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ABSTRACT

ADAPTIVE PHYSICAL HUMAN-ROBOT INTERACTION (PHRI) WITH A

ROBOTIC NURSING ASSISTANT

Sumit Kumar Das

July 19, 2019

Recently, more and more robots are being investigated for future applications in

health-care. For instance, in nursing assistance, seamless Human-Robot Interaction (HRI)

is very important for sharing workspaces and workloads between medical staff, patients, and

robots. In this thesis we introduce a novel robot - the Adaptive Robot Nursing Assistant

(ARNA) and its underlying components. ARNA has been designed specifically to assist

nurses with day-to-day tasks such as walking patients, pick-and-place item retrieval, and

routine patient health monitoring.

An adaptive HRI in nursing applications creates a positive user experience, increase

nurse productivity and task completion rates, as reported by experimentation with human

subjects. ARNA has been designed to include interface devices such as tablets, force sensors,

pressure-sensitive robot skins, LIDAR and RGBD camera. These interfaces are combined

with adaptive controllers and estimators within a proposed framework that contains multiple

innovations. A research study was conducted on methods of deploying an ideal Human-

Machine Interface (HMI), in this case a tablet-based interface. Initial study points to the

fact that a traded control level of autonomy is ideal for tele-operating ARNA by a patient.

The proposed method of using the HMI devices makes the performance of a robot similar

for both skilled and un-skilled workers.
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A neuro-adaptive controller (NAC), which contains several neural-networks to es-

timate and compensate for system non-linearities, was implemented on the ARNA robot.

By linearizing the system, a cross-over usability condition is met through which humans

find it more intuitive to learn to use the robot in any location of its workspace, A novel

Base-Sensor Assisted Physical Interaction (BAPI) controller is introduced in this thesis,

which utilizes a force-torque sensor at the base of the ARNA robot manipulator to detect

full body collisions, and make interaction safer. Finally, a human-intent estimator (HIE)

is proposed to estimate human intent while the robot and user are physically collaborating

during certain tasks such as adaptive walking. A NAC with HIE module was validated on

a PR2 robot through user studies. Its implementation on the ARNA robot platform can be

easily accomplished as the controller is model-free and can learn robot dynamics online.

A new framework, Directive Observer and Lead Assistant (DOLA), is proposed for

ARNA which enables the user to interact with the robot in two modes: physically, by

direct push-guiding, and remotely, through a tablet interface. In both cases, the human

is being “observed” by the robot, then guided and/or advised during interaction. If the

user has trouble completing the given tasks, the robot adapts their repertoire to lead users

toward completing goals. The proposed framework incorporates interface devices as well

as adaptive control systems in order to facilitate a higher performance interaction between

the user and the robot than was previously possible.

The ARNA robot was deployed and tested in a hospital environment at the School

of Nursing of the University of Louisville. The user-experience tests were conducted with

the help of healthcare professionals where several metrics including completion time, rate

and level of user satisfaction were collected to shed light on the performance of various

components of the proposed framework. The results indicate an overall positive response

towards the use of such assistive robot in the healthcare environment. The analysis of these

gathered data is included in this document.

To summarize, this research study makes the following contributions:

• Conducting user experience studies with the ARNA robot in patient sitter and walker
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scenarios to evaluate both physical and non-physical human-machine interfaces.

• Evaluation and Validation of Human Intent Estimator (HIE) and Neuro-Adaptive

Controller (NAC).

• Proposing the novel Base-Sensor Assisted Physical Interaction (BAPI) controller.

• Building simulation models for packaged tactile sensors and validating the models

with experimental data.

• Description of Directive Observer and Lead Assistance (DOLA) framework for ARNA

using adaptive interfaces.
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CHAPTER 1

INTRODUCTION

With an increase in the inclusion of robots in a workspace shared by human users,

the issue of human-robot interaction and user safety needs to be looked into closely. Safe

physical Human-Robot Interaction (pHRI) is imperative especially in the case of interaction

with industrial robots. For safe interaction, the safety standards of ISO 10218-1 and ISO

10218-2 has to be followed, as outlined by Robotic Industries Association [9] [10]. As

discussed by Bicchi et. al., the safety concerns of pHRI should go hand in hand with the

performance of the robot as well [11]. These objectives are achieved through implementation

of sensor arrays, adaptive control system, intuitive interfaces etc. The work presented in

this document explores ways to make pHRI with a nursing assistant robot safe, usable and

efficient.

Medical robotics has been around since 1990s and has been helping health-care pro-

fessionals perform their tasks with ease [12]. Some examples of such tasks are minimally

invasive surgery (MIS) [13] and computer-integrated surgery (CIS) [14]. In an article by

Okamura et. al, the application areas for health-care robots are identified as “surgical and

interventional, robotic replacement of lost function, robot-assisted rehabilitation, behavioral

therapy, personalized care and health promotion” [15]. In my research a novel nursing assis-

tant robot, Adaptive Robot Nursing Assistant or ARNA, is introduced which concentrates

on robotic replacement of lost function, robot-assisted rehabilitation and personalized care.

To facilitate pHRI with an assistive robot such as ARNA, an intuitive and adaptive

interface is required. The interface can be in the form of sensors to provide input to the

robot-system. This information is useful in interpreting the user commands or intentions

on which the robot should act upon. Some examples of these sensors are tactile, ultrasonic,
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infrared, cameras and force-torque (FT) sensors. Along with sensors, computing devices

such as a hand-held tablet can also serve as an intuitive interface device for a user. All

these devices, when combined, form the sensory part of the overall framework governing

the robot.

A Neuro-Adaptive Controller (NAC) is also investigated as part of this research

work. This neural-net based controller estimates and linearizes the non-linear dynamics

of the robot. Learning occurs on-line and no previous training is required for the neural-

network. This controller was introduced by Lewis et. al [16] [17]. Along with the NAC, a

Human Intent Estimator (HIE) module was introduced to estimate the user intent during

pHRI. Further refinement of the NAC includes the formulation and investigation of a Base-

Sensor Assisted Physical Interaction (BAPI) controller [6]. The BAPI controller has a FT

sensor attached to the base of a manipulator which allows full-body sensing without the

use of tactile sensors spread throughout the robot. These controllers are integrated into the

framework design for ARNA.

Kapoor et. al. have discussed the various application framework in the context

of health-care robots [18]. Broadly these frameworks can be divided into three categories

- Complete Software Control, Supervisory Control and API-based control [18]. Similarly,

Wang et. al. have discussed a human-in-the-loop based framework for minimally invasive

surgery [19]. These frameworks bear resemblance to the shared control scheme as described

by Murphy [20]. The shared control framework allows the user to constantly supervise

and guide the robot in order to accomplish an intended task. The API based control [18]

discussed by Kapoor et. al. is similar to the traded control [20] scenario discussed by

Murphy. The traded control scenario allows the user to decide the high-level tasks and

allows the robot to autonomously complete the commanded tasks. In all these frameworks,

the human user has to monitor the robot during its operation. The Directive Observer and

Lead Assistance (DOLA) framework, developed as a part of our research work in this thesis,

observes the user while adapting to the dynamic directives from them. The framework also

incorporates the lead assistance module which help the user complete a common goal. This
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framework is implemented for both physical as well as non-physical human-robot interaction.

Robot Operating System (ROS) was used for the development and control of all

the components of ARNA which are described in this document. ROS is an open source

development platform which can be easily used to deploy controllers, acquire sensor data

and control a robot [21]. ROS is now being used prolifically in many standardized robot

systems. ROS provides access to previously built packaged solutions to develop routine

modules, which allows for faster development and prototyping of newer modules for a robot.

The research work also presents the qualitative and quantitative results from user

experiments conducted on ARNA as well as the individual components of the robots. The

future plans and user studies related to ARNA are discussed in this document, including

various use-cases. The results from these experiments were analyzed and tabulated. These

experiments provide context to the work developed and compare them to the existing sys-

tems in place.

1.1 Motivation

Collaborative robots or co-robots share the same work-space as the human users and

often work in tandem to accomplish a common task. This collaboration between a human

user and a robot requires various components and system checks, such as safety checks,

interfaces, sensors, controls etc., to be in place to ensure smooth operation. Co-robots

are not only restricted to manufacturing assembly lines [22] but have also transcended to

service robots [23], crisis management [24], construction [25] and health-care [26–28]. Co-

robots enhance the quality the tasks to be performed in a repeatable fashion, which is why

it is imperative to study and develop systems to better facilitate physical human-robot

interaction (pHRI).

Investigation of safe HRI has been conducted by many researchers in order to find

parameters of operation [29–31]. Lu et. al [32], [33] have conducted studies to make robot

manipulator detect and stop the operation in cases of human-robot collision. It was also

found that a human user can tolerate a robot collision force of 50N [34]. This establishes
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the base-line of operation for co-robots and the parameters of collision detection for safer

operation. In case of robot-assisted surgeries, where pHRI is the key, studies suggest that

the robot needs to be back-drivable for safe operation [35–37]. Also, according to Bicchi

et. al, due to repeated manual process and material-handling, the workers are at a risk of

developing work-related musculoskeletal disorders (WMSD) [11]. WMSD costs industries

thousands of dollars in health-care and lost time [11]. This provides a strong motivation for

the use of co-robots in workplaces where the robots can supplement the user in performing

the intensive task loads. This is also true in case of health-care environment where some

tasks can be taken over by co-robots to assist or supplement the medical personnel with

their tasks.

In order to interact with a robot, a human-machine interface is required. An HMI

gathers user data values through sensors and devices and interprets them into the tasks to

be performed by the robot. A user can either perform gesture, verbal or non-verbal, or use

computing devices in order to issue a command. A gesture set was proposed by Barattini

et. al. which can be used to communicate as well as command an industrial co-robot [38].

A set of 19 gestures were proposed to be tracked through visual monitoring of the user [38].

Computing devices such as mobile phones and tablets have also been used to interface users

with the robots. The integration of these computing devices has been studied by Yepes

et. al. [39] and Aroca et. al. [40]. Using these devices allows mobile applications to be

developed and deployed in order to communicate with a robot remotely over internet or a

common network. Studies have argued that android application developed and deployed

on these devices can harness the data from the complex on-board sensors integrated in

them [39–41]. This allows for cost-effective implementation of HMI [42].

One of the common sensors used for HRI is the force-torque sensor (FTS). Generally,

an FTS is attached to end-effector of a robot manipulator. During collaborative tasks, the

FTS senses the user forces and helps the robot to adapt and move towards the intended

direction. Along with FTS, tactile sensors are also another way of sensing forces exerted

on a robot. E-skin has been developed which are embedded with tactile sensors and can
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be wrapped around a robot. These sensors then provide force feedback data to the robot

controller. This data helps determine collision events as well as user intended direction of

motion. This can only be possible if the tactile sensors are well calibrated and are accurate

enough to detect the applied forces.

To design an accurate and usable tactile sensor, a software model needs to be created

to measure the effect of components on the sensitivity of the sensor. But modelling only

the sensors numbs the effect of the skin that they are embedded in which in turn will lead

to misinterpretation of the sensor data. This is because the skin also dissipates the applied

forces and if this is not modelled, the misinterpretation of forces will lead to wrong control

outputs. In order to mitigate this issue, a sensor package, which includes the sensor and

the surrounding skin material, was modelled and experimentally validated in this thesis.

This will assist in future E-skin designs which might include multi-modal sensors such as

accelerometer, thermal sensors etc. A finite element analysis (FEA) model of this sensor

package can be created to verify or estimate the effect of factors such as skin material and

thickness on the sensor readings. This in turn will help in designing the control algorithms

which will use these sensor data.

Robot control algorithms are implemented to control the robot activity such that

the error between the desired task and the task being performed by the robot can be driven

to zero. The most common controller in use is the PID controller which is heavily used

during trajectory following tasks of a robot. During pHRI, such a rigid controller would

not be able to adapt to the user intentions. Use of neural networks in a control system,

as proposed by Lewis et. al [17] [16], facilitates the estimation of non-linear terms. A

Neuro-Adaptive Controller (NAC) is a combination of two cascading loops, in which the

inner loop estimates the system dynamics and non-liner terms using a neural network and

the outer loop generates a desired trajectory by estimating the user intent or a given task

model. A NAC can be used in a co-robot during pHRI to estimate and adapt to user intent

while driving the robot.

Along with NAC, whole-body collision detection and avoidance is also required in the
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case of robot manipulators. This is usually achieved through the use of tactile skin covering

a robot. The controller then has to have the knowledge of location of each tactile sensor so

that the location of the forces being applied can be interpreted from sensor data. Another

method of detecting whole-body collision is to implement a force-torque sensor at the base

of the robot manipulator. This allows the FTS to sense any collision or forces applied on

the robot, thus eliminating the need of multiple tactile sensors. This method of collision

detection would be more advantageous when implemented on a co-robot to facilitate a safe

pHRI.

To develop a framework for robot operation, the roles and requirements of the robot

has to be specified. A framework allows the rules and their precedence to be implemented

during robot operation. Currently, there are several frameworks governing the teleoperation

of a robot which define how a robot is controlled in different situations. Types of operation

of the robots, as defined by Murphy, can be broadly classified into autonomous, shared

and traded control [20]. In contrast, the novel Directive Observer and Lead Assistance

(DOLA) framework monitors the patient during both physical and non-physical HRI. This

framework assists in completion of tasks by monitoring and adapting to user needs rather

than being actively driven by a human user.

Booth has mentioned 4 types of robots, which are being developed by Toyota, and

their functions in the field of nursing [26]. These robot types are walk and train assist,

independent walk assist, balance train assist and patient transfer assist [26]. Another type

of nursing robot concentrates on elderly care and assisted-living scenarios. Robots described

by Wu et. al. follow the protocol of alerting health-care professionals and relatives in an

event of emergency [28]. Such usage of robots in the field of health-care provides assistance

to medical professionals. These ideas encapsulate the motivation for development of a novel

framework and controllers for a nursing assistant robot.
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1.2 Contributions

In this thesis we propose, a structured Directive Observer and Lead Assistance

(DOLA) framework for the nursing robot to include protocols for both physical and non-

physical HRI. Along with defining the framework, we also formulate and improve the con-

stituting individual modules. Safety concerns are addressed for pHRI mode of operation.

For non-physical HRI, command-based modules are developed. This proposed framework

is detailed in Chapter 2

Neuro-Adaptive Controller (NAC) and Human Intent Estimator (HIE) is planned

to be improved upon and implemented on the ARNA robot. The HIE module will be used

during pHRI mode, where it will estimate and adapt to the user’s intent. The NAC will

form the underlying controller for the robot which will adapt to the system’s non-linearities

and ensure that the given task is followed with minimal error.

We formulate model-free full body collision detection for robotic manipulator and

implement it on a 6-DOF robot arm by placing a force-torque sensor at its base. We

also address the issue of decoupling the wrenches experienced due to system dynamics and

collision. Using this configuration, we develop a Base-Sensor Assisted Physical Interaction

(BAPI) controller.

We propose and implement a Human-Machine Interface (HMI) on a tablet to com-

municate with the robot. The HMI uses a traded control based interaction which allows the

user to decide high level tasks without having to constantly monitor the robot’s motion dur-

ing task completion. The HMI is capable of accepting voice commands as well as on-screen

button commands to initiate an intended task. This HMI is a part of the non-physical HRI

mode of the proposed DOLA framework.

We develop a tactile sensor package simulation module to help future manufacturing

of optimal sensors. The FEA analysis of this sensor package is done using COMSOL software

and the results are validated using experimental data. A Robot Operating System (ROS)

based simulation environment called SkinSim is also improved to account for simulation of
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large tactile skin patches integrated with robots and their control systems.

We propose use cases for testing the robot and validating its systems in a healthcare

environment through in-depth investigation. These use cases are to be evaluated for the

patient walker and patient sitter scenarios. The planned studies explore the operational

capability of the robot. The use cases encapsulate the situations that the robot may face and

test its system’s effectiveness. Proper metrics are also defined for standardized tabulation

and comparison of results during the course of the experiments.

The contributions of this thesis are summarized below:

1. The DOLA Framework

• The DOLA framework defines the roles and behavior of the underlying modules

and components of an assistive robot. The framework adapts to different levels

of autonomy as described by Beer et. al. [43]. The various levels of autonomy

dictate the robot’s behavior during any HRI process. The introduction of an

Observer block allows the robot to continuously monitor and estimate the user

intent. The use of neuro-adaptive controllers facilitates a model-free smooth and

safe HRI.

2. Evaluation and validation of HIE and NAC

• The structure and functionality of NAC has been proposed by Ranatunga et. al.

and Lewis et. al. [16,17,44–46]. It has been further improved upon by addition of

HIE and prescribed error dynamics (PED) by Cremer et. al. [5]. This controller

contains two loops - an inner loop, which is responsible for trajectory tracking

and generating required torque signals, and an outer loop, which is responsible

for defining the desired trajectory based on HRI and HIE. These loops contain

neural networks which assist with learning the robot and human dynamics and

makes the controller model-free. The controller was deployed and experimentally

validated on the PR2 robot platform through user studies.

3. The BAPI controller
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• The BAPI Controller uses a single force-torque (FT) sensor attached at the base

of a robot arm to detect collisions with a human user. The collisions can be

detected through the entire robot body due to the fact that the FT sensor at

the base, or the Base Force-Torque Sensor (BFTS), can detect all the forces at

the base caused due to collisions as well as the movement of the robot. The key

contribution here is to decouple the system dynamic forces at the base, caused by

the movement of the robot, and the forces due to collision with the human-user.

4. Human-Machine Interfaces (HMIs)

• A robot needs an interface to communicate with the human user. For each level

of autonomy, there is a different HMI to be used. The performance of a user

in issuing commands or controlling the robot may also depend on the level of

expertise of the user. A research study by the author and team, found that using

a traded control level of autonomy allows both expert and inexperienced users to

perform similarly. This also sets the level of autonomy that can be used during

the robot functions as the user will be a patient and may not be an expert in

controlling the robot. This level of autonomy was achieved through the use of a

tablet-based interface.

5. Modeling tactile sensor packages

• A tactile sensor package consists of a sensor and an artificial skin encompassing

it. The behavior of this sensor package is different from the sensor itself [1]. The

artificial skin can be modeled as an extra layer of mass-spring-damper system

which takes into account the elasticity of the skin as well as the spread of applied

forces. The sensor package needs to be accurately characterized in order to find

the relation between the sensor output and applied forces. Post characterization,

these sensor packages can be used on robots to provide feedback to controllers

as well as act as HMI during collaborative tasks between the user and the robot.
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1.3 Thesis Outline

Chapter 2 introduces the proposed novel DOLA framework and chapter 3 describes

the nursing assistant robot used for deploying all the developed modules. In chapter 4,

the work on sensors and human-machine interfaces are presented. Chapter 5 illustrates the

work on adaptive controllers and chapter 6 contains the formulation of the BAPI controller.

Chapter 7 contains the user studies conducted with the ARNA robot. This chapter describes

the experiment setup and the protocols used to test ARNA in a hospital environment.

Chapter 8 presents our conclusions and discusses future work for the research.

1.4 List of Publications

The list of publications is enumerated in Appendix A

10



CHAPTER 2

DIRECTIVE OBSERVER AND LEAD ASSISTANCE (DOLA) FRAMEWORK

The quality of Human-Robot Interaction is intertwined with the level of automation

of the robot as well as the nature of task being performed. A single task may require

different levels of assistance from the robot for different users. Also, the safety measures [9]

have to be ensured during all interactions. A novel framework, Directive Observer and Lead

Assistant or DOLA, is introduced in this chapter which includes the required flexibility in

automation as well as adapts to user specifications.

A study by Beer et. al. defines a 10-level taxonomy for the “Level of Robot Automa-

tion (LORA)” in the context of human-robot interaction [43]. They also define a framework

consisting of 5 guidelines for choosing the level of autonomy which depends on the tasks,

environment and the level of tasks that the robot can perform. Huang et. al. also have

explored the idea of classifying the measure of autonomy in a robot [47]. This study fo-

cused on defining three dimensions which were required to access the level of autonomy in

a robot. Another such article by Thurun explores the components for building a frame-

work for HRI operations [48]. Components such as the classification of the robot, level of

autonomy and the various human-machine interfaces were explored in the article [48]. A

task specific framework was proposed by Wang et. al. for robotically-assisted minimally

invasive surgery [19]. This proposed framework contains four components for performing a

vision-enabled surgery. Other studies such as by Kapoor et. al. have focused on defining

the software modules and framework for computer integrated surgery [18].

There seems to be a requirement for a holistic framework which encapsulates the

HRI process, taking into account the safety concerns and standards during HRI with varying

level of autonomy. Different users will have different specification during any HRI process,
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such as difference in speed, strength and accuracy between users, which will affect the

outcome of the task completion. This calls for agility in a framework to ensure that the

tasks are completed as accurately as possible while adapting to user parameters. An efficient

framework should also be able to adapt to wide range of autonomy during HRI. This provides

the user with choices for the kind of HRI they are comfortable with.

Figure 2.1: DOLA framework incorporating the entire autonomy range

Figure 2.1 shows the three modules of the framework incorporating different levels of

autonomy as discussed by Beer et. al. [43]. The DOLA framework contains three functional

blocks:

• Directive: The Directive block defines the user instructions or directives to be followed

during any HRI process. The details of the tasks to be performed are stored in this

functional block. The data from the human-machine interfaces are included in this as

the user commands for the HRI.

• Observer: During HRI, the Observer block has to monitor/observe the user param-
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eters and try and estimate the user intentions. This serves two purposes, safety and

adaptability. Due to constant monitoring in real-time, this block would be able to

mitigate any collision and with human-intent estimation (HIE), the user intent would

be known for the robot to modify its behavior for ease in usability.

• Lead Assistant: This block contains the controllers for the robot. A novel neuro-

adaptive controller (NAC) is proposed to be used which contains neural networks and

is model-free. The use of neural networks in the controller allows it to modify the

output based the user parameters as determined by the Observer block.

Figure 2.2: DOLA framework

2.1 Components

Before describing the architecture of the framework, it is important to describe the

components included in the framework. These components make up the three major block of

the proposed framework and understanding these components would clarify their placement
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in the framework. Apart from their placement, their usage has to be looked at from the

perspective of the level of autonomy required for any given case. The required level of

autonomy would decide the need for each constituting component and sub-components.

In general, any interaction (pHRI or non-pHRI) with a robot system requires the

components described in the following subsections. These components are an extension

from article by Thrun [48].

2.1.1 Task Model

This defines the task model or the tasks that is to be performed during the interaction

process. Due to the complexity of HRI and the difference of expertise between users, a sub-

task model is also included in the task model. The sub-task model along with the task

model can define the autonomy of the robot during HRI. The advantage of having a sub-

task module is that for the same task model different levels of autonomy can be defined

without having the need to define multiple similar task models.

The scope of task and sub-task models are defined by an admin which also reflects

the capabilities of the robot hardware in question. In case of pick and place tasks, a robotic

arm with varying degrees of freedom can be used. But the scope of sub-tasks is limited by

the range and function of the robotic arm. These limitations are known to an expert or

the admin of the system, therefore the admin is responsible for design of such task models

which can be achieved by the particular robot system.

Thus, this component acts as the overall governing mechanism during HRI. The task

models can be changed by the user through an interface on-the-fly, and the robot has to be

able to adapt to the change in directives.

2.1.2 Human-Machine Interfaces (HMI)

The human-machine interface as the name suggests, facilitates communication be-

tween a user and a robot through some type of interface. There are various HMIs that are

typically used during HRI such as tablet, joystick, gestures etc. The HMI is the conduit

14



through which the high-level decision taken by the user passes on to the control systems of

a robot.

In the instances of pHRI, sensors like force-torque sensors and tactile sensors act

as HMI. These sensors collect the user-data such as direction and intensity of user forces

which are then used by the robot system to adapt to these parameters, making the HRI

process intuitive and effective. Another such example is the tele-operation of a robot where

typically a joystick or a tablet is used as an interface which collects user data. Examples of

other interfaces that are used during HRI are voice and gesture interfaces.

From the perspective of autonomy, the same interface can have different roles during

different levels of intended autonomy. For example, during tele-operation a tablet can be

used for collecting continuous user-data to manipulate a robot system, but during traded

control approach, the voice commands can be used to set the goal for the robot system and

the autonomous control of the robot ensures that the task is completed. This highlights the

changing roles of the same component under different task-models.

2.1.3 Network

Network selection and implementation has a huge impact on how data is transferred

and with what precedence. The network selection, in the context of proposed framework,

can be divided into two major parts - real-time (RT) and non real-time (non-RT) networks

The RT network makes sure that the important data and functions are given higher

precedence. In a RT network the timings of data transfer are deterministic which guarantees

zero data packet-loss. Such networks are typically used in the low-level control systems.

In contrast the non-RT networks facilitate data-transfer in a non-deterministic way. This

type of network is typically used in robot systems to accomplish non-essential tasks such as

communicating directives from users to the robot. The RT network on the other hand can

be used for collision avoidance which is essential for safe pHRI.

A complete autonomous system requires the use of a RT network to sense and operate

in an environment shared by human user. In between the autonomous tasks, if new user
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directives are to be communicated, it has to be done through non-RT network as the robot

would continuously require environment data through RT network to avoid collision. On

the other hand, during tele-operation, the user data from the interfaces or sensors need to

be transferred using RT network continuously in order to drive the robot safely. Any delay

in updating the user data can cause collision. This emphasizes how the use of RT and

non-RT networks are based on the selected task model / autonomy.

2.1.4 Controllers

The controllers are the brain of a robot system. The proposed framework incor-

porates adaptive controllers. The novelty in using adaptive controllers is that it is agile

enough to adjust to different users and their parameters. The proposed framework contains

a neuro-adaptive controller or NAC which utilizes neural networks to calculate control out-

put. This controller is also model-free, which means it is not dependent on the robot system

and can be ported to other robots easily.

A human-intent estimator or HIE module is also used to estimate user intent and

change the control outputs accordingly. The HIE module allows the robot to work with the

user and react to the user’s grip strength or speed to keep up with them. The advantage of

using model-free control systems is that the framework can be implemented on any robot

system without changing or modifying it every time.

2.1.5 Sensors

Sensors are an integral part of any robot. They gather environment data and are

used as feedback data or commands to the control system. The sensors can be broadly

classified into peripheral sensors and HMI sensors. The peripheral sensors, such as Lidar,

camera, IR-sensor, ultrasonic sensors etc., are used for sensing the environment surrounding

the robot. The robot is able to make sense of the workspace and completing the task at

hand using these sensor data.

The HMI sensors, such as force-torque sensors and tactile sensors, are used as pe-
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ripheral sensors as well as HMI depending on specifics of a task model. This brings us to the

relation between different levels of autonomy and the sensors on-board. During autonomous

operation, all sensors act as peripheral sensors, informing the controllers of any obstacles to

avoid or if any collision took place. Whereas during pHRI, the HMI sensors act as interfaces

and collect user data for intent estimation or driving the robot.

This shows the need of having flexibility in using sensors as per the task model

selected by the user.

2.1.6 Robot Hardware

Robot hardware informs the kinematic and dynamic model of the robot. According

to Thrun, robots can be classified into industrial robot, professional service robot and

personal service robot based on the environment the robots are intended to be used in as

well as the tasks they are expected to perform [48]. The type of robot selected for a specific

use, informs the task models that it will be able to perform. An industrial robot will not

be well equipped for service in a home environment and a service robot won’t be able to

lift the heavy objects in an industrial task.

These classification and abilities of the robot are used to formulate the task model

as well as sub-task models.

2.2 Architecture of DOLA framework

Figure 2.2 shows the architecture of the proposed framework. It illustrates the

three blocks in an object-oriented fashion. The framework employs a state-machine based

architecture where the RT loop is continuously running and changes its state based on

incoming user directive.

The Directive class contains three functions representing the components discussed

in the previous section - tasks, subtasks and HMI. The task and sub-task function are

populated/maintained by an admin who is the expert user of the robot system. These are

then presented to an end-user who would choose the type of task set to perform. The chosen
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task and sub-task modules calculate and sets the level of autonomy intended by the user.

This selects the choices for the type of HMI to be used during the task. The Directive class

is capable to receiving user instructions at any given time and these instructions are passed

down to subsequent systems through a non-RT network.

The Observer class is responsible for continuous peripheral monitoring and esti-

mating user intent during robot operation. This is one of the novelties of the proposed

framework as this class is responsible for safe-HRI. This class is contained in a RT loop

which allows it to run continuously even in the absence of any input from Directive class.

Another feature of this class is that it contains the peripheral function which gathers data

from peripheral sensors. This allows it to override any ongoing operation and send emer-

gency signal through RT network to the robot to halt in case of impending collision. This

illustrates the idea that even when the robot is void of any task goals and operations, the

Observer class is still active and is able to take necessary actions in case of emergencies.

During robot operation, the Observer class also uses the HIE function to predict

human-intent. This is later used in the Lead Assistant class. This HIE function imparts

the intuitiveness that a robot system needs during pHRI. This facilitates the system’s ease

of use.

The Lead Assistant class contains the controller functions such as NAC and BAPI.

These are neural-network based controllers and their formulation is discussed in detail in

Chapter 5 and 6. The use of such controllers in this framework makes it adaptable to user’s

mannerisms. This class communicates with the robot hardware through a RT network and

drives the robot towards a given goal.

The Observer and the Lead Assistant class are encapsulated in a RT loop as a part of

the state machine. Any user directive is received from the Directive class including the HMI

definition. The Observer class monitors the peripheral data from sensors and estimates user

intent using the HIE function. The controllers in the Lead Assistant class receives these

information from the Observer module as well as Directive module. The task information

from Directive module guides the controller goals. Along with the Lead Assistant module
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the Observer module also has the authority to issue a halt command in real-time to the

robot in case of obstacles and collisions during the tasks.

The uniqueness of the proposed framework can be summarized as below:

• The continuous operation of the Observer module ensures the safety guidelines [9].

This ensure a safe pHRI and enables the system to be deployed in the same environ-

ment as users.

• This is a holistic framework that can be deployed on any service robot with the current

intent of deploying the framework on a nursing assistant robot.

• The introduction of Observer block imparts versatility to the entire system as it both

monitors and tailors robot performance in accordance to user operation.

• Another advantage of using this framework is the flexibility of choosing different levels

of autonomy during any HRI process.

• The neural-network based controllers make the framework model-free and can be

implemented on any robot system.
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CHAPTER 3

ADAPTIVE ROBOT NURSING ASSISTANT

Healthcare robotics is expected to grow in demand in near future. A recent report

from Association of American Medical Colleges (AAMC) projects a shortfall of about 21,000

to 55,000 primary care physicians [49]. It has also been observed that Advanced Practice

Registered Nurses (APRNs) and Physician Assistants (PAs) are able to provide the same

healthcare services as a physician, thus assisting with some of the shortages in the physician

workforce [49–53]. With these projected increase in the work load, use of robotic assistants

is an effective way to lower the burden of the care givers.

These assistive robots fall in the category of service robots which may be required

to have physical contact with users. This chapter describes such a robot named Adaptive

Robot Nursing Assistant or ARNA that was built for the purpose of assisting nurses in

a health-care environment. The ARNA robot is designed to assist nurses with routine

tasks which will ease their workload and automate routine tasks. The subsequent sections

describe the build and the functional capabilities of the robot.

3.1 Robot Architecture

Figure 3.1 illustrates the ARNA robot which is an omni-directional mobile robot

equipped with a 6-DOF robotic arm. The robot’s dimensions are 45in × 45in × 4ft. It

contains a wide range of sensors to detect and perceive the environment around the robot.

HMIs are also defined for this robot to help users interact with the robot easily.

The robot needs to navigate the small hospital room as well as in hospital halls

which is populated at times. This requires extra precaution for safe interaction with the

robot, especially when a patient is interacting with it. For pick and place tasks, the robot
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Figure 3.1: ARNA Robot

has to perform the tasks in a cluttered and unstructured environment which is far from the

structured environment where industrial robots operate.

The robot uses Robot Operating System or ROS to operate and run. ROS is an open-

source framework which allows researchers to use modules that has been already developed

by others and utilize them in a new custom scenario. The advantage of using ROS is that,

it provides many generic libraries that can be easily utilized for development purposes.

ROS also supports distributed computing which is a huge advantage while operating a

robot with multiple computing platforms. For these reasons ROS was chosen to be the

underlying software structure upon which the DOLA framework, described in Chapter 2,

can be implemented.
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3.1.1 Components

As the robot is required to operate in unstructured and unpredictable environment,

it needs to be equipped with appropriate components and sensors. These components are

installed on the robot to serve their purpose based on the tasks that the robot is required

to perform. The functions that the robot is expected to perform are detailed in section 3.2.

This section describes in detail the installed components on the robot:

Navigation The robot’s autonomous movement requires navigation though sensing. For

navigation, ROS offers simultaneous localization and mapping (SLAM) packages which uses

GMapping to sense and build the map of the environment the robot is working in. SLAM

requires a LiDAR and an RGB-D camera for operation. ARNA robot is equipped with a

Hokoyu LiDAR which serves this purpose.

A sensor suite consisting of ultrasonic sensors and bump sensors are also installed

on ARNA as shown in fig.3.2. These sensors provide additional 360◦ information about

obstacles that may not be visible to the LiDAR which is attached to the front side of the

robot. Information about the sensor suite is further detailed in subsequent paragraphs.

Pick and Place For pick and place tasks the robotic arm needs to reach into its workspace

and pick objects using the gripping end-effector. A vision sensor or RGB-D camera is

required to be used in such cases. The ROS based Object Recognition Kitchen (ORK)

uses an RGB-D camera to builds a 3D map of the environments and plans the path for the

manipulator to avoid obstacles and identify the requested object. An RGB-D camera is a

camera equipped with depth sensing along with capturing normal 2D pictures. The robot

uses an Asus Xtion PRO camera for this purpose.

Environment Sensing Along with the above-mentioned sensors, there is a need for an

additional redundant sensor system for early warning and emergency stopping system. Fig-

ure 3.2 shows the sensor suit that has been installed on the robot. The robot is equipped

with 12 ultrasonic sensors distributed around the robot for sensing any approaching obsta-
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Figure 3.2: ARNA Sensor Suit

cles. The IR sensors act as level sensors which informs the robot of an incline plane and

thus requires more power to drive.

The bump sensors act as emergency halting system for the robot. In the eventuality

that any obstacle was missed during the sensing process, a soft collision with the bump

sensor will immediately halt all operations on the robot.

Detecting Human Activity In order to detect human activity with the robot, sensors

are installed to facilitate the interaction. A force-torque sensor, Axia80 model from ATI-

IA USA, is affixed under the handlebar which senses the user interaction forces. Another

force-torque sensor, Delta model by ATI-IA USA, is installed under the 6-DOF arm of the

robot. This is used as a base force-torque sensor which is described in Chapter 6. This

configuration is used for detecting collisions and user interaction forces on the arm.
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HMI Three devices are used as HMI to facilitate user interaction with the robot. A

joystick is used for tele-operation purposes, the force-torque sensor equipped under the

handlebar as described earlier and an android tablet is used to develop and deploy apps to

connect to the robot and issues commands through on-screen buttons and voice commands.

3.2 Robot Functions

A study conducted by Cremer et. al. identified two areas of robot function as a

nursing assistant, namely - walker and sitter [54]. The following subsections describe these

tasks in detail which are also requirements for the ARNA robot.

3.2.1 Sitter Scenario

The sitter scenario describes the routine tasks that are performed while a patient

is resting in a hospital room. This is known as a sitter task because as of now hospitals

hire people to sit in the same room as the patient and monitor their vitals. They are

responsible for alerting the nursing staff in case of emergencies. The personnel themselves

cannot administer any medications as they are not certified for it. The required tasks come

under the purview of non-physical HRI as the robot is not supposed to be in contact with

the patient during this scenario.

These tasks were identified as sitter task and experiments were conducted through

the use of the ARNA robot. The challenges of the robot in such as a scenario is to move

around in the hospital room while avoiding the medical equipment. The hospital rooms are

small and cluttered which poses the problem of autonomous navigation in an unstructured

environment. This also includes detection of people other than the patient in the room.

Monitoring the patient and detecting if they are getting off of the bed would require

maintaining continuous visual contact with the patient. This can be achieved through

the use of RGB-D camera as the depth sensing would be useful in skeletal tracking. Upon

detection, the robot has to alert the nursing staff and issue verbal commands to the patient.

Thus, the position and orientation of the camera has to be always pointed towards the
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Figure 3.3: Digital IR Thermometer

patient while performing any other tasks.

While positioned in the room, patients might require objects that are far from their

reach. The ARNA robot has to fetch these objects and safely place them near the patient.

These commands can be issued through a tablet which acts as an HMI. The commands can

be issued verbally as well as though on-screen buttons. Upon the issuance of the command,

the ARNA robot has to navigate the room and locate the requested item. Then a pick-and-

place task is performed while manipulating the mobile base to get the requested object in

the work-space of the robotic arm.

While a patient is resting in a room, periodic measurements of their vitals are needed

to track the progress of their health. As these tasks are non-physical based interactions, the

choice of sensors should be such that the ARNA robot can take readings without directly

touching the patient. Digital and non-intrusive medical equipment were chosen to equip the

ARNA robot. For example, an IR based digital thermometer, as shown in figure 3.3, can be

used to take temperature readings of a patient from a safe distance. This thermometer was

also modified to be integrated with the robot electronics in order to trigger the readings

autonomously.
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To summarize, the list of tasks expected from ARNA in a sitter scenario are as

follows [54]:

• Visual monitoring of patient and alerting nurses in case the patient is getting out of

the bed or about to fall

• Taking vital readings periodically.

• Fetching items requested by the patient in the room.

• Ability to have a conversation with the patient.

3.2.2 Walker Scenario

The walker scenario as the name suggests, involves assisting patients during walking.

Apart from providing mechanical support to the patient during walking, the ARNA robot

also has to carry IV poles and other necessary equipment. When the user is tired, the robot

should be able to carry the person to a desired location. This is a pHRI based interaction

where the patient and the robot are physically collaborating to perform a task.

During walking, the robot has to support the forces applied by a patient as well as

sense the direction of forces. The direction of the applied forces would help in estimating

the user’s intended direction of movement. A force-torque (FT) sensor is used at the handle

of the robot to sense these user forces. The choice of a specific FT sensor depends on two

key aspects - sensor resolution and over-load capacity. The FT sensor’s resolution decides

the lowest amount of force that can be detected. Thus, the sensor resolution affects the

sensitivity of the robot to forces applied by a user. The over-load capacity suggests the

maximum forces that the sensor can undergo before braking. The over-load capacity in

this case is the maximum force a patient can apply when exhausted. There is an inverse

relationship between the resolution and the over-load capacity of FT sensor. With large

over-load capacity, the FT sensors have lower resolution. The selection of the FT sensor for

ARNA robot was done keeping in mind these variables.
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Figure 3.4: ARNA walker task

Figure 3.5: ARNA walker with patient carrying task
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Figure 3.4 shows the walker task in progress. The varying levels of autonomy would

decide the behavior of the sensor and the use of its data. For tele-operation bases tasks,

the FT sensor acts as a joystick and sends the direction of forces applied by the user and

the robot moves in the resultant direction. During assisted walking, the FT sensor data

is used by HIE to estimate the human intent as well as keep track of the desired path.

The NAC uses this calculated information to adjust the speed and direction of the robot

on-the-fly. Human users behave differently from each other from the perspective of their

gait and speed. These behaviors also change for the same user between when they are tired

and when they are well-rested. The NAC and HIE modules are capable of adapting to these

changes in user variables and adjust course accordingly.

Another function of the robot is to carry the user to a location when the user to

too tired to walk. As seen in figure 3.5, the ARNA robot is equipped with footrests and

caster wheels for the user to hop on. The robot would then be able to carry the user to a

desired location or it can be driving using the tele-operation mode. It can be noted that

this change in autonomy can be achieved due to the DOLA framework discussed in chapter

2. This carrying task entails that both the footrest and the FT sensor should be able to

support the entire weight of the user, should the user decide to lean on them to rest.

While walking, the patient may also require additional medical equipment such as

IV poles or oxygen cylinders. The location of these equipment with respect to the patient

has to be maintained at a certain distance. The robotic arm on board helps with this task.

The required equipment, once put on a mobile platform, can be grabbed by the arm and

then it would be able to drag them while maintaining a constant distance between itself and

the patient. The BFTS attached at the base of the arm can detect the system dynamics and

in-turn stabilize the arm accounting for the disturbances experienced. The BAPI controller

would then be the perfect candidate for controller to implement these functionalities for the

ARNA robot.

An important aspect of this scenario is the constraints on the motion of the robot.

The use of mecanum wheels during the construction of the robot, allows it to be manipu-
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lating in three directions — Translation in X and Y direction and Rotation in Z direction.

The omni-directional nature of the mobile base also complements the need of moving in the

user intended direction. When a user is about to lose balance or fall, the 3-DOF mobility

allows the robot to make instantaneous course adjustments to support the user.

The roles and responsibilities expected from the robot in this scenario are as follows

[54]:

• Assessing the patient’s gait and supporting them during walking.

• Carry essential equipment along with the patient.

• Providing necessary support when the user needs rest or slows down.

• Able to carry the patient when they get tired.

3.3 Discussion

We discussed the ARNA robot and its function. These required functionalities form

the basis for the design of user studies. Experiments were conducted at the School of

Nursing, University of Louisville, KY. The experimental process as well as the results are

described in chapter 7. The subsequent chapters in this document detail the research studies

conducted on each individual component of the ARNA robot.
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CHAPTER 4

SENSORS AND HUMAN-MACHINE INTERFACES

Sensors are installed on robot platform to provide information about the surrounding

environment as well as help assist during pHRI. Along with the sensor suit, discussed

in chapter 3, ARNA also requires tactile sensors and Human Machine interfaces for its

operation. This chapter details the research studies conducted in the area of tactile sensor

simulations and tablet interfaces.

Section 4.1 elaborates on the simulation studies conducted to create a finite element

analysis (FEA) model of a tactile sensor which was manufactured by the Next Generation

Systems research group. These simulation models are helpful as it provides an insight into

the characteristic of the sensor before it is manufactured. As the cost of manufacturing

these custom sensors can be staggering, these simulations provide a way to select efficient

parameters. This tactile sensor will useful to ARNA platform as it can be implemented on

the handlebar to sense user forces. It can also be wrapped around the 6-DOF arm of the

robot to develop full body sensing. This section details the research study published in [2].

Section 4.2 includes the study about selecting the right autonomy level to interact

with ARNA. A tablet was selected as the interfacing device and preliminary experiments

were conducted with traded control based autonomy level. The use of such autonomy

level and interfacing devices are aimed at being deployed in a hospital with patients as the

end-users. This section presents the research work published in [4].

4.1 Tactile Sensors

As future robots are deployed in human environments, their requirements for safe

operation during physical human-robot interaction(pHRI) has increased in significance [55].
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Several studies have concluded that the magnitude of collision forces experienced during a

human-robot interaction can be significantly reduced to safe levels by using flexible robot

skin with embedded sensors [56]. For the last three decades there has been numerous

researches on creating robot skins, from sensor modules for data acquisition and transmis-

sion [55] to creating full body tactile suits [57] [58].

Skin sensors are often times multi-modal, e.g. they implement several tactile detec-

tion mechanisms including pressure, temperature and vibration to estimate the unknown

physical environment of a robot during pHRI. In order to obtain detailed tactile informa-

tion, such as texture and hardness of a surface, hemispheric tactile sensors based on the

hetero-core fiber optics have also been explored [59]. Capacitive touch sensors composed

of silver nanowires (AgNWs) and polymers have also been demonstrated as tactile sen-

sors [60]. An ongoing research area into capacitive touch sensors for robots is related to

ultrathin capacitive touch sensor displays [61].

A popular transducer mechanism for robot skin sensors include piezoresistive strain

gauges, implemented using metals and semiconductors materials. Metal piezo-resistors

comprising of Ni, Cu, Cr, Mo, Fe alloy, Pt or W alloy have a gauge factor ranging from

2.1 to 4.1 [62], whereas Polysilicon membrane based sensors have gauge factors as high as

22 [62]. A higher value of gauge factor ensures higher sensitivity to applied strain.

In this chapter, we use a new type of printed piezoresistive strain gauge sensor com-

prising of thin layers of PEDOT:PSS or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

PEDOT:PSS was printed on interdigitated electrodes as opposed to other fabrication meth-

ods such as spin coating [63], laser ablation [64] or lift-off process [65] [66]. Prior studies

have concluded that PEDOT:PSS preserves its piezoresistive properties even after the print-

ing process [67] which make it an ideal material for a flexible, inexpensive process. Also,

the gauge factor of PEDOT:PSS was reported to be 17.8 ± 4 which is greater than the

metallic strain gauges available commercially [68]. Since the printing was carried out using

a PEDOT ink with a process known as Electro-Hydro-Dynamic (EHD) printing, our gauge

factor is not fully known at this time, as a result, large numbers of printed sensors were
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recently fabricated and experimentally characterized [69] [70].

In this paper we create and validate a finite element (FEA) model of our packaged

sensors that closely resemble the geometry, materials, and their experimental testing condi-

tions. The model includes a flexible Kapton layer which encapsulates the sensor, the printed

PEDOT piezo-resistors, the inter-digitated electrodes, and additional package encapsulant

material consisting of a cast silicone polymer skin base (P10) [1]. The paper reports on

simulation results obtained using FEA simulation software COMSOL R© during loading of

an entire sensor package rather than simulating the sensor alone [63]. Simulations on the

model were run for loads applied at multiple locations or loading zones on and around the

sensor closely following the experimental measurements [1]. We analyzed the deformation,

as well as corresponding changes in resistance for our sensors as incremental pressures are

applied, and results were compared with experimental values for validation. Results indicate

that the model is able to appropriately validate experimental trends for sensor resistance

within 1% on all of the four loading locations on the sensor package. The model will be

used in the future as an indispensable design tool for future robotic skin sensors.

4.1.1 Sensor Design, Fabrication and Experimental Loading

4.1.1.1 Sensing Principle

The piezoresistive polymeric strain gauges described in this work rely on the use

of gold micro-patterned interdigitated (ID) structures, with a PEDOT:PSS thin films de-

posited on top. A typical geometry of our ID structures with overall lateral dimension of

approximately 1.5 mm and thicknesses of approximately 1 µm is shown in Figure 4.1.

PEDOT:PSS is a semiconducting polymer composed of conductive molecules encased

in a polymer matrix. When this film is solid, the resistivity changes relative to its physical

deformation. When this film is atop the ID structure, a conductive interface is formed

between the patterned structures and the PEDOT:PSS. When the sensor experiences strain,

its resistivity will change as a result of piezo-electric effect of PEDOT:PSS, as well as

geometric changes in the distance between the ID fingers. The concept surrounding the
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use of ID structures is simply that it is easier to reveal the piezoresistive nature of the

PEDOT:PSS using a smaller distance between points of measurement. So, in the case of ID

sensors, the higher the density of electrical contacts and the thinner the PEDOT:PSS films,

the higher the sensitivity one can achieve. These criteria were taken into consideration when

designing our sensors. Experimentally, we designed and tested strain gauges composed of

varying ID finger width, length, spacing, and overall density per predefined area. Our

gauges have incorporated fingers of widths and spacing from 10-100 microns.

Figure 4.1: Interdigitated Structure [1]

4.1.2 Fabrication and Packaging

Standard clean-room photo-lithography lift-off processes are utilized to pattern the

interdigitated structures. A sheet of 100 µm thick Kapton sheet is cut to the approximate

diameter of a 4 in wafer and adhered using photo resist to a Si wafer for processing to keep

the sheet rigid through photo-lithography. After the sheet is backed by a wafer, a bi-layer

resist is applied and prepped for exposure. The desired pattern is loaded to an aligner, along

with the resist covered Kapton sheet, and exposed for a predetermined time to transfer the

image to the resist. The resist is then developed, substrate dried, and Oxygen plasma

cleaned for the CVD process. 250 nm of Gold is then sputter coated onto the substrate.

Finally, the substrate is placed into a liftoff bath where the patterned structured is revealed

and Si backing wafer deboned for later use.

EHD printing was utilized to print PEDOT:PSS containing inks onto the Au inter-
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digitated structures [70]. The ink is loaded into a reservoir and nozzle energized in such a

configuration where the high voltage DC can flow from the conductive tip to the ID elec-

trodes and subsequently jet the ink to print a pattern. The sensors are placed on motorized

translation stages and coded so that the jetting occurs precisely in a predetermined path

over the ID structure. Completed sensors are dehydrated in a convection oven and encased

in Kapton. Additionally, ZIF connection pads are patterned with the sensors to easily con-

nect the circuit measuring the sensor as shown in Figure 4.2a. Finally, the sensor is then

placed on top of a P10 silicone polymer skin, shown in Figure 4.2b.

(a) Packaged Sensor

(b) Sensor with P10 Silicone skin bottom

Figure 4.2: Sensor Package [1]

4.1.2.1 Package Loading Experiments

Experimental tests were carried out by applying force at different locations on and

near sensors interdigitated structure with a controlled force sensing apparatus depicted

in Figure 4.3a, 4.3b and 4.3c. The idea behind this test was to observe if there was any
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significant change in sensors response in terms of spatial uniformity and linearity. By varying

micrometric scales present at both X and Y stages, the sensors position with respect to the

plunger was changed. The X-Y stage can be moved with a step resolution of 25 microns

(0.0254 mm). Figure 4.3c shows how the force was applied at different positions. With

respect to sensors position, force was applied on top of sensor (zone 0) as well in three

different directions (zone 1, zone 2 and zone 3) as shown. In each direction, force was

applied uniformly by engaging the plunger position at three different distances away from

sensor. The yellow dot indicates an application of force on top of sensors interdigitated

structure while red, blue and green dots indicate an application of forces at a distance of

1.27 mm,2.54 mm and 3.81 mm, respectively, away from sensors interdigitated structure.

In order to measure changes in resistance due to loading, sensor integration circuitry

was integrated with the sensors. A Wheatstone bridge along with an Instrumentation

amplifier (Op-amp) was employed as shown in Figure 4.3b. When the bridge is balanced, the

parallel resistance structures produce zero voltage difference between two parallel branches.

In this circuit Ra and Rb are the fixed resistors at one leg and the strain-gauge sensor and

variable resistor Rc is attached at the other. Rc is used to balance the circuit at no load. To

amplify and condition the output response from the Wheatstone bridge, an Instrumentation

amplifier and a RC filter were employed. This filter helps eliminating any high frequency

components or noise. After passing through filter, we can measure the sensor output voltage.

35



(a) Experiment Setup (b) Sensor with P10 Silicone skin bottom

(c) Force application at different loading zones (d) Flat Plunger

Figure 4.3: Experiment Components [1]

Figure 4.3d show the plunger that was used for the purpose of application of force

on the setup. Figure 4.3a illustrates the experimental setup where the plunger is connected

to the load cell. The readings from the load cell indicates the amount of force applied

to the sensor package. The sensor is fixed on top of the P10 polymer silicone skin using

Kapton sheets and the setup is ensured to be fixed so that there is no movement while the

experiments are being performed.
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4.1.3 Sensor Package Modeling

In this section, we describe the simulation model of the sensor package. This includes

the geometric specifications, material properties assigned to each constituent entity and the

simulation solver settings.

4.1.3.1 Package Geometry

The geometric specification from the experimental samples were used to create a

resembling model in COMSOL R© finite element software. Figures 4.4a, 4.4b, 4.4c and 4.4d

show the constituent entities of the sensor module, while Table 4.1 summarizes the approx-

imate dimensions of each component.

To build the interdigitated structure, a CAD model was imported, and its thickness

was assigned to be 1 µm, and shown in Figure 4.4a. The PEDOT:PSS piezoresistive layer

was then defined such that it covers the interdigitated structure, with overall rectangular

box dimensions of 1800 µm × 1400 µm × 1 µm, shown in Figure 4.4b. The sensor was then

packed between two Kapton layers, implemented as thin rectangular substrates, 100 µm

thick, one layer on top and the other beneath the sensors. The assembled structure is then

put through a union operation in COMSOL R© to implement the sensor entity, shown in

Figure 4.4c.

Finally, a polymer silicone layer (P10) representing the base substrate is added at

the bottom of the sensor entity. The dimensions of the base were chosen to be 1.5 cm ×

1.5 cm × 4 mm as shown in Figure 4.4d. After the sensor package was assembled, four

loading zones were defined by creating cylindrical structures with diameters similar to the

plunger, which has a radius of 5 mm and a thickness of 1 µm. The center zones were created

at a distance of 2.54 mm which resembles to the blue zone shown in Figure 4.3c.

4.1.3.2 Material Properties

After defining the geometry of the sensor package, material properties of each entity

were defined. For the base, the material properties were not known, but it can be set in
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(a) Interdigited Structure
(b) PEDOT:PSS layer on Interdigited
Structure

(c) Kapton Layer

(d) Base

Figure 4.4: Geometric Entities [2]

a range of Young’s moduli between 0.5 MPa and 50 MPa for silicone materials. For the

simulation results reported in this paper a value of 5 MPa was initially used for our base

layer formulation. After several simulation runs by loading the models loading zones with

forces in the range of 1-6 N, the value of Young’s Modulus was adjusted to 0.6 MPa to

match load-displacement curves. The densities, Poisson’s ratio and Young’s moduli for

each sensor entity are summarized in Table 4.2, which uses standard values for the three

common materials.
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TABLE 4.1

Dimensions of model entities

Entity Length Breadth Height

Base 1.5 cm 1.5 cm 4 mm

Interdigitated Structure 1320 µm 1620 µm 1 µm

PEDOT:PSS 1800 µm 1400 µm 1 µm

Kapton 1.5 cm 1.5 cm 100 µm

Loading Zone 2.5 mm (Diameter) 1 µm

TABLE 4.2

Physical Properties of P10 Silicone Base, Gold ID structure and Kapton sheets

P10 Silicone Base Kapton Layer Gold ID Structure

Density 1.1 g/cm3 1.42 g/cm3 19.3 g/cm3

Young’s Modulus 60× 104 Pa 20× 108 Pa 70× 109 Pa

Poisson’s Ratio .47 .34 .44

Values chosen for PEDOT:PSS the piezoresistive layer are taken from research by

Hussein Al-Chami [67], with a density of 1011 kg/m3. In COMSOL R©, PEDOT:PSS was

simulated by modifying the properties of a p-doped silicon based piezoresistive sensor. To

model the piezoresistive properties of PEDOT:PSS, the piezoresistive coupling matrix of

the material was defined as described below. In general, the relation between the electric

field, E, and current, I, for a piezo-resistor can be defined as:

E = ρI + ∆ρI (4.1)

Where ρ is the resistivity of the material and ∆ρ is the change in resistivity of the

material due to geometrical torsion. The relation between the piezo-resistance tensor, µ,

and the resistivity can be shown as:
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∆ρ = µγ (4.2)

Where γ is the stress on the material. In a 3D simulation, µ becomes a 6 × 6

piezoresistive coupling tensor matrix which defines direct and cross coupling terms as:



∆ρxx

∆ρyy

∆ρzz

∆ρxy

∆ρyz

∆ρzx


=

[
µ6×6

]
·



γρxx

γρyy

γρzz

γρxy

γρyz

γρzx


(4.3)

The piezoresistive properties of PEDOT:PSS is known to be πl = −5.11 × 10−10 ±

13.7% Pa-1 πT = 3.45 × 10−10 ± 4.34% Pa-1. πl and πT are the longitudinal and transver-

sal piezoresistive coefficients [67]. This can be visualized in the Figure 4.5 [71]. These

coefficients were used for modeling the sensor package.

Figure 4.5: Longitudinal and Transverse Stress [2]

4.1.3.3 Simulation Settings

Before simulations can be performed, a physics type, Piezoresistive Domain Current

in this context, was selected in COMSOL R© . The physics setting defines the areas per-

taining to piezoresistive elements, the load boundaries and limits, the positive and negative

terminals as well as the voltage supplied to the terminals. After the physics settings for the
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experimental set-up is defined, the model is then meshed as shown in Figure 4.6b.

As shown in Figure 4.3c, four loading zones were identified for applying the force in

the region. During simulations, a force from 0N to 6N was applied with an increment of

1N and the change in resistance was noted at each iteration. A constant voltage of 3V was

applied to the interdigitated structure and the change in current was tabulated. Resistance

changes were then calculated using Ohms law and compared with experimental results.

(a) Final Assembly (b) Meshed Model

Figure 4.6: Final and Meshed model [2]

4.1.4 Results and Comparison

In this section we discuss the results obtained from the simulations and compare

them to experimental data. Figure 4.7 shows the displacement at the area where the force

was applied, e.g. in zones 0 through 4. In each case, we ran 6 simulations by applying

increasingly larger forces. Both simulation and experimental results indicate that when

pressure is applied in zones 2, the resistance of the sensor increases with increase in pressure,

whereas in zones 0,1 and 3, the resistance decreases as the pressure increases.
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(a) Final Deflection due to force at Zone 0

(b) Final Deflection due to force at Zone 1

(c) Final Deflection due to force at Zone 2

(d) Final Deflection due to force at Zone 3

Figure 4.7: Displacement Vs Force [2]
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In Figure 4.8, we see that the simulated resistance values closely follow the exper-

imental ones, and the strain-induced variation in resistance of the order of 0.007 Ω/N in

zone 0, 0.012 Ω/N in zone 1, 0.017 Ω/N in zone 2, 0.011 Ω/N in zone 3.

From displacement plots in Figure 4.9 we see that the displacement values in zones

1-3 are almost identical, and slightly different than the ones in zone 0. Qualitatively the

simulation and experimental displacement curves are different, suggesting that the material

nonlinearities of P10 may require additional tuning. This is not surprising, considering that

silicone polymers are highly nonlinear, viscoelastic materials that have been approximated

by quasi-elastic materials in our COMSOL R© simulation.

In Table 4.3, we summarize the relative error between the simulated and experi-

mental resistance and displacement measurements averaged over the entire set of pressure

sweeps. We can conclude that our model will predict resistance changes as a function of

stress with sufficient accuracy to be used in future sensor design evaluations.

TABLE 4.3

Percent Error between Simulated and Experimental Data for change in resistance

Zone % Error in resistance % Error in Displacement

Zone 0 0.611% 43.2%

Zone 1 0.5885% 25.13%

Zone 2 0.6191% 20.29%

Zone 3 0.5972% 24.95%

Average 0.604% 28.39%
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(a) Force Vs Resistance at Zone 0
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(b) Force Vs Resistance at Zone 0 - Zoomed In
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(c) Force Vs Resistance at Zone 1
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(d) Force Vs Resistance at Zone 1 - Zoomed In
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(e) Force Vs Resistance at Zone 2
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(f) Force Vs Resistance at Zone 2 - Zoomed In
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(g) Force Vs Resistance at Zone 3
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(h) Force Vs Resistance at Zone 3 - Zoomed In

Figure 4.8: Plots comparing simulation and experimental results for Resistance (Ω) [2]
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(a) Force Vs Displacement at Zone 0
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(b) Force Vs Displacement at Zone 1
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(c) Force Vs Displacement at Zone 2
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(d) Force Vs Displacement at Zone 3

Figure 4.9: Plots comparing simulation and experimental results for Displacement [2]

4.1.5 Discussion

In this chapter we created and validated a FEA model simulating a multi-layer

3D printed strain gauge sensor. The FEA model includes the base substrate which is

also the robot skin, Kapton sheets encapsulating the sensor, metal strain gages fabricated

lithographically and the piezoresistive 3D-printed PEDOT:PSS layer. We carried out quasi-

static loading experiments in four identified zones on and around the strain gage sensor.

Similar loading profiles and zones around the sensor were simulated using COMSOL R©

FEA software and results were compared with experimental data. Although the nonlinear,

viscoelastic nature of the polymer skin substrate can be improved, the resistance data can
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be matched with less than 1% error. Furthermore, there was wide agreement in terms of

trends between experiments and simulation. In the future, the model can be employed to

study parametric effects of package, strain gage geometry and materials properties, as well

as investigate sensor responses to various loading conditions. Models will also be extended

to sensor arrays for larger area robot skin. Simulation studies will be used to guide future

design choices for these sensor systems.

4.2 Tablet Interface

Many assistive robots operate in environments shared with humans. Since the envi-

ronment around the robot is constantly changing, and the robot needs to adapt to unforeseen

circumstances during its operations. A typical assistive robot that operates autonomously

must be able to perform perception, cognition, and manipulation tasks related to the desires

of humans around the robot. There have been several studies on the development of Human

Machine Interfaces (HMI) that assist humans to interact with a robot in such settings. A

Home Exploring Robotic Butler or “HERB” was developed to carry out tasks and explore

in a household environment [72]. The authors present the algorithm and software architec-

ture implemented on the robot with an aim to accomplish tasks at a faster rate so that it

doesn’t frustrate the user. This level of automation requires extensive planning and sensing

algorithms. For accomplishing tasks in human environments, robot decision making, and

artificial intelligence are essential components that guide the balance between autonomous

operation and learning from demonstration. The Cog project, for instance, strived to im-

part human like intelligence to the robot during physical interaction tasks through teach by

demonstration [73]. 2 Other, more recent examples include robots that can perform tasks

in environments that are dangerous for human users. The Atlas robot [74] is a humanoid

developed during the DARPA Robotics Challenge that requires stable full body control,

and switches control between autonomous operation and direct teleoperation by a user.

Similarly, NASAs Robonaut project implements anthropomorphic human scale hands and

was designed to assist astronauts with manipulation tasks in outer space [75].
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While executing commands received from the user, an assistive robot must also

ensure the safety of humans present in the workspace to avoid hurting them during robot

movements [76]. Several personal robots have been developed to assist users by performing

safe physical Human Robot Interaction (pHRI) [77]. Ensuring this safety also allows the

robot to be used in different settings, ranging from household to industrial environments.

During pHRI, if proper safety precautions and procedures are not implemented on the robot,

serious injuries can occur. In a paper published more than 10 years ago, Rachid Alami, et

al. [3] enumerated safety guidelines that should be incorporated in a robot to make it safe

for pHRI. These safety issues can be visualized in Figure 4.10, which outlines the robotics

anthropic domains and the safety concerns in each domain. Rachid Alami, et al. [3] also

stated several conditions such as design of lightweight robots, dependability of sensors,

safety in software, implementation of emergency stop button or E-Stop buttons, ensuring

reliability of control system etc. which makes a robot safe. Recently, a new standard for

collaborative robots has encapsulated some of these guidelines [78].

Mobile communication device usage has become prevalent. With increase in pro-

cessor power and sensors on-board a tablet or a mobile phone allows it to accomplish

complex tasks. The use of smartphones to control mobile robots has been recently investi-

gated [39, 40]. Using the on-board sensors, android applications have been developed and

deployed to control robots remotely over a network [39–42].

The research study presented aims at building an intuitive interface for an assistive

robot. As described by Cremer and Doelling, this assistive robot is planned to bed de-

ployed in a healthcare environment with the aim of helping the nurses with their tasks [54].

The functions identified to be performed by the robot are - help walk a patient and pro-

vide necessary support during the process, fetch items for the patient, have conversational

capabilities, monitoring vital signs of the patient and alert the nurses in case of detected

emergencies. The interface for this robot should also consider the safety requirements while

the robot is in close proximity to the patient or the nurse.

The implementation of closed-loop controllers for robot teleoperation have been in-
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Figure 4.10: Issues related to pHRI. Adapted from [3]

vestigated in several studies [39,40,79–81] . The investigation of teleoperation control sug-

gests that there are performance differences between novice and expert users [80]. Along

with the learning curve, teleoperation of a robot presents challenges such as cognitive fa-

tigue, time delays, etc., as discussed in [20]. On the other hand, in a traded control scheme,

the user identifies the command to initiate a task, and the robot is expected to plan and

perform the task autonomously without any external supervision [20]. This type of control

scheme eliminates the need of driving the robot using continuous teleoperation by the user,

thus, offering inherent advantages.

In this section, we present a traded control HMI framework through a mobile app

that can be used to interact with Robot Sitters or Adaptive Robotic Nursing Assistant

(ARNA) robots. Our current work focuses on providing a reliable interface framework

48



between a patient or a nurse and the sitter robot. The HMI proposed in this paper is

implemented as an Android application on a tablet. This interface accepts both voice

as well as on screen button press commands and relay high level user commands to the

robot. The sitter robot can perform certain routine tasks such as pick-and-place objects at

certain locations and pick-and-handover objects to the user. The interface is also capable

of socially conversing with the patient. Since this HMI framework is intended to be used

in a healthcare facility environment and the user base includes the patients and nurses, the

user is allowed to issue emergency stop commands during robot operation. Such commands

are given priority and allow the robot to return to a safe position. In certain situations, the

patients also not be able to hold or operate the tablet using onscreen buttons. They can

still interact with the robot by using the speech interface provided by the tablet application.

During testing of the tablet interface, we have used the Baxter from Rethink RoboticsR©.

We experimentally tested four scenarios based on tasks to be undertaken by a sitter robot.

The users were required to initiate tasks such as locate and pick certain items through speech

interface or on-screen button interface, converse with the interface and issue emergency stop

commands. Through these experiments we recorded the reliability and performance of de-

veloped interface. We also test the safety features in these scenarios, and the results are

reported here.

4.2.1 System Architecture

Our system consists of an assistive robot, a GoogleR© Nexus tablet and a base-station

computer which acts as a computing platform to share the load of processing algorithms.

These components are connected to the same wireless network which enables them to ex-

change data as depicted in Figure 4.11. A custom developed Android application runs on

the tablet and subscribes to Robot Operating System (ROS) topics from the robot and

the base-station to connect to the ROS ecosystem. Once the connection is established, the

tablet application sends ROS Service Requests based on the input from the user. These ROS

Service Requests are then catered to by the ROS Service Server. GoogleR© speech engine
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Figure 4.11: System Architecture depicting different hardware and software components [4]

was used to detect and understand the spoken words. The detected speech was then used by

an Artificial Intelligence Markup Language (AIML) server to facilitate conversations with

the user.

4.2.1.1 Human Machine Interface (HMI) Framework

The HMI framework consists of two logically separated modules based on their func-

tions. One is responsible for the low-level robot control while the other is responsible for

high-level planning. A Cortex module was developed of the high-level planning which is re-

sponsible for trajectory planning, manipulation and visual servoing. Therefore, this frame-

work can be implemented on various robot platforms as the Cortex modules is independent
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of the low-level robot control. Fig. 4.12 illustrates the architecture of the proposed frame-

work. This type of software architecture enables the HMI to have traded control of the

robot.

The current capabilities of the Cortex include:

• Fetch items for the user

• Speech interface for conversational capabilities as well as to issue verbal command.

• Disable robot in case of emergencies

The intended users of this HMI are patients and nurses in a hospital environment,

which means that it should be capable of catering to a wide user base who might find

it difficult to constantly hold a tablet for long. The network connectivity is continuously

checked and upon the issuance of emergency stop command, the state machine halts all

operations. These safety features are put in the framework to adhere to the guidelines

outlined in [3].

Due to the implementation of the traded control in the framework, it allows the user

to issue a high-level command, in the form of a verbal command or a screen gesture, to

the robot. Users are not required to constantly monitor and control the robot’s activity

as the tasks planning and completion is done autonomously. This circumvents the need to

teleoperate a robot, where the quality of operation depends the level of expertise with a

particular robot which may not be ideal in a healthcare environment with patients as users.

In pick-and-place scenarios, the interface provides the user with a list of choices for

the items to be picked. The user can issue a verbal command or select the item by clicking

the onscreen button. Once the command is issued, the Cortex uses a RGBD camera to scan

and identify the location of the object. When the location of the desired item is determined,

the trajectory planning for the arm is initiated. If either the trajectory planning or the

visual identification of the object fails, an error message is displayed on the screen. If the

trajectory planning is complete, the information is passed on to the low-level controllers to

move the robot arm to the required destination and grippers are actuated to pick the item
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Figure 4.12: Diagram of our proposed Human Machine Interface Framework [4]

up. If this process is completed successfully, the Cortex then plans the trajectory to place

the item in a desired location, but if it fails, the entire process is restarted. Along with

pick-and place, pick-and-handover functionality can also be implemented by identifying the

patient and bringing the item close to the user for handover.

Fig. 4.12 illustrates the workflow that is responsible for maintain the safe operation

of the robot. The robot resets to its rest position in the following events:

• While the robot is completing a task a cancel task command is initiated.

• The user is not found during pick-and-handover task.

• Unable to plan trajectory after multiple tries.

Whereas, when the emergency stop command is initiated, the robot completely stops mov-

ing. These features are vital to maintain safety of the user.
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4.2.1.2 Android Application for Tablet and ROS interface

The robot platform uses Robot Operating System (ROS) for its operation and the

tablet runs Android OS. The application for the tablet was developed using Android studio

rosjava [82]. Rosjava provides the libraries for an android application to communicate with

a ROS application. Using the Android Studio 2.3, the following classes were implemented

for the android application:

• MainActivity: It provides the graphical user interface (GUI). The GUI provides both

button based and verbal based interfaces to initiate user commands.

• NodePublisher: It is responsible to establish communication with ROS. A ROS service

was created which was used by the class to execute rosservice commands.

• The CallWebservice: It connects the GUI to the Simple Object Access Protocol

(SOAP) web service. The speech command is sent to the webservice to determine

whether the speech was a conversational in nature or a pick-and-place command.

A Tomcat Apache server 9.0 was used to deploy the SOAP service locally. The

web services are used to handle all the speech commands. It uses a chat engine named

Artificial Linguistic Internet Computer Entity (ALICE) to respond to conversational queries

appropriately. A console output of the chat engine is shown in Figure 4.13.

4.2.1.3 Robot Hardware Description

The BaxterR© robot is a new type of collaborative robot with two 7-DOF arms [83].

The maximum reachability of each arm is 1.21 m. This provides the ability to pick and

place object within a slightly longer reach than a human. The Baxter robot has an Ethernet

port through which it is connected to the same network as the tablet. A Kinect camera

has been attached to the head of the robot to provide a constant video feedback to the

tablet, as shown in Figure 4.14. In our tested scenarios, the user holding the tablet is the

one items should be fetched for. The Baxter runs Robot Operating System (ROS) and can

communicate with external application through ROS topics.
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Figure 4.13: Speech Interface output during conversation [4]

The base-station is an external computer which has Baxter’s SDK installed and acts

as an auxiliary processing unit. ROS nodes initiated in this base-station communicate with

Baxter through the common network. The ROS Service Servers are hosted on this base-

station which accepts ROS Service requests from ROS Service Client nodes. After receiving

these ROS Service requests, the appropriate service routine is invoked. All the modules

developed for the Baxter robot were stored and executed from the external base-station.

The base-station treats the ROS system of the Baxter as its ROS_MASTER_URI. The tablet

application also treats Baxter as the master system. Once the connections are established,

the base-station as well as the tablet application are able to access and manipulate Baxter.

Moveit! motion planning framework was used to control and plan trajectories for

Baxter’s arm [84]. During the pick-and-place task, an item is identified from the list provided

by the tablet interface. The location of the required item is then determined using visual

feedback. This identified location is then passed on to the Moveit! application which plans

the arm trajectory as well as the joints angles required to move the arms towards the object.
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Figure 4.14: External camera sensors installed on the Baxter for user identification [4]

QR codes were assigned to each object in the list. This allowed the identification

of the items through these unique QR codes that were assigned to each object [85]. The

onboard camera placed under the wrist of the Baxter’s arm were used to scan the workspace

to identify these codes, hence identifying the desired object and its location.

For the detection of user, a QR code was attached to the tablet held by the user. A

Microsoft Kinect sensor was attached to the head of the Baxter to help identify the location

of the tablet and the user. This assist in the pick-and-handover scenarios.

4.2.2 Application Interface

The application interface is divided into three logical units: the button interface unit,

the speech interface unit and the video feedback interface unit. These units are explored in

detail in this section.

There are eight software buttons which are programmed to send specific ROS service

calls to initiate desired routines. In the Android studio, the buttons are designed to invoke

button pressed routines. Each button pressed routine initiates a ROS service call with an
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Figure 4.15: Tablet application screen [4]

associated command. For example, if pick item Cup is chosen, a message Pick Cup is sent

through the ROS topic. The ROS service server, which is listening to the ROS topic, receives

the message and depending on the message, an appropriate routine is initiated. If the cancel

request button is pressed, all tasks being performed are halted at once. These buttons are

used for predefined routine medical activity such as pick an item, check blood pressure,

measure patient’s temperature. The buttons provide easy access to routine commands that

assist the patient as well as nurses to perform their tasks. The verbal command section

accepts spoken voice as commands when the mic button is pressed, as seen in Figure 4.15.

An Artificial Intelligence Markup Language (AIML) chatbot server is also running

on the base-station. The voice commands spoken to the tablet is converted to text using

speech to text engine and the text is passed to the chatbot server. The chatbot server

extrapolates a response based on the text received and sends it to the tablet. This response

is converted to speech and is spoken through the tablet. During the course of operation,

all the processed speeches are displayed on screen as text. This type of interface allows the

patients to have a conversation as well as command the robot to perform desired routines.

Finally, the live video window shows direct video feed from the robot to the tablet.

This gives the user the perspective of the robots surrounding, and helps with selection of

grasp patterns, and with visual feedback of successful object manipulation. A Kinect is

placed on the robot to acquire images from the robots surrounding. This video stream is
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Figure 4.16: Markers attached to objects [4]

then published on a topic. The tablet application listens to the topic and as soon as images

are received, they are shown at the image viewer section of the tablet.

4.2.3 Experiments and Discussion

Expert and non-expert users were selected to perform the preliminary testing of the

proposed interface. Expert users had prior knowledge of the robot system whereas the non-

expert users were unaware of the functionality of the robot system. The users were briefed

in detail the tasks that were to be performed and the safety features to be used in case of

emergencies. Figure 4.16 illustrates the three objects, a cup, a box and a bottle, placed in

front of the robot for the pick and place tasks.

The experiment was conducted through four process:

• Initiate pick-and-place with button-based commands.

• Initiate pick-and-place with verbal command.

• Initiate abort command using button based and verbal based commands.
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• Have a conversation through the interface.

• Completing a questionnaire rating the system.

The metrics for evaluation of the proposed HMI framework were:

• Ease of Use, as measured by a questionnaire.

• Time to complete pick and place task.

• Conversation through speech interface rated by users.

• Success rate in pick and place task.

• Command abort process success rate.

Two expert and two non-expert users were selected to conduct the experiments.

Pick-and-place tasks were initiated six times each with verbal and button based commands

by each user. The item to pick was randomly chosen by the users. Thus, a total of sixty

experiments were conducted during which the time of completion was recorded for each

run. Figure 4.17 represents the recorded data. U1 and U2 are the trained users whereas

U3 and U4 are untrained users. The label BC represents the tasks initiated with button

commands and SC represents the speech command based initiation of tasks. The average

time of completion for trained user was 54.6 ± 5.05 seconds and 55.54 ± 6.91 seconds for the

untrained users. These results show that the performance of the proposed HMI framework

is comparable with trained and untrained users.

Users were then directed to have a conversation through the tablet and rate their

experience on a questionnaire. Each question had options to answer based on a Likert scale

with five-level Likert items.

• Did the speech interface recognize what you said correctly?

• Was the response valid to a question asked by you?

• Did you have to raise your voice pitch in order to interact with the speech interface?
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Figure 4.17: Time of completion comparison between users [4]

• Was the audio response from the interface clear?

• Was the application interface easy to use?

• Was the speech interface helpful to you?

The performance of the speech engine was observed to vary with the accent of the

users. Table 4.4 represents the summery of the ratings from the users and a lower score for

speech interface reflects the speech engine’s performance with accents. It was also observed

that in cases where the motion planning was not successful during pick-and-place tasks, the

robot moves to a known position to restart the planning process again.
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TABLE 4.4

Average rating of the interface by the users

Users Ease of Interface Speech Interface

Trained User 1 4/5 4.5/5

Trained User 2 4.5/5 3.8/5

Untrained User 1 4.5/5 4.0/5

Untrained User 2 4.6/5 4.2/5

In this section, we presented a human-machine interface framework applied to robot

sitters in a hospital environment. The framework includes a tablet interface, a 2-arm robot

that can manipulate objects, and a user that can request items and engage in conversation

with the robot. The framework implements a traded control scheme, in which users are

responsible for certain high-level tasks, such as initiating commands, selecting objects, or

terminating tasks, while the robots autonomously complete medium-level tasks such as

trajectory planning and execution, object localization, and grasp planning.

Preliminary experimental results suggest that task and rate completion of tasks is

similar for skilled and unskilled users. In future developments, a scaled version of the tablet

app will be interfaced with a Nursing assistant robot to operate in a hospital scenario and

can assist patients. Future studies will also include collecting sufficient statistics from user

experiments for performance evaluation of our interface.
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CHAPTER 5

NEURO-ADAPTIVE CONTROLLER (NAC) AND HUMAN INTENT

ESTIMATION MODULE (HIE)

5.1 Introduction

Collaborative robots or co-robots are tasked with working alongside human users,

helping them achieve a common goal through physical human-robot interaction (pHRI).

These tasks require a robot and a human user to work with the same object such as during

welding [26], assisting with medical tasks [86] and providing help with industrial assembly

[87]. In all these cases, the work-piece is held by both the user and the robot while moving it

towards a desired trajectory. Another such application of co-robots can be seen in the field

of rehabilitation robotics, where the robots guide and help patients in accomplishing their

goals while providing support whenever needed [88]. Since, during these interactions the

human user is in close proximity if the robot, the question of user safety has to addressed as

well. Studies have shown that in order to make pHRI safer, the robots need to be lightweight

and compliant [89] [90].

To achieve safer pHRI, force-based control schemes such as impedance and admit-

tance controllers are used [91]. These controllers account for the external forces and torques

applied on the robot and determine a compliant trajectory for the robot. Model-based con-

trollers are also used to impart safe pHRI features to a robot through modification of model

parameters [92] [93] [94] [95]. One drawback of using model-based controller is that it is

system dependent and for any change in robot systems, new parameter values have to be

determined.

During pHRI, estimation of user intent is also important as it would allow the robot

to predict and follow the intended trajectory. Wang et. al. and Futamure et. al. have
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Figure 5.1: NAC with HIE and human-in-loop operation [5]

conducted studies to explore a human intent estimation (HIE) module. Studies suggest that

the addition of the HIE module assists pHRI and helps with the performance of the robot.

Suzuki et. al., Ragazzini et. al. and Phatak et. al. have conducted studies exploring the

model of a human brain [94] [96] [97]. The studies utilized a PD controller to model the

human brain dynamics which can be used to integrate a user model in the control system.

This would allow the robot to continuously learn the human dynamics during pHRI. The

user also reacts to the robot behavior by learning and modifying their response to maintain

the desired trajectory.

The neuroadaptive controller (NAC) presented here is based on research studies by

Lewis et. al. and Ranatunga et. al. [44–46, 98–101]. NAC utilizes a neural network to

estimate the robot system dynamics while calculating appropriate torque for the robot.

The control system presented here, uses a variation of the NAC which contains two loops,

namely an outer loop and an inner loop. The inner loop is responsible for estimating

the robot system dynamics whereas the outer loop is responsible to estimating the human

dynamics. The controller learns these dynamics online without any prior training. In the

past, a double integrator based module have been used for the purpose of HIE which reacted

the user forces and accelerations. The proposed controller proactively modifies its trajectory

62



by sensing user forces. The HIE module senses these user forces to adapt online and help

maintain a desired path.

During pHRI, the quality of interaction is also vital as it provides insight into the

controller performance. Studies in the past have shown that jerk is an important metric

through which the quality of pHRI can be determined [102]. In this paper, jerk has been

added as a metric to determine the performance of the proposed controller.

Figure 5.1 illustrates the proposed controller. x̂d is an estimation of the desired

trajectory xd by the HIE module which uses human force fh and the current position x.

The estimated desired trajectory is then used as the reference trajectory xr by the inner

loop. The NAC in the inner loop tries to follow this reference trajectory.

An additional component called prescribed error dynamics (PED) is also added to

the proposed controller. This allows the robot to behave as a second-order linear system

which the user perceives.

The study presented describes the formulation of a novel model-free controller to

assist during pHRI operations. The controller utilizes neural networks to estimate robot

and human dynamics online during co-manipulation tasks. The study also includes the

validation of the proposed controller through co-manipulation experiments with users. The

performance of the proposed controller was compared with traditional controllers by using

metrics such as jerk, human force and trajectory error.

5.2 Outer Loop

The outer loop consists of the HIE module as well as the human user. This section

describes the formulation of the modules to predict the desired trajectory xd.

5.2.1 Human Transfer Function

The human transfer function as been described as a PD controller [94], which can

be represented as:
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H(s) =
Dhs+Kh

Ts+ 1
e−Ls (5.1)

where Kh, Dh ∈ R6×6 are the parameters for gain of the controller, T is the time constant

and L is a delay factor.

Let xd and ẋd be the desired pose and velocity respectively, then H(s) can be rewrit-

ten by ignoring the time constant and delay [94]:

Dhėd +Khed = fh (5.2)

where

ed = xd − x

ėd = ẋd − ẋ

representing errors in position and velocity. This shows that a human user applies forces

during co-manipulation tasks in order to reduce the error in the trajectory. As soon as the

error is eliminated e, ė→ 0, the human force fh also ceases to exist.

The proposed controller was designed keeping in mind the following two key princi-

ples:

User Effort Reduction: This principle dictates that the controller takes over the

majority of effort required for task completion with reduced user effort fh. By this design,

the controller would be able to put in maximum effort while user forces would be utilized

for guiding purposes. This minimization of user forces allows to controller to be safer. It

can be noted that this design will not be applicable in the rehabilitation tasks where the

goal is not to reduce human effort but to provide support to the user.

Crossover model: During pHRI, if the user experiences a linear admittance model,

the interaction is more favorable as described in past research [94] [103]. This means that

all the nonlinearities of a complex robot should not be observable to the user.
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5.2.2 Human Intent Estimator

The HIE component is responsible for estimating the user intended trajectory by

taking into account the human dynamics represented in equation 5.2.

In the previous section, it was established that the human forces exist as long as

there is an error between the desired and current trajectory. Therefore, the intended or

desired trajectory can be estimated from the user forces applied and the current trajectory

of the robot by modeling the human dynamics. Since the human dynamics function can be

nonlinear, a neural network can be used to emulate it as:

xd
ẋd

 = h(x, ẋ, fh)

= V ᵀφ(ξ) + ε1 (5.3)

where V ᵀ ∈ R12×18 is the weight matrix, φ(·) is the activation function, ξ = [fᵀh x
ᵀ ẋᵀ]ᵀ ∈ R18

constitute the input vector, and ε1 ∈ R12 represent a small residual error. The human intent

can be estimated as x̂d
˙̂xd

 = V̂ ᵀφ(ξ) (5.4)

where V̂ ᵀ is the estimated weight matrix. Therefore, the error estimates are:êd
˙̂ed

 =

x̂d − x
˙̂xd − ẋ

 (5.5)

Then the deviation of the estimated error from the actual error can be defined as

¯̃ed =

ẽd
˙̃ed

 =

ed
ėd

−
êd

˙̂ed


=

xd
ẋd

−
x̂d

˙̂xd

 = Ṽ ᵀφ(ξ) + ε1 (5.6)

where Ṽ = V − V̂ is the weight estimation error.
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Figure 5.2: Human intent estimator [5]

A sliding mode error is defined as:

s = êd − ea (5.7)

where ea is the filtered error. This filtered error is from the estimated human dynamics

fh = D̂hėa + K̂hea (5.8)

= J(P̂ � ēa) (5.9)

where � is the element-wise Hadamard product and J = [I6 I6], where I6 ∈ R6×6 is the

identity matrix. Vector P ∈ R12 consists of diagonal elements of Kh, Dh and ēa ∈ R12 are

defined as

P =

~k
~d

 (5.10)

ēa =

ea
ėa

 (5.11)

Fig. 5.2 represents the HIE module containing two neural networks (NN) which

predicts the desired trajectory x̂d.

Theorem 5.2.1. When s→ 0, then the desired trajectory approaches the actual trajectory,

x̂d → xd, as long as the user provides guidance such that ed → 0.
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Figure 5.3: Inner Loop [5]

Proof: From (5.7),

s = (x̂d − x)− ea

= (x̂d − xd + xd − x)− ea

= −ẽd + ed − ea (5.12)

From (5.2), if ed → 0, then fh → 0. And from (5.8), if fh → 0 then ea → 0. Therefore, if

s→ 0, then ẽd → 0, which also indicates that x̂d → xd.

5.3 Inner Loop

Fig. 5.3 illustrates the inner loop of the controller. The inner loop is responsible

for estimating the robot dynamics and ensuring that the robot follows the given trajectory.

The PED component in the inner loop ensures that the robot behaves like a second order

system during pHRI.

The robot dynamics equation is given by

M(q)ẍ+ V (q, q̇)ẋ+ F (q̇) +G(q) = fc + fh (5.13)
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where, q, q̇ ∈ Rn represent the joint position and velocity and x ∈ R6 represents the end-

effector pose in Cartesian space. A forward kinematics function Ψ, as shown in Fig. 5.3,

is used to map joint angles q to Cartesian coordinate of the end-effector x. M(q) ∈ R6×6

represents the inertia matrix, V (q, q̇) ∈ R6×6 is the Coriolis matrix, G(q) ∈ R6 is the gravity

matrix, and F (q̇) ∈ R6 represents the friction.

The control force fc ∈ R6 to be applied during pHRI is calculated from the neuroad-

aptive controller. The NAC provides joint torque τ to control the robot and in the case of

providing a desired fc, the Jacobian is used as τ = Jᵀfc.

Assumption 1: It is assumed that during the entire pHRI process, the user is in con-

tact with the end-effector, thus sharing the same Cartesian workspace. Also, the measured

force is equal and opposite to the applied force on the end-effector.

5.3.1 Prescribed Robot Error Dynamics

This section explains the formulation of PED to make the robot behave like a second

order system from user’s perspective. For such a system, let the error dynamics be

ë+Ddė+Kde = fh (5.14)

where Dd ∈ R6×6,Kd ∈ R6×6 are the coefficients of the admittance model.

The tracking error is defined as

e = xr − x (5.15)

and a sliding mode error is defined as

r = ė+ Λe− fl (5.16)

ṙ = ë+ Λė+ Λ̇e− ḟl (5.17)

where Λ(t) ∈ R6×6 is a matrix and is also a function of time. fl, the filtered force can be

written as

fh =ḟl + Γfl (5.18)
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where Γ(t) ∈ R6×6 is also a matrix which is a function of time. The following theorem

represents the method described by Li et. al. [95].

Theorem 5.3.1. By defining Dd and Kd as:

Dd = Λ + Γ (5.19)

Kd = Λ̇ + ΓΛ (5.20)

If r → 0, then the system follows (5.14).

Proof: Let w be an error signal defined as:

w = ë+Ddė+Kde− fh (5.21)

From (5.19), (5.20) and (5.18)

w = ë+ (Λ + Γ)ė+ (Λ̇ + ΓΛ)e− (ḟl + Γfl)

= ë+ Λė+ Λ̇e− ḟl + Γ(ė+ Λe− fl)

= ṙ + Γr (5.22)

Therefore, if r → 0 then w → 0. Thus, the system follows (5.14).

5.3.2 Inner-loop Error Dynamics

The inner loop dynamics can now incorporate both PED and the robot dynamics.

From (5.16)

ė = r − Λe+ fl (5.23)

differentiating (5.15)

x = xr − e (5.24)

ẋ = ẋr − r + Λe− fl (5.25)

ẍ = ẍr − ṙ + Λė+ Λ̇e− ḟl (5.26)

Using (5.13) and the x, ẋ, ẍ the error dynamics can be written as:

M(q)ṙ = −V (q, q̇)r + g(ψ)− fc − fh (5.27)
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where, g(ψ) represents

g(ψ) = M(q)(ẍr + Λė+ Λ̇e− ḟl)

+ V (q, q̇)(ẋr + Λe− fl)

+ F (q̇) +G(q) (5.28)

and ψ =
[
fl ḟl diag{Λ} diag{Λ̇} qᵀ q̇ᵀ eᵀ ėᵀ ẋᵀr ẍᵀr

]ᵀ
.

Let the control input be

fc = ĝ(ψ) +Kvr − fh (5.29)

where Kv = Kᵀ
v > 0 ∈ R6×6. Using a neural network to estimate g(ψ)

ĝ(ψ) = Ŵ ᵀσ(ψ) + ε (5.30)

can be achieved as detailed in [99]. Substituting (5.29) into (6.32)

M(q)ṙ = −V (q, q̇)r + g(ψ)− fh − ĝ(ψ)−Kvr + fh

= −(V (q, q̇) +Kv)r + g̃(ψ) (5.31)

where g̃(ψ) = g(ψ)− ĝ(ψ) is the approximation error. Finally, the inner-loop error dynamics

are

M(q)ṙ =− (V (q, q̇) +Kv)r + W̃ ᵀσ(ψ) + ε (5.32)

5.4 Experimental Validation

As seen in Fig. 5.4, a Personal Robot 2 (PR2) platform was used to deploy the and

test the proposed controller. The PR2 consists of an omni-directional mobile base with

two 7-DOF arms. The end-effector on each arm has a Force-Torque sensor attached to

sense user interaction forces. Robot Operating System (ROS) was used as the development

environment for the controller which was then deployed on the PR2.

For the experiment setup, a table was placed in front of the PR2 robot. A paper

containing the trajectories, as illustrated in Fig. 5.5, was pasted on the table. The PR2
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Figure 5.4: Experimental Setup [5]

robot holds on to a cylindrical pipe which is also held by the user during the experiments.

The user forces applied on the cylindrical pipe is sensed by the Force-Torque sensor.

There are three components of the trajectory - a square, a circle and a diamond.

These trajectories were chosen to explore the performance of the controller during only x

or y direction, non-linear x-y motion and mixed x-y motion respectively. The experiment

also included the traversal of the trajectory in both clockwise and anti-clockwise direction.

In order to follow these paths, the following sequence of path points were followed:

A,C, I,G,A,G, I, C,A,D,B, F,H,D,H, F,B,D,

B′, F ′, H ′, D′, H ′, F ′, B′, D′, A

where ’ indicates a circular path.

There were three types of controller settings were identified for the experiment pro-

cess and each setting had two sub tests with PED turned on or off. The experiment test-cases
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are listed as below:

• Prescribed Error Dynamics

(a) Disabled

(b) Enabled

• Reference trajectory xr set to

(i) xd (pose desired by human)

(ii) x̂d (estimated human intent from outer-loop)

(iii) xm (fixed admittance model from [45])

The total number of experiment test cases was six for each subject. In the first

controller setting the reference trajectory of the inner loop was set to the trajectory shown

in Fig. 5.5. The second setting consists of using the output of HIE as the reference trajectory

of the inner loop and in the third setting an admittance model was used. The admittance

model is based on the prior work of Ranatunga et. al. citeranatunga2017adaptive which also

contains an intent prediction module. The controller has an autoregressive moving-average

(ARMA) model and it was used for comparing with HIE’s performance.

Four subjects (2 male and 2 female), in the 25 to 30 age group, were chosen to

perform these experiments. Each experiment setting was repeated five times over the three

trajectories. Therefore, each subject performed 90 experiments which totals to 360 experi-

ments for the group. These experimental results were analyzed, and Fig. 5.7 illustrates the

analysis of the data.

There were three metrics defined to measure the performance of the controllers

during the experiments. These metrics were - squared jerk, mean force and mean position

error. The formula to calculate mean position error is:

‖e‖2 =
1

N

N∑
k=1

‖xdes(kT )− x(kT )‖2 (5.33)

where N is the number of data points and T = 0.02 seconds.

72



+y
+x

A

B

C

D

E

F

G

H

I

A

B

C

D

E

F

G

H

I
Figure 5.5: Grid layout for trajectory following. [5]

The equation to calculate squared jerk is:

Jα =

∫ tf

ts

...
p (t)2dt

(tf − ts)5

A2
(5.34)

where A is the path length p(t), ts is the start time and tf is the final time. The formula

for mean force is:

‖f‖2 =
1

N

N∑
k=1

‖f(kT )‖2 (5.35)

ARMA model requires prior training where as the HIE module of the proposed

controller learns the dynamics online. Fig. 5.7 shows that the performance of the proposed

controller is comparable to its counterparts. It can also be observed that with the PED

enabled, the performance of all the test cases are improved.

5.5 Discussion

A NAC based controller with HIE module and PED component was proposed in this

research work. The controller was validated by implementing it on a PR2 robot platform

and conducting co-manipulation studies with four users. The controller’s performance was

compared with two other controller settings along with turning the PED on and off for

all three settings. The HIE’s performance was comparable to the other settings but the
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Figure 5.6: Trace of user while following the trajectory with PED disabled (left) and PED
enabled (right) [5]

Figure 5.7: Performance measure plots [5]

advantage of HIE is that it doesn’t need prior training on the robot platform making it

versatile and portable.

We conducted preliminary experiments with a single user to investigate the effect of

the hidden neuron layer size on the controller performance. The size of the NAC hidden layer

was increased from 18 to 22, 25, and then 30. Results are summarized in Fig. 5.8, depicting
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Figure 5.8: Controller performance for different number of hidden layer neurons (PED
enabled with reference trajectory x̂d). [5]

the mean squared jerk, position error, and force magnitude across all three patterns (circle,

diamond, and square) repeated twice. Based on these experiments, we selected k = 25 as

the size of the hidden layer for all subsequent user experiments.

In future this controller is planned to be validated on the ARNA robot in the patient

walker scenario. A comprehensive evaluation of this controller can be performed through

user testing in different scenarios. The size and layer of the neural networks involved can

be further investigated to determine the efficient size of the networks needed to better the

pHRI performance.

75



CHAPTER 6

BASE-SENSOR ASSISTED PHYSICAL INTERACTION (BAPI)

This chapter details the research work conducted on the base-force torque sensor

configuration to enable whole body sensing on a robot manipulator. In this configuration

a force-torque sensor is attached to the base of the manipulator to sense interaction forces.

This chapter contains the two separate research studies that were conducted with this setup.

In the first study, the setup is used for collision detection where as in the second study, the

joint torque of the manipulator is estimated from the force-torque sensor data.

Section 6.1 illustrates the research conducted to detect collision to make HRI safe and

section 6.2 describes the research to estimate joint torques of a manipulator by sensing the

reaction forces at its base. These research studies were published in [6] and [7] respectively.

6.1 Whole-body Collision Detection using BAPI

6.1.1 Introduction

As the field of robotics and automation is continuously evolving from structured

industrial environments to more complex and uncertain workspaces shared with human

workers, robots increasingly need to be equipped with sensing mechanisms in order to

perceive and interact with their surroundings. Safe Human-Robot Interaction or HRI has

been explored for a long time to integrate human users and robots in a shared workspace

[104]. In the case of industrial robots, safety becomes even more challenging as the robots are

faster and larger. Many studies have been conducted in this field using various approaches

to make the robots safer to operate and to facilitate a common workspace for both robots

and human users. Common approaches to the solution are to use a WFTS at the end-

effector of a robot, covering the robot with tactile skin sensors [105] [106] [107], estimation
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of interaction forces using measurements from tactile skin and extended Kalman filtering

based algorithm [108], and, more recently, to use neuroadaptive control algorithms along

with tactile sensors to accurately detect interaction forces [109] [45].

The use of force-torque sensors (FTS) at the end-effector of a robot arm only facil-

itates sensing of forces at the wrist. Covering the robot with tactile skin will expand the

interaction sensing abilities to the whole arm, but, in such a case, complex sensor hard-

ware and acquisition interfaces need to be provided. Moreover, utilizing these sensors for

feedback has to be integrated with the control system of the robot to react to the detected

user-force applications or collisions. Such integration requires prior knowledge of the robot

system model and its physical parameters.

In contrast, the work presented here addresses these challenges by enabling whole

body collision detection using a model-free, Neuro-Adaptive controller. Specifically, we

explore the idea of using a Force-Torque sensor (FTS) at the base of a robot arm which allows

detection of forces along the whole body of the robot. However, using this configuration,

the BFTS detects forces from users, or due to collisions with the environment, as well as

dynamical forces exerted at the base due to the movement of the robot arm. A novel method

is introduced to separate the estimated user-forces from the robot dynamics by the use of

an additional learning neural network (NN) controller.

Several studies have been conducted in the past using the FTS at the base of a

robot manipulator. These include estimation of robot mass properties by West et. al. [110],

inertial parameter estimation by Liu et. al. [111], estimation of other dynamic parameters

by Grotjahn & Heimann [112], and Morel and Dubowsky [113]. In all these examples,

knowledge of the system kinematics as well as the structural form of the robot dynamics

are needed for estimation of robot chain masses and inertia. Nonlinear robot terms can then

be compensated for increased tracking control precision of the arm. For instance, Morel

& Dubowsky used a base FTS with a PUMA 550 to accurately control the position of the

manipulator with an error smaller than 30µm. Another such study of BFTS integrated

admittance and impedance controller have been presented by Ott & Nakamura [114, 115].
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These controllers exploit robot passivity properties and make use of detailed knowledge of

robot dynamic parameters.

Since force-torque sensors can be attached to both wrist (WFTS) and at the base

(BFTS) of a robot manipulator, a study by Geffard et. al. [116] shows that as compared to

WFTS, torque control with BFTS is better for back-drivability of a robot arm, increasing

its safety.

Human-robot collision detection for safe robot operation with a human user has also

been investigated by Lu et. al. [32, 33]. In particular, Human-robot collisions are detected

using a trained neural network [33], using both a WFTS and a BFTS. In the studies on safe

robot operation, it has been experimentally established that a human user can tolerate a

collision force of 50N [34]. Therefore, any controller that is implemented to detect collision

with a human user, needs to be able to detect a force of less than 50N .

Research has also been conducted on using neural networks (NN) to estimate the

dynamic parameters of a robotic arm, in particular, landmark research from Lewis et.

al. [16, 17]. The NN approach eliminates the need for an accurate robot dynamic model

and allows joint error tracking within predictable bounds. The NN weights are adapted

online to the inputs and errors in every controller update cycle to provide an output. In

our recent work, we have expanded these ideas to physical HRI studies with robot arms, in

which the interaction admittance is adapted concurrently with the robot model to match

a given interaction task model. The resulting Neuro-Adaptive Controller (NAC) structure

leads to a model-free control scheme for robots [44,45].

The work presented here extends the NAC method to detect whole arm collisions and

interaction forces by formalizing a new Base-sensor Assisted Physical Interaction (BAPI)

controller. This method allows estimating the forces working on the robot arm using a

BFTS and without any prior knowledge of the dynamic parameters of the system. An addi-

tional NN is introduced to separate the dynamical effects of robot motion from interaction

forces. The advantages of our method are 1) ease and portability of implementation and 2)

providing Lyapunov guarantees of convergence. We verify our work though experiments on
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a custom 6-DOF robot arm, shown in Fig. 6.1.

The paper is organized as follows: Section 6.1.2 describes the BAPI controller, Sec-

tion 6.1.3 details the experimental setup and the experiments conducted. Section 6.1.4

discusses the results obtained from the experiments.

6.1.2 Base-Sensor Assisted Physical Interaction (BAPI)

This section describes in detail the BAPI controller in three parts: 1) System dy-

namics of a robot arm equipped with a BFTS, 2) Neuro-Adaptive Controller or NAC for

estimation of robot dynamics and 3) Base Forces Estimator or BFE for identification of

interaction forces exerted by the robot arm. Because the NAC formulation has been exten-

sively described in previous publications [109], [45], [17], [16], the reader is directed there for

a more detailed derivation and the Lyapunov stability proof. The overall BAPI controller

block diagram is depicted in Fig. 6.2, in which, the top part represents the NAC and the

bottom part represents the BFE.

6.1.2.1 BFTS System Dynamics

Since the BFTS is able to sense not only the user-forces or collisions of the robot

arm, but also the twists due to the dynamical movement of the robot, it is necessary to

separate the dynamic terms and the user interaction terms. Taking the robot system shown

in Fig. 6.1, the robot dynamics with a human user’s force acting on the robot arm with n

joints can be written as:

Λ(q)q̈ + C(q, q̇)q̇ + Ψ(q) + τd = τ + τuser, (6.1)

where, Λ(q) represents the inertia matrix, C(q, q̇) represents the non-linear Coriolis term,

Ψ(q) represents the gravity vector and τd represents the bounded internal disturbances. τ

represents the control torque and τuser represents the torque induced on the joints due to

user force and q(t) ∈ Rn is the joint vector.

Let the force from user be represented by Fuser at a point P6 (Fig. 6.1). Then:

τuser = JTPBP6
(q)Fuser, (6.2)
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Figure 6.1: 6-DOF Robot manipulator constructed using torque-controlled Dynamixel mo-
tors MX-106, with an FTS at base [6]

in which JPBP6 ∈ R6×n represents the Jacobian between the point of contact P6 and the

base of the robot PB. Now the dynamics at the BFTS can be represented by [114] [33]:

Λ̄(q)q̈ + C̄(q, q̇)q̇ + Ψ̄(q) = τuser wrench − Fb, (6.3)

where, q(t) ∈ Rn is the joint vector, Λ̄(q), C̄(q, q̇) and Ψ̄q are the coupling terms between

the manipulator and the BFTS representing the inertial, Coriolis and gravity terms. Fb

represents the wrench experienced at the base due to forces acting on the robot arm as well

as the wrenches due to robot movements.

The value of Fb is sensed by the BFTS, while τuser wrench is the wrench exerted at

the base due to the user forces Fuser at P6 on the robot and is defined as [117]:

τuser wrench = AdT
H−1

PBP6

Fuser, (6.4)
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in which HPBP6 ∈ SE(3) is the homogeneous transformation matrix between the point

P6 and base PB. H−1
bp and AdT

H−1
PBP6

gives the adjoint of the homogeneous transformation

function, defined as [117]:

AdT
H−1

PBP6

=


RTPBP6

0

−RTPBP6
d̂PBP6 RTPBP6

 , (6.5)

where, d̂PBP6 is the skew-symmetric matrix of dPBP6 , the 3 × 1 position vector in the

homogeneous transformation matrix, and RPBP6 is the rotation component.

Equations Eq. 6.1 and Eq. 6.3 can be used to detect and estimate the user forces.

From Eq. 6.3, if Λ̄(q)q̈+ C̄(q, q̇)q̇+ Ψ̄(q) = −X(q̈, q̇) is estimated, then the user force Fuser

can be calculated by:

−X(q̈, q̇) = τuser wrench − Fb (6.6)

=⇒ −X(q̈, q̇) = AdT
H−1

PBP6

Fuser − Fb (6.7)

=⇒ Fuser = (AdT
H−1

PBP6

)−1(−X(q̈, q̇) + Fb). (6.8)

A NN can be trained to learn −X(q̈, q̇) against an expected output of Fb, and as per Eq.

6.7, when no user forces Fuser are acting on the robot, these two terms are equal. This

training process is described in detail in section 6.1.2.3.

To run the robot, the controller has to estimate, and feed forwardly compensate

the robot dynamics in Eq. 6.1. This estimation is accomplished using a Neuroadaptive

Controller (NAC) elaborated on in section 6.1.2.2.

6.1.2.2 Neuro-Adaptive Controller (NAC)

The NAC is responsible for estimating the robot dynamics and providing torque

input to its joints to cancel nonlinearities. These torque values are adjusted by the NAC

on-line, based on the error between the desired and actual joint trajectories, with the goal

of driving the tracking error to zero. This section describes briefly the formulation of NAC

adapted to the robot BFTS.
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Figure 6.2: BAPI controller block diagram. The upper portion represents the NAC non-
linear compensator, while the BFE NN in the lower block estimates the robot interaction
force at the base [6]

Starting with Eq. 6.1, we can write:

Λ(q)q̈ + C(q, q̇)q̇ + Ψ(q) + τd = τ (6.9)

We define the error and sliding mode error in following a desired trajectory qd as described

in [16]:

e = qd − q, (6.10)

and

r = ė+ νe, (6.11)

where ν is a symmetric positive definite matrix which is used as a design parameter for the

system. The error dynamics of the system is then represented by:

Λ(q)ṙ = −C(q, q̇)r + f(x) + τd − τ, (6.12)

and f(x) is defined as:

f(x) = Λ(q)(q̈d + νė) + C(q, q̇)(q̇d + νe) + Ψ(q). (6.13)
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Notice that as the error e goes to zero, r also goes to zero in Eq. 6.11 and vice-versa.

Defining the control torque as:

τ = f̂(x) +Kvr − v(t), (6.14)

where f̂(x) is an approximation of f(x) and Kv represents a constant gain matrix. A

robustifying term v(t) is also added to the torque to compensate for any unmodeled forces.

Combining Eq. 6.12 and 6.14, we obtain:

Λ(q)ṙ = −C(q, q̇)r + τd + f̃(x)−Kvr + v(t), (6.15)

In which f̃(x) represents the error in estimating f(x). An I/O equation for the 1 hidden

layer NAC neural network can be written as an approximator for f(x):

f(x) = W Tσ(V Tx) + ε, (6.16)

in which W and V are the required NN weights, σ is the sigmoid activation function of the

hidden layer of the neural network and x is the input vector to the NN. Let Ŵ and V̂ be

the approximation of the ideal weights then, the control torque in Eq. 6.14 becomes:

τ = Ŵ tσ(V̂ Tx) +Kvr − v, (6.17)

where x is a vector containing [eT ėT qTd q̇Td q̈Td ]. In [16, 17, 45, 109], it was shown that

appropriate weight update equations can be found to guarantee convergence of the tracking

errors to zero via a Lyapunov proof. We direct the reader to our previous publications for

details omitted here.

6.1.2.3 Base Forces Estimator (BFE)

We introduce BFE as a new controller block, which estimates the dynamic interaction

forces acting on the robot base, and separates the user pushing force from the dynamical

loads due to the movements of the robot arm. The BFE is implemented as a single hidden

layer NN trained with appropriate inputs and outputs described in Fig. 6.2 when no outside

user/collision forces are acting on the robot body. From Eq. 6.7, if Fuser = 0, then

83



X(q̈, q̇) = Fb. Therefore, the estimation of −X̂(q̈, q̇) can be accomplished as a nonlinear

equation with three input variables Y = [q̈ q̇ q] and Fb as the output. Therefore, a NN can

be used to estimate such an equation system using:

− X̂ = ATρ(BTY ) + ε, (6.18)

where, A and B are the output and input weights of the BFE NN respectively and ρ is a

hyperbolic tan-sigmoid activation function of the NN.

The BFE requires one-time training to estimate the dynamic parameters and then

the trained weights can be used online during normal operation to detect collision. The

output of the BFE NN would be the estimated forces measured at the base in case of

no user-forces/collisions, whereas the actual sensor data would contain both the user-

forces/collisions as well as the dynamic interaction forces. If the output of the BFE NN is

represented by Fbestimate
, then by using Eq. 6.7, we can separate the human-robot or the

robot environment interaction forces from the rest of the dynamics:

AdT
H−1

PBP6

Fuser = Fbestimate
− Fb (6.19)

=⇒ τuser wrench = Fbestimate
− Fb (6.20)

=⇒ τuser wrench = F̂user (6.21)

The training of the NN weights in Eq. 6.18 can be done off-line, through classical NN

training methods. A Levenberg-Marquardt based NN training algorithm was implemented

for this paper using the Matlab toolbox [118]. The training algorithm uses a Hessian matrix

and a gradient term, which are defined below, for updation of the weights:

Hnn = JTnnJnn (6.22)

and

∆ = JTnnenn. (6.23)

The term Hnn represents the Hessian matrix, Jnn is the Jacobian matrix of the errors w.r.t

NN weights, ∆ is the gradient term and enn is the error of the NN. Using these terms, the
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weights are updated by:

Wnew = Wold − [Hnn + µI]−1∆, (6.24)

where µ is a scalar design parameter and its value is modified based on the performance of

the NN.

6.1.3 Experimental Testbed and NN Training

In order to validate the BAPI controller introduced in section 6.1.2, experiments

were conducted on a custom 6-DOF robot which was constructed using Dynamixel MX-106

motors from Robotis, South Korea. An EtherCAT enabled Delta FTS from ATI, USA was

placed at the base of the robot arm. This setup can be seen in Fig. 6.1. The robot arm

as well as the FTS are connected to an EtherCAT network to ensure real-time capabilities

of the system and data synchronization. A Teensy 3.6 micro-controller and an EtherCAT

PRO module from Bausano, Italy, were used to construct an EtherCAT slave which was

used to connect to the Dynamixel motors. The entire BAPI control loop was executed in

real-time at 400Hz.

A desired trajectory based on sine wave inputs [qd q̇d q̈d], with a position range of

±pi/4 radians and phase difference of ±pi/2 radians between subsequent joints, are provided

to NAC which calculates the joint torques. The robot arm receives torque values to each

joint as input and sends position and velocity of each joint as output. The velocity value

is filtered using an IIR filter and put through a Zero Order Hold to get the acceleration

value. NAC has 30 inputs ([e ė qd q̇d q̈d] × 6), 10 neurons in hidden layer and 6 outputs

(τ = [τ1 τ2 τ3 τ4 τ5 τ6]). No off-line training is required for this network as it estimates

the dynamic parameters of the robot online.

Before the NAC can be run, the BFE NN is trained by running the arm with prede-

fined, sufficiently exciting trajectories using NAC and not applying any external force. The

NN was trained in Matlab NN Toolbox using Levenberg-Marquardt algorithm over 200,000

data points and validated over another separate set of 200,000 data points. The NN has 18

inputs ([position, velocity, acceleration] × 6), 30 neurons in hidden layer and 6 outputs [Fx,
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Figure 6.3: NN Validation Error Distribution [6]

Figure 6.4: NN Operation Error Distribution [6]
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Fy, Fz, Tx, Ty, Tz]. The trained weights and biases are then made saved for the operation

of the arm.

The mean square error (MSE) between the BFE NN output and the FTS were

calculated as follows:

MSE =

[(Fxnn − Fxexp)2 + (Fynn − Fyexp)2+

(Fznn − Fzexp)2 + (Txnn − Txexp)2+

(Tynn − Tyexp)2 + (Tznn − Tzexp)2]1/2

(6.25)

where, the subscript nn represents NN output and the exp represents the expected output

from the NN which is also the output of the BFTS. N represents the number of samples

being evaluated.

A histogram analysis of the MSE, over the period of experiments, gives the proba-

bility of error, which is a metric of NN performance. Fig. 6.3 shows the probability of error

distribution during the NN validation operation. The y-axis of the subplots represents the

probability of error and the x-axis depicts the error in forces and torques. The errors are

observed to be bounded and centered around 0.

The BFE NN was then used online with the NAC to estimate forces and torques.

Fig. 6.4 shows the probability of error distribution when sensor data was compared against

NN estimates at zero interaction forces. The graph shows similar result as compared to the

validation results. The graphs also show that the error in forces are bounded about ±2N

and the torque errors are bounded about ±1Nm.

Collision experiments were then conducted by running the robot system for 120

seconds and applying user-forces every 20 seconds. The experiments were conducted on all

6 joints to show the robustness and versatility of the proposed solution. These results are

discussed in the following section.

6.1.4 Results and Discussion

Fig. 6.5 shows the result of experiment on joint 1 of the robot system and Table 6.2

shows the experiments conducted on all six joints and the corresponding MSE value at that
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time. The difference between the BFE NN output and actual BFTS data was considered

as the error of the BFE NN. This error, as per Eq. 6.20, also represents the τuser wrench.

The mean square error (MSE) analysis reveals that at every collision during the experiment

process, the value of MSE increases sharply. This spike in MSE data represents the detection

of τuser. If a softbound of MSE = 2 is drawn, then any MSE value above the softbound

can be recorded as a collision event.

20 40 60 80 100 120
time(s)

10

20

30

40

50

60

M
SE

User Touch at Joint 1 every 20 sec

Figure 6.5: User interaction forces at Joint 1 (P1) at 20s, 40s, 60s, 80s and 100s [6]
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TABLE 6.1

Experimental Results

MSE Data for Collisions at time interval in seconds

20s 40s 60s 80s 100s

Joint1 29.88 15.26 63.6 34.68 56.69

Joint2 62.08 26.04 26.45 37.46 26.56

Joint3 27.08 98.17 65.74 12.33 36.22

Joint4 29.38 22.15 31.08 28.18 31.44

Joint5 67.63 142.7 43.31 102.8 121.3

Joint6 61.07 260 105.5 65.15 136.6

The low noise jitters visible in the graph are caused due to the wrench exerted on

the BFTS when one of the links in the robot changes direction while following the required

sine-wave path. These forces are accounted for by the BFE NN and therefore these events

are not recorded as collisions.

It can also be observed that the MSE values vary for different experiments. This is

due to the fact that low interaction forces will yield low MSE and high interaction forces

will yield higher MSE values. Another factor affecting the value of MSE is the location of

application of forces on the robot arm as well as its configuration at the time. These factors

affect the value of AdT
H−1

PBP6

from Eq. 6.20.

These results also show the quick detection of the forces at every 20 seconds when

the actual collision occurred. Such robust detection can be used in a robot system to react

to the collision either by stopping or moving away from the point of collision. The results

also underline the fact that the detection of collision doesn’t depend on the location of the

collision. One question may arise on the justification of use of the BAPI controller as

any disturbance beyond the operating range of the BFTS can be detected as a collision

and a mere soft-bound on the sensor data is enough to detect collision. To address this

question, we direct the reader to the results shown in Fig. 6.6, 6.7 and 6.8. Fig. 6.8 and
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Figure 6.6: Low Interaction Forces at Joint 6 (P6) [6]
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Figure 6.7: Sensor data (forces and torques) from BFTS during collision [6]
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Figure 6.8: Sensor data (forces and torques) from BFTS during no collision [6]

Fig. 6.7 represent the sensor data during normal operation and during collisions respectively.

We observe that the sensor values as well as range of sensor output to be similar and no

conclusive decision can be made on collision by having a softbound on the range of data.

Whereas when compared to the base NN controller output and taking the mean square

error of the results, we see 4 spikes in the data at 40, 60, 80 and 100 seconds representing

collision depicted in Fig. 6.6. The collision at 20 seconds was not detected as it as the force

of collision was so low that it fell under the error bounds of ±2N as discussed in section 6.1.1.

These graphs also highlight the effectiveness and sensitivity of our proposed controller.

6.2 Joint Torque Estimation using BAPI

6.2.1 Introduction

Collaborative robots (co-robots or cobots) are intended to share their workspace

with humans by physical interaction, while helping them perform ever-increasingly complex

tasks. For this purpose, co-robots need to be equipped with advanced sensing schemes,

which allow them to perceive their immediate surroundings, comprehend user’s physical

intent, and guarantee user safety [104].

91



Traditionally, co-robots have implemented intuitive physical human-robot interac-

tion (pHRI) schemes and collision detection through the use of force-torque sensors at the

end-effector [119] or other joints [120], or by integration of tactile robot skin technology [121].

Many commercial robots, however, are not equipped with joint force-torque sensors due to

a number of practical considerations. For instance, instrumenting robots with joint force-

torque sensors introduces structural flexibilities and nonlinearities and causes performance

degradation [122]. Force-sensitive robot skins also are costly, adding to the wiring complex-

ity of the hardware, and require a separate electronic data acquisition system and interfacing

with the robot controller. These tactile robot skins also require the knowledge of the po-

sition of each tactile element so that the controller can accurately interpret the applied

forces [45,105–109].

In the case of wrist force-torque sensors (WFTS), interactive control can be obtained

merely in response to forces applied to the end-effector, where the force-torque sensor is

installed, rendering the robot blind to the forces applied along the robot’s remaining body.

To mitigate this drawback, some researchers have utilized a six-axis force-torque sensor

installed under the manipulator’s base instead of at the wrist and estimated the net force-

torque acting along the manipulator’s links [33, 111, 113–115, 123–125]. This methodology

obviates the need for joint sensors or incorporation of tactile robot skins on the robot outer

shell and enables the implementation of compliant control schemes for interactions all along

the manipulator’s structure. Use of a base force-torque sensor (BFTS) also allows to retrofit

any robot arm which lacks a WFTS and facilitates in making the robot compliant. Use of

BFTS also means detecting all the forces and torques cased due to the movement of the

manipulator and the forces interacting on it. Any controller facilitating HRI with BFTS,

needs to distinguish between the effect of interaction forces and the dynamic forces due to

manipulator movement on the BFTS.

Liu et al. used the base force-torque measurements along with the joint velocities

to identify inertial parameters of the manipulator [111]. They showed that their proposed

identification algorithm was robust against unmodeled joint frictions and resulted in precise
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estimation of inertial parameters even in the absence of acceleration measurements. In [33],

Lu and colleagues used a model-based neural network as well as the measurements from

two force-torque sensors mounted at the manipulators wrist and base to detect collisions

between the robot and environment or human. Using BFTS, estimation of dynamic param-

eters of a robot was presented by Grotjahn & Heimann [112] while West et al. presented

the estimation of robot mass properties [110]. Christoforou used the reaction forces at the

manipulator’s base to online estimate the robot’s model parameters and enhance the trajec-

tory tracking performance of a model-based control scheme as well as a nonlinear adaptive

controller [124]. Buondonno and Luca combined the base force-torque measurements and

model-based information on the contact link, provided by residual vectors, to develop an

algorithm that efficiently estimated unknown parameters of the robot and enabled collision

detection [125]. In [114] [115], Ott and Nakamura used the readings from a base force-torque

sensor to implement an admittance controller. Various attributes of the proposed compliant

control scheme were analyzed including stability, passivity, and steady-state properties.

In [113], Morel and Dubowsky utilized the feedback from the base sensor to estimate

the individual joint torques and implemented a torque control scheme which nullified joint

friction and gravity effects. They showed that, upon the elimination of those effects, a simple

proportional-derivative position controller is adequate for a high-quality motion control even

at small amplitude. In [123], Morel and colleagues proposed a straightforward approach,

based on the base force-torque sensor, to cancel out joint frictions and attain a highly-precise

motion control at low speed without the need for complex analytical friction models. Morel

et al. also proposed that using low-velocity trajectory can make the dynamic effect on the

BFTS negligible, thus rendering a simpler relationship between the joint torques and the

BFTS reading.

Neural networks (NN) have also been used to estimate the dynamic parameters of

robotics manipulator by Lewis et al. [16, 17]. This idea has also been further investigated

in our recent work, where the control scheme is expanded to be used in pHRI scenarios. A

Neuro-Adaptive Controller (NAC) was formulated which resulted in model-free control of
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the robot [44,45]. Our recently proposed Base-sensor Assisted Physical Interaction (BAPI)

controller, utilizes NAC and an additional neural network (NN) to estimate the dynamic

forces experienced by BFTS [6]. The BAPI controller was used to detect collisions on the

robot body to safely operate in an environment shared by human users. In this scheme,

the NAC was used in conjunction with an off-line trained NN to estimate the magnitude

of collision forces. While this controller was useful to detect the sudden collisions of the

manipulator with the environment, it could not accurately estimate the interaction force

and its location.

In this paper, we are extending our approach to an on-line, accurate estimator of

interaction forces. We use a force-torque sensor attached to the base of a custom 6-DOF

robot manipulator to validate our approach. The resulting controller arises naturally from

the neuro-adaptive loop after estimating the robot dynamics at a real-time loop of 200 Hz.

The advantages of our method are 1) A model-free approach, 2) co-manipulation capabil-

ity without WFTS and 3) providing Lyapunov guarantees of convergence. Experiments

show that a mean-square joint torque estimation error below 5% can be obtained with this

method.

The paper is organized as follows: Section II describes the proposed controller; Sec-

tion III details the experimental setup and the experiments conducted; Section IV discusses

the results obtained from the experiments; Finally, section V concludes the paper with

description of our future work.

6.2.2 Controller Formulation

In this section the theoretical basis of our controller is described. The controller

consists of two control loops a Neuro-Adaptive Controller (NAC) and a Base-force estimator

(BFE). The NAC is responsible for setting the torque of the robot arm, whereas the BFE is

responsible for estimating external interaction forces acting on the robot. In this section we

go over the system dynamics and the relationship between the wrench experienced at the

base of a robot and the torques at the joints. Here, we describe the NAC in a succinct way,
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Figure 6.9: Proposed controller block diagram. The NAC (top) learns the robot dynamics,
while the BFE (bottom) estimates the joint torques based on wrench experienced at the
base of the robot. [7]

since it has already been covered in detail elsewhere [109], [45] [17] [16]. The classical NAC

controller diagram is shown in the upper portion of Fig. 6.9. The controller consists of a

neural network (NN) injected directly into the feed-forward loop to cancel out the robot

nonlinearities. The NN can be implemented using a 1 or 2 layer “shallow” structure, and

the weight update equations of the NN are selected such that the controller is stable. In this

paper, we augment the original NAC with an on-line BFE block, as shown in the bottom

portion of BAPI control architecture, illustrated in Fig. 6.9.

6.2.2.1 BFTS System Dynamics

This section describes the dynamics that relate the joint motor torques to the BFTS

wrench. In case of a robotic manipulator shown in Fig. 6.10, the wrench experienced at a
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Figure 6.10: 6-DOF Robot manipulator coordinate system [7]

joint i can be described as [123]:

ξtotali = ξdynamici + ξgravityi (6.26)

where, ξtotali is the total wrench experienced by joint i, ξdynamici is the dynamic

wrench at joint i due to manipulator motion and ξgravityi is the wrench due to gravity.

Furthermore, the wrench due to gravity at the base of the robot can be described

as [123] [110]:

ξgravity0 =

 Wtotalg

M(q)n

 (6.27)

where, Wtotal is the mass of the robot, g is the acceleration due to gravity, M(q) is the

geometry matrix, representing the displacement vector of each joint from the BFTS origin.

Using Eq. 6.27 and 6.26, the dynamic wrench at the base can be written as:

ξdynamic0 =

 ftotal0 −mtotalg

τtotal0 −M(q)n

 (6.28)

where, ftotal0 and τtotal0 are part of total wrench, ξtotal0 , the total forces and torques ex-

perienced at the BFTS. Using these systems of equations, Morel et al. illustrated the

relationship between joint torques and the wrench at the base of a manipulator as follows:
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τd = α(q) [ξtotal0 − ξgravity0 ] (6.29)

where, τd is the joint torques of the manipulator and α is defined as [123]:

αi(q) =
[
zTi−1SOi−1O0 zTi−1

]
(6.30)

The SOi−1O0 is the skew-symmetric matrix of the vectors representing the displace-

ment of joints w.r.t. the BFTS origin. The α matrix depends only on the joint positions

and Denavit-Hartenberg (DH) parameters, i.e. the robot kinematics.

Morel et al. state in their previous study that if the robot is operated in a very

small region, the effect of ξgravity0 can be considered static and thus the joint torques can

be calculated by just using the BFTS data and α [123].

In order to calculate the joint torques while maneuvering in the general 3D workspace,

ξgravity0 must be estimated. Once the ξgravity0 is estimated, a neural network can be trained

to learn the α(q) matrix as well. The subsequent sections elaborate on the method to cal-

culate the terms in Eq. 6.29.

6.2.2.2 Neuro-Adaptive Controller (NAC)

The Neuro-Adaptive Controller or NAC, as shown in Fig. 6.9, is used to drive the

robot to follow a desired path qd. The NAC contains a neural network which estimates the

robot’s dynamic model and outputs joint torques to drive the error between the desired

and the actual trajectory to zero. The Euler-Lagrange equation of any robot arm can be

defined as follows:

Λ(q)q̈ + C(q, q̇)q̇ + Ψ(q) + η(q̇) + τd = τ (6.31)

where, Λ(q) is the inertia matrix, C(q, q̇) is the Coriolis term, Ψ(q) is the torque due to

gravity and η(q̇) is the friction term. τd is the disturbance and τ is the joint torque.

The error dynamics of the system is then defined as:

Λ(q)ṙ = −C(q, q̇)r + f(x) + τd − τ (6.32)
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Figure 6.11: Segmenting NAC NN to extract dynamics terms. [7]

where, r is the filtered sliding mode error, and f(x) represents a combination of reference

trajectory dynamics given by:

f(x) = Λ(q)(q̈d + νė) + C(q, q̇)(q̇d + νe) + Ψ(q) + η((̇q)) (6.33)

where, ν is a symmetric positive definite matrix and is used to define r as (ė+ νe). e is the

error between desired trajectory, qd and the actual trajectory q.

The control torque for NAC can be calculated as:

τ = f̂(x) +Kvr − v(t) (6.34)

where, KV is a constant gain matrix. f̂(x) is an approximation of Eq. 6.33. The f̂(x) is

estimated by NN as:
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f̂(x) = W t × ρ(V T ∗ x) (6.35)

where, x is the input vector to the NN and is constructed as x = [eT ėT qTd q̇Td q̈Td ], while V

and W are weights associated with the NN input and output layers, and ρ is the activation

function. Note that in the NAC, we use a ‘shallow’ NN with a single hidden layer, and that

specific weight update laws detailed in [45] guarantee the system asymptotic stability in the

Lyapunov sense.

From Eq. 6.29, the effect of gravitational torque at the base is required for joint

torque estimation. To extract this information from our NAC, f(x) was divided into four

NNs whose summation would reconstruct f(x) as follows:

f(x) = ΩΛ + ΩC + ΩΨ + Ωη (6.36)

where, ΩΛ, ΩC , ΩΨ and Ωη are output of NN estimating Λ(q)(q̈d + νė), C(q, q̇)(q̇d + νe),

Ψ(q) and η((̇q)) respectively. The output of the NNs can be described with equations:

ΩΛ = Ŵ T
Λ × ρ(V̂ T

Λ ∗ σΛ) (6.37)

ΩC = Ŵ T
C × ρ(V̂ T

C ∗ σC) (6.38)

ΩΨ = Ŵ T
Ψ × ρ(V̂ T

Ψ ∗ σΨ) (6.39)

Ωη = Ŵ T
η × ρ(V̂ T

η ∗ ση) (6.40)

where, Ŵ and V̂ are estimated input and output weights for their respective NNs. ρ

is the sigmoid activation function in the hidden layer. Since each dynamic term depends on

a specific set of input variables, each of these NNs are provided with separate input basis

vectors. σ are the basis vectors for these NNs and can be defined as:
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σΛ = (q̈d + νė)⊗ ([q sin(q) cos(q)]) (6.41)

σC = (q̇d + νe)⊗ ([q q̇ sin(q) cos(q)]) (6.42)

σΨ = ([q sin(q) cos(q) sin(q)cos(q)]) (6.43)

ση = ([q̇ sgn(q̇)]) (6.44)

where, ⊗ is the Kronecker product. Since it is well-known that gravity term depends on

sines and cosines of the joint angles, it has been observed that providing it in the basis

vector improves the performance of the NAC [16] [17].

Finally, after extracting the Ψ(q) term from the NAC, its effect at the base will be

calculated to derive the gravity term ξgravity0 . This task is accomplished by the Base Force

Estimator module of the controller.

6.2.2.3 Base Forces Estimator (BFE)

The base force estimator (BFE) portion of our controller is responsible for translating

the joint torques due to gravity to wrenches at the base of the manipulator. By using the

robot Jacobian expressed in the base frame, JT0 , we use the relationship in Eq. 6.45 to

estimate ξ̂gravity0 from Ψ̂(q), which was estimated by NAC:

Ψ̂(q) = JT0 ∗ ξ̂gravity0 . (6.45)

From Eq. 6.29, only α remains to be calculated. This can be achieved through two

methods - by solving the Eq. 6.30, which depend on the DH-parameters of the robot or

by constructing another NN to learn the kinematic dependencies. In this paper, we use a

NN to estimate α off-line, by constructing an input basis vector as described in Eq. 6.46.

The NN is defined in Eq. 6.47, where W T
BFE and V T

BFE are the learned input and output

weights and ρBFE is the sigmoid activation function of the hidden layer.

100



XBFE = [(ξtotal0 − ξ̂gravity0) q] (6.46)

α̂(q) = W T
BFE × ρBFE(V T

BFE XBFE) (6.47)

Finally, after α is estimated to be α̂, we use the BFTS data and ξ̂gravity0 from NAC

to estimate manipulator joint torques, τ̂d, as follows:

τ̂d = α̂(q)
[
ξtotal0 − ξ̂gravity0

]
. (6.48)

6.2.3 Experimental Implementation

In order to validate the on-line estimation algorithm described in the previous sec-

tion, we configured an experimental testbed consisting of a custom 6-DOF arm from Re2,

Inc., USA. The robot arm contains carbon-fiber, light-weight links and high torque back-

drivable motors from HEBI Robotics,USA. As illustrated in Fig. 6.12, the arm is placed on

a base force torque sensor, a Delta model from ATI, USA.

A single board computer, Blackbird from Versalogic, USA, running the Robot Op-

erating System (ROS) was used to network the sensors and actuators and implement our

controller in a real-time loop. A real-time patch was applied on the Ubuntu OS running

our controller, and the algorithm was executed at 200Hz in real-time. The HEBI X-series

motors communicate over Ethernet and are capable of taking torque command as input and

provide current position, velocity and motor torque as feedback. The BFTS is EtherCAT

enabled which ensures real-time capability of communication.

The desired trajectories for NAC were generated through sine and cosine functions

of varying frequencies between π/8 and π/32 and amplitudes between ±π/4. The joints

were given the trajectories with phase differences of ±/pi/2 between each joint such that the

combined trajectory generated would cover a large workspace. Since the desired trajectories

are trigonometric functions, their velocity and acceleration can also be generated by using

their derivative functions. As mentioned by Morel et al. [123], to reduce the effect of non-
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Figure 6.12: 6-DOF robot manipulator placed on a base force-torque sensor. [7]
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Figure 6.13: Actual vs Estimated torque value at Joint 4 (top), and Joint 2 (bottom). [7]

linear system dynamics such as Coriolis and inertia terms at the BFTS, the velocity of the

joints was lowered to π/16 rad/sec for each joint.

Four constituting NNs were implemented in ROS, as per Eq. 6.36. Each NNs

consists of one input layer, one output layer and one hidden layer. The size of the input

layer depends on the length of the basis vector associated with the network, as mentioned

in Eq. 6.41, 6.42, 6.43 and 6.44. The hidden layer in all the NNs consisted of 20 neurons

and the output layer’s size depends on the number of joints in the robot, which is 6 in this

case. Separate basis functions were created as inputs to the NN as mentioned in Section
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6.2.2.2 and visualized in Fig. 6.11.

As the trajectories are executed, using the Jacobian at the base frame, the wrench

at BFTS due to gravitational torque was calculated and subtracted from the BFTS data,

as mentioned in Eq. 6.29. After the first run, the joint torque data and the resultant BFTS

data were used to train the BFE NN. This process helps learn the α term. A MATLAB

neural network toolbox was used with Levenberg-Marquardt algorithm to accomplish this

task, off-line. After this initial learning process was completed, the resulting α term can

be subsequently used in the on-line controller. Note that the α term can also be derived

formally from the robot DH parameters.

The on-line controller was run at 200 Hz, and used to estimate the joint torques, while

comparing them with actual sensed values. There were four experiment runs conducted

and the corresponding data was recorded and analyzed. In the next section, we discuss our

results and the performance of the algorithm.

6.2.4 Results and Discussion

TABLE 6.2

Experimental Results

MSE Data Joint Torque Estimation

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Run1 0.0030 0.0048 0.0044 0.0033 0.0035 0.0017

Run2 0.0028 0.0170 0.0055 0.0044 0.0036 0.0027

Run3 0.0034 0.0160 0.0056 0.0056 0.0038 0.0029

Run4 0.0030 0.0189 0.0060 0.0063 0.0037 0.0034

Fig. 6.13 depicts the estimated and measured torques at joints 2 and 4 of the robot,

respectively. These joints were selected because they experience the largest loading effects

during arm movements. Even though the commanded reference trajectories are sine waves

in both cases, the joints have to exert considerably non-sinusoidal torques in order to track

these trajectories. Furthermore, tracking errors converge close to zero as shown in Fig.

104



0 20 40 60 80 100 120
Time(s)

-0.5

0

0.5

Jo
in

t T
ra

je
ct

or
y 

(r
ad

)

Trajectory Tracking at Joint 4

Joint Trajectory
Desired Trajectory

0 20 40 60 80 100 120
Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Jo
in

t T
ra

je
ct

or
y 

(r
ad

)

Trajectory Tracking at Joint 2

Joint Trajectory
Desired Trajectory

Figure 6.14: Trajectory Tracking at Joint 4 (top) and Join 2 (bottom). [7]

6.14.

Furthermore, the joint torque estimation error was computed along entire trajectories

using the mean-square-metric defined as:

MSEjointi = (
1

Ndata rows
)
∑

data rows

((τdi − τ̂di)
2) (6.49)

The results containing MSE computations are tabulated in Table 6.2. Results show

that the estimation errors are consistently below 0.1 Nm for torque ranges between 3 and

7 Nm. After comparing the estimated joint torque and the actual values, we can conclude
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that the estimation closely followed the actual data as seen in Fig. 6.13. Similarly, in

Table 6.3, we see that the trajectory tracking errors are below 0.003 rad, which we can also

visualize in Fig. 6.14.

TABLE 6.3

Experimental Results

MSE Data Trajectory Estimation

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6

Run1 0.0001 0.0036 0.0013 0.0007 0.0004 0.0002

Run2 0.00009 0.0035 0.0013 0.0007 0.0004 0.0002

Run3 0.0001 0.0036 0.0013 0.0008 0.0004 0.0003

Run4 0.0001 0.0036 0.0013 0.0007 0.0004 0.0002

6.2.5 Conclusions

In the presented study, we proposed a novel, Neuro-Adaptive pHRI controller for

robot manipulators, that utilizes a force-torque sensor placed at its base. The main ad-

vantage of this scheme, when compared to traditional force measurements methods, is that

it can estimate external interaction forces everywhere along the robot chain. The con-

troller arises naturally from the NAC framework via an additional joint effort estimator

implemented using four neural nets. The controller was implemented in ROS and ran on

a real-time OS, to command a custom 6-DOF light-weight arm. The advantage of our

proposed controller is that it does not need a dynamic model of the robot. However, the

controller does need an initial estimate of the robot kinematics and the robot Jacobian. Ex-

perimental results show that joint torque estimation errors smaller than 5% of the torque

magnitudes can be expected.

In the future, we will combine the proposed neuro-adaptive controller with other

adaptive admittance controllers, and with robotic skin sensors to accomplish high perfor-

mance pHRI with non-collaborative robots and with mobile manipulators.
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CHAPTER 7

ARNA USER STUDIES

User studies were conducted on ARNA robot to better validate the system and its

efficacy in a healthcare environment. The studies were conducted with nursing students to

gather quantitative as well as qualitative data for analysis. The studies were designed such

that the functionality of the robot is tested for both sitter and walker scenario as described

in chapter 3. This chapter describes the user-testing process and analyzes the gathered

data.

7.1 Introduction

As new technological advancements are being made in nursing and healthcare do-

main, their acceptance and usability need to be analyzed. Many studies have been conducted

in the past to test the viability of new technologies in the field of healthcare. Davis has

proposed in these studies on the method of forming questions that can be grouped together

into two broad categories, namely - perceived ease of use and perceived usefulness [126].

Having such kind of a questionnaire is important as it provides comprehensive information

about how a user sees the new technology.

Based on the questionnaire and the logical grouping for the questions, it was later

proposed that a technology acceptance model can be formed [127] [8]. A technology accep-

tance model is required to accurately predict the intent to use a technology in future based

on the perceived usefulness (PU) and perceived ease of use (PEOU) of any technology by

the users. The intent to use metric is important as new technology may seem to solve a

problem but if the user finds it difficult to use, the technology may not be accepted in the

proposed field.

107



Figure 7.1 shows the technology acceptance model (TAM) as proposed by Davis,

which is based on the psychological research by Fishbein and Ajzen [128]. The technology

acceptance model proposes hypotheses based on figure 7.1 and then using statistical analysis

on the response to the questionnaires, these hypotheses are verified. The hypotheses based

on the figure are as follows [8]:

• Attitude towards using a technology will have positive effect on actual system usage.

• PEOU will have positive effect on PU.

• PEOU will have positive effect on Attitude.

• PU will have positive effect on Attitude.

• The technological system will affect the PU and PEOU.

• PU, PEOU and system will not affect actual usage directly.

• System will not affect Attitude towards technology.

A questionnaire can be grouped into these five categories - System, PU, PEOU,

Attitude and intent to Use. In the case of experiments conducted with ARNA, the first

hypothesis is tested. This was done to establish that the technology fits the TAM. After

the data was gathered from the questionnaire, the questions and responses were grouped

into two categories, PU and PEOU, and then statistical analysis was conducted to test the

hypothesis.

The questions in Table B.1 were grouped by taking items [1, 2, 5, 8, 11, 12, 15,

16, 17, 19] as indicators for PU and items [3, 4, 6, 7, 9, 10, 13, 14, 18, 20] as indicators

for PEOU. Similarly, in Table B.2, questions 1 to 14 were considered as part of PU and

questions 15 to 28 were grouped to form PEOU indicators. These groupings were made by

following the metrics laid out by Davis in his research paper [126].
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Figure 7.1: Technology Acceptance Model (TAM) proposed by Davis [8]

7.2 Experiment Setup

The facility at School of Nursing (SON), University of Louisville, KY was used

for testing the ARNA robot. This helped in simulating a hospital environment for the

experiments, as seen in fig 7.2. The experiments were conducted in two phases. Each

phase had twelve groups of nursing students, each group containing two people. During the

experiments, one of the students played the role of a patient and the other played the role

of a nurse. Upon the completion of one set of experiment, the roles were switched, thus

providing the role of nurse and patient to both the participants. Each experiment phase

lasted for six days, where experiments were conducted with two groups per day. During the

course of experiments, data were recorded using ROS bag files and after the end of each

run, a set of questionnaires were presented to the subjects. Subsequent subsections describe

the experiment protocols in detail.

7.2.1 Sitter Scenario

The sitter scenario experiment was designed, keeping in mind the task outlines of

chapter 3. A tablet was used as the HMI device though which the subject, playing the role

of a patient, had to control the robot to accomplish tasks. during these experiments the

second subject was not required to perform any task. The subject was situated inside the
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Figure 7.2: ARNA at School of Nursing, University of Louisville, KY

simulated hospital room on the bed, which can be seen in the background of fig 7.2. From

that static location, the subject was required to control the ARNA robot.

The task that the subject had to complete is illustrated in fig 7.3. The task is

divided into 4 parts. First the subject had to drive the robot to a table situated at about

4.5 meters from the simulated room. During this process, the feedback from the RGB-D

camera was used to assist with the driving of the robot. Then the subject had to control

the 6-DOF arm on the robot to grab a box placed on the table. This box contained vital

sign measurement equipment such as thermometer and pulse oximeter. The tablet provided

the necessary interfaces for the control of the arm and the base of the robot. Once the box

was captured, the subject was required to rotate the robot and drive it back to the room.

Once the robot was near the subject, the box had to be retrieved and the equipment inside

the box were used to take measurements of the subject. Once, this step was completed, the
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Figure 7.3: Sitter Task Experiment

box was re-attached to the arm of the robot and was driven back to the table to place it at

its original position.

Each subject had to perform the experiment thrice. After each run the subjects

were asked to fill out a questionnaire describing their experience. The questionnaire in

table B.4 was used during the experiments and is detailed in section 7.2.3. Along with the

questionnaire, data related to robot operation was also collected, such as completion time

and pick time. The completion time represents the time taken by the subject to finish each

experiment. Within the experiment, picking up the object while remotely tele-operating it

through a tablet takes significant effort and expertise. Therefore, the time taken by each

subject to capture the box was also collected as data.

7.2.2 Walker Scenario

In the walker scenario, a rectangular area was marked on the floor, as seen in fig 7.4,

which the subject had to follow while walking with the robot. This provided a standard

metric to compare the performance of the subjects as well as the robot. During the course

of experiments, one of the subjects played the role of a patient and the other played the

role of a nurse. The patient’s task was to walk with the robot while following the marked

lines on the floor while the nurse’s task was to hold the emergency stop button and walk
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alongside the patient as a supervisory role. This provided additional safety measure as the

subject plating the nurse can stop the robot if necessary. While walking, the robot is also

holding on to an IV pole with the arm and its position was maintained constantly by the

robot’s side during the entire experiment run.

Figure 7.4: Walker Task Experiment

During the experiment, the user interaction forces and torques were sensed by the

force-torque sensor attached to the handlebar of the robot. In this particular case, the

torques were used as inputs for driving the robot. This provided a scooter-like interface

where in order to move forward, the handlebar was to be twisted in the forward direction.

Three controllers, named axia1, axia2 and axia3, with varying stiffness were used where

the subject has to perform three trials per controller to complete the entire experiment

run. Therefore, each experiment set consisted of 9 experiment runs per subject. The entire

sequence of the controller used was randomized to exclude any inherent biases. After each

experiment, the subject playing the role of patient was asked to fill out the questionnaire in

table B.1. Whereas the subject playing the nurse had to fill out the questionnaire in table

B.2 after the entire experiment run was complete. Then the roles are switched, and the

entire process is repeated.

During the course of experiments, along with the questionnaire, data related to the

speed of the walker, course completion time and user interaction torques were collected.

These metrics provide an insight on the way the robot was operated. After the completion
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of Phase 1 of testing, during Phase 2, only axia3 setting was used for testing purposes.

7.2.3 Questionnaire

The questionnaires were designed in order to quantify the level of comfort in using

the robot and its efficacy according to the subjects. Table B.1 enumerates the questions

that were asked to the subjects after the end of each experiment run. These questions were

rated from 1 to 5 with 1 being the lowest score to the likeliness of the question. From

example, in question 2 the responsiveness of the robot is asked to which a score of 1 would

mean least responsive and a score of 5 would mean very responsive. Each subject had to

fill this questionnaire nine times corresponding to nine experiment runs.

The questionnaire in Table B.2 was asked, to the subject playing the nurse, once

after the end of the nine experiments. These questions seek to understand the usefulness

and the ease of use of the ARNA robot. These questions were rated from 1 to 7, with 1 being

that the user disagrees with the assertion. For example, in question 3 the assertion is that

the robot improves the performance from nurses’ perspective and a rating of 1 would mean

that the subject disagrees with the statement. In the questionnaire, questions 1 through 13

inquire about the usefulness of the robot and questions 14 to 28 pertains to the ease of use

of the robot.

Table B.3 represents the questionnaire that was asked of all the participants in the

first phase of the user testing only. But this questionnaire was removed from phase two of

the testing due to the redundancy in questions. Instead the questionnaire in Table B.4 were

asked after the completion of the sitter tasks.

The questions represent two contexts - Ease of Use and Usefulness. The response

to the questions about usefulness of the robot provides and insight to whether the robot

provides value in the current scenario. Where as in the case of ease of use, the learning or

training required to operate the robot is understood. Even if the robot provides value, it

should be easy to use in order to increase efficiency. Therefore, both these areas of questions

are necessary to explore.
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After completing each trial of the sitter experiment, the user was presented with

questions in Table B.3. These questions were rated between 1 and 5. For questions 1 to 29,

the rating relate which word the subject would most associate the robot with. For example,

in question 26, a rating of 1 would mean the robot is efficient whereas a score of 5 would

mean the robot is inefficient. From question 30 to 41, a rating of 1 means the assertion is

unlikely and 5 means that the assertion is very likely.

7.3 Results and Discussion

In case of sitter scenario, the average completion time for all the subjects was 209.52

seconds with a standard deviation of 86.84 seconds. Considering only the object pick time,

the average was 49,66 seconds with a standard deviation of 24.64 seconds. Figure 7.5 and

figure 7.6 illustrate the time taken by the subjects for each trial.

It was observed that the completion time as well as the object pick time was better

for subjects who are accustomed to gaming controllers. For example, trial 45 and 46 have

very low timings from the rest of the group.

Figure 7.5: Sitter Average Completion Time
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Figure 7.6: Sitter Average Pick Time

Figures 7.7, 7.8 and 7.9 illustrate the results of walker scenario experiments. The

results of the Phase 1 testing are tabulated as below:

TABLE 7.1

Phase 1 Walker Experiment Result

Controller Stiffness Settings

Axia1 Axia2 Axia3

Average Completion Time in s 101.73 92.09 91.36

Average Trajectory Error in m 0.57 0.47 0.43

Average Velocity in m/s 0.21 0.22 0.225

With lower trajectory error and faster finishing time, the controller setting Axia3

was selected for Phase 2 of the experiment where tests were conducted with one setting

only. Figures 7.7, 7.8 and 7.9 represent the average completion time, average velocity and

average error during the experiments respectively.
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Figure 7.9: Walker Error in Trajectory Following

Figure 7.10: Walker Average Torque

In the second phase of testing, the average completion time with Axia3 setting was

found to be 87.91 seconds with a standard deviation of 19.99 seconds. The mean torque

applied during the experiment was 37.23Nm with a standard deviation of 12.11Nm. And
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TABLE 7.2

Phase 1 Walker Questionnaire Result

Metrics Mean Std. Dev Min Max

PU Axia1 3.00 1.36 1 5

PEOU Axia1 3.28 1.37 1 5

PU Axia2 3.06 1.30 1 5

PEOU Axia2 3.33 1.38 1 5

PU Axia3 3.16 1.25 1 5

PEOU Axia3 3.42 1.35 1 5

TABLE 7.3

Phase 1 Walker Regression Result

Independent
Variable

Dependent
Variable

SumSq DF MeanSq F pValue R2

PEOU Axia1 PU Axia1 5.47 1 5.47 27.13 2.37 e−06 .308

PEOU Axia2 PU Axia2 2.72 1 2.72 12.55 0.0008 .171

PEOU Axia3 PU Axia3 3.86 1 3.86 16.13 0.0001 .209

the average velocity of the robot during the experiments was 0.11 m/s with a standard

deviation of 0.02 m/s. Since the safety limits were added to the robot’s response to user

interaction forces, it can be observed that even when high torques were applied the velocity

of the robot didn’t change as much. This can also be seen in the low standard deviation of

the velocity of the robot.

In Phase 1, the EOU and PU data from user survey were analyzed to test the

hypothesis that PEOU affects PU. Table 7.2 tabulates the average, standard deviation, min

and max score that PU and PEOU received from the users. The average scores for each

metric was calculated by taking the average score of all the responses for each question in

the metric group. The analysis was done separately for each controller settings. It can be

observed that each metric has an average score of 3 or higher out of 5. For further analysis

of how PEOU affects PU, regression analysis was conducted.

ANOVA was used to analyze the effect of PEOU on PU. The result of the regression

analysis is documented in Table 7.3. The pValue for all the relations are ≤ 0.0001 which
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points to the fact that there is a dependency between these two factors irrespective of the

controller settings. The R2 value ranged from .308 to .171 which means that PEOU effect

PU by 30.8% to 17.1% depending on the controller settings. This substantiates our initial

hypothesis that PEOU affect PU in case of walker scenario.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The research work presented here is intended to better enable the ARNA robot’s

functions in a hospital environment. The ARNA robot was designed and built to assist

nurses with their routine tasks that can be automated. Two broad areas of tasks were also

identified for the robot, namely — Sitter task and Walker task. The tasks would entail the

ARNA robot to be in close proximity of human users. During these tasks the HRI can be

physical or non-physical based on the nature of the intended tasks.

Sensors play a vital role of sensing the environment around the robot. It also senses

the user forces during pHRI. Artificial skin, with sensors embedded in it, are used to sen-

sorize a robot part that is supposed to sense human forces or collisions. A simulation module

was built for such a sensor package which includes the sensor as well as the artificial skin in

which it is embedded in. The simulation model predicts the sensor behavior by estimating

the level of deformation in the skin and the dissipation of forces due to the physical prop-

erties of the skin. Therefore, for a certain amount of force, the sensor might experience a

diminished force due to the dissipation in the skin. This is particularly important as the

controllers need to have the accurate force information for its operation. The model was

also validated through comparisons with actual experiment data. It was shown that the

model can be used to predict the sensor outputs under various conditions.

An HMI for ARNA related tasks was investigated. The performance of a tablet-based

HMI was tested for sitter scenario. The autonomy level of traded control was decided upon

for operation of ARNA in this scenario. It was illustrated that using a traded control scheme,

a uniform performance can be achieved by both trained as well as untrained users. The idea
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being that the HMI should be easily operable by a patient, nurse or system administrator.

Experiments were conducted using trained and expert users and the completion rate of

tasks for both groups was shown be similar. The proposed HMI was tested using a 2-arm

robot called Baxter from Rethink Robotics. The fetch tasks were used for the purpose of

testing the system. The robot was commanded to fetch random items using the HMI and

robot was able to complete medium-level tasks such as trajectory planning and execution,

object localization, and grasp planning.

The tablet-based HMI was developed to be capable of taking voice as well as onscreen

button-based commands. The voice input also allows the HMI to facilitate conversation with

the robot, which is also one of the functionalities in the sitter scenario. A context-based

conversation engine was implemented to enable a meaningful dialog. Experiments were

conducted where the subjects had to talk to the robot using this interface. A questionnaire

was prepared to evaluate the user experience while using this system. The system was

showed to be user-friendly and was rated equally by both expert as well as novice users.

A neuroadaptive controller with HIE was validated on a PR2 robot. The controller

contained two loops to estimate user intent and the system dynamics. It was observed

that the controller was able to approximate the human operator’s intended trajectory on-

line without any prior knowledge of the system. It was demonstrated that the controller’s

performance was similar to that of traditional methods but without the need of training

them. The effect of neural network size on the performance of the robot was also investigated

by conducting preliminary research studies.

A novel model free controller was designed for full body collision detection using a

BFTS attached to the base of a 6-DOF manipulator. The BAPI controller is model free

and is able to detect collisions throughout the robot body during normal operation. The

forces experienced at the base was decoupled by identifying the forces that are expected to

be sensed at the base due to the movements and the forces sensed due to collisions. The

controller was experimentally validated with an error bound for forces of ±2N and torque

of ±1Nm which is less than 50N of robot collision which a human can tolerate.
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A holistic DOLA framework for the robot operation was proposed. The DOLA

framework is designed to adapt to the different levels of autonomy during HRI. The ten

levels of autonomy define the roles and responsibilities of the human user, which deceases

as the system becomes autonomous. In a hospital environment, the flexibility of choosing

an autonomy level allows the robot to be used by different patients and in accordance to

their capabilities. The Observer block of the DOLA framework was defined to continuously

monitor the patient’s intent during operation. Using a HIE module, the Observer block

enables the robot to adapt to the user’s mannerisms. The proposed framework utilizes

neural network based controllers which makes it model-free and allows it to be implemented

on any service robot.

8.2 Future Work

The DOLA framework is planned to be implemented and investigated against cur-

rently existing frameworks. The experiments would cover all the scenarios for ARNA robot

in the health-care facility. Human subjects would be able to use this framework to provide

feedback on the usability of such a system in assisting the nurses.

The future work involves validating NAC with HIE on the ARNA robot. The con-

troller performance will be investigated in a hospital environment while performing walker

scenario based tasks with human operators. The controller can be further improved to

adapt to user intentions using different neural network sizes in the NAC and HIE.

The BAPI controller is to be implemented on the 6-DOF arm on the robot which

would be tasked with holding the essential equipment during walker scenario and pick and

place tasks in sitter scenario. The BAPI controller will be able to detect the forces acting

on the arm and stabilize its performance during the tasks.
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APPENDIX B

QUESTIONNAIRES

TABLE B.1: Walker Scenario Questionnaire

1 Did you lose your balance?

2 How responsive was the robot?

3 How often did you feel like you’d lose your balance?

4 Did you find the robot helpful?

5 How did you find it to operate the walker?

6 How was it keeping the robot straight?

7 How was turning the robot?

8 How intuitive was the robot?

9 Is the robot heavy going straight?

10 Is it heavy to turn the walker?

11 How easy is it learning to use the walker?

12 How easy is it remembering how to use the robot?

13 Do you sufficient support from the walker?

14 Are you satisfied with the walker as a mobility aid?

15 How easy to use it in crowded situations?

16 How easy is it to go through doorways?

17 How easy is it to avoid bumping into objects?

18 How comfortable walking it in front of people?

19 How big do you think the walker is?

20 How do you find the speed of the walker?
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TABLE B.2: Technology Acceptance Questionnaire

1 My job would be difficult without the robot

2 Using the robot gives me greater control over work

3 Using the robot improves my performance

4 The robot addresses my work-related needs

5 The robot saves me time

6 Robot enables me to accomplish tasks more quickly

7 Robot supports critical aspects of my job

8 Robot accomplishes more work than possible otherwise

9 Robot reduces time I spend on unproductive activities

10 Robot enhances effectiveness of job

11 Improves quality of work I do

12 Increases Productivity

13 Makes it easier to do my job

14 I find ARNA useful overall

15 I am often confused when I use ARNA

16 I make frequent errors when using ARNA

17 Interacting with ARNA is often frustrating

18 I need to consult the user manual often when using ARNA

19 Interacting with ARNA requires a lot of my mental effort

20 I find it easy to recover from errors using ARNA

21 The system is rigid and inflexible to work with

22 I find it easy to get ARNA to do what I want it to do

23 The robot often behaves in unexpected ways

24 I find it cumbersome to use ARNA

25 My interaction with ARNA is easy to understand

26 It is easy for me to remember how to perform tasks while using ARNA
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27 ARNA provides helpful guidance in performing tasks

28 Overall, I find ARNA easy to use

TABLE B.3: Human-Robot Interaction Questionnaire

1 Fake/Natural

2 Machinelike/Humanlike

3 Unconsious/Conscious

4 Artificial/Lifelike

5 Rigid/Elegant movement

6 Dead/Alive

7 Stagnant/Lively

8 Mechanical/Organic

9 Artificial/Lifelike

10 Inert/Interactive

11 Apathetic/Responsive

12 Dislike/Like

13 Unfriendly/Friendly

14 Unkind/Kind

15 Unpleasant/Pleasant

16 Awful/Nice

17 Incompetent/Competent

18 Ignorant/Knowledgeable

19 Irresponsible/Responsible

20 Unintelligent/Intelligent

21 Foolish/Sensible

22 Anxious/Relaxed

23 Agitated/Calm
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24 Quiescent/Surprised

25 Easy to learn/hard to learn

26 Efficient/Inefficient

27 Memorable/Forgettable

28 Accurate/Inaccurate

29 Satisfied/Dissatified

30 Using ARNA would enable me to accomplish tasks

31 Using ARNA would improve my performance

32 Using the system would increase my productivity

33 Using ARNA would enhance my effectiveness

34 Using ARNA would make it easier to perform tasks

35 I would find ARNA useful

36 Learning to operate ARNA would be easier

37 I would find it easy to get ARNA to do what I want

38 My interaction would be clear and understandable

39 I would find ARNA to be flexible to interact with

40 It would be easy to become skillful with ARNA

41 I would find ARNA easy to use

TABLE B.4: Human-Robot Interaction Questionnaire

1 How convenient is it to drive the robot with the tablet interface?

2 How quickly does the robot arrive at its destination using the tablet

interface?

3 How safe do you think the robot is while you are controlling it with the

tablet interface?

4 How much attention does it take to drive the robot to the desired place while

avoiding obstacles?
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5 How easy is it to drive the robot to the desired place while avoiding

obstacles?

6 How convenient is it to tell the robot where to go using the interface?

7 What would you say the speed of the robot is when moving around the room?

8 How safe do you think the robot is when navigating to the desired place?

9 How easy is it to grab items with the robot arm using the tablet interface?

10 How stably did the robot gripper grasp the item?

11 How safe do you think the robot arm is when it hands over the fetched items?
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