
AUTONOMOUS WHEELED ROBOT PLATFORM TESTBED FOR NAVIGATION

AND MAPPING USING LOW-COST SENSORS

D. Calero 1, E. Fernandez 1, M.E. Parés 1

1 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Av. Carl Friedrich Gauss, 7. Building B4,

08860 Castelldefels, Spain - (dcalero, efernandez, epares)@cttc.es

Commission II

KEY WORDS: 3D modelling, Kinect, Navigation, ROS, SLAM

ABSTRACT:

This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed

up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an

extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at

the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover

for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or

sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be

taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system

includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be

used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

1. INTRODUCTION

Geomatics community is constantly developing new positioning

and mapping algorithms. Those algorithms aim at determine

precise and accurate maps in a faster and cheaper way. By map

we mean both 3D point clouds or georeferenced images.

Moreover, the community may take advantage of new mobile

platforms available in the market (i.e. small drones like DJI

Phantom 4) plus new software and tools able to generate the

ortophotos or 3D point clouds easily (i.e. Pix4D and ArcGIS).

These tools are speeding up the development of new

applications in fields such as civil engineering and precision

agriculture, for example. Furthermore, they rely fully on a good

imaging sensor positioning and orientation, or equivalently on a

good platform trajectory determination. In the context of this

paper, a trajectory might be a time series of positions, velocities

and attitudes of a moving object plus the calibration parameters

of the instruments used to determine those and the estimated

covariances of all those values.

The mapping research community is currently dealing with two

challenges: the use of new technologies and their use in new

harsh scenarios. New sensors, able to provide data suitable for

geo-applications, appear constantly in the market. As stated in

(Groves et al., 2014a; Groves et al., 2014b), technology has to

deal with new sensors –like plenoptic or photon-mixing

cameras–, new performances –like the inertial sensors found in

smartphones– and new environments –like indoor or urban

canyons–. Furthermore, there are still many issues to solve

concerning the achievement of target precision, accuracy and

reliability in the realm of mapping. The following are some

examples: when available, GNSS accuracy is almost

unachievable due to strong multipath in narrow urban

environments (Xie and Petovello, 2015); shadows and poor

illumination conditions are a threat for tie points extraction and

matching (Fang and Zhang, 2015).

The examples above define a scenario where continuous and

intense research in a steadily changing technological

environment is taking place. This constant, uninterrupted

change and evolution process constitutes a challenge (for

instance, from the software and hardware engineering

standpoint) for the research activities in this area.

Currently, a researcher can find a wide range of helpful tools

available both in the "traditional" market as in the open-source /

free license market. From the point-of-view of hardware, the

combination of physical interfaces and protocols available in

the market may slow down the integration of new hardware

pieces on any system. The industry is facing this diversity with

the creation and adoption of common interfaces for products

that may have a similar use, but at the same time new ones are

being created.

From the point-of-view of software, most platforms run with a

specific operative system (OS). This limits their use on other

platforms that may run with a different OS. This is the case of

GNU-Linux, Windows, iOS and Android based platforms

(using their own libraries). GNU-Linux core system may be the

most common one in robotics due their easiness, flexibility and

open source code that allow any user to know and check what a

code is doing at any moment. Other solutions, closed from the

point of view of a developer, like Windows or iOS, may offer

better assistance and support at the early stages of product use,

but they are less flexible to support new developments. To help

to standardize the software developments on the robotics fields,

a Robotic Operative System (ROS) was developed some years

ago and it is keep in continuous development by their own

community. ROS core is based on a GNU-Linux OS (Quigley et

al., 2008).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205182288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper presents the concept of an architecture for a system

whose target is to provide a reliable framework where research

related to low-cost 3D mapping may take place. The goal of

such system is to become the basic toolset for researchers in

these areas, avoiding the need to start anew each time a new

project starts. Additionally, an implementation of the

aforementioned concept and architecture is presented here:

ARAS.

ARAS consists on a wheeled robot platform equipped with

several low-cost navigation sensors, such as a GNSS receiver, a

low cost IMU, rotary encoders, and a RGBD Kinect v2 depth

sensor. To increase its operation capabilities it has a wireless

communications interface and a wired interface. The testbed

also includes an indoor scenario inside the CTTC building for

executing real tests.

Section 2 review the main concepts related to autonomous

terrestrial mapping, section 3 describes the architecture (and

components) from a conceptual and an implementation

standpoint (showing how the ARAS system materializes the

concept). Section 4 details how this system may be used in

different scenarios.

2. STATE OF THE ART

2.1 Low-cost vehicles

Among the different robots types possible, there is a group of

robots called “autonomous” which must be able to take

decisions based on previously defined criteria without the

intervention of a human operator (Siegwart et al., 2011). In the

particular case of mobile robots and for the purpose of this

research, it is defined an autonomous rover as a robot capable of

navigating throughout an environment without the intervention

of a human operator. These robots are already preferred over

humans in some areas, in example on hazardous environments

or risky situations. Mobile robots can fit in five categories from

the platform point of view: legged, wheeled, flying or

swimming robots.

Wheeled robots are defined as robotic platforms that navigate

around the ground using motorized wheels to propel

themselves. The main advantages they offer are that are easy to

implement in mechanical terms and that are very stable in most

environments, compared to other mobile platforms such as

legged robots. The main drawback of wheeled robots is that

they are not able to perform a good navigation over some

surfaces, such as rocky terrain, sharp declines, or areas with low

friction (Ghotbi et al., 2016).

In terms of application, autonomous wheeled robots are one of

the most used platforms in nowadays engineering: For instance,

domestic robots such as Roomba vacuum cleaner, rovers used in

space applications such as the Mars Curiosity (Tunstel et al.,

2005), robots in Amazon automated warehouses, multipurpose

robots designed by Clearpath robotics or the Google self-

driving car (Jiang et al., 2015) now under the Waymo project.

2.2 Positioning and navigation

For this research, navigation is defined as the control of robots

motors attached to the wheels. The navigation module

determines the power to be applied to each motor to reach the

specified waypoint from its actual localization. Sometimes, it

can work without waypoints information, in a free-velocity

mode, for example, when a Radio Control (RC) is used.

A path-planning module may assist the navigation module

providing it with the next waypoint to be reached. It can we

operated on a fixed waypoints mode or on a most advanced

dynamic behaviour, in which new waypoints are created during

the robot operation (either by the user or any other module or

algorithm). Nevertheless, this module is only mandatory if

waypoint navigation is expected and thus, could be avoided if

desired by the user.

Furthermore, to develop an autonomous robot, which needs of a

navigation module, is mandatory to provide to the system some

kind of localization service, understood as the position

coordinates and attitude at a specific time. Localization, or

positioning, consists on determining where the robot is in the

environment, either in local or global coordinate’s frames. In

autonomous rovers, localization consists on determining a set of

TPVA (Time-Position-Velocity-Attitude), at least for the

vehicle chassis or main frame (there might be other mobile parts

in the robot, such as a robotic arm). Hence, TPVA describes the

robot’s main frame position, velocity and attitude at a particular

instant of time (Parés and Colomina, 2015).

2.3 Low-cost localization sensors

Hence, to compute and obtain a TPVA solution a set of sensors

is needed. The selection of the sensors used depends on the

environment in which the robot will operate (i.e. indoor or

outdoor scenarios).

Among the possible sensors studied, localization sensors can be

classified as inertial and non-inertial sensors (or visual, etc…).

Inertial sensors are instruments that measure rotation and

translation forces observed by the object. These sensors are

usually used to perform dead reckoning, which is a method of

localization that relies on estimating the position, speed and

orientation of the robot based on earlier known positions. The

most used inertial sensors in autonomous rovers are gyroscopes

and accelerometers.

Gyroscopes are used to measure rotational forces. In

autonomous rovers they are used mainly to determine the

heading of the vehicle (Titterton and Weston, 2004).

Gyroscopes measure reactive torque that is produced due to the

movement of the sensor to give absolute orientation respect

their spin axis. Torque (τ) is proportional to the spinning speed

(ω), the precession speed (Ω), and the wheel’s inertia (I).

τ = IωΩ (eq.1)

The main drawback of the gyroscopes used for dead reckoning

is that the typical error of the system is accumulative. This

means that if they are used for a long time, a small constant drift

will provide a big error.

An accelerometer is a device that measures static (gravitational)

and dynamic acceleration forces (Titterton and Weston, 2004).

Given the mass (m) of the accelerometer, the measure of the

dynamic forces (F) provides the acceleration (a) of the sensor in

every axis:

a = F/m (eq.2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

68

With the acceleration, the speed and position are easy to obtain

with integral calculation.

However, all inertial sensors suffer of stochastic errors such as

biases and random walks effects among others that limit the

system performance when operating only with this kind of

sensors.

An IMU (Inertial Measurement Unit) is an embedded sensor

that usually combines 3-axis accelerometer and 3-axis

gyroscope orthogonally placed between them. In some cases,

IMUs also carry magnetometers. IMUs are ones of the most

used sensors in robotics because of their capability of measuring

translation and rotation (Titterton and Weston, 2004).

Non-inertial sensors do not measure directly the forces on the

object. There are plenty of sensors and technologies that can be

used for localization (cameras, barometers, Wi-Fi, Ultra Wide

Band, etc.), but the most used on autonomous rovers are

magnetometers, rotatory encoders and GNSS (Global

Navigation Satellite System). In addition, RGB-D or LIDAR

sensors can be used for localization and mapping using

techniques such as SLAM (Simultaneous Localization And

Mapping) (Davison, 2007).

Magnetometers determine the direction of Earth’s magnetic

north, and there are two types: Hall Effect and flux gate

compasses (Titterton and Weston, 2004). Regardless of the type

of compass used, a major drawback concerning the use of the

Earth’s magnetic field for mobile robot applications involves

disturbance of that magnetic field by other magnetic objects.

This issue is greater for indoors robots, since most buildings

have metallic structures that can disturb the magnetic field

inside. Moreover, they are very noisy sensors that require of

relatively high time integration values to obtain an accurate

measurement. In return, they provide a global measurement,

very useful when combined with other sensors.

Rotatory encoders track the angular position of any rotatory

device to generate digital information. In rovers, are used to

determine odometry (change of position over time) by

monitoring the number of turns made by the wheels. If an

encoder is able of determining the direction of the rotation, it is

called quadrature encoder. There are many types of encoder,

like magnetic or mechanical, but one of the most used in

robotics is the optical encoder. This may include any visual

odometry source, a kind of odometry measurements extracted

from visual imagery processing (McCarthy and Barnes, 2004).

Radiofrequency systems such as GNSS mainly, but also NFC,

RFID, UWB and others, very useful in GNSS-denied scenarios

such as indoor buildings (Montañés et al., 2013) and (Navarro

and Nájar, 2011).

The GNSS is a beacon based localization (Titterton and

Weston, 2004). There are at least twenty-four operational GNSS

satellites at all times. Each satellite continuously transmits data

that indicate its location and the current time. The GNSS

satellites synchronize their transmissions so that their signals

are sent at the same time. When a GNSS receiver receives the

RF (Radio-Frequency) signal of a satellite, the arrival time is

measured and used to determine the relative distance to this

satellite, usually known as pseudorange. By combining four or

more pseudoranges, the position of the receiver is determined

by triangulation means. The main advantages of this system are

low price of GNSS receivers and the fact that they do not have

accumulative error. In the other hand, GNSS receivers cannot

be used as a reliable localization sensors on robots that have to

work in low coverture areas, such a dense forest or indoors.

This limits its use to a limited number of scenarios where an

open view of the sky is available and the RF thermal noise is on

normal levels.

Acoustic systems, as the one developed by the LOPSI group

from the Spanish CSIC (Jiménez et al., 2009).

There are available some commercial indoor localization service

providers such as mapspeople, deepmap and infsorf, among

others.

2.4 Low-cost perception/imaging sensors

Depth perception consists on determining the distance between

the robot and the surrounding objects than conform the

environment. This is done by taking measurements using one or

a set of sensors, and then extracting meaningful information

from those measurements. There are a lot of types of depth

perception sensors, and most of them imitate human or animal

senses. For instance, an ultrasonic sensor imitates bats

echolocation (Fiorillo, 1999). This type of sensors provides a

direct measurement of distance to the surrounding objects

interacting with the environment. There are different

technologies used by these sensors, but the most used in

robotics is the time of flight or arrival (ToF or ToA).

Optical sensors are designed following two main architectures,

either CMOS or CCD cameras. CMOS are cheaper than CCDs

for the same amount of pixels integrated, therefore being of the

preferred technology in low cost devices.

New developments and cost reduction of products have led to

the rising of stereo cams, with a pair of image sensors instead of

traditional mono cameras with a single sensor, such as Kinect

and Zed cameras among others available in the market. They

allow the automatic generation of cloud points with their dual

camera integration technology with and extreme easiness of use.

2.5 SLAM

SLAM is a technique that involves the use of perception

sensors, such as RGB-D sensors, LIDARs, cameras and

sometimes inertial sensors. It consists on trying to

simultaneously localize the sensor with respect to its

surroundings, while at the same time mapping the structure of

that environment (Davison, 2007). The sensors are obtaining

depth measurements from the environment and comparing the

obtained pattern with a map of the surroundings. The map can

be introduced by the user or generated and actualized during the

operation of the robot. If the detected pattern coincides with a

pattern of the environment, the robot is able to get a

localization. At the same time, the environment is being

mapped. It is a good localization technique, but requires a post

process period that is time consuming (Zienkiewicz et al.,

2016).

3. SYSTEM ARCHITECTURE

3.1 Requirements

The architecture (and components) of a framework willing to

provide with a useful set of tools and procedures to facilitate the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

69

research tasks related to a specific set of disciplines may

obviously vary depending on the actual experience of the

people involved first in its inception and, later on, in its design

and implementation stages. This paper presents, therefore, the

view of its author, view that has been heavily influenced by

their participation in a series of projects where the framework

discussed here played a key role.

The components included in a low-cost mapping research

framework should be able to offer, at least, the following set of

features:

• Data acquisition from sensors,

• Localization (TPVA) of robot chassis,

• Autonomous Navigation including path planning

(waypoints),

• 3D Mapping capability

Each of the features in the list above is important by itself. For

instance, the ability to collect data from a stereocam is a key

factor for the 3D mapping feature. In short, these tools help to

save time and reduce costs, thus facilitating the work of

researchers. However, it is the combination of different subsets

of these features (tools) what reveals the versatility of the

concept, and how it responds to different research use cases (see

section 4).

ARAS implements these features, providing a module for each

feature (subsection 3.3.3).

3.2 Architecture and components

The system is designed to work as is or in reduced versions

using less logic units and sensors, and thus simplifying its

scheme. In its full-equip version it has three main logic units:

• ODROID XU4, a microprocessor as the ROS core unit.

• Arduino Due, a microcontroller that acquires data from most

of the sensors integrated on the rover.

• Motor Controller, another microcontroller for power and

PWM control of the four DC motors.

For example, the microprocessor and a microcontroller

(Arduino Due) can be removed. This reduces the system to an

R/C vehicle. Instead, having both microcontrollers and a

microprocessor unit, allow to connect a huge variety of sensors,

and in most cases to any of them (for example, the IMU). If no

RGBD sensor is used, then the Microprocessor can be removed

from the system reducing considerable its power consumption

by more than 45W just in processing power.

Calibration parameters are measured and provided to the system

for all the sensors integrated in the robot, but it is a decision of

the user to use or modify them. The use of calibration

parameters improves the output quality performance on all

levels.

Future integration of new sensors will be eased by the adoption

of ROS. Hence, many sensors are already providing ROS

drivers or software interfaces for this purpose but in the case

that they are not available, the integrator just must work to

publish or subscribe to the adequate ROS topic. Moreover, an

integrator may benefit from a new hardware ROS proposed

standard: HROS {}.

The development of new algorithms will be also eased by the

adoption of ROS. A developer must only have to take into

account which ROS topics must subscribe or publish to fit its

new development into the already existing ecosystem.

3.3 Actual implementation

3.3.1 ARAS platform

A Kit 4WD1 Aluminium (Lynxmotion) is the basis frame used to

develop this Rover. As mentioned before, it includes:

• An Aluminium support frame (A4WD1E-KT). It has also

some plastic pieces and covers.

• Four DC brushed motors. Model GHM-04 @ 12V. Each

one with a quadrature encoder attached to their motor shaft.

• Four 4.75'' tires made of plastic.

The set of sensors integrated are:

• GPS+SBAS Skytraq RAW-1315F. It provides both GPS

coordinates and pseudorange measurements.

• IMU Invensense MPU9250, triaxial gyroscopes,

accelerometers and magnetometers (9 DoF). It has also a

temperature probe for temperature compensation.

• Four quadrature rotary encoders with up to 12000 counts by

wheel revolution (motors do 400 counts by revolution but also

have a 30:1 gear head). They are attached to the motor shaft.

• A Microsoft Kinect V2 RGB-D depth sensor. It includes a

dual camera system (RGB and IR) plus an IR point-grid

emitter.

This rover is able to provide a continuous TPVA solution, both

in local or global coordinates and regardless of indoor or

outdoor scenarios. Hence, the TPVA solution will take into

consideration only the available sensor’s data at the moment of

the processing.

Figure 1. ARAS rover

The set of processors or main logic units are:

• Roboclaw has an ATMEL IC, can decode dual quadrature

encoder’s data and has two PWM output channels for brushed

DC motors. 5V and 3.3V tolerant.

• Arduino Due has an ATMEL SAM3X8E ARM Cortex-M3 @

84 MHz. Only 3.3V tolerant except for their USB ports that

are 5V tolerant.

• ODROID XU4 has a Samsung Exynos5422 Cortex™-A15 2

GHz and Cortex™-A7 Octa core CPUs. Mali-T628 MP6

(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full profile). 2 GB

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

70

RAM memory. Two USB 3.0 Host, one USB 2.0 Host and a

Gigabit Ethernet port. We have included an USB hub

connected to the 2.0 USB port with a Wi-Fi USB 802.11 bgn

compliant.

The approximate costs for the platform at the moment of this

writing are summarized in Table 1:

Component Price (€)

Kinect 2 90

Kinect cable adapter 50

Odroid XU4 + eMMC +

adapters

100

Arduino Due 30

Power adaptation circuit 100

Rover Chasis Kit 320

LiPo Battery 4S1P 3000mAh 30

TOTAL 720 €

Table 1. Platform prices list

Dependencies: RoboClaw firmware has been updated to the

latest version available at this moment. Arduino’s library was

downloaded prior to its use.

Arduino Due requires of the following software and libraries:

Arduino IDE 1.6 or higher; Arduino DUE programming library;

MPU9250 library; RoboClaw library; Rosserial library; Skytraq

GNSS library.

ODROID XU4 requires of the following software and libraries:

LUBUNTU 14.04; ROS Indigo: Rosserial ROS module;

Kinect2_bridge ROS module; IAI_kinect ROS module; RTAB-

MAP ROS module (http://introlab.github.io/rtabmap/);

OPENCV2.4; OPENCL; GCC4.6.

Figure 2. Schematic diagram

3.3.2 ARAS ROS data acquisition modules

ROS topics are the way ROS operates and they allow the

different modules to interchange information. This is the list of

ROS topics, either published or subscribed, from sensor’s data

processing:

ODOM: Odometer information from encoders. It may include

position coordinates (X, Y, Z), quaternions orientation (QX,

QY, QZ and QW), covariance matrixes and twist information:

linear (VX, VY and VZ) and angular (WX, WY and WZ) with

its respective covariance matrixes.

IMU: IMU information MPU9250. It may include quaternion

orientation (QX, QY, QZ and QW), angular velocities (WX,

WY and WZ) and linear acceleration (VX, VY and VZ) and

their respective covariance matrixes.

ODOM_FILTERED: KF output from

ROBOT_LOCALIZATION ROS module. Similar to ODOM.

TF: Transformation topic (lever-arms). It may include

translation (TFX, TFY and TFZ) and rotation (TFQX, TFQY,

TFQZ and TFQW) transforms.

CMD_VELOCITY: Command velocity. It may include linear

(VX, VY and VZ) and angular (WX, WY and WZ) velocities.

KINECT is a particular case in which many topics are published

at the same time form a single source. The lists of the most

relevant topics related to Kinect are: three different qualities

(HD, quarter HD and SD), colour or mono images, and depth or

cloud images. Compressed images can be obtained on demand.

All the topics (except for the Kinect related ones) are listed in

Table 2 with their appropriate ROS type definition.

Topic Type

ODOM nav_msgs/Odometry

IMU sensor_msgs/Imu

ODOM_FILTERED nav_msgs/Odometry.

TF tf

CMD_VELOCITY cmd_vel

Table 2. Topics and types list

All Topics include a time-tag field.

3.3.3 ARAS ROS data processing modules

Main system operates with ROS INDIGO running on

LUBUNTU 14.04. The different ROS modules executed may

publish or subscribe to different ROS topics as mentioned

before.

ROSCORE is always executed first and is setup to its localhost

IP address.

ROSSERIAL is installed and configured to allow serial

intercommunication between the Arduino Due (USB

Programming port interface) and ODROID XU4 (USB). It is

configured at 57600 bps speed. Arduino Due subscribes to

CMD_VELOCITY and publishes ODOM and IMU ROS topics

(ODROID opposed subscription/publication).

ROBOT_LOCALIZATION is executed next. It subscribes to

ODOM and IMU and publishes ODOM_FILTERED ROS

topics. This can be changed by CTTC’s NAVEGA module.

ROSKINECT2_BRIDGE is launched once the USB

connectivity is validated (executing a terminal lsusb command

must make appear a list with three Microsoft devices, either is

not working properly). It specifies OPENCL processing and it

uses IAI_KINECT.

RTABMAP is last executed. It subscribes to Kinect images (2D

photos or 3D cloud points), TF (constant lever arm between

Kinect’s RGB and IR cameras) and ODOM_FILTERED (the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

71

topics published by this module are not detailed on this

research). This module allows SLAM execution. RTAB-Map

(Real-Time Appearance-Based Mapping) is a RGB-D Graph

SLAM approach based on a global Bayesian loop closure

detector. A memory management approach is used to limit the

number of locations used for loop closure detection and graph

optimization, so that real-time constraints on large-scale

environments are always respected. RTAB-Map can be used

alone with a hand-held Kinect or stereo camera for 6DoF RGB-

D mapping, or on a robot equipped with a laser rangefinder for

3DoF mapping. (RTAB-Map)

Acquisition module

Conceptually, there is module responsible of the gathering the

information coming from the sensors. This module is executed

both in the Arduino Due and ODROID XU4, acquiring and

communicating with Odometers, GPS and IMU (Arduino Due)

and Kinect (Odroid XU4). Data is pre-processed (units and axis

conversion). This module is interfaced with ROSSERIAL

module.

Robot Localization module

The coordinates origin are in the platform centre, X-axis

forward, Y-axis right and Z-axis down. The IMU is placed in

the rover mass and rotation centre, with its own axis orientation

adapted to rover axis orientation. Lever-arm are measured and

provided to the system through convenient topics publications.

Path planning and navigation module

This module can work either in manual or automatic

configurations. It is executed on all logic IC: RoboClaw,

Arduino Due and ODROID XU4. Motor control commands

travel through ROSSERIAL ROS module.

At its most basic configuration, the path planning and

navigation module work as a manual control device through an

Android app running on a tablet. This application publishes

CMD_VELOCITY topic messages and requires of human

interaction controlling a graphical joystick.

At its most advanced configuration, the Path planning and

navigation module is working with WAYPOINTS. In this

particular case, it computes the CMD_VELOCITY to be

published from the actual rover localization output

(ODOM_FILTERED) and the next WAYPOINT to be reached.

Waypoint can stored in memory previously, automatically

created during execution and/or created using the previously

mentioned Android app.

Anyway, RoboClaw accepts three types of motor control serial

messages:

• Velocity: Just a velocity value.

• Velocity and acceleration: A specific velocity and acceleration

values.

• Velocity, acceleration and distance: The same as above but

until reach and specific distance (encoder quadrature counts).

Although these three types of messages can be send to

RoboClaw, by now and to simplify the system architecture and

be fully compatible with ROS commands, only velocity serial

messages from Arduino Due are send to RoboClaw. This

module can be changed by the ROS NAVIGATION module but

initial tests were not working as expected and then it was

decided to not use it by now until more work is done with this

module.

Depth map and Point cloud module

The generation point clouds are automatically done by the

Kinect itself together with the KINECT_BRIDGE ROS module.

Hence, any user may subscribe to the published cloud points to

obtain them.

Building map module

This module is directly related to RTABMAP ROS module

which is responsible of the creation of a 3D map based on the

point cloud received, plus the TF of the cameras and rover

localization (ODOM_FILTERED ROS topic).

Obstacle avoidance module

This has been the first ROS module created and tested for this

platform and it requires of the obstacle detection module.

The objective is to surround any obstacle, like in bug algorithm,

but instead of following the border of the object the algorithm

tries to find where the obstacle ends, similarly as in the “follow

the gap” philosophy, to set a new waypoint beside it. To do so,

the robot turns until the obstacle is no longer detected. Next

figure explains graphically the ARAS obstacle avoidance

algorithm.

Figure 3. Obstacle avoidance algorithm schematic

The obstacle avoidance module uses Kinect depth images to

determine if there is an obstacle in rover’s straight line path.

Obstacles situated beyond the Kinect central point at the X axis

(15 cm) are considered obstacles at left and obstacles above this

point are considered to be at right.

The obstacle avoidance module is executed on the

microprocessor (ODROID XU4). The general operation works

as follows: this module is only enabled when an obstacle has

been detected. Its main task is to compute a new waypoint that

guides the robot into avoiding the obstacle. To do so, the robot

performs a scan of the environment and searches obstacle free

areas. When a suitable area is met, the algorithm creates a new

point on the route. The navigation module reads this as the new

waypoint.

Therefore, this module subscribes to Kinect depth images and

publishes either velocity commands (CMD_VELOCITY ROS

topic) or waypoints (advanced mode).

4. USE CASES

A tool such the one presented in this paper may be used in a

variety of research use cases, just combining in different ways

the components that integrate it. The most usual use cases are:

• Verification and validation of localization and

mapping new sensors and algorithms

• Positioning and Mapping in Real-life Environments

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

72

It has been stated several times in this paper that ARAS is

generic and extensible. This means that new sensors may be

included into the system---or those that have been modified

easily adapted-- at almost no cost.

Basically, including a new algorithm means just to determine

which ROS topics must either subscribe or publish. There is no

need to change already existing software to make the new data

available to ARAS; that is, when adding new sensors there is no

need to maintain, change or adapt the existing code base.

As it happens to any kind of algorithm, it is necessary to verify

and validate new models in order to guarantee their correctness

(that is, the new code contains no bugs) and performance (the

new sensor is correctly modelled). This is the algorithm

verification and validation use case.

4.1 Verification and validation of new mapping technology

It has been stated several times in this paper that GEMMA is

generic and extensible. This means that new sensors may be

included into the system—or, those that have been modified,

easily adapted—at almost no cost.

Testing new algorithms is such simple as to substitute current

ROS modules with the new ones, to carry on predefined

missions and to check for the performance of the results.

It has been created a 3D map of one of our laboratory to

validate the RTABMAP output as seen in Figure 4. It has been

rendered using CloudCompare software.

4.2 Positioning and Mapping in Real-life Environments

Loaded with the appropriate set of modules ARAS might be

used as a real-time server providing successive position and

attitude values to some other subsystem(s). For instance a RF

mapping payload might decide to delegate the task of

positioning the vehicle platform to ARAS, feeding this

component with data coming from the different sensors on

board, instead of performing this process itself. ARAS is now

providing a position solution with 5 cm. precision and 10 cm

accuracy after 5 minutes of mission.

A variation of the example above would compute mapping

solution in real-time but log these data to permanent storage

instead. This capability is of special relevance in emergency

scenarios where quick charting is required (Angelats and

Navarro, 2017). ARAS would collect raw data of positioning

and perception sensors and would process it on-board. Thanks

to its obstacle and avoidance module it is able to autonomously

map an entire floor. Once the acquisition mission finish, the

user can download the processed point cloud and start its

processing. ARAS is now providing 3D point cloud with 10 cm

precision and 20 cm, accuracy after 5 minutes of mission.

Figure 4. RTABMAP model of our laboratory

5. CONCLUSIONS

ARAS is not only a concept but also a real, seasoned, research-

oriented system, aiming to pave the way to make possible a

significant number of research projects, covering a wide

spectrum of situations within the realm of geodesy, positioning,

and mapping. This has been possible thanks to the principles

pillaring its architecture, mainly genericity and extensibility.

These principles were crucial to cope with change and

innovation from the very beginning, and still are.

ARAS is composed of a variety of tools whose combination

opens the path to its exploitation (as a research tool) in the most

usual scenarios where mapping is involved, as the evaluation /

modelling of new sensors or real-time mapping.

The research group responsible of this publication has been able

to integrate their existing navigation and localization SW

(C++). This has been always hardly integrated on others

systems because of some lack of standardization and

homogeneity in the research and industry fields. With the

adoption of ROS as the core software system, the group expects

to avoid this issue from now on. Then, the already developed

algorithms can be tested together or separately from others

modules that are part of the robot.

The map generation may be useful in a variety of scenarios,

some of them already mentioned as RF mapping for indoor

scenarios (i.e. inside urban buildings). It has also 3D building

information modelling (3D BIM) capabilities obtained from its

RGBD sensors. With a 3D BIM functionality, the robot can

inventory the elements in an office, for example.

The actual platforms costs (approx. 700€) are similar or slightly

lower to other robotic commercial platforms (such as the one

offered Clearpath or Erlerobotics manufacturers). But this one,

that has not been designed expecting any income return or

benefit, offers to its creators the certainty that everything may

be changed, modified or adapted without limitations.

There has been found many problems with Ubuntu 16.04, ROS,

Kinect_bridge (with IAI_KINECT) and OpenCV3.0, working

all together. So, the platform has been keep to Ubuntu 14.04

and OpenCV2.4. This can be a future limitation when trying to

use newest OpenCV3 functionalities, for example. This may be

due that Kinect driver for ODROID XU4 is not well supported

or maintained.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

73

ODROD-XU4 GPU has been proved not powerful for image

and cloud point real-time processing and visualization.

Moreover, this GPU does not have the best drivers supports.

Hence, the GPU is a bottleneck for the system, slowing down

the image and cloud processing (0.3-0.5 fps) and resulting on a

ultra-slow SLAM processing (0.1-0.2 fps) with RTAB-MAP.

6. OUTLOOK

After the execution of this research, it has been proposed to

move to ZED stereocam with an NVIDIA Jetson GPU for better

driver support, software integration and speed up image

processing with CUDA®. This is a near future possibility,

although more test with the Kinect v2 device are forecasted.

ACKNOWLEDGEMENTS

To the ROS community and more in particular to the developers

of Kinect_2bridge and iai_kinect ros modules, that allowed an

easy integration of Kinect v2 sensors on ROS environment.

Also to the developers of robot_localization ROS module.

Without their previous work this research could not have been

done.

To Marc Chesa and Novak Vukmirika by their contributions to

ARAS in the frame of their bachelors’ thesis, and to CTTC’s

Communication Systems Division for their help with the design

of the rover frame.

REFERENCES

Angelats, E. and Navarro, J.A., 2017. Towards a fast, low-cost

indoor mapping and positioning system for civil protection and

emergency teams. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, 42, Proceedings of LowCOST3D 2017. 28-29

November 2017, Hamburg, Germany.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,

J., ... and Ng, A. Y., 2009. ROS: an open-source Robot

Operating System. ICRA workshop on open source software,

3(3.2), p. 5.

Fang, Z. and Zhang, Y., 2015. Experimental Evaluation of

RGB-D Visual Odometry Methods. International Journal of

Advanced Robotics Systems, 12, pp. 1-16.

Fiorillo, A. S. 1999. Design of an ultrasonic sensor to emulate

bat bio-sonars. IEEE Proceedings of Ultrasonics Symposium, 1,

pp. 409-412.

Ghotbi, B., González, F., Kövecses, J. and Angeles, J., 2016.

Mobility Assessment of Wheeled Robots Operating on Soft

Terrain. Field and Service Robotics, Springer International

Publishing, pp. 331-344.

Groves, P. D., Wang, L., Martin, H. and Voutsis, K., 2014a.

Toward a unified PNT - Part 1, complexity and context: Key

challenges of multisensor positioning. GPSWorld, 25(10), pp.

18-49.

Groves, P. D., Wang, L., Martin, H. and Voutsis, K., 2014b.

Toward a unified PNT - Part 2, ambiguity and environmental

data: Two further key challenges of multisensor positioning.

GPS World, 25(11), pp. 18-35.

Jiménez, A.R., Prieto, J.C., Ealo, J.L., Guevara, J. and Seco, F.,

2009. A computerized system to determine the provenance of

finds in archaeological sites using acoustic signals. Journal of

Archaeological Science, 36(10), pp.2415-2426.

McCarthy, C. and Bames, N., 2004, April. Performance of

optical flow techniques for indoor navigation with a mobile

robot. IEEE International Conference on Robotics and

Automation, 5, pp. 5093-5098.

Montañés, J.A.P., Rodríguez, A.M. and Prieto, I.S., 2013.

Smart Indoor Positioning/Location and Navigation: A

Lightweight Approach. International Journal of Interactive

Multimedia & Artificial Intelligence, 2(2).

Navarro, M. and Najar, M., 2011, Frequency domain joint TOA

and DOA estimation in IR-UWB. IEEE transactions on

wireless communications, 10, pp.1-11.

Parés, M.E. and Colomina, I., 2015. On software Architecture

Concepts for a Unified, Generic and Extensible Trajectory

Determination System. Proceedings of the ION GNSS+, 08-12

September 2015, Tampa, Florida (USA).

Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 2011.

Introduction to autonomous mobile robots. MIT press.

Jiang, T., Petrovic, S., Ayyer, U., Tolani, A. and Husain, S.

2015. Self-driving cars: Disruptive or incremental. Applied

Innovation Review, 1, pp. 3-22.

Titterton, D. and Weston, J.L., 2004. Strapdown inertial

navigation technology.Vol. 17, IET, 558 p.

Tunstel, E., Maimone, M., Trebi-Ollennu, A., Yen, J., Petras, R.

and Willson, R., 2005. Mars exploration rover mobility and

robotic arm operational performance. IEEE International

Conference on Systems, Man and Cybernetics, 2, pp. 1807-

1814.

Xie, P. and Petovello, M. G., 2015. Measuring GNSS multipath

distributions in urban canyon environments. IEEE Transactions

on Instrumentation and Measurement, 64(2), pp. 366-377.

Zienkiewicz, J., Davison, A. and Leutenegger, S., 2016,

October. Real-time height map fusion using differentiable

rendering. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 4280-4287.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W8, 2017
5th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 28–29 November 2017, Hamburg, Germany

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W8-67-2017 | © Authors 2017. CC BY 4.0 License.

74

