56 research outputs found

    The Application of Preconditioned Alternating Direction Method of Multipliers in Depth from Focal Stack

    Get PDF
    Post capture refocusing effect in smartphone cameras is achievable by using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map which has been an open issue for decades. To tackle this issue, in this paper, a framework is proposed based on Preconditioned Alternating Direction Method of Multipliers (PADMM) for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy and occlusion handling, the optimization function of the proposed method can, in fact, converge faster and better than state of the art methods. The evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against 5 other methods. Preliminary results indicate that the proposed method has a better performance in terms of structural accuracy and optimization in comparison to the current state of the art methods.Comment: 15 pages, 8 figure

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Depth Super-Resolution with Hybrid Camera System

    Get PDF
    An important field of research in computer vision is the 3D analysis and reconstruction of objects and scenes. Currently, among all the the techniques for 3D acquisition, stereo vision systems are the most common. More recently, Time-of-Flight (ToF) range cameras have been introduced. The focus of this thesis is to combine the information from the ToF with one or two standard cameras, in order to obtain a high- resolution depth imageopenEmbargo per motivi di segretezza e/o di proprietĂ  dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    Depth Enhancement and Surface Reconstruction with RGB/D Sequence

    Get PDF
    Surface reconstruction and 3D modeling is a challenging task, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. It is fundamental to many applications such as robot navigation, animation and scene understanding, industrial control and medical diagnosis. In this dissertation, I take advantage of the consumer depth sensors for surface reconstruction. Considering its limited performance on capturing detailed surface geometry, a depth enhancement approach is proposed in the first place to recovery small and rich geometric details with captured depth and color sequence. In addition to enhancing its spatial resolution, I present a hybrid camera to improve the temporal resolution of consumer depth sensor and propose an optimization framework to capture high speed motion and generate high speed depth streams. Given the partial scans from the depth sensor, we also develop a novel fusion approach to build up complete and watertight human models with a template guided registration method. Finally, the problem of surface reconstruction for non-Lambertian objects, on which the current depth sensor fails, is addressed by exploiting multi-view images captured with a hand-held color camera and we propose a visual hull based approach to recovery the 3D model

    End-to-End Learning of Semantic Grid Estimation Deep Neural Network with Occupancy Grids

    Get PDF
    International audienceWe propose semantic grid, a spatial 2D map of the environment around an autonomous vehicle consisting of cells which represent the semantic information of the corresponding region such as car, road, vegetation, bikes, etc. It consists of an integration of an occupancy grid, which computes the grid states with a Bayesian filter approach, and semantic segmentation information from monocular RGB images, which is obtained with a deep neural network. The network fuses the information and can be trained in an end-to-end manner. The output of the neural network is refined with a conditional random field. The proposed method is tested in various datasets (KITTI dataset, Inria-Chroma dataset and SYNTHIA) and different deep neural network architectures are compared

    Joint Motion, Semantic Segmentation, Occlusion, and Depth Estimation

    Get PDF
    Visual scene understanding is one of the most important components of autonomous navigation. It includes multiple computer vision tasks such as recognizing objects, perceiving their 3D structure, and analyzing their motion, all of which have gone through remarkable progress over the recent years. However, most of the earlier studies have explored these components individually, and thus potential benefits from exploiting the relationship between them have been overlooked. In this dissertation, we explore what kind of relationship the tasks can present, along with the potential benefits that could be discovered from jointly formulating multiple tasks. The joint formulation allows each task to exploit the other task as an additional input cue and eventually improves the accuracy of the joint tasks. We first present the joint estimation of semantic segmentation and optical flow. Though not directly related, the tasks provide an important cue to each other in the temporal domain. Semantic information can provide information on plausible physical motion of its associated pixels, and accurate pixel-level temporal correspondences enhance the temporal consistency of semantic segmentation. We demonstrate that the joint formulation improves the accuracy of both tasks. Second, we investigate the mutual relationship between optical flow and occlusion estimation. Unlike most previous methods considering occlusions as outliers, we highlight the importance of jointly reasoning the two tasks in the optimization. Specifically through utilizing forward-backward consistency and occlusion-disocclusion symmetry in the energy, we demonstrate that the joint formulation brings substantial performance benefits for both tasks on standard benchmarks. We further demonstrate that optical flow and occlusion can exploit their mutual relationship in Convolutional Neural Network as well. We propose to iteratively and residually refine the estimates using a single weight-shared network, which substantially improves the accuracy without adding network parameters or even reducing them depending on the backbone networks. Next, we propose a joint depth and 3D scene flow estimation from only two temporally consecutive monocular images. We solve this ill-posed problem by taking an inverse problem view. We design a single Convolutional Neural Network that simultaneously estimates depth and 3D motion from a classical optical flow cost volume. With self-supervised learning, we leverage unlabeled data for training, without concerns about the shortage of 3D annotation for direct supervision. Finally, we conclude by summarizing the contributions and discussing future perspectives that can resolve current challenges our approaches have

    Learning-based stereo matching for 3D reconstruction

    Get PDF
    Stereo matching has been widely adopted for 3D reconstruction of real world scenes and has enormous applications in the fields of Computer Graphics, Vision, and Robotics. Being an ill-posed problem, estimating accurate disparity maps is a challenging task. However, humans rely on binocular vision to perceive 3D environments and can estimate 3D information more rapidly and robustly than many active and passive sensors that have been developed. One of the reasons is that human brains can utilize prior knowledge to understand the scene and to infer the most reasonable depth hypothesis even when the visual cues are lacking. Recent advances in machine learning have shown that the brain's discrimination power can be mimicked using deep convolutional neural networks. Hence, it is worth investigating how learning-based techniques can be used to enhance stereo matching for 3D reconstruction. Toward this goal, a sequence of techniques were developed in this thesis: a novel disparity filtering approach that selects accurate disparity values through analyzing the corresponding cost volumes using 3D neural networks; a robust semi-dense stereo matching algorithm that utilizes two neural networks for computing matching cost and performing confidence-based filtering; a novel network structure that learns global smoothness constraints and directly performs multi-view stereo matching based on global information; and finally a point cloud consolidation method that uses a neural network to reproject noisy data generated by multi-view stereo matching under different viewpoints. Qualitative and quantitative comparisons with existing works demonstrate the respective merits of these presented techniques

    Fast bilateral-space stereo for synthetic defocus

    Full text link
    • …
    corecore