241 research outputs found

    Adaptive physical human-robot interaction (PHRI) with a robotic nursing assistant.

    Get PDF
    Recently, more and more robots are being investigated for future applications in health-care. For instance, in nursing assistance, seamless Human-Robot Interaction (HRI) is very important for sharing workspaces and workloads between medical staff, patients, and robots. In this thesis we introduce a novel robot - the Adaptive Robot Nursing Assistant (ARNA) and its underlying components. ARNA has been designed specifically to assist nurses with day-to-day tasks such as walking patients, pick-and-place item retrieval, and routine patient health monitoring. An adaptive HRI in nursing applications creates a positive user experience, increase nurse productivity and task completion rates, as reported by experimentation with human subjects. ARNA has been designed to include interface devices such as tablets, force sensors, pressure-sensitive robot skins, LIDAR and RGBD camera. These interfaces are combined with adaptive controllers and estimators within a proposed framework that contains multiple innovations. A research study was conducted on methods of deploying an ideal HumanMachine Interface (HMI), in this case a tablet-based interface. Initial study points to the fact that a traded control level of autonomy is ideal for tele-operating ARNA by a patient. The proposed method of using the HMI devices makes the performance of a robot similar for both skilled and un-skilled workers. A neuro-adaptive controller (NAC), which contains several neural-networks to estimate and compensate for system non-linearities, was implemented on the ARNA robot. By linearizing the system, a cross-over usability condition is met through which humans find it more intuitive to learn to use the robot in any location of its workspace, A novel Base-Sensor Assisted Physical Interaction (BAPI) controller is introduced in this thesis, which utilizes a force-torque sensor at the base of the ARNA robot manipulator to detect full body collisions, and make interaction safer. Finally, a human-intent estimator (HIE) is proposed to estimate human intent while the robot and user are physically collaborating during certain tasks such as adaptive walking. A NAC with HIE module was validated on a PR2 robot through user studies. Its implementation on the ARNA robot platform can be easily accomplished as the controller is model-free and can learn robot dynamics online. A new framework, Directive Observer and Lead Assistant (DOLA), is proposed for ARNA which enables the user to interact with the robot in two modes: physically, by direct push-guiding, and remotely, through a tablet interface. In both cases, the human is being “observed” by the robot, then guided and/or advised during interaction. If the user has trouble completing the given tasks, the robot adapts their repertoire to lead users toward completing goals. The proposed framework incorporates interface devices as well as adaptive control systems in order to facilitate a higher performance interaction between the user and the robot than was previously possible. The ARNA robot was deployed and tested in a hospital environment at the School of Nursing of the University of Louisville. The user-experience tests were conducted with the help of healthcare professionals where several metrics including completion time, rate and level of user satisfaction were collected to shed light on the performance of various components of the proposed framework. The results indicate an overall positive response towards the use of such assistive robot in the healthcare environment. The analysis of these gathered data is included in this document. To summarize, this research study makes the following contributions: Conducting user experience studies with the ARNA robot in patient sitter and walker scenarios to evaluate both physical and non-physical human-machine interfaces. Evaluation and Validation of Human Intent Estimator (HIE) and Neuro-Adaptive Controller (NAC). Proposing the novel Base-Sensor Assisted Physical Interaction (BAPI) controller. Building simulation models for packaged tactile sensors and validating the models with experimental data. Description of Directive Observer and Lead Assistance (DOLA) framework for ARNA using adaptive interfaces

    Android based teleoperation for the finch robot

    Get PDF
    The act of creating a robot involves systems engineering and creative problem solutions. It is about using established components to create a system that works in the natural or at least in the human environment. The current project is no exception, we have used the Robot Operating System (ROS) to create an android based teleoperator application for the Finch robot. A Raspberry Pi processing platform establishes the link between the android device and the Finch robot. The most creative task, during the system design, was to translate the commands from the teleoperator application into wheel movements of the Finch robot. The translation must take into account the physical setup of the robot, including unintended negative influences, such as drag. The command translation involved a nonlinear coordinate transformation. The ROS framework enabled us to focus on that nonstandard coordinate translation task by offering a high level of abstraction and the ability to create component functionalities independently

    PABI: Developing a New Robotic Platform for Autism Therapy

    Get PDF
    Autism Spectrum Disorder affects many children across the world. Through the use of Applied Behavioral Analysis (ABA) therapy, improvements in behavior and social outcomes have been observed. We have developed a new, robust, and durable research platform designed to interact with children through basic ABA therapy in order to test the effectiveness of robots in autism therapy. This platform is able to log therapy sessions while interacting with the child in an innovative way through multiple degrees of freedom. The platform is also designed to be expandable by future researchers with the ability to integrate both additional actuators and sensors. Lastly, the entire structure is modular in its construction, meaning entire modules can be removed and added in the future with minimal effort

    Design of an open source-based control platform for an underwater remotely operated vehicle

    Get PDF
    This paper reports on the design of an open source-based control platform for the underwater remotely operated vehicle (ROV) Visor3. The vehicle’s original closed source-based control platform is first described. Due to the limitations of the previous infrastructure, modularity and flexibility are identified as the main guidelines for the proposed design. This new design includes hardware, firmware, software, and control architectures. Open-source hardware and software platforms are used for the development of the new system’s architecture, with support from the literature and the extensive experience acquired with the development of robotic exploration systems. This modular approach results in several frameworks that facilitate the functional expansion of the whole solution, the simplification of fault diagnosis and repair processes, and the reduction of development time, to mention a few

    Use of robotic systems on airport management optimization

    Get PDF
    Given the chip and processor size reduction given in the last decades, added to the cheaper and more computational power of them, digitalization and automation of processes has been a nowadays topic that is slowly but steadily increasing and having bigger presence, creating big extended concepts like Industry 4.0 and all the related topics like robotics or artificial intelligence. For the other side, the aerospatial sector, each time wiht a bigger presene, goes inside a big problem where the actual infrastructure is getting small and they need, from one side, optimize the system and from the other, reduce pollutant emissions to the minimum to reach the net-zero 2050 goal for 2050, when the greenhouse effect emissions are expected to be zero o that the created emissions are re-absorbed by the nature and not emitted. Given this situation, in this project it will be shown actual situation of both the aerospace sector and the robotics, and the possible applications can be done on this sector. Also, a little study will allow us to corroborate that the robotic systems have big importance to accomplis the incoming challenges on the aerospatial sector. Also, a series of prototypes, starting from a simple one without graphical interface, going through another with a graphical interface and finally to one controlled by using virtual reality glasses, will be developed and tested as a proof of concept of a robot with applications on the sector, using always technologies that allow an easie reproduccion or platform change to agilize all the future development. All of this with the objective of proving that nowadays robotics does not present a big challenge for solutions development to the aerospace sector.Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    System architecture for the ASBGo* Smart Walker

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresWeakness, mobility and balance problems are some of the obstacles that most certainly will go along with the last period of life, the old age. Also, those difficulties can strike young lives due to gait abnormalities resulted from degenerative diseases or even accidents. To patients with high motor deficit, traditional methods, such as wheelchairs, are usually prescribed, but the use of an assistive device that do not promotes the patient’s recovery will eventually lead him to a restrict daily life as well as a notable loss of motor skills. With previous questions in mind, the Adaptive System Behavior Group (ASBG) decided to develop a motorized smart walker capable of adapting to the needs of its users. The Adaptive System Behavior Group Project (ASBGo) counts already with four versions that have proved its worth in clinical environment and was renowned, for two consecutive times, as one of the best technological and innovating Portuguese research projects in the rehabilitation field. However, the electromechanical and software solutions of each prototype commonly impair the global development of the project, making each version obsolete, outdated or unusable. Now, it is time to go further and render these proof-of-concept devices in a mature version, excluding previous academic solutions and engineering a robust and trustworthy device that will establish this new rehabilitation concept. This master thesis, addressed to rehabilitation robotics, describes the design and implementation of a system architecture for the Adaptive System Behavior Group Project Star (ASBGo*) . The implementation of a unified modular system architecture embraces the development of software components, electronic hardware and electromechanical modifications required to its implementation. This new prototype is an upgrade of the all ASBGo previous versions, in which the sturdy and user-friendly solutions implemented provide robust tools for future development and usability. Firstly, the contextualization in the project was performed, including a brief study of robotic software platforms, the familiarity with the several ASBGo prototypes and the research of the best solutions to design a system architecture. Secondly, following a Top-Down strategy, the work plan was established bearing in mind the considerations to design and implement a global system architecture: definition of the main functionalities and behaviours of the prototype and, simultaneously, the strategies to be followed in the hardware, electromechanical and software development. Hereinafter, the development stage was conducted following an Hardware-Software co-design methodology. That strategy ensured that the design and implementation of electronic and electric circuits were in agreement with all system requirements guaranteeing trade-offs, robustness and safety. During all the development process, validations of the system were constantly performed and, in the end, intensive experimentations of the final device were executed in the laboratory with the intervention of colleagues of the ASBG group.Debilidade e dificuldades de mobilidade e equilíbrio são alguns dos problemas que muito certamente irão acompanhar o período final da vida, a velhice. Para além disso, esses problemas podem atingir jovens vidas devido a anomalias na marcha resultantes de doenças degenerativas ou até mesmo acidentes. Aos pacientes que apresentam um alto défice motor, métodos tradicionais, como cadeiras de rodas, são normalmente receitados. No entanto, o uso de dispositivos de assistência que não promovem a recuperação do paciente irão eventualmente levá-lo a uma vida restrita assim como a uma notável perda de capacidades motoras. Com tal ideias em mente, o Adaptive System Behavior Group (ASBG) decidiu desenvolver um andarilho inteligente motorizado capaz de se adaptar as necessidades dos seus utilizadores. O Adaptive System Behavior Group Project (ASBGo) já conta com quatro versões que provaram o seu valor em ambiente clínico e já foi reconhecido, por duas vezes consecutivas, como um dos projetos de investigação mais tecnológico e inovador na área de reabilitação. Contudo, as soluções eletromecânicas e de software de cada protótipo comprometem o desenvolvimento contínuo do projeto, tornando cada versão obsoleta, desatualizada e inutilizável. Agora, está na hora de ir mais longe e tornar estes dispositivos de prova de conceito numa versão mais madura, excluindo as soluções académicas anteriormente implementadas e concebendo um dispositivo robusto e fiável que irá afirmar este novo conceito de reabilitação. A presente dissertação de mestrado, no âmbito da robótica de reabilitação, descreve o design e implementação de uma arquitetura de sistema para o Adaptive System Behavior Group Project Star (ASBGo*). A implementação de uma arquitetura de sistema unificada e modular envolve o desenvolvimento de componentes de software, hardware eletrónico e modificações eletromecânicas necessárias à sua implementação. Este novo protótipo consiste numa melhoria avançada de todas as versões anteriores do ASBGo no qual as soluções vigorosas e acessíveis implementadas providenciam meios para desenvolvimento futuro e usabilidade. Inicialmente, foi realizada a contextualização no projeto que incluiu uma breve pesquisa de plataformas de software robótico, a familiarização com os diferentes protótipos ASBGo e o estudo das melhores soluções para a conceção da arquitetura do sistema. Seguindo uma estratégia Top-Down, o plano de trabalhos foi estabelecido tendo em conta considerações para o design e implementação de uma arquitetura de sistema unificada: definição das principais funcionalidades e comportamentos do protótipo e, concomitantemente, as estratégias a ser seguidas no desenvolvimento eletromecânico, de hardware e de software. Doravante, a fase de desenvolvimento foi acompanhada por uma metodologia de Hardware-Software co-design. Esta estratégia assegurou a concordância entre o design e a implementação de circuitos eletrónicos e elétricos e todos os requisitos do sistema garantindo desta forma, trade-offs, robustez e segurança. Durante todo o processo de desenvolvimento, validações do sistema foram constantemente realizadas, sendo que no final testes intensivos ao produto final foram executados em laboratório com a intervenção dos colegas do grupo ASBG

    Human-robot interaction for telemanipulation by small unmanned aerial systems

    Get PDF
    This dissertation investigated the human-robot interaction (HRI) for the Mission Specialist role in a telemanipulating unmanned aerial system (UAS). The emergence of commercial unmanned aerial vehicle (UAV) platforms transformed the civil and environmental engineering industries through applications such as surveying, remote infrastructure inspection, and construction monitoring, which normally use UAVs for visual inspection only. Recent developments, however, suggest that performing physical interactions in dynamic environments will be important tasks for future UAS, particularly in applications such as environmental sampling and infrastructure testing. In all domains, the availability of a Mission Specialist to monitor the interaction and intervene when necessary is essential for successful deployments. Additionally, manual operation is the default mode for safety reasons; therefore, understanding Mission Specialist HRI is important for all small telemanipulating UAS in civil engineering, regardless of system autonomy and application. A 5 subject exploratory study and a 36 subject experimental study were conducted to evaluate variations of a dedicated, mobile Mission Specialist interface for aerial telemanipulation from a small UAV. The Shared Roles Model was used to model the UAS human-robot team, and the Mission Specialist and Pilot roles were informed by the current state of practice for manipulating UAVs. Three interface camera view designs were tested using a within-subjects design, which included an egocentric view (perspective from the manipulator), exocentric view (perspective from the UAV), and mixed egocentric-exocentric view. The experimental trials required Mission Specialist participants to complete a series of tasks with physical, visual, and verbal requirements. Results from these studies found that subjects who preferred the exocentric condition performed tasks 50% faster when using their preferred interface; however, interface preferences did not affect performance for participants who preferred the mixed condition. This result led to a second finding that participants who preferred the exocentric condition were distracted by the egocentric view during the mixed condition, likely caused by cognitive tunneling, and the data suggest tradeoffs between performance improvements and attentional costs when adding information in the form of multiple views to the Mission Specialist interface. Additionally, based on this empirical evaluation of multiple camera views, the exocentric view was recommended for use in a dedicated Mission Specialist telemanipulation interface. Contributions of this thesis include: i) conducting the first focused HRI study of aerial telemanipulation, ii) development of an evaluative model for telemanipulation performance, iii) creation of new recommendations for aerial telemanipulation interfacing, and iv) contribution of code, hardware designs, and system architectures to the open-source UAV community. The evaluative model provides a detailed framework, a complement to the abstraction of the Shared Roles Model, that can be used to measure the effects of changes in the system, environment, operators, and interfacing factors on performance. The practical contributions of this work will expedite the use of manipulating UAV technologies by scientists, researchers, and stakeholders, particularly those in civil engineering, who will directly benefit from improved manipulating UAV performance

    Visuo-haptic Command Interface for Control-Architecture Adaptable Teleoperation

    Get PDF
    Robotic teleoperation is the commanding of a remote robot. Depending on the operator's involvement required by a teleoperation task, the remote site is more or less autonomous. On the operator site, input and display devices record and present control-related information from and to the operator respectively. Kinaesthetic devices stimulate haptic senses, thus conveying information through the sensing of displacement, velocity and acceleration within muscles, tendons and joints. These devices have shown to excel in tasks with low autonomy while touch-screen based devices are beneficial in highly autonomous tasks. However, neither perform reliably over a broad range. This thesis examines the feasibility of the 'Motion Console Application for Novel Virtual, Augmented and Avatar Systems' (Motion CANVAAS) that unifies the input/display capabilities of kinaesthetic and visual touchscreen-based devices in order to bridge this gap. This work describes the design of the Motion CANVAAS, its construction, development and conducts an initial validation process. The Motion CANVAAS was evaluated via two pilot studies, each based on a different virtual environment: a modified Tetris application and a racing karts simulator. The target research variables were the coupling of input/display capabilities and the effect of the application-specific kinaesthetic feedback. Both studies proved the concept to be a viable solution as haptic input/output device and indicated potential advantages over current solutions. On the flip side, some of the system's limitations could be identified. With the insight gained from this work, the benefits as well as the limitations will be addressed in the future research. Additionally, a full user study will be conducted to shed light on the capabilities and performance of the device in teleoperation over a broad range of autonomy
    corecore