et al. (2010) proposed a roadmap of action learning research starting in 2010 and

continuing for 20 years. Until 2012, Programming by Demonstration (PbD) focused

on how to solve action learning, using only the simplest actions or movements,

intended as complete motor primitives. At present, we are working on the second

milestone in the roadmap: the flexible acquisition of action patterns and their

combination to achieve more complex goals. For further details one can refer to

the work by Karaoguz et al. (2013) or to Mülling et al. (2013), who put forward the

idea that complex motor tasks could be tackled using several movement primitives.

The acquisition of hierarchical and compositional actions is expected to be solved

in the coming years, and by 2016, the association between syntactic constructions and

composite actions via social learning is likely to be the main focus of the investigation.

Future developments of Programming by Demonstration (PbD) might also consider

the semantic content of human commands, which can be found in natural language,

but specially in visual content provided by cameras or instructional videos.

7.3.2 Task Sharing

Since this dissertation faces the first question in PbD, what to imitate?, the actions

can be shared through the cloud. Furthermore, the robots will be able to download

knowledge about new actions that have been previously learned by other robots.
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With this purpose, an action recognition algorithm could be built on the cloud

allowing users to update its knowledge with the addition of actions learned locally.

This fact would build a new paradigm to the embodiment problem and, more

specifically, to how to imitate? question in PbD.

7.3.3 Action Recognition

Due to the relevant importance to intelligent robots, our future work will focus

on improving multimodal fusion and reducing the computational burden by using

different optimization techniques for Multiple Kernel Learning (MKL), so that robots

can respond more quickly in their interaction with humans by either imitating or

anticipating actions.

Considering complex tasks which encloses a sequence of atomic actions, to

improve the accuracy of the action recognition algorithm and make it more robust,

it is possible to take into account the transitions between the atomic actions, since

they are recorded in a sequential order.

7.3.4 Incremental Learning

Because the approach presented in this dissertation enables new data to be added

without any loss in the overall performance, the next steps would be to improve

the approach by allowing new class data to be incorporated, which means that

new actions could be demonstrated to the robot and it would be able to learn

incrementally in data and actions.

Learning incrementally allows the robot to learn from its own performances

in addition of acquiring new demonstrations from the action performer. As a

benefit of this fact, the robot would improve the task performance by acquiring

new demonstrations from other performers than the original, considering that the

parameters such as illumination, viewpoint, occlusions, etc. would be changed

extensively. As a second benefit, the robot would be able to be taught to perform

new actions until a limit of class number is reached.
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Appendix A

Public Databases

When action recognition started to become a topic of interest, single camera

databases were used to classify actions with a human performer. Parameters

like color, texture, viewpoint, zoom, focus, environment and performers were first

considered in KTH database. Furthermore, more challenging databases were created

in order to introduce parameters such as human body occlusions, camera motion,

video quality, and number of actions performed. HMDB and UCF databases are two

of the most challenging databases today for action recognition topic.

Table A.1: The most relevant databases from the beginning till today. Basic features.

♯

♯ ACTIONS/ ♯

DATABASE YEAR VIDEOS SUBACTIONS ACTORS SCENES

KTH 2004 2391 6 25 in/out
UCF Sports 2008 150 9 - in/out
HMDB51 2011 6849 51 - in/out
TUM Kitchen 2009 17 4 4 in
CAD120 2011 120 10/10 4 in
YouCook 2013 88 6/6 - in
MHAD 2013 660 11 12 in
KIT 2015 >3704 15 49 in
CMU-MMAC 2008 2605 5 43 in

The inclusion of other sensor information in the database allowed the authors

to focus efforts in how to combine all those sources and get not only the better

performance in action recognition but also the goal of action inference and imitation.

To this purpose, Cornell University created CAD60 and CAD120 action databases,
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in which RGB-D cameras, MoCap and skeleton information are present. More recent

databases incorporate Audio (Natural Language (NL) descriptors), Radio Frequency

Identification (RFID) tag reader, Master Motion Map (MMM), Inertial Motion

Unit (IMU), accelerometer/gyroscope/magnetometer, wearable. None of them still

incorporates kinesthetic and dynamic information from the robot and most of them

are used to recognize actions involving one person or robot. A comparison between

the most interesting and relevant databases is attached in Tables A.1 and A.2.

Table A.2: The most relevant databases from the beginning till today. Advanced features.

♯ CAMERA GROUND INTER-

DATABASE MODALITIES VIEWS MOTION TRUTH ACTION

KTH B/W 1 static action -
UCF Sports RGB 1 several action -
HMDB51 RGB 1 several action/♯act/ H-H,

body parts/ H-obj
cam.motion/
video quality

TUM Kitchen RGB, MoCap, 12 static action/ -
RFID tag read., body parts

magneto
CAD120 RGBD, MoCap, 1 - H.lv.action/ H-obj

Skeleton subaction/

obj.afford.
YouCook RGB, 1 several Action/obj./ H-obj

NL descriptors NL desc.
MHAD RGBD, MoCap, 1 static action -

Audio, acc.
KIT RGB, MMM, 4 static action/ H-obj

MoCap anth. parts
CMU-MMAC RGB, MoCap, 6 static action -

Audio, IMU,
wearable

We test our model over three different databases, KTH (Schuldt et al., 2004),

CAD120 (Koppula et al., 2013) and HMDB (Kuehne et al., 2011). The first database

does not contain any tool or object related to any action. Despite we can not take

advantage of any contextual data, this experimentation allows us to test whether our

approach is comparable to these of the state of the art. The second contains objects

that involves actions in a highly controlled environment and multimodal information

such as RGB and depth videos. The last is a more challenging and realistic one,
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where objects used in actions are present.

A.1 KTH Database

The KTH database (Schuldt et al., 2004) consists of 6 actions performed by 25

actors in a structured homogeneous environment with a total of 600 videos. As can

be seen in Figure A.1, the actions performed are boxing, hand-waving, hand-clapping,

running, walking and jogging, with no object involved in any of these actions. In

order to reduce the computational burden, we pre-select 12 videos for any action

performed by randomly selected actors into different environments, ensuring that as

many variation as possible are employed, i.e., scene, person, illumination and camera

distance, which makes a total of 72 videos. The four different scenarios are: outdoors

s1, outdoors with scale variation s2, outdoors with different clothes s3 and indoors

s4 as illustrated in Figure A.2.

(a) Boxing (b) Hand waving (c) Hand clapping

(d) Running (e) Walking (f) Jogging

Figure A.1: Example frames from KTH database, (a) boxing, (b) hand waving, (c) hand clapping,
(d) running, (e) walking, (f) jogging.

Each file contains about four subsequences used as a sequence in our experiments.

The subdivision of each file into sequences in terms start frame and end frame as

well as the list of all sequences is given in an annotation text file.
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(a) p05 s04 (b) p14 s01 (c) p22 s02 (d) p24 s03

Figure A.2: Variations in scene (s01-s04), person (p01-p25), illumination and distance for the
hand clapping action.

A.2 HMDB Database

The HMDB database (Kuehne et al., 2011) consists of 51 actions from a total of 6,849

videos collected from a variety of sources ranging from digitized movies to YouTube

videos. The action categories are grouped in five types: general facial actions, facial

actions with object manipulation, general body movements, body movements with

object interaction, and body movements for human interaction.

(a) Shoot bow (b) Shoot gun (c) Swing baseball

(d) Ride bike (e) Draw sword (f) Kick ball

Figure A.3: Example frames from actions chosen in HMDB database, (a) shoot bow, (b) shoot
gun, (c) swing baseball, (d) ride bike, (e) draw sword, (f) kick ball.

Considering that we need actions with object interaction, we do not follow

the original splits proposed by Kuehne et al. (2011). Additionally, we reduce the

computational cost by pre-selecting 6 different actions with 20 videos per action,

resulting in 120 videos in total. As illustrated in Figure A.3, the pre-selected actions
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are ride bike, shoot gun, shoot bow, draw sword, swing baseball and kick ball. The

purpose of this selection is dual: first, ensuring that an object is involved in the

action, and second, ensuring the presence of as many variations as possible. Similar

actions are also taken into account, a fact that makes the set more challenging.

In order to ensure the presence of as many variations as possible, we follow a

proportion of clips similar to that in the complete database. The whole set of videos

corresponding to these 6 actions has a 63.44% of actions showing the full body, a

32.51% showing the upper body, a 2.46% the head, and a 1.59% the lower body. The

set we selected has a proportion of 63.33%, 32.5%, 2.5% and 1.67% respectively. We

also maintain the same proportions for the number of people involved (1,2, other),

camera motion (motion, no motion), camera viewpoint relative to the author (front,

back, left, right) and for the video quality (bad, medium, good). All the values of

these proportions can be seen in Table A.3.

Table A.3: HMDB subset selection. We maintain proportions with respect to the original set of
videos for the same actions: ride bike, shoot gun, shoot bow, draw sword, swing baseball, and kick
ball.

Original set (%) our own set (%)

part face 63.44 63.33
of body head 1.59 2.5

legs 2.46 1.67
upper 32.51 32.5

♯ people np1 92.77 90.83
np2 4.19 3.33
npn 3.04 5.84

camera cm 52.46 60.83
motion nm 47.54 39.17

camera back 18.06 20
viewpoint front 49.28 46.66

left 16.91 16.67
right 15.75 16.67

video bad 19.80 21.67
quality good 8.24 9.16

med 71.96 69.17

♯ videos 692 120
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A.3 CAD120 Database

CAD120 database (Koppula et al., 2013) contains 124 RGB-D videos of 4 different

subjects –two male, two female, one left-handed – performing 10 high-level actions.

Each action is performed three times with different objects. It contains a total of

61585 3D video frames. The actions have a long sequence of subactivities which can

be considered as a new line of research for future work. Although it is not used in

this thesis, affordability labels and tracked skeletons are also present in the database.

The 10 high-level actions performed are arranging objects, cleaning objects, having

meal, making cereal, microwaving food, picking objects, stacking objects, taking food,

taking medicine and unstaking objects. A single frame for each action can be seen in

Figure A.4.

(a) Microwaving food (b) Make cereal (c) Unstacking objects (d) Placing

(e) Takeout (f) Taking medicine (g) Stacking objects (h) Picking objects

(i) Eating (j) Cleaning

Figure A.4: Example frames from CAD120 database, (a) microwaving food, (b) make cereal, (c)
unstacking objects, (d) placing, (e) takeout, (f) taking medicine, (g) stacking objects, (h) picking
objects, (i) eating, (j) cleaning.

We make use of depth information in two ways: first, extracting descriptors from
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depth sequences which allow to differentiate elements in the scene like background

and objects over planes different from the one in which the action takes place.

Second, generating a RGB-D sequence in which we can extract 3D spatial descriptors,

such as FPFH. 3D sequences provide 3D spatial information combined in one single

descriptor. Frames from RGB, Depth and 3D sequences are shown in Figure A.5 as

well as the object detection.

Figure A.5: Multimodal database CAD120 with RGB (most left), Depth map (middle left), 3D
map (middle right), object context (most right). Modes for two actions are shown: cleaning and
unstacking.
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Publications of the Author

This thesis is supported by the publications of the author listed in this appendix with

a brief comment on how they are connected to this dissertation. The publications

are sorted by the first submission date.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.: Programming by

Demonstration: A Taxonomy of Current Relevant Methods to Teach and

Describe New Skills to Robots, ROBOT2013: First Iberian Robotics

Conference, Advances in Robotics, Vol. 1, Part V, pp 287-300, Springer

International Publishing. 2014.

With this publication, we intended to understand how to employ the PbD

paradigm for the tasks of skill learning and transference in the context of networked

autonomous mobile robots. As it is shown in the paper, PbD is a natural approach

to deal with both the problems of learning skills from demonstrators and the

representation of skills among different robotic embodiments. Despite most of

the approaches analyzed in the paper were usually applied to more human-like

platforms, such as humanoids or robotic arms, we also wanted to investigate what

type of approaches best fitted our specific mobile robot platform from Vinbot project.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.: Clustering Analysis for

Codebook Generation in Action Recognition using BoW Approach, In
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Proceedings of the XV Workshop of Physical Agents, León, Spain, June

2014.

The point of this work was to show the influence of different methods for

clustering information extracted from the image, i.e. to build a good codebook when

using the traditional BoW approach. Furthermore, to find why K-means algorithm

is widely used for codebook generation, instead, for example, random selection of

the centres.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.: Using Action Objects

Contextual Information for a Multichannel SVM in an Action Recognition

Approach based on Bag of Visual Words, In Proceedings of the 10th

International conference in Computer Vision Theory and Applications,

Berĺın, Germany, March 2015.

The contributions of this paper were the introduction of contextual information

of actions into BoW-based description of video frames and the recognition structure

that allows the addition of new information source using multikernel classifier. The

basis of this paper is explained in detail in Chapter 4.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.: Weighting Video

Information into a Multikernel SVM for Human Action Recognition, In

Proceedings of the 8th International Conference on Machine Vision,

Barcelona, Spain, November 2015.

In order to increase the robustness of the recognition of actions in more

challenging situations, we proposed an approach that was able to weight different

sources of information relevant to discriminate actions, namely, the space and

temporal features that describe the motion. Thus, the main contribution of this

paper was the fusion and discrimination of new information sources for performed

actions and it is extended in Chapter 5.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.,: Combining Contextual
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and Modal Action Information into a Weighted Multikernel SVM for

Human Action Recognition, In Proceedings of the 11th International

conference in Computer Vision Theory and Applications, Rome, Italy,

March 2016.

In this paper we took advantage of the structure proposed in Chapter 5 in two

ways: firstly, by adding data that was not strictly a descriptor of motion but modal

or contextual information obtained by segmenting the region where the action took

place in three space dimensions and describing the tool employed in the action,

which was a new way of using multikernel SVM. Secondly, to determine which

channel had more non-redundant information by weighting each information source.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.,: Action Classification

Using Multiple Sensor Information Sources fused into a Multikernel SVM

Framework, IET Image Processing, Submitted manuscript.

This work presented an early version of the experiments presented in Chapter 5

including a time analysis of the approach.

Bautista-Ballester, J., Vergés-Llah́ı, J., Puig, D.,: Action Recognition

Through a BoW Representation of Significant Action Objects, IET

Electronic Letters, Submitted manuscript.

This work presented an early version of the experiments presented in Chapter 4.

Bautista-Ballester, J., Puig, D.,: Improving Action Classification with

an Incremental Learning approach from Visual and Depth Sensors

Using a Weighted Multikernel Support Vector Machine, Robotics and

Autonomous Systems, Submitted manuscript.

This paper presented an Incremental Weighted Contextual and Modal

MultiKerneL Support Vector Machine (IWCMMKL-SVM) approach for improving

human action recognition. Basically, the work proposed an approach that allowed

the incorporation of new training data to the classifier without having to train it
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again from batch and without loss of performance. All the details of this work are

presented in Chapter 6.

Lopes, C. M., Graça, J., Sastre, J.; Reyes, M., Bautista-Ballester,

J., Guzmán, R., Braga, R., Monteiro, A., Pinto, P. A.: Estimativa

automática da produção de uvas utilizando o robô VINBOT - Resultados

preliminares com a casta Viosinho., In 10 Simpsio de Vitivinicultura do

Alentejo, Évora, Portugal, May 2016.

In order to promote the dissemination of the VinBot project (Appendix C), the

consortium of the project has submitted a paper to be published in the proceedings.

The work includes only a few results from the ground truth of Viosinho variety and

image analysis from 2015 gathered data.

Lopes, C. M., Graça, J., Sastre, J.; Reyes, M., Bautista-Ballester, J.,

Guzmán, R., Braga, R., Monteiro, A., Pinto, P. A.: Vineyard yield

estimation by VINBOT robot - preliminary results with the white variety

Viosinho., In XI International Terroir Congress, Willamette Valley,

Oregon July 2016, Submitted manuscript.

In this paper we presented and discussed the relationships between actual and

estimated yield computed using the surface occupied by the grape clusters in the

images. This paper had the purpose of promote and disseminate Vinbot project

(Appendix C).
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Real Applications

“In the modern world of business, it is useless to be a creative, original

thinker unless you can also sell what you create.”

- David Ogilvy,

Due to the Industrial character of this dissertation, I have had the chance to work

in two real applications, VinBot and RoboHow. The former has been carried out at

Ateknea Solutions Catalonia during the whole period of the doctoral program. The

latter was carried out in the Learning Algorithms and Systems Laboratory (LASA)

laboratory from the Ecole Politechnique Federale de Lausanne (EPFL) in Lausanne

and my contribution to the project took place over a period of three months.

VinBot is an all-terrain autonomous mobile robot with a set of sensors capable of

capturing and analyzing vineyard images and 3D data by means of cloud computing

applications, to determine the yield of vineyards and to share this information with

the winegrowers.

RoboHow aims at enabling robots to competently perform everyday human-scale

manipulation activities - both in human working and living environments. In

order to achieve this goal, RoboHow pursues a knowledge-enabled and plan-based

approach to robot programming and control. The vision of the project is that of a

cognitive robot that autonomously performs complex everyday manipulation tasks

and extends its repertoire of such tasks by acquiring new skills using web-enabled

and experience-based learning as well as by observing humans.
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C.1 VinBot

VinBot responds to a need to boost the quality of European wines by implementing

Precision Viticulture (PV) to estimate the yield (amount of fruit per square meter

of vine area: kg/m2). The VinBot project aims to tackle these challenges through

the development of an autonomous mobile robot enhanced with cloud computing

applications to automatically acquire, process and present comprehensive and precise

yield information to winegrowers and associations in the form of a web-based map.

Through their collective expertise in viticulture, the winegrowers and associations

could then coordinate crucial yield management techniques to improve efficiency and

wine quality, per their commercial strategies.

C.1.1 Project Consortium

Due to the European character of the project, the consortium guarantees

complementary and synergistic business interests, ensuring a quick and dynamic

route to the market for the technology. All members are fully committed and

motivated to work together to ensure the success of the project. The consortium

is geographically very representative and includes four major wine producing EU

Member States (Portugal, Spain, Italy and Hungary), and Romania.

Figure C.1: Consortium of the VinBot project.
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The consortium includes wine sector SME Associations (SME-AGs) from four

main EU wine producing countries: Portugal, Spain, Italy and Hungary, who

altogether are responsible for almost 40% of the total wine produced in the

EU. The role of the SME-AGs GRANJA, PROVIR, DALFONS and Orgoványi

Gazdaszövetkezet are centered on i) supporting the R& D efforts, ii) training their

associated SMEs, iii) disseminating the project at transnational level and iv) leading

all efforts on the protection and exploitation of the results.

They work to expand the knowledge base of large communities of SMEs

through comprehensive training courses to their SME members, complemented by

demonstration activities to the management of their members, as well as to other

SME Associations and key players in the viticulture industry across Europe. During

the project they also have served as an invaluable connection between the RTD

performers and industry by mobilizing their SME members to define the industrial

specifications for the technology, guiding the R& D performers in their tasks and

testing and validating the developed prototypes when they became available.

The Core Group of SMEs: The main role of the core group of SMEs selected

by the SME-AGs is to ensure that the results of the project can be used by a

large number of SMEs. This is achieved by taking an active role in validating

the technology developed, advising and assisting other participants, as well as the

taking-up, training and disseminating activities. They benefit from early access and

preferential use of the results.

On one hand, the technological SME Agri-Ciência and ASSIST are responsible

for the technology push, and are fully capable of developing, and commercializing

the commercial VinBot platform. On the other hand, market pull will be

created by end-user SME vineyards GRANJA, PROVIR, DALFONS and Orgoványi

Gazdaszövetkezet. These SMEs fit the model European winegrower that composes

the core of the target winegrower sector. As such, their main role is to contribute

first-hand information of their daily activities and needs to the RTD performers

to ensure the proposed technology is fully in line with industry expectations and

realities. They also carry out exhaustive testing of the developed prototype in
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their vineyards and interact with the rest of the consortium in communicating any

problems, suggestions, required improvements, etc. Similar to the remainder of

the core group of SMEs, they play an active and committed role in Training and

Dissemination Activities.

The RTD Performers: ATEKNEA, ISA and ROBOTNIK have been selected

on the basis of their expertise, resources and complementary interests. Aside

from its project management expertise, ATEKNEA has extensive experience in

the development of industrial solutions based on analogue and digital electronics,

integrated analytic systems, physical instrumentation, wireless communications,

artificial intelligence, machine vision, sensing solutions and IT management

platforms. They are in charge of the development of the computer vision and image

processing systems, and integrate the vinbot components.

ROBOTNIK has extensive experience in the development of service robotics

for different sectors, such as agriculture, search and rescue, military, civil security,

industrial inspection and other sectors. They are in charge of the design of the robot

and software that controls it from a cloud service, allowing it to navigate the fields

and map the vines’ positions accurately.

ISA has been selected for its extensive expertise in precision viticulture and the

use of methodologies for analysis in the agricultural sector, namely for the assessment

of stress factors, diseases and constituents of plants and fruits alike.

These three RTD performers perfectly cover the technical needs of the project

and have counseled the SME-AGs during the training activities.

C.1.2 Problem Statement

The goal of the project is to build and program an autonomous robotic platform

with several mounted sensors to gather information about the state of the vineyards

that could be used by growers to decide the tending policies to improve the quality

of their product. This platform navigates autonomously along the fields, building

maps, planning missions, learning the best trajectories to accomplish the missions,

minimizing the risks and maximizing the success probability. During such missions
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the robot gathers a series of data from heterogeneous sensors (visual, 3D, Normalized

Difference Vegetation Index (NDVI), Global Positioning System (GPS)) which are

processed and offered in a coherent and meaningful way to the final users (vine

growers, producer associations). The key innovative mark of this project is that the

processing of data are carried out partially off-board and accessed anywhere, that

is, in a cloud service that drives, stores, analyzes, and shares the stream of data

obtained by each robot. The scientific and technological goals to be achieved in this

project are listed below.

The research goals in these fields are the procurement of data for building maps

and navigation, the integration heterogeneous types of data, and the registration

of visual data to precise geographical positions to anchor it to the vines. Specific

algorithms have been developed to obtain the information required by growers from

images of plants, canopy 3D structure, and vigor values.

The technological objectives are mainly related to the main elements that

compose the system, i.e., autonomous mobile robot, sensory system, computer vision,

and cloud service. The first pair is physical and mechanical elements (hardware),

while the second pair corresponds to software and telecommunication capacities.

The specific goals that pertain to this thesis can be summarized as follows:

• Sensory system: the purpose of the robot is to gather precise information

from sensors that would allow the growers to improve their tending policies.

Therefore, the robotic platform incorporates several types of sensors, such as

color cameras, Near InfraRed (NIR) cameras, 3D range finders and Global

Positioning System (GPS). Research have been focused on the creation of

suitable algorithms to extract the 3D structure of the canopy and estimations

of the weight of grape clusters.

• Database generation: the gathering and publication of huge amounts of data

by the robot have allowed not only the precision tending of vineyards, but also

this data have provided us with material for research of other aspects of wine

culture.

• Computer vision: the development and integration of computer vision
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algorithms that obtain information about leaves, canopy, grape clusters and

vigor (NDVI). The software is able to process the images obtained by the

imaging system in a flexible way, i.e., partially on-board and partially in a

cloud service. The number of images required for such processing must be

enough to cover the whole extension of the vine canopy for each single tree in a

row, which depends on the robot speed, camera position and horizontal space

covered by the image.

In order to achieve successful results from the VinBot project, the work to

be carried out was previously organized into Work Packages (WPs). All WPs

are classified differently, depending on their nature: Research, Technological

Development and Innovation, Demonstration, Project Management and Other.

What pertains to the specific work done for this dissertation is summarized as follows:

Firstly, implementation and integration. The objective of this WP is to specify,

build, and fully integrate all components required in the process of capturing, storing

and transmitting images, with the additional construction of a mechanical structure

to house such elements to be mounted and connected to the robot equipment

and software. This WP specifically deals with the elements required to do so in

an effective way, namely, capture, illumination, storage, and transmission. The

integration of all these elements with the structure of the robot and the tests of

their operability are also taken into account in this WP.

Secondly, the development of the sensory system. The objective of this WP is

to develop a computer vision system that perform the task of obtaining the images

and 3D data from the sensors, transmitting and storing them into a web service

on the cloud, and extracting and analyzing the information required to generate

maps that allow the growers to take action in their vineyards. This vision system

captures images of the vines with cameras mounted on the robot and also 3D range

finder to measure the canopy. It is also capable of obtaining the visual information

required to navigate, to build maps of the environment, and avoid obstacles. From

the images obtained, the system manages their automatic processing in an off-board

cloud service that extracts measures of the size of the canopy and the number, size,
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and appearance of grape clusters. This data is later used to create maps of vegetative

growth, vigor, and yield estimation.

C.1.3 Sensory System and the Acquisition of Data

This sections deals with the elements of the sensory head that allows the obtainment

of the vineyard data. Also we describe the structure and dimensions of the head as

well as the hardware and software elements that encompass it.

According to the previous specification of the vineyard structure and elements in

the vines that must be characterized, the sensor head houses the following sensors:

• 3D Laser Range Finder (LRF): 1 unit situated at the sensor pole center to

obtain the 3D data of the point clouds, i.e., (x,y,z).

• RGB+NIR Camera: 2 units used to obtain both RGB and NIR images of the

canopy to compute the NDVI.

• Global Positioning System (GPS): To locate the position of the sensor head

(independently of the robot). It provides data in National Marine Electronics

Association (NMEA) format, which can be easily parsed. Information

contained in the files includes Latitude, Longitude, Height, Horizontal and

Vertical Deviations.

• Inertial Motion Unit (IMU): It provides 9 Degrees of Freedom (DOF) values

corresponding to 3-axis gyro angles, compass, and accelerations of the sensor

unit.

• Computer: Used to control the cameras and sensors, collect all the information,

and send it afterwards to another computer via wire, WiFi, or a cloud service.

• Power Supply: For feeding the unit independently of the mobile platform

• Structure: It can be mounted on the mobile platform to house all the cameras,

sensors, battery and computers independently. This structure can also stand

alone on different types of platforms such as trolleys, garden charts or mobile

robots.

The structure allows the height and configurations of the sensors to be changed,

as well as the relative position of the sensor column with respect to the position of
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the trees (closer/farther to/from the center of the line). This specific feature and

all the components are visible in Figure C.2 Also, the sensor head is mechanically

stable once mounted on a mobile platform, to avoid swaying or capsizing.

Figure C.2: Elements forming the sensor head unit.

C.1.3.1 Sensors

According to the previous specifications, the sensor unit must obtain information

about the appearance and weight of grapes and the size of the canopy of vines,

its structure and position. This information is obtained with cameras, a 3D range

finder, and a GPS unit. Also, an IMU is incorporated to obtain more precise 3D

points as explained later in this section. The cameras are a combination of RGB and

NIR sensors. They make it possible to obtain an interesting set of images and also to

compute the Normalized Difference Vegetation Index (NDVI), a standard measure of

health, vigor and biomass of plants. The 3D range finder obtains 3D information in

the form of clouds of points that can be processed later to compute evolving surfaces

approximating the shape of the objects.

The camera selected for the job is a combination of color and NIR sensors which

image the same scene by means of a prism in the optic side of the camera. This

allows a single camera to provide two images, color and NIR, with exactly the same

content. It can be understood as a low-cost spectral camera with for filters, RGB,

and NIR (Figure C.3). Near InfraRed sensitivity is often used for traffic applications

or surveillance/situation awareness, and can also be utilized in the identification

of blemishes or defects not easily observed in the visible spectrum. NIR is also a
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valuable tool because it provides a wider range in the wavelength spectrum beyond

color and allows the computation of NDVI images, which is correlated to the vigor

of the plant.

Figure C.3: Some of the JAI models classified according to their wave length range.

In order to study the development of the vegetation of plants we needed to extract

the canopy structure, which is usually solved by obtaining 3D information, a solution

that has been attempted in different field robotic applications. This data generates

point clouds of the surface of the objects in the environment.

A popular choice for such types of applications is the URG series range finder

sensor provided by Hokuyo Automatic. The Hokuyo URG-Series sensor is specially

suited for outdoor application, with IP67 protection, accurate multiecho at distances

of 30m and a view window of 270o.

We employ an EVK-7P evaluation kit to localize the robot throughout the

field. U-blox 7 evaluation kits are compact, and their user-friendly interface and

power supply make them ideally suited for use in laboratories, vehicles and outdoor

locations. Furthermore, they can be used with a PDA or a notebook PC, making

them perfect through all stages of design-in projects.

In addition to the GPS kit, a proper antenna is necessary to obtain a decent

precision in the location measures. We use a L1 & L2 Glonass helical active

antenna Maxtenna, which is designed for applications requiring greater accuracy

than what L1 antennas alone can provide. The antenna is built from proprietary

Maxtena HelicoreR© technology. This technology provides exceptional pattern

control, polarization purity and high efficiency in a very compact form factor.
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We use an IMU to capture a series of acceleration and gyroscope readings such as

rotation angles that allow the inertial control of devices. In our case, we want to use

such a unit to filter the likely sway of the VinBot while moving along the vineyards

from the 3D point measurements obtained from the range finder. The unit mounted

in the sensor system is a 9 DOF ArduIMU that includes three sensors, an ITG-3205

(triple-axis gyro), ADXL345 (triple-axis accelerometer), and HMC5883L (triple-axis

magnetometer). The outputs of all sensors are processed by an on-board ATmega328

and output over a serial interface. This enables the 9 DOF ArduIMU to be used

as a very powerful control mechanism for UAVs, autonomous vehicles and image

stabilization systems.

C.1.3.2 Structure

The sensor unit is roughly divided into two parts: a pole in the upper part,

where most of the sensors are attached, and a lower housing for the computer,

communications, power supply and the rest of components. The idea is that the

unit would be set on the mobile platform, but also can work autonomously. The

present design only obtains data from one side of a vineyard line. The pole is made

of aluminum IBM structural profile, which reduces the total weight. The box is also

built from this material, and encased by a methacrylate board to keep the interior

devices safe from the water, moisture, and dust outside. Vineyards are usually a

dusty environment, but they can also be rainy and dump, especially during the

periods of when the sensor unit is most likely to be used. Figure C.4 depicts the

physical measurements of the sensor unit.

The sensor unit includes a 12.8V / 40Ah Polymer LiFePO4 rechargeable battery.

Together with a 16V DC/DC converter, an internal power supply of 12V is provided

for all the sensors in the unit. The sensor system also has a computing unit in the

lower part of the body. It is a fanless industrial PC with computational power similar

to a desktop. Despite the fact that VinBot is a project that focus on developing

cloud-based services to process the data, in the very first steps of the project we

decided to provide a powerful onboard PC to control the sensors, store, and process
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Figure C.4: Dimensions of the VinBot system expressed in millimeters.

data. Once these tasks are achieved on board, we move them to web-based ones and

the PC requirements are reduced accordingly.

This PC incorporates cutting-edge 3rd generation i7 Quad-core processor and

versatile I/O functions such as Gigabit Ethernet ports, and 3.0 USB ports. This

computing power ensures video capture and analytic tasks running without failures.

Also it has an ignition control that provides several intelligent control schemes to

turn on/off the computer at the right time. This is important in field operations

which are generally carried out without specialist intervention and no monitor to see

the state of the computer.

With respect to the camera data transference, there are two ways of connecting

the cameras to the computer, that is, using one switching hub and 1-port Ethernet

Network Interface Controller (NIC) or each camera to an Ethernet port. The first

configuration reduces the burden on the internal bus and CPU but can drastically

limit the amount of data transmitted from the cameras or create delays in their

transfer too long to be tolerated. The second option allows higher data transfer

rates at the expense of overloading the CPU and the internal bus where the NIC

ports are connected.

We experimented with both configurations and it was clear that if we wanted to
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capture all the information coming from the cameras we needed a dedicated network

port for each sensor, i.e. the second options is used at this moment. With the

multi-port NIC, as represented in Figure C.5, each camera is connected to one

port of the NIC. Each pair of connected cameras and the NIC construct one IP

configuration and it is appropriate to use a persistent IP. Then, each camera can use

the maximum 800Mbps bandwidth. However, the load for the internal bus, CPU

and the applications become heavy, so this is why a powerful PC is required.

Figure C.5: Connecting a camera using an n-port NIC.

C.1.3.3 Software

The sensor unit have a heterogeneous variety of sensors. Cameras, 3D range finders,

GPS, and IMU, to be specific. An API is required to allow us to achieve two

objectives: using the SDKs provided by each device maker and creating a common

API for all the sensors.

A middleware is an abstraction layer of software that resides between the

Operating System (OS) running the computer and the software applications. It

is usually designed to manage the heterogeneity of hardware existing in a certain

system, to improve the quality of software applications, to simplify software design,

and to reduce development costs. The idea behind the middleware is that a developer

only needs to build the algorithm as a single component. This component can be

combined afterwards and integrated with other existing components. Furthermore,

whenever the component is modified, the programmer only need to replace the old

one with the new one, which improves testing efficiency. This architecture is adopted
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in VinBot and it is summarized as in Figure C.6.

Figure C.6: VinBot software architecture.

Based on Robot Operating System (ROS), we can see all the sensors in the same

screen at the same time in just a single click. ROS provides a user interface called

Rviz in which the model can be seen on screen and the data captured is represented

in an intuitive way (Figure C.7). Furthermore, the captured data can be seen over

the same screen and we can determine if the capture is going to be well recorded in

a glance.

Figure C.7: API based on Rviz ROS visualizer.

Bag files recorded are split into three basic files according to the type of

information saved:
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• Vinbot cameras.bag : compressed NIR and RGB camera topics

• Vinbot vinbotsys.bag : compressed Range Finder, GPS, IMU topics

• Vinbot diag.bag : compressed diagnosis topics

When plannig to gather some data, the procedure followed by the operator has

to follow this sequence:

• Click on vinbot icon

• Enter the variety in an input screen

• A recording session is generated automatically, saved in a folder with the same

name and with a timestamp, all threads are executed, and the recording starts

automatically.

It is necessary to push the sensor head through the vineyard rows to collect data

from the right side of the row. The procedure is described in Figure C.8.

Figure C.8: General procedure when gathering data with VinBot head v.2.

C.1.4 Preliminary Results

In the first task, extraction of grape features, we developed the algorithms required to

obtain the shape, size, and appearance features that describe the grapes using images

gathered by the mobile robot as input. This information was obtained at several

stages of the growing process and was employed to establish yield estimation of the

plots as well as the maturing state, required in differential harvesting procedures.

In traditional vineyard yield estimation, the crop components that are measured to

derive a final estimate are (1) number of clusters per vine, (2) number of berries per

cluster, and (3) berry size grape clusters.
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Our approach consists of determining the regions of the images that contain

grapes forming clusters, using different measures of color and NIR. Yield estimations

are obtained as number of clusters and the total size of the image regions that present

grapes. This is based on previous approaches that find a correspondence between the

image area with clusters and the production of grapes in weight (Tardaguila et al.,

2012).

In the second task, extraction of canopy features, the canopy architecture and

density determine the microclimate and performance of the vine that significantly

impact fruit maturation, composition and date of harvest. Measuring canopy size

during the growing season can give the vineyard manager information to make

necessary manipulations to their vines to optimize their crop. Structure and 3D data

are obtained from sensors and used to create descriptions of the shape of vineyards.

3D shape information of vines is required to determine several features involved in

the management of canopies, like size, volume and exposed area.

Once the 3D data is scanned using laser ranger scanners, a registered 3D model

is generated and the measurements of the canopy size can be obtained. Additionally,

3D information allow us to associate precise spatial coordinates with this data. We

also extract information relative to the exposed leaf area from the RGB+NIR images.

These images provide a different perspective on the structure of the canopy and can

be used alternatively to describe the porosity of the vineyard. By comparing this

information from different periods of the vegetative growing, experts are able to

determine the course of the growing and to create maps of growth.

C.1.4.1 Grape Features

This section provides a detailed description of the methodologies developed to detect

and determine the number and size of the grape clusters using the images obtained

by the RGB+NIR cameras mounted on the robot.

One of the most important parts of this work consists in computing and using the

NDVI from the RGB+NIR cameras that are mounted on the sensory head. NDVI

is a simple indicator that can be used to analyze remote sensing measurements,
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typically but not necessarily from a space platform, and assess whether the target

being observed contains live green vegetation or not.

Figure C.9: NDVI is calculated from the visible and near-infrared light reflected by vegetation.
Healthy vegetation (left) absorbs most of the visible light that hits it, and reflects a large portion
of the near-infrared light. Unhealthy or sparse vegetation (right) reflects more visible light and less
near-infrared light.

The advantage of using NDVI values is that these indices are normalized within

the interval [-1..1] and we can segment the images into different classes based on

their values. In fact, NDVI is a perfect way to detect leaves in the image, as can be

seen in Figure C.9.

The methodology implemented consists of a two stage approach. First, we

perform a coarse classification of the different elements present in the images. This is

based on several features obtained from the color images. The candidate regions are

used directly to compute the characteristics related to the grape production (yield)

of the vineyard. Nevertheless, we use these results to create a database of images

that are employed to train the Object Recognition based on BoW (ORBoW) engine

that is used in the recognition stage (test) to find the regions in the image that

correspond to each class used for training.

In the images we are mainly interested in finding pixels that belonged to grapes.

However, in a more general way, we define a list of classes that were likely present

in all images picturing vines. These classes are: sky, grapes, leaves, soil, and other.

Sky encompasses everything that appeared in the sky, from clouds to different types

of sky (sunny, cloudy, etc.). Grapes correspond to the regions in the image that

contain clusters of grape. Different varieties have changes in color, shape and size.
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Leaves only contain green leaves. Soil is a class for the ground and other dry parts

in the image, such as brunches, leaves, and grass. The rest of the pixels that are not

classified into any of the previous classes are labeled as other.

The following stage is to automatically obtain samples to train the ORBoW

engine to detect certain classes in images. Samples corresponding to a given class

are stored as separate images cropped from the original in a separated folder. Also

a file with the list of all the file names obtained is generated in order to perform

posterior batch processes. This list can be modified manually later on in order to

reduce the size of the set of samples, or leave some outliers out of the list.

The last step in this process consist in the extraction of features from the samples

obtained in the previous section. For the description of these samples we use the

traditional Bag of Words (BoW) image descriptors employing SIFT and SURF point

descriptors. The extraction of features is performed as a batch process that read a

list of file names that correspond to the samples, and the extraction is performed on

each image from the list.

We compute different BoW image features using SIFT and SURF descriptors

computed in a group of points. Despite the fact that there exist many algorithms for

detection of Interest Points (IPs) as seen in Chapter 3, we decided to use a fixed dense

grid of points on the image patch. This way, the number of features per sample is

always constant and can be easily controlled. The idea is to compute a description of

the distribution of these descriptors per image patch. This is obtained by computing

a BoW per patch, which consists in determining the relative occurrence of a series

of features that are used as reference (vocabulary). Therefore, an image is described

by the histogram of the visual words in the vocabulary for each codebook, the one

based in SIFT and the other based in SURF. As seen in Chapter 3, the computation

of the vocabulary is a key step since it determines the description of a set of images.

In our case, the whole process rely on the sets used for training the machine

learning algorithms that are employed later for detecting the regions in the image

with the corresponding class. We employ the same sets for the computation of the

vocabulary, which is obtained by clustering (using a k-Means algorithm) a randomly
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selected set of features into a given number of clusters. As verified in previous

experiments (Chapter 3), this number determines the dimension of the BoW image

descriptor and, in case the set of features to cluster exceeds a manageable number,

an alternative solution consists in randomly selecting a small number of vocabulary

words from the set. Once a vocabulary is obtained, the set of features per image,

be it for training or testing, is transformed into a BoW, that is appended to a file

with all the features describing a given set of samples. These values are used later

for training classes and computing matched in images.

Figure C.10: Region classification results obtained by using the ORBoW approach, combining
SIFT and SURF local descriptors to build the codebook.

In order to find a certain structure in the images corresponding to classes such as

grapes or leaves, we run the ORBoW engine developed in this dissertation starting

from the simplest version of it, which encompasses a multikernel SVM for SIFT

and SURF based codebooks. We classify only one class against the rest. For this

purpose, given a certain class, i.e., grape, a training set is created with positive

samples (grapes) and negative samples (leaves). The size of this training set is

selected by the corresponding parameters. Also a test set required to check the

outcome of the training process is generated with the remaining available samples.

Then during testing, it is important to construct the test feature vectors in exactly

the same way, scaling the test inputs using the saved means and standard deviations,

prior to sending them to the SVM classifier. Figure C.10 represents the results of

grape class classification.

One of the most challenging points for this training is the fact that the robot
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creates a set of images for each row of the variety vineyard, which includes an

increasing number of database sessions for the whole season and for all varieties.

This means that every time the robot collect new data a batch training is necessary.

However, with the approach proposed in Chapter 6 of this dissertation we are able to

incrementally learn new features of the vineyard, providing the classifier with more

data avoiding a batch learning after each recorded session.

C.1.4.2 Canopy Features

Canopy architecture and density determines the microclimate and performance of the

vine which significantly impacts fruit maturation, composition and date of harvest.

Measuring canopy size during the growing season can give the vineyard manager

information to make necessary manipulations to their vines to optimize their crop.

This section deals with the computation of the features that describe the structure

of the canopy. Our main interest is to measure the size of the canopy in terms of

area and volume. Although for this purpose we employ the data obtained from

the 3D range finder, we also want to investigate the possibility of extracting relative

measurements of leaf and surface areas using the RGB+NIR images. This is a totally

different sort of data that also provides an idea of the porosity of the vineyards in

similar terms as the porosity measures of tree canopies that are computed from

beneath the tree.

The main step consists on employing the segmentation results obtained in the

previous section to compute the indices. In FigureC.20 we can see the results of the

segmentation based on the NDVI values. These images are generated by applying

different masks (segmentation result) on the (corrected) RGB image. The masks

correspond to the pixels that belong strictly to the leaves (top-left), the holes in the

leaf region (top-right), the canopy consisting of leaves and their holes (bottom-left),

and the rest of the image that does not belong to the canopy nor to its holes

(bottom-right).

In frontal images of vines we consider the canopy as the image that encompasses

the whole set of leaves. Leaf Area Index (LAI) and porosity values are computed
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Figure C.11: Resulting segmentation based on NDVI values. The top row shows the corrected
RGB image considering all the positive NDVI values (left) and all the negative NDVI values (right).
The bottom row shows the corrected color image with all the canopy (left) and only the leaves
(right).

based on different relation between the canopy, the leaves, and the holes in the

canopy obtained from these images.

C.1.4.3 Canopy 3D Features

3D shape information of vines is required to determine several features involved in

the management of canopies, like size, volume and exposed area. By comparing this

information from different periods of the vegetative growing the algorithm is able to

determine the course of the growing and create maps of the growth.

We use a 3D laser sensor (Hokuyo) in order to obtain the 3D information of the

canopy, such as structure and its descriptors. The laser sensor is mounted on the

head of the robot. In order to register the whole line of the canopy, the laser must

move along the vine and take measurements for each fraction of time, in this case, at

a frequency of 40Hz. The faster the robot moves the fewer the number of measures
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we have. It is necessary to take this into account when detecting the thinner elements

of the plant.

The point cloud obtained by the 3D range finder is a set of distances relative

to the center of the device. This saved data must be threaded in order to convert

it to a set of Cartesian (x,y,z) points. Regarding the vertical measurements of the

canopy, the range of the laser is 270oand the device takes 1080 points for each spin

done over its own axis. This means that the angular resolution is 0.25o. This can

be related to distance when we consider the distance between the device and the

obstacle. For example, if the robot goes through the vineyard along a line 1m

away from the canopy, then the resolution we can obtain in the vertical axis is

1000 · tan(0.25) = 4.3mm. From this value, we can ensure that we are not able to

measure shots thinner than 4.3mm when we are capturing data 1m away from the

canopy.

With respect to the z axis, which is considered here as the axis along the vineyard,

the resolution basically depends on the robot’s speed. Considering a velocity of

3m/s, with a frequency of the range finder of 40Hz, we have 40/313 measures per

meter. This means that the resolution in this direction when moving at 3 m/s is

1000/13 = 76.9mm. The slower the robot goes, the better the resolution is.

When all data points are converted to Cartesian 3D points, we are able to see

something like FigureC.12, which is a 3D reconstruction of all the points represented

as a cloud.

Figure C.12: Representation of the point clouds obtained with the 3D range finder.

The vine growers need to make necessary manipulations to their vines to optimize
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their crop. In order to do that, they use some parameter estimators such as the LAI.

Two techniques are proposed to estimate this LAI. One option is to use the PCL

library, a standard C++ implemented library which includes specific functions to

deal with point clouds. Using these functions, we are able to calculate a Delaunay

triangulation between points of the cloud, and then, estimate the area of the canopy

by summing up these triangle areas. The second option, proposed by us, is based

on the calculation of convex hulls for cross sectional areas and volumes. With this

approach we calculate either the area of a slice captured by the sensor and integrate

it along the row of the vine or the whole canopy volume.

We tested both options. The first method had a high precision, but a high

computation cost. The tests performed indicated that the approach was not feasible

because of the number of holes remaining during the triangulation process. We

needed at least 90% of the canopy fulfilled by triangles, and we had less than 5%.

This was due to the irregular surface of the canopy. However, the PCL functions

worked perfectly when the surface was smooth, as for example with a sphere or a

square. The Second method integrates areas along the z axis, meaning that we have

some estimation between measures. We expected it to have a low precision, but

when the approach was tested, we found that the precision was acceptable. Also

considering the computational cost of the approach, this way is much less expensive

than using PCL library functions.

Then, we consider that every canopy is separated by 1 meter and we keep the

points that represents each one. We calculate the convex hull for each section

captured for this canopy and integrate the values along all measurements. We

realized that outliers could affect the results too much, and this is one of the reasons

why we did not use a convex hull for the whole volume of the canopy. By using

the cross sectional area calculation process, if an outlier exists it only affects the

calculation of this area. This is evident in the holes that exist in the canopy. They

are inside the canopy area, but they must be considered outliers because they are

far from their neighbors. Canopy number 3 of the row named 9E and 10W (both

sides) of the Viosinho variety used for tests is shown in Figure C.13. First, a 3D
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representation of the two halves of the row is visible. Below, one cross Sectional

Area is shown with the convex hull represented in green. This figure shows how the

outliers affect the calculation of the sectional area. In this case, these outliers are

expected to be holes, but it has to be verified with the information provided by the

RGB cameras.
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Figure C.13: Two sides of a single vine: 9E/10W (left/right images) no3 and slices of the vine
using Convex Hulls for the Cross Sectional Area.

The parameters that can be estimated with the 3D laser are shown in Figure

C.14 and are as follows: height (H), width (W), volume (V) of the canopy and the

cross Sectional Area (SA). Indirectly, we are able to also estimate LAI and TAI. This

last parameter is used by Arnó et al. (2013) in order to estimate the LAI.

In the end, volume estimation is done and compared with the ground truth

previously created. In Figure C.14 we can see the two estimations done with convex

hull approach and the ground truth of Viosinho row 9E+10W. The difference between

the two estimations are that we can compute the convex hull of the whole volume of

the canopy, which is represented in red, or we use the cross Sectional Area method,

represented in green. We see that the cross section method underestimates the
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Figure C.14: Canopy features to be estimated. Height (H), width (W) and volume (V) of the
canopy can be estimated from 3D points, as well as the cross Sectional Area (SA).

volume and the best approximation is due to the convex hull over the whole canopy.

This is because the cross sectional method needs a good filtration of the 3D points,

and in our case, we are still not controlling this filtration automatically. Thus, we set

a quite restrictive cubic threshold and this obviously affects the volume calculation.

Nevertheless, we know that the ground truth is overestimating the real volume due

to its calculation process as the volume of a rectangular prism. Hence, we cannot

consider this underestimation as a big error. On the other side, calculating the

volume of the canopy as a whole creates a good approximation, but we can see

the unpredictable effect of the outliers in the canopies 1, 18, 19, 22, 23, where the

estimation is quite bad, either under or over estimating.

Figure C.15: Volume estimation by convex hull approach and the ground truth for the whole row
9E+10W.
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C.1.5 Conclusions and Future Work

The first version of the sensor unit has been tested and widely used throughout the

same vineyard for an entire season. At the present moment, we have most of the

main components integrated (cameras, LRF, PC, power supply, GPS, IMU). The

images in Figure C.16 illustrate the robot construction and the actual stage.

Figure C.16: Vinbot unit phases. Preliminary tested sensor unit on the left, first version in the
middle and the fully integrated version on the right.

We showed the technical specifications of the VinBot system focusing on the

sensors required to meet the specifications necessary to obtain information from the

vineyards.

First we have taken into account the description of the structure of the vineyards.

The size and system of growing of the vineyards have a direct effect on the dimensions

of the sensory head. Also, the sort of measurements to be performed on the vines and

grapes determine the nature of sensors. We have specified such requirements and also

enumerated the actual sensors that are used in the construction of the sensor head.

Additional elements that have been described in this chapter are the mechanical

structure that have been designed and built to hold the sensors, the computational

unit, communications, and power supply of the head. Also a description of the

existing and software under development required to control the head have been

described.

We have considered the tasks of developing methodologies for extracting features
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from images and 3D data that provide information about the yield and vigor of

the vineyards. First, we have considered the problem of localizing grape clusters

in images. Our approach consists of employing the information provided by

RGB+NIR to detect the regions in the image that plausibly contain grapes by

running an ORBoW engine. Color has been used for this purpose, combined with

the computation of NDVI.

Secondly, we have performed computations on the vegetative characterization of

the canopy. Primarily, we have taken advantage of the NDVI images obtained to

allow the computation of a series of indices that describe the amount of leaves exposed

to the sun and the canopy porosity. Also, we have employed the 3D information

obtained by the laser range finder to compute 3D structural parameters such as

height, width and volume.

We also have a method to estimate volume of the canopy, which has been tested

and contrasted to other methods, such as PCL, and we are quite ambitious to get

a better performance if we can do a better filtering of the points. The results can

be improved by fusing both rows making use of the GPS information. Using global

coordinates, the cloud point would include both sides of the canopy, facilitating the

filtration of outliers and limiting their number.

The work of this project is ongoing and more data must be obtained from the

sessions in the ground truth database to compare these features to those obtained

by hand and determine the degree of correspondences.

Since the project is still ongoing, the future tasks consist of several points.

• Despite the fact that the features make reference to phytophysical features of

a vineyard that are already known to be correlated to yield and vegetative

characteristics of vineyards, we must study more deeply the correlations

between the measurements obtained by hand and the results from the

automatic process of image.

• Further experimentation with an increasing number of images and varieties.

It would be interesting to reduce the required manual setting of certain

parameters that are variety dependent, and see how such parameters evolve
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with different varieties and periods of time.

• Using 3D data to calculate LAI and Porosity indexes.

• Match resulting holes predicted by ORBoW engine in RGB images and the

ones predicted with the 3D point clouds.

• Usage of the multimodal representation of the vineyard to improve ORBoW

engine performance.

• Integrate the incremental approach proposed in Chapter 6 to progressively

incorporate new data acquired without having to learn from batch.

C.1.6 Dissemination

The objective of the dissemination is to ensure that non-confidential information

about the VinBot project and its results are disseminated to a wide and relevant

audience to extend the impact of the project results. All consortium members have

been actively involved in carrying out dissemination activities through their own

contacts networks.

C.1.6.1 Website

During May 2014 the website for the VinBot project was launched (www.vinbot.eu).

As illustrated in Figure C.17, the design followed the visual identity created through

the logo, the leaflet and the poster. The content was initially proposed by the

Coordinator and the rest of the partners provided their feedback to improve it.

The website presents the general information about the robot avoiding any

confidential disclosure. It includes a section about the wine industry in Spain,

Portugal and Hungary (the countries where the SME-AGs are located and important

producers in Europe). It also includes a section devoted to the explanation of the

main technologies that are the base of VinBot.

It includes a description of the partners in the Technology Validation section,

since the partners are the developers and the validators of VinBot.

In the NEWS section, partners can follow the general progress of the project and

can download the public documents generated during the project.
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Figure C.17: VinBot website developed for dissemination purposes.

C.1.6.2 BTA Expo in Barcelona

ATEKNEA was present at the fair Barcelona Tecnoloǵıas de la Alimentación (BTA)

from 21st to 24th April 2015. At its 15th edition brought together more than 35,000

visitors fascinated by the latest technology, machinery and ingredients for food. The

team of ATEKNEA (Dr. Jaume Vergés and Jordi Bautista), Robotnik (Roberto

Guzmán and Daniel Carbonell) and ISA (Carlos Lopes and Ricardo Braga) showed

the VinBot prototype. Figure C.18 shows the team at the Ateknea’s stand and the

robot 3D visualization of it during the demo. Certainly, being able to see the robot

attracted many onlookers, who took an active interest in the commercialization of

technology once the validation phase finish.

The main message sent was to show the new technology being developed for

the modern viticulture with the support of the EU. Visitors were told about the

autonomous mobile robot capable of measuring the state of the vineyards and

sending these measures to an intelligent central system that helps the winemaker to

take contrasted decisions. The message and the audiences addressed (industry and

civil society) were in line with those defined by consortium partners. A promotional

video was made from the participation at the event.
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Figure C.18: VinBot team during BTA exposition and a 3D point cloud generation of the stand.

https://youtu.be/YZcIiCsbAjI

C.1.6.3 Successful VinBot demonstration session carried out in Lisbon.

The demonstration of the VinBot project took place on Thursday 16th of July, 2015,

at ISA facilities in Lisbon. The demonstration showed the autonomous functioning

of VinBot to the general public.

Figure C.19: VinBot demonstration and the robot operation during the demonstration held in
Lisbon, 2015.

As can be seen in Figure C.19, the event was well received among both the public

and the media, such as in the Portuguese daily PUBLICO and French LAVIGNE.

http://www.publico.pt/tecnologia/noticia/vinbot-o-robo-todooterreno-para-a-

vinha-1702366

http://www.lavigne-mag.fr/actualites/robot-vinbot-estime-la-vigueur-et-les-
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rendements-artFa-107027.html

A promotional video was realized from this demo and it is publicly accessible.

https://youtu.be/rVRXQvHoilw
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C.2 RoboHow

Kinematic and video demonstrations from robot-assisted procedures can be used

for LfD, developing finite state machines, assessing surgical skills, and calibrating.

Learning tasks are often multi-step procedures that have complex interactions

with the environment, and as a result, demonstrations are noisy and may contain

superfluous or repeated actions. Temporal segmentation of the demonstrations

(Figure C.20) into meaningful contiguous sections facilitates local learning from

demonstrations and salvaging good local segments from inconsistent demonstrations.

Figure C.20: Segmentation of a recorded task into meaningful contiguous sections. Our method
can handle multiple action classes, including the null class of idle activities. (reprinted from Hoai
et al. (2011), c©IEEE).

There is a large and growing corpus of kinematic and video recordings that

can potentially facilitate human training and the automation of subtasks. For

these recordings, manual segmentation is prone to error and impractical for large

databases. A number of recent studies have also attempted to segment human

motions from videos, either with supervised or unsupervised models. Robot data

(Figure C.21) is used in LfD to obtain the control policies that allows the robot to

perform the task, but no information from either the environment or the objects or
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tools manipulated are incorporated into the system. Figure C.22 shows the features

that visual information can contribute to the learning from demonstration framework

when kinesthetic teaching is being used. Here we intend to add visual information

to the data on robot kinematics and dynamics data so that the results obtained will

be better than those from a single source.
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Figure C.21: Robot data extracted from a rolling task demonstration. Cartesian (x,y,z) position
as well as joint (qi,qj ,qk,qw) states can be captured from robot sensors. Additionally, forces
(Fx,Fy,Fz) and torques (Tx,Ty,Tz) can also be captured when interacting with the environment.

A surgical database (Gao et al., 2014) has been recently used to perform

experiments in action segmentation and recognition, and its increasing use suggests

that a new and more extensive database should be recorded which could be commonly

used worldwide. Since there is no database that brings together task demonstrations

in learning from demonstration, we proposed to create a learning from demonstration

database on which to base our experimentation. The database is the basis of our

experimentation and make use of video and kinematic data, but it includes data

from other sources, such as MoCap and an extra RGB-D camera which provides

an extra point of view on the task. These information sources allow us to perform
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Figure C.22: Information from either the environment and the objects or tools manipulated are
incorporated to the system.

some experimentation on the collaborative tasks between human and robot, learning

compact models of the interaction. Extracted interaction models can thereafter be

used by robots to engage in a similar interaction with a human partner.

C.2.1 Problem Statement

When it comes to decomposing complex tasks from kinesthetic teaching, the

automatic segmentation algorithms developed in this LASA require carefully

recorded data from the robot’s sensors to achieve the desired task decomposition, i.e.

the teacher records batches of data that are most useful for motion learning. However,

if the goal is for naive users to teach robots in a seamless manner, the procedure must

be more autonomous, and be able to identify a set of high-level “teaching” actions

being executed by the human during an uninterrupted demonstration, such as:

1. Actions that are relevant for motion learning (i.e. kinesthetic motion guidance),

which can be decomposed into:

(a) Motions involving contact with environment/object.

(b) Motions in free space.

2. Idle behaviors

3. Actions that are relevant for task goal/metric learning:
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(a) Human manipulation of the environment/objects.

(b) Human manipulation/reconfiguration of the robot’s end-effector/tool.

Using an action recognition approach the system recognizes every sub-action

present in the videos. This is done by fusing different sources of information,

such as RGB, Depth videos, Torque and velocity joint values of the robot and

MoCap system. This action recognition part requires a new database to be created

(actually, recorded data should include the information from all sensors and the data

synchronization). The new database includes information from RGB-D cameras

from different viewpoints (robot view and environmental view), kinematic and

dynamic information from the robot arm, and MoCap system. The most complete

action database nowadays includes cameras (RGB-D), microphones, MoCap and

accelerometers. The new feature of the recorded database is that it contains

information from the robot sensors (torques and velocities), information that can

discriminate visually similar actions, such as reaching or rolling. Figure C.23 shows

a diagram of the data acquisition system.

Figure C.23: The data acquisition system.

Taking into account that each of these actions belong to a class, the Action

Recognition based on BoW (ARBoW) engine decomposes a complete uninterrupted

raw recording from the demonstration of a complex task and automatically selects

UNIVERSITAT ROVIRA I VIRGILI 
HUMAN-ROBOT INTERACTION AND COMPUTER-VISION-BASED SERVICES FOR AUTONOMOUS ROBOTS 
Jordi Bautista Ballester 
 



C.2. RoboHow 153

the batches of data that are used for segmentation and motion learning. Moreover,

the recognition system classifies motions involving contact/no contact (by fusing

visual information with robot sensor measurements), used therefore as a prior for the

number of states expected in the Beta Process Hidden Markov Model (BP-HMM)

algorithm and with the extraction of the control variables as well. See Figure C.24 for

schematic details of the approach. Furthermore, once the action recognition engine

is in place, we use this new high-level classification of the demonstration to learn

an objective function for the goal of the task, by extracting the relevant sequence of

actions and states that can help accomplish the goal.

Figure C.24: System overview.

C.2.2 Database

Capturing data to build a database is a non trivial task. In our case we want to

record information to teach different high level cooking tasks, such as “rolling”,

“pouring”, “stirring” and “mashing”. The experimental setup includes two RGB-D

cameras from two different viewpoints, one capturing the environment and the other

the robot’s perspective. It also includes data from the robot: namely, position,

orientation, force and torque of the end effector. Camera data is recorded at 30
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Table C.1: Atomic actions to be segmented from an entire demonstration.

Atomic Action Label Action description
51 Idle
52 End effector reorientation
53 Objet manipulation
54 Kinestetic teaching

frames per second, while robot data is saved at 500Hz, which means that one-to-one

mapping cannot be performed and that an accurate synchronization step is required.

All the data is recorded in a ROS bag file, in which every topic recorded keep the

information of one sensor with its timestamps.

In order to synchronize the sensor data, we extract the information from each

topic saved in the rosbag file. We take the topic with the lowest capture rate and

keep its timestamps. We execute a kNN algorithm to match these timestamps with

the ones from the other topics. With this step, we synchronize data from one topic

to another. After the synchronization, we can extract data from the rosbag file and

build the database with RGB videos, Depth data and robot data.

The EPFL Learning from Demonstration Database (EPFL-LfDD) is expected

to include data on four elementary cooking tasks performed by 3 subjects. Every

subject would perform every task at least 5 times. Therefore, 60 action sequences

will be recorded for a total of about 90 minutes recording time. Furthermore, each

task will be performed as a sequence of atomic-actions, which will include at least

4 of them per task and not all of them are shared by each task. The specified

set of tasks will consist of traditional cooking tasks: (1) Rolling , (2) Pouring ,

(3) Stirring (4) Mashing and the set of atomic-actions consists of: (1) actions that

are important for motion learning (i.e. kinesthetic motion guidance): e.g., motions

involving contact with the environment, motions involving contact with the object,

motions in free space; (2) actions that are important for task goal learning: e.g.,

human manipulation of the environment, human manipulation of the objects, human

manipulation of the robot’s tool; and (3) idle behaviors. This set of atomic actions

are listed in Table C.1.
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The database will be recorded with two RGB-D cameras from different

viewpoints, (1) environment, (2) robot viewpoint. These two viewpoints ensure

that there is variability in the parts of the body that are occluded, since the robot

viewpoint only sees the arms, hands, end effector, tool and object manipulated. This

viewpoint will provide useful information on the transformation of the object which

can be used to determine the goal of the task. To include information about human

and robot motion, we will record kinematic and dynamics information from the robot

and human motion by using the Motion Capture (MoCap) system.

Figure C.25: Example frames taken from the database. From left to right, Kinect RGB, Kinect
Depth, Kinec2 RGB, Kinect2 Depth.

Video data is captured by means of two RGB-D cameras. Example frames

captured with both cameras can be seen in Figure C.25. The first camera is an

environment camera, which captures all the semantic information related to the task

performed. This camera is a Kinect from Miscrosoft c© with a color camera resolution

of 640x480 pixels, which means that the transfer data ratio should be 640x480x30

= 9,216 Mb/s. Since depth camera have less resolution, the ratio for this depth

camera is 320x240x30 = 2,304 Mb/s. A second camera is mounted just over the

robot arm. This camera will be useful to follow and establish a goal/end of task

metric. This camera is a Kinect2 from Microsoft c© with a color camera resolution of

1920x1080, which means that the transfer ratio should be at least 1920x1080x30 =

62,208 Mb/s. In this case, the depth camera also has less resolution, so the transfer

rate for this depth camera should be 512x424x30 = 6,513 Mb/s. To sum up, the total

amount of data transferred by the Kinect camera is 11.52 Mb/s, and by the Kinect2

is 68,721Mb/s. In this case, both USB 2.0 and USB 3.0 (60Mb/s and 640Mb/s

respectively) have a good enough data transfer rate to afford all the data. However,

considering that a Hard Disk Drive (HDD) has an approximate data transfer rate
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of 100Mb/s, this might fall short when there are more processes running on the

same HDD, and so it is. This is why we considered using two PCs to perform the

acquisition, running a ROS Master / Slave architecture synchronized with the free

licensed program Chrony.

Robot kinematic and dynamic data is captured using ROS nodes that capture

joint states, including angular position and torques, and the end effector position

and forces. This data is collected at 500Hz and synchronized with video frames by

means of a kNN algorithm. For each video frame, we set a corresponding window of n

robot data rows using the timestamp correspondences. We precompute six statistical

measures from every set of windowed raw data, to form a 78 dimensional descriptor

as we have 6 force/torque and 7 position measures.The windows are subsets of robot

raw data in which every window contains the data with timestamps between two

consecutive video frames. Hence, if the robot data is captured at 500Hz, and video

data is captured at 30 frames/s, then we have 1̃9 robot measures per frame. The

robot descriptor building procedure is detailed in FigureC.26.

...
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Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(13

timestampn

Video Sequence Robot rawdata

timestampn+1

Robot descriptor:

Min Max Mean Variance Std RMSE …Min Max Mean Variance Std RMSE

Dimensionality: (7xPose+6xFT)x6=78

Figure C.26: Robot data descriptor construction.

The EPFL-LfDD is provided with a full manually annotated ground truth for

atomic task activity segments. We specified and labeled 5 atomic actions which are

used to perform each of the high level tasks. However, not all the atomic actions are
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used to perform each task just a subset of them. Each annotation includes the name

of the video sequence, the name of the atomic action and a sequence of start-end

frames in which the action is performed.

C.2.3 Methodology and Objectives

The ARBoW engine is based on the Bag of Words approach. The method extracts

different features that represent a specific kind of information. For example, in RGB

videos, the extraction of HOG descriptors for each frame provides spatial information

and the use of trajectory descriptors enables time information to be incorporated.

For the robot data, we compute a statistical based descriptor from the raw data

files. In the end, we have three sets of descriptors, two of which are extracted from

video frames, namely HOG and trajectories, and one of which built from robot data.

For each set of features we compute a k-means clustering algorithm to find the most

relevant k features. Although we know that the higher the codebook word number

the better the performance, we are also aware of the curse of dimensionality. For these

reason, the number of clusters is set to 100. Our previous experience showed that this

could be big enough if redundancy is treated appropriately. Therefore, the codebook

generated is used to encode every frame in three different histograms of codeword

appearances. Subsequently, they are fused in a multikernel SVM framework. To

perform the fusion, we take into account the redundancy introduced when they are

combined and to reinforce the important cues, the kernel weights are learned in a

gradient descent approach. The overall scheme can be seen in FigureC.27.

Figure C.27: Overall scheme of the ARBoW engine.

The final goal of applying an action recognition engine is two fold. First, to get

the best action recognition engine for extracting the atomic actions of the task and
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perform action segmentation based on BP-HMM for the extraction of the task control

law. And second, to use this new high-level classification of the demonstration in

order to learn an objective function for the goal of the task, by extracting the relevant

sequence of actions and states that can lead towards accomplishing the demonstrated

goal. In order to achieve these aims we performed different experiments:

1. We compared the results by using data sources separately. First, we used HOG

and trajectory descriptors from video sequences, and then robot descriptors

built from robot measurements.

2. We compared the results by using a combination of data sources. We combined

data from both sensors by using a multiple kernel Support Vector Machine.

3. We ran a test during task execution. We used the video sequence of a whole

task (around 1.5 min) and ran the ARBoW engine to get the labels for the

action recognized in each frame. We performed the test for two entire sequences

separately.

4. We performed a test from a completely new capture. We trained our model

using the data recorded in specific conditions. With this experiment we

intended to demonstrate that the model learned can be used for new data

from other captures.

C.2.4 Preliminary Results

In the first experiment, we used a 10 fold cross validation strategy on the whole bunch

of data recorded to analyze the results. We used the traditional one-against-all

approach. Other approaches like leave-one-subject-out or leave-one-supertrial-out

were not considered at this point because we only had a few subjects and trials.

We first performed a simple recognition task involving single sources of

information (i.e. camera captures or robot data). By using spatial (HOG) and

temporal (trajectories) information present in the videos, the accuracy is of 89.35%.

This contrasts to the accuracy obtained when only robot data is used, which is

significantly lower (71,04%). These results are presented in Table C.2. However,

with respect to the object manipulation action, there exists full confusion when
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Table C.2: Average accuracy for experiments 1-2.

Sensor used Accuracy (%) Kernel weights
Kinect2 (HOG + trajectories) 89.35 -

Robot 71.04 -
Kinect2 + Robot 95.13 0.68 - 0.57 - 0.66

using video data only. Thus, there are no label assignments to this action during

classification step and this can be a strong issue to face off. Robot data, on the other

hand, proved to be able to solve this problem. Hence, it is clear that data fusion is

fundamental.

C.2.5 Future Work

• We need more data if better models are to be trained. The two sequences we

have been working on so far are quite challenging and the experiments have

shown promising results.

• The robot descriptor used for experimentation could be improved by adding

joint states (position, velocity and torque).

• We could extend the sequences to other tasks, such as pouring or stirring. We

may also consider the possibility of increasing the number of demonstrators

and changing the illumination, space and environmental conditions (outdoors

is not considered because the kinect performs poorly in these environments,

and because the tasks under study are usually performed indoors).

• We could investigate the use of the master-slave configuration to obtain as

much data as possible. To prevent data loss, the first step would be to use an

Solid State Disk (SSD) instead of an HDD, because its data transfer rate is 10

times higher (1Gb/s compared to 100Mb/s).

• We could use the robot viewpoint to extract the objective function which

defines the end of the task. This could be done by capturing high-level features

relating the robot and the object parts in an image.

• In order to improve the accuracy of the action recognition engine and make
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the algorithm more robust, we could take into account the transitions between

actions since the atomic actions are recorded in a sequential order. (This would

improve the classifier itself, which is much more interesting than applying a

kind of filter at the end of the test)

C.2.6 Testing Tool

A testing tool has been developed to show the results. Although it is in the early

stages, the parameters used for the engine and the true / false positives throughout

the sequence tested can be seen. The appearance of the framework is shown in

FigureC.28.

Figure C.28: Testing Tool v.0.1. With this test tool which parameters used by the engine and
the label predicted are shown in each instant of the sequence. If there is a good match between
the predicted label and the ground truth, the atomic action is highlighted in green. Otherwise, it
is highlighted in red (false positive).

A filter can be applied to the predicted labels after the test. Due to the fact

that one atomic action must have at least 10 frames (a requisite if the engine is to

work properly), we can build a voting filter that takes into account the label with

the second highest probability and the frame neighbors. With this filter we do not

expect to increase the overall accuracy much more, but we can expect to correct

around 1% of the false positives.
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Industrial Doctorate

The fact that I have been able to hold down a job while I have been involved

in the Industrial PhD programme has been of great value to my professional life

because the system has bridged the gap between traditional doctorates and industrial

projects. So, I value very positively the experience that I have gained through my

involvement with the IRCV laboratory from the URV, where I was able to develop

such research skills as searching for information quickly and efficiently, assimilating

complex information, analyzing and solving problems, and defending my conclusions.

Likewise, my participation in the project VinBot has enabled me to reinforce my

professional skills for example, leading teams, working with multidisciplinary and

culturally diverse people, managing complex situations, negotiating and reaching

consensus, supervising the work of others, and identifying project objectives and

managing them and extend them to R+D+i. However, the added difficulty that

has led to so much work, and my biggest criticism, is that the objectives of the

Industrial Doctorate were not well defined, that the agreement between the parties

was not sufficient and many loose ends remained. All of these factors directly or

indirectly affected the candidate’s final performance.

I should point out that the relationship with the research group from Dr.

Domènec Puig’s laboratory has enabled a new line of research to be opened up into

the recognition of actions and human-machine interaction. Thanks to the industrial

doctorate funding other students have been brought into the program and join in
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the research effort, which has made it possible to extend the contribution of the

group beyond this doctoral thesis. Likewise, my role as research engineer in the FP7

VinBot project required me to be able to work with a wide range of people while

commanding respect, having a positive attitude in my dealings with superiors and

colleagues, and assuming my responsibility for all the tasks entrusted to me.

Finally, I would like to emphasize my personal and professional growth during

these three years, which is the result of the variety of experiences I have been

subject to at both the URV and Ateknea. During this time, I have developed my

leadership skills, and been involved to a greater or lesser extent in coordination and

management of R+D+i projects, transfer of research results, development of new

businesses (entrepreneurship, business management, financing sources) and patents,

intellectual and industrial property. I am aware that this variety has provided me

with a wealth of experience that is of great professional and personal value.

Goals attained

• FP7 VinBot: We have built a robot platform that has acquired about 650Gb

of data from the growth stages of vines. The platform was built in three stages:

the first had the basic elements that allowed it to function; the second included

ROS middleware which enabled us to synchronize the sensors and parts much

more easily; and the third excluded the redundant hardware elements and

included post-processing in the cloud (Amazon EC2). With this platform we

saved visual data from RGB and NIR cameras, and also 3D data using a

rotating laser depth device. The platform was tested in several demonstrations

at fairs and meetings of the consortium and for a year and a half while the

data was being acquired.

• FP7 RoboHow: I spent a research period at an internationally recognized

research center with the main objective of working in a multicultural and

multidisciplinary environment, learning techniques developed by one of the

world’s top laboratories. We obtained data from everyday kitchen tasks by
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recording information of the robot kinematics and dynamics thanks to its force

and motion sensors, as well as recording visual information with both first- and

second-generation RGB-D cameras. We improved the recognition algorithm in

order to aggregate data from the robot and the action recognition engine was

applied to the data for the segmentation of the task and the extraction of

sub-action labels that represent the entire task.

• Publications: scientific papers have been published in accordance with the

university’s requirements and the stipulations of both the Consortium and

Grant agreements of the VinBot project. The intellectual property rights that

apply to the results obtained in the VinBot project allow for dissemination

and publication only if this is compatible with the legitimate interests of the

owners of exploitation and commercialization of these results.

• Cross-training activities. I engaged in a total of 109 hours of cross-training

activities: 30 hours of general training given by the Government on various

topics; 19 hours on leadership and intellectual property; and finally 60 hours

on entrepreneurship and leadership.

Understanding My Transferable Skills

When considering a career outside academia, I need to think in terms other than

academic labels and academic signifiers of success, such as the number of publications

or talks I have been invited to give. Instead, I need to focus on the skills I used to

earn my degree and that are also necessary for a particular job; these skills are my

transferable skills and are not restricted to just my research or teaching experience.

There are many approaches to understanding what transferable skills and career

interests I have. One approach is to take an assessment such as SkillScan, Myers

Briggs Type Indicator, or StrengthsQuest, which can help me identify my skills and

potential careers using those skills. Another approach is to analyze my previous

experience in an attempt to identify what skills I used or acquired. Table D.1 is a

small sample of transferable skills that I have used during my graduate experience.
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164 Appendix D. Industrial Doctorate

Table D.1: Generic skills as a Industrial PhD. Table adapted from the Cornell Career Services
listing of a PhD’s transferable skills.

Needs
Work

Attain Enjoy

Research and
Analytic Skills

Locate and assimilate new information rapidly X
Understand complex information and synthesize it X
Reach independent conclusions and defend them X
Analyze and solve problems X

Communication
Skills

Write clearly at different levels, from abstracts to
book-length manuscripts

X

Edit and proofread X
Writing and conversing in your second/third
language

X

Speaking in public X
Convey complex information to non-expert
audiences

X

Interpersonal
Skills

Leadership skills (lab or office) X
Managing individuals X
Working with international colleagues X
Diplomacy and tact (a survival skill in all
environments)

X

Ability to accept criticism X
Ability to cope with and manage different
personalities

X

Ability to navigate complex environments X
Persuasion skills (e.g., grant proposals,
negotiation within your department)

X

Consensus-building skills (e.g., with your
department/committee)

X

Ability to handle complaints X

Organization
and
Management

Manage your research data and dissertation X
Event organization and planning (conferences,
programs, panels)

X

Project
Management

Identifying goals and objectives, constraints,
timeframes, methodology and stakeholders for a
specific project

X

Organizing, motivating and controlling resources,
procedures and protocols

X

Supervision
Skills

Evaluated others’ performance X
Monitored or oversaw the work of others in a lab,
field, institute or office

X

Personal skills
Intellectual strength and courage X
Perform under pressure X
Meet deadlines X
Focus, tenacity, stamina, and discipline X
Self-reliance, autonomy X
See a task through to completion X

Entrepreneurial
Skills

Think creatively X
Acquire funding (e.g., write grant proposals) X
Manage a budget X
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