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ABSTRACT: 

 

This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed 

up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an 

extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at 

the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover 

for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or 

sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be 

taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system 

includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be 

used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance. 

 

 

1. INTRODUCTION 

Geomatics community is constantly developing new positioning 

and mapping algorithms. Those algorithms aim at determine 

precise and accurate maps in a faster and cheaper way. By map 

we mean both 3D point clouds or georeferenced images. 

Moreover, the community may take advantage of new mobile 

platforms available in the market (i.e. small drones like DJI 

Phantom 4) plus new software and tools able to generate the 

ortophotos or 3D point clouds easily (i.e. Pix4D and ArcGIS). 

These tools are speeding up the development of new 

applications in fields such as civil engineering and precision 

agriculture, for example. Furthermore, they rely fully on a good 

imaging sensor positioning and orientation, or equivalently on a 

good platform trajectory determination. In the context of this 

paper, a trajectory might be a time series of positions, velocities 

and attitudes of a moving object plus the calibration parameters 

of the instruments used to determine those and the estimated 

covariances of all those values.  

 

The mapping research community is currently dealing with two 

challenges: the use of new technologies and their use in new 

harsh scenarios. New sensors, able to provide data suitable for 

geo-applications, appear constantly in the market. As stated in 

(Groves et al., 2014a; Groves et al., 2014b), technology has to 

deal with new sensors –like plenoptic or photon-mixing 

cameras–, new performances –like the inertial sensors found in 

smartphones– and new environments –like indoor or urban 

canyons–. Furthermore, there are still many issues to solve 

concerning the achievement of target precision, accuracy and 

reliability in the realm of mapping. The following are some 

examples: when available, GNSS accuracy is almost 

unachievable due to strong multipath in narrow urban 

environments (Xie and Petovello, 2015); shadows and poor 

illumination conditions are a threat for tie points extraction and 

matching (Fang and Zhang, 2015). 

 

The examples above define a scenario where continuous and 

intense research in a steadily changing technological 

environment is taking place. This constant, uninterrupted 

change and evolution process constitutes a challenge (for 

instance, from the software and hardware engineering 

standpoint) for the research activities in this area. 

 

Currently, a researcher can find a wide range of helpful tools 

available both in the "traditional" market as in the open-source / 

free license market. From the point-of-view of hardware, the 

combination of physical interfaces and protocols available in 

the market may slow down the integration of new hardware 

pieces on any system. The industry is facing this diversity with 

the creation and adoption of common interfaces for products 

that may have a similar use, but at the same time new ones are 

being created. 

 

From the point-of-view of software, most platforms run with a 

specific operative system (OS). This limits their use on other 

platforms that may run with a different OS. This is the case of 

GNU-Linux, Windows, iOS and Android based platforms 

(using their own libraries). GNU-Linux core system may be the 

most common one in robotics due their easiness, flexibility and 

open source code that allow any user to know and check what a 

code is doing at any moment. Other solutions, closed from the 

point of view of a developer, like Windows or iOS, may offer 

better assistance and support at the early stages of product use, 

but they are less flexible to support new developments. To help 

to standardize the software developments on the robotics fields, 

a Robotic Operative System (ROS) was developed some years 

ago and it is keep in continuous development by their own 

community. ROS core is based on a GNU-Linux OS (Quigley et 

al., 2008). 
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This paper presents the concept of an architecture for a system 

whose target is to provide a reliable framework where research 

related to low-cost 3D mapping may take place. The goal of 

such system is to become the basic toolset for researchers in 

these areas, avoiding the need to start anew each time a new 

project starts. Additionally, an implementation of the 

aforementioned concept and architecture is presented here: 

ARAS. 

 

ARAS consists on a wheeled robot platform equipped with 

several low-cost navigation sensors, such as a GNSS receiver, a 

low cost IMU, rotary encoders, and a RGBD Kinect v2 depth 

sensor. To increase its operation capabilities it has a wireless 

communications interface and a wired interface. The testbed 

also includes an indoor scenario inside the CTTC building for 

executing real tests. 

 

Section 2 review the main concepts related to autonomous 

terrestrial mapping, section 3 describes the architecture (and 

components) from a conceptual and an implementation 

standpoint (showing how the ARAS system materializes the 

concept). Section 4 details how this system may be used in 

different scenarios. 

 

2. STATE OF THE ART 

2.1 Low-cost vehicles  

Among the different robots types possible, there is a group of 

robots called “autonomous” which must be able to take 

decisions based on previously defined criteria without the 

intervention of a human operator (Siegwart et al., 2011). In the 

particular case of mobile robots and for the purpose of this 

research, it is defined an autonomous rover as a robot capable of 

navigating throughout an environment without the intervention 

of a human operator. These robots are already preferred over 

humans in some areas, in example on hazardous environments 

or risky situations. Mobile robots can fit in five categories from 

the platform point of view: legged, wheeled, flying or 

swimming robots. 

 

Wheeled robots are defined as robotic platforms that navigate 

around the ground using motorized wheels to propel 

themselves. The main advantages they offer are that are easy to 

implement in mechanical terms and that are very stable in most 

environments, compared to other mobile platforms such as 

legged robots. The main drawback of wheeled robots is that 

they are not able to perform a good navigation over some 

surfaces, such as rocky terrain, sharp declines, or areas with low 

friction (Ghotbi et al., 2016). 

 

In terms of application, autonomous wheeled robots are one of 

the most used platforms in nowadays engineering: For instance, 

domestic robots such as Roomba vacuum cleaner, rovers used in 

space applications such as the Mars Curiosity (Tunstel et al., 

2005), robots in Amazon automated warehouses, multipurpose 

robots designed by Clearpath robotics or the Google self-

driving car (Jiang et al., 2015) now under the Waymo project. 

 

2.2 Positioning and navigation 

For this research, navigation is defined as the control of robots 

motors attached to the wheels. The navigation module 

determines the power to be applied to each motor to reach the 

specified waypoint from its actual localization. Sometimes, it 

can work without waypoints information, in a free-velocity 

mode, for example, when a Radio Control (RC) is used. 

 

A path-planning module may assist the navigation module 

providing it with the next waypoint to be reached. It can we 

operated on a fixed waypoints mode or on a most advanced 

dynamic behaviour, in which new waypoints are created during 

the robot operation (either by the user or any other module or 

algorithm). Nevertheless, this module is only mandatory if 

waypoint navigation is expected and thus, could be avoided if 

desired by the user. 

 

Furthermore, to develop an autonomous robot, which needs of a 

navigation module, is mandatory to provide to the system some 

kind of localization service, understood as the position 

coordinates and attitude at a specific time. Localization, or 

positioning, consists on determining where the robot is in the 

environment, either in local or global coordinate’s frames. In 

autonomous rovers, localization consists on determining a set of 

TPVA (Time-Position-Velocity-Attitude), at least for the 

vehicle chassis or main frame (there might be other mobile parts 

in the robot, such as a robotic arm). Hence, TPVA describes the 

robot’s main frame position, velocity and attitude at a particular 

instant of time (Parés and Colomina, 2015). 

  

2.3 Low-cost localization sensors 

Hence, to compute and obtain a TPVA solution a set of sensors 

is needed. The selection of the sensors used depends on the 

environment in which the robot will operate (i.e. indoor or 

outdoor scenarios). 

 

Among the possible sensors studied, localization sensors can be 

classified as inertial and non-inertial sensors (or visual, etc…). 

Inertial sensors are instruments that measure rotation and 

translation forces observed by the object. These sensors are 

usually used to perform dead reckoning, which is a method of 

localization that relies on estimating the position, speed and 

orientation of the robot based on earlier known positions. The 

most used inertial sensors in autonomous rovers are gyroscopes 

and accelerometers. 

 

Gyroscopes are used to measure rotational forces. In 

autonomous rovers they are used mainly to determine the 

heading of the vehicle (Titterton and Weston, 2004). 

Gyroscopes measure reactive torque that is produced due to the 

movement of the sensor to give absolute orientation respect 

their spin axis. Torque (τ) is proportional to the spinning speed 

(ω), the precession speed (Ω), and the wheel’s inertia (I). 

 

τ = IωΩ ( eq.1 ) 

 

The main drawback of the gyroscopes used for dead reckoning 

is that the typical error of the system is accumulative. This 

means that if they are used for a long time, a small constant drift 

will provide a big error. 

 

An accelerometer is a device that measures static (gravitational) 

and dynamic acceleration forces (Titterton and Weston, 2004). 

Given the mass (m) of the accelerometer, the measure of the 

dynamic forces (F) provides the acceleration (a) of the sensor in 

every axis: 

 

a =  F/m ( eq.2 ) 
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With the acceleration, the speed and position are easy to obtain 

with integral calculation. 

 

However, all inertial sensors suffer of stochastic errors such as 

biases and random walks effects among others that limit the 

system performance when operating only with this kind of 

sensors.   

 

An IMU (Inertial Measurement Unit) is an embedded sensor 

that usually combines 3-axis accelerometer and 3-axis 

gyroscope orthogonally placed between them. In some cases, 

IMUs also carry magnetometers. IMUs are ones of the most 

used sensors in robotics because of their capability of measuring 

translation and rotation (Titterton and Weston, 2004). 

 

Non-inertial sensors do not measure directly the forces on the 

object. There are plenty of sensors and technologies that can be 

used for localization (cameras, barometers, Wi-Fi, Ultra Wide 

Band, etc.), but the most used on autonomous rovers are 

magnetometers, rotatory encoders and GNSS (Global 

Navigation Satellite System). In addition, RGB-D or LIDAR 

sensors can be used for localization and mapping using 

techniques such as SLAM (Simultaneous Localization And 

Mapping) (Davison, 2007). 

 

Magnetometers determine the direction of Earth’s magnetic 

north, and there are two types: Hall Effect and flux gate 

compasses (Titterton and Weston, 2004). Regardless of the type 

of compass used, a major drawback concerning the use of the 

Earth’s magnetic field for mobile robot applications involves 

disturbance of that magnetic field by other magnetic objects. 

This issue is greater for indoors robots, since most buildings 

have metallic structures that can disturb the magnetic field 

inside. Moreover, they are very noisy sensors that require of 

relatively high time integration values to obtain an accurate 

measurement. In return, they provide a global measurement, 

very useful when combined with other sensors. 

 

Rotatory encoders track the angular position of any rotatory 

device to generate digital information. In rovers, are used to 

determine odometry (change of position over time) by 

monitoring the number of turns made by the wheels. If an 

encoder is able of determining the direction of the rotation, it is 

called quadrature encoder. There are many types of encoder, 

like magnetic or mechanical, but one of the most used in 

robotics is the optical encoder. This may include any visual 

odometry source, a kind of odometry measurements extracted 

from visual imagery processing (McCarthy and Barnes, 2004). 

 

Radiofrequency systems such as GNSS mainly, but also NFC, 

RFID, UWB and others, very useful in GNSS-denied scenarios 

such as indoor buildings (Montañés et al., 2013) and (Navarro 

and Nájar, 2011). 

 

The GNSS is a beacon based localization (Titterton and 

Weston, 2004). There are at least twenty-four operational GNSS 

satellites at all times. Each satellite continuously transmits data 

that indicate its location and the current time. The GNSS 

satellites synchronize their transmissions so that their signals 

are sent at the same time. When a GNSS receiver receives the 

RF (Radio-Frequency) signal of a satellite, the arrival time is 

measured and used to determine the relative distance to this 

satellite, usually known as pseudorange. By combining four or 

more pseudoranges, the position of the receiver is determined 

by triangulation means. The main advantages of this system are 

low price of GNSS receivers and the fact that they do not have 

accumulative error. In the other hand, GNSS receivers cannot 

be used as a reliable localization sensors on robots that have to 

work in low coverture areas, such a dense forest or indoors. 

This limits its use to a limited number of scenarios where an 

open view of the sky is available and the RF thermal noise is on 

normal levels. 

 

Acoustic systems, as the one developed by the LOPSI group 

from the Spanish CSIC (Jiménez et al., 2009). 

 

There are available some commercial indoor localization service 

providers such as mapspeople, deepmap and infsorf, among 

others. 

 

2.4 Low-cost perception/imaging sensors 

Depth perception consists on determining the distance between 

the robot and the surrounding objects than conform the 

environment. This is done by taking measurements using one or 

a set of sensors, and then extracting meaningful information 

from those measurements. There are a lot of types of depth 

perception sensors, and most of them imitate human or animal 

senses. For instance, an ultrasonic sensor imitates bats 

echolocation (Fiorillo, 1999). This type of sensors provides a 

direct measurement of distance to the surrounding objects 

interacting with the environment. There are different 

technologies used by these sensors, but the most used in 

robotics is the time of flight or arrival (ToF or ToA). 

 

Optical sensors are designed following two main architectures, 

either CMOS or CCD cameras. CMOS are cheaper than CCDs 

for the same amount of pixels integrated, therefore being of the 

preferred technology in low cost devices. 

 

New developments and cost reduction of products have led to 

the rising of stereo cams, with a pair of image sensors instead of 

traditional mono cameras with a single sensor, such as Kinect 

and Zed cameras among others available in the market. They 

allow the automatic generation of cloud points with their dual 

camera integration technology with and extreme easiness of use. 

 

 

2.5 SLAM 

SLAM is a technique that involves the use of perception 

sensors, such as RGB-D sensors, LIDARs, cameras and 

sometimes inertial sensors. It consists on trying to 

simultaneously localize the sensor with respect to its 

surroundings, while at the same time mapping the structure of 

that environment (Davison, 2007). The sensors are obtaining 

depth measurements from the environment and comparing the 

obtained pattern with a map of the surroundings. The map can 

be introduced by the user or generated and actualized during the 

operation of the robot. If the detected pattern coincides with a 

pattern of the environment, the robot is able to get a 

localization. At the same time, the environment is being 

mapped. It is a good localization technique, but requires a post 

process period that is time consuming (Zienkiewicz et al., 

2016). 

 

3. SYSTEM ARCHITECTURE 

3.1 Requirements 

The architecture (and components) of a framework willing to 

provide with a useful set of tools and procedures to facilitate the 
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research tasks related to a specific set of disciplines may 

obviously vary depending on the actual experience of the 

people involved first in its inception and, later on, in its design 

and implementation stages. This paper presents, therefore, the 

view of its author, view that has been heavily influenced by 

their participation in a series of projects where the framework 

discussed here played a key role.  

 

The components included in a low-cost mapping research 

framework should be able to offer, at least, the following set of 

features: 

• Data acquisition from sensors, 

• Localization (TPVA) of robot chassis, 

• Autonomous Navigation including path planning 

(waypoints), 

• 3D Mapping capability 

 

Each of the features in the list above is important by itself. For 

instance, the ability to collect data from a stereocam is a key 

factor for the 3D mapping feature. In short, these tools help to 

save time and reduce costs, thus facilitating the work of 

researchers. However, it is the combination of different subsets 

of these features (tools) what reveals the versatility of the 

concept, and how it responds to different research use cases (see 

section 4). 

 

ARAS implements these features, providing a module for each 

feature (subsection 3.3.3). 

 

3.2 Architecture and components 

The system is designed to work as is or in reduced versions 

using less logic units and sensors, and thus simplifying its 

scheme. In its full-equip version it has three main logic units: 

• ODROID XU4, a microprocessor as the ROS core unit. 

• Arduino Due, a microcontroller that acquires data from most 

of the sensors integrated on the rover. 

• Motor Controller, another microcontroller for power and 

PWM control of the four DC motors. 

 

For example, the microprocessor and a microcontroller 

(Arduino Due) can be removed. This reduces the system to an 

R/C vehicle. Instead, having both microcontrollers and a 

microprocessor unit, allow to connect a huge variety of sensors, 

and in most cases to any of them (for example, the IMU). If no 

RGBD sensor is used, then the Microprocessor can be removed 

from the system reducing considerable its power consumption 

by more than 45W just in processing power. 

Calibration parameters are measured and provided to the system 

for all the sensors integrated in the robot, but it is a decision of 

the user to use or modify them. The use of calibration 

parameters improves the output quality performance on all 

levels. 

 

Future integration of new sensors will be eased by the adoption 

of ROS. Hence, many sensors are already providing ROS 

drivers or software interfaces for this purpose but in the case 

that they are not available, the integrator just must work to 

publish or subscribe to the adequate ROS topic. Moreover, an 

integrator may benefit from a new hardware ROS proposed 

standard: HROS {}. 

  

The development of new algorithms will be also eased by the 

adoption of ROS. A developer must only have to take into 

account which ROS topics must subscribe or publish to fit its 

new development into the already existing ecosystem. 

 

3.3 Actual implementation  

3.3.1 ARAS platform 

 

A Kit 4WD1 Aluminium (Lynxmotion) is the basis frame used to 

develop this Rover. As mentioned before, it includes: 

 

• An Aluminium support frame (A4WD1E-KT). It has also 

some plastic pieces and covers. 

• Four DC brushed motors. Model GHM-04 @ 12V. Each 

one with a quadrature encoder attached to their motor shaft. 

• Four 4.75'' tires made of plastic. 

 

The set of sensors integrated are: 

 

• GPS+SBAS Skytraq RAW-1315F. It provides both GPS 

coordinates and pseudorange measurements. 

• IMU Invensense MPU9250, triaxial gyroscopes, 

accelerometers and magnetometers (9 DoF). It has also a 

temperature probe for temperature compensation. 

• Four quadrature rotary encoders with up to 12000 counts by 

wheel revolution (motors do 400 counts by revolution but also 

have a 30:1 gear head). They are attached to the motor shaft. 

• A Microsoft Kinect V2 RGB-D depth sensor. It includes a 

dual camera system (RGB and IR) plus an IR point-grid 

emitter. 

 

This rover is able to provide a continuous TPVA solution, both 

in local or global coordinates and regardless of indoor or 

outdoor scenarios. Hence, the TPVA solution will take into 

consideration only the available sensor’s data at the moment of 

the processing. 

 

 

Figure 1. ARAS rover 

 

The set of processors or main logic units are: 

• Roboclaw has an ATMEL IC, can decode dual quadrature 

encoder’s data and has two PWM output channels for brushed 

DC motors. 5V and 3.3V tolerant. 

• Arduino Due has an ATMEL SAM3X8E ARM Cortex-M3 @ 

84 MHz. Only 3.3V tolerant except for their USB ports that 

are 5V tolerant. 

• ODROID XU4 has a Samsung Exynos5422 Cortex™-A15 2 

GHz and Cortex™-A7 Octa core CPUs. Mali-T628 MP6 

(OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 Full profile). 2 GB 
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RAM memory. Two USB 3.0 Host, one USB 2.0 Host and a 

Gigabit Ethernet port. We have included an USB hub 

connected to the 2.0 USB port with a Wi-Fi USB 802.11 bgn 

compliant. 

 

The approximate costs for the platform at the moment of this 

writing are summarized in Table 1: 

 
Component Price (€) 

Kinect 2 90 

Kinect cable adapter 50 

Odroid XU4 + eMMC + 

adapters 

100 

Arduino Due 30 

Power adaptation circuit 100 

Rover Chasis Kit 320 

LiPo Battery 4S1P 3000mAh 30 

TOTAL 720 € 

Table 1. Platform prices list 

 

Dependencies: RoboClaw firmware has been updated to the 

latest version available at this moment. Arduino’s library was 

downloaded prior to its use. 

 

Arduino Due requires of the following software and libraries: 

Arduino IDE 1.6 or higher; Arduino DUE programming library; 

MPU9250 library; RoboClaw library; Rosserial library; Skytraq 

GNSS library. 

 

ODROID XU4 requires of the following software and libraries: 

LUBUNTU 14.04; ROS Indigo: Rosserial ROS module; 

Kinect2_bridge ROS module; IAI_kinect ROS module; RTAB-

MAP ROS module (http://introlab.github.io/rtabmap/); 

OPENCV2.4; OPENCL; GCC4.6. 

 

 

Figure 2. Schematic diagram 

 

3.3.2 ARAS ROS data acquisition modules 

ROS topics are the way ROS operates and they allow the 

different modules to interchange information. This is the list of 

ROS topics, either published or subscribed, from sensor’s data 

processing: 

 

ODOM: Odometer information from encoders. It may include 

position coordinates (X, Y, Z), quaternions orientation (QX, 

QY, QZ and QW), covariance matrixes and twist information: 

linear (VX, VY and VZ) and angular (WX, WY and WZ) with 

its respective covariance matrixes. 

 

IMU: IMU information MPU9250. It may include quaternion 

orientation (QX, QY, QZ and QW), angular velocities (WX, 

WY and WZ) and linear acceleration (VX, VY and VZ) and 

their respective covariance matrixes. 

 

ODOM_FILTERED: KF output from 

ROBOT_LOCALIZATION ROS module. Similar to ODOM. 

 

TF: Transformation topic (lever-arms). It may include 

translation (TFX, TFY and TFZ) and rotation (TFQX, TFQY, 

TFQZ and TFQW) transforms. 

 

CMD_VELOCITY: Command velocity. It may include linear 

(VX, VY and VZ) and angular (WX, WY and WZ) velocities. 

 

KINECT is a particular case in which many topics are published 

at the same time form a single source. The lists of the most 

relevant topics related to Kinect are: three different qualities 

(HD, quarter HD and SD), colour or mono images, and depth or 

cloud images. Compressed images can be obtained on demand. 

 

All the topics (except for the Kinect related ones) are listed in 

Table 2 with their appropriate ROS type definition. 

 

Topic Type 

ODOM nav_msgs/Odometry 

IMU sensor_msgs/Imu 

ODOM_FILTERED nav_msgs/Odometry. 

TF tf 

CMD_VELOCITY cmd_vel 

Table 2. Topics and types list 

 

All Topics include a time-tag field. 

 

3.3.3 ARAS ROS data processing modules  

 

Main system operates with ROS INDIGO running on 

LUBUNTU 14.04. The different ROS modules executed may 

publish or subscribe to different ROS topics as mentioned 

before. 

 

ROSCORE is always executed first and is setup to its localhost 

IP address. 

 

ROSSERIAL is installed and configured to allow serial 

intercommunication between the Arduino Due (USB 

Programming port interface) and ODROID XU4 (USB). It is 

configured at 57600 bps speed. Arduino Due subscribes to 

CMD_VELOCITY and publishes ODOM and IMU ROS topics 

(ODROID opposed subscription/publication). 

 

ROBOT_LOCALIZATION is executed next. It subscribes to 

ODOM and IMU and publishes ODOM_FILTERED ROS 

topics. This can be changed by CTTC’s NAVEGA module. 

 

ROSKINECT2_BRIDGE is launched once the USB 

connectivity is validated (executing a terminal lsusb command 

must make appear a list with three Microsoft devices, either is 

not working properly). It specifies OPENCL processing and it 

uses IAI_KINECT. 

 

RTABMAP is last executed. It subscribes to Kinect images (2D 

photos or 3D cloud points), TF (constant lever arm between 

Kinect’s RGB and IR cameras) and ODOM_FILTERED (the 
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topics published by this module are not detailed on this 

research). This module allows SLAM execution. RTAB-Map 

(Real-Time Appearance-Based Mapping) is a RGB-D Graph 

SLAM approach based on a global Bayesian loop closure 

detector. A memory management approach is used to limit the 

number of locations used for loop closure detection and graph 

optimization, so that real-time constraints on large-scale 

environments are always respected. RTAB-Map can be used 

alone with a hand-held Kinect or stereo camera for 6DoF RGB-

D mapping, or on a robot equipped with a laser rangefinder for 

3DoF mapping. (RTAB-Map) 

 

Acquisition module 

Conceptually, there is module responsible of the gathering the 

information coming from the sensors. This module is executed 

both in the Arduino Due and ODROID XU4, acquiring and 

communicating with Odometers, GPS and IMU (Arduino Due) 

and Kinect (Odroid XU4). Data is pre-processed (units and axis 

conversion). This module is interfaced with ROSSERIAL 

module. 

 

Robot Localization module 

The coordinates origin are in the platform centre, X-axis 

forward, Y-axis right and Z-axis down. The IMU is placed in 

the rover mass and rotation centre, with its own axis orientation 

adapted to rover axis orientation. Lever-arm are measured and 

provided to the system through convenient topics publications. 

 

Path planning and navigation module 

This module can work either in manual or automatic 

configurations. It is executed on all logic IC: RoboClaw, 

Arduino Due and ODROID XU4. Motor control commands 

travel through ROSSERIAL ROS module. 

 

At its most basic configuration, the path planning and 

navigation module work as a manual control device through an 

Android app running on a tablet. This application publishes 

CMD_VELOCITY topic messages and requires of human 

interaction controlling a graphical joystick. 

 

At its most advanced configuration, the Path planning and 

navigation module is working with WAYPOINTS. In this 

particular case, it computes the CMD_VELOCITY to be 

published from the actual rover localization output 

(ODOM_FILTERED) and the next WAYPOINT to be reached. 

Waypoint can stored in memory previously, automatically 

created during execution and/or created using the previously 

mentioned Android app. 

 

Anyway, RoboClaw accepts three types of motor control serial 

messages: 

• Velocity: Just a velocity value. 

• Velocity and acceleration: A specific velocity and acceleration 

values.  

• Velocity, acceleration and distance: The same as above but 

until reach and specific distance (encoder quadrature counts). 

 

Although these three types of messages can be send to 

RoboClaw, by now and to simplify the system architecture and 

be fully compatible with ROS commands, only velocity serial 

messages from Arduino Due are send to RoboClaw. This 

module can be changed by the ROS NAVIGATION module but 

initial tests were not working as expected and then it was 

decided to not use it by now until more work is done with this 

module. 

Depth map and Point cloud module 

The generation point clouds are automatically done by the 

Kinect itself together with the KINECT_BRIDGE ROS module. 

Hence, any user may subscribe to the published cloud points to 

obtain them. 

 

Building map module 

This module is directly related to RTABMAP ROS module 

which is responsible of the creation of a 3D map based on the 

point cloud received, plus the TF of the cameras and rover 

localization (ODOM_FILTERED ROS topic). 

 

Obstacle avoidance module 

This has been the first ROS module created and tested for this 

platform and it requires of the obstacle detection module. 

 

The objective is to surround any obstacle, like in bug algorithm, 

but instead of following the border of the object the algorithm 

tries to find where the obstacle ends, similarly as in the “follow 

the gap” philosophy, to set a new waypoint beside it. To do so, 

the robot turns until the obstacle is no longer detected. Next 

figure explains graphically the ARAS obstacle avoidance 

algorithm. 

 

Figure 3. Obstacle avoidance algorithm schematic 

 

The obstacle avoidance module uses Kinect depth images to 

determine if there is an obstacle in rover’s straight line path. 

Obstacles situated beyond the Kinect central point at the X axis 

(15 cm) are considered obstacles at left and obstacles above this 

point are considered to be at right. 

 

The obstacle avoidance module is executed on the 

microprocessor (ODROID XU4). The general operation works 

as follows: this module is only enabled when an obstacle has 

been detected. Its main task is to compute a new waypoint that 

guides the robot into avoiding the obstacle. To do so, the robot 

performs a scan of the environment and searches obstacle free 

areas. When a suitable area is met, the algorithm creates a new 

point on the route. The navigation module reads this as the new 

waypoint. 

 

Therefore, this module subscribes to Kinect depth images and 

publishes either velocity commands (CMD_VELOCITY ROS 

topic) or waypoints (advanced mode). 

 

4. USE CASES 

A tool such the one presented in this paper may be used in a 

variety of research use cases, just combining in different ways 

the components that integrate it. The most usual use cases are: 

 

• Verification and validation of localization and 

mapping new sensors and algorithms  

• Positioning and Mapping in Real-life Environments 
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It has been stated several times in this paper that ARAS is 

generic and extensible. This means that new sensors may be 

included into the system---or those that have been modified 

easily adapted-- at almost no cost. 

 

Basically, including a new algorithm means just to determine 

which ROS topics must either subscribe or publish. There is no 

need to change already existing software to make the new data 

available to ARAS; that is, when adding new sensors there is no 

need to maintain, change or adapt the existing code base.  

 

As it happens to any kind of algorithm, it is necessary to verify 

and validate new models in order to guarantee their correctness 

(that is, the new code contains no bugs) and performance (the 

new sensor is correctly modelled). This is the algorithm 

verification and validation use case. 

 

4.1 Verification and validation of new mapping technology 

It has been stated several times in this paper that GEMMA is 

generic and extensible. This means that new sensors may be 

included into the system—or, those that have been modified, 

easily adapted—at almost no cost. 

 

Testing new algorithms is such simple as to substitute current 

ROS modules with the new ones, to carry on predefined 

missions and to check for the performance of the results. 

 

It has been created a 3D map of one of our laboratory to 

validate the RTABMAP output as seen in Figure 4. It has been 

rendered using CloudCompare software.  

 

4.2 Positioning and Mapping in Real-life Environments 

Loaded with the appropriate set of modules ARAS might be 

used as a real-time server providing successive position and 

attitude values to some other subsystem(s). For instance a RF 

mapping payload might decide to delegate the task of 

positioning the vehicle platform to ARAS, feeding this 

component with data coming from the different sensors on 

board, instead of performing this process itself. ARAS is now 

providing a position solution with 5 cm. precision and 10 cm 

accuracy after 5 minutes of mission. 

 

A variation of the example above would compute mapping 

solution in real-time but log these data to permanent storage 

instead. This capability is of special relevance in emergency 

scenarios where quick charting is required (Angelats and 

Navarro, 2017). ARAS would collect raw data of positioning 

and perception sensors and would process it on-board. Thanks 

to its obstacle and avoidance module it is able to autonomously 

map an entire floor. Once the acquisition mission finish, the 

user can download the processed point cloud and start its 

processing. ARAS is now providing 3D point cloud with 10 cm 

precision and 20 cm, accuracy after 5 minutes of mission.  

 

 

 

Figure 4. RTABMAP model of our laboratory 

 

5. CONCLUSIONS 

ARAS is not only a concept but also a real, seasoned, research-

oriented system, aiming to pave the way to make possible a 

significant number of research projects, covering a wide 

spectrum of situations within the realm of geodesy, positioning, 

and mapping. This has been possible thanks to the principles 

pillaring its architecture, mainly genericity and extensibility. 

These principles were crucial to cope with change and 

innovation from the very beginning, and still are. 

 

ARAS is composed of a variety of tools whose combination 

opens the path to its exploitation (as a research tool) in the most 

usual scenarios where mapping is involved, as the evaluation / 

modelling of new sensors or real-time mapping.  

 

The research group responsible of this publication has been able 

to integrate their existing navigation and localization SW 

(C++). This has been always hardly integrated on others 

systems because of some lack of standardization and 

homogeneity in the research and industry fields. With the 

adoption of ROS as the core software system, the group expects 

to avoid this issue from now on. Then, the already developed 

algorithms can be tested together or separately from others 

modules that are part of the robot.  

 

The map generation may be useful in a variety of scenarios, 

some of them already mentioned as RF mapping for indoor 

scenarios (i.e. inside urban buildings). It has also 3D building 

information modelling (3D BIM) capabilities obtained from its 

RGBD sensors. With a 3D BIM functionality, the robot can 

inventory the elements in an office, for example. 

 

The actual platforms costs (approx. 700€) are similar or slightly 

lower to other robotic commercial platforms (such as the one 

offered Clearpath or Erlerobotics manufacturers). But this one, 

that has not been designed expecting any income return or 

benefit, offers to its creators the certainty that everything may 

be changed, modified or adapted without limitations. 

 

There has been found many problems with Ubuntu 16.04, ROS, 

Kinect_bridge (with IAI_KINECT) and OpenCV3.0, working 

all together. So, the platform has been keep to Ubuntu 14.04 

and OpenCV2.4. This can be a future limitation when trying to 

use newest OpenCV3 functionalities, for example. This may be 

due that Kinect driver for ODROID XU4 is not well supported 

or maintained. 
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ODROD-XU4 GPU has been proved not powerful for image 

and cloud point real-time processing and visualization. 

Moreover, this GPU does not have the best drivers supports. 

Hence, the GPU is a bottleneck for the system, slowing down 

the image and cloud processing (0.3-0.5 fps) and resulting on a 

ultra-slow SLAM processing (0.1-0.2 fps) with RTAB-MAP. 

 

6. OUTLOOK 

After the execution of this research, it has been proposed to 

move to ZED stereocam with an NVIDIA Jetson GPU for better 

driver support, software integration and speed up image 

processing with CUDA®. This is a near future possibility, 

although more test with the Kinect v2 device are forecasted. 
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