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Abstract

As people respond strongly to faces and facial features, both con-

sciously and subconsciously, faces are an essential aspect of social

robots. Robotic faces and heads until recently belonged to one of the

following categories: virtual, mechatronic or animatronic. As an orig-

inal contribution to the field of human-robot interaction, I present the

R-PAF technology (Retro-Projected Animated Faces): a novel robotic

head displaying a real-time, computer-rendered face, retro-projected

from within the head volume onto a mask, as well as its driving soft-

ware designed with openness and portability to other hybrid robotic

platforms in mind.

The work constitutes the first implementation of a non-planar mask

suitable for social human-robot interaction, comprising key elements

of social interaction such as precise gaze direction control, facial ex-

pressions and blushing, and the first demonstration of an interactive

video-animated facial mask mounted on a 5-axis robotic arm. The

LightHead robot, a R-PAF demonstrator and experimental platform,

has demonstrated robustness both in extended controlled and uncon-

trolled settings. The iterative hardware and facial design, details of the

three-layered software architecture and tools, the implementation of

life-like facial behaviours, as well as improvements in social-emotional

robotic communication are reported. Furthermore, a series of evalua-

tions present the first study on human performance in reading robotic

gaze and another first on user’s ethnic preference towards a robot face.
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Chapter 1

Introduction

As people respond strongly to faces and facial features, both consciously and

subconsciously, faces are an essential aspect of social robots. Robotic faces

and heads until recently belonged to one of the following categories: virtual,

mechatronic or animatronic. Natural human communication is necessary to

the diffusion of social humanoid robots, however it appears the current state

of mechatronics suffers from limitations that limit efforts in this area.

1.1 Open Issues and Limitations

Despite the solutions available to social robot designers, no particular robot

technology can currently claim full user satisfaction, and perhaps this may

never happen. People are notoriously difficult to please, and not only are aes-

thetic preferences towards robots comparable with other consumer oriented

products, tastes also differ with robotic technologies. This section summa-

rizes the open challenges currently faced by social robotics researchers and

companies designing robot heads.
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1.1.1 User Expectations and the Uncanny Valley

Robot head and face design has a profound effect on our relation with re-

spect to a robot. The high-dimensional design space, with a wide choice of

techniques, materials and aesthetics, makes it difficult to evaluate the impact

of every aspect during lab evaluations and eventually in real-life scenarios.

Extensively exploring the influences at play in robotic designs, MacDorman

gathered in (MacDorman, 2005) a number of important insights. Noticeably,

his work encompasses the effects of mixing aesthetic designs leading to the

notion of character coherence. How many trial and error cycles are needed

to yield a full understanding of what makes a successful design is probably

not a relevant question to ask: in effect every new technology brings new

possibilities. Moreover, each new generation of users is exposed to an ever

increasing amount of technology, which in turn changes expectations and

designs.

However focusing on a robot’s affordances, attempts to define a prin-

cipled understanding of designing social humanoids emphasizes the impor-

tance of facial features whether they are explicit (‘designed’) or merely sug-

gested. In a study by DiSalvo et al. (DiSalvo, Gemperle, Forlizzi, & Kiesler,

2002) participants shown pictures of robots rated the eyes and mouth as

most significant for social interaction. Users expect humanoid robots to

interact primarily through vision and auditory channels, without which in-

teraction would be drastically impoverished.

Less obvious is the presence of non-explicitly intended features and how

typically human they look. In this same study, DiSalvo et al. theorize

that the closer the face and its animation resembles that of a human face,

the closer the interaction edges towards uncanniness. However, it is im-

portant to note that users’ expectations do not necessarily coincide with a

robot’s features degree of realism. Robot design should advertise particular

functionalities, but strictly copying a human appearance only advertises the
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potential for the robot to have human-level performance. As such, it is often

better to steer clear of constructing a human simulacrum.

Figure 1.1: The Uncanny Valley, illustrated with examples and taking

into account the effects of movements on perception of familiarity (from

(MacDorman, 2005)).

The notion of artificial character uncanniness that Mori coined as the un-

canny valley (Mori, 1970), persists as a contentious topic for human robot

interaction. In short, Mori argued that as the design of robots gradually

progresses towards robots which more closely resemble humans, at a cer-

tain point an “uncanny valley“ is encountered in which humans perceive the

robot as not familiar at all. Conducting many studies on the topic, McDor-

man notes how controversial this question actually is and in a later study

with Matsui (Matsui, Minato, MacDorman, & Ishiguro, 2005), applies hu-

man movement to an android in an effort to delineate the issue. Perhaps our

innate cognitive processes involved in detection of faces and various forms of
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sensory prediction, eventually eliciting empathy, are disturbed by incongru-

ent signals, leading to the unease reported as the uncanny valley. Androids,

and especially their movement, have not yet reached a level of performance

which is perceived as convincing by humans, and thus feelings of uncanniness

can halt the progress made on that front. In (Saygin, Chaminade, Ishiguro,

Driver, & Frith, 2011), functional resonance imaging used on the brain area

responsible for action perception and prediction shown stronger suppression

effects on the twenty participants watching a video of an android. Maybe

an inventory of the neurological processes at play will eventually be con-

stituted as new studies exploiting brain imaging continue to contribute to

the understanding of perception of uncanniness in humans. Whereas the

uncanny valley embodies the recognition of the problem, McDorman and

other researchers challenge its simplistic definition (see Bartneck et al in

(Bartneck, Kanda, Ishiguro, & Hagita, 2007) for a dedicated paper) and

this thesis would also promote a critical perspective on this issue.

In general, it can be argued that for a robot to be successful in its in-

teraction with humans, its mode of presentation needs to be clear: either

it is presented as a non-human character which makes no pretence of being

human-like, or the robot does resemble humans closely enough (in all rele-

vant aspects) to overcome the uncanny valley. As the latter type has not yet

been achieved, and indeed may take a while longer, it can be argued that

an approach in which a design stays coherent, with a robot not trying to

be as human as possible (such as the Nao for instance), is more feasible to

achieve effective human-robot interactions. This is of course not to say that

the type of interactions should be limited because of this design choice.

1.1.2 Practical Concerns in Mechatronics

Building a mechanically animated face requires a considerable amount of

resources and the technologies involved have a number of drawbacks which
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are discussed below along with possible alternatives.

Mechanical Complexity

Currently, even if novel technologies such as dielectric polymer-based mus-

cles or memory shape alloys reached niche applications, servos and pneumat-

ics still hold robot designers’ preference for actuation; alas, these cannot yet

match the power yield or density of their biological counterparts. By re-

quiring extra pumps and lacking precision, pneumatics are unfit for facial

animation, hence servos actuate conventional robot facial features as well

as android’s skin underlying structures. Many times the size of its relative

facial muscle, a servo can only occupy space behind the facial bones and

transmit the mechanical force to a specific facial feature. Therefore only a

certain number of servos can be housed in the head volume, each one adding

weight and noise, reducing space, complicating the mechanical design and

eventually requiring adequate cooling.

Power Requirements

Not all actuation techniques drain the same amount of power. As faster

or stronger servos drain more, they also release more heat, up to the point

where active cooling is required, adding to the power consumption. Control

boards, active sensors and lights also require their share of electric current.

Adding to the weight of servos, the chassis, sensors, electronics, cabling

and plastics stress the smallest – but also weakest – servos, and often the

solution is to opt for more robust ones that drain more power. In that regard,

virtual characters do not suffer these problems: the power consumption of

their displays stays almost constant and heat can dissipate freely without a

cover.
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Costs

The higher price of mechatronic designs finds many justifications. Although

robots are often publicized, the social robotics market has yet to mature

and become mainstream enough for the industry to mass produce cheaper

robotic components, and hopefully compatible whole robotic parts; hence

most robots continue to bear custom designs, with each innovation raising

costs. Fortunately, with the 3D printer market taking-off, a vision where

even the most complicated mechanical design becomes affordable to small

budgets is becoming a reality (see for instance (Griffey, 2012)), however

3D printing is no comprehensive fix. One can reasonably think servos and

components would eventually become cheaper as automation becomes ubiq-

uitous, however it seems unlikely that a specific android face would become

standard: we easily accept having the same car as our neighbour but it may

be confusing to see our personal android’s face anywhere else but home.

Today though, ultimately the fewer the number of sensors, actuators and

other components that enter the conception of a robotic face, the cheaper it

becomes to produce and maintain.

Motion

Typical actuator motion is not convincing: slow, linear and/or jerky actu-

ations poorly simulate human facial muscles which fully stretch in a only a

few hundred milliseconds displaying smooth, non-linear dynamics. Trying

to achieve these sort of motions with conventional actuators is an interest-

ing mechanical and control challenge. As human facial expressions change

in a very short amount of time, video is more suited than mechanical servo

mechanisms, with the smoothness of the animation only constrained by the

video frame rate.
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Expressiveness

Non-android faces are often composed of solid parts for each feature (e.g.:

eyebrows and eyelids) and sometimes a flexible mouth such as FloBi’s. These

visible features essentially follow a linear movement in contrast to androids’

flexible skin, and combining multiple actuators to address this issue is rarely

practical. A limited number of actuators restricts the number of facial ex-

pressions available in a robot’s repertoire, and to our knowledge, only the

Nexi MDS houses as many as 15 DOF. As android faces emphasize realism,

one would expect their faces to be very expressive, however attempts to pro-

vide android faces with more DOF (for instance Albert HUBO (Oh et al.,

2006) has 28 facial DOF) have yielded mixed results. In fact, an android’s

face is subject to the same servo housing issues as other robots, consequently

latest androids manage facial expression with roughly the same number of

DOF as most expressive non-android faces (for instance Actroid F has 12

DOF). However, this implies compromises and such androids fail to create

realistic mouth deformations, a visual effect most noticeable while they talk.

On the other hand, virtual faces experience none of these issues: their

expressiveness is only limited by the quality of the 3D model and its anima-

tion, and the resolution of the device displaying them.

Uncanniness

Androids are more prone to uncanniness. As their physical appearance is

closest to humans, actuator capabilities and skin interaction is still an issue

with current technology. This is most obvious when androids engage in fast

gestures, as precise control of momentum remains problematic in robotics.

Also the jerkiness some androids experience may unconsciously remind us

of motor diseases not uncommon in humans (such as Parkinson’s), typically

unmasking the failed imitation. Mouth animation, and lip-synchronization

in particular, fail to look realistic and contrast with the other achievements.
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Moreover, noise originating from actuators participate in the general

uncanniness, even more present during face to face interaction. This effect

seems less important in non-realistic robots, and perhaps this carries a cul-

tural bias: films are notorious for associating non-android robots with servo

noises, while no such sound effects were present with Terminator T-800,

StarTrek’s Data, etcetera, until their robotic nature needs to be empha-

sised. Other auditory effects take part in the uncanniness experienced with

robots. While constant, fan noises may be filtered out by the brain in the

long run, but a fan changing speed unexpectedly can also generate distrac-

tion. Adding to the uncanny effect, the problem with loudspeaker placement

emerges either when the speech source is distinctively not localised in the

mouth, or when placement in the robot head modifies speech spectral profile

(e.g: loss of high frequencies or resonance).

Despite the progress made, shortcomings in the illusion of life in virtual

characters still attracts the attention of non-expert people. For the illusion

to work best, many aspects of physics must be reproduced: simulating all

light behaviour passing through skin and other materials is notoriously dif-

ficult to achieve in real-time, believable collision management require com-

plex engines, and hair, fluids, clothing and skin foldings also rely on specific

algorithms to appear realistic. Nonetheless, CGI steadily pursues its way

towards photo-realistic quality, and we may witness photo-realistic real-time

character animation in the very near future.

1.1.3 Other Limitations

Avatar Flatness

While an avatar displayed on a screen satisfies some robotic projects, their

strongest limitation comes from the Mona Lisa effect investigated by Rogers

et al. (Rogers, Lunsford, Strother, & Kubovy, 2003) or Maurer (Maurer,

1985). Essentially, portrayed eyes always appear with a gaze direction rel-
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ative to the viewer himself, regardless of his viewpoint. Consequently two

viewers do not see the same object being gazed at, and more critically, a

moving viewer does not perceive a fixated gaze. In addition, the lack of fa-

cial three-dimensional geometry to advertise social and natural interaction

abilities often negatively impacts on the interaction, and while one could

argue that 3D monitors exist, their price remains a prohibitive constraint.

Behavioural Limitations

Even if speech synthesis has known widespread adoption over the recent

couple of years – most notably on “smart phones” – these speech models

typically sound monotonic without proper prosody, although interesting pro-

posals exist (see (Scherer, 2003) for a review). Alternatively, better human

speech production is possible and attractive low-dimensional models have

been proposed by Nicolao and Moore in (Nicolao & Moore, 2012). The most

convenient method to tackle multi-modal congruence of emotional content

may be through analysis of human behaviour, however the very definition

of emotion and its principled model have not yet reached definite consensus

amongst researchers. Therefore, avoiding patterned interactions and achiev-

ing believable robotic behaviour on the long term may elude the community

for a while.

Some of the facial expressions used to convey social signals are culturally

universal: they are produced and understood by all. Ekman and Friesen

(Ekman & Friesen, 1969) accumulated evidence showing that six basic facial

expressions are inter-cultural: joy, sadness, fear, disgust, anger and surprise;

however many others are culture-specific. Indeed, this is also the case for

head movements (e.g. the signalling of agreement or attention employs

nodding in Western cultures, instead many South Asian cultures as well as

Bulgarians use head wobbles). As such, it would be desirable for a robotic

face and its behaviour to adapt to cultural settings.
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1.2 Challenges Addressed in This Work

Consequently, a novel approach to naturally interactive robotic faces is much

needed and that is what the work reported in this thesis addresses.

1.2.1 Objectives

The objectives of this research program were twofold: create a robotic plat-

form exploiting non-verbal HRI to elicit natural social-emotional communi-

cation, and employ this robot for socially guided acquisition and teaching of

knowledge (de Greeff, Delaunay, & Belpaeme, 2009; de Greeff & Belpaeme,

2011).

To this end, a major milestone was the creation of an independent non-

mobile anthropomorphic robotic agent, comprised of a iCub-based robotic

head displaying a computer-animated face, and a standalone industrial robotic

arm offering less than 500g of payload. This required the design and man-

ufacturing of parts, writing controlling software and interactive behaviours

such as joint attention and turn taking so as to demonstrate capability to

engage in human-robot interaction. The robot’s knowledge and active learn-

ing system were to be evaluated in a robot-tutelage scenario in which the

robot could crane over objects laid out before it.

1.2.2 Contributions to Knowledge

Therefore, I present the R-PAF technology (Retro-Projected Animated Faces,

also known as RAF in my previous publications): a robotic head displaying

a real-time, computer-rendered face, retro-projected from within the head

volume onto a mask, as well as its driving software designed with openness

and portability to other hybrid robotic platforms in mind.

Contributions to knowledge exposed in this thesis include the design of
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the R-PAF technology through the creation of the LightHead interactive

robot, the study of non-planar robotic facial displays, their measured eye

gaze readability by human viewers, and the demonstrated effectiveness of a

R-PAF robot to engage in and exploit social human-robot interaction. Over-

coming important limitations of mechatronic heads, the R-PAF technology

represents an alternative development to mechatronic and flat-screen based

robotic heads, allowing a wide range of customisations and multiple cost

savings.

Retro-projected faces not only offer a refreshing take on robotic head

technologies, but also provide a great potential as a research platform for

HRI and human focused fields. As reported in section 7.3.3, several scholars

followed the path laid out in this research with R-PAF heads, exploring re-

alistic faces, new social capabilities with conversational agents, social cueing

and small form factor faces.

1.2.3 Plan for Work

This chapter discussed current issues with approaches to facial animation for

social robotics and framed the work reported in this thesis. Next, chapter

2 brings forward the rationale behind the need for social interaction with

current and future humanoid robots, and reviews the related state of the

art in the field Human-Robot Interaction. Chapter 3 explores the design

challenges emerging in social robotics and details the solutions developed

in this work. Chapter 4 looks at the question of robotic eye gaze read-

ability through a first novel experiment and provides measured results of

human performance with the LightHead robot supporting the robot’s abil-

ity to provide precise gaze from both front and side-facing users. Chapter

5 investigates the effectiveness of robotic social cueing in a robot-tutelage

experiment demonstrating benefits in active learning. Chapter 6 addresses

the issue of user-robot ethnic alignment in a second novel experiment using
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the crowd-sourcing platform CrowdFlower and provides insights over local

versus individual ethnic alignment of a robot’s facial appearance. Finally,

chapter 7 summarises the main results of the research, provides a compar-

ative analysis with anthropomorphic social robots equipped with either a

flat-screen or mechatronic head, itemises the original scientific and engi-

neering contributions in this work, and mentions industrial impact.
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Chapter 2

Background

Robotics has a rich and dynamic legacy rooted in the belief that machines

can relieve humans from labour, and to a greater extent, be endowed with

enough intelligence to take a crucial role in human societies. While the term

and depiction of a robot in R.U.R by Karel Čapek dates back to 1920, the

field of robotics really started with the development of cybernetics (Norbert

Wiener, 1948): the study of the structure of regulatory systems. Although

laying the foundations for machine control and automation, it was necessary

for research in cybernetics to acknowledge the difficulty of general purpose

problem solving and to focus on domain-specific issues more suited for clas-

sical analytical methods. With subsequent improvements in control and

automation, a number of precisely framed problems found robotic solutions.

Consequently, the industry mainly driven by the need for more robust and

faster production in factories, successfully introduced programmable robots

– typically a manipulating arm – solely relying on position to accomplish

their task, and thus with far less capabilities than Čapek’s robots.

Towards the end of the 20th century, availability of multiple types of

sensors and advances in their integration allowed relaxing strong structural

constraints on robotic operating environments. Thanks to combined scien-

tific and technological advancements, along with progress in computing, a
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new breed of machines (dubbed service robots) could then sense their en-

vironment, react to changes and gain mobility: key properties to initiate

the market of robotics we know today. Each generation of service robots

came with the ability to handle a wider range of practical problems such as

quality control, optimised logistics, continuous automated surveillance and

many other tasks in hazardous or sterile environments.

This trend is indeed still ongoing and nowadays one objective of re-

search is to relax service robots’ environmental constraints: ideally, they

should adapt to their environment, in terms of mobility and manipulation,

but also in terms of appropriate decision making. Landmark achievements

are usually demonstrated by the industry releasing technological products

with significant impact on our societies (e.g: telecommunications and mobile

phones). Similarly, efforts to open service robots’ operating environments

recently yielded exciting applications such as autonomous vehicles (cars,

UAVs, submarines, planet rovers, etc.), robotised experimental research

(micro-organism selection for bio-genetics) and assisted surgery (compen-

sation of patient pulse and surgeon’s movement control).

Although service robotics is spurring tremendous changes in human ac-

tivities, the nascent market of domestic robots is promised to have a stronger

influence on people, as these robots’ interaction with humans is more direct

and potentially longer. Public service robots remain specialized to a specific

task, thus their method of interaction can be kept minimal. On the other

hand, domestic robots in general are designed to serve humans best, and as

such seek natural integration into the family.

Motivations to pursue research and industrial efforts in the area of do-

mestic robots are numerous, and backed up by many surveys. With a rare

large number of participants, Arras & Cerqui (Arras & Cerqui, 2005) asked

14 questions on various aspects of robotics and their usefulness to 2042 vis-

itors attending a Swiss exhibition held in 2002. When questioned: “Could
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you imagine to live on a daily basis with robots which relieve you from cer-

tain tasks that are too laborous for you?”, 71% replied positively. Also,

83% of the polled reported they would accept a robot to help partially re-

gain independence; a claim fitting a trend of ageing population and longer

life expectancy in most developed countries.

A general public interest in domestic robots in particular is indeed unde-

niable, and unsurprisingly a few high-technological companies endeavoured

to create the first general public domestic robot. The robot dog AIBO – the

brainchild of Sony released in 1999 – is described as the first commercially

successful domestic robot from the entertainment industry. Although this

effort certainly satisfied its audience despite the robot’s expensive price,

AIBO’s limited usefulness restricted adoption by a broader range of cus-

tomers and eventually led to the discontinuation of its commercialisation.

On the other hand, the Roomba is an autonomous vacuum cleaner (intro-

duced in 2002 by iRobot) and was designed with a clearly defined purpose.

With more than 8 million units reported sold in 2012, it is considered a

sound commercial success. Nonetheless, a study of users’ feedback by Forl-

izzi & DiSalvo (Forlizzi & DiSalvo, 2006) suggests that even if this domestic

robot satisfies customers, people expect more intelligence from it.

A robot with predefined and static knowledge is not pragmatic for un-

constrained environments: it is hard to delineate all possible use-cases and

environmental conditions, and the usefulness of a robot unable to adapt to

new environments is very limited. However, one can assume that domestic

robots will get more intelligent and expand the number of simple domes-

tic tasks users would delegate them, fulfilling their purpose of freeing people

from some simpler house-keeping chores. It is reasonable to predict this mar-

ket will only grow and we can expect the presence of autonomous robots to

be more common in homes. But then, projecting this trend in the future,

two main problems arise: integration of domestic robots into human activ-
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ities, and management of several task-specific robots. Currently domestic

robots run their program without accounting for human presence, however

blending autonomous behaviour with human activities raises a whole new

set of challenges (collaboration and disturbance avoidance is a contextual

problem). Management of these robots, if handled by users themselves,

can be daunting for most, let alone the industrial challenge of robot inter-

operability. Opinions on the future of domestic robots diverge, however a

popular idea also constantly promoted by the media and arts is that robots

should be intelligent, and certainly much more than the current domestic

robots.

The personal robot stands as an alternative to multiple task-specific do-

mestic robots. This general purpose, anthropomorphic robot would also be

capable of holding conversations, and finally match current users’ expecta-

tions.

Integration of multi-purpose robots in human society has been a long

standing goal and it is no surprise that research progressed towards a type

of robot shaped after human physiognomy: the humanoid. For instance

ASIMO (Honda Corporation, 2000) and QRIO (Sony, 2003), while not being

of the same size, have bipedal locomotion, arms and hands, as well as vision

and audition sensors fitted in the head. By contrast, current domestic robots

are limited by their embodiment: a wheeled robot can hardly handle steps

or use stairs, and the lack of an arm or hand prohibits any form of grasping.

Humanoid robots can fully exploit our human environment and thus blend-

in at no cost, which is certainly why personal robots are physically designed

in this manner. Eventually, these robots should eliminate specific modes

of interaction, in direct opposition to the best computer interfaces where

humans still have to adapt to machines; with personal robots, machines

adapt to humans through their embodiment and cognitive abilities.

The push and desire for personal robots mainly comes from consumers’
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expectations of domestic robots, which have been sampled by several sur-

veys across diverse populations. Copleston and Bugmann (Bugmann, 2011)

polled 442 subjects from five age groups with an open questionnaire (no pre-

defined answer) on their hypothetical use of a personal domestic humanoid.

The questionnaire proposed seven questions such as “You get up and get

ready for your day, what will you ask your robot to do today?” and ”You

have booked two weeks holiday and plan to go away. What will you ask

your robot to do while you are gone?”. From this study, the first three most

popular categories extracted were “Housework”, “Food Preparation” and

“Personal Service”. These categories encompass diverse tasks reported by

the participants: for instance housework relates to tidying, cleaning (vacu-

uming, washing dishes, cleaning floors, baths, sinks and windows..), water

plants, make beds and laundry. Indeed, no current domestic service robot

can handle all these tasks (an obvious issue is the amount of tools required)

and even if a very smart design would allow overcoming that limitation, the

real problem is how such a robot could be tuned to fit the various specifics

of each household. For this, a robot needs not only to learn from its envi-

ronment but also from its owners (preferences, house policies and lifestyle),

which cannot be achieved without a form of intelligence.

The need for smarter domestic robots is also supported by another study

by Ray (Ray, Mondada, & Siegwart, 2008) which concluded people would

prefer to interact with robots using speech. Most entertainment robots are

provided with some degree of speech recognition mainly used as a way to

instruct them with predefined commands. After exploring these robots’

capabilities, such a strongly framed, one-way communication loses the en-

tertainment value of the interaction. Although experienced users can extend

a robot’s behaviour through computer interfaces (ie. programming tools),

ideally no programming would be required for that matter. Instead users

would use natural speech and gestures with the robot to carry their in-
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tention with the same level of understanding commonly present between

humans. Considering that natural speech processing is well established in

domain-specific applications such as call transfer, booking and GPS systems,

one would expect their usage in robotics to be more commonplace. Unfor-

tunately natural speech processing remains problematic, requiring a great

deal of domain-specific knowledge and computation. Using natural speech

in robotics and more so in open-domain personal robotics, requires sym-

bol grounding: a comprehensive bi-directional relation of symbols (words)

with an embodied experience that connect them with the environment (see

Harnad (Harnad, 1990) for further reading on symbol grounding).

The field of robotics regroups many aspects (design, control, intelligence)

in diverse sub-fields and school of thoughts: classical machine learning, bio-

inspired and developmental robotics to name a few. Arguably, all these

specialisations exist because there is yet no general purpose theory which

covers all aspects of robotics. Although the current state-of-the-art in ar-

tificial intelligence prevents natural language interactions with robots, al-

ternative forms of communication and interaction are possible. Inspired by

human-to-human interactions, a growing body of studies from the field of

Human-Robot Interaction (HRI) are revealing the effectiveness of non-verbal

communication applied to robotics.

Human-Robot Interaction covers various aspects of robots interacting

with humans. HRI studies interactions socially, psychologically, personally,

ergonomically, etc – often considering several aspects at the same time.

Such a broad definition is typical to a young, complex and dynamic field

of study, with many interdisciplinary connections. Once again, deep philo-

sophical questions about HRI – e.g. Can machines be considered conscious?

Should they have rights? How such a powerful kind of agents would im-

pact mankind? – were exposed almost a century ago in arts and literature

(Čapek K., Asimov I.), and obviously we’re not yet able to answer them.
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However, these questions were formulated assuming humans and robots in-

teract similarly and naturally. In fact, it took researchers to explore the

characteristics and define the problems of natural embodied robotic interac-

tion to shed light on the crucial importance of paralinguistic communication

at the heart of our social and emotional interactions.

2.1 Being Social

Working in robotics presents many opportunities to discuss the fascination

robots have on the public. Often, questions such as “Will robots replace

humans?” or “Is it possible for robots to take over the world?” find their

origin in popular culture, and however tempting it is to disregard them

(considering how simple current robots are) these questions are too funda-

mental to be discredited without debate. In fact, this questioning is about

ourselves and how we relate to technology in general, reformulating them:

Can technology ever challenge our own complexity? How can we always

be sure of a robot’s intentions? Evaluating human complexity is usually

a matter of observable behaviour and maybe popular interest comes from

the increasing ability of robots to imitate us. Asking whether robots would

ever have a motive to overthrow humans reveals how acute our reliance is

on interpreting each other’s intentions. Fundamentally, it is because we de-

fine ourselves as social beings that these questions matter to us; because

we mutually relate to peers to evaluate ourselves, seek wisdom for decision

making, and at a basic level, ensure survival. Integrating intelligent robots

in our societies may have profound consequences over the social structure

we live in, and regardless of the changes, this process will ultimately expand

the understanding of our own kind.
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2.1.1 Evolutionary Perspective

Usually, the term “social” brings to mind how humans connect to others, and

only occasionally do we leave this human-centric conception. As a matter of

fact, humans are not the only species that exhibit a social structure; many

other mammals such as deers and meerkats, birds such as the great tit,

insects such as ants and bees (and even micro organisms) establish strong

bonds with other members of the community they belong to. The meaning,

expression and context of these bonds constitutes a communication essential

to the formation of a social group. Exploring these aspects from a human-

human interaction standpoint unravels innate and acquired means of tacit

mutual understanding which robots must tap into for genuine integration in

any of our social environments.

Arguably, the mere act of sensing others is a form of passive one-way

communication. A lot of information is passively disclosed: age, gender,

lineage and overall health are given away by the body. However behaviour

carries more: social status can be inferred from the number of followers and

degree of dominant behaviour, an evasive movement reveals the presence of

a threat, a gathering helps spotting a large resource. When environmental

pressure is low (for instance the Amazonian forest has a stable climate with

uninterrupted essential resources), evolutionary processes generally lead to

more bio-diversification and specialised species. On such principle, it is

conceivable that this one-way communication underwent an evolutionary

shaping to become two-way, specialising individuals to analyse and react to

each other’s behaviour. Assuming genetic transmission of fundamental be-

haviour (environmental and community fitness) to all members of a group,

behaviours become the de-facto communication protocol. For instance, eye

gaze, and the ability to use eye gaze to transmit intent and other forms of in-

formation, is essential for primates (Emery, 2000). Behavioural, non-verbal,

communication is indeed an essential aspect of human-human communica-
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tion, so much so that providing robots with the means to analyse behaviour

promises abilities such as robust verbal communication, social context in-

ference, and cultural awareness.

Occurring in most social species as a means to improve chances of sur-

vival, cooperation strongly motivates the consensual establishment of overt

intentional behaviours. To shed light on the result of this epigenetic process,

Bratman (Bratman, 1992) explored the preliminary mechanism of mutual

responsiveness of intention. Cooperative behaviours can be innate, but for

humans and some primates, cooperation is immediate and localised, rela-

tive to the completion of a task and reliant on the establishment of joint

attention (see (Tomasello, 1999)). Cooperative species may have evolved

intentional behaviour with co-occurring subtle non-verbal signals mediated

by gaze, or facial expressions to optimise completion of tasks and quickly

engage in key survival behaviours such as repelling a predator. No matter

how sophisticated these conventions are, it is very likely that they would

eventually constitute the basis of a social language. Luc Steel’s language

games (Steels, 1997) present a general theory on the emergence of a com-

municative consensus in a population of agents able to interact and adapt

according to the success of communication; which in our case is the com-

pletion of the cooperative task itself. Oudeyer and Kaplan (P.-Y. Oudeyer

& Kaplan, 2007) revealed how agents playing the language games maximise

communicative robustness by exploiting and adapting their communication

channels, further supporting the idea of evolution towards multi-modal so-

cial communication.

The field of evolutionary social psychology offers an insightful and gener-

ally appealing approach to explaining various aspects of our social behaviour.

Covering this field’s axes of study and all of the related key contributions in

support of this thesis is obviously beyond the scope of this document; how-

ever a few particularly relevant ideas are mentioned in this section amongst

40



others from related fields. The curious reader wishing to familiarise himself

with evolutionary social psychology can refer to Neuberg (Neuberg, Kenrick,

& Schaller, 1998) and acquire more in-depth knowledge with the book by

Barkow et al. (Barkow, Cosmides, & Tooby, 1992).

The Expression of the Emotions in Man and Animals (Darwin, 1872)

brings a general understanding of the phylogeny of our facial features and

limbs as a means of non-verbal communication. A striking example comes

with the evolution of eyebrows: “the eyebrows are continually lowered and

contracted to serve as a shade against a too strong light; and this is effected

partly by the corrugators”. The activation of these muscles is linked to other

stimuli potentially damaging for the eyes: wind, carried particles of dust or

sand, and liquid projections. Perhaps our feeling of disgust and its associ-

ated facial expression are a legacy of this general reaction to disagreeable

stimuli. The facial expression of anger also uses the corrugators to lower the

eyebrows and reduce exposure of the eyes; arguably a mechanism to protect

our most precious sense in the case of a fight. Regardless of the origin of

these facial expressions, it is clear that our species evolved to expand the

primary usefulness of the muscles controlling our two main facial organs’

area: eyes and mouth.

Similarly, free hands created a new social communication channel, most

likely comprised of rough arm movements at first, and extended to subtler

hand and finger movements over evolutionary processes. Moreover, many

primitive gestures and postures (such as hugging, finger pointing, shrugging)

acquired different meanings over the geographical expansion of our species,

and along with other factors of differentiation, these localised consensus

spurred culture. For instance, hugging in public, and more generally public

physical contact, is considered rude by Asian Indians but understood as a

display of friendship by Westerners. Trying to be thorough, a presentation of

cultural diversity found in embodied social communication would mention
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full body poses, interpersonal distance, signing, and more, but these fall

beyond the scope of this work.

Presumably, the evolutionary approach supports the inception of a basic

model of social behaviour common to all cultures, which appears most rel-

evant for a first generation of culture-agnostic social robots; but at a later

stage, cultural and cross-cultural awareness should match a robot’s per-

ceived intelligence. However, if robots could reach the next step – by fully

adopting a culture and behaving accordingly – challenging societal consid-

erations could arise. Culture may remain such a human-specific trait that it

may become questionable for a robot to actively engage in all behaviours of

a particular culture, potentially raising identity issues similar to the many

inter-cultural community clashes in history.

Across all cultures though, it stands that our shared embodiment and

shared cognitive mechanisms support the detection of intent and empa-

thy. Social cognitive neuroscience (Ochsner, 2004) and the theory of mind

(Meltzoff & Decety, 2003) converge towards the recognition of our innate

ability to transpose a person’s feelings and intentions to ours. The co-

evolution of brain and facial features eventually allowed the detection of

internal states in others; imitation of a facial expression easily induces in

others the same feeling at its cause. Quoting Darwin from (Darwin, 1872):

“The force of language is much aided by the expressive movements of the

face and body”, a statement definitely backed-up a century later by studies

from Ekman and Friesen (Ekman & Friesen, 1969) on detecting deception

and micro facial expressions.

Indeed evolution shaped many other aspects of human behaviour. Emo-

tional displays given off by the head go beyond facial expressions: e.g. pupil

dilation, gaze, prosody of speech or even skin conductance also reveal in-

ternal states. Conversely, specific stimuli bias our behaviour and reasoning,

an effect referred to as priming. Despite advances in fields such as neuro-
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biology and neuro-psychology, comprehensive understanding of human non-

verbal behaviour is not yet complete. even as quickly as science progresses,

it sounds fair to say quite some time and research effort is needed to catch

up with 5 million years of evolution, and to endow robots with the ability

to naturally interact with our human nature.

2.1.2 Social Robots for a Social Species

The need for social robots is supported by a deeply rooted human trait

revealed by several studies: humans behave socially with robots.

A study by Tanaka et al. (Tanaka, Cicourel, & Movellan, 2007) placed

a non-social QRIO robot in a class of Japanese toddlers. Over the course

of 5 weeks, behavioural reports described how the pupils treated the robot

as a member of their group, showing care and integrating it in their daily

activities. It may be that QRIO sharing the toddlers’ size and overall aspect

helped them to relate to it, nonetheless, they spontaneously treated the

QRIO as a social partner.

In Andrea Thomaz’ experiment Sophie’s kitchen(Thomaz, 2006), partic-

ipants taught the agent Sophie how to bake a cake with objects available

in a virtual kitchen; the agent acted visually and could only display object-

oriented attention with head gaze. At any time of the baking process, Sophie

could receive participants’ positive or negative feedback through a computer

mouse. Thomaz theorises participants used social reasoning as they report-

edly interpreted the agent’s gaze as intentional. More importantly, they

“felt positive feedback would be better for learning”, which correlates with

69.8% of positive feedback given by the participants. Thomaz underlines

that machines need to be aware of human teaching biases: actions are in-

terpreted as goal-oriented (ruling out random exploration) and guidance is

mostly given with positive feedback. Arguably, positive feedback isn’t most

people’s primary teaching method, a fact that suggests psychological and
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cultural traits, but the surprise in this study is how participants anthropo-

morphised the agent, and appeared to care for its “feelings” in its attempts

to learn cooking skills. Maybe the task to learn and the representation of

the agent promote a specific social mindset in people, however, exploration

of these dimensions ask for additional studies.

Cynthia Breazeal pioneered extensive research on the social aspects of

human-robot interaction with the Kismet (Breazeal, 2002) and Leonardo

(A. G. Brooks et al., 2004) robots. The latter capitalises on the experience

with Kismet, and features 65 degrees of freedom necessary to display a rich

set of social behaviours. Thomaz – née Lockerd – and Breazeal (Lockerd

& Breazeal, 2004) stress the importance of transparent states to establish

collaborative learning as implemented on Leonardo. A continuous provision

of robotic social cues guarantees the teacher’s ability to infer the robot’s

learning confidence, allowing the teacher to regulate complexity by guiding

the acquisition of the most relevant examples for a task. Additionally, they

mention robot commitment: social readability supports overt robot inten-

tional behaviour, dedication to acquiring a specific skill, and may also be

key to maintaining a teacher’s engagement. Continuous robotic social cues

also benefit learning with “Just-in-time Correction”, the possibility for the

teacher to provide timely feedback on the robot’s actions.

Arguably, it takes more time to formulate and verbalise an accurate

description of a learner’s error than it takes to provide a social cue. Perhaps,

in these interactions, people usually build short abstract sentences such as

“not like that”, or “put that stuff back in there” because they believe the

established social context carries enough information. Consequently, this

underlines how a speech-capable robot can overcome difficult utterances if

it adequately monitors and interprets social cues.

Establishing and maintaining recurrent robotic social interactions in the

long term presents additional issues: the curiosity associated with the nov-
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elty of the robot fades away and machine driven interactions tend to be

repetitive, which may eventually shadow efforts spent on the robotic social

behaviour. Literature on long term human-machine interaction includes

works by Bickmore and Picard (T. W. Bickmore & Picard, 2005) in which

a virtual relational agent interacts on a daily basis with a hundred of par-

ticipants over the course of 4 weeks. The agent with social-emotional and

relationship building skills, was “respected more, liked more, and trusted

more[..], additionally, users expressed a significantly greater desire to con-

tinue working with the relational agent after the termination of the study”.

These findings not only introduce the idea that long-term relationships with

agents are possible, but also that people welcome these abilities and look

forward to these kind of interactions. More recently, Bickmore focused on

the means to maintain long-term engagement (T. Bickmore, Schulman, &

Yin, 2010), and found that “increased variability in agent behaviour leads to

increased engagement and self-reported desire to continue interacting with

the agent”.

The result obtained with subtle variability in the agent’s visual and

syntactical changes may also impact the future of robot design, aesthetically

and functionally. It may be that people would feel more engaged with robots

capable of changing subtle visual aspects such as a clothing, accessories or

even finer facial details. It may also be that beyond verbal communication,

variability in robot behaviour would have similar effects. However, personal

robots have yet to catch up with the degree of subtlety virtual agents are

capable of, alas, current hardware limitations profoundly hinder efforts in

this area.

Whether considered for long-term or short-term interaction, robot per-

sonality touches a sensitive part of our human nature and brings societal

reflections. Currently, this topic falls short of complexity in existing robots,

certainly because most have a functionally oriented programmatic nature,
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however, they are not devoid of personality either. Syrdal, Dautenhahn,

Woods et al. in (Syrdal, Dautenhahn, Woods, Walters, & Koay, 2007)

consider the influence of robot anthropomorphism on perceived personal-

ity, and their findings suggest people assign personality traits to robots

in much the same way they do between themselves. In light of anthro-

pomorphism, the interactive nature of robots, their observable behaviour

and physical appearance endow them with a form of personality admittedly

limited by a lack of coherent self-awareness. Slow, precise and rigid meth-

ods of problem solving (such as pouring and bringing a cup of tea in the

same predictable way) would probably let them seem careful and perhaps

stupid; traits that might irritate people on a long-term basis. Such a sce-

nario points to the many reasons why social robots, and more so personal

robots, should develop and adapt user-compatible personalities, a view also

supported in (Dautenhahn, 2004). Psychological studies such as (Terveen &

McDonald, 2005) report people seek other with similar personalities, conse-

quently incompatible human-robot personalities might degrade interaction

quality.Therefore, it appears rather reasonable to promote robots in social

environments where careful movements are commonplace and where users

do not expect tasks to be completed in record time.

2.2 Towards Natural Human-Robot Interaction

Advanced robots available for the mass market – beyond being much too

expensive – are so limited in their interactive skills that they are restricted

to simple tasks or specific niche environments. Retrospectively, these robots

have proved to be more of a futuristic promotion than anything useful.

However things are changing as various kinds of robots start to meet the

needs of a diverse audience, and progress on personal robots brings about

compelling advancements.

In healthcare, robot assisted therapy is already more than a decade old
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(Schraft, Schaeffer, & May, 1998) but is now emerging as a promising way of

helping patients or the elderly. Paro (Wada & Shibata, 2007) is a contempo-

rary example used in elderly and autistic child care; RI-MAN (Onishi et al.,

2007) is a more advanced and potentially helpful robot providing assistance

such as lifting and holding a human. Even if their primary objective is to

support the therapy, these robots are still limited by design to a specific

interaction: Paro is a pet robot producing seal sounds and responsive to

touch, and RI-MAN will just locate a human through face detection and

sound localization. Surely one would wish for entertainment or conversation

during a stay in hospital, but none of these robots have the ability to provide

interaction beyond what they are programmed for.

The toy industry also has the potential to generate a strong appeal for

robotics. Compared to legacy robotic toys, of which, Furby (Hampton

& Chung, 2003) is an example, latest robots feature improved processing

power, more degrees of freedom, more sensors and indeed, more skills (eg.

locomotion, face recognition, etc.). Unfortunately they still remain limited

in their intelligence and ability to communicate with their owners. Alde-

baran’s Nao robot (Monceaux, Becker, Boudier, & Mazel, 2009) current

design mainly features limited speech recognition that triggers specific pro-

grammed behaviours and limited walking capabilities that seem very robotic.

While this kind of robot is legitimately targeted at children, the restricted

interaction limits the possible extension to robotic enthusiasts of all ages,

amongst whom, researchers are currently the main users.

Finally, robots are expected to fill many public areas. Some are al-

ready serving as guides in museums like the Rackham (Clodic et al., 2006),

as performers like the RoboThespianTM(Engineered Arts Ltd, 2006) or in

shopping malls like the Wakamaru (Kanda, Shiomi, Miyashita, Ishiguro,

& Hagita, 2009). Also, robots are replacing interactive kiosks: see (Lee,

Kiesler, & Forlizzi, 2010) for a study. Operating around the clock, they
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would provide information and services through speech and gestures; tasks

that humanoids or androids (like the Actroid SAYA (T. Hashimoto, Hira-

matsu, Tsuji, & Kobayashi, 2007b)) could certainly handle. However, even

if thanks to a dialogue system these robots appear to be smarter in order to

work with crowds, the interaction they offer is definitely short-term, often

utilitarian and directed to specific scenarios.

On the other hand, the appeal for personal robots pushes robotic skills

boundaries towards natural interaction. Even if current research is focused

on obstacles to their industrialisation (power consumption, materials, au-

tonomous reasoning, safety, etc.), their inter-personal purpose place them

at the forefront of natural interaction research. Naturally, copying human

physiognomy is a key advantage for personal robots as a similar embodiment

primes mirroring and learning the specifics of inter-personal behaviour.

Ideally, humanoids and androids would offer a natural form of inter-

action, using their human-like embodiment as humans do, not only with

gestures, poses, facial expressions and believable human ocular and mouth

movements, but also respecting implicit conventions such as interpersonal

distance. A naturally interacting robot is a socially and emotionally aware

robot, manipulating non-verbal behavioural cues to the level any human

possesses. With such skills, robust, unconstrained and rich communication

would be possible, the net effect being less emphasis on verbal interaction,

shorter dialogues, less need for assessment of understanding and improved

reliance on robots, in short: trustworthy robots.

Beyond trust (and novelty), the motivational argument behind public

and personal robots industrial efforts is the engagement they elicit from

people, especially grabbing people’s attention and keeping them connected

so that the robot can successfully deliver its message. Public robots in shop-

ping malls should engage their audience to make purchases, others should

engage people to use them as a primary means to get information and ser-
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vices, and personal robots failing to engage their users would risk disuse

in the long term. However, engagement remains hard to measure objec-

tively, and usually bound to a specific goal-oriented context. On the topic

of human-robot engagement, extensive research by Sindner must be men-

tioned, such as Sindner et al. (Sidner, Lee, Kidd, Lesh, & Rich, 2005) in

which the metric relies on mutual gaze and gestures, but most research in

this regard is conducted with avatars: Yukiko and Nakano emphasise the

importance of timing, Bickmore et al. (T. Bickmore et al., 2010) explore

long-term engagement. Measures of engagement in a disembodied agent

have also been carried out, as described by Yu, Aoki and Woodruff who

propose a method based on speech (Yu, Aoki, & Woodruff, 2004).

2.2.1 Non-Verbal Communication

Robot feedback has been so far fairly limited. Aibo (Fujita, 2001) features

mainly blinking LEDs, and latest versions provide additional text-to-speech

capabilities, as does Nao. However, for both, a single acknowledgement of

command is given through light, sound samples, or simply engaging in a

new activity. Although such feedback can be sufficient if given immediately,

processing verbal commands (e.g: speech recognition and action planning)

on computationally limited platforms always creates a significant delay be-

tween robot perception and action. For non-expert users, this can be enough

time to suppose a communication issue, and often makes matters worse by

entering a vicious loop when users repeat their command or utter new ones;

this usually overflows the robotic system and eventually the loss of control

elicits frustration. We’re all familiar with a similar effect computers suffer

while under heavy computational load, and struggle to update visual in-

formation. To keep the interaction engaging, a robot should actively and

continuously display that internal processes are at work, and certainly not

stand-still. Copying human verbal interactions, a robot should exploit par-
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alinguistic communicative channels to fill the gap created while processing

verbal commands or other computationally intensive operations, or at least

allow interruption.

Despite identification of several human communication channels, com-

municating in a human manner still represents a real robotic challenge:

natural actuation remains difficult probably because we lack hardware and

control software able to match human characteristics, and more importantly,

research has yet to determine all of the detailed aspects of human-to-human

communication. Analysis of recorded human-human conversations presents

ways to empirically extract non-verbal content (for head and facial study

see Ford et al. (C. C. Ford, Bugmann, & Culverhouse, 2010)), but this ap-

proach comes with considerable effort since human labelling is required as

minute and brief details elude current software, which prevents automation

of the task. Nonetheless, there exists a large quantity of literature on the

exploitation of less detailed social and emotional content supported by non-

verbal channels. Most focus on gestures, body stances, head movements,

blinks and gaze shifts with avatars (early key book can be found in (Cassell

et al., 1994)) however transferability of avatar research to robots needs to

be evaluated in regard to robots’ physicality.

Paralinguistic communication also lies at the heart of dialogue manage-

ment, especially in a multi-party context. While Duncan (Duncan, 1972)

identified non-verbal modalities and inferred usage models, Kendon (Kendon,

1967) and later, American sociologist Goffman (Goffman, 1981) analysed

human group behaviour analysis, describing conditions of turn taking emer-

gence and how this takes place through gazing. Later, many others tested

refined behavioural models on avatars (Bohus & Horvitz, 2011) and repli-

cated turn taking behaviour on robots such as (Bennewitz, Faber, Joho,

Schreiber, & Behnke, 2005). Turn taking also exploits hand and head ges-

tures, and of course, verbal language.
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Often disregarded in HRI, timing also conveys non-verbal content. While

bio-mechanics and most task-driven behaviours require timed coordination

(e.g: gait, focus, speech), psychological studies reveal how it is an essen-

tial aspect of paralinguistic and interactive behaviours. Interactional syn-

chrony is explored by Kendon (Kendon, 1970), by Bernieri and Rosenthal

(Bernieri & Rosenthal, 1991), while Cassell et al. place gesture/speech syn-

chrony at the base of a virtual character animation system in (Cassell et

al., 1994). As for HRI, only a few studies specifically target timing and

synchrony; for instance in (Yamazaki et al., 2008), Yamazaki et al. con-

sider the ways non-verbal actions should be timed at specific points in their

robot guide’s talk, and found the audience’s non-verbal responses increased,

suggesting improved engagement. On the other hand, non-congruent syn-

chronised movements can reveal deceptive behaviours (see Ekman (Ekman &

O’Sullivan, 2006) for detecting genuine facial expressions); improper timing

or conversational delays generate discomfort especially in a dyad.

2.2.2 Reliance on Faces

Social robots are particular in their need to interact in a natural manner

with people. Usually, service robots bear a pragmatic design limited to an

utilitarian appearance fit to their specific tasks, such as surveillance or vac-

uum cleaning. Alternatively, a social robot’s design must allow tapping into

the human propensity for social interaction to effectively engage in activi-

ties as diverse as providing information, entertainment, education, support

and encouragement. While social interaction involves multiple modalities,

the most important “interface” for human-to-human interaction is the face.

The face contains most of our socially relevant senses, and is the source for

several highly salient social channels such as facial expressions, eye gaze and

verbal communication.

Faces are important to people. Newborns rely on an innate ability to
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detect faces to establish social bonds (Br̊a ten, 1998). Recently evidence

from neuro-imagery revealed how this process lies at the base of empathy

and theory of mind in later stages of development (Meltzoff & Decety, 2003).

Joint attention, a dyadic interaction where the face and the eyes play a

crucial role, is at the root of social cognition (Tomasello, 1995).

As faces are supportive of primate and human social cognition and inter-

action, it seems only natural that machines with faces will stand out of the

ordinary. Robot faces can foster social interaction and rarely leave observers

unmoved: often the robot’s face facilitates social interaction, sometimes it

disrupts the interaction, but never does it not have an impact on the rela-

tion between user and robot. Faces, including robot faces, are so important

to us that often the presence of faces influences us subconsciously: we do

not consciously read a face, but rather experience a face and its actions at a

more basal level (Hadjikhani, Kveraga, Naik, & Ahlfors, 2009). Experienc-

ing faces cannot be turned on or off: the brain is continuously processing

visual input for faces (which is very poignant in pareidolia: the seeing of

faces in random patterns) and is trying to work out their significance. As

such, robots with faces will always be treated as special, the question how-

ever is how to implement a robotic face and how to bring this face to life

to achieve desired effects; either effects desired by the user or effects desired

by the robot designer.

In the last two decades, affective and social communication has received

increased attention from the Human Computer Interaction (HCI) and Hu-

man Robot Interaction (HRI) communities. Although affective computa-

tion in HCI can improve the user experience (Picard, 1997), the experience

and interaction do not require an anthropomorphic device. In contrast, in

HRI affective computation is necessarily two-way: not only does a social-

emotional system need to monitor a user’s facial behaviour to extract a

social-emotional state, but social robots also need to display interpretable
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affective states. Consequently, the HRI community working on social robots

relies on anthropomorphic devices and faces to support affective human-

robot interaction.

2.2.3 Robotic Facial Guidance

At its most basic level, robotic faces serve to support communication and

convey information. The face can acknowledge understanding, display un-

availability, signal the intention to reply, channel the focus of attention (im-

portant in joint attention) and display internal state changes. Moreover, a

robot face can be persuasive; Kidd (Kidd, 2008) for example studied differ-

ent support devices for weight loss programmes and showed how a robotic

weight loss assistant with a simple face persuaded participants to stick with

the programme for longer. Also the type and implementation of the robot

face is relevant; Fischer et al. (Fischer, Lohan, & Foth, 2012) for example

show how the appearance and responsiveness of a robot face has an influence

on the complexity of language used by users when giving instructions to the

robot.

Often a robot face does not have to look natural: a subset of features

can readily produce desired effects. Blow et al. (Blow, Dautenhahn, Ap-

pleby, Nehaniv, & Lee, 2006) for example present the KASPAR robot with

emphasis on dimensions of face design for “minimal expressive features to

create the impression of sociability as well as autonomy”. KASPAR uses

skin-coloured rubber and displays “fairly natural-looking” facial expressions

with only 6 degrees of freedom (contrasting with 47 degrees of freedom in

the human face (Ekman & Friesen, 1969)). It has been successfully used

with children diagnosed with autistic spectrum disorders to engage them in

social communication.

Beyond KASPAR though, a range of androids have been demonstrated
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as well, which have a larger number of mechatronic actuators controlling

a flexible synthetic skin. In this category, the Hanson robot faces gained

popularity through widespread diffusion on the web of one of the first video

recordings of the Albert Hubo and Joey Chaos robot heads (Hanson, 2005).

Of course Ishiguro’s androids (Sakamoto, Kanda, Ono, Ishiguro, & Hagita,

2007) also generated significant attraction.

Nonetheless, expressive facial animation in robots has been traditionally

implemented using mechatronic devices. Kismet is one of the earliest and

most classic mechatronic expressive robot, with all features –such as eye

lids, eye brows, lips and ears– being physically implemented and controlled

by electric motors. Other examples are the Philips iCat (van Breemen,

Yan, & Meerbeek, 2005) which has a cat-like head and torso with motorised

lips, eye lids and eye brows, and the MDS (mobile, dexterous and sociable)

robots, which have motorised eyes, eye lids and a mouth (MDS project at

the Personal Robots Group, MIT Media Lab, 2008).

Before robots featured facial expressions, research in this area gathered

the video game and movie industry. Both developed techniques to record

human performances and smoothly play these animated facial expressions

on different virtual characters. Incidentally, level of detail in films pushed

Computer Graphics Imagery (CGI) to constantly raise the quality of fa-

cial animation, and the first popular and widely recognized achievements

towards realism came with the well received Final Fantasy: The Spirits

Within in 2001. However, believable synthesis brings a tougher challenge,

and research continues to yield many techniques for facial animation (for a

comprehensive survey see (Noh & Neumann, 1998) or (Schroeder, 2008)).

Facial expression models also differ in their space of representation: the

component and intensity approach described by (Smith & Scott, 1997) is

one of the many schools of thought on the topic in psychology, and similar

concepts are applied in robotics. Bartneck et al. (Bartneck, Reichenbach, &
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Breemen, 2004) conducted an experiment modifying geometric intensity of

facial features on the iCat robot and showed a linear relationship between

geometrical intensity and perceived intensity of expressions.

In light of existing efforts in facial expression modelling, it is not sur-

prising some robotic systems instead carry a flat screen monitor to display a

synthetic face. Whilst the hardware cost of these robots is considerably less

due to the use of off-the-shelf components, it is often felt that these attempts

to endow the robot with an affective character are not as successful as the

previously mentioned mechatronic solutions.

Humans are exceptionally good at inferring where others are looking.

This ability highly facilitates the establishment of joint attention, deemed to

be very important for a wide variety of interaction schemes, both between

human-human (Deboer & Boxer, 1979; Langton, Watt, & Bruce, 2000),

robot-robot and human-robot (Nagai, Asada, & Hosoda, 2006) interaction.

This has been acknowledged in the HRI field for quite some time and sev-

eral studies have proposed algorithms for gaze direction detection, both in

humans and other robots (Atienza & Zelinsky, 2002; Yoo & Chung, 2005;

Ruiz-Del-Solar & Loncomilla, 2009) (see (Hansen & Ji, 2010) for a survey

of eye and gaze detection).

Appropriate eye gaze behaviour facilitates interaction: for instance in

(Yoshikawa, Shinozawa, Ishiguro, Hagita, & Miyamoto, 2006), a responsive

robotic gazing system increases the feelings of people being looked at, thus

enhancing the interaction experience. Related to this, in (Miyauchi, Naka-

mura, & Kuno, 2005) and (Miyauchi, Sakurai, Nakamura, & Kuno, 2004) a

bidirectional eye contact method was described that facilitates the commu-

nication between a robot and a human. In (Picot, Bailly, Elisei, & Raidt,

2007), a virtual agent displayed on a flat-screen monitor was able to interpret

scenes and direct its gaze in a lifelike manner.
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In human-robot interaction, the detection of gaze direction can be con-

sidered from both perspectives: the robot detects gaze direction in the hu-

man partner and vice-versa. The ability to detect the direction of some

agent’s gaze needs to be present for both interacting partners, hence it is

very important a human can easily perceive where his/her robotic partner

is looking. This is of significant interest in developmental robotics where

the robot-human dyad supports mental development. In young children, for

example, cyclical changes in gaze to and from the adult serves as a signal

function of the infant’s affect, which in turn modulates the adult’s behaviour

towards the infants (Deboer & Boxer, 1979). Cognitive psychology shows

how gaze direction reading is essential in joint visual attention (Langton et

al., 2000) or how object permanency can be read from the gaze being fixed

on the expected location of an occluded object. In adults gaze is a powerful

signal; gaze aversion, for example, is used to signal thinking such as in the

consideration of a question (McCarthy, Lee, Itakura, & Muir, 2006).

If, however, a robot’s design includes neither facial expression nor eye

gaze, head gaze can provide a fallback mechanism for the provision of robotic

social guidance. Many salient cues such as direction of attention or conver-

sational management nods can be expressed with a pan & tilt neck, and

the same actuation mechanism can also provide emotional cues in the limit

of cultural conventions. Z6PO, the popular science-fiction robot has no

animated face but its behaviour convinced a large audience; also famous,

ASIMO is designed with a simplistic black visor as a face, and PR2 from

Willow Garage has nothing close to a humanoid face either, yet their head

movements manage to convey overt social cues. This type of gaze is inter-

preted and impacts human behaviour: in (Mumm & Mutlu, 2011), Mumm

and Mutlu manipulated Wakamaru’s gaze and found mutual gazes increased

the overall distance male participants maintained with the robot, but no such

effect was found with females.
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Finally, the freedom of robot design allows the exploration of other forms

of facial guidance. Ears are popular with Leonardo, Simon and Nabastag.

The rationale behind these designs relies upon our ability to interpret pet be-

haviour, especially so considering our significant co-existence with dogs and

horses in which ear position is salient and congruent with distinctive be-

haviours interpretable socially. With robots using color signals like the Nao,

social interpretation becomes difficult and leaves us with feelings which may

be shared and described in similar terms by others, a priming effect investi-

gated by psychologists (for further description see (Maljkovic & Nakayama,

1994)).

2.2.4 Robotic Head Technologies

Arguably, a robot’s face defines its identity, and in this regard, many de-

signs and technologies are available. However, to support facial animation,

all robots require a head, movable only through a mechanical neck. For head

gazes, the most basic robot neck features 2 degrees of freedom (DOF) with

a pan and tilt unit, a mechanical design selected for the QRIO and Nao.

Nevertheless, a 3rd DOF enables head movements to appear more natural

and increases the number of social gazes robots such as the Wakamaru or

the latest version of ASIMO can perform.

Mechatronic Heads

Mechatronics groups all disciplines involved in digitally controlled mechan-

ical actuation and remains the primary method of humanoid robotic move-

ment; unsurprisingly, this is also the case for robotic head animation. For

rich interactive scenarios, a robot should at least display its eye-gaze by

orienting his eyeballs – a minimal solution adopted for the Robovie (Mutlu,
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Figure 2.1: Some examples of contemporary robot heads (from left to right):

an avatar displayed on screen GRACE (Gockley et al., 2004), the iCub

mechatronic and LED head (Beira et al., 2006), the Nexi MDS mechatronic

robot head (Breazeal et al., 2008), the Robothespian head with mobile phone

screens and animated jaw by Engineered Arts Ltd. and the Actroid DER3

android robot head by Osaka University and Kokoro Company Ltd.

Shiwa, Kanda, Ishiguro, & Hagita, 2009) – and for emotional interaction,

movable brows, eyelids, and lips are necessary to endow the robot with fa-

cial expressions. This is the approach taken for the robot KOBIAN (Zecca,

Endo, Momoki, Itoh, & Takanishi, 2008) which emphasises displaying nat-

ural behaviour and facial expressions with 7 DOF (three for the eyes, and

one each for upper eyelids, eyebrows, jaw and lip), all managed by actuators

embedded in the head. In addition, KOBIAN’s arms and legs enable the

performance of congruent gestures. Aesthetically, these often conservative

designs offer simple shapes and replace skin with a hard cover, usually opt-

ing for smoothed plastic surfaces. Movable facial features are typically made

to look salient, hence facial design do not need to be particularly realistic for

users to pick up social signals. Belonging to this category were previously

mentioned Kismet, Simon, and Nabastag which have most facial features,

Nexi (pictured above) however does not feature lips even if it has a mouth.

Recently, the robot head FloBi (Hegel, Eyssel, & Wrede, 2010) intro-

duced a modular aesthetic design to mechatronic faces with magnetic facial

features. Users of this 15 DOF robotic face can physically change facial fea-

tures such as hair, eyebrows or lips, all coming in various colors and shapes
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so the robot’s gender becomes controllable, and theoretically even all skin

color could be changed. Many more mechatronically driven social robots

could be mentioned, but their variety makes it impractical to detail the

subtleties of each and every one of them.

Android Heads

The key characteristic of androids is their intentional high similarity to hu-

man appearance and exceptionally realistic skin deformation. Due to the

high number of actuators and non-linear interaction with the synthetic skin

(a technology evolved from animatronics), android faces are typically more

expressive than the above mentioned mechatronic heads. Previously cited

robots in this category are SAYA and KASPAR, but most popular exam-

ples continue to be the Ishiguro’s Geminoids (Sakamoto et al., 2007) and

androids heads from Hanson Robotics (Hanson, 2005). Androids seem to ex-

ert a particular attraction on the general public as they can be perceived as

more sophisticated, and that may be true for the efforts deployed in their un-

derlying actuation. The better the quality of actuation, the closer androids

get to human physical capabilities: smaller actuators mean more degrees

of freedom for facial expression, quicker movements and better control help

behavioural realism. However facial expression still uses the same kind of

servos found in mechatronic robots, and even if electro-mechanical motors

and compressed-air muscles compete for actuation of the neck and other

limbs, the general consensus is that serious contender technology can be ex-

pected such as electro-active polymers(Bar-Cohen, 2006) or their graphene-

enhanced version (Liang et al., 2012).

Aesthetically, the flexibility, colour and texture of the synthetic skin

raises the realism of android faces to new heights with each new generation

of materials. Skin comes in localised variable thickness to account for the

different deformation of fat tissues and foldings (see (Bickel et al., 2012) for
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improvements), and veins, bulges or beauty spots can be reproduced, even

make-up can be applied easily. Although only seldom explored (see a survey

in (Argall & Billard, 2010)), touching a android’s synthetic skin promises a

more natural feeling, also paving the way for – ethically debatable – intimate

HRI, mostly disregarded in research but demanded nonetheless. Finally,

synthetic hairs also contribute to the overall impression of a human, at least

from the distance. Even though only a few companies in the world have

acquired the extensive experience needed to build state-of-the-art androids,

these robots carry a great potential for HRI once reservations against their

appearance and use will fade.

Virtual Characters

A convenient and economic way of implementing a robotic head is to mount

a computer screen on a robot and use it to display an animated avatar’s

head. Virtual heads are getting more attraction in robotics as often this

option aims towards mechanical simplicity and lowest maintenance use. De-

pending on the weight and size of monitors, mounting these displays on

mechatronically articulated necks may require dedicated capable hardware,

thus a fixed neck design serves as a maintenance-free solution. Valerie, Grace

and George (Gockley et al., 2004) are virtual robots heads using this tech-

nique, while Baxter(Guizzo & Ackerman, 2012) features a smaller screen for

eyes, only actuated by a pan and tilt neck.

A computer rendered virtual head – also the first occurrence of a “talking

head” – has a wide range of freedom in terms of aesthetics and functional

design and allows extending exciting areas already explored with avatars

such as lifelikeness and human-like behaviours, see (Prendinger & Ishizuka,

2005) and more recently (Pelachaud, 2005) and (Peters & Qureshi, 2010).

For HRI, the aesthetic freedom creates opportunities to propose alterna-

tive designs in real-time or on a particular occasion (e.g: new year’s eve,
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venue of a special guest); moreover visual issues originating from a defective

3D modelling can be fixed without any hardware modification. A monitor

in place of a head fosters key advantages compared to the aforementioned

robot head technologies as the screen estate permits the display of other

forms of information along with the virtual face. For instance, at Carnegie

Mellon University, speech bubbles augment Valerie’s utterances. Arguably

the possibilities are boundless, for example pictures or animations can en-

hance visual feedback acting for thoughts or emotional status, maps can

help a robot receptionist’s direction, and so on.

Early on, CGI researchers (see (Wojdel & Rothkrantz, 2005) for mod-

elling) and vision researchers (Pantic & Rothkrantz, 2000) have based their

work on Ekman’s facial action coding system (FACS) which has been refined

over the years and yielded the newest version in 2002. Briefly, FACS divides

the face in 44 basic Action Units (AU) that are involved in facial expres-

sions. Each AU stands for a muscle or set of muscles visually modifying

a specific facial feature and the coding system precisely describes all these

modifications per AU.

Mixed Technologies

Semiconductor light sources technologies can be used to implement faces

as well, and a range of innovative designs adapt and/or mix these tech-

nologies to overcome limitations of the aforementioned robot heads. Some

designs successfully merge various technologies: Robothespian (Engineered

Arts Ltd, 2006) uses mobile-phone displays to animate the eyes, mechatron-

ics for animating the chin and Light Emitting Diodes (LED) to control the

colour of the face. Another approach is possible as demonstrated by the

iCub robot (Beira et al., 2006). iCub’s plastic head has a volume similar

to that of young child but inspiration stops there: behind the smooth semi-

transparent plastic face, three sets of LEDs implement the eye brows along
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with the mouth, mechatronic eyes (a camera in each eye socket) and eye-

lids. The resulting facial expressions however, are necessarily stateful and

consequently appear far less realistic. Robots Simon and FloBi also rely on

LEDs, although in these cases, light only provides a means to colourize the

face.

Finally, Hanson’s Zeno (Hanson et al., 2009) mixes an android deformable

skin with mechatronic eyelids and eyes in a non-realistic child robot about

50cm tall. The result amongst users have yet to be thoroughly evaluated.
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Chapter 3

LightHead, a

Social-Emotional Robot

3.1 Motivations for Innovation

The motivation to innovate came from the realisation that most robot heads

have a restricted ability to explore the limits of non-verbal Human-Robot

Interaction whereas interaction remains essential to the progress of robotics

and exchange of knowledge with connected research domains such as artifi-

cial intelligence.
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Figure 3.1: The LightHead robot, the fourth and last version. See all ver-

sions in table 3.1

Research and development of the robot commenced in 2008, supported

by the EPSRC funded CONCEPT project (EPSRC EP/G008353/1). Orig-

inally, the project aimed at achieving human-to-robot and robot-to-robot

tutelage, unfortunately budgetary constraints prohibited the purchase of a

second robotic arm for robot-to-robot tutelage. Besides, eye-tracking as well

as gesture interpretation represented significant endeavours within the al-

lowed time frame and resources, thus efforts shifted towards endowing the
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robot platform with social signalling capabilities.

3.1.1 Socially Guided Machine Learning and Non-verbal HRI

A robotic platform immediately advertises its social status when having a

face, preferably regardless of the angle they are looked at. Appearance also

focuses users’ expectations and promotes specific interactions, hence provid-

ing a robot with a child face entices engagement in non-verbal interaction.

It also fosters tolerance, in particular regarding non conformance to cul-

tural standards, such as a lack of manners. Moreover, for human tutelage

scenarios, a robot should naturally establish and sustain user engagement

through emotional displays as this complements socially guided machine

learning. Failure to do so means users may have neither enjoyed the interac-

tion or felt they overcame the system’s limitations, and consequently their

desire to engage in further tutelage may fade. Particularly fitted for emo-

tional communication, facial expression on many robot heads suffers from

the shortcomings mentioned in the previous chapter.

Additionally, to support the interaction, the robot head is mounted on

a robot arm, with the arm acting as a spine and neck. Thus, the robot can

dispense social signals from head movements and scan the environment, but

also to crane over a table, to for example inspect objects presented to the

robot. A robot arm needs to be safe: if non-compliant, the only arms deemed

safe for close interaction with people remain those with payload restriction.

This limitation excludes many technologies currently used for implementing

social robot heads and faces. As such, a custom projection-based system is

designed, which not only addresses the weight issue, but at the same time

improves over many aspects of existing robotic heads.
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3.1.2 Overcoming Other Technologies’ Limitations

R-PAF technology (Delaunay, de Greeff, & Belpaeme, 2009, 2010), also

known as retro-projected faces or RAF, was proposed to address physical

limitations of existing robot head technologies. R-PAF relies on the retro-

projection of an animated image of a face onto a semi-transparent surface,

moulded to match the geometry of a face. Both the projector and the semi-

transparent mask are mounted on a chassis, which can be attached to a

robot body, such as a robot arm or a mobile platform. The face animation

projected onto the mask is generated in real-time by a computer, also used

to control the robot arm.

The robotic prototype presented here is dubbed LightHead and has the

appearance of a young child (see figure 3.1). However, the design of the

mask is flexible and can be adapted to a more adult physiognomy. This

is the approach taken for example in (Al Moubayed, Beskow, Skantze, &

Granstr̈’om, 2012; Kuratate et al., 2011) and the recent Socibot by En-

gineered Arts whom received a demonstration of the technology in 2009.

Moreover, after the shaping of the face as a mask, the projection allows

further modifications of the aesthetic design. In fact, two main faces were

deployed over the iterations of the prototype (see figure 3.1) and four alter-

natives of the latest iteration have been customised for an experiment (see

figure 6.1).

Current projectors are hard to mount inside a constrained space (i.e:

AlMoubayed and Kuratate used a mirror to project the image of medium-

sized video projectors, which sits outside the head volume), however specific

revision of the design enabled fitting all equipment within the head volume.

Thus, the back of the head has a cover completing the skull, while respecting

the proportion and dimensions of a young child’s head. As the projector

and optical equipment is confined in the head volume, both are invisible,

inaudible and do not create distraction.
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Although the face contains visual and auditive sensors, the projection

apparatus represents most of the head’s weight. Without any mechatronic

element and using only plastic for the face and internal structure, not only

weight stays at a minimum, but also maintenance and power consumption.

Consequently a retro-projected head is relatively affordable due to the

use of off-the-shelf components and the low-cost of materials. While some

elements of the head need bespoke manufacturing, the materials are readily

available, and as such have little impact on the total cost. In addition, as

retro-projected robot heads have no moving parts, the mean time between

failure only comes from the projector (i.e. at least 10,000 hours). This

contrasts with mechatronic and android technologies, where due to wear

and tear, the face needs regular maintenance and sometimes costly repairs.

3.2 Retro-Projected Robotic Faces

3.2.1 Background

Exploring the modification of human perception with the projection of an

image (or video stream) onto objects may have started with the first projec-

tor technology and still continues today. Often set up in augmented/mixed

reality research, this process usually bears the name of shader lamps. In the

area of facial projection, although Naimark et al. proposed the Talking Head

Projection (Michael Naimark, Nicholas Negroponte, & Chris Schmandt,

1980) as early 1980, their inspiration – the Singing Busts – appeared in

the haunted mansion of the Walt Disney’s amusement park (see (Mine et

al., 2012)) and are probably the first popular occurrences of shader lamp

faces. Of course, the projected material could only rely on film and interac-

tive robotic applications were not possible.

The R-PAF technology described in the rest of this document is based on

a retro-projection version of shader lamps. Most likely, previous ventures
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Figure 3.2: a & b) front projection, one of the Disney’s Haunted Mansion

singing busts – from (Mine et al., 2012). c) retro-projection, Hashimoto’s

Kamin-FA1 robot – from (M. Hashimoto & Morooka, 2005).

in this direction were motivated by avoiding shadows and hiding projec-

tion equipment of shader lamps. The earliest publication may come from

Hashimoto (M. Hashimoto & Morooka, 2005) in 2005, who partially realised

such a setup with the Kamin-FA1 robot, but limited the shape of the facial

display to a hemisphere. Unsurprisingly, other scholars such as (Karahalios

& Dobson, 2005), or later (Lincoln et al., 2009) also reported the potential

of animatronic shader lamps for robotics, but to my knowledge, LightHead

represents the first case of the method successfully applied to a robotic head.

3.2.2 The Mask

Invariant Features

Similar to the shader lamps, the geometry of the mask only expresses the

invariant facial features found on a face (ovoid shape, nose, eyeballs) while

others features like mouth and eyebrows are moving most of the time, and
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thus are not geometrically expressed by the mask. The smooth geome-

try balances between aesthetic freedom (e.g. eyes can take various sizes

and shapes) and ease of identifying the display as a face, suggesting the

social abilities of the robot. This improves on the Kamin-FA1 robot face

(M. Hashimoto & Morooka, 2005), in which a system is described where a

line drawing is projected into a semi-sphere, which appears to be the frosted

shell of a light fixture.

Often, HRI research and experimental studies target dyadic interactions,

yet social interaction calls for other scenarios where a robot has to interact

with more than one person. In those contexts, being able to read the robot’s

gaze is a requirement so that each participant in the interaction can monitor

the robot’s gaze direction, thus supporting turn-taking in multi-party con-

versations. By geometrically expressing the nose, head gaze can be picked

up immediately, moreover social robots’ design should include eyes and eye

control that supports natural eye communication, which permits gaze direc-

tion following and most importantly joint attention.

A flat display of the eyes does not allow gaze to be directed: the so-called

Mona Lisa effect. Instead, mimicking mammalian eyes by using a convex

surface enables directed gaze (see also (Moore & Series, 2002)). Conse-

quently, LightHead’s mask has two curved areas for the display of eyelids

and eyeballs (full sclera, iris and pupil), which is key to reaching a satisfy-

ing level of social interaction. In (Delaunay et al., 2010), the effectiveness

of convex eyes for reading gaze direction was evaluated, confirming that 3-

dimensional eyes provide a substantial advantage over flat eyes when reading

eye gaze (see further 4). Interactants were able to read LightHead’s eye gaze

just as they did with people, both when facing the robot and when viewing

the robot from a 45◦ angle.
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Figure 3.3: Left: mould and mask. The mould requires sanding to smooth

the layers still visible and drilling in the ridged areas (e.g. eye sockets); this

prevents trapping air pockets so the vacuum process correctly shapes these

areas. Right: foldings can appear if the temperature for vacuum forming is

too high or the plastic too thin.

Material and Process

For the video stream to be seen through the facial mask, a light-permissive

material is required that does not restrict shaping freedom. Vacuum forming

presents the best option for creating such a mask: these well-know process

and plastics are cost-effective solutions and the end result offers a pleasant

smooth finish.

The mould sets the geometry of the face and fixes its overall aspect. For

its creation, the original iCub face model was taken as an inspiration and

has been reworked in a CAD suite to regroup all parts into one single model

and adapt it to a solid virtual mould. This required capping holes to create

inner volume for the material, shaping eyes spherically, re-expressing the

chin and creating the housing for the forehead’s camera. Then, the mould

was generated with a rapid prototyping machine (a ZPrinter 310 by Z Corp)
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printing a high-performance composite, sufficiently resistant to heat (over

150◦C) as required for the next step.

To shape the mask, a sheet of thermoplastic was vacuum formed over

the mould. For the material, neutral, white-tint, opalescent, High Impact

Polystyrene (HIPS), 1.5 mm thick appeared the best choice. HIPS comes in a

variety of transparencies and thicknesses, which facilitates experimentation

with the level of detail captured from the mould and the level of image

sharpness: a thinner plastic results in brighter and sharper images, as opal

HIPS has a tendency to diffuse light. During forming, although thicker layers

ensure the smoothest shapes, those thinner than 1.5 mm tend to create

foldings at sharper angles as seen in figure 3.3. HIPS also allows further

tooling to, for example, smooth edges, precisely fit unworkable connected

elements, drill venting holes in the back cover or simply glue sensors and

accessories.

3.2.3 The Projection

For optimal display, the projected beam should be evenly distributed and

cover the widest facial area possible. Thus the projector’s normal ray should

meet the centre of the mask, assuming mask and face are aligned. However,

most off-the-shelf projectors do not include documentation with schematics

of the normal ray, and many efforts are spent in inferring them, integrating

and designing appropriate housing for the device as well as securing their

position. As most projectors have a 16:9 aspect ratio, they must be set

in a vertical orientation. This better fits the roughly oval shape of human

faces, although depending on the particular projector, that might further

complicate their integration1.

1over the multiple projectors tried, often this implied removal of the projector’s case

and adaptation of the chassis to hold reassembled components.
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Throw Distance

Any projection system has a distance issue: projectors are designed with an

optimum distance range for the picture to be viewed at, determined by the

view angle. The mask surface in LightHead is about 15 × 18 cm, requiring

at least 40 cm of projection distance for commercially available projectors.

In addition, for the projector to be contained within the head volume, a

very small projector is used — a so called pocket or pico projector. Fit-

ting a small and light projector inside the head contributes to the aesthetic

quality (and by extension the interactive quality) of the head, a heavier

projector potentially complicates the mechanical design by adding weight to

the support, limiting the head’s motion range and —as the projector would

sit outside the head’s volume— would add inertia and potentially image

instability during quicker head movements.

Fisheye Lens

The most convenient solution to shorten the projection distance is to use

an ultrawide-angle lens or fisheye lens, as mentioned in (M. Hashimoto &

Morooka, 2005). However fisheye lenses have their own issues. The pro-

jection becomes non-linear as the image is compressed near the center and

stretched outwards near the corners. The many lenses that comprise a good

quality fisheye lens reduce the amount of light passing through, a serious

limitation for the weakest portable projectors. Smaller fisheye lenses suffer

from chromatic aberration which splits and shifts the original colours near

the edges of the image, perceived as a mono-chromatic ghost image. Fi-

nally, a good fisheye lens for photography can be costly, taking up space

and adding significant weight to the head. For the LightHead robot, this

last point took special importance considering the requirement for the head

to be light (a design requirement was to keep the arm payload under 400

g). A Nikon FC-E8 lens was used for LightHead; the FC-E8 has close to no
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chromatic aberration, a field of view slightly over 180◦ and measures 74mm

in diameter by 50mm long and weights 205g. Also, the radial projection

fits the facial volume of the mask and small image distortions are fixed by

software.

Figure 3.4: The LightHead’s parts: (a) left view, (b) top view, (c) perspec-

tive. For clarity, some parts are only outlined in (a) and (b). Parts 1 to 11:

laser-cut PETG (see appendix A), 12: moulded HIPS mask, 14: moulded

HIPS cover, 14: tip of KatanaHD400s-6M robot arm, A: Microsoft Lifecam

Cinema, B: fisheye lens Nikon FC-E8, C: electret microphones, D: Optoma

PK301.

Projectors Types

Unfortunately the radial projection of the lens also alters the focus of the

image, in proportion to the size and planar aspect of the face. While Dig-

ital Light Processing (DLP) technology, which is typically used in video

projectors, is bound to have this problem, laser projection technology does

not. Laser based projection has the advantage of always displaying pic-
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tures in focus since spatially and temporally coherent light does not require

focal adjustment; also, passing through the fish-eye lens, laser beams are

deflected but remain coherent. These projectors have become affordable

and portable, due to the use of micro-electromechanical systems technology.

Version 3 of the LightHead used the Microvision ShowWX+, providing an

4:3 image, with a brightness of 15 LED Lumens – although looking much

brighter, probably over 50 lumen – while matching the size constraints. Un-

fortunately, this device tends to overheat when operating continuously in a

confined area such as the robot skull, thus requires a form of cooling . The

inclusion of a small and silent 5V DC fan providing a thin constant stream

of air permits several hours of uninterrupted operation.

Nevertheless, a brightness of 15 Lumens cannot match most common

indoor lighting conditions, thus, it appeared necessary to replace this model

with a brighter projector able to address this limitation. Equipped in version

4 of the LightHead, the Optoma PK301+ reaches 75 Lumens, creating a

much improved facial image. However, the powering light source of this

projector falls into the DLP category and needs precise focusing. Additional

constraints re-emerged: more heat is produced, space is taken by the heat

sinks which are actively dissipated by a fan, more space is used by extra

digital components, and the case must be modified to properly fit the lens.

Finally, no off-the-shelf device brings a perfect solution (i.e: lightweight,

laser-based, small size, silent, passively cooled) but technological improve-

ments keep a steady pace, suggesting these drawbacks would be solved even-

tually.

3.2.4 Benefits of Computer Generated Imagery

Perhaps the most interesting aspect of retro-projected faces lies in the pos-

sibilities offered by using a generated video feed. Undeniably, computer

graphics being so ubiquitous, this field of research draws worldwide atten-
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tion and sustains a prolific community of researchers – see (Parent, 2012)

for a comprehensive survey of algorithms and techniques. Moreover, virtual

character animation remains an area of intense research on which retro-

projected robot faces capitalise.

With CGI comes a great deal of tools, talented animators, and a wide

range of real-time visual effects, all readily available. In terms of computing

capabilities – even considering the cheapest models – current 3D graphics

chips are powerful enough for elaborated real-time animation and picture

effects. For instance, a pixel shader2 can compute the projection matrix

adapting the generated video to the mask’s geometry (or implement the

fitting method described in (Lincoln et al., 2009)). Also, CGI libraries such

as OpenGL provide a single operation for specifying the position of a light-

source to automatically compute shadow effects beyond those described by

Hashimoto in (M. Hashimoto & Morooka, 2005).

Although the prototype is controlled from a standard PC, the compu-

tational power of contemporary embedded devices can handle animation of

the projected face. Current trends in consumer electronics and embedded

computing points to SoCs3 that could not only run facial animation, but

whole robotic systems.

Aesthetic Freedom

As opposed to other robotic heads, retro-projection offers a great deal of

aesthetic freedom limited only by the level of geometric detail given by the

facial display. The face animation is entirely implemented in software and

this creates design opportunities of which a number have been explored. In

essence, the face can range from a simple cartoon-like animation (perhaps

2Also known as a fragment shader. Shaders are small programs specific to the Graphic

Processing Unit, as opposed to the Central Processing Unit that runs most of a program.
3for ”System on Chip”: computer chips embedding most computer hardware on a single

integrated circuit.
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as simple as the line drawings of Kamin-FA1 (M. Hashimoto & Morooka,

2005)) to a playback of video-recorded faces.

Over the four iterations of LightHead, the robot presented two main

faces (as seen in figure 3.1) while retaining the same facial aspect ratio. Early

prototypes featured a Japanese cartoonish face4 (in the style of mangas) with

very contrasting facial features: orange eyebrows, dark eyelashes and pupils

and pink mouth over an almost white skin. Even if present, the nose was

kept discreet. This proved satisfying initially, but the design tended towards

a female, ruling out gender based experiments; and since most participants

were British, a Japanese designed robot may have raised a culture mismatch.

Consequently, the second iteration of the facial design (LightHead version

3) offered a gender neutral, Caucasian child face. With thinner eyebrows,

more realistic pupils and eyelashes, reinforced nose presence and mouth, as

well as a more natural skin colour, this design created by another artist5

met CONCEPT’s cultural setting.

In contrast with other robotic head technologies, the same robotic mask

can support several facial variations effortlessly and without time consuming

manual operations. Moreover, for each version of a face, colours and style

are changeable at run-time. Adapting skin, eye and facial hair color, or even

age (for adult faces) is possible while the robot interacts with a particular

user. A discussion of the possibilities can be found in section 7.2 of this

document.

Extended Animation

Also interesting is the wide range of conceivable visual effects often over-

looked in HRI. There are other effects that are hard to achieve with other

robot face technologies: simulating sweat, tears or changing pupil dilation

4“maid-san” 3D model from author FEDB http://fedb.blogzine.jp/BA/body.zip
5Bruno Dorbani: bruno.dorbani@gmail.com
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Version Hardware Software

1: proof of concept
• Acer H7530D office projector, 1600

lumens

• raw vacuum-formed HIPS mask

• fixed setup

• manga-style facial design

• Blender3D game engine proof of
concept: keyboard-based interac-
tive animation.

• subset of 32 FACS muscles

2: orientable head
• Aiptek V10 pico-projector, 15 lu-

mens

• Nikon FC-E8 fisheye

• cut out mask

• laser-cut PMMA chassis holding all
elements

• KatanaHD400s-6M mount

• ARAS first implementation with
AU pool

• ARAS robotic arm FW kinematics
support

• ARAS script player

• CHLAS first implementation

• HMS pyVision + face detection sup-
port in helper libraries

3: complete head
• Microvision ShowWX+, 10 lumen

(appears > 50 lumen)

• Microsoft LifeCam Cinema Webcam
HD 720p

• electret stereo microphones

• skull cover

• fan cooling

• cartoon-like facial design

• ARAS speed control (robotic arm)

• CHLAS v1.0, Acapela TTS support

• CHLAS script player

• CHLAS instincts: breathing, basic
blink, coactuator

• HMS basic face recognition based on
HSV histogram

• HMS face tracking robotic gaze

4: smoother mask
• redesigned mask’s forehead

• Optoma PK301+, 75 lumen

• ARAS real-time editable movement
dynamics

• CHLAS instincts: conversational
blink model, gaze control

• CHLAS eSpeak TTS support

• HMS system configuration and fa-
cial expression library editor

Table 3.1: Design iterations of the LightHead.

77



are just a few examples. There are two reasons for LightHead to support

the latter. Not only reacting to variable light conditions – as a changeable

weather is common in Plymouth – adds to the illusion of life, but pupil

dilation also convey emotional cues (for a study of the correlation of pupil

dilation with mental activity see (Beatty, 1982)) suitable for tutelage inter-

actions. Blushing adds to the emotional effects and as it is straightforward

to implement on a cartoonish face, it was added at no cost.

Figure 3.5: An attempt at simulating crying with LightHead’s virtual face.

This effect was not exploited in experiments.

Tears, however, were attempted as seen in figure 3.5 but not fully de-

ployed on the system. It was felt this effect would elicit mixed feelings as

successful implementation was not guaranteed. Specifically, the effect would

introduce additional complications (such as a generating a sobbing sound)

thus potentially disrupting the character coherence. Nonetheless, effects

such as tears and sweat call for experiments testing the emotional impact

with realistic facial designs, an option not available with physical heads.

On the other hand, retro-projected faces open a wider range of interaction,

bringing affective displays to a new level by capitalising on possibilities of-
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fered by CGI.

In further push towards realism, lip synchronisation can be made authen-

tic, by reproducing minute physical deformations (e.g. progressive parting

of central lips when opening the mouth), or adapting lips reflectivity in rela-

tion to their dryness. In the same idea, animation of the tongue can improve

readability of speech with better visemes6, such as drawing the tongue on

the teeth, with /D@/ (i.e: IPA transcription for ”the”) for instance.

Refined Interaction

Without mechatronic components in the head, noiseless operation becomes

possible, further approaching natural human-robot interaction. Actuator

noise brings no interactive improvement and rather conflicts with our ac-

quired concepts of life: no species produce constant noise from actuation of

their muscles and limbs (although their effect on the environment usually

does), instead most animals employ sound as a means of communication.

This is particularly relevant in case of facial movements, as actuation noises

prevent the illusion of a robotic autonomous mind. In effect, a noiseless ac-

tuation eventually allows the accidental realisation that some subtle robotic

behaviours evaded our attention. Such observation helps to consider the fact

that the robot may have many more undetected self-motivated behaviours.

Moreover, if a robot gives away every gaze or facial expression, constant

solicitation of our attention forces filtering actuator noise which may add

stress in long-term interactions.

Similarly, a virtual head platform grants tight control of the animation

dynamics (see section 3.4.3), a critical aspect when generating believable

characters that convey the illusion of life. Ekman and Friesen in (Ekman &

Friesen, 1982) reveal key timing differences between fake and spontaneous

facial expressions. Besides, some humans also uncover concealed emotions

6the visual aspect of the lips, tongue and jaw for a specific phoneme.
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with very short timed and small facial expressions (Ekman & Friesen, 1969),

that the same authors coined micro expressions. Android (and more so me-

chanical) faces still cannot display these minute details: skin is not thin

enough, actuators would reach uncannily high pitched sounds to achieve

speeds required. In contrast, retro-projected faces open the way to experi-

mentation with robots adopting specific human behaviours through subtle

robotic expressions.

Amplified and Augmented Expression

Virtual characters have no physical restrictions, hence facial animation pa-

rameters may be modified, the CGI rendering technique can be adapted,

and alternative animation or visual effects explored.

For facial animation systems that tolerate out of bounds parameters,

over-expression does not damage the hardware. To represent a sensible ap-

proach, an over-expression needs to keep a form of visual coherence, or recall

established stereotypical cultural expressions, likely borrowing a repertoire

from cartoons. Moreover, their expression requires a relevant social context,

such as acting or storytelling with children. This amplified expression can

support comical or horror effects, inaccessible to androids that may likely

tear apart the flexible skin.

Finally, augmented facial expression can take place displaying an over-

lay of text as in figure 3.6, icons or videos over the less animated parts of

the face, most likely over the forehead. This technique creates a means for

robust or explicit expressions: a handshake over a smiling face drawn upon

reaching a conversational agreement, a textual information over a sad face

upon critical error, etc. Undoubtedly, as a clear facial area is a prerequi-

site to augmented expression, this option contributes better to non-realistic

faces where textural detail stays low and with which users better tolerate

unexpected elements.

80



Figure 3.6: Augmented expression through textual information with the

LightHead’s virutal face. This effect was not exploited in experiments.

3.3 Expectation-Driven Embodiment

3.3.1 The Head

Perhaps of all parts of a robot, the aesthetic appearance of the head forges

the greatest expectations upon first contact. For the CONCEPT project,

emphasis was on soliciting simplicity to lower users’ expectations previous

to any interaction.

In terms of design, LightHead’s mask is an adaptation of the iCub face

cover (see fig. 2.1)7 for its rather simple and elegant aesthetics, resembling

a young infant through the large size of its eyes and its high forehead. The

child-like design immediately comforts the user with a non-threatening char-

acter, also suggesting fragility and in all likelihood, innocence. Even when

switched off, the robot’s smooth mask identifies the primary communicative

interface provided by the system; the salient rounded eyes also inform on

vision capabilities, while the nose completes the face and serves as a head

gaze hint.

7see also www.robotcub.org
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Despite the eye shapes of the mask, vision is localised elsewhere and

as no sensor equipment can be mounted between the projector and mask,

sensors need to be positioned outside the projection. In the case of non-

mobile robots, a camera can be fixed somewhere in their close environment

providing them with a third-person view, however some tutoring interac-

tions require close interpersonal distance which may obstruct robotic vision

in such setups. Consequently, LightHead has a front-facing camera (Mi-

crosoft LifeCam Cinema 720p) located in the forehead, whose housing has

been moulded into the semi-transparent mask and as such does not distract.

Nonetheless, the small hole stays visible, providing insight for the enquiring

user. In fact this detail eludes the youngest interactants who tend to attract

the robot’s attention by presenting stimuli right in front of the eyes. For

this non-experimental case, forging user expectations must be addressed by

other means.

Even if the head cover lacks ear-like shapes, obvious holes drilled in

respect to human proportions gives away the robot’s hearing capabilities. A

microphone is set in the head at the location of each ear, put to use with

a simple auditive attention system. Accessories like auricles can enhance

aesthetic design and from a practical point of view, also narrows the range

of directionality of sound detection, reducing acoustic input from the back

and focusing the robot’s auditive attention to the front and sides.

Further enhancing projected robotic heads, the back cover is created

with the same process and material as the mask but serves a triple purpose.

Essentially protecting internal components such as electronics and ca-

bling, the robot’s skull affords hazard-free interactions: children can safely

touch the head, and head movements will not hook users’ clothing or jew-

ellery.

Aesthetically, a hard shell makes it possible to further match the robot’s

degree of realism in realistic anthropomorphism settings (e.g. photo-realistic
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virtual face) by attaching features such as hair, auricles or wear on acces-

sories such as a hat.

A cover completes the head so the robot better meets users’ expecta-

tions of a human shape. This not only reinforces its social abilities, but

also prevents users from being distracted with very robotic features such as

apparent machinery (e.g. projector and cables) or the uncanniness of a face

without any head volume. It is crucial to limit to the minimum the novelty

effect experienced by participants when introduced to this novel technology

so experiments can be kept reasonably short, and collected data captures

the essence of the interaction rather than people’s curiosity.

For the facial animation, representing a life-like human face may yield

to some of the uncanny valley effect. In order to avoid this issue, a non-

realistic face was specifically modelled for this robot following a few key

requirements: aged around four or five years old, genderless, Caucasian to

match experimental demographics and neither realistic nor too cartoonish.

As mentioned previously, the first facial model was deemed overly simplistic

and motivation came from the perspective of endowing the robot with finer

facial expressions.

It was felt the presence of a speaker in the head was necessary to meet

users’ expectations as human hearing is very sensitive to sound location.

Simple informal tests helped realise using external loudspeakers –even if

sufficient for providing the robot with a voice– can be slightly unsettling

when the head gaze is significantly shifted from its neutral position. Hence,

a standard loud-speaker was placed behind the mask to improve speech di-

rectionality, however accounting for resonance and voice distortion presented

its own challenge and halted efforts in this direction.
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Figure 3.7: The KatanaHD400s-6M kinematic chain mapped to the spine of

LightHead (angle ranges in degrees).

3.3.2 The Spine

The face mask is mounted onto a custom chassis holding the projection

system, camera, microphones and head back cover. The complete head is

attached to the tool plate of an anthropomorphic robot arm, a Neuronics

Katana HD 400s 6M, which procures six degrees of freedom. Considering

actuator noise though, the actuation of LightHead’s robotic arm has been

kept deliberately within speeds offering the best balance between acceptable
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speed and most quiet movements possible.

Spinal Sections

From the head attachment, the first three joints form a neck, one remains

static and the next two are being used as the spine (see figure 3.7).

Because a neck adds complexity to a robotic design, it usually serves

more than a social function, and maybe this is why most robots equipped

with a neck have sensory input in the head as opposed to a less confined

area. In effect, the bigger the robot and the more complex the mechanical

design, the quicker and more energy efficient it becomes to direct head-

mounted sensory inputs. Otherwise the robot would need to move more

body parts – hence more weight – activating for instance the hips or at

worst, the locomotion system.

Often less actuated than a neck, a fully orientable and articulated torso

is sometimes used for anthropomorphic robots (see (Ly, Lapeyre, & Oudeyer,

2011; Potkonjak, Svetozarevic, Jovanovic, & Holland, 2011)), although rarely

can the whole spine bend like a human’s. In order to get closer to this ca-

pability and mimic human poses, two joints of the robotic arm (from base

to neck) enable pan and tilt movements of the thorax while the next axis

(joining neck and thorax) did not represent significant additional freedom

and was left frozen for simplicity. In some tutelage sessions, the robot spine

bent forward to alternatively crane over several objects, and along with con-

stant visibility of the rounded eyes of mask, the illusion of inspection was

successful. Even if the Katana 400s would implement rolling of the thorax,

few scenarios would actually exploit this axis as humans rarely make such

movements.

Both neck and thorax serve the primary purpose of endowing the robot

with the capacity to focus its attention within a surrounding world. That

is: scan its environment, orient the most effective sensor in response to a
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stimulus, lock onto a face or salient object and follow it. On the other hand,

static robots equipped with fixed sensors indeed lose track of their target as

soon as it goes out of frame. Although these active behaviours carry a social

meaning as well, neck and thorax also support signals that are exclusively

social.

Social and Aesthetic Aspects

Usually, HRI studies apply eye and head gaze in a congruent manner –with

LightHead not being an exception– but head gestures convey additional

non-verbal cues. Acknowledgement (nodding), disapproval (shaking), ques-

tioning (tilted head) are powerful social signals for Western cultures that

are produced with the neck. As mentioned previously, many other cultures

communicate with head gestures, and it stands to reason that culture-aware

robots necessarily need to make use of a 3 DOF capable neck.

Socially, the thorax becomes important to regulate and respect inter-

personal distance. Experimental results from Walters et al. (Walters et

al., 2005) not only illustrate people are closer to humanoid robots, but also

that their personality can help estimate the distance at which they would

likely approach a humanoid. Although this particular arm limits proxemics

(see (E. T. Hall, 1966)) to personal space, no experiments on the impact of

LightHead on interpersonal distance were conducted.

Aesthetically, for LightHead the spine also acts as a support to tie data

and power wires, preventing them from hanging out of the head’s cover,

which would certainly detract from the clean design of the robot. How-

ever, such a bare chest maintains a pronounced robotic appearance in line

with the obvious platform limitation: LightHead does not feature arms. Of

course this choice corresponds to the CONCEPT project’s objectives (cf.

section 3.1), and even if gestures would fit non-verbal communication, time,

human and financial resources imposed prohibitive constraints. In any case
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a surprising fact marks the low impact on the robotic character: over the

many people introduced to the robot, few of them raised this topic.

3.4 Control

Efforts in designing not only a functional robot with virtually unlimited

facial expressions, vision, hearing, speech but also head movements could

only bare fruit with a system able to exploit these capabilities to create

a naturally expressive robot. As such, software able to react in a timely

manner, robust to load and allow integration of sensor data is fundamental

to retro-projected robot faces.

3.4.1 Existing Systems

An ideal robot control system should be robust, portable, versatile and ac-

cessible. Because it is notoriously difficult to achieve, such a goal is still

the topic of several projects either from academia (e.g Robot Operating Sys-

tem ROS (Quigley et al., 2009) ) or industry (e.g URBI (Baillie, 2005)).

Highly constrained environments (e.g. factory lines) significantly moderate

the complexity of the task, however social robots are envisioned to interact

with humans in a dynamic and complex world, creating an entirely differ-

ent challenge. Dedicated HRI operating systems have been proposed. For

instance, Fong et al. (Fong, Kunz, Hiatt, & Bugajska, 2006) provide a struc-

tured software framework for coordinating human-robot teams through dif-

ferent user interfaces and using a variety of robots, although support of social

dyadic interaction seems to have room for improvement. Breazeal (Breazeal,

2002) uses a reactive system, based on a subsumption architecture, to regu-

late behaviours of social robots, and Kuratate et al. (Kuratate et al., 2011)

integrated OpenHRI (Matsusaka, 2008) to the Mask-bot. While this serves

reactive social robots well, interaction scenarios delineated for the CON-
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CEPT project need both the reactive element and extension of behaviours

over time. Behaviours that, for example, are needed to let the robot act

naturally as an engaging receptionist, museum guide or tutor. Nonetheless

these dedicated systems have still failed to reach mainstream use, perhaps

from of lack of contributors, and unfortunately they do not indicate they

would fit LightHead’s needs either. On the other hand, URBI and ROS –

even if each does not aim exactly at the same use case – are likely to fit

most robotic problems insofar as control is a complex issue. In the case of

Willow Garage, openness of the software, best programming practices, and

definite established popularity8 has the advantage of recruiting contributors.

For instance, Rich et al. packaged as a ROS node means to recognize en-

gagement between a human and a humanoid (see (Rich, Ponsler, Holroyd,

& Sidner, 2010)). Later, another contributor shared a ROS driver for the

Katana arm, but development of LightHead’s system was well underway and

integration into ROS was impractical. Nevertheless, LightHead’s purpose is

not task-centred but rather focused on interaction and lifelike behaviours,

and as such relies on an alternative custom software solution.

8Willow Garage supports OpenCV (Open Source Computer Vision library) used in

countless projects.

88



Figure 3.8: LightHead’s software architecture, splitting animation, reactive

and affective control, and cognition of the robot. From bottom to top: Ab-

stract Robotic Animation System (ARAS), Character Hi-Level Animation

System (CHLAS), High-level Management System (HMS).

3.4.2 Overview

Aesthetics and functional design are often at the heart of arguments about

the uncanny valley, however behaviour is at least equally, if not more, im-

portant. In order to separate actuation from behaviour a layered system

was designed as in figure 3.8:

1. a low-level animation system is responsible for managing and ab-

stracting hardware actuation (Abstract Robotic Animation System or

ARAS ),

2. a mid-level system (Character High-level Animation System or CHLAS )
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merges reactive behaviours with commands from the next level, trans-

mitting animation info to ARAS in a timely manner,

3. a top-level (High-level Management System or HMS ) that most often

implements cognition, and having direct access to sensors.

In this section the benefits of this architecture is discussed and how be-

haviour supporting social interaction can be simply implemented.

For the reader also involved in programming, it may be worth knowing

that all systems’ source code are written in the high-level scripting python

language, which contributes to the simple migration of the system. Also,

the software has been released under the GNU Public License on the pop-

ular GitHub platform9 so that other researchers can freely use, modify and

distribute the system or its parts for integration into their own work as

long as they keep referencing LightHead’s. Clarity of documentation and

source code are key for broader dissemination of a software, and in the same

idea, the designed software interface was kept simple and consistent. Con-

sequently, the systems communicate through a human-readable, clear text

protocol, a decision that grants ease of script writing, reuse of common tools

and simple integration with third-party software although at the expense of

optimization.

3.4.3 ARAS

Abstraction of hardware is limited to actuators and mechanical design: from

a user’s perspective, focus stays on moving essential body parts regardless

of those parts’ design details. Sensors, however, are directly handled by

higher levels in the software architecture (figure 3.8): this data remains

free of any bias. For instance, cognition can directly poll sensory input

(e.g. camera, microphones, raw proprioceptive actuator values) if needed,

9http://github.com/Dfred/concept-robot
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Figure 3.9: Summary of the software designed and implemented during this

thesis.

or use available helper functions (see section 3.4.5) such as captured user

face position. Real-time movement information for each available – virtual

or physical – actuator of the system is unified and shared by the Action

Unit pool (described further) hence maintaining proprioceptive information
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at no computing cost.

FACS Baseline

Abstraction guarantees variations of the hardware platform have no impact

on the algorithms and functionalities available to users of the system. As

facial expressions are at the core of the system, inspiration is taken from

the Facial Action Coding System by Ekman and Friesen (Ekman & Friesen,

1969). In short, FACS splits the face in Action Units (AU): a single facial

muscle or a group of muscles responsible for a localised visual modification

of the face. For instance, each eyebrow can be modified by three AUs: inner

and outer brow raisers, and a brow lowerer.

Originally, FACS lays out a five degree discreet valuation of AU intensity

unsuitable for animation, whereas normalized values lays the mathematical

foundations required for computation of the finest animations. Other ex-

pressive heads use a normalized and contemporary version of FACS (for

an example in robotics see (T. Hashimoto, Hiramatsu, Tsuji, & Kobayashi,

2007a)), which is also the basis of the LightHead system. Normalization fits

muscles very well because their activation is bounded, but normalization

also applies to angles of AUs managing the orientation of the eyes, tongue,

and generally for each element of the skeleton. As mentioned previously,

ARAS defines extra AUs for animation of the tongue as well as affective

effects such as level of blushing and pupil dilation, other scholars also ex-

tended FACS for mechatronic robots (see (Kühnlenz, Sosnowski, & Buss,

2010) for instance). Moreover, FACS defines too many AUs. Multiple in-

stances occur where individual AU define each opposed muscles involved in

a specific linear movement, for instance AU61&62 bound to the horizon-

tal orientation of eyes. In these cases, an ’average’ AU name convention

was used (e.g. AU61.5) to represent the same movement. A comprehensive

list of modifications can be found in annexes, page 200. With this baseline,
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ARAS ensures a common framework for backends, each of which implements

operations specific to a piece of hardware.

Action Unit Pool

ARAS maintains a centralized pool of all Action Units in black-board fash-

ion, so that any software component can read data whereas only backends

can update contents. Hence, such an architecture focuses optimization to

a single critical part of the software. The AU pool receives constant iter-

ative updates until each AUs has reached its target value, and backends

remain free to pick the values relevant to them at the hardware’s poll rate

capabilities.

Action Unit

Base Value

Delta Value

Target Duration

Delta Duration

Derivative Value

Current Value

Table 3.2: A vector of the internal matrix constituting the pool of 63 Action

Units. Allows for proprioceptive information through polling the current

value.

One extra benefit of abstraction through the AU pool lies in the trans-

parency offered up to machine learning: algorithms stay unmodified whether

they deal with virtual animation or hardware actuation. This makes pos-

sible the mapping of facial expression or poses to any other sort of input;

for instance, one can imagine the robot learning natural facial behaviour –

or to a greater extent natural motion – from data the facial vision systems

recorded after human performance.
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Figure 3.10: Five of Ekman’s Six Basic Facial expressions with the 1st design

of LightHead: happy, disgusted, surprised, frightened and angry.

Animation and Dynamics

Keeping a simple mathematical formalism of animation ensures minimal

efforts to transfer animation states (animators refer to these as animation

keys) to third-party tools. The resulting environment stays close to that

described in (Saerbeck & Breemen, 2007). An animation state AS (also

defined as an expression or pose) can be expressed as a vector:

~AS =


au0

.

.

auN


where N is the cardinality of the supported AUs set.

Then, the transition from ~ASt to ~ASt+1 generates an animation ~A such that:

~Ai = ~ASt + T (
~ASt+1 − ~ASt

i
) ∀i ∈ [0, d]

with d ensuring replay of predefined animations at various speeds.

In effect, each animation state is defined by a set of triplets (AU identifier,

target value, duration). Complex animations then consist of a sequence of
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animation states bound to a specific duration. Since an animation stops

after reaching its last state, this method follows the principles described by

Thomas and Johnston (Thomas & Johnston, 1995). To summarize, onset,

sustain and decay of animated facial expressions or gestures consist of simple

transitions between animation states.

Transitions leave room for dynamics: T , a function monotonically in-

creasing on d, defines the shape of transitions. To keep dynamic functions

simple, T only needs to be defined on the range [0, 1] and a factor accounts

for each AU distance in ~ASt+1− ~ASt to compute the amount of movement.

Backends extract discreet values whenever possible, adapting the transition

to the available computing power - or frame rate. Efficiency of backends

is crucial since precise control over the dynamics of facial expression adds

more realism to animation: for a study on humans see (Pantic & Patras,

2006), while in (Oda & Isono, 2008) experiments reveal how typical onset

profiles do not apply to all facial expressions. In light of these observations,

and to display changes of affect, dynamic functions can be redefined during

system operation to impact on the whole robot behaviour.

Finally, ARAS’s external interface enforces issue of instructions (AU,

target value and transition time) in a transactional manner, necessary to

start multiple animations at a given time.

Virtual Face

Beyond meeting the needs for controlling the robotic setup, the animation

system has been designed for shared and long-term use, allowing scalable

realism and exchangeable rendering subsystems.

Independence of the rendering subsystem remains possible because the

facial animation does not employ a specific technique. In essence, two main

approaches exist: a first family of methods relies on morphing often based

on photographs (such as (Pighin, Hecker, Lischinski, Szeliski, & Salesin,
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1998)), and a second, more popular technique employs 3D rendering (for

a seminal publication, see (Waters, 1987)). Since the CONCEPT project

states no intentions to pursue a photo-realistic design, and with the wide

choice of open-source 3D modellers available, the latter option was chosen.

A particular face can implement any subset of the FACS’ Action Units

without modification of the system. To set up a 3D face two methods were

tested: using a template model featuring all AU effects on which a texture

is applied (more likely to be used for mapping real faces) or an original 3D

model scaled to fit the proportions of the template model upon which AUs

effects are modelled.

To display the face, a 3D model created with the Blender3D modeller

is rendered by its own game engine using an orthographic camera so no

perspective distortion occurs, keeping distances constant. As a baseline, the

face is modelled without muscular activity (which is equivalent to all AUs

set at 0 intensity). Next, the visual effect of each AU is defined by the

linear translation of vertices, rotation of objects or hierarchical geometric

modifiers (also known as “rigging” for animators). It is possible (and often

the case) that some vertices belong to more than one AU and conflicts can

arise. However AU normalization allows precise blending of AUs together –

additionally, rules can be applied similar to Wojdel (Wojdel & Rothkrantz,

2005) – keeping facial expressions consistent and scalable across 3D models.

The method and end result stays close to recent works also based upon

FACS, such as (Krumhuber, Tamarit, Roesch, & Scherer, 2012). However

one further step remains for the robotic setup: the software compensates for

fisheye visual distortion through Blender3D’s projection matrix.

As light is projected from within the head volume, it prevents fitting

sensors in the mask volume. Hence eye gaze representation is indirect: eyes

are displayed as they should be, not as they have to be when using actual

cameras in place of eyes. Mapping eyes’ surface to the mask’s can use
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a polynomial method such as (M. Hashimoto & Morooka, 2005) although

other vector-based methods calibration exist, such as (Lincoln et al., 2009).

ARAS does not enforce any limitation on eye orientation so the system may

be able to support non-anthropomorphic robots. Responsibility for such a

work is incumbent upon the CHLAS.

Spine

The spine backend – beyond ensuring safe operation – drives the robot arm

from the set of spine AUs, for which AU values represent angles. Although

this particular LightHead’s backend directly maps the arm’s joint space,

the AU method nonetheless abstracts the kinematic chain of the robot arm.

Thus, a different mapping could associate several connected sections of the

arm to a single AU and account for another spinal design, such as the long

neck of a dragon.

In line with such mapping method, the implemented spine backend relies

on forward kinematics (FK). Incidentally, tests of the inverse kinematics (IK)

solver shipped with the KatanaHD400s-6M revealed this solution takes too

much time to process (sometimes more than 800ms), preventing reactions in

a timely manner. Therefore, no particular IK method accompanies ARAS,

and if needed, IK would rather fit higher level software such as the HMS.

Since the AU pool provides proprioceptive information, discrepancies

between target and actual arm angles arise upon issue of new spine instruc-

tions because of the arm’s inherent mechanical and communicative latency.

In order to minimize the communication problem, the spine backend source

embeds an updated version of the Katana open-source drivers: latency for

setting all arm axes is reduced to a minimum.

Finally, on the Katana arm, timed iterations of motor position cannot

achieve uninterrupted animation as each new position abruptly stops the

arm in a very jerky movement. Instead velocity control achieves smooth
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motions through a software PID controller that takes into account the arm’s

communicative latency, as well as current movement dynamics function.

3.4.4 CHLAS:

The CHLAS sits between the top-level system (the robot’s cognitive system)

and ARAS.

While ARAS embeds the – robotic or virtual – character’s aesthetic de-

sign, CHLAS defines aspects of the character’s personality. The configura-

tion includes predefined static or animated facial expressions and poses, voice

settings and reactive behaviours. Thanks to abstraction, character person-

ality stays transferable to a totally different character managed by ARAS.

Currently two characters have been created with this system: LightHead

and HALA2 the robot receptionist in Carnegie Mellon University Qatar: an

Arabic female, about thirty years of age (see figure 7.1), obviously differ-

ent from LightHead’s childish design. Bringing ARAS to the HALA robot

(for details refer to 7.3.2) and meeting requirements called for a new soft-

ware architecture I designed, and later updated as the CHLAS. Ultimately

subsequent iterations initiated by other collaborations opened the range of

scenarios this system has to offer.

During human-human interaction, actions and behaviours may be in-

terrupted by a change of thought or an instinctive reaction to an external

stimulus. CHLAS is equipped with a way to gracefully interrupt an ani-

mation, which accommodates for the character’s reactive behaviours. This

effectively supports the impression by users that the robot is aware of its

physical and social environment, which enhances HRI scenarios.

Similar design principles applied to ARAS guided the development of

this software component. Since a thorough documentation can be found in

the annex of this thesis, page 183, only outstanding aspects of the CHLAS

are presented.
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Fusion of Channels

Human behaviour, whether considering a task, communication or interac-

tion, appears synchronised. In this regard, the CHLAS enforces synchrony

with its high-level clear-text command interface (a datablock) with each one

allowing specification of actions on all robotic channels. Therefore, facial

expression, vocal utterances, eye gaze, head gaze and generally spine con-

figuration, and finally instinctive behaviour parametrisation (e.g. breathing

rate) are guaranteed to be synchronized if sent together in the same com-

mand.

For an interactive system to avoid the uncanny valley, time is of essence,

and although relaxed requirements favoured non-realtime operating systems,

proper scheduling stands as a critical asset. Therefore the core machinery

of the CHLAS mainly hosts a software scheduler and the rest of its compo-

nents adhere to time constraints. Without a reliable system, experimental

conditions vary too much over the participants and intermittent delays spoil

overt communication channels such as facial animations.

Endowing the robot with speech expanded interactive scenarios beyond

non-verbal communication, and later proved an essential asset in collabo-

rations with other researchers. However, poor lip synchronization at best

distracts, at worst confuses, depending on a participant’s reliance on this

cue, therefore particular graphical and computational attention was given

to this modality. Lip-sync however remains the task of the text-to-speech

(TTS) engine plugged into the system, which should produce both speech

samples and phoneme information, to be translated into visemes. In that

regard, support to the open-source espeak10 has been implemented, map-

ping TTS’ phonemes to visemes. However the disappointing voice synthesis

10see http://espeak.sourceforge.net
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quality called for another implementation. In contrast, Acapela11 proved

very satisfactory and unexpectedly close to natural reading speech. Tech-

nically, this TTS feeds the system with visemes in the form of lip parting

and tension, mouth width and curvature, top and low teeth visibility, jaw

opening, and vertical tongue position; respectively mapped to Action Units

25, 24, 20 & 18, 13 & 15, 10, 16, 26 and 93Y & 94.

Figure 3.11: Computation of eye (center in E) orientation (Θz) from focal

point F and eyes mid-distance M.

For the eye-gaze channel, the CHLAS primarily converts the focal vec-

tor to vergence. Using a right-hand oriented system (positive Y forward),

indirect gaze representation computes each eye orientation from a reference

point (i.e: the middle of both eyes) and a relative 3D vector indicating the

focal point. Hence, eye orientation is computed using the arc tangent:

Θz = −arctan(
Fx ± Ex

Fy
)

with Θz the eye orientation on Z axis, F the focal point vector and E the

11see http://www.acapela-group.com
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eye coordinates as in figure 3.11. Orientation on the X axis consists in a

trivial variation.

The system also takes into account human eye-gaze motion based upon

publication by Baloh et al. (Baloh, Sills, Kumley, & Honrubia, 1975) whom

observed and charted performance of the eyes under various conditions. De-

spite availability of many other resources on the topic, the implementation

simply computes ocular rotation velocity from angular distance and allows

room for a more complex simulation.

In a very straightforward manner, part of the datablock specifying spine

configuration just requires identification of a spinal section, its desired ori-

entation and time of movement. Spinal section identifiers regroup multiple

AUs, abstracting details of the kinematic chain: the cervicals on a humanoid

robot could range from a single panning movement to a fully featured an-

thropomorphic neck with multiple actuators.

Natural and Instinctive Behaviours

Part of human behaviour that conveys the illusion of life serves a biologi-

cal function: breathing, blinking (as opposed to winking), or saccades for

instance, are in fact often unconscious and reveal emotional states. In this

manner, CHLAS splits conscious operation of a character and “instinctive”

autonomously generated behaviours implemented by several modules. Co-

actuation of eyelids with eye-gaze and a natural blinking model (C. C. Ford

et al., 2010) are amongst available instinctive behaviours. When conflicting

actions are requested by the conscious and the instinctive behaviours for the

same robot part, priority is given to the former.

Co-actuation ensures that even cartoonish faces appear natural. For

instance, eye orientation has an impact on facial features: when gazing up,

eyelids and eyebrows lift to free the field of view. Such detail carries special
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importance since the eyes are the primary point of focus during interaction.

In effect, the co-actuator instinct recreates this effect for vertical gaze and

some visemes.

Gaze control was added as another component amongst instincts. Es-

sentially, gaze control reads the gaze vector to compute orientation of the

spine while meeting weighted tolerance constraints of each section. Such a

behaviour, rather than being totally instinctive in humans, participates in

the illusion of a natural embodiment linking conscious attention and uncon-

scious movement.

Such routines of the CHLAS constitute a repertoire of natural reactions

in line with their human counterparts. Humans though enjoy a great con-

trol over their embodiment, reflexes and innate behaviours, which they can

consciously suppress in favour of other actions. The system offers means

to such a mechanism through the deactivation of any routine, at any time,

allowing the higher-level system to take over those aspects entirely.

All along the development of the robotic platform, apparent improve-

ments towards natural interaction resulted from each aforementioned mod-

ules. Perhaps those components coincide to meet users’ expectations and

hopefully help in reversing negative first opinions expressed on initial en-

counter with LightHead. However such informal surveys took place only

during public settings and could not justify a specific publication.

3.4.5 HMS

The High-level Management System conceptually holds the place of any

software communicating with the CHLAS such as de Greeff’s active learn-

ing system, which is covered in his own thesis (Joachim de Greeff, 2012).

Consequently this package currently stands as a collection of tools to ease

endowing LightHead with intentional behaviours, such as motivated inter-

active learning.
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Helper Libraries

To facilitate setting up experiments, three main helpers come along the

open-source software: a library of perception algorithms, an advanced state

machine and a script player. These benefit the integration, development, and

testing of third-party software to be connected to the CHLAS or ARAS. For

instance, this approach helped Joachim de Greeff in the development of the

graphical user interface (GUI) (see figure 5.3) deployed for his experiment.

Alternatively, for non-interactive scenarios the script player stages Light-

Head’s performances, a method which supported the recordings featured in

experiments described in chapters 6 and section 7.3.5. The perception li-

brary encompasses both vision and audition, although eventually audition

was not deployed over the course of the experiments.

Based upon pyvision (David S. Bolme, 2008), the vision helpers ex-

ploits functions for camera access, facial and eye detection while hiding

their specifics through a configuration file. Built over pyvision are the vi-

sion routines which feature the generation of focal vector from detected face,

and histogram-based facial recognition in the HSV color space. In turn,

these primitives stem vision-based behaviours ranging from illumination-

independent color perception of objects to histogram-based facial tracking.

Also available is the real-time display of the robot’s camera including tex-

tual information such as frame rate.

The audition helper provides functions to retrieve and monitor acoustic

pressure in decibels for each available channel, thus making it possible to en-

rich LightHead’s natural behaviour with an auditive reflex. With the stereo

microphones embedded in LightHead’s skull, constant monitoring of each

channel’s signal power raises events whenever statistical difference occurs or

levels reach a specific threshold. Consequently, the robot can appear aware
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of its surrounding environment, orienting itself towards the loudest source

and reacting to a door violently opened or a person’s sneeze for instance.

Event-based Parallel Finite State Machines

Finite State Machines (FSM) formalise state transitions of systems and

present the benefit of clear visual representation even for programming-

illiterate users. While FSMs can model a variety of logical systems – beyond

software and electronics – they fit particularly well the control of automa-

tons. However interactive robots and especially research on novelty and cu-

riosity driven behaviours hinge better on event-based finite state machines

(EFSM): control depends on events usually generated from the environment.

Although directly applicable in this work, the simplicity principle called for

the breakdown of a complex EFSM behaviour into simpler models.

Figure 3.12: A behaviour implemented with two event-based parallel state

machines: cognition in blue, face-following in red.
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However for these behavioural models to interact, they would need to

work in parallel and share states through a blackboard system: so is the ra-

tionale behind the inception of EPFSM. This approach remains very similar

to (R. A. Brooks, 1986) or to the more recent ROS nodes, and certainly

shares a common objective with behaviour-based robotics: breaking down

complex behaviours into simpler and reusable ones. However, a key aspect

of this effort was to create a shareable library of behaviours, which requires

portability of logic. Hence key aspects behind the design of EPFSM must

be mentioned:

• animation logic shall remain at CHLAS protocol only and remain free

of direct/raw actuation, so to allow portability to other supported

robotic platforms (e.g. by ARAS);

• states shall be shared between all state-machines and allow their syn-

chronisation;

• events shall be shared states originating from sensing routines;

• logic building shall rely mostly on events;

• basic events shall be provided by the framework (e.g. START, STOP);

• advanced events shall be provided by helper libraries (from sensing

routines);

• custom shared states shall rely on basic events or other custom states

to create behaviours;

• behaviours shall avoid state name collisions and target self-containment

for stackability and modularity reasons;

In particular, the behaviour stackablity design requirement allows pre-

senting the user a layered approach: each layer can describe a modal logic

(e.g. auditive attention) so that a global (stacked) view displays the full
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complexity of the behaviour. In turn, simple behaviours can be layered to

finally coalesce in a complex behaviour.

Technically, the EPFSM-based behaviour builder takes for input a def-

inition of shared-memory machines to run in parallel, each in the form of

trigger states, boolean function to run, and new state to transit to upon suc-

cess. Combining helpers and EPFSM, LightHead can adopt a visual search

behaviour as well as react to sound as represented in figure 3.12; synchro-

nization of routines depends on the broadcast of the new state to concurrent

machines thanks to the blackboard system. Although state machines remain

a convenience, they benefit integration of machine learning and behaviour

programming by grouping reusable routines in a single logical block, which

ultimately eases understanding and updating of algorithms.
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Next Reading The following chapters describe a series of experiments

evaluating the effectiveness in non-verbal communication of both Light-

Head’s hardware and software. The CONCEPT project consists of two

complementary topics: human-robot learning and human-robot interaction.

The former is covered in De Greeff’s thesis (Joachim de Greeff, 2012) and

the latter in this thesis. Eventually though, both domains were merged for

the experiment covered in Chapter 5.

The first experiment details investigation of the readability of robotic

eye-gaze across non-mechatronic facial displays; while the second experiment

assembled a typical scenario of the CONCEPT’s project in which a human

teaches a socially guiding robot learner. Further, are presented findings from

the crowd-sourced exploration of users’ preferences to robots in relation to

their own ethnicity. Finally insights from public displays are reported and

commented in section 7.3.5.
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Chapter 4

Measuring Eye Gaze

Readability

Reading eye gaze direction is crucial in proto-communicative child-caretaker

interactions as it supports, among others, joint attention and non-linguistic

interaction. It has been argued (Scassellati, 1998) that reading gaze di-

rection, and by extension, joint attention is important for developmental

robotics. While most work has focused on implementing gaze direction

reading on the robot, little is known about how the human partner in a

human-robot interaction is able to read gaze direction. To the best of my

knowledge, no such experiment has been reported previous to the publica-

tion of this study (see (Delaunay et al., 2010)), however follow-up works

such as (Beskow & Al Moubayed, 2010) endorsed this research direction.

This first experiment addresses the following two questions: (1) What

factors influence the ability of people to infer where another (artificial) agent

is looking? (2) What is the influence of the physiognomy of an agent’s face

and eyes on the user’s ability to infer where it is looking?

To gain insights, an experiment was devised asking human subjects to judge

the gaze direction of four different types of facial interface: (1) a real human

face, (2) a human face displayed on a flat-screen monitor, (3) an animated
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face projected on a semi-sphere and (4) and an animated face projected on

the 3D mask (figure 4.1).

Figure 4.1: The four facial interfaces providing gaze sequences

The rationale behind the different face types is as follows:

1. the real human face will serve as the null-hypothesis, it is assumed

that a real human face will work best for assessing gaze direction.

2. the recording of the human face displayed on a monitor serves as a

baseline to assess how much the lack of 3D structure influences gaze

reading.

3. the LightHead, providing a 3D structure and rounded eyes,
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4. the same robotic face, this time projected into a hemisphere.

The last condition serves to evaluate the technology of Hashimoto (M. Hashimoto

& Kondo, 2008), who evaluated a similar robotic setup. No android robot

face was introduced, such as the Albert Hubo or the Ishiguro’s androids due

to budgetary constraints.

Human eyes are unique: no other other animal —including primates and

apes— have such a large visible sclera to iris ratio (Kobayashi & Kohshima,

1997). The spherical shape of the eye also facilitates reading gaze direction,

which allows one to infer the position of the iris not only when facing a

person head on, but also when seeing someone from viewpoints other than

frontal.

The information gleaned from the spherical shape of the eyes is distorted

when a face is displayed on a 2D surface. However, under certain conditions

the distortion is minimal: if a video of a person is shown on a screen with

the viewer sitting at the relative location where the camera was, the distor-

tion is minimal. The reason for this is that the 3D to 2D transformation

is consistent: we have no problems reading gaze direction from the video

because we are aligned with the camera’s line of sight. However, by moving

away from this ideal position, the visual transformation is no longer relevant

to the viewer’s perspective and other cues are needed to read gaze direction.

Figure 4.2 illustrates the 2D gaze interpretation problem, described in

two ways: the Mona Lisa effect occurs with a face represented as looking at

us, which persists regardless of the viewer’s perspective; while the Wollas-

ton’s effect (Wollaston, 1824) occurs with eye manipulation of head gazes not

directed to the viewer. In real environments, we remain free of this effect as

depth of vision and other visual clues (such as reflections) help constructing

geometric information. As such, multiple observers at different viewpoints

can read a person’s gaze, although with respect to the observer-subject dis-
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Figure 4.2: Wollaston’s effect applied to the Mona-Lisa: the faces appear to

gaze at different location although the pairs of eyes are identical.

tance. Similarly in multi-party scenarios, ensuring readability of robotic eye

gaze reading benefits the transmission speed of non-verbal messages such as

turn taking, as opposed to slower head gazes.

4.1 Experimental Protocol

Two different viewpoints for observing four facial displays were evaluated.

With only a single experimental sequence for all participants, a participant’s

performance could increase over the four sessions, and such a training effect

might have tainted the results. Therefore it was ensured the face presen-

tation sequence varied over participants, shuffling the order of sessions for

each pair of participants. Under such a principle, 24 (4!) unique sequences

of facial display presentation are possible, each of which could be tried twice

by the same pair of alternating participants. Hence 24 participants were

arranged following 2 different sequences from either one of the viewpoints,

which generated a total of 96 records, that is 12 records for each condition.

Participants sat 1.5 meters in front of a transparent screen, behind which

they could see the facial display at an additional 0.5 meters (see figure 4.3).
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Display Straight Viewing (0◦) Side Viewing (45◦)

Natural Human face P1 P2

Human face on flat

monitor

P2 P1

Animated face on semi-

sphere

P1 P2

Animated face on 3D mask

(LightHead v1)

P2 P1

Table 4.1: Example of an experimental sequence for a pair of participants.

P1 and P2 swapped their seats and repeated the sequence.

One participant faced the display straight (aligned with it’s normal) and the

other at a 45 degrees angle from the facial display’s normal. To obtain a

metric, the transparent screen appeared as a grid, divided in 10 rows and 10

columns, which bore the numbers 0 to 99 from top left to bottom right, each

cell measuring 5x5 cm. The grid stood upright between the participants and

the facial display so that the distance from eyes of the face to the numbers of

the grid would increase evenly from the center of the grid; this would not be

the case if the numbered grid was laid flat in front of the face. The position

and size of the grid also ensured downward facing eyelids could not hinder

the interpretation of gaze direction when gazing at the bottom of the grid.

A single session consisted of the face looking at a sequence of 50 ran-

domly generated numbers, switching to the next one after a fixed delay of 5

seconds. As numbers are pseudo-randomly generated, the participants were

instructed that the same number can appear multiple times in a number

sequence.

Once a number was gazed at, an auditory signal was given indicating

to the participants that they could perform their observation. A delay of

5 seconds was long enough to give the (human) face enough time to find
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Figure 4.3: Experimental setup: pairs of participants seated viewing the

four displays straight and at 45◦.

the proper number and for the participants to write down their observations

afterwards. When the face was a human (one of the experimenters), the

number sequence was played over earphones worn by the experimenter so it

could not be heard by the participants. In the case of the video, the face

consisted of a pre-recorded sequence of the same experimenter looking at a

number sequence. In the two animated faces cases, the number sequence

was generated on the fly and fed into the animated face control module.

The same auditory signal was played when the face was looking at the next

number to ensure consistency among sessions.

The participants were asked to write down the number they thought the

face was gazing at on a paper sheet. Handwriting allows participants to

quietly report – or correct – their results in a very natural way, and only

requires basic equipment. Participants were also asked to perform as best as

they could and not to cheat by looking at each others’ notepads. Observing

the participants while they performed the experiment ensured they were

obeying these rules.
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The sequence of numbers written by each pair of participants was com-

pared to the actual sequence and the difference was calculated using the

euclidean distance between the cell on the grid the participant reported and

the cell the robot gazed at. In this way, the difference between a participant’s

sequence and the real sequence is expressed as a mean error distance.

4.2 Results

Figure 4.4: Mean Error (cm) in gaze reading for each display for a distance

of 2m with front and 45 ◦ seating positions (N=12) .

Not rejecting the null hypothesis, performance for the human face was

best (lowest mean error): when having to guess at which number the human

face was looking, the participants had an average error of 1.13 when com-

bining data from both viewing angles. As the numbers were 5cm apart, this

means that participants were in average about 5.65cm (5cm x 1.13) off in

guessing where the real human gaze rested. The mask and flat faces appear

to be next in accuracy for guessing where the eyes are looking, followed by

the dome face; however results are not statistically significant.
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A 4 x 2 analysis of variance (ANOVA) on gaze interpretation error

showed main effects of both display type, F (3, 88) = 8.121, p <. 01, and

looking angle, F (1, 88) = 14.438, p < .01. However, no interaction effects

were observed, F (3, 88) = 0.419, p = .740.

Post-hoc comparison of the ANOVA using a Tukey test shows that the

participants’ performance between the human condition and all other con-

ditions was significant, while this was not the case for any other comparison

(see table 4.2).

condition versus p

human dome 0.000

flat 0.027

mask 0.035

mask dome 0.146

flat 1.000

dome flat 0.176

Table 4.2: Statistical difference in mean performance of different display

types

A first observation is that participants for all conditions performed above

chance, and that the error distance is less than expected by chance for all

displays. The difference between faces was tested for significance using an

unpaired two-tailed t-test. The difference in performance between human

versus all other faces turned out to be significant, as was the difference

between mask versus dome, while the difference between mask versus flat

and flat versus dome was not.

Unsurprisingly, the difference in performance between the two different

viewpoints revealed it is much easier for participants to determine the gaze

direction when viewing the facial display straight, as opposed to a side view

(see table 4.3). An ANOVA for the independent variable “display type”
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dome flat mask human

p value .014 .367 .037 .018

Table 4.3: Statistical difference tests for the four different displays between

the two different angles. The difference between viewing angles for dome,

mask and human is significant, and for flat it is not.

showed statistical significant difference at 0◦: F (3, 44) = 5.992, p = 0.003;

and at 45◦: F (3, 44) = 3.690, p = 0.019). This difference between viewpoints

was significant for the human, mask and dome, but not for the flat screen,

due to the large variance in performance.

Figure 4.5: Mean of user preferences for each display (N=12).

After performing the experiments, participants were asked to subjec-

tively rate their experience describing how effective they found each of the

four different faces at conveying information about gaze direction. This

was rated on a seven-point Likert scale, with the range: 1-very ineffective,
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2- ineffective, 3-somewhat ineffective, 4-undecided, 5-somewhat effective, 6-

effective, 7-very effective. Results show that participants find the human

the most effective in terms of gaze information, followed by mask, flat and

dome (see figure 4.5). The difference between human and all other faces is

significant, as is the difference between mask and dome, while the difference

between flat and mask and flat and dome is not.

4.3 Discussion

With this first study, such inquiry into the influences on eye gaze reading was

inherently limited: for instance conditions where a human face is projected

into LightHead’s mask were not tested as this proved technically challenging

and highly uncanny, nor was tested the CGI face on a flat screen. Nonethe-

less the most representative conditions were selected and this helped unravel

the behavioural aspect merged in aforementioned geometric and aesthetic

concerns; a process detailed hereafter.

The results indicated a 3D mask with a projected animated face is a

valid setup for which participants are still able to infer the gaze direction.

Participants’ increase of error when shifting to side view of the mask re-

mained similar as with the human. Assuming participants managed to read

the human’s eye gaze instead of guessing it, the similarity of the standard

deviation between mask and human conditions suggests that participants

manage to read it too, regardless of the viewer’s position. This was reflected

in the fact that standard deviation for the flat screen is more than twice

the mask’s on the side view condition, where it seems the gaze is at some

vague distant point is space, rather than at the number grid. Besides, this

correlates with the perception that the face is looking at the corners of the

screen when it is supposed to look at a number in the grid corner.

However, the relatively good performance of the flat screen was inter-

esting, especially considering the side view condition. Comparing results
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of the front view between the mask and flat-screen video, participants per-

formed more or less equally well (difference in performance is not signifi-

cant). Upon further investigation, participants occasionally reported trying

to reason about the gaze location of the human video rather than naturally

detecting it, finding it helpful to see the eyes of the human face employ-

ing recognisable search strategies when looking for the next number. For

instance, when switching from number 12 to 86, typical human search be-

haviour would be to drop the eyes first from the 2nd line (20-29) to the

8th line (80-89), and then move along the horizontal axis from 82 to 86. It

might be the case that other participants did not consciously observe this

but were nevertheless sensitive to this information, although it remains ev-

ident participants engaged in gaze guessing in the side view condition. In

contrast, the projected animated face (being computer controlled), would

drop its gaze directly from one number to the next. This suggests that ani-

mated faces missing visual search behaviours might impair the interactants’

ability to infer robotic gazing direction, and that their presence may be also

beneficial in other scenarios.

Geometrically, the participants’ high error with the dome came less as

a surprise. Moreover, no dome compensation was in place, although even if

present, the low curvature might not have proven visible to the naked eye;

however this condition exploited a normal vector calibration. The reasoning

on the high eye gaze reading error is that it represents the condition with

the less visual cues: there is no nose geometry to help assessing the head

gaze (Wollaston effect), aesthetics are minimal since no realistic cues on the

face suggest geometry, and no search behaviour was implemented.

Finally, measured errors are provided to help a robot designer select a

facial display type, table 4.4 summarises average angular and distance errors

for each viewpoint and condition. Those values only reflect results obtained
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condition viewpoint distance error

(in cm)

angular error

(in degrees)

human 0 5.1 5.86

human 45 6.2 7.14

mask 0 6.25 7.2

mask 45 7.2 8.31

flat 0 6.4 7.37

flat 45 7.1 8.19

dome 0 6.8 7.84

dome 45 8.3 9.6

Table 4.4: Participants’ mean euclidian distance and angular errors in gaze

reading from 1.5m, for both viewpoints and each condition. N=12, eyes-to-

object=0.5m.

with our particular set up. It worth noting that the gazer-cell distance

is greater for cells further away from the grid’s center, hence it is likely

that those values would slightly change with another run of the experiment,

however current results suggest a sub-centimetre discrepancy.

119



Chapter 5

Robotic Social Influence in

Human Tutelage

The experiment described in this section embodied a key objective of the

CONCEPT project by framing a controlled evaluation of de Greeff’s and De-

launay’s work (Delaunay et al., 2009; de Greeff et al., 2009). Consequently,

this occasion tested the viability of the integration as a proper social robotic

system.

Advances in machine intelligence and in the concept of information (for a

seminal book, see (Floridi, 2004)) initiated a paradigm shift, departing from

good old fashioned artificial intelligence to account for the unpredictability

of unstructured environments. As emphasized earlier in this document (see

section 2.1.2 in particular), social and personal robots are to evolve in such

environments and need to specialise in natural interaction, a crucial aspect

of their ability to expand their knowledge through human tutelage.

The following study aims to investigate how the LightHead acting as

a learning robotic agent can acquire categories through interaction with a

human tutor, acknowledging previous studies demonstrating the improved

effectiveness of social communication within learning mechanisms (Thomaz,
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2006; Cakmak, Chao, & Thomaz, 2010). Exchange of non-verbal signals

serves as a regulatory system between learner and tutor to assess and adapt

the transmission of essential constituents of a particular idea or skill. The

hypothesis is that LightHead’s provision of social cues can influence the

teaching strategy of participants.

5.1 Learning Mechanism

The robot’s underlying machine learning system employed in this experiment

has been the sole work of Joachim de Greeff which links grounded knowledge1

with a mechanism for the transfer of linguistic symbols.

For the learning mechanism, Steels’ Language Games (Steels, 1997) are

employed as a means for an agent to learn a new vocabulary from another tu-

tor agent. Modelling the dynamics of linguistic interactions between agents,

several variations exist as the general mechanism allows for the manipulation

of a range of intrinsic parameters such as the number of agents simulated,

the communication properties or even the agents’ learning strategies (for

further exploration, see (Steels & Kaplan, 2000; Belpaeme & Bleys, 2005;

P.-Y. Oudeyer & Kaplan, 2007; P. Oudeyer & Delaunay, 2008)).

A context and topic represent respectively the environment and one of

its elements. Each topic is directly accessible to all agents which describes

them to others through a word, and each agent maintains its own word/topic

matrix. In this experiment only two agents play the game. To be more

precise, an interaction of the game unfolds according to the following steps:

1. the speaker agent selects a topic from the environment

2. from the topic, the speaker looks up a word in its word/topic matrix

and communicates it to the other listening agent

1Details of the conceptual space used to represent knowledge can be found in (de Greeff,

Delaunay, & Belpaeme, 2012)
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3. from the word (likely to be unknown to the listener at the beginning of

the game), the listener looks up a topic in its own word/topic matrix

4. a comparison of the communicated and interpreted topic (which relies

on an alternative method such as pointing to an object) determines

the success of communication

5. a strategy decides which agent updates its word/topic matrix.

The mechanism guarantees that an iteration of games between the agents

eventually leads to a shared lexicon, provided the modification of the matrix

avoids confusion.

5.2 Experimental Protocol

The grounded elements at the base of the concepts learned by the agent,

are exemplars of the Zoo Data Set from the UCI Machine Learning Repos-

itory (Frank & Asuncion, 2010), a simple database constituting of 7 differ-

ent categories: MAMMAL, FISH, BIRD, INVERTEBRATE, AMPHIBIAN,

INSECT and REPTILE. As MAMMAL included “girl”, this exemplar was

removed to avoid confusion as pilot studies revealed some participants had

no idea humans were mammals, which left 100 exemplars animals with 16

different properties such as “airborne” or “predator”.

5.2.1 Simulated Experiment

A pilot test of the experiment simulated the baseline version of the game2

(non-AL) against an active learning version(AL) in which the learner agent

2To be exhaustive, the form of active learning in use for this experiment tightly matches

(de Greeff et al., 2009), except for a specific modification of the topic selection which proves

“marginally more effective” (see (Joachim de Greeff, 2012)). However this doesn’t carry

particular relevance to the HRI aspect of this experiment.
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actively influences the tutelage session by deciding on the topic which it

knows least.

Classic language games require about 104 iterations to reach a consensual

vocabulary with only few confusions within the agent population. Although

studies with a high number of agents might use a greater order of magnitude,

even 100 iterations could not be practical with humans. Therefore, a simu-

lation was limited to 50 interactions – in line with the planned human-robot

version – and 50 simulations were conducted to obtain an average measure.

Each context consisted of 3 randomly selected animal exemplars.
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Figure 5.1: Comparative overview of the success in communication of the

baseline and active learning strategies (AL) of 50 language games. Values

are averaged over 50 complete simulations.

Figure 5.1 illustrates the better performance of the AL condition: only

after 5 iterations, AL achieves and keeps a higher game success rate. In

addition, a two-sample t-test indicates the difference in overall performance

for the two conditions is significant (p < 0.001).
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5.2.2 Robotic Experiment

For the robot learner and human teacher version of the experiment, 20 fe-

males and 21 males (mean age = 24.8) were recruited around the university’s

campus and paid £7.50 for their participation. Each of them were then ran-

domly assigned to interact with either the AL or non-AL version of the

robot (LightHead v3). Of course, the robotic version of the experiment was

set to reproduce the experimental protocol of the simulation: each session

consisting of 50 rounds, with a 3-exemplar context.

For the robot to convey social signals, LightHead’s face had to remain

visible at all times for the sitting participant. More importantly, for the AL

condition, the eye gaze direction of the robot also needed to effectively cue

the participant, and allow the latter to identify the exemplar corresponding

to the robot’s learning preference.

In between them, a touch-screen mediated the context and allowed the

participant to select any of the displayed elements. To guarantee a robust

protocol, the touch events generated by the participant were directly chan-

nelled to the robot, although LightHead adopted behaviours providing the

illusion of natural perception.

Preliminary to the participant’s session, the experimenter gave a brief

explanation of the guessing game, followed by practice rounds on colour

categories, in order to habituate the participant to both the robot and game

mechanics. Upon expressing satisfaction with the tutorial, the experiment

started and the participant proceeded with the teaching of animal categories.

Present during the experiment, the experimenter sat a couple of meters

behind the participant but deliberately appeared working on something else.

After the experiment had begun, whenever a participant interrupted the

interaction to ask a question, the experimenter would reply with an evasive

answer as to not give away any clues. His presence ensured consistency of
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Figure 5.2: Experimental setup: the participant faced the LightHead robot;

both shared the context procured by the touch-screen.

the experimental protocol, and allowed him to restart the projector3 on two

occasions.

To present the categories (words) and exemplars (domains), a graphical

user interface displayed on the touch-screen (figure 5.3). For every round, the

touch-screen displayed 3 random pictures of animals along with 7 buttons

each labelled with an animal category.

The interaction mechanics of a game followed this sequence:

1. LightHead examines the pictures and asks the participant to think of

one of the available animal and its category

2. the human teacher silently decides on the animal picture then he/she

touches the corresponding category button on the GUI

3. LightHead acknowledges the category and guesses the animal selected

by the participant

3This experiment was conducted using the version 3 of the LightHead which, at the

time, relied on a ShowWX+ and did not include the cooling method mentioned in section

3.2.3. Overheating caused the shut-down of the projector, hence a blank robot face.
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Figure 5.3: The GUI which presented the exemplars and words to the par-

ticipants.

4. the teacher communicates his initial choice to the robot by touching

the corresponding GUI picture

5. the robot confirms the outcome of the game with either a positive or

negative facial expression and verbal statement, and the next round

starts.

Production of synthetic speech supported game transitions from one step

to another. Non-verbal language alone might have introduced uncertainties

regarding the state of the robot, moreover verbal statements reiterated some

instructions of the game in a less formal manner. Overall, it stands to reason

verbal communication would reinforce the teacher-learner engagement. For

instance, at step 3, after LightHead gazed at the guessed animal, the robot

uttered a sentence such as “is this the topic?” or “is this the animal you

were thinking of?” in an attempt to appear involved in the game. A full

list of statements is available in the annex p.204.

Even if LightHead’s facial expressions and nods were congruent to ut-

tered speech, significant attention was given to the non-verbal behaviour,

126



also seeking to elicit engagement. At step 1, such efforts supported an es-

sential cueing difference: in the non-AL condition, the robot either moved

back a bit and gazed at the participant; while in the AL condition, it al-

ternated gazing at a particular exemplar and to the participant, as well as

making a verbal statement along the lines of “what about this one?” or

“I would like to learn this”. Additionally, LightHead exploited its camera

to perform face tracking and visually gaze at the participant, participating

in the illusion of life. The gaze was interrupted by blinks, occasional gaze

shifts and indeed, attention to the pictures.

At the end of the experiment, the participant was asked to fill in a

questionnaire (reproduced in the annex p.209) about their experience with

the robot and their topic choice strategy. Then, they were given a short

debrief which was also the opportunity to ask questions.

5.3 Results

With two discarded sessions due to the overheated projector (participants

#6 and #7), 19 AL and 20 non-AL entries constitute the experimental data.

As a global result, all participants succeeded in teaching the animal

categories. Figure 5.4 illustrates the similarity with simulation (cf. figure

5.1): after 5 games, AL achieves and keeps a higher game success rate. On

the 10th game played, a two-sample t-test indicates the difference in per-

formance for the two conditions is significant (p < 0.001). Moreover, the

average success for AL was 0.626 (SD = 0.077), and 0.566 (SD = 0.087) for

non-AL; this difference is significant (two-sample t-test, p = 0.028).

Once all experiments were completed, it emerged that participants might

have been confused by proposed contexts with two (or three) animals be-

longing to the same category. For instance with 2 mammals (e.g: an otter

and a squirrel), the teacher might have selected the otter as a topic hence
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Figure 5.4: Comparative overview of the success in communication of 50

language games. Values are averaged over 50 complete simulations (N=39).

communicate the category MAMMAL, while the learner might have guessed

the other MAMMAL, i.e. the squirrel. Table 5.1 provides a general overview

of the rate of proposed contexts with multiple animals belonging to the same

category (ambiguities) and the rate of participants selecting an animal in

such category (confusion4).

Ambiguities Confusions

Experimental Condition Rate SD Rate SD

without Active Learning 32% 0.07 44% 0.20

with Active Learning 30% 0.06 56% 0.10

Table 5.1: Overview of the occurrences of ambiguities and subsequent con-

fusions over all experimental sessions (50 rounds, 39 participants).

From a +12% increase of confusion compared to non-AL, it appears par-

ticipants in the AL condition did not specifically try to avoid confusions. As

4The participant confusion is not established in this experiment, so the wording ex-

presses a potential participant confusion instead.
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such potential misunderstanding of the game was unexpected, the experi-

ment did not include tracking the participant’s initial choice. Interviews of

few participants revealed some of them concurred with the robot on proper

classification whether or not the animal was their own choice, therefore

leading to a successful guess. Unfortunately it is not known if most others

considered these occurrences to be a failure.

5.3.1 Impact of Active Learning

Because this experiment represents a conclusive aspect of the CONCEPT

project, the impact of the AL condition bears a significant importance and

is likely to influence the nature of the future work.

To obtain a measure of teacher and learner alignment, the occurrences

of the same topic preferred by the learner and selected by the tutor were

counted over the total number of rounds in the game. For instance, if the

learner’s preferred topic was chosen by the tutor only half of the time, align-

ment is .5. In the case of the non-AL condition, topic alignment was .32

(SD=0.08), that is, almost 1 in 3 times did preferred5 and selected top-

ics were similar, which corresponds to a random choice since the robot did

not provide any cue. On the other hand, in the AL condition, it was .56

(SD=0.18), signifying alignment of topics occurred above chance (p < 0.001)

and confirming that, on average, half of the participants’ rounds were influ-

enced by LightHead’s cueing behaviour. However, there is important vari-

ation in how sensitive participants are to the robot’s guidance: participant

#16 obtained .38, while participant #8 obtained .94.

From an observation of figure 5.5, the spread of results within the AL

condition is clear, thus no correlation has been found between alignment

5Indeed in the non-AL condition there is no agent preference per se. The word is kept

for ease of comparison with the AL condition.
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Figure 5.5: Distribution of tutors’ alignment with LightHead’s cues against

game success for AL and non-AL conditions.

of interactants and guessing game success (Pearson’s r = 0.09). Indeed

this discrepancy is further matched with participant’s answers to this ques-

tionnaire’s question “On what basis did you choose the animal examples

as topic?”: only four participants acknowledged following the robot’s cues.

Most of the other participants reported instead having employed their own

strategy, driven by their knowledge or affinity towards the animal exemplars.

Some others answered their choice was random, however their alignment

value suggests they were enticed to follow the learning path suggested by

the robot.
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5.3.2 Other Aspects

A general gender analysis of the game in active learning condition reveals

alignment scores of 0.59 for female participants and 0.54 for males. However

this is not significant, and again, this is due to the large differences between

individuals.

Further investigation with 2-factor ANOVA on gender and active learn-

ing condition yields significant interaction effect on game success (p = 0.04).

Figure 5.6 illustrates how effective active learning was for female partici-

pants, as opposed to the lack of effect with males, suggesting female partic-

ipants are more sensitive to social cues offered by the robot. Such results

present more contrasted differences than previous psychological studies on

female’s ability to decode non-verbal behaviour (J. Hall, 1978), and that

observation might be related to the fact that a tutelage scenario is a goal-

directed interaction.

More interaction effects appeared with analysis of the 7 Likert scale ques-

tions of the debriefing survey (see annex C). For each of the seven ques-

tions, the null-hypothesis is the absence of gender influence on the various

questions asked (two-sample t-test). Moreover, the interaction effect across

gender and active learning condition on the participant’s rating was per-

formed with a 2-factor ANOVA. Answers of interest are reported hereafter

and commented.

Question 2 “How do you rate the robot’s behaviour?”, presents a sig-

nificant interaction effect between gender and active learning since female

participants rated the actively learning robot to be more natural: F (1, 35) =

8.517, p = 0.006. The perception of the robot as a natural partner suggests

females of this study felt the robot’s behaviour appropriately matched the in-

teractive scenario, a result to compare with their better game performance in

the AL condition. For female participants, perhaps the AL condition elicits

better incentive to adapt to the robot because it matches their expectation
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Figure 5.6: Influence of LightHead’s learning behaviour on guessing game

success, split by gender and learning condition.

of a learning child partner.

Question 4 “Who was in control of the teaching sessions?”, female par-

ticipants judged the robot to be more in control than male participants. The

gender factor is in this case very significant (two-sample t test: p = 0.002).

However no interaction effect was found: F (1, 35) = 1.814, p = 0.187. This

result rejects the null hypothesis for this question and supports the idea that

females of this study considered more important to let the robot take control.

Besides, one might propose the judgements is closer to their expectations

than their experience.

Question 8 “How smart do you think the robot is?”, presents a significant

interaction effect6 since female participants of the AL condition deemed the

6In this study α was set to 0.05, however in stricter studies α = 0.01 or below thus this

result would not be considered significant.
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robot to be smarter: F (1, 35) = 6.229, p = 0.017. A tentative interpreta-

tion of this result might be that females of this study consider the robot’s

behaviour to match those of curious children, although a more probable

explanation might be that the robot utterances in the AL condition were

supportive of this perception.

As general observation, on average female and male participants present

an opposite rating trend to questions 2, 4 and 8 depending on the robot’s

learning condition: male participants judged the robot less natural in AL

compared to those in non-AL; they also perceived being more in control in

the non-AL than in the AL conditions; and slightly smarter in non-AL than

in AL condition.

Finally, an analysis of the personality questionnaire – of the Big-5/OCEAN

dimensions (see (Groom, Bailenson, & Nass, 2009)) – only revealed the con-

scientiousness dimension to be most correlated with the alignment score, but

this was not significant (Pearson’s r = 0.424, p = 0.071). Personality traits

might help recognise trends in participant’s ability to interact with a social

robot, although much more evidence is needed to draw sound conclusions.

Discussions with psychology researchers hinted towards greater openness

with the participants scoring better in game success and alignment, how-

ever no significant correlation stands out in that regard.

5.4 Conclusion

This study demonstrated the active machine learning system provides con-

sistent improvement over non-AL across both simulated (teaching agent al-

ways followed learner topic) and embodied interactions (participant had no

particular directive). In general, a congruent deployment of social cues (i.e:

head gaze, alternated eye gaze / eye-contact) and enticing speech proved a

valid approach to the implementation of robotic active learning, which was
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more effective on the female participants of this study. Acknowledged gender

differences suggests a need for further studies on AL strategies matching the

tutor’s gender, and additionally adapting the robot’s social cueing strategy

in regard to the tutor’s teaching method (authoritative or socially guided).

Follow-up studies might replicate the experiment testing robustness to

different embodiments with a socially-diminished robot (e.g: only capable

of head gaze) and fully fledged humanoid such as ASIMO, or even an an-

droid. Finally, follow-up studies should employ a dataset containing simpler

categories to ensure full participant confidence in their ability to classify ex-

emplars, as well as addressing confusions by instructing teachers to accept

valid guessed classifications from the robot.

134



Chapter 6

Influence of Robot Ethnicity

Across the globe there is a great diversity of cultures and phenotypes, a

diversity to which people are particularly sensitive. Given that people feel

more comfortable when operating in an in-group (i.e. people with a simi-

lar cultural and educational background, language and ethnicity), a social

robot designer could hypothesise that robot-user cultural and ethnic align-

ment would be desirable, or just shun this aspect altogether by endowing

the robot with a non-humanlike face, as no ethnicity-aware design principles

exist yet.

While there are several psychological studies which investigate inter-

cultural and inter-group preferences (Hewstone, Rubin, & Willis, 2002),

most of these only cover North American culture. This is also the case

for studies employing avatars: in (Groom et al., 2009) an immersive vir-

tual environment reflects the user’s avatar with a Black-American ethnicity,

while in (Gong, 2008) users expressed ethnic preferences through the selec-

tion of the avatars’ facial properties to constitute teams of various purposes.

However, there are no studies on the transferability of these insights to

robot embodiments. In addition, a world-wide collection of data, instead

of a study limited to one geographical region, would be preferable to reveal
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common influential factors. The approach reported here focuses on users’

preferences rather than discrimination: within a global world, social robots

could and should offer a choice of ethnic appearances or could provide a

means to display the face most likely to please a user.

The motivation behind this experiment was to question whether people

have preferences towards social robots overtly displaying a specific ethnicity,

and to investigate the nature of such an effect if present. To restrict the study

somewhat, a decision was made to limit the expression of ethnicity to the

face, and capitalise on R-PAF ’s ability to digitally update the facial texture:

colour of skin and eyes, size of features and other minor – yet percetible –

modifications.

Equipped with a R-PAF , the LightHead robot supports such an exper-

iment without requiring new hardware, whereas androids and their modifi-

cation (i.e. creating a new facial skin) still requires prohibitively high costs.

Although all participants in the study reported being adults, the LightHead

robot’s child-like design brings this study close to (Mahan, 1976), which ad-

dresses identification and preference of Black or White children, and (Jordan

& Hernandez-Reif, 2009) on skin tone preferences using cartoon characters.

Additionally, a further study of inversion effects, first reported in (Mahan,

1976), is desirable; some cultures present this trait as a cosmetic preference.

For instance, a proportion of white Westerners prefer tanned skins, while a

proportion of South East Asians prefer a whiter skin.

Therefore, two null-hypotheses were formulated:

1. misalignment between the robot’s and user’s ethnic facial features does

not play a particular role in people’s preferences for the robot’s design;

2. gender, age group, or culture do not influence people’s preferences for

the robot’s design.
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6.1 Experimental Protocol

Compared to earlier experiments, testing these hypotheses called for a large

number of participants with a view to gathering sufficient data to have

enough statistical power.

6.1.1 Targeted Participants

To test the first hypothesis requires respondents from all ethnicities. As

such, a global population sample –probably encompassing all cultures– was

targeted. Furthermore, the second hypothesis also requires a balanced gen-

der and age across the conditions. To this one, a decision was made to run

the study as a cloud sourcing experiment, giving access to both a large pool

of participants, with potentially varied ethnic background, age and gender.

6.1.2 Stimuli

To present a sufficiently complex stimulus, we opted for an animated video

of the robot, rather than a still image. Consequently, all ethnic variations

shared a purpose-built single scenario in which the LightHead robot (ver-

sion 4) performs a 55s monologue describing an imaginary tour of a robotic

museum. The script player (see 3.4.5) and robotic system ensured the per-

formance was similar across the different ethnic designs.

As the LightHead robot displays a White Caucasian face across all

versions, three stereotyped facial variations were created (Black-African,

Middle-Eastern, North East Asian) with an extra control condition in the

form of an Alien face, each differing in skin tone and facial features as seen

on figure 6.1. Eventually five videos were recorded, each from the same

front-view of the robot’s monologue, placing the participants in the visitor’s

viewpoint.
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Figure 6.1: The various skin designs used for the ethnic preference study.

Each stereotyped ethnic group was implemented as a “skin” overlay for the

robot. From left to right: White Caucasian, Black-African, Middle-Eastern,

North East Asian and Alien (control).

The rationale to the facial designs was to offer only four easily identifi-

able, stereotyped, ethnicities participants could relate to, and one that did

not suggest an existing ethnicity. In addition to the skin tone, a few facial

features differ: the White Caucasian face has blue eyes, the Black-African

face and N.E. Asian face have larger nostrils, and the N.E. Asian eyes also

display an epicanthic fold. In contrast, the Alien face shows a blueish skin

colour, and no iris nor eyebrows.

6.1.3 Survey Platform

Crowd sourcing is the distribution of a task to a large number of contributing

internet users, which Wikipedia being a well known example. Some crowd

sourcing platforms specialise in survey taking and attract participants with a

small remuneration, and allow access to a global pool of respondents, thereby

moving away from local studies. In recent years, crowd sourcing gained

more attention amongst scholars conducting experiments (Kittur, Chi, &

Suh, 2008). Most popular remains the Amazon Mechanical Turk (AMT)

platform (Chen, Menezes, Bradley, & North, 2011; Mason & Suri, 2011), but

its restriction to only allows survey to be set up by US-based residents ruled

138



out this solution. Crowd Flower1 does not have this restruction, and acts as

a proxy to other crowd-sourcing platforms, including AMT. Crowd Flower,

at the time of writing, offers respondents a wage of $7 per 30min. In addition

Crowd Flower, with some small modification in the study implementation,

also offers useful benefits:

• participants can be selected across all continents and languages;

• it can balance number of female and male participants;

• it prevents surveying the same participant more than once;

• it has a trust indicator for each survey taken;

• the completion of a current group of questions is required before being

shown the next;

• it can reject results based on checker questions.

At the time of this experiment’s inception, the trust feature was considered

an desirable as it allowed the removal of outliers, but later proved to be

unusable for this study. Crowd Flower also allows checker questions – known

as gold questions – which sound like an attractive feature of the platform,

unfortunately the intricacies of implementing gold questions limited their

deployment and effectiveness.

6.1.4 Questionnaire

The online survey is based on a form reproduced in Appendix C. Eventu-

ally, 89 seven-interval Likert-format items were used in the questionnaire.

All questions were reviewed for clarity and effectiveness by trained psychol-

ogists.

The questionnaire contained the following groups of questions:

1see http://crowdflower.com
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1. personality test (46 items);

2. ranking of the five robot ethnic versions (5 items);

3. affinity test for the favourite robot (35 items);

4. participant’s ethnic group (1 item);

5. level of experience with technology as well as explicit checker questions

(5 items);

6. three optional free text questions.

A personality test known as the Big Five (John, Donahue, & Kentle,

1991) — or OCEAN — was used. It relies on a 44 questions, and was

chosen to allow to study of potential correlations between personality and

robot preferences. Other personality tests exist — such as the Myers-Briggs

Type Indicator (Myers, McCaulley, Quenk, & Hammer, 1998) — but the Big

Five is more established. The scoring procedure of the Big Five test consists

of computing the mean value for all items falling into one of 5 categories:

openness, conscientiousness, extroversion, agreeableness and neuroticism.

Each dimension carries several reverse coded items (not to be confused with

reversed items) which are used to validate the responses.

Participants were then asked to rank the five robotic guides so that a finer

metric on the average preference could be computed.

Next, participants were asked to rate their favourite robot guide along a

semantic differential scale (Snider & Osgood, 1969) specifically created to

measure the connotative meaning of cultural objects (34 questions) which is

also employed in the evaluation of a participant’s attitude towards objects

or concepts, and includes a likeability factor. In this case the investigation

was intended to narrow the nature of the affinity towards the participants’

favourite robot guide with an exploratory factor analysis.

Participants were asked to classify one of the 8 pre-defined racial groups or
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meta-groups2to which one of the robot’s ethnic versions might correspond.

An optional second racial group was also available to moderate the initial

answer, and specify a mixed ethnicity.

Finally, participants were asked to report their experience with computer

and robotic technology in 2 separate questions. Finally, three optional open

questions were asked about overall feeling, possible improvements and other

opinions, in the hope these would offer supplementary insights.

Early Tests and Checker Questions

In crowd sourced studies, it essential to include checker questions to spot

unreliable respondents. Initially, only the following items were used:

• A question on the favourite robot being “honest or dishonest” appears

twice (7-Likert format, reversed 6 items later), the same response is

required on both occasions;

• “What could you say influenced your rating?” (10 multiple-choice

question, only “facial appearance” effectively valid);

• If the last open questions contained nonsense text, the response was

rejected.

However a first pilot test revealed 25% of the participants completed the

questionnaire in less than 10 minutes whereas a in-house pilot showed that

at least 15 minutes were required to take the survey. Indeed, such data

correlated with missed checker questions, indicating a significant part of the

respondents were answering hastily, thereby affecting the results. Therefore

the following items were added for the final version, with the aim of capturing

more robust data:
2As there is no consensus on the classification of the human phenotype, the classi-

fication proposed in http://www.racialcompact.com/racesofhumanity.html was adopted.

This particular classifaction has a relative small number of classes, which suits the purpose

of the experiment well.
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1. In the personality test, a new 7-Likert format question: “[I see my-

self as someone who ] Can reply honestly to a questionnaire”, with

respondents to indicate they are honest

2. In the semantic differential, a new 7-Likert format question “The robot

is more...” [ a guide - a visitor ], with guide being the only correct

answer

3. In the knowledge assessment, 7-Likert format question “How familiar

are you with subspace quantum robot technology?”, with respondents

required to indicate they are unfamiliar with this non-existing tech-

nology.

Ultimately, filtering responses from the two less obvious checkers (on

rating influences and the free-text questions) presented a real challenge: the

former is strongly biased by the respondent’s perceptive capabilities, while

no clear interpretation can be made from the latter. Thus, only the 7-Likert

format mentioned above were used as checker questions.

6.1.5 Outlier Removal

Three surveying sessions collected data from a total of 225 respondents.

Before performing data analysis to extract meaningful values, a first pass to

remove answers from unreliable respondents was necessary.

Straightforward Filtering

Crowd Flower assigns an exclusive identifier to each of its members, therefore

3 respondents taking the survey twice were removed.

Despite technical efforts to enforce responding to all questions, another 3

members managed to leave some items unanswered and thus were removed.

Despite instructions on how to rank the preference of robots, the platform

did not automatically prevent invalid answers. Another 19 respondents were
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dropped (four without a first choice, fifteen with more than one). Seven

respondents duplicated rankings beyond the 2nd favourite robot but those

were kept for analyses. Respondents picking the same answer over all items

amounted to 4 additional cases. No duration limits were technically in

place, thus another 35 cases were removed as those respondents took less

than 7’51” to complete the survey (five 55s. videos + ninety-height items

requiring about 2s. to read and answer).

In total, this method filtered out 64 cases, leaving 161 to further filtering.

Filtering with Checker Questions

Using the 4 obvious checker questions, 20 participants failed to state they

could reply honestly to the questionnaire (scoring under 6), 34 members

failed to acknowledge the robot was a guide although this was explicitly

written and clear from the robot’s verbal story (scoring under 6), in 8 cases

respondents failed to provide a consistent answer to the semantic differential

checker (scoring difference over 2), and 12 members declared being at least

somewhat knowledgeable in the non-existent subspace quantum robot tech-

nology (scoring above 2). In total, 77 more cases were deemed unreliable

with this method (about 62.67% of the total cases collected).

6.2 Results

In the following analyses, the dependent variable is the ranking value (a

continuous integer in the range [1-5]) for each ethnic version. Indeed, no

participant belongs to multiple groups as only the main ethnicity is consid-

ered in this study, and for statistical significance the alpha value is fixed at

0.05.

Mean of rankings for each robot’s ethnic version permits us to arrange
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a global order of preference as shown in Figure 6.2. The North-East Asian

version was favoured most, followed by the White Caucasian, Black African

and Middle-Eastern. Unsurprisingly, the control version (Alien) ends up

least favourite, indicating that globally participants prefer human facial de-

signs over non-human designs.

Figure 6.2: Mean ranking and SD for each ethnic version of the robotic

monologue (N=87).

Figure 6.3: Distribution of rankings for the Alien design (N=87).

A more detailed global ranking of the Alien version is reported in Fig-
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Count Percent

American Indian Australian Aborigine or Melanesian 1 1,1

Caribbean 1 1,1

North African, Arabic, Persian... 3 3,4

North East Asian (Japanese, Korean, North Chinese, ...) 3 3,4

Central African or black 4 4,6

South East Asian (Chinese, Vietnamese, ...) 13 14,9

Indian or Bangladeshi 15 17,2

White Caucasian 47 54,0

Table 6.1: Distribution of respondents across all ethnic groups (N=87).

ure 6.3, showing a contrasted preference for this condition: a single case

expresses no preference or rejection, but 59% rank it last or next to last,

and 39% rank it first or second.

6.2.1 Inter-Ethnicity Analysis

The distribution of respondents’ ethnic groups (Table 6.1) indicates the

White Caucasian group accounts for 54% of the sampled population, while

the Indian or Bangladeshi group accounts for 17.2% and the South East

Asian group for 14.9%.

Participants’ inter-ethnicity preferences for their favourite robot are re-

ported in Table 6.2 and show no specific trend.

Independent variables represented by a single case prevent running Tukey

post-hoc tests for analysis of variance for interaction effects, hence the re-

moval of the 3 cases representing a single ethnic group (“American Indian,

Australian[...]”, “Central African or Black” and “Caribbean”); and 9 cases

representing a single country (Argentina, Algeria, Egypt, Great Britain, Ja-

maica, Pakistan, Russia, Sweden and Turkey) for two-factor analysis. With
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Alien Black

African

Middle-

Eastern

North-

East

Asian

White

Cau-

casian

Total

American Indian, Australian

Aborigine, or Melanesian

0 0 0 0 1 1

Caribbean 0 0 0 1 0 1

Central African or black 0 3 0 1 0 4

Indian or Bangladeshi 0 6 3 5 1 15

North African, Arabic, Per-

sian...

1 0 0 1 1 3

North East Asian (Japanese,

Korean, North Chinese, ...)

0 0 2 0 1 3

South East Asian (Chinese,

Vietnamese, ...)

3 3 1 4 2 13

White Caucasian 9 8 7 10 13 47

Total 13 20 13 22 19 87

Table 6.2: Counts of favourite robot version against respondents’ ethnic

group (N=87).
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N=78 and considering the independent variable participant’s ethnic group

only the mean ratings of the Alien design was found to have a statistically

significant difference between the participants’ ethnic groups as determined

by one-way ANOVA: F (4, 73) = 3.03, p = 0.023 (see Table 6.3). Yet, a

Tukey post-hoc test revealed no particularly statistical significant difference

between groups.

Robot ethnic version p−value F statistic F(4,73)

Alien 0.023 3.03

Black African 0.163 1.683

Middle-Eastern 0.201 1.536

North-East Asian 0.348 1.132

White Caucasian 0.837 0.359

Table 6.3: One-way ANOVA for each ethnic version of the robot stimuli

(N=78).

Thus, these results suggest no particular correlation between a partici-

pant’s ethnicity and their favourite robot, confirming the first null-hypothesis.

6.2.2 Analysis of Interaction Effects

Results reported in this section also disregard single-case ethnic groups or

countries (N=78). Upon inspecting the sampled population’s properties, the

following can be noted:

• genders are no longer balanced: 45 Females (57.7%), 33 Males;

• cases are biased towards USA (59%) with 46 cases, and in descending

order: Canada (12 cases, 15.4%), India (8 cases), Philippines (7 cases),

Germany (3 cases) and Malaysia (2 cases);

• cases represent most the 26-35 years old age group (41 cases, 52.6%),

and in descending order: 18-25 years old (18 cases), 36-50 (12 cases)
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and over 50 (7 cases).

Hence a strong bias exists in the demographics towards residents of North

America, females and between 26 to 35 years old.

To detect a possible cultural/inter-ethnic influence, a two-way ANOVA

was conducted that examined the effect of the participant’s ethnic group and

country of residence on all 5 versions of the monologue (Table 6.4). Results

indicate no statistically significant interaction effects between ethnicity and

country.

Robot ethnic version p−value F statistic F(3,65)

Alien 0.963 0.094

Black African 0.903 0.189

Middle-Eastern 0.154 1.812

North-East Asian 1.000 0.002

White Caucasian 0.238 1.443

Table 6.4: Two-way ANOVA (interaction between country and participant’s

ethnicity) for each ethnic version of the robot’s monologue (N=78).

To investigate a possible gender/maturity/inter-ethnic influence, a three-

way ANOVA was also conducted, examining the effect of the participant’s

ethnic group, age and gender on all 5 versions of the monologue (Table

6.5). Results indicate no statistically significant interaction effects between

ethnicity, age and gender on robot preference.

Thus, these results suggest no particular interaction effect between the

participants’ ethnicity, age and gender on robot preference, holding true the

second null-hypothesis.

6.2.3 Analysis of Personality Test

Figure 6.4 summarises personality profiles by ethnic group and country. A

one-way ANOVA revealed a strong statistically significant difference (F (4, 73) =
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Robot ethnic version p−value F statistic F(3,54)

Alien 0.613 0.608

Black African 0.327 1.177

Middle-Eastern 0.077 2.405

North-East Asian 0.334 1.160

White Caucasian 0.615 0.604

Table 6.5: Three-way ANOVA (interaction between gender, age group and

participant’s ethnicity) for each ethnic version of the robot’s monologue

(N=78).

4.765, p = 0.002) between ethnic groups for the Openness dimension. How-

ever no statistically significant difference was found in other dimensions.

A post hoc Tukey test precises significant differences in openness between

South-East Asian and Black African ethnicities (p = 0.022) by about 1.44

points, and between White Caucasian and Black African ethnicities (p =

0.005) by about 1.56 points. In any case, those results have to be put in

perspective: only three cases are representative of the Black African ethnic-

ity.

Also, a one-way ANOVA yielded no statistically significant difference

between countries for each of the Big5 dimensions. Consequently, it appears

no personality bias on the sampled population could have influenced the

results in the two previous sections as determined with the Big5 personality

test.

6.2.4 Semantic Differential Analysis

Exploratory factor analysis relies on principal component analysis (PCA)

and is well suited to survey research to determine the underlying dimen-

sional structure of a questionnaire. A scree plot (figure 6.5) visually repre-
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Figure 6.4: Mean Big5 profiles. Top: by ethnic group, bottom: by country

(N=78).

sents eigenvalues obtained with the principal axis factoring method (a PCA)

against the component rank, and helps the researcher select the first mean-

ingful components. A first factor (12.6) explaining 37% of the total variance

was revealed, followed by four smaller factors explaining 23.34% (61.44%

with 1st factor) of the total variance of the semantic differential data.

Correlation scores — constructed from an extracted factor and item’s

scores — for the first factor are sorted in table 6.6. Highest scores for

each top items correspond to “personal”, “engaging”, “kind”, “friend” and

“warm”, thus likely describing the participants’ affinity towards their favourite

robot. Such results seem to indicate respondents rather considered the robot

as a person than a product, further indicating appropriateness of the robot’s
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Figure 6.5: Scree plot of the exploratory factor analysis (N=78). Inflection

point appears at the fifth factor.

behaviour in a museum guide scenario. This should however be confirmed

with a more tailored instrument, such as the Godspeech Questionnaire.

The items presented here, although having the highest correlations available,

do not reach strong scores (1 being a perfect correlation with the factor, and

0 representing no correlation at all).

Next, four factors’ correlation values were sorted, the item correlating

most is reported for each factor in table 6.7. According to these factors,

it seems the participants’ attitude towards their favourite robot hinged on

notions of trust (“honest”) and attention (“interested”, “distracted”), po-

tentially those looked for in a museum guide.

Certainly less specific, “humanlike” offers at least aesthetic and be-
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Item Correlation Item Correlation

impersonal - personal 0.778 indifferent - interested -0.417

unengaging - engaging 0.757 decisive - indecisive -0.525

unkind - kind 0.748 honest - dishonest -0.564

not as a friend - as a friend 0.741 exciting - boring -0.576

cold - warm 0.739 diligent - lazy -0.619

abnormal - normal 0.727 active - passive -0.632

low quality - high quality 0.699 friendly - unfriendly -0.641

stupid - intelligent 0.681 responsible - irresponsible -0.678

impolite - polite 0.640 I liked - I disliked -0.693

insensitive - sensitive 0.639 good - bad -0.727

weak - strong 0.627 trustworthy - untrustworthy -0.771

non humanlike - humanlike 0.598 lively - deadpan -0.780

unbalanced - balanced 0.587

slow - fast 0.540

dishonest - honest 0.537

standard - unique 0.437

engaged - distracted 0.400

child - adult 0.399

masculine - feminine 0.372

serious - Fun 0.364

traditional - contemporary 0.217

affordable - expensive 0.088

Table 6.6: Questionnaire items and their contribution to 1st factor extracted

with PCA for exploratory factor analysis (N=78).

havioural interpretations, but this lack of specific interpretation corrobo-

rates the Alien version being ranked least favourite: participants did prefer

a human-like guide.
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Factor rank % of variance Most participating item

2 7.97 indifferent - interested

3 6.73 dishonest - honest

4 5.62 engaged - distracted

5 4.06 non humanlike - humanlike

Table 6.7: Most contributing questionnaire’s items to factors 2 to 5, ex-

tracted with PCA for exploratory factor analysis (N=78).

6.3 Discussion

It is fair to say this experiment not only tested the potential familiarity

effects elicited through user-robot appearance alignment, but also the ef-

fectiveness of a crowd sourced approach to conducting survey-based experi-

ments.

6.3.1 Online Survey Platform Issues

It has to be noted this experiment was conducted on Crowd Flower in 2012,

so that the platform must have evolved towards addressing at least part of

the limitations reported in this document. More to the point, crowd sourcing

remains a recent technology and our understanding of its effectiveness and

limitations is still evolving. Payments of wages to “crowd workers” certainly

appeals to respondents, but without adequate measure, it also creates an

incentive for quick and low quality responses.

To summarise, exploring the data sheds light on a few issues:

• respondents tend to rush through the survey (or son occasion let a

survey sit for an unreasonable amount of time);

• random answering, setting up and testing checker (“gold”) questions

was also a financial challenge;
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• multiple participation of the same worker to updated versions of the

survey as no list of undesired workers could be specified;

• lack of balanced age groups and country of residence as immediate

availability of surveys biases results towards the population active at

publication time;

• limited number of countries (20 included at maximum)

• lack of language control as many respondents apparently could not un-

derstand english, provided untranslated localised labels in their data,

or wrote plain foreign language comments.

Moreover, the anonymity of the participants leaves a lot of data out of

the experimenter’s control, such as age, gender or language. Crowd Flower’s

trust value of certain obvious outliers can be surprisingly high (a partici-

pant’s trust was 0.8 but he completed the survey in 3 min) although most

respondents’ trust was below 0.5.

A combination of programming and custom checker questions (obvious

or reversed items) might have reduced the amount of work need to filter

outliers from the raw data. To this end, assumptions on taking the survey

should remain an exception, opting for strong checks in the questionnaire(s)

instead. In effect, detecting all cases of untrustworthy respondents in data

can lead to increasing biases and raises the risk of erroneous conclusions.

6.3.2 Conclusion

In this crowd-sourced experiment, participants ranked 4 ethnic versions of

a robot. The extra, non-ethnic version (an alien version used as control)

is least favoured, and no correlation with the participant’s ethnicity nor

country of residence was found. Further investigation might reveal why the

alien face (which displayed an unnatural skin colour as well as unnatural

eyes) was not the least favourite in 66% of the cases. It might be that, in
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this scenario, the participants do assume that an alien face might have some

appeal.

Because of the many issues revealed after adopting this early version of

this online platform to conduct the study, the sampled population is not

representative: it is too small and mostly representative of the White Cau-

casian group from North America. Hence, this study might result in more

contrasting responses if deployed on a global scale. Alternatively employing

very realistic faces might bring to light results closer to earlier work in psy-

chology. Currently no clear conclusion from this study can be drawn, nor

guidance provided on Human-Robot ethnic appearance alignment.
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Chapter 7

Discussion and Conclusion

At a crossroad between mechatronic and virtual faces, R-PAF represent

a promising alternative to established robotic facial technologies. In this

thesis, the motivation, conception and evaluation of the R-PAF solution have

been detailed through the robotic platform LightHead that I realised during

four years of studies. Simultaneously, key topics potentially disruptive of the

current robotic landscape were introduced, which this chapter summarises,

laying exciting perspectives for the future of robotic facial displays.

7.1 Renewed State of the Art

At the heart of the innovations brought by retro-projected animated faces

technology lies the replacement of actuators with video: new capabilities

gained by departing from current robot head technologies.

7.1.1 Improvements over Mechatronics

Cost – Perhaps the most attractive strength of R-PAF technology is the

cost. Although designing a head, parts and moulds requires multiple skills

and experience, rapid prototyping and vacuum forming techniques employed

in the production keep getting cheaper. Essentially, these belong to long es-
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tablished industry standards and do not require purpose-built techniques or

materials. In effect cheap plastic materials constitute the translucent mask,

cover and chassis, while off-the-shelf components such as the pico-projector

and fisheye lens remain the most expensive parts. Current trend indicates

pico-projectors will continue towards affordability, as opposed to the elec-

tromechanical components used in the mechatronic and android faces, which

seem to have stagnated technologically and economically.

Moreover, compared to other actuator-based technologies, the use of a

projector considerably reduces the maintenance costs of R-PAF heads. The

mean time between failure for LED projectors can reach 20,000 hours and

as no mechanical components are involved in the face animation, there are

virtually no other parts prone to failure. Hybrid Laser/LED projective

solutions exist as well1, sharing the same robustness level. Moreover, these

keep a sharp image at any distance within the projection range (0.2 to 2

meters) as opposed to manual focus imposed by standard projectors.

Yield – The liberation from mechanical actuation and its complexity re-

lieves a retro-projected head from most of the issues exposed in detail in

chapter 1 (section 1.1) and improves a robot overall yield. Such robotic

heads are lightweight – potentially less than 300g – leaving behind other

technologies, thus requiring less demanding actuated necks. Additionally

Animation – Capitalizing on avatar technology and unbounded by elec-

tromechanical constraints, R-PAF technology grants designers with the free-

dom to implement an unlimited range of facial animations and enables real-

istic state-of-the-art lip-sync. Video animation also allows unlimited facial

expressiveness and reactivity. With software actuation range and speed,

caricatural expressions come as an extra benefit and actuation dynamics

remain devoid of constraints.

1such as Explay’s Colibri compact mobile module
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Appearance – Whereas the aesthetic freedom of R-PAF robots’ non-

actuated features such as ears or hair and generally facial geometry remains

unchanged compared to existing humanoids, a R-PAF virtual face grants

total aesthetic freedom over all facial features. Also, in contrast to android

heads, a R-PAF head clearly displays its robotic identity with no possi-

ble confusion for the user, which results in better acceptance. Thanks to

the projected computer-generated video, any facial design in the realistic-

simplistic spectrum remains a matter of texture update. A R-PAF mask

can accommodate exaggerated features: e.g. larger eyes with which humans

readily sympathise (DiSalvo et al., 2002).

Equally compelling, facial design can change on demand, for example

presenting a female character to male users and vice versa. This morphing

ability authorises on the fly evaluations of facial designs, as opposed to the

hardware change required by other humanoids.

7.1.2 Refined Human-Robot Interaction

Retro-projected faces can display a number of social and emotional com-

municative cues, which are hard or impossible to display with traditional

mechatronic robot faces.

Computer graphics are conducive to the introduction of visual effects:

as with LightHead, sweating and blushing add a noticeable amount of emo-

tional information to the user, to convey particular emotions such as ex-

citement or embarrassment. Whilst these artefacts are rarely used in HRI,

they may be well suited for long processing times (sweating) or task failure

(blushing), in conjunction with non-conversational vocal fillers. Additional

emotional effects are possible, such as tears of sadness or sometimes happi-

ness, pupil dilation (for a study of the correlation of pupil dilatation with

mental activity see (Beatty, 1982)), eye saccades and micro facial expressions

(see Ekman (Ekman & Friesen, 1969)), particular lip movements (puckering,
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biting, pressing, etc.) to express many culturally-specific facial expressions

such as doubt, stress, disagreement, etc. Indeed, simpler ones, such as facial

colour change, are straightforward and carry potential2.

Also authorizing more than the traditional gamut of facial features, the

generated face grants other visual signals rooted in our cultural background.

For instance, cartoon-styled characters might exploit exaggerated expres-

sions,

Actuation noise distracts, and increases proportionally with the speed of

motion, making matters worse. During interaction, humans faces are never

totally at rest, therefore constant facial animation is required to elicit the

illusion of life in believable characters. For a robotic head with noticeable

operating noise this can hinder interaction or worse, become an annoyance

and risk breaking interaction altogether. Retro-projected faces do not suffer

this issue, letting users – as long as facial behaviour is natural – experience

faces naturally rather than trying to interpret them.

Another strong advantage to the absence of actuators is silent actuation:

electric or pneumatic actuators housed in mechatronic and android faces

make a very noticeable – and too often distracting – acoustic noise which

R-PAF heads are devoid of.

The speed at which the face can respond is only limited by the refresh

rate of the projector, a crucial aspect of HRI applications where responsive-

ness is key to achieving successful interaction. Projection escapes all forms

of jerkiness, and enables the reproduction of very fast human movements

such as blinks, although the Geminoid DK3 demonstrates recent progress in

this specific matter.

2For an example of effective use of facial colour - and other facial features - see the

RoboThespian from EngineeredArts, see http://www.engineeredarts.co.uk
3visit http://geminoid.dk for videos
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7.1.3 Limitations of Retro-Projected Animated Faces

R-PAF robots do not necessarily compete with established robotic head

technologies, rather they offer an alternative solution to the provision of a

social user interface capable of emotional signals. Like any other solution,

it also comes with shortcomings that help delineate its areas of deployment.

As retro-projected faces typically employ pico projector technology, light

intensity currently generates around 100 ANSI Lumens. Such brightness

provides perfect visibility for standard indoor lighting, but prohibits place-

ment in brightly lit and daylight environments. Arguably, this does not

represent an important limitation as currently, social robots as mostly con-

fined to indoors settings. For instance, CMUQ’s robot receptionist HALA2,

despite being placed in the middle of wide and fully lit hall, sits in a dimmed

booth in which her face appears sufficiently bright. Considering the current

pace of technological progress in pico projection, one can only foresee newer

models gradually improving in brightness and resolution, relaxing the lim-

itation to indoor environments. On the other hand, the radiance of these

faces fits darker conditions by providing a stronger sense of presence, which

usually catches the attention of users not yet familiarized with the robot.

The volume between the projector and mask must be kept free to permit

the projection of the face, which imposes a restriction on the mounting of

sensors. As such, cameras cannot be set in the eyes, where they would be

usually located in mechatronic heads. However, alternative camera place-

ments are possible: in the forehead similar to LightHead, or away from the

face such as on the shoulders, or directly in the surrounding environment

(e.g on a desk). For HALA2, active accessories such as sensors mounted in

jewellery were also considered.

Although the aesthetics of retro-projected faces enjoy total freedom, the

moulded mask sets a definite facial shape. Consequently, the biometrics of
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a particular mask do not fit all faces, for instance the eye-to-eye distance –

which varies noticeably amongst individuals – must match the eyes’ spherical

shape of the mask. Although facial aspect ratio and features such as nose

shape can be adapted, these modifications might hinder people’s ability to

identify the related individuals. Finally, the rigid mask cannot follow natural

geometric deformations occurring with large facial movements such as a wide

open mouth.

In that regard, most realistic – but quite uncanny – are androids such

as the Geminoid-F with a human-like flexible skin, although this comes at

the cost of several hours of work in case of replacement.

7.1.4 Summary

Balancing these advantages, the major drawback to retro-projected ani-

mated faces become visible with external lighting significantly brighter than

the head’s projector.

To summarise section 7.1, Table 7.1 provides an overview comparing

retro-projected faces with mechatronic faces and android faces, and the fol-

lowing list summarises the main contributions of retro-projected faces.

• Face actuation no longer suffers from physical, mechanical and actua-

tion limits, such as inertia, acoustic noise or mechanical complexity.

• Retro-projected faces allow the display of additional communicative

signals, including an animated tongue, iris dilation, blushing and other

socially salient cues in a straightforward manner.

• The aesthetic design is no longer fixed, but can be changed on the fly

during operation, for the robot to adapt its appearance and suit the

preference of the user.

• Retro-projected robot heads remain light, they require minimal main-

tenance and are very affordable compared to alternative technologies.
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Because flat-screen heads suffer from the mona-lisa effect, it appears

more appropriate to compare physically actuated heads with R-PAF heads

as the latter share essential aspects with virtual heads whilst improving on

visibility.

In short, retro-projected faces can not only overcome some limitations

of HRI imposed by current technologies, but also provide opportunities to

endow robots with more subtle physical, behavioural, and dynamic aspects

of a human robot interaction, along with the various insights gathered by

related research fields.

7.2 Opportunities for a New Technology

While traditionally robot faces are implemented using mechatronically actu-

ated heads, retro-projected face technology improves on a number of prop-

erties that have been obstacles to making commercially viable robotic faces.

This benefits both scholars and the industry.

7.2.1 Industrial Aspects

The simple construction and design freedom of retro-projected animated

faces endows this technology with a significant potential for the mass mar-

ket, bringing personal robotic costs down enough to broaden the deploy-

ment of social robots. Although many potential applications could emerge

from R-PAF technology – with telepresence as an obvious starting point –

shedding light on novel concepts appears more interesting than building an

inventory of specific applications.

Character coherence underlines the feeling that a robot’s body and head

need to match each other in appearance and ability: if the body suggests

certain physical and social affordances, they need to be matched by the head

and face. On many levels, robotics have not yet reached human level perfor-
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retro-projected Mechatronic Android

Development

cost

Relatively low High Very high

Maintenance

cost

Very low Medium or High

(mechanical parts)

High (idem + wear

on flexible skin)

Aesthetic

freedom

High (software) Usually fixed Low and time

consuming

Expressive

range

High (Software) Limited Limited

Realism Medium or Low Low High

Texture Unnatural Unnatural Closest to human

skin

Uncanniness Limited Low High

User acceptance High Relatively high Relatively high

(but uncanny)

Power drain Low Medium or high High

Acoustic noise None Present Present

Weight Low Average Relatively high

Reactivity Fast Medium Medium

Lighting

constraints

Indoor only None None

Table 7.1: Comparative overview of established robotic head technologies

against R-PAF heads.

mance and have only begun their integration into society. As such, R-PAF

might be particularly well suited to fit the current state of development in

humanoid robotics, avoiding unmatchable expectations from users.

Sitting in between the realism of android faces and the mechanical ap-
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pearance of mechatronic faces, R-PAF robotic heads do not impose a strict

specific choice towards either boundary and allows further refinements of

social details. Moreover, software updates could help aesthetics tally with

enhancement of a robot’s social and cultural capabilities, by increasing facial

realism for instance. A wide range of aesthetic freedom permits adjusting

such elements so that hardware production is left unmodified whilst social

specialisation belongs to a third party.

In effect, a modular approach to robotics emerges in the field thanks to

the Robotic Operating System 4. This effort should spur actors of specific

domains of expertise to develop ROS-compatible, state-of-the-art modules,

to be connected with other robotic solutions; the more modular, the wider

the range of possible applications. A ROS compatibility layer is available

for the ARAS software, but more generally R-PAF embraces such princi-

ple thanks to its inherent capability for visual adjustments and absence of

actuators.

Early adoption of the technology might occur in public environments

where social robots offer value by eliciting natural interaction supported rich

expressiveness. In these scenarios, R-PAF heads also facilitate personalised

HRI, where a social robot can offer a more individualised interface, adapting

to the user’s preferences and interaction style. Public robots could provide

a personalised service, such as in care giving (e.g. in hospitals and nursing

homes) or guiding (e.g. in museums, shopping malls and airports).

Furthermore, a robotic face could contribute to the overall performance

of other robotic applications. In effect, the Baxter robot (Guizzo & Ack-

erman, 2012) paves the way to cooperative factory robots: working with

industrial robots remained until now a potentially hazardous activity, only

possible with the adoption of strict safety protocols. Along with actuator

compliance, integration of social cues and predictable behaviour now guaran-

4ROS – see (Quigley et al., 2009)
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tees mutual awareness and renders robotic cooperation safer. The peripheral

visibility of R-PAF heads and their readable directed gaze improves on flat

facial displays integrated to factory robots such as Baxter.

Finally, the reduced power consumption might benefit mobile social

robots as well. Honda’s ASIMO does not yet feature a social face, how-

ever this humanoid embodies a vision shared by other industrial actors, and

one may wonder why ASIMO’s design still excludes a face. The autonomy of

a mobile social robot relies on energy savings achieved over multiple design

levels and R-PAF heads most definitely contribute to this objective.

Arguably, R-PAF technology only carries minor limitations, and trends

confirm the progressive disappearance of limited brightness, certainly a tem-

porary drawback of R-PAF as brighter LED projectors appear on a yearly

basis. One can only speculate on this research’s effective impact on the

industry, nevertheless an application with those compelling benefits would

definitely participate in raising public awareness towards social robotics and

in motivating further research in this area.

7.2.2 Research Aspects

Exploring the uncanny valley – Closer to android research, robots

equipped with retro-projected faces represent an ideal platform to refine

the definition of the Uncanny Valley. This can be directed by studying hu-

man facial behaviour in minute detail, and applying extracted principles

to R-PAF robots through comprehensive implementations. Subtle social-

emotional signals serve to make the robot appear more natural and repli-

cated facial behaviours open further investigation of synchrony, dynamics

and contextual-awareness. For instance, the LightHead allows a controlled

study of the effects of the cues referred to in psychological studies (eye sac-

cades and micro expressions (Ekman & Friesen, 1969)). Related to the Un-

canny Valley, matching users expectations and investigating the properties
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of character coherence particularly fit such robotic embodiments.

New aspects of HRI – The ethnic influence experiment (chapter 6) in-

troduced how R-PAF technology offers a unique potential to explore new

aspects of HRI. In particular, dynamic adaptation of facial appearance fa-

cilitates the study of the following topics:

• robotic facial individualisation

• human to robot facial identity transfer

• remote presence

• user-robot ethnicity alignment

• inter-cultural facial behaviours

• embodied amplified or exaggerated facial expressions

Ultimately of course, the goal dwells on a principled theory of robotic

facial design in which R-PAF heads might support ground work.

Mixed displays of explicit information on a robotic face, such as text

and/or icons have so far been only technically possible with avatars on a

flat-screen. This is unexplored in these studies and it remains unknown how

users would experience this and how they might benefit from augmented

facial expression.

The LighHead platform also calls for exploring the role of physicality.

The virtual world in which avatars reside shapes the nature of their possible

user interactions, preventing the establishment of naturally shared references

and limiting exploitation of the sense of touch. With the provision of directed

gaze and a touchable mask, R-PAF robots support blending virtual and

physical boundaries: several existing avatar projects could bridge the gap of

both worlds using R-PAF heads as a surrogate.
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Benefit to other fields – In addition, as retro-projection is flexible and

fast, it opens up possibilities as a tool for experimental psychology. The

controlled manipulation of social cues, such as the rate of eye blinking during

dyadic interactions (C. C. Ford et al., 2010), has up to now been limited

by hardware, while manipulation of pupil dilation remained impracticable.

Retro-projected faces do offer the potential for experimental psychologists

to carefully tailor experimental conditions to lay bare the various impacts

of facial responses in social interactions.

Finally, as mentioned in the introduction, robots assist in autistic child

therapy (Robins, Dautenhahn, & Dickerson, 2009), an ideal application for

the technology: not only do R-PAF robots present a facial area that remains

robust to manipulation and safe to interact with, but their level of social

affordances can be adapted to the patient’s progress.

7.3 Impact and Follow-up Studies

The novelty of the R-PAF technology and potential to enhance robot social

communication has created several opportunities for collaboration over the

four years of this work.

7.3.1 Collaboration within the University

Joachim De Greeff As mentionned in the last paragraph of chapter 3, the

work-packages of the CONCEPT project were distributed to De Greeff and

myself. Hence, our collaboration spanned over all of the project’s duration

– including outreach events – and is explicitly labelled in this document.

Refer to De Greeff’s publications for further reading about his work on

active learning.

Christopher Ford – Ford, as research student from the University of

Plymouth, focused on gaze behaviour during human to human conversa-
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tions. In his first experiment, Ford recorded his conversations with several

participants through a bidirectional camera-to-monitor system, and later an-

notated the participants’ actions in terms of facial expression, blinks, gaze

direction, head movements and speech. This symbolic data composed a rich

body of sequenced behaviours which I transferred onto the LightHead robot

as an early informal evaluation of the impact of human behaviours on Light-

Head’s lifelikeness. To that end I created a performance player, procuring

a simple, clear-text script utility to be reused in other scenarios. Replayed

behaviours helped realize that human performance elicits a much more nat-

ural experience than randomly generated ones.

Ford’s follow-up work (see 7.3.5) resulted in the creation of a more believ-

able blink model as my implementation following ARAS’ dynamics model

enforced several refined formalisations and acted as a comprehensive valida-

tion.

7.3.2 Collaboration with Externals

Majd F. Sakr – Majd F. Sakr is the coordinator of the Computer Science

Program at the Carnegie Mellon University in Qatar (CMUQ) and associate

teaching professor in the Computer Science department at Carnegie Mellon

University. Both CMU Pittsburgh and CMU Qatar are involved in a robot

receptionist project based on the GRACE (Gockley et al., 2004), initiated

and mainly authored by Professor Reid Simmons. HALA, CMUQ’s robot

receptionist (Fanaswala et al., 2011), features a flat screen to display a non-

realistic virtual face. In 2010, Sakr expressed interest in modernising the

robot using an Arabic R-PAF head – albeit more realistic than LightHead’s

– to study the influence of socio-cultural norms and the nature of interactions

during human-robot interaction within a multicultural setting, yet primarily

Arabic. The subsequent effort included an approach departing from Sim-

168



mon’s work to meet LightHead’s requirements, now dubbed CHLAS (see

section 3.4.4) to reflect the significant differences from HALA’s.

Additionally, because HALA2 required a complete new facial design,

the specificities of qataris was investigated: morphology, facial expressions

and head movements were recorded and analysed to extract salient features.

These activities and the recurrent interactions with a virtual head robot

were an excellent opportunity to approach the Uncanny Valley conjecture

from a different perspective, as well as evaluating it against those of the

animator responsible for the 3D modelling. Unfortunately, no hardware

implementation could be done in time due to complications with the Qatari

customs.

Nonetheless, modernizing the HALA robot resulted in a very positive

impact: a culturally-fitting, coherent character driven by a more reactive,

extensible and portable avatar solution, integrated with a conversational

agent. Such a robust solution allowed for further development of the robotic

receptionist, and new research questions to be explored.

7.3.3 Related Subsequent Works

The advent of portable projectors instilled desire to explore projection-

based animated faces, and undoubtedly, early demonstrations confirmed

that trend. Over the last three years, other scholars also reported com-

parable studies exploring different dimensions of the design space.

From the Technical University Munich, Kuratate’s Mask-bot (Kuratate

et al., 2011) opens exploration of the use of photo-realistic facial designs.

Although replicating a person’s face on a robot can suffer from an aber-

ration with wide mouth openings, this modus operandi directly tackles the

uncanny valley problem which was avoided not to diverge from CONCEPT’s

objectives.
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Figure 7.1: Top-left: Mask-bot (adapted from (Pierce et al., 2012) and

(Kuratate et al., 2011)), top-right: Furhat (permission from Al Moubayed),

bottom-left: Hoque’s mask (adapted from (Hoque et al., 2011)), bottom-

center: a reduced scale face by Misawa (adapted from (Misawa et al.,

2012b)), bottom-right: HALA (adapted from (Fanaswala et al., 2011)).

Additionally, Kuratate’s fabrication method improves on image sharp-

ness by spraying the transparent plastic mask with a thin layer of projection-

specific paint. Alas, reproducing the method proved overly difficult.

Pierce and Kuratate (Pierce et al., 2012) also depart from the traditional

robotic head volume format: Mask-bot differs significantly from LightHead

as the robot just presents a face with little dissimulation of the projection

system. Mask-bot does not rely on a fully fledged robot arm but instead
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mounts the mask on a 3-DOF neck in which the projector might be housed

in the future.

From the KTH Royal Institute of Technology, the FurHat robot (Al Moubayed

et al., 2012) is part of the IURO project5. Furhat displays a non-realistic

avatar face projected onto a translucent mask realised with a 3D printer.

Although this process has the advantage of removing the moulding phase,

the printing process creates ridges on the surface of the mask, even if only

perceptible within the intimate interpersonal distance. Furhat’s original de-

sign includes a furry hat as a replacement to a full skull as well as a partial

concealment of the retro-projection system.

Also using a retro-projected animated face, Hoque et al. (Hoque et al.,

2011) investigated the effectiveness of gaze behaviours for attracting and

controlling human attention. A key difference with previously mentioned

designs appears upon examination of the mask’s facial features: their ex-

pression is much more detailed, restricting the areas and freedom of anima-

tion. This might be the rationale behind containment of the projection to

the eye region only. Hoque reported the blinks were effectively conveyed,

along with head cues comprised in the robot’s repertoire of social actions.

Even though in (Misawa, Ishiguro, & Rekimoto, 2012a) Misawa also im-

plemented a R-PAF telepresence surrogate system, a more imaginative take

on retro-projection can be found in (Misawa et al., 2012b) which describes

a scaled down projected face in order to explore the effects of intimate com-

munication. Remarkably, both of Hoque’s and Misawa’s designs exploit the

down scaling issue caused by short projection distance with two perpendic-

ular approaches: Hoque’s setting appears6 to scale up projected items to

5Interactive Urban Robot, see http://www.iuro-project.eu/
6publication’s pictures make the use of a fisheye lens very unlikely.
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obtain regular sized eyes, while Misawa conserves the small factor intention-

ally.

7.3.4 Spin-off and Patent

Figure 7.2: The Lighty prototype as commercialized by the spin-off

Syntheligence until 20157. Projected face, form-factor and some materials

have been updated compared to LightHead v4.

Considering LightHead a solid proof of concept as well as the short time-

7latest LightHead version available at http://www.manymakers.fr/LHx
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to-market of the R-PAF technology, my research activities let room to the

creation of a start-up in social robotics. Founded in May 2013 and based

in Paris area, Syntheligence SAS R© (SIRET #792872012, Créteil, France)

brought to market an adult-looking version of a R-PAF head known as

Lighty, which its early prototype is pictured in figure 7.2. Unfortunately

Syntheligence folded in 2015 and I am since then carrying efforts to propose

new versions of the product with optimized and certified re-implementations

of the software created during the thesis.

In 2009 Plymouth University had evaluated patentability of my de-

sign of the LightHead as an original invention, however a start-up calls for

patents as means to protect and develop its business. Hence, I applied for a

very similar patent in October 2013: AVATAR ROBOTIQUE DE TÊTE À

VIDÉOPROJECTION (demande INPI #1360230) which can be translated

as “robotic avatar head with video projection”. The patent describes inte-

gration of all necessary electronics (sensors, projector and computation) for

a retro-projected face into a fully functional standalone human-sized robotic

head.

7.3.5 Insights Gained from Outreach Events

This section groups less structured evaluations of the LightHead robot in

non-controlled environments. Nevertheless, these experiments do provide

relevant insights into how retro-projected robot heads are perceived and

might be used.

Arguably, controlled studies authorize framing the evaluation of an in-

teractive robot system in tightly controlled conditions, and a tacit element

of such experimental protocols is the nature of the participants. Usually,

participants are sympathetic to robots: for obvious reasons, researchers use

financial rewards to attract participants, lure curious people with capti-
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vating descriptions, or recruit colleagues and students. On the other hand,

exposing a robot to the general public elicits various emotions and reactions,

some of which particularly unpredictable, nonetheless very insightful.

London Science Museum

The presence of LightHead at RobotVille (London Science Museum, 1 - 4

December 2011) was the opportunity to introduce the robot to the public in a

less formal manner, and receive comments from a wider range of interactants

than those typically recruited for lab-based experiments.

Representing the University of Plymouth’s CONCEPT project, Joachim

de Greeff and myself ran an autonomous version of LightHead v3, driven by

face detection and tracking, also displaying the status of the facial detec-

tor to the visitors. Although not our initial intention, visitors were enticed

to express a bipolar opinion about the robot: either “cute” or “creepy”.

Over the 4 days of public display, a total of 230 interviewees (88 males and

143 females, 54 children and 172 adults) reported their opinion. Overall,

120 participants considered the robot “cute” versus 73 for “creepy”. Addi-

tionally, our interactions with the public allowed us to collected 111 open

comments, further labelled with four classes, as seen on table 7.2.

Aesthetics Functional Reasoning Emotional Cultural references

62.2% (69) 18.9% (21) 25.2% (28) 14.4% (16) 7.2% (8)

Table 7.2: Distribution of the 111 collected open comments collected from

the museum’s visitors over 4 days (N=230). Some comments belong to more

than 1 category.

As expected the aesthetics of the robot are first to attract people’s atten-

tion and elicit sharing their opinion. However, the number of participants

using cultural references was expected to be much higher as the design bares

– at least in principle – a resemblance with the “Sony NS-5” robot from the
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film I-Robot. As only 3 participants made references to this film, it might be

that the design does not necessarily entice a connection with that fictional

robot, and that the freedom of design allowed by technology would not be

limited by such cultural references.

Another unexpected outcome of this venue is the positive effect of inter-

action over the a priori feeling towards the LightHead robot: over multiple

occasions visitors who initially considered the robot as “creepy” came back

to report having changed their mind and leaned towards cute. Although it is

possible their discovery of the other displayed robots participated in chang-

ing their mind, this insight might help us refine the ways to investigate the

boundaries of uncanniness in retro-projected animated faces supported by

an articulated neck.

Crowd-sourced Evalutions of Social Blinking

Human blinking not only moistens the cornea, but also takes part in non-

verbal communication. In (C. C. Ford et al., 2010), Ford investigated blink-

ing behaviour and later observed most blinks occurring during face to face

conversations do not appear to have a biological origin. The simplistic blink-

ing model of the LightHead’s system was initially designed to provide a ba-

sic sense of lifelikeness, and called for improvement through a collaboration

with Ford. Therefore, the integration of Ford’s basic blink model into the

LightHead’s system served a dual purpose: as a improvement of the life-like

autonomous behaviour of the robot, and as a experimental platform to fur-

ther refine the model. The latter has been published in (C. Ford, Bugmann,

& Culverhouse, 2013).

For this experiment, crowd-sourcing evaluations of LightHead’s perfor-

mance using video records presented the same advantages as cited with the

ethnic preference experiment in chapter 6. Thus, an annotated participant

recording was used as a baseline for LightHead’s performance which included
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head gestures, both head and eye gaze, facial expressions, and speech. Since

in (C. C. Ford et al., 2010) the participant was recorded during a dialogue

with the experimenter, the participant’s speech was reproduced using the

TTS embedded in LightHead’s system – thus with different voice character-

istics – while keeping the experimenter’s apart. Eventually the Caucasian

version of the LightHead v4 was filmed, then the full dialogue reconstructed

with the experimenter’s speech.

Four versions of the dialogue were created, such that the LightHead’s

blinking behaviour was manipulated to one of the following conditions:

• LightHead’s blinks are generated every 5s, this served as a control

condition (most robotic behaviour);

• the blinks are generated after a delay (within a 0.1 to 4.9s range, using

a uniform distribution), every 5s;

• the blinks are played from the analysed human performance;

• the blinks are generated by Ford’s refined model.

Ford first evaluated the last 2 conditions in an uncontrolled environ-

ment, during a public presentation of the videos at a Science festival. 84

participants were asked their preference between the human-based blinks

and those generated by the model. Preferences figures are even, which sug-

gest the LightHead running the blinking model appears as believable as the

one with human blinks. Splitting results by gender, 54% of polled males

preferred the human blinks whereas 53% of females favoured the model

blinks. Even though the human performance transferred on the robot was

recorded from a male, these figures do not suggest a particular gender effect.

For the crowd-sourced version of the experiment, a reduced version of the

questionnaire used for the ethnic preference experiment only included the
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semantic differential, the videos and an open question for the participants

to leave comments. At the time of this writing, the experiment on Crowd-

Flower has just completed with 262 unfiltered participants, hence no result

can be reported yet.

7.4 Future Work

Throughout this chapter, profoundly diverging follow-up works to R-PAF

heads have been introduced or envisioned, and the amount of topics to

choose from suggests federating projects together might help modularity

and exchange of methods. However, before such a network emerges, the

LightHead platform could benefit from the research topics mentioned next.

7.4.1 Long Term Interaction

In order to investigate mid-term interaction issues and multi-user interac-

tion, relocating the robot in a public area such as a mall could effortlessly

familiarize visitors to the presence of a robot. A small windowed booth

could constitute an ideal robotic shelter, letting unconditioned participants

interact naturally with the robot, without causing disturbances. With these

relaxed conditions, establishment of engagement and strategies for long term

support would gain strong experimental credibility albeit directed to the

English culture. Also, analysis of user behaviour should help selecting most

robust robotic behaviours for stationary public service robots like museum

guides, receptionists, etc.

7.4.2 Holistic Affective Models

As robotics continue to deploy and strengthen bridges with various facets

of human behaviour, our tendency for empathy contributes to the need for

a sense of – emergent or forged – coherent robotic personality if we are to

177



accept robots as real social actors. Because the nature of a person’s emo-

tional interactions reveals aspects of her personality, an investigation of the

principles of emotional congruence is needed. Advancements in affective

computing could result from the joint effort of scholars from the Univer-

sity’s Psychology department. Aiming at a holistic approach to emotional

influence, the LightHead robot could support further studies in facial ex-

pressions, motor and timing dynamics, head poses and gestures, gaze and

saccades as well as utterances. These objectives imply only little software

updates to the CHLAS in order to offer a single parameter for the emotional

value, and join together psychology projects and results, some of which are

already available in publications.

At Plymouth University, groups such as the CRNS and the Cognitive

Institute are initiating a tradition of modelling and replicating human be-

haviours identified in psychology through cognitive science. In the case of

the CRNS, robotic evaluations of these models are eventually carried out

on the iCub. However, this scheme could no yet comprise facial behaviours

on the grounds that iCub can only accommodate a limited number of static

facial expressions.

7.4.3 Delineating Models’ Transferability

Arguably, potential limits in transferring human behavioural models to

robots evoke the Uncanny Valley conjecture, thus identification of these

limits may also be bound to a lack of consensual evaluation protocol. How-

ever focused experiments, such as those conducted with Ford, suggest a

detailed investigation might generate insights in the Uncanny Valley eval-

uation, insofar as they tightly frame measurements to minute aspects of

specific modalities.

It is not yet known if empiric sampling of modalities might result in the

identification of all possible social affordances, but such an approach could
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be supported by a recent Bayesian model of the Uncanny Valley (Moore,

2012): not only by delineating the pool of social cues, but also smoothing

the curve through identification of the elements that should continue to

belong to the human realm.
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Appendix A

Schematics of LightHead

Version 4
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Figure A.1: Laser-cut parts of the LightHead’s chassis as in version 4 (l and

r suffixes refer to left or right editions of a part); all parts are 3mm thick

PETG except # 6 which is 6mm thick. 1: front frame, 2: side panels also

housing microphones, 3: lens side-grippers, 4: main lens holder, 5: grippers

and PK301 bridge, 6: main base, 7: KatanaHD400s-6M adapter, 8 & 9:

cables holder, 10: back frame, 11: frames bridges.
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CHLAS Documentation
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CHLAS 
 

Design document 
current version: 2.1 

 
author: 

Frédéric Delaunay <frederic.delaunay@plymouth.ac.uk>, 

 
 

original Work 

May 2010 - September 2011 
with co-author: 

Imran Fanaswala, 
and supported by 

Majd Sakr & Brett Browning (CMUQatar) 
 

 

 
 
 
 
 

Abstract: 
 
This document describes the design of the CHLAS Server working with an ARAS (such as LightHead) 

server. Design focus is on both external and internal interfaces, modularity of the system and 

portability of the source code itself. 

 

This system is a fork (from the 30th of August 2011) and extension of “Expression2” which was initially 

designed for the HALA robot receptionist at CMUQ (LGPL) by Frédéric Delaunay and 

implemented/tested also with the support of Imran Fanaswala (CMUQ). 
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Foreword 

 

Preliminary Design does not require a specific programming language of implementation. On the 

opposite, Detailed Design should hold comprehensive information for a programmer to implement the 

software.  

A requirement is defined through the use of shall. 

A recommendation is defined through the use of should. 

A possibility is defined through the use of may. 

The rationale behind this formalism is to help the validation and test process. 
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Preliminary design 

 

 
General description 

 
The Character High-Level Animation System (CHLAS) lays the foundation of a character's behaviour. 
 
It is the gateway for processing: 
● animated facial expressions 
● utterances 
● eye gaze 
● head, neck, shoulder and thorax movements 
● other reflex behaviours 

 
Conceptually, CHLAS is driven by a High-level Management System (HMS) which handles all cognitive 
processing (analysis of input, action planning...). CHLAS allows a HMS to animate a (robotic/virtual) 
character in a timely and consistent manner without knowledge and management of the underlying 
character itself. 
 
CHLAS itself is abstracted from implementation (physical or virtual robot) by an Abstract Robotic 
Animation System (ARAS). For instance, the LightHead server is such a hardware-abstracted robotic 
management system. 
 
An ARAS abstracts the implementation of facial animation by using an evolution of FACS  (Facial Action 1

Coding System). These Action Units (AU) are normalized and represent intensity of muscle activation or 
angles. For a list of all modifications see Appendix Modifications from FACS. 
 
Consequently, low-level animation (and rendering if applicable) of a character is done by the ARAS, 
which receives abstracted actuation instructions from CHLAS. 
 
To summarize, CHLAS is an interface between a HMS and an ARAS : 
 

 

An ARAS may have multiple backends, allowing it to animate robots as well as virtual characters. 

 

Character personality aspects 

The Character's observable personality is defined in two ways: 
● how the 3D artist creates the 3D model and the muscular deformations (ARAS) 
● how Action Units are combined to create a specific expression (CHLAS). 

 

1see      Ekman, P., & Friesen, W. (1978). Facial Action Coding System: A Technique for the 
Measurement of Facial Movement. Palo Alto, CA: Consulting Psychologists Press. 
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Considering a receptionist, she might engage in various activities: 
● Idle: nothing particular to do 
● Typing: on her keyboard 
● Phoning: talking on the phone 
● Inviting: when a new person appears within her area of interest 
● Greeting: when first engaging in a dialogue 
● Talking: when having a discussion 

Note: These could be defined in a finer set of activities. 
 
Each of these activities can use a similar set of facial expressions and gestures, but a specific activity 
may require specific animations. Emotional states also influence these activities. 
 
The CHLAS itself provides two ways to provide a behavioural sense of personality: 

● through expressive animations 
● through reflexes 

 
However, the CHLAS doesn’t provide a fully-featured personality mostly because it has no access to 
sensors, and let the management of contextual high-level animation to the HMS. 
These concepts are developed further in the document. 
 
 

General IO 

All IO shall be in clear text, UTF-8. 

In the rest of the document, EOL stands for End Of Line and embodies both \n or \r\n standards. 

A valid set of elements’ instructions is a datablock. 

Disconnection from the HMS can interrupt the connection with the ARAS. 
Disconnection from the ARAS shall report a DSC status to the HMS. 

 

From the HMS 

The HMS is responsible for interaction and task management, hence the CHLAS shall receive high level 
information: 
 

Element Instruction Description 

expression the predefined (facial and/or gestural) animation to display 

speech text text delimited by double quotes (i.e.: ") to be uttered by the Character. Text 
is UTF-8 and thus can be of any language (e.g. Arabic, English). 

focus Transform  of the focus point for eye-gaze direction 2

spine Transform of one or more Character's skeleton section (head, neck, shoulders, 
thorax...). 

reflexes means for setting various reflex parameters (blink rate, breathing rate..) 

unique_tag tag identifying data received 

2 see section Transforms and Vectors 
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See some examples in appendix. 

Datablock syntax 
 
To maintain consistency, a datablock shall be formatted with a fixed number of the element 
separator, i.e. a semicolon character (;).  
Hence a datablock shall have 5 element separators. 
 
Data sent to elements shall consist of commands. 
All commands of a datablock shall be sequenced according to the order of the previous table. 

Each datablock shall end with EOL. 

Blank values 

All commands of a datablock shall be sent in one go. 
However some elements of a datablock may be unspecified: void or whitespace characters between 2 
element separators should be interpreted as "no value". In that case, the previous instruction set for 
this element shall not be modified by the system. 

Commands 

Commands allow structured values to be passed to modules.  
A command is a dictionary based structure allowing multiple values to be specified at once. 
 
Commands should only be necessary for modules accepting more than one value, and thus are mostly 
useful for the reflexes part of a datablock. 
 
Each pair (the key and its respective arguments) shall be separated by the pipe (|) character. 
Keys and arguments shall be bound with the colon (:) character. 
Values shall be bound to arguments with the equal (=) character. 
Several arguments (and their values if any) can be bound to the same key using the ampersand (&) 
character. 
 
Note: A module may accept only a key, or a key and an argument or a key, argument and value. 
 
 
Commands components: 
 

Component Description 

key lowercase label, specific to the module. 

argument string specific to the key. 

value Transform or any other text specifically interpreted by the module. 

 

Note: Complex commands are mostly useful for the reflexes module which uses the key as an identifier 
to a specific reflex. Refer to reflexes for more description. 

 

Intensity and Duration 

Values 

The command parser shall support an optional intensity factor and duration constraint, however this              
does not imply that all elements (and their relative module) implement these options . 3

3 More elements might interpret intensity and duration in further versions. 
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The Expression element and all Transforms shall support intensity and duration syntax.  

 

Syntax: 

● intensity shall be introduced by the star character (*) and stand as a suffix to a value 
● duration shall be introduced by the forward slash character (/) and stand after the intensity. A 

negative duration shall play the animation backwards. 

To be more specific, a facial expression playing for 2 seconds can either be sped up or down specifying                   
a different duration. Similarly a facial expression (e.g. raising eyebrows to 0.4) can be more or less                 
intensified specifying a different intensity factor. 

Transforms and Vectors 

Transforms are 3 dimensional vectors (a set of 3 floats) with values surrounded by characters which                
define the transformation. Values use the dot character (.) to separate the integer and real part.                
Vector components shall be separated by a comma character (,). 

Commands for the Focus, Spine and Reflexes elements shall specify orientations, rotations, positions             
and translations using the Transform syntax: 

● Rotations are enclosed by a pair of single parenthesis characters ( ( and ) ) 
● Orientations are enclosed by a pair of double parenthesis characters ( (( and )) ) 
● Translations are enclosed by a pair of single bracket characters ( [ and ] ) 
● Positions are enclosed by a pair of double bracket characters ( [[ and ]] ) 

 

Vector Space Orientation 

When specifying orientation (e.g. AU 65.5), values are expressed in radians using the Cartesian 
coordinate system, right handed (aka. standard orientation). Also, for rotations, looking from a positive 
axis back towards the origin, a counter-clockwise rotation will be considered positive. 
 
To summarize, relatively to the character, we have: 
● X positive is pointing right 
● Y positive is pointing front 
● Z positive is pointing up 
● X rotation of pi/2 radians orient Y axis towards up 
● Y rotation of pi/2 radians orient Z axis towards right 
● Z rotation of pi/2 radians orient X axis towards front. 

 
Queuing 

Datablocks from the HMS may be sent in as bursts (i.e. series of consistent datablocks received at the 
same time), hence CHLAS shall allow datablock buffering in a queue, aka. FIFO. 
As a consequence, dequeuing shall be done whenever possible (see also the sequence diagram). 

Interruption 

Current datablock processing can be interrupted to give priority to next incoming datablock. Processing 
interruption shall be achieved sending the INT datablock: 
 

Datablock Description 

INT interruption identifier for immediate processing of the next incoming 
datablock 

 
Upon reception of explicit interruption: 
● currently processed datablock tag shall be reported as interrupted (see next section) 
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● queued datablocks shall be flushed 
● no status report shall be sent back to the HMS about queued datablocks 

 

To the HMS 

Upon completion of a datablock’s processing, Dispatch will send an acknowledgement to the HMS: 
 

Reply’s elements Description 

unique_tag tag identifying data received 

status status of CHLAS process for the datablock identified by this tag 

 
Reply shall be one of the following values: 
● ACK, meaning datablock has been processed successfully 
● NACK, meaning datablock processing was aborted by an error 
● INT, meaning datablock processing was interrupted by a newer datablock 
● DSC, meaning CHLAS will not be able to send data to the ARAS 

 
If the CHLAS cannot reply with a unique tag (bad datablock or bad system status), CHLAS shall use the 
question mark character '?' as a tag. 
Consequently, the question mark character shall be rejected if used as a datablock’s tag. 

 

To the ARAS 

The ARAS is responsible for real-time animation (rendering and actuating motors). 
The ARAS shall receive low level information from CHLAS: 
 

Request’s element Description 

origin name of module generating the set of s of data 

AU_id identifier of the Action Unit to activate 

target_val normalized target value (float) for an AU activation 

attack time (in ms) for an AU value to reach its target_val. 

 
This data shall be formatted in the following manner: 
● "origin" + origin + EOL 
● a set of (AU_id, target_val, attack + EOL) 
● "commit" + EOL 

 
Segmentation is done upon reception of commit : buffered data for the last received origin is processed 
at the same time . 4

  

4for lightHead (the ARAS), EOL can also be a double ampersand (&&), ensuring process of the both 
parts of the token at the same time, although this is mainly obsoleted by the transactional nature of 
the protocol. 
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Sequence diagram with the HMS 

With the concept of target values and attack, CHLAS introduces an "on demand" approach to 
animation. A key point to reactivity is also to allow for interruption of processing. Even though CHLAS 
hosts simple processing, queuing (for instance Text-To-Speech) shall be interruptible. 
 
 

 
 
 
Also, CHLAS processes its queue as soon as possible. As a consequence, a datablock containing only a 
specific element (e.g. speech) can be processed along another datablock containing only another 
specific element (e.g. gaze). 

 

Animation 

The system is "best-efforts realtime": data is process as soon as possible (i.e.: with no realtime OS 
support). 
 
Animations are defined using the concept of attack, while sustain and decay are made implicit: 
● attack sets the duration of a transition from any AU value to a specific AU target value 
● sustain is the undefined duration between an AU value set at its target, and the time of starting 

to reach its new target, i.e. the duration when an AU value stays constant. 
● decay is conceptually inappropriate. Although one can consider this by setting an AU target value 

of 0 and particular attack time. 
 
Attack time has to be considered with the amplitude of the transition (i.e. difference of target values). 
Considering an AU, its target value V and attack time T transiting from states S to S’: 

● the larger the absolute value of (Vs’ - Vs), the faster the transition S->S’ will appear 
● also, the smaller the value of T, the faster the transition S->S’ will appear. 

 

Negative attack time allows for state recovery:  

 
state S -> play animation A with duration D -> expression transited to S’  
state S’ -> play animation A with duration -D -> expression transited back to S 
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Modules description 

CHLAS processing is broken into the several modules, which may themselves be split into submodules. 

Element modules shall share the same API. 

 

 

CHLAS shall be implemented with at least the following modules: 

● Dispatch, dispatching datablock instructions received from the HMS to other modules 

● Face, translating expression commands into AU animation 

● Speech, abstracting TTS for generation of speech samples and viseme AU information, playing 
utterances on time. 

● Gaze, generating AU information for eye orientation from gaze vectors 

● Spine, generating AU information for the head, neck and thorax from end-effectors orientation 

● Reflexes, autonomously generating AU information for unconscious behaviours 

● EASI, translating internal frames into network packets following the ARAS’ protocol. 
 
 
To summarize, modules of CHLAS process information this way: 
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Dispatch 

Dispatching datablock instructions received from the HMS and sending processed data to the ARAS. 
 

Data incoming to CHLAS contains heterogenous information for animating the character with various 
modalities. All datablocks received are tagged; this allows maintaining consistency of information 
during their processing within Dispatch and notifying the HMS of related events. 

 

Also communication errors shall be dealt at this stage or previously: 

● failure to establish communication 
● failure to transmit or receive 

 
Dispatch shall: 
1. check that datablocks received respects protocol specification 
2. separate datablocks in elements for each module 
3. transmit elements to modules 
4. maintain the coherence of elements belonging to the same tag and processed by modules in a 

timely manner  
5. use the EASI module for assembling and sending data to the ARAS 
6. send to the HMS the tag relative to the data received and processed along with the processing 

status of the original datablock. 
 

EASI 

Formating animation packets for the Facial Animation System protocol. 
 
EASI stands for Expressive Animation System Interface. It performs final timing analysis and allows 
abstracting the backend used for facial animation. 
 
Given a set of internal frames it shall: 
1. compose the final message that will be sent to the ARAS, 
2. determine (and re-compute) the "end time" of their processing.  

 

Face 

Generating AU information and attack for facial expressions 
 
Data incoming from Dispatch may contain the following expressive instructions: 
● the facial expression identifier 
● the intensity of the facial expression 

 
Face shall: 
1. Validate instruction 
2. Load facial expression translation tables 
3. Lookup the frames corresponding to the given facial expression identifier. 
4. Weight the AU target values with intensity 
5. Update attack times from duration factor 
6. Create corresponding frames following the internal format. 

 
Face should: 

1. Store facial expression tables in a separated file. 
 

Each AU of the retrieved set has an associated target value. The set of these target values shall be 
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weighted with the intensity value. 
 

A note on the ARAS: if no new target is received before attack time is elapsed, the ARAS will keep 
rendering the last state. However, humans usually display a facial expression for a particular amount of 
time and then shift back towards a neutral face. A similar behavior may be achieved through the HMS: 
it can send the same element instruction with duration factor -1. Refer to Appendix for examples. 

 

Speech 

Managing lip-synching and utterances, and abstracting Text-To-Speech system in use 
 
The speech module transforms HMS’ text into raw sound data and its corresponding phonemes/duration. 
It abstracts the TTS backend in use. 
 
It is also responsible for initiating the playing of the speech samples on time.  
This might require an internal sound player if this behaviour is not supported by the TTS. 
 
Finally, Speech also makes sure the shape of the mouth (also known as viseme) corresponds to the 
uttered phoneme, a process known as lip-synchronization. 
 
Data incoming from Dispatch contains: 
● text to be uttered 
● voice/language to use 

 
 
Speech shall: 
1. Accept unicode (UTF-8) text input 
2. Convert text input into raw sound data (via a TTS) while blocking. 
3. Convert text input into phonemes/duration (via a TTS) while blocking. 
4. Load visemes translation tables 
5. Manage the playing of raw-sound data, in sync with the lips in real-time. 
6. Have the ability to interrupt text/speech that is being processed in a "timely manner" every 

uttered phoneme 
7. Have access to sound samples, phonemes and their duration 
8. Create the corresponding frames following the internal format. 

 
Speech should: 
1. Convert text into raw sound data while not blocking. 
2. Convert text into phonemes/duration while not blocking 
3. Allow switching languages and/or voices (e.g. Arabic and English) via the TTS 
4. Store phoneme to AU mapping information in a separated file. 

 
Speech may: 

1. Support a caching system to allow the playing of scripts without the need for a running TTS 
2. Support a speech interruption policy. 

 
The logic being very similar to Face, please read the Face specification of this part of the document. 

Note: FACS merges all tongue displays in AU19, which is actually intentional from the FACS’ authors. As 
a consequence an extension is needed. Unfortunately (to the best of my knowledge) no such work is 
available, hence new Action Units are defined in Appendix (Modifications from FACS). 
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Gaze 

Generating AU information for the eyes 
 
Data incoming from Dispatch contains: 
● the focal point’s Transform in meters, relative to center of the eyes. 

 
 
Gaze shall: 
1. Validate data 
2. Translate eye orientation (AU 61.5 and AU 63.5 ) 5

3. Keep eyes orientation values at all times 
4. Create eye orientation value for each eye taking into account human capabilities 
5. Create the corresponding frames following the internal format. 

 
AU 61.5 is defined for better consistency (an eye is turned only in one direction), hence computation of 
vergence is required. 

Note1: For eye roll, use multiple an expressive animation. 
Note2: Saccades should be sent as a batch of datablocks 
Note3: A reflex should compute eyelid stretching values from eyes vertical orientation. 

 

Spine 

 
Generating AU information for the head, neck, shoulders and thorax  
 
Data incoming from Dispatch contains: 
● head orientation in a triplet of angles (x,y,z in rads): 

○ relative to current orientation if the data is enclosed within parenthesis, i.e. '(' and ')' 
○ absolute if the data is enclosed within double parenthesis, i.e. '((' and '))' 

● head position in a triplet of normalized values (x,y,z axis): 
○ relative to current position if the data is enclosed within brackets, i.e. '[' and ']' 

 
Spine shall: 
1. validate data 
2. translate head orientation (see footnote) from a Transform. 
3. Create the corresponding frames following the internal format. 

 
For Transform translation, the same policy used for Gaze shall be applied. 

 

Reflexes 

 
Generating AU information autonomously 
 
The reflex module allows unconscious behaviour to happen autonomously (i.e. without datablocks 
coming from the HMS), as well as tuning these behaviours through commands. 
Breathing, blinking, ect. should be implemented through reflexes that provide tuning parameters. 

5FACS is somewhat inconsistent defining AU61 for Eyes Turn Left and AU62 for Eyes Turn Right. For the 
sake of unification these are merged into a single dimension named AU61.5 (the .5 suffix might avoid 
confusion with FACS). 
This method was applied for similar problematic AU definitions such as head orientation. 
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Data incoming from Dispatch contains commands which keywords are: 

● “enable” to enable a reflex 
● “disable” to disable a reflex 
● the unique identifier of a reflex. 

 
The reflex module itself is only a manager of all available reflexes. It allows the runtime toggle of 
reflexes and update of their parameters in a single datablock. 
 
For terminology clarification: 

● The reflex module is the reflex manager 
● A reflex module is part of the implemented reflexes. 

 
The Reflex module shall: 
1. Reject the datablock if any reflex encountered an error from processing a command’s argument(s) 

(and values if any) 
2. Enable or disable a reflex identified by the argument of “enable” and “disable” keywords 
3. Distribute each command’s argument(s) (and values if any) to reflexes identified by keywords 

 
Because there is no specification on the number of reflexes modules nor implemented behaviour, each 
reflex module can interpret specific arguments (and values) that may not be supported between 
different implementations of the same reflex. 
 
A reflex module shall: 
1. report to the Reflex Manager any argument (and value) received they do not support 
2. make available and maintain the next time of their own activation when enabled 
3. generate their own frames in accordance with their maintained timings 
4. be able to monitor frames created by other modules 

 

Conflict Resolver 

Managing conflicting AU information for a target state 
 
One may need to understand relevant parts of the ARAS specification for a better knowledge of the 
animation system and its potential side effects. The ARAS protocol uses a transactional approach: 
● declaration of the body section (i.e. 'gaze', 'face', 'lips', 'head') followed by Target Frames 
● (additional sections and their Target frames) 
● a final commit indicating the application of buffered sections 

 
However different CHLAS modules can create frames involving the same AUs. Typical cases are: 
● visemes conflicting with facial expressions (e.g. speaking while smiling) 
● eyelids follow gaze; this can conflict with facial expressions (e.g. natural gaze up and frowning) 

Hence, overwrites on ARAS’ side might occur. Moreover the dynamic nature of these frames requires 
the state of the animation system is maintaining solely by ARAS itself. Thus CHLAS transactions must 
resolve overwrites conflicts. 
This can be done by managing the sequence of sections of the frames it communicates to the ARAS. 
The following algorithm should resolve conflicts to create the desired final state: 

1. Set target state from Gaze 
2. Set targets from Face, resolving conflicts from previous targets 
3. Set targets from Lips and resolve any conflicts with previous targets 
4. Compute state transition. 

 
The Conflict resolver shall: 

1. manage the sequence of triplets overwrites  
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Detailed Design 
 

Implementation of Reflexes 

 

The Reflex module has a regular module interface, however management of actual reflexes brings the 
following constraints: 

● reflexes don’t create frames at the same stage as other modules. Rather they create their 
frames at the last stage, before frames are transferred to Easi 

● reflexes shall be able to monitor all frames created by modules so they can react to it 
● reflexes shall use functions from elements and/or reflexes but shall not use their internal data 
● reflexes shall be called in a sequence built by the Reflex Manager. This shall be achieved from 

reflexes’ declaration of dependency towards other reflexes. 
● reflexes shall be able to be triggered on a specific time 

 

As the Reflex Manager cannot know the behaviour (event or time based) of a reflex, the Reflex 
Manager calls the get_next_time() and pop_frames() function of each reflex for every frame created 
by the modules. 

This means each reflex shall check in its get_from_frames() function if it is appropriate to return its 
frame, usually by checking time or availability of data. 

 

Internal Format 

An dictlet represents the smallest primitive of the CHLAS system part of the protocol with an ARAS.  

A dictlet is a mapping of AU to tuple: { action unit : (target, attack), …}. It represents an instruction 
to move a certain muscle or group of muscles (i.e. action unit), to a certain value (i.e, target) and 
within a certain period of time (i.e, attack). dictlets are the base instruction of the RAS. 

Also, symmetric Action Units can specify a side suffix (i.e. either ‘R’ for right or ‘L’ for left) for 
asymmetric animation. 

For example, 
Raising the left eyebrow: ('01L',  0.5, 2) 
A subtle twitch of the outer-lips: ('15',  0.4, 1) 

ARAS’ Target Frames 

A target frame is an unordered set of triplets. It represents a collection of muscle movements starting 
precisely at the same time. Therefore the length of the target frame is simply the length of its longest 
triplet (i.e. the triplet with the highest attack time). 
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Appendix 

 

List of Implemented FACS Action Units 

This table omits modifications listed in the next table. A comprehensive list of Action Units in use can be 
obtained by joining the 2 tables. 
 
Rows in gray are not to be implemented, green entries are AUs without Right/Left component. 
 

AU description related AUs and comments 

01 Inner Brow Raiser 04 (opposed) 

02 Outer Brow Raiser  

04 Brow Lowerer 01 

06 Cheek Raiser and Lid Compressor 07 (connected) 

07 Eye Lid Tightener 05 

08 Lips Closer discarded (use 24 or 28) 

09 Nose Wrinkler 10 (implied usually) 

10 Upper Lip Raiser 09 

11 Nasolabial Furrow Deepener  

12 Lip Corner Puller 14 (), 18 (opposed) 

13 Sharp Lip Puller  

14 Dimpler 12 

15 Lip Corner Depressor  

16 Lower Lip Depressor 17 (opposed), 25 (see modifications) 

17 Chin Raiser (also acts as Lower Lip Raiser), 16 

18 Lip Pucker 14, 20 (opposed) 

19 Tongue Show discarded 

20 Lip Stretcher 18 

21 Neck Tightener pressing appears at the center of the 
lips. other muscles are involved for l 

22 Lip Funneler  

23 Lip Tightener see 16 

27 Mouth Stretch achievable with 26, 16, 25, 10 

28 Lips Suck viseme 'b' 
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29 Jaw Thrust (could be used for 'm' viseme, but not 
much visual from front view). 

30 Jaw Sideways  

31 Jaw Clencher 26 

32 Bite  

33 Blow  

34 Puff  

35 Suck  

36 Bulge  

37 Lip Wipe pressing appears at the center of the 
lips.  

38 Nostril Dilator 39 

39 Nostril Compressor 38 

43 Eye Closure  

46 Wink  

 

Modifications from FACS 

As mentioned previously in this document, the most significant modification from the original FACS is 
normalization of all AU values. As a consequence, a neutral face is defined with all AUs set at a value of 
0.  
For other body parts a value of 0 radian corresponds to the rest pose of the model used: standing on 
joint feet, straight legs and spine, arms opened at right angle with spine and face straight. Hence, 
absolute angle values can be negative. 
 
Some minor but significant modifications from FACS are also necessary to make the system work in a 
more consistent way. Modified areas are in blue, those added are in orange: 

area AU original modification 

Tongue 19 tongue show, defined as 
tongue moves (see FACS 
manual note on this) 

discarded, use AU 10, 16, 25 to 
operate lips and AU 26 to open jaw, 
as well as Tongue specific AUs. 

Mouth 24 pressing of lips (status) 0: lips at rest; 1: lips pressed 

 25 parting of lips (status) 0: lips at rest; 1: lips parted 

parting appears at center of lips only. 
side parting uses AU 10 and 16. 

Accounts more for detail lip shape and 
may be removed eventually. 

 26 jaw drop (status) 0: upper and lower teeth are touching 
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1: jaw opened wide (max) 

Eye 05 only specifies raising the 
eyelid from neutral position 
(different from rest position) 

0: upper eyelid closed; 1: eyelid fully 
opened 

 ePS undefined Pupil Stretcher 

 0: pupil fully contracted, 
1: pupil fully dilated 

Eye 61.5 undefined but related to 61 & 
62 

eye orientation on Z axis (pan) 

Value in radians (0: iris facing straight, 
positive turns left) 

 63.5 undefined but related to 63 & 
64 

eye orientation on X axis (tilt) 

Value in radians (positive tilts upwards) 

Spine 

(head) 

51.5 undefined but related to 51 & 
52 (head turn) and M60 

orientation of head Z axis (pan) 

Value in radians (0: head facing 
straight, positive pans left) 

 53.5 undefined but related to 53 & 
54 

(head down/up) and M59 

orientation of head X axis (tilt) 

Value in radians (0:head facing 
straight, positive tilts upwards) 

 55.5 undefined but related to 55 & 
56 

(head tilt) 

orientation of head Y axis (roll badly 
named tilt sometimes). 

Value in radians (0: head facing 
straight, positive rolls right) 

 57.5 undefined but related to 57 & 
58 

(head forward/backward) 

position of head on Y axis 
This is character dependent. 

-1: most backward, 1: most forward. 

 58.5 undefined, NOT related to 
M59 or M60 

position of head on X axis 
This is character dependent. 

-1: leftmost, 1: rightmost. 

 59.5 undefined, NOT related to 
M59 nor M60 

position of head on Z axis 
This is character dependent (if 
applicable). 

-1: lowest, 0: centered, 1: highest. 

(thorax) TX undefined orientation of Thorax X axis (tilt) 
(consider top of thorax), number of 
sections is character dependent. 

value in radians 

 TY undefined orientation of Thorax Y axis (roll) 
value in radians 

 TZ undefined orientation of Thorax Z axis (pan) 
value in radians 

 thB undefined Thorax breathing 
0: full exhalation, 1: full inhalation 

201



Belly breathing is another AU 

Tongue 93X undefined position of tip of tongue on X axis 
-1: leftmost, 1: rightmost 

 93Y undefined position of tip of tongue on Y axis. 

-1: most backward, 1: most forward 

 93Z undefined position of tip of tongue on Z axis. 
-1: lowest, 1: highest 

 93mZ undefined Z position of middle of tongue 
This is character dependent. 

-1: lowest, 0: neutral, 1: uppermost 

 93bT undefined Tongue gutturer 
This is character dependent. 

-1: lowest in throat, 1: most front 

 94 undefined Tongue ZX stretcher 
-1: most horizontal flat,  
 1: most vertical stretch 

 95 undefined Tongue roller (on Y axis). 
This is character dependent. 

0: flat, 1: most rolled (pipe-like) 

 96-99 undefined  

Shoulders 
SY undefined orientation of Shoulders Y axis (tilt) 

value in radians (0: sternum-shoulder 
and spine form a right angle) 

 SZ undefined orientation of Shoulders Z axis (tilt) 
value in radians (0: shoulders are in 
line with spine) 

Skin 
Effects 

skB undefined Triggers blushing: 0 no blushing, 1: 
max blushing 

 skS undefined Triggers sweating: 0 no sweating, 1: 
max sweating 

 

Also, most 'M' values (e.g. M59, M83..) and numbers for 'gross behavior' (40,50,80-82,84,85,91,92) are 
not used since they represent movement. It is tempting to use these numbers to extend FACS, but 
that could lead to confusion. As a consequence it was decided extensions to the system would use an 
alphabetical labeling convention. 

Tongue: The tongue is divided in 3 sections, each having a Z position. These 3 sections are : the tip, 
the lingual tonsil (most backward area) and the area in the middle. Also, one may note the relative Z 
position of these sections is enough to create most visible general foldings, while specific foldings have 
their own AU (e.g. Tongue roller). 

Values for positioning (head and tongue) are relative so any design can produce convincing results. 
However, for absolute positioning (as with IK), an extra component could be used with 
character-specific parameters to provide the appropriate relative value.  
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Animation guidelines 

There are 2 ways of animating a character: state-based or event-based. State animation ensures all 
commands of a datablock are processed at the same time, while event animation allows available 
modules (not processing any command) to process a datablock as long as no command of this 
datablock requires a non-available module. 

 

State-based animation 

State-based animation rely on CHLAS’ buffering behaviour. In this manner, sentences should be sent 
in bursts of commands. 

Most sentences are emotionally influenced. For instance, when a robot's chatting about the weather, 
parts of the sentence may change its attitude: 
 
"The weather is so hot outside but it’s so cold inside!" 
 
It is very likely that the facial expression would change during this sentence. One can imagine such 
transitions: 
 
neutral;        "The weather is"; ((0.0, 0.0, 5.0)); ((0.0, 0.0, 0.0)); ; tag_1 
surprised*0.3;  "so hot";                          ; ((5.3, 2.2, 1.3)); ; tag_2 
surprised*0.3; "outside";        ((1.3, 0.0, 5.2)); ((0.0, 0.0, 0.0)); ; tag_3 
fear* 0.2;      "but it’s so cold";   [1.0, .0, .0]; ((2.0, 1.3,.0)); ; tag_4 
neutral;        "inside.";                         ; ((.0, .0, .0));    ; tag_5 
 
CHLAS would bufferize and acknowledge processing of each datablock in a timely manner. 

Event-based animation 

Event-based animation relies on CHLAS’ scheduling of modules. In this manner, datablocks are sent on 
time, leaving empty unused elements of a command. 

The same example can be processed this way: 

neutral;  ;  ;  ; ; tag_1 
;  ; ((0.0, 0.0, 5.0)); ((0.0, 0.0, 0.0)); ; tag_2 
;”The weather is so hot outside but it’s so cold inside!”; ; ; ; tag_3 

 delay estimated for the TTS to reach utterance of “so hot”  
surprised*0.3;  ;  ;  ; ; tag_4 

;  ;  ; ((5.3, 2.2, 1.3)); ; tag_5 

and so on .. 

As shown with tag_2, state and event animation can be mixed together. In fact their usage is usually 
mixed since they serve different compatible purposes. 

Attack discrepancies in Target Frames 

On ARAS side, the following target frame looks like The Hulk getting angry; it plays for 2 seconds: 

(('07', .9, 2),('09',.9, .5), ('01',.9, 1.0), ('04',.9, 1.0), ('05',.9, 1.0), ('10',.9,1.1)) 

In this example, while the frame is being rendered, movements of the quicker triplets end early and 
may not be updated until completion of the movement of the slowest triplet. This makes sense.. for 
example, if you make a big grin on your face, your eyes area will "squeeze" inwards immediately and 
stay suspended but your lips/mouth will continue to stretch. 
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Appendix C

Active Learning Experiment

“I would like to learn this one”

“could you teach me this one?”

“this one looks interesting”

“now, what about this one?”

“this is interesting”

“em, what about this one?”

“what about this one?”

“I would like to know what this is”

“ok, what do we have here?”

“yes, this looks interesting”

“what about this one?”

“em, I would like to know what this is”

Table C.1: LightHead’s utterances in active learning condition.
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number AL GG success AL response

1 no 0.48 0.3

2 no 0.64 0.28

5 no 0.56 0.38

6 no 0.8 0.36

11 no 0.6 0.3

13 no 0.46 0.26

14 no 0.54 0.44

15 no 0.68 0.32

17 no 0.56 0.38

18 no 0.64 0.22

22 no 0.54 0.22

24 no 0.4 0.38

25 no 0.42 0.38

29 no 0.62 0.28

30 no 0.68 0.48

31 no 0.54 0.3

33 no 0.48 0.36

36 no 0.62 0.26

38 no 0.54 0.32

40 no 0.7 0.3

41 no 0.62 0.18

number AL GG success AL response

3 yes 0.72 0.48

4 yes 0.66 0.76

7 yes 0.56 0.38

8 yes 0.62 0.94

9 yes 0.52 0.4

10 yes 0.68 0.46

12 yes 0.64 0.58

16 yes 0.46 0.38

19 yes 0.6 0.46

20 yes 0.62 0.62

21 yes 0.76 0.44

23 yes 0.54 0.46

26 yes 0.62 0.8

27 yes 0.56 0.44

28 yes 0.7 0.44

32 yes 0.7 0.58

34 yes 0.72 0.42

35 yes 0.56 0.38

37 yes 0.62 0.86

39 yes 0.6 0.8

Table C.2: Detail of the participants’ game success and alignment for both

active learning and baseline conditions.
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Social Robot Teaching Questionnaire

Participant number: Age:

Gender: F / M Native speaker: yes / no

Please answer the following questions by placing an 'X' on the spot that best reflects your answer. 
Additionally, you can provide comments to elaborate your answers.

1. How do you rate your interaction with the robot?

not satisfactory at all                        very satisfactory
comments

2. How do you rate the robot's behaviour?

not natural at all                              very natural
comments

3. Do you have any experience with robots?

I have no experience with robots              I have a lot of experience with robots
comments

4. Who was in control of the teaching sessions?

I was in control            the robot was in control
comments
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5. On what basis did you choose the animal examples as topic? Please explain.

6. Do you like science fiction (books, film, etc)?

I don't like science fiction at all                        I very much like science fiction
comments

7. How many emotions do you think the robot has?

the robot has no emotions                the robot has a lot of emotions
comments

8. How smart do you think the robot is?

the robot is not smart at all                                 the robot is very smart
comments

9. How many hours per week do you spend using a computer?

hours computer use per week (estimate): 

comments

10. General comments
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How I am in general

Here are a number of characteristics that may or may not apply to you.  For example, do you agree that you are 
someone who likes to spend time with others?  Please write a number next to each statement to indicate the 
extent to which you agree or disagree with that statement.

1
Disagree
Strongly

2
Disagree

a little

3
Neither agree
nor disagree

4
Agree
a little

5
Agree

strongly

I am someone who…

1. _____  Is talkative

2. _____  Tends to find fault with others

3. _____  Does a thorough job

4. _____  Is depressed, blue

5. _____  Is original, comes up with new ideas

6. _____  Is reserved

7. _____  Is helpful and unselfish with others

8. _____  Can be somewhat careless

9. _____  Is relaxed, handles stress well

10. _____  Is curious about many different things

11. _____  Is full of energy

12. _____  Starts quarrels with others

13. _____  Is a reliable worker

14. _____  Can be tense

15. _____  Is ingenious, a deep thinker

16. _____  Generates a lot of enthusiasm

17. _____  Has a forgiving nature

18. _____  Tends to be disorganized

19. _____  Worries a lot

20. _____  Has an active imagination

21. _____  Tends to be quiet

22. _____  Is generally trusting

23. _____  Tends to be lazy

24. _____  Is emotionally stable, not easily upset

25. _____  Is inventive

26. _____  Has an assertive personality

27. _____  Can be cold and aloof

28. _____  Perseveres until the task is finished

29. _____  Can be moody

30. _____  Values artistic, aesthetic experiences

31. _____  Is sometimes shy, inhibited

32. _____  Is considerate and kind to almost everyone

33. _____  Does things efficiently

34. _____  Remains calm in tense situations

35. _____  Prefers work that is routine

36. _____  Is outgoing, sociable

37. _____  Is sometimes rude to others

38. _____  Makes plans and follows through with them

39. _____  Gets nervous easily

40. _____  Likes to reflect, play with ideas

41. _____  Has few artistic interests

42. _____  Likes to cooperate with others

43. _____  Is easily distracted

44. _____  Is sophisticated in art, music, or literature
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LightHead robotic museum guide
Instructions 

Hi! We are conducting a survey on your preferences for a robotic museum guide. Indeed all information collected is 
entirely anonymous and will only serve to make better robots. What you will see is a prototype and does not reflect an 
actual product.

There are 4 required and a final optional group of questions. Going through all the questionnaire should take about 
25-30 minutes.
We value your opinion!

Please enter your gender and age group details:

Age

Gender
 Male
 Female

Please set to what extent these statements describe you by selecting the number which best correspond to your
experience. For example, if the statement is agree strongly, then select 7. If it is only agree slightly, then select 5. 

Don't spend too long over any statement, just give the first answer that comes to your mind. There are no right or
wrong answers.

I see myself as someone who...

01. ...Is talkative
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

02. ...Tends to find fault with others 
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

03. ...Does a thorough job 
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

04. ...Is depressed, blue
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

05. ...Is original, comes up with new ideas
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

06. ...Is reserved
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

07. ...Is helpful and unselfish with others
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

08. ...Can be somewhat careless
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

09. ...Is relaxed, handles stress well
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

10. ...Is curious about many different things
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

51+ years
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11. ...Is full of energy
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

12. ...Starts quarrels with others
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

13. ...Is a reliable worker
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

14. ...Can be tense
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

15. ...Is ingenious, a deep thinker
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

16. ...Generates a lot of enthusiasm
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

17. ...Has a forgiving nature
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

18. ...Tends to be disorganized
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

19. ...Worries a lot
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

20. ...Has an active imagination
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

21. ...Tends to be quiet
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

22. ...Is generally trusting
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

23. ...Tends to be lazy
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

24. ...Is emotionally stable, not easily upset
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

25. ...Is inventive
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

26. ...Has an assertive personality
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

27. ...Can be cold and aloof
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

28. ...Perseveres until the task is finished
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

29. ...Can be moody
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree
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30. ...Values artistic, aesthetic experiences
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

31. ...Is sometimes shy, inhibited
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

32. ...Is considerate and kind to almost everyone
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

33. ...Does things efficiently
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

34. ...Remains calm in tense situations
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

35. ...Prefers work that is routine
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

36. ...Is outgoing, sociable
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

37. ...Is sometimes rude to others
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

38. ...Makes plans and follows through with them
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

39. ...Gets nervous easily
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

40. ...Likes to reflect, play with ideas
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

41. ...Has few artistic interests
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

42. ...Likes to cooperate with others
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

42. ...Can reply honestly to a questionnaire
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

43. ...Is easily distracted
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

44. ...Is sophisticated in art, music, or literature
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

45. ...Is politically liberal
1 2 3 4 5 6 7

Strongly Disagree Strongly Agree

Say your local museum decides to deploy a new robot guide, which one would fit you best? Please make sure
you fully  watched all  5 videos,  then rank each robot  from most  favourite  (1)  to  least  favourite  (5).  Please avoid
duplicates.
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ranking robot guide #1
1 2 3 4 5

Most Favourite Least Favourite

ranking robot guide #2
1 2 3 4 5

Most Favourite Least Favourite

ranking robot guide #3
1 2 3 4 5

Most Favourite Least Favourite
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ranking robot guide #4
1 2 3 4 5

Most Favourite Least Favourite

ranking robot guide #5
1 2 3 4 5

Most Favourite Least Favourite

Now think about your favourite guide of all five robots, and answer the next questions. Do not spend too long
over any word-pair. Just give the first answer that comes to your mind. There are no right or wrong answers.

1 2 3 4 5 6 7

Non-Humanlike Humanlike
1 2 3 4 5 6 7

Stupid Intelligent
1 2 3 4 5 6 7

Low Quality High Quality
1 2 3 4 5 6 7

Masculine Feminine
1 2 3 4 5 6 7

Unengaging Engaging
1 2 3 4 5 6 7

Responsible Irresponsible
1 2 3 4 5 6 7

Cold Warm
1 2 3 4 5 6 7

Weak Strong
1 2 3 4 5 6 7

Diligent Lazy
1 2 3 4 5 6 7

Impersonal Personal
1 2 3 4 5 6 7

Decisive Indecisive
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1 2 3 4 5 6 7

Abnormal Normal
1 2 3 4 5 6 7

Traditional Contemporary
1 2 3 4 5 6 7

Serious Fun
1 2 3 4 5 6 7

Standard Unique
1 2 3 4 5 6 7

Child Adult
1 2 3 4 5 6 7

Affordable Expensive
1 2 3 4 5 6 7

Friendly Unfriendly
1 2 3 4 5 6 7

Slow Fast
1 2 3 4 5 6 7

Honest Dishonest
1 2 3 4 5 6 7

Impolite Polite
1 2 3 4 5 6 7

Visitor Guide
1 2 3 4 5 6 7

Active Passive
1 2 3 4 5 6 7

Unbalanced Balanced
1 2 3 4 5 6 7

Good Bad
1 2 3 4 5 6 7

Dishonest Honest
1 2 3 4 5 6 7

Exciting Boring
1 2 3 4 5 6 7

Indifferent Interested
1 2 3 4 5 6 7

Engaged Distracted
1 2 3 4 5 6 7

Lively Deadpan
1 2 3 4 5 6 7

I Liked I Disliked
1 2 3 4 5 6 7

Not as a friend As a friend
1 2 3 4 5 6 7

Unkind Kind
1 2 3 4 5 6 7

Trustworthy Untrustworthy
1 2 3 4 5 6 7

Insensitive Sensitive

What could you say influenced your ranking?
 Head movements
 Age
 Facial appearance
 Geometric design
 Voice
 Blinks
 Eye gaze
 Timing
 Expressivity
 Realism
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What sport practices the robot team?
 Chess
 Karate
 Ping Pong
 Football
 Sumo
 Not mentioned

What racial group describes you best?
 American Indian Australian Aborigine or Melanesian
 Caribbean
 Central African or black
 Indian or Bangladeshi
 North African, Arabic, Persian...
 North East Asian (Japanese, Korean, North Chinese, ...)
 South East Asian (Chinese, Vietnamese, ...)
 White Caucasian

You can select up to 2 racial groups. Please note racial affiliation is not related to your nationality, area of living or 
culture. Moreover, no internationally accepted criteria is possible. If you need help or are interested in the classification 
used here, check http://www.racialcompact.com/racesofhumanity.html

To what other racial group do you belong? (optional)
 American Indian Australian Aborigine or Melanesian

 Caribbean
 Central African or black

 Indian or Bangladeshi
 North African, Arabic, Persian...

 North East Asian (Japanese, Korean, North Chinese, ...)
 South East Asian (Chinese, Vietnamese, ...)

 White Caucasian
How familiar are you with computer technology? 

1 2 3 4 5 6 7

Not at all Very much

How familiar are you with robot technology? 
1 2 3 4 5 6 7

Not at all Very much

How familiar are you with subspace quantum robot technology? 
1 2 3 4 5 6 7

Not at all Very much

Thank you for taking part in our 'LightHead' Survey. These are free optional questions; let your voice be heard! 

Overall, how do you feel towards being given a tour by a robot? 

What changes / additions might you make to the robot to improve its communication / interaction capabilities? 

Anything else you'd like to tell us? 
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