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1 Introduction

Traditionally, robotics developed highly specific controllers for the robot to per-
form a specific set of tasks in highly constrained and deterministic environ-
ments. This required to embed the controller with an extensive knowledge of
the robot’s architecture and of its environment. It was soon clear that such an
approach would not scale up for controlling robots with multiple degrees of free-
dom, working in highly variable environments, such as humanoid robots required
to interact with humans in their daily environment.

The field has now moved to developing more flexible and adaptive control
systems, so that the robot would no longer be dedicated to a single task, and
could be re-programmed in a fast and efficient manner, to match the end-user
needs.

Robot learning by imitation, also referred to as robot programming by demon-
stration, explores novel means of implicitly teaching a robot new motor skills [5,
10, 20]. This field of research takes inspiration in a large and interdisciplinary
body of literature on imitation learning, drawing from studies in Psychology,
Ethology and the Neurosciences [9, 4, 1]. To provide a robot with the ability to
imitate is advantageous for at least two reasons: it provides a natural, user-
friendly means of implicitly programming the robot; it constrains the search
space of motor learning by showing possible and/or optimal solutions.

In this chapter, we explore the issue of recognizing, generalizing and repro-
ducing arbitrary gesture [3]. In order to take a general stance toward gesture
recognition and reproduction, we address one major and generic issue, namely
how to discover the essence of a gesture, i.e. how to find a representation of
the data that encapsulates only the key aspects of the gesture, and discards the
intrinsic variability across people motion.

To illustrate the idea, consider the following examples: when asked to imitate
someone writing letters of the alphabet on a board, you will find it sufficient to
only track the trajectory followed by the demonstrator’s hand on the board. In
contrast, when learning to play tennis, you will find it more important to follow
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the trajectories of the demonstrator’s arm joint angles, rather than the position
of the hand (the ball’s position varying importantly over the trials). Choosing,
in advance, the optimal representation of the data (whether hand-path or joint
angles) would greatly simplify the analysis and speed up learning.

In the application presented in this chapter, the robot is endowed with nu-
merous sensors enabling it to track faithfully the demonstrator’s motions. Some
of the data gathered by the sensors are redundant and correlated. The first stage
of processing performed on our data consists in applying Principal Component
Analysis (PCA) in order to determine a space in which the data are decorrelated,
and, consequently, to reduce the dimensionality of the dataset, so as to make
the analysis more tractable.

In order for the robot to learn new skills by imitation, it must be endowed
with the ability to generalize over multiple demonstrations. To achieve this, the
robot must encode multivariate time-dependent datasets in an efficient way. One
of the major difficulty in learning, recognizing and reproducing sequential pat-
terns of motion is to deal simultaneously with the variations in the data and
with the variations in the sequential structure of these data. The second stage
of processing of our model uses Hidden Markov Models (HMMs) to encode the
sequential patterns of motion in stochastic finite state automata. The motion
is then represented as a sequence of states, where each state has an underlying
description of multi-dimensional data (see Figure 4). The system takes inspira-
tion in a recent trend of research that aims at defining a formal mathematical
framework for imitation learning [19, 15, 3]. We present an implementation of
these approaches in a noisy real-world application.

The remaining of this chapter is divided as follows: section 2 presents the ex-
perimental set-up. Section 3 describes in details the model. Results are presented
in Section 4, and discussed in Section 5, stressing out the parallels existing be-
tween our robotic model and theoretical models of imitation learning in animals.

2 Experimental Set-up

Data used for training the robot have been generated by eight healthy volunteers
(students at the EPFL School of Engineering). Subjects have been asked to
imitate a set of 6 motions performed by a human demonstrator in a video. The
motions consist in:

– Knocking on a door
– Raising a glass, drinking, and putting it back on a table
– Waving goodbye
– Drawing the stylized alphabet letters A, B and C

The subject’s gestures have been recorded by 3 x-sens motion sensors, at-
tached to the torso and the right upper- and lower-arm. Each sensor provides
the 3D absolute orientation of each segment, by integrating the 3D rate-of-turn,
acceleration and earth-magnetic field, at a rate of 100Hz. The joint angle tra-
jectories of the shoulder joint (3 degrees of freedom (DOFs)) and of the elbow
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Fig. 1. Demonstration (left column) and reproduction (right column) of different tasks:
waving goodbye (1st line), knocking on a door (2nd line), and drinking (3rd line). Three
gyroscopic motion tracking sensors are attached on the upper arm, lower arm and torso
of the demonstrator. The trajectories of the demonstrator’s hand, reconstructed by the
stereoscopic vision system, are superimposed to the image.
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Fig. 2. Demonstration (left column) and reproduction (right column) of drawing the
three stylized alphabet letters A, B and C. The motion reproduced by the robot fol-
lows a trajectory generalized across the different demonstrations. As the trajectory is
projected by PCA in 2 dimensions, the letters can be written on a different plane.
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(1 DOF) are reconstructed with a precision of 1.5 degrees, taking the torso as
reference. These sensors provide a motor representation of the gesture, that can
be used without major modification to control the robot.

A color-based stereoscopic vision system tracks the 3D-position of a marker
placed on the demonstrator’s hand, at a rate of 15Hz, with a precision of 10
mm. The system uses 2 Phillips webcams with a resolution of 320x240 pixels.
The tracking is based on color segmentation in the YCbCr color space (Y is
dismissed to be robust to changes in luminosity).

The robot is a Fujitsu humanoid robot HOAP-2 with 25 DOFs. In the exper-
iments reported here, only the robot’s right arm (4 DOFs) is used for the task.
The torso and legs are set to a constant and stable position, in order to support
the robot’s standing-up.

3 Data processing

The complete dataset consists of the trajectories of 4 joint angles and the 3-
dimensional trajectory of the hand in Cartesian space. Figure 3 shows a schematic
of the sensory-motor flow. The data are first projected onto an uncorrelated, low-
dimensional subspace, using PCA. The resulting signals are, then, encoded in
a set of Hidden Markov Models. A generalized form of the signals is then re-
constructed by interpolating across the time series output by the HMMs and
reprojecting onto the original space of the data using the PCA eigenvectors.

For each experiment, the dataset is split equally to training and testing set.
Let X(t) = {x1(t), x2(t), x3(t)} be the hand path in Cartesian space, and

Θ(t) = {θ1(t), θ2(t), θ3(t), θ4(t)} the joint angle trajectories of the right arm,
after interpolation, normalization in time (same number of data for each time
series), and shifting such as the first data points coincide.

3.1 Preprocessing by Principal Component Analysis (PCA)

PCA is a technique used extensively to discover and reduce the dimensionality
of a dataset. In this work, we use it to find a suitable representation of our mul-
tivariate dataset [14]. PCA consists in determining the directions (eigenvectors)
along which the variability of the data is maximal. It assumes that the data are
linear and normally distributed.

By projecting the data onto the referential defined by the eigenvectors of the
correlation matrix, one obtains a representation of the dataset that minimizes the
statistical dependence across the data. Consecutively, dimensionality reduction
can be achieved by discarding the dimensions along which the variance of the
data is smaller than a criterion. This provides a way to compress the data without
losing much information and simplifying the representation.

PCA is applied separately to {x1, x2, x3} and {θ1, θ2, θ3, θ4} to determine
if a better representation in each dataset can be used. The means {x̄1, x̄2, x̄3}
and {θ̄1, θ̄2, θ̄3, θ̄4} are subtracted for each dimension. Then, the 3 eigenvectors
{vx

1 , vx
2 , vx

3} and associated eigenvalues {λx
1 , λx

2 , λx
3} are calculated for the hand
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Fig. 3. Schematic of the sensory-motor flow: the data are first projected onto an uncor-
related, low-dimensional subspace, using PCA. The resulting signals are, then, encoded
in a set of HMMs. A generalized form of the signals is then reconstructed by interpo-
lating across the time series output by the HMMs and reprojecting onto the original
space of the data using the PCA eigenvectors.
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Fig. 4. Encoding of the hand path in Cartesian space {x1, x2, x3} and joint angles
trajectories {θ1, θ2, θ3, θ4} in a HMM. The data are pre-processed by PCA, and the
resulting signals {ξx

1 , ξx
2 , . . . , ξx

I } and {ξθ
1 , ξθ

2 , . . . , ξθ
J} are learned by the HMM. The data

are represented as sequences of states, with transition probabilities between the states
(not all the transitions are depicted). Each state in the HMM outputs multivariate
data, represented by Gaussian functions.
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path. The 4 eigenvectors {vθ
1 , vθ

2 , vθ
3 , vθ

4} and associated eigenvalues {λθ
1, λ

θ
2, λ

θ
3, λ

θ
4}

are calculated for the joint angle dataset. An indication of the relative impor-
tance of each direction is given by its eigenvalue. Let I and J be the number
of eigenvectors required to obtain a satisfying representation of {x1, x2, x3} and
{θ1, θ2, θ3, θ4}, such that the information lost by projecting the data onto these
eigenvector is small. The selection criterion is to retain the first K components
that cover over 80% of data’s spread, i.e.

∑K
i=1 λi > 0.8. By projecting these

datasets in the new basis formed by the first K components, the time series be-
come {ξx

1 , ξx
2 , . . . , ξx

I } with I ≤ 3 to represent the hand path, and {ξθ
1 , ξθ

2 , . . . , ξθ
J}

with J ≤ 4 to represent the joint angle trajectories.
Applying PCA before encoding the data in a HMM has the following advan-

tages:

– It helps reducing noise, as the noise is now encapsulated in the lower dimen-
sions (but it also discard the high-frequency information).

– It reduces the dimensionality of the dataset, which reduces the number of
parameters in the Hidden Markov Models, and makes the training process
faster.

– It produces a parameterizable representation of the dataset that is easier to
handle, and that can be used under different conditions, for the reproduction
of the task.

For example, while drawing an alphabet letter, the dimensionality of the 3D
Cartesian path can be reduced to a 2D trajectory. By projecting the dataset on
the drawing plane defined by two eigenvectors, the trajectory is then described
by 2 signals (the 3rd eigenvectors is not used to reconstruct the dataset). Sim-
ilarly, when reaching for an object, the joint angle trajectory of the shoulder is
correlated with the joint angle trajectory of the elbow, and, thus, the shoulder
and elbow trajectories could be expressed by only one signal.

3.2 Encoding in Hidden Markov Models (HMM)

For each gesture, a set of time series {ξx
1 , ξx

2 , . . . , ξx
I , ξθ

1 , ξθ
2 , . . . , ξθ

J} is used to
train a Hidden Markov Model with I + J output variables. The parameters are
expressed as a set of parameters {π, A, µθ, µx, σθ, σx}, representing respectively
the initial states distribution, the states transition probabilities, the means of
the output variables, and the standard deviations of the output variables 1. For
each state, each output variable is described by a Gaussian, i.e. p(ξθi |µθi , σθi) =
N (µθi , σθi)∀i = 1 . . . 4 and p(ξxi |µxi , σxi) = N (µxi , σxi)∀i = 1 . . . 3.

Continuous HMMs are used to encode the data with a parametric description
of the distributions. A single Gaussian is assumed to approximate sufficiently
each output variable (see Figure 4). A mixture of Gaussian could approximate
any shape of distribution. However, it is not useful in our system, since the
training is performed with too few training data to generate an accurate model
of distribution with more than one Gaussian.
1 People unfamiliar with HMM should refer to [18]
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Fig. 5. A BIC criterion is used to determine the optimal number of states of the
HMM, required to encode the data. Top: log-likelihood of the HMM according to the
number of states used to represent the data. Bottom: the minimum BIC score gives a
criterion to select the minimal number of states required to represent the data. It finds
a trade-off between maximizing the likelihood of the model and minimizing the number
of parameters used to model the data. Here, the gesture waving goodbye is modeled
optimally with only 3 states.

The transition probabilities P (qt=j|qt−1=i) and the observation distribu-
tions p(ξt|qt=i) are estimated by Baum-Welch, an Expectation-Maximization
algorithm, that maximizes the likelihood that the training dataset can be gen-
erated by the corresponding model. The optimal number of states in the HMM
may not be known beforehand. The number of states can be selected by using a
criterion that weights the model fit (i.e. how well the model fits the data) with
the economy of parameters (i.e the number of states used to encode the data).
In our system, the Bayesian Information Criterion (BIC) [21] is used to select
an optimal number of states for the model:

BIC = −2 log(L) + np log(T ) (1)

The first term is used for the model fit, with L the likelihood of the fitted
model. The second term is a penalty term, with np the number of independent
parameters in the HMM, and T the number of observation data used in fitting
the model. Data are encoded in different HMMs from one state to 20 states, and
the model with the minimum score is retained (see Figure 5).

3.3 Recognition

Once trained, the HMM can be used to recognize whether a new gesture is
similar to the ones encoded in the model. For each of the HMM, we run the
forward-algorithm to estimate the likelihood that the new signals could have
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been generated by one of the models. A measure of distance across two model’s
predictions is compared to a model-dependent threshold, to guarantee that the
gesture is close to a model, but far enough from the others to be considered as
recognized (see [7] for details).

3.4 Data retrieval
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Fig. 6. Example of the retrieval process. The original signal S (dotted-line) is encoded
in a HMM with 4 states. A sequence of states and corresponding output variables S′′′

are retrieved by the Viterbi algorithm (points). Keypoints S′′ are defined from this
sequence of output variables (circles). The retrieved signal S′ (straight-line) is then
computed by interpolating between the keypoints and normalizing in time.

When a gesture is recognized by a HMM, a generalization of the gesture is re-
produced. Given the observation of the gesture and the parameters {π, A, µ, σ} of
the HMM, a sequence of states is reconstructed by the Viterbi algorithm. Given
this sequence of states, the output variables {ξ′′′x1 , ξ′′′x2 , . . . , ξ′′′xI , ξ′′′θ1 , ξ′′′θ2 , . . . , ξ′′′θJ }
are retrieved, by taking the mean value µ of the Gaussian distribution for each
output variable.

Keypoints {ξ′′x1 , ξ′′x2 , . . . , ξ′′xI , ξ′′θ1 , ξ′′θ2 , . . . , ξ′′θJ } are then extracted from these
time series. If there is a transition to a state n at time t1 and if there is a tran-
sition to another state at time t2, a keypoint is created at the mean time t1+t2

2 .
By interpolating between these key-points and normalizing in time, the output
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variables {ξ′x1 , ξ′x2 , . . . , ξ′xI , ξ′θ1 , ξ′θ2 , . . . , ξ′θJ } are reconstructed (see Figure 6). Fi-
nally, by using the eigenvectors found by PCA, the whole hand path {x′1, x′2, x′3}
and joint angle trajectories {θ′1, θ′2, θ′3, θ′4} are reconstructed.

3.5 Determining the task constraints

In [3], [7] and [8], we have developed a general formalism for determining the
metric of imitation performance. The metric measures the quality of the repro-
duction, and, as such, drives the selection of an appropriate controller for the
reproduction of the task.

One way to compare the relative importance of each set of variables (i.e.
joint angles, hand path) in our experiment is to look at their variability. Here,
we take the perspective that the relevant features of the movement, i.e. those to
imitate, are the features that appear most frequently, i.e. the invariants in time,
and apply the metric to determine the relevance of the Cartesian and joint angle
representation to reproduce a gesture.

Following this framework, we model the task’s cost function as a weighted
linear combination of metrics applied to the joint angle trajectories and the hand
path.

1

0

0 σmax0 σmin

w
ei

g
h
t

w

standard deviation σ

Fig. 7. Function used to transform a standard deviation σ to a weight factor w ∈ [0, 1].
σmin corresponds to the accuracy of the sensors. σmax represents the maximal standard
deviation measured during a set of demonstrations generated by moving randomly the
arms during one minute.

Unidimensional case: Let D = {x1, x2, . . . , xT } and D′ = {x′1, x′2, . . . , x′T }
be the demonstration and the reproduction datasets of a variable x. The cost
function J is defined by:

J(D,D′) = 1− f(e) (2)

J ∈ [0, 1] calculates an estimation of the quality of the reproduction, us-
ing two different metrics. Optimizing the imitation consists of minimizing J
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Fig. 8. 4 demonstrations of the drinking gesture and the knocking gesture (only one
variable from the visual information is represented). Even if the trajectories are rescaled
in time, data do not overlap, because they present non-homogeneous distortions in
time. By encoding the data in HMM, it is still possible to distinguish very well the two
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Fig. 9. Comparison of two metrics to evaluate the quality of a reproduced trajectory.
Left: using the error measure e based on HMM encoding of the dataset. Right: using
the RMS error e′ with the trajectories rescaled in time. The white and black bar
corresponds respectively to the data belonging to the model, and not belonging to the
model. The error based on HMM encoding discriminates better the 2 datasets.
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(J=0 corresponds to a perfect reproduction). e is a measure of distance across
the observed data D′ and the training data D. A transformation function f()
normalizes and bounds each variable within minimal and maximal values (see
Figure 7). This results in the elimination of the effect of the noise, intrinsic to
each variable, so that the relative importance of each variable can be compared.

The metric uses the HMM representation of the data to compute the er-
ror value e, robust to distortion in time. The Viterbi algorithm is first used to
retrieve the best sequence of states {q1, q2, . . . , qT }, given the observation data
D′ = {x′1, x′2, . . . , x′T } of length T . If {µ1, µ2, . . . , µT } is the sequence of means
associated with the sequence of states, we define:

e =
1
T

T∑
t=1

|x′t − µt| (3)

We have compared this error measure to the most commonly used root mean
square (RMS) error, calculated with signals rescaled in time, using the dataset
shown in Figure 8. The RMS error is computed as:

e′ =
1
T

T∑
t=1

|x′t − xt| (4)

The results of the metrics calculated using e or e′ are presented in Figure 8.
Each data has been tested with the two models, and should produce respectively
a low value of J if they belong to the corresponding model, and a high value if
they do not. The metric using the HMM representation of the time-series gives
better results than the one using the static error computed on rescaled signals
(see Figure 9). Indeed, HMM can deal with the distortions in time in the 2
datasets.

Multidimensional case: When data have K dimensions, the metric Jtot is
expressed as:

Jtot =
1
K

K∑

i=1

wi J(Di, D
′
i) (5)

wi ∈ [0, 1] weight the importance of each set of variables. These factors are
extracted from the demonstration and reflect the variance of the data during
the demonstration. To evaluate this variability, we also use the statistical rep-
resentation provided by the HMM. The Viterbi algorithm is used to retrieve
the best sequence of states {q1, q2, . . . , qT }, given the observation data D′. If
{σi

1, σ
i
2, . . . , σ

i
T } is the sequence of standard deviations of variable i, associated

with the sequence of states, we define:
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wi = f(
1
T

T∑
t=1

σi
t) (6)

If the variance of a given variable is high, i.e. showing no consistency across
demonstrations, then, satisfying some particular instance of this variable will
have little bearing on the task. The factors wi in the cost function equation
reflect this assumption: if the standard deviation of a given variable is low, the
value taken by the corresponding wi are close to 1. This way, the corresponding
variable will have a strong influence in the reproduction of the task.

A mean standard deviation is thus calculated over the whole path, and is
transformed by a function (see Figure 7) to give a weight wi ∈ [0, 1] to estimate
the relevance of dataset i.

wi can then motivate the use of either a direct joint angles controller or an
inverse kinematics controller. In order to use both controllers simultaneously,
one can extend the inverse kinematics solution to encapsulate constraints on the
joint angles, as in [8].

Since the demonstrator and the robot do not share the same embodiment
(they differ in the length of their arms and in the range of motion of each DOF),
there is a correspondence problem [15]. Here, this problem is solved by hands.
The joint angle trajectories of the demonstrator are automatically shifted and
scaled, when required, to ensure that these fit within the range of motion of the
robot.

4 Results and performance of the system

The training set consists of the joint angle trajectories and hand path of 4
subjects performing the 6 different motions. The test set consists of 4 other
subjects performing the same 6 motions, with only the hand path trajectories,
to demonstrate the recognition ability of the model even in the face of missing
data. Once a gesture has been recognized by the model based on the hand path
only, the complete joint angle trajectories can be retrieved.

23 motions have been recognized correctly (recognition rate of 96%). The
only error has happened for one instance of the knocking on a door motion,
that has been confused with the waving goodbye motion. This is not surprising.
Indeed, when projecting these two motions on the first principal component of
their respective model, one observes that the resulting trajectories are quite sim-
ilar (both motions involve a principal oscillatory component). Thus, it can be
difficult to classify them correctly using exclusively the time series after projec-
tion. The robustness of the system could be improved by comparing the principal
components extracted from the test set with the ones extracted from the train-
ing set, in combination with the HMM classification. The drawback is that the
system would not be able to recognize a similar gesture performed in a different
situation. For example, the principal components of an alphabet letter are not
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Fig. 10. Demonstration, transformation by PCA, encoding in HMM and retrieval of
the 2 different motions waving goodbye and drawing letter B. The 5 demonstrations in
visual coordinates {x1, x2, x3} and motor coordinates {θ1, θ2, θ3, θ4} are represented by
dotted lines. The retrieved generalized trajectory is in bold line.
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Fig. 11. Cost function Jtot, when testing the gestures of the test set with the different
HMMs (the size of the square is proportional to Jtot). Each row corresponds to a
specific gesture: 1) drawing letter A, 2) drawing letter B, 3) drawing letter C, 4)
waving goodbye, 5) knocking on a door, 6) drinking. These gestures are tested with
the 6 corresponding models. For each row, the column with lowest value indicates what
is the best model corresponding to the gesture.

the same if the user writes it on a table or on a blackboard. After projection,
the resulting signals are however similar, and can be recognized by HMM.

Figure 1, 2 and 10 shows the encoding and decoding of the 6 motions. As
expected, 2 principal components are sufficient to represent the hand path when
drawing each of the 3 letters, as well as when performing the knocking gesture.
For waving and drinking, a single component is sufficient. Consistently, 2 princi-
pal components are sufficient to represent the joint trajectories when drawing the
3 letters of the alphabet, while only a single component is required to represent
the gestures of waving, knocking and drinking.

The resulting signals for letter A, waving, knocking and drinking are modeled
by a HMM of 3 states. letter B is modeled with 6 states, and letter C with 4
states. The keypoints in the trajectories correspond roughly to inflexion points
or relevant points describing the motion. The number of states found by the BIC
criterion grows with the complexity of the signals to model.

Figure 11 represents the values of the cost function J , when testing the
gestures of the test set with the different HMM models. The weights wi found
by the system are quite always similar for the motor and visual representations,
which means that both representations could be used to reproduce the motion,
with a slight preference to the visual representation. Indeed, we see on Figure 10
that there is not so much difference between the variations of the signals in both
representations. It can be due to the experimental setup, where the motion of
the users are recorded only in one situation. In the next experiments, different
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situations or environments should be used to provide more variations in one or
the other dataset.

5 Discussion on the model

The combination of PCA and HMM is used successfully in our application to
reduce the dimensionality of a dataset and to extract the primitives of a mo-
tion. Preprocessing of the data using PCA removes the noise and reduces the
dimensionality of the dataset, making the HMM encoding more robust. The
parameters of the whole model are then {vx, vθ, x̄, x̄, π, A, µθ, µx, σθ, σx}. This
requires less parameters than HMM encoding of the raw data (see [13, 7]), as the
number of output values and number of states are optimally reduced.

The advantage of encoding the signals in HMMs, instead of using a static
clustering technique to recognize the signals retrieved by PCA, is that it pro-
vides a better generalization of the data, with an efficient representation, robust
to distortion in time. As an example, let us consider a situation, where two
demonstrators A and B raise a glass at the same speed, drink with different
speed, and put the glass back on a table simultaneously. In HMM, the differ-
ence in amplitude are fitted by a Gaussian, for each state and each variable.
The distortions in time are handled by using a probabilistic description of the
transitions between the states, while a simple normalization in time would not
have generalized correctly over the 2 demonstrations.

The model is general in the sense that no information concerning the data
is encapsulated in the PCA preprocessing or in the HMM classification, which
makes no assumption on the form of the dataset. However, extracting the sta-
tistical regularities is not the only mean of identifying the relevant features in
a task, and it would probably not allow learning of a more complicated task.
In further work, we will exploit the use of other machine learning techniques
to extract the optimal representation. In addition, we will consider the use of
explicit pointers (e.g. speech) in combination to statistics, in order to extract
the key-features more robustly and more efficiently.

Finally, it would be interesting to extend the model to using asynchronous
HMM. Such models have been exploited successfully in speech processing to
model the joint probability of pairs of asynchronous sequences describing the
same sequence of events (e.g. visual lip reading and audio signals) [2]. It could
be used in our application to learn and retrieve the best alignment between two
sequences in visual and motor representations. It can be useful since the datasets
are not always synchronized, but still needs to have correspondence between the
different representations.

5.1 Similarity with works in Psychology and Ethology

Some of the features of our model bear similarities with those of theoretical
models of animal imitation. These models often assume that data are correctly
discretized, segmented, and classified. By using PCA and HMM to encode the
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information, it is still possible to keep the elements of these frameworks that are
relevant to a robotic system, offering at the same time a probabilistic description
of the data, more suitable for a real-world application.

Fig. 12. R.W. Byrne’s string parsing imitation model (schema inspired from [6])

Imitation using String Parsing R.W. Byrne has suggested to study the cog-
nitive processes underlying animal’s imitation by using String Parsing to seg-
ment a continuous task into basic elements [6]. Imitating a task with a sequential
or hierarchical organization of basic actions have been observed in species as di-
verse as rats and apes, to learn complex feeding skills. The process requires
an effective segmentation of the elements, so that imitation learning becomes a
practical method to acquire more complex skills from basic elements. Such a seg-
mentation allows to reuse known features, and extract the underlying structure
in the observed behavior. If the whole task is perceived as a discrete sequence of
items, the statistical regularities can be extracted, and the hierarchical structure
is discovered by observing several times the same task.

Similarly, in a robotic system using PCA and HMM, the structure that un-
derlies a sequence of elements can be acquired statistically by observing regu-
larities across multiple demonstrations. Moreover, in HMM learning algorithm,
a discrete set of key-features is extracted from a continuous flow of motion data,
and the sequential organization of the key-features is learned by the model. The
structure of the observed behavior is described probabilistically by transition
probabilities between the key-features. By using a fully-connected model, it is
thus possible to extract statistically the sequential structure of a task, with re-
curring elements and optional parts that are not always needed.

In our implementation, HMMs are used to find the key-features in the tra-
jectories, and learn gestures by extracting the regularities in the sequences. Two
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concurrent stochastic processes are involved, one modeling the sequential struc-
ture of the data, and one modeling the local properties of the data.

Fig. 13. C.M. Heyes and E.D. Ray’s Associative Sequence Learning (ASL) model
(schema inspired from [11])

Associative Sequence Learning (ASL) C.M. Heyes and E.D. Ray’s As-
sociative Sequence Learning (ASL) mechanism [12, 11] suggests that imitation
requires a vertical association between a model’s action, as viewed from the imi-
tator’s point of view, and the corresponding imitator’s action. The vertical links
between the sensory representation of the observed task and the motor repre-
sentation are part of a repertoire, where elements can be added or refined. ASL
suggests that the links are created essentially by experience, with a concurrent
activation of sensory and motor representations. A few of them can also be in-
nate, as biological data seem to indicate. The model pictures that the mapping
between the sensory and motor representation can be associated with a higher
level representation (boxes depicted in Figure 13).

The horizontal links model the successive activation of sensory inputs to
learn the new task, that activates at the same time the corresponding motor
representation, to copy the observed behavior. Repetitive activation of the same
sequence strengthens the links to help motor learning. Depending on the com-
plexity of task organization, numerous demonstrations may be needed to provide
sufficient data to extract the regularities. The more data are available, the more
evident is the underlying structure of the task, to clarify which elements are
essential, which are optionals, and which are variations in response to changing
circumstances.

This stresses the need of a probabilistic framework in a robotic applica-
tion that can extract invariants across multiple demonstrations. Such a model
is in agreement with a HMM decomposition of the task, where the underlying
structure is learned by using multiple demonstrations. If a given pattern ap-
pears frequently, its corresponding transition links are strengthen. If each action
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perceived by the imitator is also coded as an action that it can execute, the
reproduction of a task can be considered. Any action that the imitator is able to
perform can then also be recognized by observation of a model demonstrating
the task.

Each hidden state in a HMM can output multimodal data. It can thus model
multiple variables in different frames of reference. Its role is to make a link be-
tween the different datasets, and can be considered as a label or as a higher level
representations common to the visual and motor data (see Figure 4). Indeed, in
HMM, the sequence of states is not observed directly, and generates the visual
or motor representation.

Thus, the architecture of a multivariate HMM has a horizontal process to
associate the elements in a sequential order, by learning transition probabilities
between the hidden states, and a vertical process that associates each sensory
representation to appropriate motor representation, which is done through the
hidden state. If data are missing from one part or the other (visual or motor rep-
resentation), it is still possible to recognize a task, and retrieve a generalization
of the task in the other representation, if required.

By using a similar representation of the ASL model in Figure 13, our sys-
tem focus on learning the horizontal links. The vertical associations represented
through the hidden states, are still hard-coded, specifying prior knowledge on
the robot architecture. It involves a simple rescaling of the joint angles to fit the
range of motion of the robot.

Fig. 14. C.L. Nehaniv and K. Dautenhahn’s algebraic framework to map states, effects
and/or actions of the demonstrator and the imitator (schema inspired from [17])

Algebraic framework for the correspondence problem The correspon-
dence problem refers to the problem of creating an appropriate mapping between
what is performed by the demonstrator and what is reproduced by the imitator.
The two agents may not share the same embodiments (e.g. difference in limb
lengths, sensors or actuators). Such correspondences can be constructed at var-
ious levels of granularity, reflecting the choice of a sequence of subgoals. C.L.
Nehaniv and K. Dautenhahn have suggested a general algebraic framework [17,
16], to address the matching problem in both natural and artificial systems, and
interpret the ASL model in this framework. It consists of representing the be-
havior performed by the demonstrator and imitator as two automata structures,
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with states and transitions. The states are the basic elements segmented from
the whole task, that can produce effects, i.e. responses in the environment (e.g.
object displaced). An action is the transition from one state to another state.

An imitation process is defined as a partial mapping process (relational homo-
morphism) between the demonstrator and imitator states, effects, and actions.
An observer (e.g. external observer, demonstrator or imitator) decides which of
the states, actions or effects are the most important ones to imitate, by fixing
an imitation metric. Different metrics are used to yield solutions to different cor-
respondence problems. These metrics also allow to formally quantify the success
of an imitation.

This notation is closely related to the one used in our system. A HMM is an
extension of the automata depicted in this algebraic framework. The difference is
that these automata are described stochastically, and are thus more suitable to
be used with noisy data, in a real-world application. Each hidden state outputs
probabilistically distributed values that can be seen as effects, and the equiva-
lent of actions are the transitions between hidden states, also probabilistically
defined. Note that encoding the data in HMM does not resolve the correspon-
dence problem, but gives a suitable framework for its representation, to treat
the what-to-imitate and the correspondence problem in a common framework.

In further research, our work will address the correspondence problem paradigm
[1, 16, 17, 15]. The contribution in our system would be to ensure a robust map-
ping between the two agents. In Alissandrakis et al work, an external observer
decides which mappings are relevant to the imitation, i.e decides which of the
states, the actions or the effects should be mapped. The similarity is measured
by observer-dependent metrics. The contribution of our work would be to ex-
tract the relevant features of a task from the statistical regularities across the
multiple demonstrations, instead of specifying them in advance.

6 Conclusion

This chapter has presented an implementation of a HMM-based system to en-
code, generalize, recognize and reproduce gestures, with representation of the
data in visual and motor coordinates. The model has been tested and validated
in a humanoid robot, using kinematics data of human motion.

The framework offers a stochastic method to model the process underlying
gesture imitation. It makes a link between theoretical concepts and practical
applications. In particular, it stresses the fact that the observed elements of a
demonstration, and the organization of these elements should be stochastically
described to have a robust robot application, that takes account of the high
variability and the discrepancies across demonstrator and imitator points of
view.
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