
Android based teleoperation for the finch robot

FAUST, Oliver

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/14171/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

FAUST, Oliver (2016). Android based teleoperation for the finch robot. ICTACT
Journal on Communication Technology, 7 (3), 1334-1340.

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/77594954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

ISSN: 2229-6948(ONLINE)
DOI: 10.21917/ijct.2016.0196

 ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2016, VOLUME: 07, ISSUE: 03

TUTORIAL ARTICLE

ANDROID BASED TELEOPERATION FOR THE FINCH ROBOT

Oliver Faust
Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom

E-mail: oliver.faust@gmail.com

Abstract

The act of creating a robot involves systems engineering and creative
problem solutions. It is about using established components to create
a system that works in the natural or at least in the human
environment. The current project is no exception, we have used the
Robot Operating System (ROS) to create an android based
teleoperator application for the Finch robot. A Raspberry Pi
processing platform establishes the link between the android device
and the Finch robot. The most creative task, during the system design,
was to translate the commands from the teleoperator application into
wheel movements of the Finch robot. The translation must take into
account the physical setup of the robot, including unintended negative
influences, such as drag. The command translation involved a
nonlinear coordinate transformation. The ROS framework enabled us
to focus on that nonstandard coordinate translation task by offering a
high level of abstraction and the ability to create component
functionalities independently.

Keywords:
Robotics, Teleoperation, Robot Operating System, Coordinate
Transform, Raspberry Pi

1. INTRODUCTION

Engineering is about building physical problem solutions [1,
2]. We have to use the tools and components which are currently
available. The goal must be to limit the creation of both
nonstandard functionality and nonstandard design processes.
Nonstandard functionality is error prone and it gets outdated
very fast. Furthermore, the documentation is local and
oftentimes substandard. Non-standard design processes are error
prone and most of them are not traceable in case something goes
wrong with the design. Therefore, we have to rely on well
thought out design methods, such as systems engineering [3] and
establish the functionality with frameworks, such as Robot
Operating System (ROS) [4] and the Application Programming
Interface (API) of the Finch robot [5, 6].

Using the systems engineering design methodology [7, 8], in
conjunction with ROS [4] and robot specific APIs, minimizes of
the amount of creative energy needed to establish a physical
problem solution. As a consequence, it is possible to focus the
creative energy on designing interface solutions which rearrange
and convert data. These interfaces have to be designed in a
structured way. The design process starts with need definition,
followed by requirements capturing and specification
refinement. The implementation step translates the specification
into a physical problem solution. The task of a designer is to
come up with meaningful activities within each of these steps.

Building robots for education and research embodies the
romantic idea of creation. It is incredibly satisfying to see that
the will of the creator could animate otherwise lifeless material.

In that paper, we describe the design steps which helped us to
realize an android based teleoperation for the Finch robot. We
applied systems engineering principles and design reuse through
public and vendor specific frameworks. These design decisions
allowed us to focus our creative energy on the design and
implementation of a nonstandard functionality which interfaces
ROS and Finch frameworks by translating messages. The
nonstandard functionality took the form of a ROS node which
communicates over rostopics and rosservices.

The material in the paper is arranged as follows. The
materials section describes the system setup with both block and
layer-diagrams. Subsequently, we focus on framing the problem
for which we have to create a physical solution. From the
problem analysis we distil the requirements. For that paper, the
requirements take the form of a mathematical model. The
discussion section provides some background on decisions
which shaped the design process. The paper closes with
conclusions and further work.

2. MATERIALS

As it is so often the case in the creative act of designing
physical problem solutions, the creation of the android based
teleoperation for the Finch robot started with a realization. To be
specific, we realized that a Raspberry Pi [9, 10] can be used to
power and control the Finch robot via the Universal Serial Bus
(USB) interface. Furthermore, the Raspberry Pi can
communicate via the internet through the WiFi interface. Hence,
it immediately made sense to use the Raspberry Pi as a
command and control gateway. That gateway links the user
device to the Finch robot. We have chosen ROS, because it is
the most widely used middleware for robots [11]. Subsequently,
we have selected android based devices to establish the User
Interface (UI). The reason for selecting that device class comes
from the fact that only android mobile systems support the ROS
middle-ware [12]. The Fig.1 shows the block diagram for the
system, which facilitates the android based teleoperation
functionality. The Raspberry Pi plays a central role in that setup,
because it links the USB based Finch robot to the wireless
android device. The icon on the left depicts an android device
and the icon on the right depicts the Finch robot.

Fig.1. Block diagram for the Android based teleoperation system
to control the Finch robot

A block diagram gives a broad overview of the system setup.

1335

TUTORIAL ARTICLE: ANDROID BASED TELEOPERATION FOR THE FINCH ROBOT by OLIVER FAUST

However, block diagrams are insufficient to establish the
functionality, because the diagram hides too much complexity.
The network layer diagram, shown in Fig.2, reveals the underlying
functionality in terms of communicating components. All the
components communicate in parallel, hence we had to establish a
heterogeneous network, i.e. a processing and communication
environment that stretches over multiple processing environments.
For that particular project, the underlying processing environment
was abstracted through the android system, the raspian Operating
System (OS) and the Finch framework. On the positive side, most
of that functionality is established through the ROS and the Finch
framework [5]. As a consequence, the task for establishing the
android based teleoperation functionality for the Finch robot
comes down to interfacing the ROS with the Finch framework, in
the Raspberry Pi.

Fig.2. Layer model of the android based teleoperation system for
the Finch robot

The ROS defines a node as a sequential entity that can make
progress independently from other nodes. The nodes
communicate via non-blocking rostopics or via blocking
rosservices. Rostopics work on a many to many principle,
whereas rosservices work on a one on one bases. Rostopics were
used to exchange information between the android device and
the Raspberry Pi. We have used rosservices to exchange
information with the Finch framework within the Rasp-berry Pi.
The following sections describe the mathematical foundation of
the interface software which translates rostopic into rosservice
messages.

2.1 TRANSLATING ROSTOPIC INTO ROSSERVICE
MESSAGES

Before we can embark on establishing the transformation
algorithms, we have to discuss the input and output data. The
input data comes from the teleoperator app, executed by the
ROS android framework in a mobile phone. The app provides a
virtual joystick where the user can select a point within a unit
circle. More specifically, the user touches the mobile device
screen within a round area and these touch coordinates are
translated into Cartesian coordinates within a unit circle.
Whenever a user touches the screen region, symbolizing the unit
circle, the app publishes rostopic messages. These messages are
published periodically, i.e. there is a continuous message stream
whenever a user touches the circular screen area. The messages
have the format geometry msgs/Twist.msg [15]. Listing.1 shows
an example message, as captured with the roscommand rostopic.
Listing.1. Message from the teleoperation app, captured in the

Raspberry Pi. The first message communicates the point
2 2

,
2 2

 and the second message communicates (1,0).

i@boli~/roscatkin_ws$...
...rostopic echo/virtual_joystick/cmd_vel
linear:
x : 0.707106781185
y : 0.0
z : 0.0
angular :
x : 0.0
y : 0.0
z : 0.707106781185

linear:
x : 1
y : 0.0
z : 0.0
angular:
x : 0.0
y : 0.0
z : 0.0

The Finch is a two wheel plus support robot. The two front
wheels can move independently forward and backward. The
stand is at the back of the robot where it provides mechanical
support. To move the robot, we need to communicate an integer
value between -255 and +255 for each wheel via a rosservice. A
value of 255 means maximum speed forward conversely a value
of -255 means maximum speed backwards. The values between
the positive and negative maximum are linearly related to the
wheel speed. A value of 0 means the Finch wheel stops.

With that background, we embark upon the description of an
algorithm which translates the geometry messages from the
teleoperator app to wheel speed commands for the Finch robot.
The diagram, shown in Fig.3, visualizes the relationship between
the Cartesian coordinates, published by the teleoperator app, and
the integer based wheel movement of the Finch robot. The
diagram shows a unit circle centred at the origin of a two
dimensional plane. There are eight points on that unit circle. The
Cartesian coordinates are given in terms of (x,y). The second
number pair, depicted as (magnitude phase∠), is the polar

coordinate representation of that point. The numbers, that come
from within the unit circle, describe the angle of the points in
terms of [0, 2], where 0 is the same as 0 rad. The tuple, in the
square brackets, represents the intensity of the Finch wheel
speed in terms of [-1, 1]. The first number of the tuple describes
the left wheel speed and the second number describes the right
wheel speed.

The diagram, shown in Fig.3, relates the different
representations of eight strategically chosen points on the unit
circle. However, to design effective algorithms, such a graphical
representation is too cluttered. A table brings out the rhythm of
the point representation much better. Each row in Table.1 relates
Cartesian coordinates, polar coordinates, normalized Angle and
Finch wheel speed. The design pattern emerges from the last
three columns. The normalized angle is conveniently mapped to
the Finch wheel speed.

Android
Application

ROS

TCP IP

Wireless Wireless

HID

Finch
Framework

TCP IP

ROS

HID

Finch
Framework

Android Device Raspberry PI Finch Robot

1336

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2016, VOLUME: 07, ISSUE: 03

Fig.3. Transformation of rostopic messages from the android
teleoperator app to Finch wheel speed commands. The diagram
shows eight example points on the unit circle. Each point is
labeled in terms of Cartesian (x, y) coordinates,
(magnitudes∠phase), Angle and [Left Speed, Right Speed] for
the Finch wheels.

Table.1. Coordinate transformation

Cartesian
coordinates

Polar
coordinates

Angle
[0,2[

Speed

left right

(1,0) ()1 0∠ 0 0.5 -0.5

2 2
,

2 2

 1
4

π ∠ 0.25 1 0

(0,1) 1
2

π ∠ 0.5 0.5 0.5

2 2
,

2 2

 −
3

1
4

π ∠ 0.75 0 1

(-1,0) ()1 π∠ 1 -0.5 0.5

2 2
,

2 2

 − −
5

1
4

π ∠ 1.25 -1 0

(0,-1)
3

1
2

π ∠ 1.5 -0.5 -0.5

2 2
,

2 2

 −
7

1
4

π ∠ 1.75 0 -1

Both, the diagram shown in Fig.3 and the information shown
in Table.1, provide only a limited number of points. However,
these points were chosen such that they represent important
corner cases. Having established these corner cases allows us to

interpolate the missing points for the wheel speed and thereby
establish a functional relationship between the normalized Angle
and the Finch wheel speed. The two graphs, shown in Fig.4,
depict that functional relationship. To be specific, the graph for
the left wheel is a triangular wave which oscillates between -1
and 1. The wave has a phase shift of 0.25 and a period length of
2. The triangular wave, which describes the right wheel speed,
has the same period length and the same amplitude, but a phase
shift of -0.25.

Fig.4. Transfer diagram from Angle to Left and Right speed.

Based on the transfer diagram, shown in Fig.4, we embark on
the mathematical formulation of the transformation algorithm
which converts Cartesian coordinates to Finch wheel speed. The
first step in that mathematical model is to extract the angle from
the Cartesian coordinates x and y. The Eq.(1) defines a function
which yields the angle [-π..π] from xy coordinates.

arctan 0,

arctan 0 0,

arctan 0 0,atan2(,)

 0 0,
2

 0 0,
2

 0 0,

y
if x

x

y
if x and y

x

y
if x and yx y x

if x and y

if x and y

undefined if x and y

π
π

π
π

 > + < ≥ − < < = + =>− =< = =

(1)

The resulting angle, in the range of [-π,π], is a bit awkward to
deal with from an implementation viewpoint. To simplify the
conceptional treatment of the translation process, we introduced
the Angle [0,2] parameter. The Eq.(2) maps the atan2(y, x)
results onto Angle.

atan2(,) / atan2(,)

2 - atan2(,) / atan2(,)

x y if x y
Angle

x y if x y

π π
π π

≤= > (2)

The graph, shown in Fig.4, describes how the Angle value is
translated into a Speed value. The Eq.(3) models that translation
for the Left wheel speed.

1337

TUTORIAL ARTICLE: ANDROID BASED TELEOPERATION FOR THE FINCH ROBOT by OLIVER FAUST

()

2 0.25

 = 2 1.5 0.25 1.25

2 -3.5 1.25

Left speed Speed Angle

Angle If Angle

Angle If Angle

Angle If Angle

=
× ≤ × + < ≤ × >

 (3)

Having a functional relationship between Angle and Left
speed allows us to formulate the Right speed as a shift of the
Left speed signal. The Eq.(4) shows that relationship.

 (- 0.5)Right speed Speed Angle= (4)

where, -0.5 is the phase shift value, which delays the wave and
thereby shifting it towards positive infinity.

The Eq.(3) and Eq.(4) relate the Angle to both Left and Right
wheel speed, as specified in Fig.3 and Table.1. However, these
relationships hold only for points on the unit circle, i.e. for
points where the distance to the origin is 1. In terms of robot
speed that is the maximum condition. That maximum condition
must be scaled down based on the actual distance of the point to
the origin of the Cartesian coordinate system. The Eq.(5) defines
r as the distance of the point (x,y) to the origin.

2 2r x y= − (5)

In our model, the Left and Right speed is scaled by r. In a
final step, the scaled left and right speed is mapped onto the
Finch wheel speed range.

Fig.5. Transfer diagram from r×Speed to Wheel speed [-255,
254,..., 255].

The transfer function, shown in Fig.5, depicts the
relationship between Finch wheel speed and r × speed. The
values on the x-axis are continuous while the values on the y-
axis are discrete steps. The transfer characteristic shows a
discontinuity around the origin. That discontinuity was
introduced because the Finch robot has only two wheels and one
fixed plastic support at the back. The support has considerable
drag and the driving motors need to generate sufficient torque to
overcome that. Through experiments, we found that the value,
when the Finch robot starts moving, is r = 0.2. Hence, whenever
r × speed is greater ±0.01, then the wheel speed value jumps to ±0.2 × 255. That ensures a sensitive response of the robot to
even very fine manipulations on the virtual joystick control.

255 (1-0.2) 0.2 0.01

0 0.01

Wheel speed

r Speed If r Speed

If r Speed

=
 × × × + × ≥ × <

(6)

where, .. indicate the floor function and 255 is the maximum
value of the Finch wheel speed.

The Eq.(6) concludes the mathematical formulation of an
algorithm model which translates massages from the android
teleoperator app to Finch wheel speed. Translating the
mathematical model to a software implementation is straight
forward. Therefore, we have limited our explanations to the
mathematical model rather than the implementation. Next, we
discuss background information to shed some light on particular
design decisions.

3. DISCUSSION

Robot design is to a large extend systems engineering with
the goal of establishing a desired functionality with minimum
development effort [13]. Therefore, frameworks are so
important. To realize the android based teleoperation
functionality for the Finch robot, we had to deal with two
frameworks. The Finch robot comes with a C based API for the
Raspberry Pi processing platform. That API was incorporated
into the ROS framework. Accessing the Finch framework from
ROS was facilitated through blocking rosservices. The user
interface was established by making minor modifications to the
ROSJAVA [14] example app called TeleOp. The app
communicates via non-blocking rosservices. That approach
allowed us to focus on the translation of the control messages
from the android app to commands for the Finch robot.

As such, the requirements for the message translation were
described in mathematical language. The purpose of the
requirements capturing was not to achieve or establish
mathematical rigor, it was to communicate the idea of how to
translate the control messages to wheel movement. The
mathematical equations, that were used to describe that
process, were crafted with the source code specification in
mind. In other words, the equations presented in the Materials
section can be translated easily into implementation source
code. For example, Eq.(1), Eq.(2), Eq.(3) and Eq.(6) contain
cases which can be implemented with if ... then ... else
statements. Furthermore, the definition of atan2(x,y),
established with Eq.(1), is the same as the functionality
specified in the math.h library for C and C++ [15].

Teleoperated systems have been used in a diverse range of
applications, from biomedical, surveillance to manufacturing
and service industries. Yepes et al. introduced an Android OS
based application to control an industrial robot. To evaluate their
system, a survey was done with engineering related users [16].

Bouterra et al. focused on the development of distributed
architecture control for industrial robots. The developed design
is a real time multi-tasking control law system. The control
architecture was distributed in five microcontrollers with a
master slave scheme. The master unit is dedicated for network
management and communication with the user-interface. Each
slave board focuses on the position control of the corresponding
joint. The control was done through an USB communication
assured with compatible drivers on the three most popular
platforms (windows, Linux and Mac OS) [17].

Mauledoux et al. describe the use of software-in-the-loop and
ROS as tools for controller implementation and simulation of
discrete-time plants [18].

San-Millan presents a climbing robot with wheeled
locomotion which uses permanent magnets as adhesion

1338

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2016, VOLUME: 07, ISSUE: 03

mechanism. The robot is intended for the inspection of various
types of ferromagnetic structures, such as ship hulls, wind
turbine towers, bridges, and fuel tanks, in order to detect surface
faults or cracks caused by, for example aging or atmospheric
corrosion [19].

Teixeira et al. proposed the use of a wearable device for
visualization and control in association with an Unmanned
Aerial Vehicle (UAV) applied to the structural inspection of
buildings [20].

In many assistive robotic systems, the interface to the user is
simply a tablet computer or a monitor attached to a single robot.
Benavidez et al. designed a software interface to connect users to
an assistive robot system for the disabled and elderly. The
system is comprised of heterogeneous low-cost assistive robots,
a home management portal and a cloud computing backend [21].

4. CONCLUSION

This paper describes the creation of a nonstandard
functionality to interface the ROS framework with the Finch
API. To design that nonstandard functionality, we adopted the
systems engineering methodology. In order to establish the
desired functionality we had to translate ROS control commands
to Finch wheel speed. The requirements were captured in the
form of a mathematical model. The subsequent specification
refinement, through source code and implementation as a
Raspberry Pi program, was not explicitly described, because
these steps are standard and as such the description would take
up too much space in the paper.

Despite the fact that the material section just focuses on the
mathematical model, used for requirements capturing, we were
able to establish important points, which hold true for robot
design in general. First and foremost, robot design is an exercise
in systems engineering with the clear goal to establish a desired
functionality with as little effort and as formal as possible. The
mathematical requirements model turned out to be beautiful in
its simplicity. Beauty made the content accessible and
understandable. Having such a dependable and understandable
formulation of the functionality made the implementation
straight forward. The second major point is about focus and how
to distribute the creative energy. While designing the system, we
experienced that a clear methodology helped us to focus on the
unique problem. The design success supports our belief that the
focus, established through the design methodology, has helped
us to overcome the difficulties. We were able to create a
physical robot which functioned according to specification.

In future we will see higher and higher levels of integration.
To reach these levels of integration there is an epic struggle
going on in the background between closed and open source.
The creation of the android based teleoperation functionality for
the Finch robot involved both open and closed source
components. Such an approach requires well documented APIs
on both sides. We predict, that the coexistence between open-
and closed-source will continue. That statement holds true
especially for the field of robotics, where companies will
continue to manufacture hardware with closed source software.
The hardware acts as software verification, i.e. it is impossible to
use the software without the hardware and vice versa. However,
from the systems engineering perspective, such a scenario is not

a problem, because there are only two questions for the selection
of a component: Is the component affordable? Does the
component meet the requirements? A particular component is
selected based on the answer to these questions. As a
consequence, framing robot design in terms of systems
engineering is more important than to look for open- or closed-
source.

Acronyms
API Application Programming Interface
OS Operating System
ROS Robot Operating System
UAV Unmanned Aerial Vehicle
UI User Interface
USB Universal Serial Bus

REFERENCES

[1] Oliver Faust, Ravindra Shetty, S. Vinitha Sree, Sripathi
Acharya, U. Rajendra Acharya, E.Y.K. Ng, Chua Kok Poo
and Jasjit Suri, “Towards the Systematic Development of
Medical Networking Technology”, Journal of Medical
Systems, Vol. 35, No. 6, pp. 1431-1445, 2011.

[2] Zhe Song, Zhongkai Ji, Jian Guo Ma, Bernhard Sputh, U.
Rajendra Acharya and Oliver Faust, “A Systematic
Approach to Embedded Biomedical Decision Making”,
Computer Methods and Programs in Biomedicine, Vol.
108, No. 2, pp. 656-664, 2012.

[3] Erik Hollnagel and David D. Woods, “Joint Cognitive
Systems: Foundations of Cognitive Systems Engineering”,
CRC Press, 2005.

[4] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully. Foote, Jeremy Leibs, Eric Berger, Rob Wheeler and
Andrew. Ng, “ROS: an Open-Source Robot Operating
System”, Proceedings of ICRA Workshop on Open Source
Software, Vol. 3, pp. 1-6, 2009.

[5] Tom Lauwers and Illah Nourbakhsh, “Designing the Finch:
Creating A Robot Aligned to Computer Science Concepts”,
Proceedings of Symposium on Educational Advances in
Artificial Intelligence, pp. 1902-1907, 2010.

[6] Taha Ben Brahim, Daniela Marghitu and John Weaver, “A
Survey on Robotic Educational Platforms for K-12”,
Proceedings of World Conference on E-Learning in
Corporate, Government, Healthcare, and Higher
Education, Vol. 2012, pp. 41-48, 2012.

[7] U.R. Acharya, O. Faust, D.N. Ghista, S.V. Sree, A.P.C.
Alvin, S. Chattopadhyay, T.C. Lim, E.Y.K. Ng and W. Yu,
“A Systems Approach to Cardiac Health Diagnosis”,
Journal of Medical Imaging and Health Informatics, Vol. 3,
No. 2, pp. 261-267, 2013.

[8] Oliver Faust, U. Rajendra Acharya and Toshiyo Tamura,
“Formal Design Methods for Reliable Computer-Aided
Diagnosis: A Review”, IEEE Reviews in Biomedical
Engineering, Vol. 5, pp. 15-28, 2012.

[9] Warren Gay, “Mastering the Raspberry Pi”, 1st Edition,
Apress, 2014.

[10] Eben Upton and Gareth Halfacree, “Raspberry Pi User
Guide”, 1st Edition, John Wiley and Sons, 2014.

1339

TUTORIAL ARTICLE: ANDROID BASED TELEOPERATION FOR THE FINCH ROBOT by OLIVER FAUST

[11] John Kerr and Kevin Nickels, “Robot Operating Systems:
Bridging the Gap between Human and Robot”, Proceedings
of 44th Symposium on Southeastern in: System Theory, pp.
99-104, 2012.

[12] Rafael V. Aroca, Antonio Pericles B.S. de Oliveira and Luiz
Marcos G. Goncalves, “Towards Smarter Robots with
Smartphones”, Proceedings of 5th Workshop in Applied
Robotics and Automation, Robocontrol, pp. 1-6, 2012.

[13] Andrew Speers, Parisa Mojiri Forooshani, Michael Dicke
and Michael Jenkin, “Lightweight Tablet Devices for

Command and Control of ROS-Enabled Robots”,
Proceedings of 16th International Conference on in
Advanced Robotics, pp. 1-6, 2013.

[14] D. Kohler and K. Conley, “Rosjava-An Implementation of
ROS in Pure Java with Android Support”, Available at:
https://github.com/rosjava/rosjava_core, Accessed on 2011.

[15] Definition, Available at:
http://docs.ros.org/api/geometry_msgs/html/msg/Twist.htm
l, Accessed on 2015.

1340

	1. INTRODUCTION
	2. MATERIALS
	2.1 TRANSLATING ROSTOPIC INTO ROSSERVICE MESSAGES

	3. DISCUSSION
	4. CONCLUSION
	Acronyms
	REFERENCES
	[15] Definition, Available at: http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html, Accessed on 2015.

