18 research outputs found

    Blinking in Human Communicative Behaviour and it's Reproduction in Artificial Agents

    Get PDF
    A significant year-on-year rise in the creation and sales of personal and domestic robotic systems and the development of online embodied communicative agents (ECAs) has in parallel seen an increase in end-users from the public domain interacting with these systems. A number of these robotic/ECA systems are defined as social, whereby they are physically designed to resemble the bodily structure of a human and behaviorally designed to exist within human social surroundings. Their behavioural design is especially important with respect to communication as it is commonly stated that for any social robotic/ECA system to be truly useful within its role, it will need to be able to effectively communicate with its human users. Currently however, the act of a human user instructing a social robotic/ECA system to perform a task highlights many areas of contention in human communication understanding. Commonly, social robotic/ECA systems are embedded with either non-human-like communication interfaces or deficient imitative human communication interfaces, neither of which reach the levels of communicative interaction expected by human users, leading to communication difficulties which in turn create negative association with the social robotic/ECA system in its users. These communication issues lead to a strong requirement for the development of more effective imitative human communication behaviours within these systems. This thesis presents findings from our research into human non-verbal facial behaviour in communication. The objective of the work was to improve communication grounding between social robotic/ECA systems and their human users through the conceptual design of a computational system of human non-verbal facial behaviour (which in human-human communicative behaviour is shown to carry in the range of 55% of the intended semantic meaning of a transferred message) and the development of a highly accurate computational model of human blink behaviour and a computational model of physiological saccadic eye movement in human-human communication, enriching the human-like properties of the facial non-verbal communicative feedback expressed by the social robotic/ECA system. An enhanced level of interaction would likely be achieved, leading to increased empathic response from the user and an improved chance of a satisfactory communicative conclusion to a user’s task requirement instructions. The initial focus of the work was in the capture, transcription and analysis of common human non-verbal facial behavioural traits within human-human communication, linked to the expression of mental communicative states of understanding, uncertainty, misunderstanding and thought. Facial Non-Verbal behaviour data was collected and transcribed from twelve participants (six female) through a dialogue-based communicative interaction. A further focus was the analysis of blink co-occurrence with other traits of human-human communicative non-verbal facial behaviour and the capture of saccadic eye movement at common proxemic distances. From these data analysis tasks, the computational models of human blink behaviour and saccadic eye movement behaviour whilst listening / speaking within human-human communication were designed and then implemented within the LightHead social robotic system. Human-based studies on the perception of naïve users of the imitative probabilistic computational blink model performance on the LightHead robotic system are presented and the results discussed. The thesis concludes on the impact of the work along with suggestions for further studies towards the improvement of the important task of achieving seamless interactive communication between social robotic/ECA systems and their human users

    Interactive Concept Acquisition for Embodied Artificial Agents

    Get PDF
    An important capacity that is still lacking in intelligent systems such as robots, is the ability to use concepts in a human-like manner. Indeed, the use of concepts has been recognised as being fundamental to a wide range of cognitive skills, including classification, reasoning and memory. Intricately intertwined with language, concepts are at the core of human cognition; but despite a large body or research, their functioning is as of yet not well understood. Nevertheless it remains clear that if intelligent systems are to achieve a level of cognition comparable to humans, they will have to posses the ability to deal with the fundamental role that concepts play in cognition. A promising manner in which conceptual knowledge can be acquired by an intelligent system is through ongoing, incremental development. In this view, a system is situated in the world and gradually acquires skills and knowledge through interaction with its social and physical environment. Important in this regard is the notion that cognition is embodied. As such, both the physical body and the environment shape the manner in which cognition, including the learning and use of concepts, operates. Through active partaking in the interaction, an intelligent system might influence its learning experience as to be more effective. This work presents experiments which illustrate how these notions of interaction and embodiment can influence the learning process of artificial systems. It shows how an artificial agent can benefit from interactive learning. Rather than passively absorbing knowledge, the system actively partakes in its learning experience, yielding improved learning. Next, the influence of embodiment on perception is further explored in a case study concerning colour perception, which results in an alternative explanation for the question of why human colour experience is very similar amongst individuals despite physiological differences. Finally experiments, in which an artificial agent is embodied in a novel robot that is tailored for human-robot interaction, illustrate how active strategies are also beneficial in an HRI setting in which the robot learns from a human teacher

    A Retro-Projected Robotic Head for Social Human-Robot Interaction

    Get PDF
    As people respond strongly to faces and facial features, both con- sciously and subconsciously, faces are an essential aspect of social robots. Robotic faces and heads until recently belonged to one of the following categories: virtual, mechatronic or animatronic. As an orig- inal contribution to the field of human-robot interaction, I present the R-PAF technology (Retro-Projected Animated Faces): a novel robotic head displaying a real-time, computer-rendered face, retro-projected from within the head volume onto a mask, as well as its driving soft- ware designed with openness and portability to other hybrid robotic platforms in mind. The work constitutes the first implementation of a non-planar mask suitable for social human-robot interaction, comprising key elements of social interaction such as precise gaze direction control, facial ex- pressions and blushing, and the first demonstration of an interactive video-animated facial mask mounted on a 5-axis robotic arm. The LightHead robot, a R-PAF demonstrator and experimental platform, has demonstrated robustness both in extended controlled and uncon- trolled settings. The iterative hardware and facial design, details of the three-layered software architecture and tools, the implementation of life-like facial behaviours, as well as improvements in social-emotional robotic communication are reported. Furthermore, a series of evalua- tions present the first study on human performance in reading robotic gaze and another first on user’s ethnic preference towards a robot face

    Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    Get PDF
    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance

    Kolaboratif robotlarda güven özelliği: Sanal insan robot etkileşim ortamında, sözsüz ipuçlarının deneysel araştırması

    Get PDF
    This thesis reports the development of non-verbal HRI (Human-Robot Interaction) behaviors on a robotic manipulator, evaluating the role of trust in collaborative assembly tasks. Towards this end, we developed four non-verbal HRI behaviors, namely gazing, head nodding, tilting, and shaking, on a UR5 robotic manipulator. We used them under different degrees of trust of the user to the robot actions. Specifically, we used a certain head-on neck posture for the cobot using the last three links along with the gripper. The gaze behavior directed the gripper towards the desired point in space, alongside with the head nodding and shaking behaviors. We designed a remote setup to experiment subjects interacting with the cobot remotely via Zoom teleconferencing. In a simple collaborative scenario, the efficacy of these behaviors was assessed in terms of their impact on the formation of trust between the robot and the user and task performance. Nineteen people participated in the experiment with varying ages and genders.Bu tez insan robot arası etkileşimi geliştirmek amacıyla, yardımcı UR5 robotunun manipülatörü ile, bakış ve kafa davranışları yaratmayı ve etkilerini montaj senaryosu altında test etmeyi hedeflemektedir. Bu doğrultuda çeşitli sözlü olmayan robot davranışları UR5 robotu ve Robotiq çene kıskacı kullanılarak geliştirildi, bunlar; yana ve öne kafa sallama, kafa eğme ve bakış davranışıdır. Bu davranışları uygulayabilmek için daha önceden dizayn edilmiş bir robot duruşu kullanıldı ve son üç robot eklemi, çene kıskacı kullanılarak baş-boyun yapısına çevrildi. Bu duruş yapısı ile birlikte çene kıskacı uzayda bir noktaya doğrultularak bakış davranışı yapabilmektedir. Bakış davranışına ek olarak kafa yapısı ile birlikte kafa sallama gibi davranışlarda modellendi, bunun yanında katılımcıların aktif olarak cobot ile birlikte telekonferans programı olan Zoom üzerinden etkileşime geçebileceği özgün bir deney ortamı geliştirildi. Ortak çalışmaya dayalı bir senaryoda bu davranışların güven kazanımı ve performans üzerindeki etkisi test edildi. Farklı yaş ve cinsiyet gruplarından 19 katılımcı ile birlikte deneyler gerçekleştirildi.M.S. - Master of Scienc

    A Pilot Study on Facial Expression Recognition Ability of Autistic Children Using Ryan, a Rear-Projected Humanoid Robot

    Get PDF
    Rear-projected robots use computer graphics technology to create facial animations and project them on a mask to show the robot’s facial cues and expressions. These types of robots are becoming commercially available, though more research is required to understand how they can be effectively used as a socially assistive robotic agent. This paper presents the results of a pilot study on comparing the facial expression recognition abilities of children with Autism Spectrum Disorder (ASD) with typically developing (TD) children using a rear-projected humanoid robot called Ryan. Six children with ASD and six TD children participated in this research, where Ryan showed them six basic expressions (i.e. anger, disgust, fear, happiness, sadness, and surprise) with different intensity levels. Participants were asked to identify the expressions portrayed by Ryan. The results of our study show that there is not any general impairment in expression recognition ability of the ASD group comparing to the TD control group; however, both groups showed deficiencies in identifying disgust and fear. Increasing the intensity of Ryan’s facial expressions significantly improved the expression recognition accuracy. Both groups were successful to recognize the expressions demonstrated by Ryan with high average accuracy

    Developing an Affect-Aware Rear-Projected Robotic Agent

    Get PDF
    Social (or Sociable) robots are designed to interact with people in a natural and interpersonal manner. They are becoming an integrated part of our daily lives and have achieved positive outcomes in several applications such as education, health care, quality of life, entertainment, etc. Despite significant progress towards the development of realistic social robotic agents, a number of problems remain to be solved. First, current social robots either lack enough ability to have deep social interaction with human, or they are very expensive to build and maintain. Second, current social robots have yet to reach the full emotional and social capabilities necessary for rich and robust interaction with human beings. To address these problems, this dissertation presents the development of a low-cost, flexible, affect-aware rear-projected robotic agent (called ExpressionBot), that is designed to support verbal and non-verbal communication between the robot and humans, with the goal of closely modeling the dynamics of natural face-to-face communication. The developed robotic platform uses state-of-the-art character animation technologies to create an animated human face (aka avatar) that is capable of showing facial expressions, realistic eye movement, and accurate visual speech, and then project this avatar onto a face-shaped translucent mask. The mask and the projector are then rigged onto a neck mechanism that can move like a human head. Since an animation is projected onto a mask, the robotic face is highly flexible research tool, mechanically simple, and low-cost to design, build and maintain compared with mechatronic and android faces. The results of our comprehensive Human-Robot Interaction (HRI) studies illustrate the benefits and values of the proposed rear-projected robotic platform over a virtual-agent with the same animation displayed on a 2D computer screen. The results indicate that ExpressionBot is well accepted by users, with some advantages in expressing facial expressions more accurately and perceiving mutual eye gaze contact. To improve social capabilities of the robot and create an expressive and empathic social agent (affect-aware) which is capable of interpreting users\u27 emotional facial expressions, we developed a new Deep Neural Networks (DNN) architecture for Facial Expression Recognition (FER). The proposed DNN was initially trained on seven well-known publicly available databases, and obtained significantly better than, or comparable to, traditional convolutional neural networks or other state-of-the-art methods in both accuracy and learning time. Since the performance of the automated FER system highly depends on its training data, and the eventual goal of the proposed robotic platform is to interact with users in an uncontrolled environment, a database of facial expressions in the wild (called AffectNet) was created by querying emotion-related keywords from different search engines. AffectNet contains more than 1M images with faces and 440,000 manually annotated images with facial expressions, valence, and arousal. Two DNNs were trained on AffectNet to classify the facial expression images and predict the value of valence and arousal. Various evaluation metrics show that our deep neural network approaches trained on AffectNet can perform better than conventional machine learning methods and available off-the-shelf FER systems. We then integrated this automated FER system into spoken dialog of our robotic platform to extend and enrich the capabilities of ExpressionBot beyond spoken dialog and create an affect-aware robotic agent that can measure and infer users\u27 affect and cognition. Three social/interaction aspects (task engagement, being empathic, and likability of the robot) are measured in an experiment with the affect-aware robotic agent. The results indicate that users rated our affect-aware agent as empathic and likable as a robot in which user\u27s affect is recognized by a human (WoZ). In summary, this dissertation presents the development and HRI studies of a perceptive, and expressive, conversational, rear-projected, life-like robotic agent (aka ExpressionBot or Ryan) that models natural face-to-face communication between human and emapthic agent. The results of our in-depth human-robot-interaction studies show that this robotic agent can serve as a model for creating the next generation of empathic social robots

    A Systematic Review of Adaptivity in Human-Robot Interaction

    Get PDF
    As the field of social robotics is growing, a consensus has been made on the design and implementation of robotic systems that are capable of adapting based on the user actions. These actions may be based on their emotions, personality or memory of past interactions. Therefore, we believe it is significant to report a review of the past research on the use of adaptive robots that have been utilised in various social environments. In this paper, we present a systematic review on the reported adaptive interactions across a number of domain areas during Human-Robot Interaction and also give future directions that can guide the design of future adaptive social robots. We conjecture that this will help towards achieving long-term applicability of robots in various social domains
    corecore