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Abstract 

Action recognition  has received an enormous interest in the field of neuroscience over the 

last two decades, with a strong impact also in many other disciplines such as philosophy 

and robotics. In spite of this interest and impressive numbers of publications on this topic, 

the knowledge in terms of fundamental neural mechanisms that provide constraints for 

underlying computations remains rather limited. This fact stands in contrast with a wide 

variety of speculative theories about how action recognition might work, and how it might 

interact with other cognitive brain functions. This review focuses on new fundamental 

electrophysiological results in monkeys, which provide constraints for the detailed 

underlying computations, where we focus particularly on mirror mechanisms and 

interactions between visual and motor processing. In addition, we review models for 

action recognition with concrete mathematical implementations, as opposed to purely 

conceptual models. We think that only such implemented models can be meaningfully 

linked quantitatively to physiological data and have a potential to narrow down the many 

possible computational explanations for action recognition. In addition, only concrete 
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implementations allow to judge whether postulated computational solutions are feasible 

and can be implemented with real cortical neurons.  

 

 

Introduction 

Action recognition and its relationship to other cognitive functions has been one of the 

core topics in cognitive neuroscience over the last decade (Keysers, 2011; Keysers and 

Perrett, 2004; Rizzolatti and Fogassi, 2014; Rizzolatti et al., 2001; Schutz-Bosbach and Prinz, 

2007). The discovery of mirror neurons in the premotor cortex of the monkey (Gallese et al., 

1996; Rizzolatti et al., 1996) has initiated a wide interest in the neuroscience community for 

action processing and understanding, with implications in many other disciplines of 

neuroscience, including social neuroscience, motor control, body and self-representation, 

body motion perception, and emotion processing. At the same time, action processing and 

understanding in biological systems have become a topic of high interest in other 

disciplines outside neuroscience. This includes, for example, computer vision, robotics 

(e.g. Demiris, 2002; Schaal et al., 2003), and philosophy (e.g. Petit, 1999; Sinigaglia, 2013). 

In spite of the outstanding interest for this topic, the number of publications on the 

electrophysiological basis of action recognition that provide precise constraints for the 

underlying neural and computational mechanisms is still rather limited (cf. e.g. Kilner and 

Lemon, 2013).  

This lack of strongly constraining data, combined with the vivid interest in the 

problem of action recognition and understanding motivated the development of a broad 

spectrum of, partly extremely speculative theoretical accounts of action processing. Many 

of these theories have never been concretely implemented, and have served only as 

frameworks for conceptual discussions. However, considering the complexity of the 



underlying neural and dynamical processes and the high dimensionality of the underlying 

visual and motor patterns, the establishment of valid theories without the help of 

concretely implemented models is very difficult. Likewise, it is almost impossible to falsify 

such conceptual accounts by comparing them with specific experimental results in a 

conclusive manner.  

Action-selective neurons are found in a number of brain structures, including the 

superior temporal sulcus (STS), the parietal, the premotor, and the motor cortex. We will 

briefly review here mainly the recent relevant results, focusing especially on a number of 

novel studies on mirror neurons. Much more detailed information about previous studies 

and other action-selective neurons without mirror properties can be found in other 

reviews (Nelissen et al., 2011; Puce and Perrett, 2003; Rizzolatti and Fogassi, 2014; 

Rizzolatti et al., 2001). 

Early studies on mirror neurons (Gallese et al., 1996; Rizzolatti et al., 1996) reported 

that the responses of some mirror neurons to visual stimulus might depend on specific 

characteristics and modalities of the visual stimulation. However, only recent 

neurophysiological studies have studied these aspects systematically. They have 

investigated how spatial parameters of observed actions influence the activity of mirror 

neurons, including the distance of the action from the observer as well as the perspective 

or stimulus view, i.e. from which direction the action is observed. Moreover, these studies 

show that the mirror neuron discharge intensity is influenced by the value that is 

associated with objects on which the action is performed. We think that such 

parametrically well-controlled studies of the different aspects that influence the activity of 

action-selective neurons, and especially of mirror neurons, are absolutely essential for the 

development of solid computational theories of action perception in the primate cortex. In 



addition, the work of Lemon and his co-workers (see Kraskov et al. 2014) showed that the 

mirror mechanism is not limited to parieto-frontal circuit, but also includes pyramidal 

tract neurons originating from areas F5 and F1 (primary motor cortex). 

As a step towards a deepening of the understanding of the biologically-relevant 

neuro-computational mechanisms of action recognition, we provide also overview of the 

existing computational and neural models that are implemented in a sufficiently concrete 

manner to allow meaningful comparisons with such experimental data. 

 This overview of the existing work reveals several gaps in terms of critical 

experiments that might help to decide between different computational accounts, as well 

as between the available theoretical frameworks, all of which fail to capture some essential 

properties of the neural data. We hope that this analysis will help to set the goals for 

future research in experimental as well as in theoretical neuroscience.  

 

Preliminary remark: different classes of actions  

Before reviewing neurophysiological data on action recognition and discussing related 

models, it is important to stress that actions made by other individuals fall into two main 

categories. One category is constituted by actions that are present in the motor repertoire of 

the observers, and the other by actions that are extraneous to their motor abilities. The 

processing of these two different classes of actions involves partially different neural 

substrates. Both categories of actions activate visual action-selective areas located in the 

superior temporal sulcus (STS), while they differ with respect to the involvement of motor 

structures. To give an example, the observation of biting done by a dog, a monkey or a 

human being activates the same cortical parieto-frontal network in human observers. In 



contrast, the observation of a dog that barks activates visual, but not motor areas (Buccino 

et al., 2004). 

A psychological explanation of these finding has been proposed by Jeannerod. He 

suggested that “mere visual perception, without involvement of the motor system would 

only provide a description of the visible aspects of the movements of the agent, but it 

would not give precise information about the intrinsic components of the observed action 

which are critical for understanding what the action is about, what is its goal, and how to 

reproduce it”. This implies that perception of actions without motor involvement is in 

some sense incomplete. Others have interpreted the motor activation triggered by others’ 

actions in a more mechanistic way, suggesting that the motor activation of the parieto-

frontal network results in a “direct recognition” of the observed action through the 

similarity between the observed and the executed action, not requiring additional complex 

inference processes (direct matching hypothesis) (Rizzolatti et al., 2014). A more recent 

interpretation is that motor activation during action observation represents a prediction 

triggered by the observed stimuli, which is necessary to disambiguate the sensory 

representations emerging during action observation (Kilner, 2011; Kilner et al., 2007; 

Wilson and Knoblich, 2005). Conceptually, this view minimizes, in part, the role of motor 

system in action processing, while stressing instead interactions between visual and motor 

areas for action understanding.   

Another important distinction from a theoretical point of view is the one between 

transitive actions, which are directed towards goal objects, and non-transitive ones without 

such goal objects. It turns out (see Section ‘Example-based visual recognition models’) that 

the processing of transitive actions is computationally more difficult. It requires not only 

the recognition of the effector movement (e.g. the moving hand) but also a processing of 



the relationship between the effector and the goal object (e.g. whether hand and object 

match spatially, or if the correct type of grip is applied to a specific object).  This 

necessitates additional computational mechanisms that relate the movements of the 

effector to the properties of goal objects (e.g. Oztop et al., 2004). 

 

Electrophysiological results  

Due to space limitations the following review of electrophysiological results focuses on a 

few recently established novel aspects of mirror neurons, and properties of action-selective 

neurons that likely provide input to the classical mirror neurons system. An overview of 

the anatomy of the action observation system is given in Figure 1. With respect to a more 

elaborate treatment of previous results on the mirror neuron and action processing system 

we refer to several previous reviews (Puce and Perrett, 2003; Rizzolatti and Craighero, 

2004; Rizzolatti and Fogassi, 2014).  

 

Basic motor properties of canonical and mirror neurons  

Area F5 contains two main types of neurons responding to visual stimuli: canonical 

neurons and mirror neurons. Canonical neurons are neurons that respond to the 

presentation of three-dimensional objects. Typically, there is congruence between the size 

of the objects that trigger the neuron and the type of grip encoded by that neuron (Murata 

et al., 1997). More recently, Fluet et al. (2010) recorded canonical neuron activity in 

monkeys, instructed by an external context cue to grasp a handle with a precision grip or a 

power grip. In addition, object orientation was varied. The neurons showed a context-

dependent grasp planning activity after cue presentation, and a motor grasp-related 

activity during movement execution. 



 Contrasting with this class of neurons, mirror neurons are a specific set of neurons 

originally described in area F5 in the premotor cortex of the monkey. As all other types of 

neurons in area F5, mirror neurons discharge during goal directed actions such as grasping, 

holding, placing. Their main characteristic is that they respond to the observation of 

actions done by others. This property differentiates them not only from mere motor 

neurons, but also from canonical neurons. The relative proportion of these neuron types 

was investigated in a recent study in which a large number of neurons of F5 were 

recorded using multi-electrode linear arrays. The study reported that out of 479 recorded 

grasping neurons, 221 were purely motor, 197 mirror neurons, including 60 that also 

responded to object presentation, and, finally, 46 were canonical neurons (Bonini et al., 

2014).  

Mirror neurons are also present in monkey parietal areas connected with area F5 

(see below). Their properties appear to be similar to those of mirror neurons in area F5. 

However, detailed comparative studies that assess possible differences between the 

functional properties of parietal and premotor mirror neurons have still to be undertaken. 

In humans, mirror neurons were recorded in mesial motor areas and the hippocampus 

(Mukamel et al., 2010). The recordings were made in surgical patients with drug resistant 

epilepsy. The type of electrodes used (large linear electrodes with low impedance sites on 

the shaft and a bundle of tiny wires at the electrode end for single neuron recording) 

biased, inevitably, the single neurons database towards the medial part of the brain. A 

large body of evidence (including EEG and MEG, TMS, and brain imaging experiments) 

shows, however, that human parietal and premotor areas became active during action 

observation (see Rizzolatti and Fogassi, 2014). These areas closely correspond to those 

active in the monkey during action observation in fMRI experiments (Nelissen et al., 2011). 



These are also the areas where mirror neurons were recorded. Thus, there is little doubt 

that the action execution/action observation circuit of humans houses mirror neurons. 

 

Some newly established  properties of mirror neurons in area F5 

 

a) Influence of the observed action location relative to the observer 

Early studies of mirror neurons were focused on demonstrating congruence between motor 

and visual responses of the recorded neurons (Gallese et al., 1996; Rizzolatti et al., 1996). 

Already in those studies it was reported, however, that mirror neurons form different 

subcategories according to the visual stimuli that are most effective in triggering them, 

and not all of them showed strong congruency between visual and motor tuning. 

 Different aspects of the visual tuning properties of mirror neurons were addressed 

in the last few years.  One of these aspects was how the spatial location of the observed 

actions influences mirror neurons discharge (Caggiano et al., 2009). The results showed 

that the response of about half of the mirror neurons of area F5 discharged differently 

according to the location in space of the observed motor acts.  Half of them discharged 

more strongly or exclusively to stimuli presented in the monkey peripersonal space, half 

preferred the extrapersonal space. 

  In the same study it was investigated whether space-selective neurons encode 

space in a “metric” or in an “operational” format. “Metric format” indicates that the 

location of effective stimuli was defined in terms of the true geometrical position or  

distance from the monkey. In contrast, space encoding in an “operational format” refers to 

the fact that the effective stimulus location is dependent on the possibility of the monkey 

to interact with the objects, and not on the true physical distance between the monkey and 



observed action. The experiment by Caggiano et al. (2009)  showed that about half of the 

tested space-selective mirror neurons were “operational mirror neurons” while the other 

half encoded the space in a metric way (“Cartesian mirror neurons”).  

To our knowledge, no computational or neural models exists that would capture 

these observed transformations of spatial tuning properties dependent on the operational 

space of the monkey. 

 

b) Modulation of mirror neuron responses by the perspective view of observed actions  

A very interesting recently investigated issue was whether mirror neurons provide 

information concerning the perspective from which the motor acts of others are observed 

(Caggiano et al., 2011). Three perspectives were tested: subjective view (0°), side view (90°) 

and frontal view (180°). The results showed that most tested mirror neurons (74%) were 

view-dependent, their responses being tuned either to one or, more frequently, to two 

specific points of view. Only a minority of the studies neurons (26%) exhibited view-

independent responses, that is their response did not vary significantly with the 

perspective. 

 The observation of view-dependence fits nicely with example-based visual 

recognition mechanisms (see the Section ‘Theoretical models’). However, it has to be noted 

that the same population of neurons can be simultaneously tuned to multiple parameters, 

e.g. to the view and different grip types. In addition, individual neurons can show 

different degrees of invariance with respect to these parameters (see also Singer and 

Sheinberg (2010)).  This type of multi-dimensional tuning is not captured by most existing 

theoretical models, which typically make the simplifying assumption that individual 



modules encode only a specific set of parameters instead of mixing many apparently 

unrelated computational functions. 

 There are two further issues that deserve some discussion here. The first is the 

origin of the input that may determine the properties of view-dependent and view- 

independent F5 mirror neurons. The second is what might be the functional role of these 

two types of mirror neurons. The main input to F5 arises from parietal areas PFG and AIP 

(antero interpatietal area) (see Figure 1). However, there is no detailed information 

available about the properties of these neurons in terms of their view-dependence 

properties. PFG and AIP receive input from various areas located in the superior temporal 

sulcus region. In this region neurons with view-dependent and view-independent 

properties have been described before (Perrett et al., 1985).  

A common explanation for the computational function of view-tuned neuros in the 

visual pathway is that they represent an intermediate step towards view-invariant 

representations (e.g. Perrett and Oram, 1993). View-invariant neurons might pool the 

responses from view-variant ones with selectivity for different views. However, given that 

mirror neurons by definition have well-defined motor tuning properties, and thus are 

motor neurons, this explanation captures only a part of their possible computational role. It 

seems likely that such neurons combine information about the visual perspective of 

perceived actions with associated motor behavior.  

An interesting possibility is, , that view-dependent mirror neurons might be helpful 

within an architecture that combines forward and backwards streams of information 

processing, in order to support feedback from motor representations to purely visual areas, 

e.g. via parietal cortex. Such modulation of bottom-up processing by an interpretation on 

more abstract levels higher up in the processing hierarchy has been repeatedly 



conceptualized, e.g. in the context of Reverse-Hierarchy theory by (Ahissar and Hochstein, 

2004) several years ago. Likewise, this idea forms a central element in theories in computer 

vision (Ullman, 1996) and plays a central role in predictive coding theories on action 

recognition (see Section ‘Bayesian models’).  More empirical data are needed, however, to 

confirm this appealing hypothesis. 

 

c)  Mirror neurons are sensitive for the value of an observed action   

It was originally suggested that mirror neurons describe exclusively the goal of the 

observed action, and that their discharge is not influenced by the properties of the objects 

on which the action is performed, or by the value that this object may have for the monkey. 

A series of recent findings indicate that is not always true. In fact, a set of mirror neuron in 

area F5 has been observed whose discharge was modulated by the value that the grasped 

object had for the monkey (Caggiano et al., 2012). Two experiments demonstrated this 

point. 

  In the first, the discharge of mirror neurons during the observation of an agent, 

who was grasping food, was contrasted with that of the same agent grasping objects 

devoid of any meaning and value for the monkey. It was found that the large majority of 

tested neurons were more strongly activated in the “food” condition. In the second 

experiment, the responses of mirror neurons were studied in response to the observation 

of an agent grasping the same objects, which were either associated with a reward given to 

the monkey or were not rewarded. About 50% of the tested neurons responded more 

strongly when the observed motor acts were performed on rewarded objects, while a 

small percentage showed a stronger response for non-rewarded objects. Finally, the 

discharge of about 40% of neurons was not influenced by the reward conditions. 



At first glance, the influence of the object value on mirror neuron responses is 

rather surprising. However, there is evidence (see below) that one of the nodes of the 

mirror system (parietal area AIP) receives information not only from the lower bank of the 

STS, but also from the inferotemporal lobe, a region that likely encodes the semantics of 

objects. Furthermore, neurons in both orbitofrontal cortex and cingulate sulcus are more 

strongly activated when the monkey anticipates a larger reward (Maunsell, 2004; Roesch 

and Olson, 2003, 2007). It is likely that areas which associate object and reward determine 

the value-related responses of mirror neurons through their output to the premotor areas.  

This again demonstrates that cortical levels of processing cannot be easily mapped 

onto distinct computational steps, like action recognition, motor planning, or the decision 

between different alternative motor programs. Present theoretical frameworks do not 

provide a systematic approach to deal with such fuzzy assignments of computational 

functions to anatomical levels.    

 

Action observation circuit: the input to the premotor cortex 

The functional properties of STS neurons strongly suggest that these neurons provide  the 

fundamental cortical visual input to mirror neurons. This hypothesis was recently 

confirmed by (Nelissen et al., 2011) using fMRI techniques, complemented by 

neuroanatomical tracing. Monkeys were presented with different types of hand grasping 

actions. Activations were found in three cortical regions: STS, inferior parietal lobule, and 

the premotor region. A subsequent analysis, carried out using as region of interest (ROI) the 

parietal cytoarchitectonically defined areas PF, PFG, PG and AIP, showed activation only 

in areas PFG and AIP. No action-specific activation was found in the other parietal areas. 

A subsequent connectivity study showed that the two parietal “mirror” areas are linked 



with different sectors of STS. Area PFG is connected with the upper bank of STS, and in 

particular with area STPm. In contrast, AIP is mostly connected with the lower bank of STS, 

and in particular with its most rostral subdivisions (see Figure 1). Note that the temporal 

input to AIP originates not only from STS lower bank, but also from cortex that is part the 

inferotemporal lobe. These finding is of great interest because it indicates that the mirror 

network has access to information concerning object semantics. Such semantics defines, 

for example, classes of objects that are associated with the same type of grip.   

Unlike mirror neurons the neurons in the STS do not have motor properties, but 

respond to visual action stimuli (Oram and Perrett, 1996; Perrett et al., 1989). Recent 

studies on the neural encoding of observed actions in the STS showed that this area 

contains many view-dependent neurons (Barraclough et al., 2009; Vangeneugden et al., 

2011). This seems consistent with the idea that the view-dependence in mirror neurons 

might result from their afferent visual inputs. Finally, many STS neurons show temporal 

sequence selectivity and seem to associate the information of stimulus patterns over time 

(Barraclough et al., 2009; Singer and Sheinberg, 2010; Vangeneugden et al., 2011). Some of 

these neurons show tuning for actor identity (Singer and Sheinberg, 2010). In addition, the 

similarity of the neural activation patterns of STS neurons match closely the physical 

similarity between the encoded action patterns (Vangeneugden et al., 2009). STS neurons 

encode thus many aspects of actions regardless of whether those actions belong to the 

observer motor repertoire. They do not show, however, the motor properties that 

characterize premotor and parietal mirror neurons. 

 

 

 



Action observation circuit: the mirror output form the premotor cortex 

It is well known (Dum and Strick, 1991) that the hand representation of the primary motor 

cortex  (areas M1 or F1) receives a strong input from area F5. However, early studies 

testing the mirror properties of neurons located in area F1 yielded negative results 

(Gallese et al., 1996). Recently, in a series of experiments on the mirror properties of the 

cortico-spinal tract neurons (Kraskov et al., 2009; Vigneswaran et al., 2013) demonstrated 

that many of these neurons respond to the observation of actions done by others.  

 A first study examined the activity of cortico-spinal neurons originating from area 

F5. They found that the discharge of about half of the tested neurons was modulated by 

grasping observation. Interestingly, the discharge rates of about 25% of these neurons 

were not increased, but rather suppressed during observation (Kraskov et al., 2009). 

A second study investigated the responses of cortico-spinal neurons originating 

from area F1 (Vigneswaran et al., 2013) . About half of the tested neurons were modulated 

by action observation. Among these neurons, most increased their discharge rates during 

observation, while others reduced their discharge rates, or even stopped firing. A 

comparison between the properties of cortico-spinal F1 and F5 mirror neurons showed 

that the visual responses in F1 were much weaker than in F5. Thus, although many 

cortico-spinal F1 neurons fire during action observation, their input to spinal circuitry is 

weak and insufficient to produce movement. 

These data are of great importance because they indicate that the understanding of 

goals of motor behaviour might not be simply a function of F5 mirror neurons, but rather 

is based on complex motor representations that involve even corticospinal tract neurons. 

This again indicates the weakness of the classical conceptualization of strictly hierarchical 

processing, here in terms of a separation between motor programming (in premotor 



cortex) and processes of motor control that are associated with area F1 and the cortico-

spinal tract.    

 

Theoretical models with explicit mathematical implementations 

While a wide spectrum of conceptual models for action processing exists, we focus here 

only on models with explicit mathematical implementations since we think that they will 

be most useful for narrowing down underlying computational mechanisms. In addition, 

space constraints do not allow us to extend the discussion to several interesting aspects 

that have been extensively discussed in the context of conceptual models. This includes: (i) 

the relationship between action processing, mirror neurons, and the representation of 

language (Arbib, 2005; Pulvermuller, 2005; Rizzolatti and Arbib, 1998); (ii) the issue of how 

mirror neurons emerge in terms of learning and evolution (Cook et al., 2014; Keysers and 

Perrett, 2004); (iii) the relationship between action processing and social cognition (Gallese 

et al., 2004; Rizzolatti and Sinigaglia, 2008; Spaulding, 2013); (iv) philosophical aspects, 

such as how mirror neurons are related to mind reading (Keysers and Gazzola, 2007), the 

awareness of self and others, or empathy (e.g. Oberman and Ramachandran, 2007; 

Rizzolatti and Sinigaglia, 2008). While such aspects are of broad general interest, the 

presently available neural data seems not sufficient to constrain mathematically 

implemented computational models on these aspects.   

Before starting our review of existing models it seems important to discuss briefly 

the role of models in neuroscience, and specifically in the field of action recognition. There 

exists a heterogeneous spectrum of understandings about the function of theories in 

cognitive neuroscience, which ranges from quantitative, exactly-defined mathematical 

models (e.g. for biophysical processes in neurons, or about relationships between 



psychophysical variables that can be accurately measured) up to conceptual post-hoc 

discussions and box-and-arrow models, summing up speculative claims with relevance 

for subsets of data. Since in action recognition already a vast number of speculative 

explanations exist we think that this field might profit more from theory concept that is 

similar to the one physics. According to this, a theory should link quantitatively different 

variables, for which one can specify an exact method how they are measured. This seems 

not to apply to a variety of popular concepts in the field of action perception (such as 

‘intention’, ‘empathy’, ‘mind’, etc.), and for this reason we do not discuss them in this 

paper.  The quantitative link to data might be made at different levels, e.g. at a behavioral 

level or even by explaining or predicting the behavior of individual neurons. 

Phenomenological models that relate different behavioral variables are important and 

often help to delineate fundamental computational problems and principles. Yet, usually 

they do not uniquely specify the neural mechanisms that implement such computations. 

For this, more detailed models including details about the processing in neurons or 

neuron populations are required. In addition, it is possible that certain computations 

cannot be efficiently implemented with real neurons. It is thus a nontrivial step to claim 

that a computationally efficient algorithm, e.g. in computer vision, really has a relevance 

for the brain. For this, at least at some point, one has to show how the postulated 

computations can be implemented by neurons with biophysically plausible properties, 

and it has to be verified if the resulting predicted behavior of neurons matches 

electrophysiological data. This conception of different levels of theory in neuroscience 

matches the classical distinction of levels of analysis that has been proposed by D. Marr 

(1982) for computational vision.  



 The existing theoretical approaches in the focus of this review fall in three main 

categories. The first tries to implement the “direct matching hypothesis” (Rizzolatti and 

Fogassi, 2014; Rizzolatti and Sinigaglia, 2010), thus the hypothesis that action recognition 

and understanding exploits  motor-representations of the observed action (see above).  

 The second category tries to explain action recognition and understanding using 

predictive Bayesian models, assuming an interplay of sensory representations and their 

validation via top-down predictions from higher-level representations that encode 

underlying causes or motor states, including action goals.  

 The third class of approaches are visual pattern recognition models that accomplish 

action recognition by the identification of visual feature sequences, without making 

reference to the motor system. These approaches account for visual action recognition, but 

not for the observed interactions between vision and motor execution.  

 We try to focus here mainly on novel approaches and refer to classical models only 

to the degree that is necessary to understand the conceptual basis of the more recent 

approaches.- 

 
  
Classical models based on artificial neural networks 

The first implemented models for action processing and mirror systems were based on 

artificial neural networks. These models are important since they demonstrated that 

computational problems related to action processing and the mirror neuron system could 

be implemented and solved mathematically. However, these models typically do not 

claim that the proposed implementations reproduce detailed properties of cortical neurons. 

This puts these approaches between conceptual models and models that reproduce details 

of the physiology of the action processing system.  



Among the first and most influential work using artificial neural networks are the seminal 

models by Arbib and co-workers (Bonaiuto et al., 2007; Oztop and Arbib, 2002). Using 

architectures that are coarsely inspired by the connectivity between the different parts of the action 

processing network (e.g. the STS, parietal areas such as AIP or IPS (intraparietal sulcus), or LIP 

(lateral intraparietal cortex), premotor areas such as F5, and primary motor cortex), and 

implementing individual computational modules using classical neural network techniques 

(including back-propagation), these models accomplish the recognition of grips and trajectory 

prediction. Action recognition is accomplished by the learning of mappings between visual features 

and features characterizing the goal object and its affordances (i.e. the way how it has to be 

manipulated), and between visual features and hand states, that characterize the hand configuration 

during grasping. The temporal sequence of hand states can then be exploited to recognize the action. 

The newer version of the model includes also an auditory pathway in order to model the 

multimodality of mirror neurons (Kohler et al., 2002), and it accounts for the fact that mirror 

neurons respond during partially occluded actions (Umilta et al., 2001). In addition, these 

architectures have been linked to controller models (Oztop et al., 2006). , and recently they have 

been extended by mechanism for monitoring of the possibility to execute actions and of the values 

of their outcomes (Bonaiuto and Arbib, 2010). A similar theoretical approach is also followed by 

models of other groups, such as the TROPICAL model (Caligiore et al., 2010), which exploits a 

variety of classical neural network techniques (including also Kohonen maps, neural fields, and 

hierarchical object recognition architectures) in order to model behavioral results on stimulus 

response compatibility.  Others have applied classical neural network techniques to account for the 

problem how different action perspectives might be  matched during the learning of mirror neurons 

(Schrodt et al., 2014). 

 

Models based on controller architectures 



Another class of classical models implementing the direct matching hypothesis has been 

derived from controller architectures that have been developed to account for motor 

contol. These behavioral models typically combine two types of dynamical internal 

models that model parts of the sensorimotor loop (Demiris and Khadhouri, 2006; Wolpert 

et al., 2003): 1) Forward models that compute predictions for state changes of the motor 

system and associated sensory signals from the motor command, where it is assumed that 

the brain sends a copy of the motor control signal as input to the forward model 

(reafference). 2) Inverse models that map sensory signals directly to appropriate control 

signals. This makes it possible to accomplish fast control in situations where the signals for 

feedback control are too slow. A prominent implementation of this approach is the 

MOSAIC architecture (Haruno et al., 2001), which combines multiple controllers for 

different behaviors (each consisting of a forward and inverse model) that are operating in 

parallel within a mixture of experts architecture (Figure 2A). The final control signal is 

determined by weighting of the outputs of the expert controllers, dependent on the sizes 

of their prediction errors with respect to the available sensory signals. As consequence, the 

outputs of the controllers that best predict the sensory inputs signals have the highest 

weights. It has been postulated that the MOSAIC model also explains the perception of 

actions and social behaviors, assuming that movements are classified by determining the 

controller module that produces the smallest prediction error (Wolpert et al., 2003). 

Controller-based models have been embedded in hierarchical architectures with a lower 

level that is formed by the expert controller modules for different actions and a top level 

that controls their contribution, allowing for the generation of action sequences (Haruno, 

2003) .  



  Mirror neurons have been  associated  specifically with  the  implementation  of  the 

forward models  in such control architectures  (Oztop et al., 2006), and  the parietal cortex 

has been proposed as being  involved  in  the representation of  the  inverse models  (Miall, 

2003).  In addition,  it seems  likely  that subcortical structures, such as  the cerebellum, are 

involved in the implementation of the relevant internal models (Caligiore et al., 2013).  

Controller-based approaches have been very successful in accounting for 

behavioral data and have motivated many behavioral experiments. The way how such 

controllers are implemented in terms of cortical and subcortical circuits is not entirely 

clear. However, the idea of predictive control and of internal models that predict sensory 

consequences is dominating the present discussion about action encoding in cognitive 

neuroscience. The same concepts are presently frequently discussed in the context of 

predictive coding theories (see also Section ‘Bayesian Models’). Another important 

concept is the idea of hierarchical representation of actions, which also has been 

postulated on the basis of human imaging data (Grafton and Hamilton, 2007).  

A computational problem is that controller models often assume an internal 

simulation of motor programs in joint angle space, without specifying how such motor-

relevant variables can be efficiently extracted from retinal image sequences. In robotics 

this difficult computational vision problem is typically bypassed by use of computer 

vision systems or special sensors that are not biologically plausible. Another problem for 

models that try to identify motor control policies from observation (Schaal2003) is that the 

dynamics of observed actors often does not match the one of the observer, for example 

because the observer has a different body geometry or masses of the body segments. This 

leads to a nontrivial correspondence problem, where one has to find a mapping between the 



movements or control policies of agents with different physical properties (Dautenhahn, 

2001). 

 

 
 
Dynamic recurrent neural networks and neural field models 

Another class of action processing models with closer relationships to brain functions is 

based on recurrent neural networks and neural fields. Neural fields are space-continuous 

recurrent neural network models that describe the dynamics of distributed activation 

patterns in the nervous system. Opposed to large-scale models with discrete neurons that 

in certain cases they permit a mathematical analysis and understanding of the emerging 

activity patterns.  Recently such models are also often discussed under the term  ‘neural 

mass models’ (e.g. Deco et al., 2011). They describe the dynamic variation of the average 

activity of ensembles of cortical neurons with similar tuning properties (mean-field 

approximation). This makes them suitable to establish links to detailed mechanisms at the 

level of real neuron ensembles. Neural fields have been used to account for action 

recognition and for mirror representations. 

 Influential models based on recurrent neural networks have proposed by Tani and 

colleagues (Tani et al., 2004). The networks are trained in a supervised manner with pairs 

of sensory and motor signals. The trained networks can predict trajectories from 

incomplete sensor information. This class of models has been extended towards dynamic 

hierarchical representations, where the top level represents the sequential order of actions, 

while the lower levels represent the trajectories of the individual actions. More recently, 

such models have been extended by inclusion of neuron pools with multiple time scales, 

forming a hierarchy (Yamashita and Tani, 2008). The models of the Tani group have been 



tested extensively for movement generation and recognition in humanoid robots, showing 

that they scale to up for complex real-world problems. This shows the feasibility of action 

representation with such recurrent network architectures. The developed networks are not 

aiming at reproducing detailed properties of cortical neurons, while it appears that by 

appropriate modification of these models this might be possible. By linking perceptual 

and motor representations such models address mirror representations.  

 A second class of biologically-motivated dynamical network models is based on 

dynamic neural fields (Amari, 1977; Wilson and Cowan, 1972). Dynamic neural fields have 

been proposed as physiologically-inspired models for the distributed representation of 

motor programs, as well as for the self-organization of perceptual patterns, e.g. in low-

level vision (Dayan and Abbott, 2001; Erlhagen and Schöner, 2002; Giese, 1999).  For 

appropriate choice of the lateral connectivity, neural fields can have stable solutions that 

correspond to temporally propagating localized activity pulses. Such propagating pulse 

solutions can be used to model the sequential activation of neurons that encode different 

motor states, or instances along a trajectory. This mechanism has been proposed for the 

encoding of motor programs as well as for the encoding of perceived visual pattern 

sequences (Cisek and Kalaska, 2010; Giese and Poggio, 2003; Zhang, 1996). Neural fields 

have also been used to account for the interaction between movement recognition and 

action planning in robotics (Erlhagen et al., 2006; Sauser and Billard, 2006) For example, 

the STS, and cortical areas PF and F5 have been modelled by dynamically coupled neural 

fields with highly simplified inputs (Erlhagen et al., 2006). In addition, it was 

demonstrated that the required coupling between such neural fields can be learned with a 

Hebbian learning rule, providing a possible implementation for the hypothesis that mirror 



circuits might result from Hebbian plasticity during self-observation (Keysers and Perrett, 

2004).  

 Neural field models have been directly compared to neural data in motor and 

premotor cortex  (e.g. Cisek and Kalaska, 2010; Erlhagen et al., 1999). A major limitation of 

the discussed neural field model for mirror representations is that they use highly 

simplified low-dimensional input and motor patterns. This leaves open whether the 

proposed architectures, and the associated nonlinear dynamics, scales up to perceptual 

and motor patterns with realistic dimensionality. (See below an application of neural fields 

for action perception from real videos.)  

 Closely related to neural field models are models for ‘motor chains’ (Chersi et al., 

2011). These models are directly motivated by electrophysiological experiments in 

premotor and parietal cortex. They consist of ensembles of spiking neurons models that 

encode different phases of actions (e.g. reaching, grasping, and bringing to the mouth), 

and which are dynamically coupled in a way that results a sequential activation, 

representing the sequential order of the temporal phases of the action. This property 

reproduces the fact that neurons, e.g. in premotor cortex, often are tuned for individual 

grip phases and show activation only during the relevant phase. It is assumed that the 

ensembles receive input from motor as well as from visual structures, and that the first 

ensemble is excited by an external ensemble that encodes intention (potentially 

represented in prefrontal cortex). The activity of this external ensemble initiates the 

sequential activation of the chain of ensembles. This mechanism is thus very similar to the 

propagation of a localized activation pulse in a neural field (see above). The intention 

ensemble receives feedback input form the corresponding motor chain, resulting in an 



activation of the corresponding intention representation when a motor behavior is 

observed or executed.  

Chain models have a high degree of physiological plausibility and are thus suitable 

for a detailed comparison with real neural data. So far the models have been tested only 

with idealized low-dimensional peak-shaped input signals, which leaves the question 

open whether such models and their dynamics generalize to pattern spaces with realistic 

complexity.  

 
 
Bayesian models 

Another extremely popular class of models is based on Bayesian probabilistic inference. A 

first simple Bayesian model for action classification has been proposed in the context of a 

robotics system (Metta et al., 2006). It postulates that different parts of the mirror neuron 

system correspond to the components of a Bayesian action classifier and accomplishes 

classifications of hand actions from video input, using a computer-vision input model that 

is not biologically plausible.  

 Another very influential Bayesian action recognition model has been proposed by 

Friston and colleagues (Friston et al., 2011; Kilner et al., 2007), based on the idea of 

‘predictive coding’ (Friston, 2010). This models picks up a variety of principles from the 

theories discussed before: (i) formulation of parts of the sensorimotor loop as predictive 

dynamical systems; (ii) the minimization of the prediction error in sensory space; (iii) use 

of nonlinear dynamical systems, and specifically of sequentially activated chains of 

neurons (called ‘stable heteroclinic channels’ in this literature) for the encoding of the 

sequential time structure of actions; (iv) dynamical hierarchies, specifying actions at 

different levels of abstraction, and with a bottom-up and top-down exchange of 



information. These elements are combined within a brain theory, derived from machine 

learning and theoretical physics, which postulates that circuits in the brain realize a special 

form of belief-propagation algorithm. According to this interpretation, the brain estimates 

hidden variables (including internal dynamical states and intentions) based on sensory 

observations, where it exploits a probabilistic hierarchical dynamical generative model in 

order to specify how the sensory signals depend on external causes, and on the internal 

state variables of the brain. The parameters and variables of this probabilistic  model are 

estimated using a Bayesian approach, combining prior distributions for the estimated  

variables with likelihoods. The likelihoods specify how the variables at individual 

hierarchy levels are statistically related to prediction errors for the variables in the next-

lower level of the hierarchy. The likelihoods define thus a bottom-up stream of 

information within the hierarchy. In addition, it is assumed that the priors at the different 

levels are estimated by top-down predictions from the next higher level in the hierarchy 

(implementing a special form of ‘empirical Bayes’, where prior distributions are also 

estimated by maximizing consistency of the model with the data). This defines a top-down 

stream of information within the hierarchy. The approach makes it in principle possible to 

estimate all model parameters by minimizing the prediction error (more precisely the 

surprise or entropy) in the space of the sensory signals. 

  The underlying parameter estimation problem cannot be solved exactly because it 

becomes intractable, even for relatively low-dimensional problems (a frequent problem in 

Bayesian inference). This problem can be circumvented by minimizing not the real 

prediction error, but an upper bound that depends on it (‘free energy’).  This bound is 

formulated using an approximative distribution for the hidden variables that results in a 

tractable problem (‘variational Bayesian inference’). A key assumption in the theory is that 



this approximative distribution is Gaussian (which can be motivated by a ‘Laplace 

approximation’ for the underlying true distributions). With these assumptions it is 

possible to derive an algorithm that minimizes the free energy bound by a gradient 

descent.  The gradient descent algorithm can be implemented as message passing 

procedure, where signals are exchanged within a network that consists of hierarchically 

connected ‘nodes‘.  The idea is that these nodes can be mapped onto neurons or neuron 

ensembles. The proposed message passing procedure specifies exactly which signals are 

exchanged between the nodes, and how these signals are computed within the nodes 

(Friston, 2005).  

  It has been speculated that the mirror neuron system and action perception might 

be understood within this framework (Kilner et al., 2007). Action control and recognition 

using this idea have been implemented for simple examples with a two-degree of freedom 

arm (Friston et al., 2011; Friston et al., 2010). In addition, it has been demonstrated (for 

artificial simulated birdsongs) that the framework allows the learning of hierarchical 

models that represent dynamical signals at multiple time-scales (Kiebel et al., 2008; Kiebel 

et al., 2009).  

 The theory proposed by Friston clearly addresses mirror mechanisms since it 

specifies how sensory and motor representations are interacting, and since intermediate 

levels of the hierarchy combine visual and motor signals. Opposed to speculative 

frameworks, the implemented versions of the free-energy framework by Friston have the 

advantage that they make precise predictions about the exchanged neural signals and the 

computations in neurons ensembles that correspond to individual nodes. Such predictions 

can be tested by comparison with electrophysiological data. However, the detailed 

evaluation of such predictions is far from accomplished. Some aspects of the free energy 



framework are also common to many other theories (e.g. hierarchy, asymmetry of bottom 

up and top-down connections, sequence encoding by neural state dynamics). Other 

aspects are more specific, and some predictions about the signal flow across cortical layers 

seem to match observations in real neurons (Bastos et al., 2012). Other aspects seem not to 

be in agreement with electrophysiological data, at least in action selective neurons. An 

example is the prediction that cortical neurons ensembles only encode unimodal 

distributions (because of the necessity to assume Gaussian distributions for the message 

passing algorithm) (Friston, 2008). A further issue is that it is not clear if for realistically 

complex pattern spaces the belief propagation iteration can be finished sufficiently fast in 

order to account for the observed rather low neural latencies. Action-selective neurons in 

area F5 can have latencies as short as 60 ms (Maranesi et al., 2014), and the average 

latencies are not much larger than 100 ms. This is not so much more than the sum of the 

synaptic delays from the retina to these neurons, leaving not much time for convergence 

of complex inference algorithms or optimization schemes. It has been discussed that a part 

of this convergence processes might happen during evolution. However, in order to go 

beyond speculation, it would be important to implement the proposed theory for patterns 

with realistic complexity and then to show that by pre-training one can build a system that 

can realize the remaining inference steps sufficiently fast. It remains thus an exciting and 

challenging topic to verify if the predictions of predictive coding account are really 

consistent with the properties of real cortical neurons.   

 

Example-based visual recognition models 

A further class of action recognition models takes a completely different approach from 

previously discussed theories, conceptualizing action recognition as a purely visual 



pattern recognition process. Such approaches account also for action recognition in cases 

where the observer is lacking of motor representations of the observed behavior (e.g. 

observation of a flying bird, or a dog barking). These theories were motivated by learning-

based object recognition models (review see  Tarr and Bulthoff, 1998) that accomplish 

invariant object recognition by learning example views. Likewise, action recognition can 

be accomplished by learning to recognize sequences of visual patterns that are derived 

from retinal image sequences. The key for the efficiency of such systems is to accomplish 

invariance of the learned representations against parameters that are not relevant for the 

recognition (e.g. position, view, unimportant kinematic details, etc.). Almost all technical 

approaches for the robust visual detection and recognition of actions in computer vision 

and robotics are based on the learning of visual patterns (e.g. Moeslund et al., 2006), 

demonstrating the feasibility of this approach for real-world problems. 

 Example-based physiologically-inspired neural action recognition models have first 

been proposed for the recognition of non-transitive actions without goal objects. The 

developed models consist of hierarchies of feature detectors that mimic the properties of 

neurons at different levels of the visual pathway, from primary visual cortex, over 

intermediate levels such as area V4, up to the STS  (Giese and Poggio, 2003; Lange and 

Lappe, 2006). Invariance is accomplished by pooling the responses from size-, position-, or 

view-specific detectors at higher levels of the hierarchy (e.g. Riesenhuber and Poggio, 

1999).  The recognition of actions can be accomplished either by recognizing sequences of 

body shapes, or by the recognition of sequences of associated optic flow patterns, where 

likely the brain integrates both feature types in recognition. Neural fields, implementing a 

predictive dynamics with a stable travelling pulse solution, have been proposed as 

physiologically plausible mechanism for the recognition of feature sequences (Giese and 



Poggio, 2003), next to other schemes for spatio-temporal integration. While such example-

based hierarchical visual recognition models have been originally developed as models for 

cortical processing, they have been extended to applications in computer vision, achieving 

competitive performance with state-of-the-art computer vision algorithms (Escobar and 

Kornprobst, 2008; Jhuang et al., 2007; Schindler et al., 2008). 

 Very recently, computer vision has developed a strong interest in such hierarchical 

neural network architectures, discussed under the labels ‘deep learning architectures’ or 

‘convolutional neural networks’. This interest was initiated by the fact that such 

architectures outperformed other algorithms, first for  object recognition  (LeCun et al., 

2015), but later also for many other computer vision problems including action 

classification (Karpathy et al., 2014; Le et al., 2011). Such deep architectures are presently 

among the best performing solutions for action classifications from real videos in 

computer vision. Recently, also deep architectures including dynamical neurons which 

learn hierarchical spatio-temporal representations have been proposed (Jung et al., 2015). 

Many details of the existing deep architectures (applied filter kernel, training schemes, 

regularization by ‘drop out’, etc.) are not biologically plausible, so that it would be a 

superficial conclusion to link them directly to real cortical neurons. However, it has been 

shown that appropriately trained and constrained deep learning architectures can develop 

neurons during learning whose tuning properties resemble the ones of neurons in areas 

V4 and IT (inferotemporal cortex)  (Yamins et al., 2014). In addition, new methods for the 

analysis of the tuning properties of neurons on the intermediate layers of such hierarchies 

have been developed that might become interesting for the analysis of neural data 

(Karpathy et al., 2015; Zeiler and Fergus, 2014). Finally, some recent work also tries to 



develop a theoretical understanding why hierarchical (deep) architectures have so 

favorable generalization properties (Anselmi et al., 2015). 

 Recently, physiologically-inspired example-based recognition models have also 

been extended for the recognition of transitive goal-directed actions, such as the 

manipulation of objects with the hand. This requires a modeling of additional 

computations, potentially realized parietal areas, that analyze the shape and position of 

goal objects and the relationship between object and the effector movements. One model 

of this type reproduces a variety of electrophysiological results from action-selective 

neurons in the STS and premotor area F5, at the same time accomplishing recognition 

from real videos (Fleischer et al., 2013) (see Figure 2B). This model reproduces, for 

example, the view-dependence of action-selective neurons (see Section ‘Some newly 

established  properties of mirror neurons in area F5’), their temporal sequence-selectivity, 

and predicts are relationship between mirror neurons and mechanisms for causality 

perception (Fleischer et al., 2012). Other models of this type have been tested in robotics, 

accomplishing for example the recognition of grip apertures, affordances, or hand action 

classification (Prevete et al., 2008; Tessitore et al., 2010).   

 Since this class of model was derived, taking into account the tuning properties of 

cortical neurons, they make predictions about the behavior of individual neurons and 

motivate novel electrophysiological experiments. The fact that these models have been 

successfully tested with real videos provides evidence that they are computationally 

powerful. A shortcoming of most models of this type is that they have a pure feed forward 

architecture and largely do not include top-down effects. However, it has been shown that 

top-down connections can be added to such architectures, and under appropriate 

circumstances can improve recognition performance (Layher, 2013). Example-based-vision 



models do not account for the well-established interactions between action vision and 

action execution (review Schutz-Bosbach and Prinz, 2007) since they do not include motor 

representations. However, it seems straight-forward to extend these architectures by 

layers that represent motor programs (e.g. using neural fields) and to implement dynamic 

couplings between neural vison-based and such motor representations in order to account 

for mirror properties. However, presently no electrophysiological data is available that 

would allow to constrain the exact form of this coupling.  

 
 
 
Conclusions  
 

 
This paper reviewed recent neurophysiological experiments on action recognition that 

define constraints for the development of future computational and neural theories of 

action recognition. Most importantly, the combination of anatomical and fMRI studies has 

established homologies between the action recognition system in humans and monkeys 

that justify comparisons between both species. In addition, this work has delineated the 

major pathways that are involved in action recognition, including specifically the STS, 

parietal cortex and premotor cortex.  

 Mirror representations with neurons that combine defined visual and motor tuning 

properties have been found specifically in parietal and premotor cortex, and to a less 

degree also in other structures, like the primary motor cortex. What is less clear and sets a 

challenge for future theory-experiment collaborations, is the characterization of the 

specific computational roles of these different regions. This problem is non-trivial because 

the correspondence between different necessary computational steps and these neural 

structures is typically fuzzy, and often neurons with similar tuning properties are found in 



different regions. In addition, electrophysiological studies, trying systematically to 

establish the communality and differences between the properties of action-selective 

neurons, and especially mirror neurons, in different areas are largely lacking. Such studies 

will be essential to make substantiated assignments between different cortical areas and 

computational steps postulated in computational and neural models.  

It is of interest to stress that recent research in neurophysiology shows a shift towards a 

much more quantitative characterization of the underlying representations, for example  

using movie stimuli with controlled timing, or specific parametric variations,. Such well-

controlled parametric manipulations are an important step towards the generation of data 

that can be linked to detailed quantitative computational and neural models.   

In addition, we tried to give an overview of the theoretical models that are implemented 

mathematically so that their behavior can be meaningfully compared with 

electrophysiological experiments. The comparison between physiological data and 

existing implemented models reveals several shortcomings of the existing theoretical 

frameworks, as well as of the available experimental approaches. Some of these 

shortcomings are listed in Box 2. 

Coarsely speaking, the major limitation of the presently available theories is that they are 

either only computational, not giving details about the neural implementation of specific 

mechanisms, or they are limited to specific functions in action recognition (e.g. accounting 

only for the visual tuning of relevant neuron populations). In the field of visual object 

recognition, meanwhile, very developed neural theories exist that have been associated 

with detailed neural data at multiple levels.. The field of action recognition is much less 

developed in this regard.  No physiologically plausible model that integrates visual and 

motor representations by biophysically plausible mechanisms exists. While the number of 



hierarchical models for action classification (including deep architectures) is growing, it is 

less clear how to link such architectures to semantic aspects of actions that seem to be 

important for the brain (e.g. the matching between classes of objects and effector 

movements, or to different actions subserving the same goal). Also no systematic 

theoretical understanding exists how to control the learning processes in such 

architectures. A further problem is how cortical neural mechanisms for action recognition 

interacts with subcortical processes, e.g. in the cerebellum or oin the basal ganglia, and 

what are the computational advantages of this interaction. These problems set novel 

theoretical challenges, including the questions how the relevant computations can be 

implemented neurally.  

 Bridging the existing gaps between theory and experiments seems to necessitate 

new developments in experimental as well as in theoretical neuroscience. On the 

theoretical side, the clarification of the detailed neuro-computational mechanisms requires 

the development of theories that are close to real neurons. Purely computational models 

are not sufficiently constraining to verify such mechanisms in detail. This obviously makes 

it necessary to take into account and understand the mathematical details of such models. 

Just using theoretical approaches as black-box and speculating about how they might 

explain data will not be sufficient to find out whether they are really implemented by 

neurons. In addition, models have to be tested with realistic stimulus sets to verify their 

computational limits. Two decades of experience in machine learning and brain-inspired 

computing demonstrate that often apparently exciting algorithms did not scale up for real-

world problems, which makes it unlikely that the brain exploits these algorithms, since it 

faces the same computational challenges as technical applications..   



 On the side of experimental research, more experiments need to be developed that 

test specific computational mechanisms and operations. Novel methodological approaches, 

such as techniques for the simultaneous recordings of large number of neurons and  

optogenetic approaches for the causal manipulation of the activity in specific classes of 

neurons likely will be helpful for this purpose. Such techniques might help to clarify 

central questions, like how the different types of invariance properties (e.g. with respect to 

view, action, actor, or the affordances of different objects) are jointly encoded in ensembles 

of action-selective neurons, and how different areas contribute to these invariances. 

Likewise, multi-unit recordings and simultaneous recordings in multiple relevant areas, 

and specific cortical layers, might help to clarify the information flow between layers. This 

will help to understand the role of different pathways in the action processing system (e.g. 

between the STS and area F5 (Nelissen et al., 2011)), and it will help to validate specific 

models, such as message passing accounts for bottom-up and top-down processing.    

 For the near future, it appears clearly feasible to further characterize the tuning 

properties of neurons (e.g. with respect to space, timing, and in terms of parameters 

characterizing the object-effector relationship) in the action processing network, using 

parametrically highly-controlled stimuli generated by computer graphics. In addition, 

machine learning techniques (including classifiers or visualization techniques  for neurons 

at intermediate levels of hierarchies) might  help to analyze the distributed representation 

of relevant parameters in populations of action-selective neurons. Likewise, it seems 

possible to test specific predictions about local computations according to predictive 

coding theories in comparison with electrophysiological data. Another interesting 

question, which might be addressed by pharmacological or optogenetic techniques in 

combination with theoretical modelling, is how critical different parts of the cortical action 



processing network are for different tasks, and how cortical and subcortical structures 

interact during action recognition (Caligiore et al., 2013).  

In terms of theoretical approaches, it seems feasible to extend existing hierarchical and 

deep-learning approaches by inclusion of layers that represent semantic aspects, such as 

the relationships between different classes of actions and goal objects.  In addition, the 

realization of bottom up and top-down connections within such hierarchies is important. 

While predictive coding theory suggests one approach to implement such connections, 

there are many other possibilities, including ones directly derived from neural data. Such 

architectures will be suitable for the modeling of the interaction between action 

recognition and attention, and also to capture the observed modulation of neuron activity 

by reward expectations.   

Summarizing, it appears that only progress along both lines, experiments and the 

development of new theoretical frameworks, will ultimately result in a satisfying 

understanding of the mechanisms of action processing. Once such a deeper understanding 

for the core problem of action processing is accomplished, one might start to explore the 

interesting question whether relevant computational principles also apply to other 

cognitive phenomena, as postulated in existing speculative accounts about the relevance 

of mirror mechanisms for emotion processing,  empathy, or social cognition. 
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Box 1: What we know 
 

 The recognition and understanding  of actions of others that  belong to the motor 
repertoire of the observer involves an activation of the observer’s  motor 
representations in addition to  a visual analysis of the observed actions.  

 The recognition and understanding of others’ actions, which are not part of the 
motor repertoire of the observer, is based on visual analysis of the stimuli and 
subsequent inferential processes.   

 Mirror representations of others’ action are not limited to simple hand, mouth and 
leg actions but include complex actions (e.g. climbing) and emotional behaviors (e.g 
Abdollahi et al. (2013)). 

 Visual processing of actions can be accomplished robustly by the learning of 
hierarchies of detectors with appropriate mechanisms for the encoding of 
invariance. 

 Several computational approaches addressing mechanisms and relevant processes 
in action recognition and understanding are available. 

 
Box 2: What we need to know / what is missing 
 

 We do not have a clear understanding how computations are distributed between 
different cortical areas. (For example, are there different computational roles of 
mirror neurons in parietal, premotor and motor cortex?) 

 How do cortical and subcortical structures interact in action recognition? 
 A variety of models implements necessary computational steps by non-biological 

algorithms. Future work needs to focus on verifying implementations in terms of 
physiologically plausible mechanisms by detailed comparison with physiological 
data.   

 Some theories make strong assumptions about available preprocessed inputs, 
bypassing non-trivial computational problems. Unless it can be found out how the 
brain solves these non-trivial computational problems, these approaches might not 
be relevant for the brain.  

 Some theories have been implemented only for toy examples for highly simplified 
pattern spaces and ignoring constraints in terms of computation time. Valid 
theories need to scale up to sensory and motor patterns of realistic complexity and 
need to result in solutions with realistic computation times, taking into account the 
processing constraints of real neurons.  

 Some models cover only partial aspects of action recognition and understanding, 
such as purely visual processing. These approaches have to be extended by 
working out possible links to motor and other related brain structures.   

 While some of the discussed experimental results, such as view-tuning, activation 
of mirror neurons by occluded stimuli, etc., are captured by some of the existing 



models, most of the discussed new experimental results, such as the modulation of 
activity by operational distance or expected reward, are not. 

 The existing experimental results often are not appropriate to distinguish 
sufficiently between different possible theoretical explanations. Experiments have 
to be designed that aim at distinguishing different theoretical explanations (for 
example message passing vs. activity changes as predicted by recurrent neural 
network  models).  

.  
  



Figure captions: 
 
Figure 1. Action observation network:  A) Lateral view of a macaque brain showing the 

locations of three region (STS, Intraparietal sulcus region- IPS, Inferior arcuate sulcus 

region- IAS) involved in action observation. B) Flattened representation of STS, IPS, and 

IAS. FEF (frontal eye fields). Visual information on observed actions is sent from STS 

through parietal cortex to area F5 along two functional routes indicated with red and blue 

arrows, respectively. Area 45B receives parietal input from LIP and also has direct 

connections with the lower bank of STS (green arrows). For further abbreviations, see text. 

(Modified from Nelissen et al. 2011).  

Figure 2. Examples of models for the visual recognition of goal-directed actions that 

illustrate different theoretical principles. (A) Model based on a motor control architecture, 

such as the MOSAIC model. Different controllers are responsible for the different actions, 

such as walking and kicking. Forward models compute the predicted sensory signals from 

the corresponding motor commands. The control model with the smallest prediction error 

in the sensory domain determines the classified actions (‘kicking’) (modified from Wolpert 

et al., 2003). (B) Example-based visual recognition model for hand actions. The model 

consists of neural detectors that mimic properties of cortical neurons. It comprises three 

modules: (a) shape recognition hierarchy that recognizes hand and object shapes; (b) 

‘affordance module’ that analyses the matching between grip type and objects shape and 

their spatial parameters; (c) recognition module that consists of neurons that are selective 

for goal-directed hand actions. View-independence is generated at the highest level of the 

hierarchy by pooling the output signals from view-specific modules (modified from 

Fleischer et al., 2013). 
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