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Abstract

Stereo matching has been widely adopted for 3D reconstruction of real world

scenes and has enormous applications in the fields of Computer Graphics, Vision,

and Robotics. Being an ill-posed problem, estimating accurate disparity maps is a

challenging task. However, humans rely on binocular vision to perceive 3D environ-

ments and can estimate 3D information more rapidly and robustly than many active

and passive sensors that have been developed. One of the reasons is that human brains

can utilize prior knowledge to understand the scene and to infer the most reasonable

depth hypothesis even when the visual cues are lacking. Recent advances in machine

learning have shown that the brain’s discrimination power can be mimicked using deep

convolutional neural networks. Hence, it is worth investigating how learning-based

techniques can be used to enhance stereo matching for 3D reconstruction.

Toward this goal, a sequence of techniques were developed in this thesis: a novel

disparity filtering approach that selects accurate disparity values through analyzing

the corresponding cost volumes using 3D neural networks; a robust semi-dense stereo

matching algorithm that utilizes two neural networks for computing matching cost

and performing confidence-based filtering; a novel network structure that learns global

smoothness constraints and directly performs multi-view stereo matching based on

global information; and finally a point cloud consolidation method that uses a neu-

ral network to reproject noisy data generated by multi-view stereo matching under

different viewpoints. Qualitative and quantitative comparisons with existing works

demonstrate the respective merits of these presented techniques.
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Chapter 1

Introduction

3D content is needed in a wide range of applications such as medical diagnosis [46],

city planning [44] and archeology [105]. Recent developments in Augmented Reality

(AR) and Virtual Reality (VR) techniques make 3D content even more accessible to

average users. This cultivates a steadily growing market [85] and also increases the

demand for 3D content. While active 3D sensing tools such as laser scanners [94],

structured light cameras [1], and time-of-flight cameras [106] have been developed,

reconstructing 3D models from images taken by regular cameras is often desirable

due to its low-cost and passivity.

Being an ill-posed problem, reconstructing 3D models from 2D images is very chal-

lenging, especially under conditions such as lack of texture [29], presence of occlusion

[95] and variations in lighting [78]. Conventionally, stereo matching algorithms rely

on heuristically defined constraints to address the problem. Since humans can esti-

mate 3D information from 2D observations robustly, and deep neural networks have

demonstrated the capability of mimicking humans’ object recognition capability [39],
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one has to wonder how deep neural networks can be used to enhance existing stereo

matching algorithms for 3D reconstruction.

The first attempt made in this thesis is to identify mismatches generated by tra-

ditional binocular matching algorithms using a deep neural network. Traditionally,

this problem is studied under the topic of sparse stereo matching, which aims to

output accurate disparity values for selected pixels only [78]. Instead of designing an-

other disparity optimization method for sparse disparity matching, a novel disparity

filtering step that detects and removes inaccurate matches is presented in Chapter

2. Based on 3D convolutional neutral networks, the proposed detector is trained di-

rectly on 3D matching cost volumes and hence can work with different matching cost

generation approaches. The experimental results show that it can effectively filter

out mismatches while preserving the correct ones. Evaluation shows that combining

the proposed approach with even the simplest Winner-Take-All (WTA) optimization

leads to better performance than most existing sparse stereo matching algorithms.

The above disparity filtering approach only removes mismatches and cannot cor-

rect them. While in many cases mismatches are isolated and hence the remaining

accurate matches are sufficient for depth perception, large regions of mismatches of-

ten occur when lighting changes between the input stereo image pairs and/or object

surfaces do not have sufficient textures. As a result, disparity filtering may cause

some objects to not show up in the resulting disparity maps at all. To address this

issue, a semi-dense stereo matching algorithm is presented in Chapter 3. It utilizes

two Convolutional Neural Network (CNN) models for computing stereo matching

cost and performing confidence-based filtering, respectively. Compared to existing

CNNs-based matching cost generation approaches, the proposed method feeds ad-
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ditional global information into the network so that the learned model can better

handle challenging cases. By utilizing non-parametric transforms, the method is also

more self-reliant than most existing semi-dense stereo approaches, which rely heavily

on the adjustment of parameters. The experimental results based on the Middlebury

Stereo dataset [77] demonstrate that the proposed approach is comparable to the

state-of-the-art semi-dense stereo approaches.

Using the insights learned from designing the previous two approaches for binocu-

lar stereo matching, an application of neural networks to multi-view stereopsis, which

refers to the perception of depth and 3D structure obtained on the basis of visual in-

formation [78], is considered next. Although a number of learning-based approaches

have been proposed over the past few years, most of them train networks over small

cropped image patches, so that the requirements on GPU processing power and mem-

ory space are manageable. The limitation of such approaches, however, is that the

networks cannot effectively learn global information and hence have trouble handling

large textureless regions. In addition, when testing on different datasets, these net-

works often need to be retrained to achieve optimal performances. To address this

deficiency, a robust framework is presented in Chapter 4, which is trained on high-

resolution (1280 × 1664) stereo images directly. It is therefore capable of learning

global information and enforcing smoothness constraints across the whole image. To

reduce the memory space requirement, the network is trained to output the matching

scores of different pixels under each depth hypothesis at a time. A novel loss func-

tion is designed to properly handle the unbalanced distribution of matching scores.

Finally, trained over binocular stereo datasets only, the network can directly han-

dle the DTU [1] multi-view stereo dataset and generate results comparable to the

3



state-of-the-art approaches.

To generate a complete 3D model for an object or environment, it is necessary to

convert 2D disparity maps generated under different viewpoints into 3D point clouds

and then merge multiple point clouds together. An additional point consolidation

procedure is often needed here for removing outliers and better aligning individual

patches. Numerous approaches have been proposed for 3D point cloud consolidation,

which include some that use neural networks for point-based surface smoothing [76],

upsampling [100], and completion [27]. In Chapter 5, a novel network is presented,

which consolidates 3D point clouds through directly projecting individual 3D points

based on point distributions in their neighborhoods. Since only local information is

used, the proposed network is scalable for handling point clouds of any sizes and is

capable of processing selected areas of interest as well. Quantitative evaluation on

the DTU [1] dataset, which is the largest multi-view stereo benchmark, demonstrates

the proposed approach can effectively improve the accuracy of point clouds generated

by existing multi-view stereo algorithms.

In summary, a number of learning-based algorithms are presented in this thesis for

detecting mismatches in binocular stereo matching results, generating more accurate

matches under challenging conditions, performing multi-view stereo matching with

global smoothness constraint enforced, and consolidating point clouds obtained from

different viewpoints. Some of the work has appeared in peer-reviewed conferences

[53, 54, 57, 92], and some is under review for journal and conference publication

[55, 56]. In the following chapters these algorithms, as well as the related works, are

presented in details.
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Chapter 2

Disparity Filtering with 3D

Convolutional Neural Networks

A binocular stereo matching problem can be described as identifying matching pixels

in two images captured at different horizontal positions [102]. Under the epipolar

constraint, if the same 3D point p is projected to pixel (x1, y1) on the left image I1

and pixel (x2, y2) on the right image I2, then:

x1 − d = x2 and y1 = y2, (2.1)

where d is the disparity between the two pixels, which reveals the depth of the 3D

point p.

Due to its important applications, the stereo matching problem has been ex-

tensively studied over the past decades, with numerous algorithms proposed [78].

Nevertheless, even the state-of-the-art methods cannot guarantee the generation of

accurate disparity maps under challenging situations, such as lighting changes, occlu-

sions, low or no texture, non-Lambertian surfaces [86], reflections and translucency
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of objects. Hence, sparse disparity matching algorithms were developed to output

accurate disparity values for selected pixels only [49].

As reviewed by Scharstein and Szeliski [78], most stereo matching algorithms per-

form the following four steps: (1) matching cost computation, (2) cost aggregation,

(3) disparity computation and optimization, and (4) refinement. Many existing sparse

disparity matching algorithms [52, 91, 29] use customized disparity computation and

optimization approaches to generate accurate matches only. Instead of designing yet

another disparity optimization method for sparse disparity matching, the approach

proposed herein focuses on the refinement step. In particular, a learning-based ap-

proach is presented to distinguish accurate disparity values from mismatches so that

the latter group can be filtered out. The detector is trained directly based on the

input 3D matching cost volumes and the accuracy of the output disparity maps. To

work with 3D cost volumes, a 3D CNN architecture is designed for training.

In summary, this chapter demonstrates that it is possible to infer the accuracy of

estimated disparity values based on input 3D cost volumes. The 3D CNNs designed

accordingly can effectively filter out mismatches and produce sparse disparity maps.

2.1 Related work

2.1.1 Sparse disparity algorithms

Compared to dense stereo matching algorithms that assign disparities to all valid pix-

els [97], sparse (also referred to as semi-dense) stereo matching algorithms concentrate

on outputting accurate disparity values for selected pixels.
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An early work on sparse stereo matching was proposed by Manduchi and Tomasi

[52], which applied matching algorithms on distinctive points first and further calcu-

lated disparities for the remaining pixels. Veksler [91] utilized graph cuts to detect

textured areas as an alternative to unambiguous points and generated corresponding

semi-dense results. By design, their approach can filter out mismatches caused by

lack of textures, but not by occlusions. Semi-Global Matching (SGM) [29] utilized

multiple 1D constraints to generate accurate semi-dense results based on peak re-

moval and consistency checks. Gong and Yang [22] proposed a reliability measure to

detect potential mismatches from disparity maps generated using Dynamic Program-

ing (DP). This work was later extended and implemented on graphics hardware for

real-time performance [24].

Inspiring algorithms were also proposed more recently to further improve accuracy

of sparse stereo matching. The Efficient Large-scale Stereo Matching (ELAS) algo-

rithm [21] creates a 2D mesh via a triangulation supported by a set of sparse matching

points to reduce matching ambiguities of the remaining points and to compute dispar-

ities for high resolution images. Following the idea of triangulation, Jellal et al. [36]

proposed a line segment extension of ELAS algorithm, referred to as LS-ELAS. A set

of line segments and support points allow this algorithm to generate a more informa-

tive triangulation mesh which can better handle depth discontinuities. Assuming the

association between color and disparity, the Hidden Markov Trees (HMT) method

[72] creates minimum spanning trees for images, passes aggregated costs along the

tree branches, and finally performs median filtering to remove isolated mismatches.

Generally, algorithms in this category utilize constraints and/or a customized

disparity computation step for sparse stereo matching. It is therefore hard to apply

7



to different disparity optimization approaches.

2.1.2 Filtering through confidence measures

Approaches have also been proposed for computing confidence measures on disparity

maps generated by dense stereo matching algorithms. These measures can then be

used to filter out potential mismatches at the disparity refinement step. Quantitative

evaluations on traditional confidence measures were presented in Hu et al. [30] and

Poggi et al. [69]. How to improve error detection through combining multivariate

confidence measures was introduced in Haeusler et al. [26]. Furthermore, Park and

Yoon [65] proposed to apply a regression forest framework for selecting effective confi-

dence measures. Relying on O(1) features and machine learning, Poggi and Mattoccia

[67] proposed an improved scanline aggregation strategy, which performs streaking

detection on each path in the SGM algorithm to generate a confidence measure.

The approach proposed in this Chapter aims at filtering out mismatches at the

disparity refinement step and hence belongs to this category. Nevertheless, instead of

using customized confidence measures, a learning-based approach is employed to di-

rectly infer the confidence of disparity computation output. This makes the proposed

algorithm similar to recent learning-based works [10, 80], which compute confidences

through training 2D CNNs on 2D image or disparity patches. A key difference is,

however, that a 3D CNN is employed in the presented approach. Utilizing a stereo

dataset that has ground truth available, the 3D CNN is trained based on the accu-

racy of the disparity computation output and the respective 3D cost volume input.

Experimental results show that this learning model can make accurate predictions
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and therefore effectively filter out mismatches.

2.1.3 Convolutional neural networks

The pioneering work of CNNs was established by LeCun et al. [50] for recognizing

2D shapes, such as digital numbers and hand-written characters. Over the past few

years, CNNs have shown their power in many computer vision problems, such as im-

age classification [48], and point-wise localization and segmentation [14]. Extensions

to 3D CNN were also proposed and applied to 3D object recognition or classifica-

tion [59], spatiotemporal features extraction [90], scene flow estimation [60], human

action recognition [38], and landing zone detection using light detection and ranging

(LiDAR) sensors [58].

A few attempts were also made to apply CNNs to the stereo matching problem.

Zbontar and LeCun [103] focused on the matching cost computation step and designed

a CNN architecture that computes the matching cost for two 9 × 9 image patches.

2D CNNs were further applied to compute confidence measures in Park et al. [64]

and Poggi et al. [68], where the training inputs are 2D patches from either the input

images or the disparity maps. Luo et al. [51] treated the stereo matching problem

as a multi-class classification problem, where the classes are all possible disparities.

A matching network is proposed accordingly to efficiently produce accurate disparity

maps. In comparison, Kendall et al. [41] proposed an end-to-end architecture to

learn a stereo regression model. This architecture uses 2D convolutions to learn

contextual information and further combines 3D convolutions and deconvolutions to

regularize its disparity cost volume, from which disparities are regressed by a soft
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argmin function. An end-to-end learning framework was also proposed for multi-

view stereo (MVS) [37], which converts images to 3D voxel representations through

projection and trains a 3D CNN model to predict the surface of the 3D object.

Instead of training a multi-class classifier [51] or a regression model [41] to output

disparity values directly, the proposed approach trains a binary classifier to predict

whether the disparity value generated at each pixel by a given algorithm is accurate.

As a result, this approach can work with different dense stereo matching approaches

and turn their noisy disparity map output into sparse but accurate matches.

2.2 Methodology

As mentioned above, the proposed approach focuses on the disparity refinement step

and can work with different matching cost generation and disparity computation

methods. Using the approach with the simple WTA optimization scheme will be

illustrated here.

Figure 2.1 shows the pipeline of the whole sparse stereo matching process. First,

the sum of squared differences (SSD) approach is used in the initial matching cost

computation step. This is followed by cost aggregation through bilateral filtering [88].

Different window sizes were tested and in the end a 7× 7 window size was used.

The above two steps generate a 3D cost volume, C(x, y, d), where the value at

location (x, y, d) stores the locally aggregated cost of matching pixel (x, y) in the left

image with (x− d, y) in the right image. A disparity map can then be generated by

performing the following WTA optimization at each pixel location:

d(x, y) = arg min
d

C(x, y, d). (2.2)
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Figure 2.1: Sparse stereo matching pipeline. Given a pair of rectified images [77],

a matching cost volume is first computed, followed by cost aggregation to suppress

isolated noise. Each slice of the 3D cost volume corresponds to a disparity space

image. A disparity map is computed though searching the minimum cost locations

within the cost volume. The presented disparity filtering approach works at the final

refinement stage to detect and remove mismatches.

The task now is to train a model that can predict whether the obtained d(x, y) is

an accurate disparity value based on the cost volume C(x, y, d).

2.2.1 3D CNN architecture

Under an ideal situation, when a 3D point p is projected to pixel (x, y) in image I1

and (x − d, y) in I2, I1(x, y)==I2(x − d, y) and I1(x, y) 6= I2(x − g, y) for all g 6= d.

This implies that each column (x, y) of the matching cost volume C(x, y, d), referred

to as a matching cost curve, has a unique and clearly identifiable global minimum,

which corresponds to the correct disparity value. However in practice, due to image

capturing noise and matching ambiguities, it is often difficult to locate the minimum
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Figure 2.2: Matching cost curves of a given pixel and its 24 closest neighbors. Curves

with unique minima are highlighted with blue rectangles, whereas those without

clearly identifiable minima are shown in black.

as shown in Figure 2.2. To address this problem, additional constraints, such as local

smoothness and left-right consistency [22], are often used. The problem can then be

formulated as a global optimization problem, which is solved using various optimiza-

tion techniques, such as dynamic programming, graph cuts, etc. Nevertheless, none

of these algorithms can ensure the accuracy of the generated disparity maps.

The hypothesis is that it is possible to infer whether the disparity value computed

by a given algorithm is accurate through the analysis of nearby matching cost curves.

Following this idea, a 3D CNN model is constructed, which takes local matching costs

as input and predicts whether the generated disparity value is accurate.
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Figure 2.3: The proposed 3D CNN architecture. The input is represented as a set of

3D cost volumes (one for each stereo image pair) and a set of training samples. Each

training sample is used to retrieve a 11×11×11 local window from its associated cost

volume, pixel coordinates, and estimated disparity. The samples go through two 3D

convolutional layers to obtain 32 3× 3× 3 matrices. The 864 values in these matrices

go through a fully connected layer before reaching the output node.

As shown in Figure 2.3, the experimental 3D CNN architecture has 5 layers,

including input and output. Note that this architecture can be redesigned by including

multiple convolutional layers and fully connected layers based on the training dataset.

Cost values within 11× 11× 11 local windows extracted from cost volumes are first

processed using 16 5 × 5 × 5 convolutional kernels to extract features. The results

are further processed by 512 5× 5× 5 convolutional kernels to generate 32 matrices.
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Values in these matrices are mapped to a total of 864 neurons, which go through a

fully connected network to a hidden layer that has 128 neurons. Finally, these neurons

are connected to the output neuron, which predicts the accuracy of the disparity value

based on input local costs. The number of parameters between adjacent layers from

left to right are 2016, 64032, 110720 and 128, respectively.

2.2.2 Training data

To obtain training data for the above CNN model, stereo image pairs with ground

truth are needed. Here 11 image pairs were selected from the Middlebury 2014 stereo

dataset [77] with consistent lighting condition between left and right images. The

estimated disparity maps De(x, y) are evaluated using the ground truth map Dt(x, y)

to identify mismatches. Here, a pixel (x, y) is considered as accurately matched if

and only if ‖De(x, y) −Dt(x, y)‖ < T , where T is a threshold value. In many cases,

the number of positive (accurately matched) and negative (mismatched) samples can

be differ greatly as shown in Figure 2.4(a-b). To balance the two sides and to reduce

the number of samples for training, the same number of samples from both sets are

randomly chosen; see Figure 2.4(c-d). Note that pixels along the image boundary are

excluded from sampling so that all selected samples have properly defined neighbors.

For each selected sample (x, y), cost values from an 11× 11× 11 window centered

at (x, y,De(x, y)) of the corresponding 3D cost volume are extracted to form a matrix

M . For more effective training, costs in matrix M are normalized to zero-mean and

one-variance:

Mnorm(x, y, z) =
M(x, y, z)−mean(M)

var(M)
. (2.3)
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(a) mismatches (b) accurate matches

(c) negative samples (d) positive samples

Figure 2.4: Selection of training samples. Pixels in a given disparity map are first

classified into mismatches (a) and accurate matches (b) using ground truth disparity.

Negative (c) and positive samples (d) are randomly selected.
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The CNN network is then trained to output value “1” for positive examples and “0”

for negative examples.

2.2.3 Training method

In the described CNN architecture, two convolutional layers and two fully connected

layers are used to implement a feedforward operation [50]. Gradient descent with mo-

mentum is used as the optimization algorithm. Each matrix Mnl
l in the convolutional

layers (layer 2 and 3) is calculated by:

Mnl
l = f

(
Nl−1∑
i=1

(
M i

l−1 ∗K(i,nl)

)
+ bnl

l

)
, (2.4)

where l denotes the layer number, nl refers toan individual matrix in layer l, and Nl

is the total number of matrices in layer l. K(i,j) refers to the convolutional kernel, ∗

is 3D convolution operator, and bnl
l is the bias.

Note that these two convolutional layers have different activation functions. f(x) =

max(0, x) is applied to the first layer, whereas the sigmoid function f(x) = (1+e−x)−1

is used for the second.

The two fully connected layers use the sigmoid functions for activation. Each

neuron anl
l at location nl of layer l is computed by:

anl
l = f

(
Nl−1∑
i=1

(
ail−1 · w(i,nl)

)
+ bnl

l

)
, (2.5)

where w(i,j) is the weight between two neurons.

Once the final output at is computed for the last layer, its difference between the

expected output y gives us the training error e = (at − y)2/2. This training error is

propagated backwards through 3D CNNs to update the weights and biases [50].
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2.2.4 Postprocessing for subpixel accuracy

As shown in Figure 2.5, the sparse disparity maps generated through CNN-based

filtering still contain isolated noises. As suggested by Taniai et al. [84], a 3 × 3

median filter are applied as postprocessing to remove the noise.

In addition, the disparity maps generated by WTA only have pixel level accuracy.

To obtain disparity values at subpixel accuracy, an additional 3× 3 bilateral filtering

step can also be applied. During the bilateral filtering, if a pixel does not have

disparity a value assigned, but 2/3 of its neighbors have disparity values, the result

of the bilateral filtering will be assigned to this pixel. This approach helps to increase

the density of output disparity maps.

2.3 Experimental Results

To train a robust 3D CNN model, a large number of samples from different scenes

are needed. Here, the Middlebury stereo 2014 datasets [77] are used, which have

been commonly used to evaluate the state-of-art algorithms over the past few years.

Since the proposed approach aim to detect mismatches with large disparity errors,

quarter resolution images are used, which have resolution around 700 × 500 pixels.

In addition, image pairs with dramatic lighting changes (i.e., ClassE, DjembL and

PianoL) are not used here simply because the dense disparity maps generated using

SSD cost aggregation and WTA disparity optimization contain too many mismatches

to perform meaningful filtering. Hence, only the remaining 27 image pairs with similar

lighting conditions are used for training and testing.

As mentioned in Section 2.2.2, when generating training samples, a pixel is selected
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(a) 5× 5 (b) 7× 7 (c) 11× 11

(d) error rate=2.45% (e) error rate=2.16% (f) error rate=2.54%

(g) ROC curve

Figure 2.5: Effectiveness of disparity filtering under different parameter settings: (a-c)

disparity maps generated using WTA under different cost aggregation window sizes;

(d-f) the corresponding CNN filtering results obtained under threshold R = 0.5; (g)

the ROC curve obtained under different R values.
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Figure 2.6: Change in training error as the number of iterations increases. Here,

“conv” and “fc” denote the convolutional layer and the fully connected layer, respec-

tively.

as a negative sample (mismatch) if the absolute difference between its disparity value

and ground truth is greater than threshold T . To make sparse disparity matching re-

sults generated using quarter resolution images comparable with “bad 4.0” evaluation

on the Middlebury Stereo Vision site, T was set to 1.

1 million samples are randomly ordered and organized as batches (64 samples in

each batch) for unbiased training. The model was run for 200 iterations for all the

samples. Figure 2.6 plots the training error that occurred during the training process.

It shows that the classifier’s performance gradually improves with more iterations and

adding a convolutional layer or fully connected layer helps the model further reduce

the error.

2.3.1 Impact of parameter settings

Threshold parameters Based on the input 3D cost matrix, the trained 3D CNN

model outputs a single value at, which predicts the reliability of estimated disparity.
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Figure 2.7: Results of 3D CNN models defined under different neighborhood sizes.

Increasing the initial neighborhood size from 11 × 11 × 11 to 21 × 21 × 21 does not

change the effectiveness of the filtering.

A second threshold value R is used here to filter out all disparity values with at < R.

By definition, a higher R value leads to sparser but more accurate disparity matches,

whereas a lower R yields denser but noisier matches. Changing the R value results in

a ROC (Receiver Operating Characteristic) curve. The presented 3D CNN model can

filter out more than 70% of mismatches with less than 10% false negatives, regardless

of whether 5× 5, 7× 7 or 11× 11 windows were used for cost aggregation.

Input neighborhood size Besides the network presented in Section 2.2.1, a dif-

ferent 3D CNN model that uses larger input neighborhood size is also tested. This

second model takes a 21× 21× 21 local cost matrix as input and uses an additional

down-sampling layer after each convolutional layer to obtain the same number of

neurons for feeding into the fully connected layer. Figure 2.7 compares the perfor-
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mance between the two CNN models, which shows that larger input neighborhood

size, which significantly increases computation time, does not necessarily improve

the performance of disparity filtering. Hence, the model that uses a 11 × 11 × 11

neighborhood size is chosen due to its lower computational cost.

(a) (b) (c)

Figure 2.8: Results from different matching cost generation and disparity optimization

approaches: (a) result of DP optimization before and after CNN-based filtering; (b)

result of RDP optimization; (c) the ROC curves obtained under different R values.

2.3.2 Performances on different stereo matching approaches

The 3D CNN model presented here is trained directly on the 3D cost volume and the

corresponding disparity map. It does not make any assumption on how the disparity

values are computed and hence can work with different stereo matching techniques.

For test dataset, the 3D cost volumes are generated using local bilateral filtering cost

aggregation, whereas the disparity maps are computed using simple WTA optimiza-

tion. Here, the effectiveness of the disparity filtering on disparity maps generated
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using Dynamic Programming (DP) and Reliability-based DP (RDP) [23] approaches

is also tested. For the case of DP, the 3D CNN model is trained based on the same

3D cost volumes as the ones for WTA, but the corresponding disparity maps are

generated using DP. The results demonstrate that the presented 3D CNN-based clas-

sifier can effectively label mismatches generated by a different disparity optimization

technique; see Figure 2.8(a). The corresponding ROC curve (Figure 2.8(c)) is very

close to the one obtained under WTA optimization.

The RDP, on the other hand, can be considered a global cost-aggregation ap-

proach. It propagates local matching costs along scanlines, which produces a set of

aggregated cost volumes (AR, AL, AD, and AU for results obtained from left-to-right,

right-to-left, up-to-down, and down-to-up directions, respectively). A new 3D cost

volume C ′(x, y, d) can be calculated by:

C ′(x, y, d) = AR(x, y, d) + AL(x, y, d) + AU(x, y, d)

+AD(x, y, d)− 2 ∗ C(x, y, d).

(2.6)

The final disparity maps are generated by running WTA optimization on C ′(x, y, d).

To evaluate the effectiveness of the presented disparity filtering approach, the 3D

CNN model is trained on C ′(x, y, d) and the corresponding WTA disparity values.

Figure 2.8(b) shows that the model can effectively filter out mismatches. However,

since the disparity maps generated by RDP contain fewer mismatches than those of

WTA and DP, the corresponding ROC curve is lower than those plotted for the latter

two.
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Figure 2.9: Comparison with existing approaches including SED [66], R-NCC (anony-

mous), r200high [43], MPSV [6], ICSG [82], SGM [29], IDR [47], TMAP [72] INTS

[34] and SNCC [16] on the Middlebury Stereo Evaluation site.

2.3.3 Comparison with existing methods

The approach is performed on both “training sparse” and “test sparse” datasets pro-

vided by the Middlebury Stereo Evaluation site. The evaluation results on the “test

sparse” dataset are accessible at http://vision.middlebury.edu/stereo/eval3/,

which show that the approach (referred as “DF”) ranks 3rd under the “bad 4.0” cat-

egory. The Middlebury evaluation ranks different algorithms based on the error rates

of generated disparity maps only, and hence favors approaches that output fewer dis-

parity matches (that is, more invalid pixels). To compare different algorithms based

on both performance metrics, here the error rates vs. invalid pixels rate graph under

different settings of the threshold parameter R is plotted in Figure 2.9. The eval-

uation clearly shows that the proposed approach outperforms 8 of the 11 existing
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(a) (b) (c)

(d)

Figure 2.10: Confidence measures: (a-c) dense disparity generated by WTA, DP, and

RDP (top), as well as the corresponding confidence maps for the “Teddy” dataset

(bottom); (d) comparison with existing confidence measures on error rate over dis-

parity map density [30]
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approaches. The reason that the approach does not perform as well as INTS [34],

SGM [29] and IDR [47], is mainly because the disparity maps generated by the WTA

optimization contain a high percentage of mismatches.

Apart from filtering mismatches, the output of the 3D CNN model can also be

used as confidence measures for estimated disparity values. Here, the approach is

compared with existing confidence measures using the same “Teddy” pair [77]. The

Area Under the Curve (AUC) metric introduced by Hu and Mordohai [30] is used

as the metric and the curves for different approaches are plotted in Figure 2.10. It

is worth noting that the dense disparity maps generated by RDP is more accurate

than those by DP, which are also better than WTA. Hence, the AUC for RDP with

the presented filtering is the smallest, whereas the AUC for WTA with the filtering

is the largest. Nevertheless, in all 3 cases, the AUC values are smaller than existing

approaches reported in Hu et al. [30]; see Table 2.1.

2.4 Summary

A novel disparity filtering approach is presented in this chapter, which is based on a

binary classifier trained using a 3D CNN model. It is possible to infer whether the

disparity values generated by a given disparity computation algorithm are accurate

or not based on local 3D matching costs. Evaluations using the Middlebury Stereo

Vision web page show that the proposed approach is comparable to most of the

existing sparse stereo matching techniques. Additional comparisons also demonstrate

that the approach is more effective than traditional confidence measures.

The matching costs involved in this chapter were computed using SSD, which
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Table 2.1: AUC for different approaches.

Method AUC

MSM [15] 0.162

CUR [15] 0.126

LRC [30] 0.115

AML [62] 0.096

LRD [30] 0.089

PKRN [30] 0.086

the proposed(WTA) 0.038

the proposed(DP) 0.030

the proposed(RDP) 0.020

lacks the capability to address image pairs with lighting changes and lack of texture.

How to use a learning-based approach to enhance the cost computation process and

address these challenges is investigated in Chapter 3.
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Chapter 3

Semi-dense Stereo Matching using

Dual CNNs

The disparity filtering approach in Chapter 2 is proposed to select accurate matches

from disparity maps generated by a traditional stereo matching algorithm. When

handling image pairs captured under varying lighting conditions or for textureless

objects, the disparity maps typically suffer from a deficiency of valid matches, leading

to extremely sparse results. In this chapter, a fully learning-based pipeline to tackle

challenging situations is explored.

Approaches have been proposed for generating matching cost volumes (that is,

disparity space images) using CNNs [64, 97, 103]. While inspiring results are gen-

erated, these existing approaches are not robust enough to handle ambiguous cases

as referred above. Heuristically-defined post-processing steps are often applied to

correct mismatches. The hypothesis here is that the performance of CNNs can be

noticeably improved if more information is fed into the network. Hence, instead of
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trying to correct mismatches as post-processing, a pre-processing step is introduced

to perform image transforms that are robust against lighting changes and can add

distinguishable patterns to textureless areas. The output of these transforms are

used as additional information channels, together with grayscale images, for training

a matching CNN model.

The experimental results show that the model learned can effectively separate

correct stereo matches from mismatches so that accurate disparity maps can also be

generated using the simplest WTA optimization as in Chapter 2.

Learning-based approaches have also been proposed to compute confidence mea-

sures for generated disparity values so that mismatches can be filtered out [10, 81, 97].

Following this idea, a second CNN model is designed to evaluate the disparity map

generated through WTA. Trained with only one input image and the disparity map,

this evaluation CNN model can effectively filter out mismatches and produce accurate

semi-dense disparity maps.

Figure 3.1 shows the pipeline of the whole process. Since both matching cost

generation and disparity confidence evaluation are performed using a learning-based

approach, the algorithm contains very few handcrafted parameters. The experimental

results on the Middlebury 2014 stereo dataset [77] demonstrate that the present dual-

CNN algorithm is comparable to most existing sparse stereo techniques.

3.1 Related Work

In addition to the literature review in Chapter 2, Zhang et al. [104] used CNNs

and SGM to generate initial disparity maps and further combine Left-Right Differ-
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Figure 3.1: Semi-dense stereo matching pipeline. Given a pair of rectified images [77],

how well a pair of image patches match is evaluated using a matching-CNN model.

The results form a matching cost volume, from which a disparity map is generated

using simple WTA optimization. Finally, an evaluation-CNN model is applied to

filter out mismatches.

ence (LRD) [30] with disparity distance regarding local planes to perform confidence

checks. In addition, they adopted segmentation and surface normal constraints within

the post-processing to enhance the reliability of disparity estimation. To fully utilize

the ability of CNNs in terms of feature extraction, Park and Lee [64] proposed a

revised CNN model based on a large pooling window between convolutional layers

for wider receptive fields to compute the matching cost, and they performed a similar

post-processing pipeline as introduced in Zbontar et al. [103]. Another model revision,

similar to Park and Lee’s work [64], was introduced by Ye et al. [97], which used a

multi-size and multi-layer pooling scheme to take wider neighboring information into

consideration. Moreover, a disparity refinement CNN model was later demonstrated

in their post-processing to blend the optimal and suboptimal disparity values. Both
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the above revisions presented solid results in image areas with little or no texture,

disparity discontinuities and occlusions.

Attempts were also made to train end-to-end deep learning architectures for pre-

dicting disparity maps from input images directly, without the needs of explicitly

computing the matching cost volume [9, 41, 63]. As a result, these end-to-end models

are efficient but require larger amount of GPU memory than the previous patch-based

approaches. More importantly, these models were often trained on stereo datasets

with specific image resolutions and disparity ranges and hence, cannot be applied

to other input data. This restriction also limits the feasibility of training CNNs to

concurrently preserve geometric and semantic similarity [12, 79, 93].

Once dense disparity results are generated, confidence measures can be applied to

filter out inaccurate disparity values in the disparity refinement step. Quantitative

evaluations on traditional confidence measures were presented by Hu and Mordohai

[30], and the most recent review was given by Poggi et al. [69]. The proposed approach

in this chapter is similar to these recent works [10, 81, 97], which compute confidences

through training 2D CNNs on 2D image or/and disparity patches. A key difference

is, however, that only the left image and its raw disparity map generated by WTA

are used to train a confidence CNN model, whereas existing approaches require the

generation of both left and right disparity maps.

3.2 Methodology

In this chapter, a robust and learning-based stereo matching approach is developed

by assigning disparity values only for pixels with visual cues. As shown in Figure 3.1,
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Figure 3.2: Comparison between the baseline architecture “MC-CNN-arct” in Zbon-

tar et al. [103] and the proposed model matching-Net. The left and right image

patches for the latter are selected from an image collection, which includes not only

grayscale images, but also channels generated by non-parametric transforms. In addi-

tion, the concatenation operation is replaced by 3D convolution, which can separately

group different transforms by adjusting stride size in the third dimension; see Section

3.3 for model configuration.

two CNN models, referred to as matching-Net and evaluation-Net, are utilized in the

proposed pipeline: matching-Net is constructed as the substitution of matching cost

computation and aggregation steps, and outputs a matching similarity measure for

each pixel pair; evaluation-Net performs confidence measures on the raw disparity

maps generated by WTA based on the similarity scores.
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3.2.1 Matching-Net

The matching-Net model serves the same purpose as the “MC-CNN-arct” in Zhang

et al. [103], but there are several key differences; see Figure 3.2. First of all, the neural

network is fed with additional global information (namely, results of non-parametric

transformations) that are difficult to generate through convolutions. Secondly, 3D

convolution networks are employed, which was found to improve the performance. It

is worth noting that the proposed approach is also different from other attempts to

improve “MC-CNN-arct”, which use very large image patches and multiple pooling

sizes [64, 97]. These approaches require an extensive amount of GPU memory, which

limits their usage. In order to feed global information into the network trained on

small patches, the strategy adopted is to perform non-parametric transforms.

3.2.1.1 Lighting Difference

For robust stereo matching, lighting differences as an external factor cannot be ne-

glected. To address this factor, “MC-CNN-arct” manually adjusts the brightness and

contrast of image pairs to generate extra data for training. However, datasets with

lighting differences may vary from one to another, making it hard to train a model

that is robust to all cases.

Aiming for an approach with less human intervention, the used of rank transform is

proposed to ameliorate lighting variations between image pairs. As a non-parametric

local transform, rank transform was first introduced by Zabih [101] to achieve better

visual correspondence near discontinuities in disparity. This endows stereo algorithms

based on rank transform with the capability to perform similarity estimation for image
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(a) Grayscale (b) 15× 15 (c) 31× 31 (d) 61× 61

(e) Grayscale (f) 15× 15 (g) 31× 31 (h) 61× 61

Figure 3.3: Results of “MotorE” dataset (left image on top row and right image on

bottom) using rank transform under different neighborhood sizes. Larger windows

generally lead to smoother results, but at the expense of losing fine information.

pairs with different lighting conditions.

The rank transform R(p) for pixel p in image I is computed as:

R(p) =
1

|Np|
∑
q∈Np

(I(q) > I(p)?1 : 0) , (3.1)

where Np is a set containing pixels within a square window centered at p. |S| is the

size of set S. Figure 3.3 shows the results of rank transform under different window

sizes, where the difference of lighting conditions is ameliorated effectively.

3.2.1.2 Low Texture

Besides lighting variations, low or no texture poses another challenge for stereo match-

ing. For a given pixel p within a texture-less region, the best way to estimate its

disparity is based on its neighbors who have similar depth but are in texture-rich
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(a) Grayscale (b) 15× 15 (c) 31× 31 (d) 61× 61

(e) Grayscale (f) 15× 15 (g) 31× 31 (h) 61× 61

Figure 3.4: Results of companion transform under different neighborhood sizes for

the “Jadepl” dataset (left image on top row and right image on bottom). The trans-

formation results are brightened for better viewing. The results show that companion

transform successfully adds distinguishable features to texture-less areas; see regions

highlighted.

areas (that is, they have sufficient visual cues for accurate disparity estimation). Tra-

ditional stereo algorithms [78] mostly utilize cost aggregation, segmentation-based

matching, or global optimization for disparity computation to handle ambiguous re-

gions. As mentioned above, the intention here is to feed the neural networks with

global information. Hence, a novel “companion transform” is designed and applied

in the pre-processing step.

The idea of using a companion transform is inspired by SGM [29], which suggests

performing smoothness control by minimizing an energy function on 16 directions.

Here, the goal is to design a transformation that can add distinguishable features
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to texture-less areas. Hence, for a given pixel p, the number of pixels that: 1)

have the same intensity as p and 2) lie on one of the paths started from p as in

Hirschmuller [29] is computed. These pixels are referred to as p’s companions and

the transform as companion transform. In practice, 8 ray directions (left, right, up,

down, and 4 diagonal directions) work well, though other settings (4 or 16 directions)

can also be used.

C(p) =
1

|Np ∩ Ωp|
∑

q∈Np∩Ωp

(I(q) == I(p)?1 : 0) , (3.2)

where Ωp is a set containing pixels on the paths starting from p.

Figure 3.4 shows the results of companion transform under different window sizes.

Figure 3.5 further illustrates how the companion transform result adds distinguishable

patterns to pixels in texture-less areas.

3.2.1.3 Training Data

To train the CNN model, the 15 image pairs from the Middlebury 2014 stereo training

dataset [77], which contains examples of lighting variations and texture-less areas,

are utilized. Each input image is first converted to grayscale before applying rank

and companion transforms. The outputs of the two transforms, together with the

grayscale images, form multi-channel images. Each training sample contains a pair

of image patches centered at pixel (x, y) in the left image and (x− d, y) in the right

image, respectively. The input sample is assembled into a 3D matrix M [w,w, 2× l],

where w is the size of the patches and l is the number of channels in the multi-channel

image. The ground-truth disparity values provided by the dataset are used to select

matched samples and random disparity values other than the ground truth are used
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Figure 3.5: Comparison among information carried in different channels (grayscale,

31 × 31 rank transform, and 61 × 61 companion transform). The curves are plotted

based on the values of different pixels on the same row marked in blue in Figure 3.4.

The left side shows the left view, with the position of the target pixel p marked by

red vertical lines. The right side shows the right view, where the red line shows the

position of the correct corresponding pixel of p. Due to the lack of texture, neither

the grayscale nor the rank transform channels provide distinguishable patterns for

matching. The companion transform can amend information that is useful for the

matching-CNN.
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to generate mismatched samples. Similar to Zbontar et al. [103], the sample matching

hypothesis is adopted so that the same number of matches and mismatches are used

for training. The proposed matching-Net is then trained to output a value of “0” for

correct matches and “1” for mismatches.

3.2.2 Disparity Computation

For each novel stereo image pair, the matching-Net trained above is used to generate

a 3D cost volume Cs(x, y, d), where the value at location (x, y, d) stores the cost

of matching pixel (x, y) in the left image with (x − d, y) in the right image. The

higher the value, the more likely the corresponding pair of pixels are mismatches

since the network is trained to output “1” for mismatches. Unlike many existing

approaches that resort to complex and heuristically designed cost aggregation and

disparity optimization approaches [78], this approach relies on the learning network

to distinguish correct matches from mismatches. Expecting the correct matches to

have the smallest values in the cost volume Cs(x, y, d), the simplest WTA optimization

is applied to compute the raw disparity map.

3.2.3 Evaluation-Net

The matching-Net is trained to measure how well two images patches match. It makes

decisions locally and does not check the consistency among best matches found for

neighboring pixels. When the raw disparity maps are computed by local WTA, they

inevitably contain mismatches, especially in occluded and low-textured areas. To

filter out these mismatches, another CNN model, evaluation-Net, is constructed to
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Figure 3.6: Architecture used for the evaluation-Net. The image patches here are

generally bigger than those used in the matching-Net, therefore, multiple pooling

layers are added for efficiency. Detailed model configuration can be found in Section

3.3.

implement consistency checks and compute confidence measures.

Learning-based confidence measures have been successfully applied to detecting

mismatches and further improving the accuracy of stereo matching [69]. Similar to

the 2D CNN model for error detection proposed in Ye et al. [97], only left images and

their disparity maps are selected to train the model. A key difference, however, is that

no handcrafted operation is involved in the proposed approach to fuse left and right

disparity maps. In addition, the network contains both 2D and 3D convolutional

layers to effectively identify mismatches from disparity maps; see Figure 3.6. 3D

convolution is adopted here to allow the network to learn from the correlation between

pixels’ intensities and disparity values.

The evaluation-Net is trained using both matches and mismatches in the esti-

mated disparity maps De(x, y) for all training images. Mismatches are identified by

comparing De(x, y) with ground-truth disparity maps Dt(x, y). Here, a pixel (x, y) is
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(a) raw disparity (b) mismatches (c) matches

Figure 3.7: Training samples. Pixels in a given disparity map (a) are classified into

mismatches (b) and accurate matches (c) using ground-truth disparity.

taken as mismatched if and only if

‖De(x, y)−Dt(x, y)‖ > Te , (3.3)

where Te is a threshold value commonly assigned with 1 pixel; see Figure 3.7(b-c).

In the estimated disparity map De(x, y), the majority of pixels have correct dis-

parity values, resulting in much more positive (accurately matched) samples than

negative (mismatched) samples. Hence, all negative samples were collected and the

same number of positive samples are randomly generated. For each selected sample

(x, y), grayscale and estimated disparity values from patches centered at (x, y) are ex-

tracted to form a 3D matrix. The evaluation-Net is then trained to output value “0”

for negative samples and “1” for positive samples. The output of the evaluation-Net

can then be used to filter out potential mismatches that achieve scores lower than a

confidence threshold R.
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3.3 Experimental Results

In this section, the hyperparameters [103] for both of the proposed CNN models

will be presented and followed by a set of performance evaluations. The goal of

the evaluations is to determine: 1) whether the non-parametric transforms can help

improve the disparity map accuracy generated using the matching-Net; and 2) how

well the overall dual-CNN approach performs compared to the state-of-the-art sparse

stereo matching techniques.

Hyperparameters and implementations: The input of the matching-Net is a

3D matrix that consists of l = 6 layers in the experiment. Both left and right images

contains 3 layers, including the grayscale image, a rank transform, and a companion

transform respectively. Here, the transform window sizes wr and wc are set to 31

and 61. Different layers from the left and right images are stored in the matrix in

alternating order. For the evaluation-Net, the input contains only two layers of data:

one is the grayscale image and the other the raw disparity map, both from the left

image. Table 3.1 shows the hyperparameters of the experimental models.

The implementation of the CNN models are based on Tensorflow using classifica-

tion cross-entropy loss, −(t log s+(1−t) log(1−s)), where s denotes the output value.

Here, t was set to 1 for mismatches and to 0 for matches to train the matching-Net

as in “MC-CNN-acrt”, but t = 1 for positive samples and t = 0 for negative sam-

ples to perform confidence measure through the evaluation-Net. Both models utilize

a gradually decreasing learning rate from 0.002 to 0.0001, and arrive a stable state

after running 20 epochs on full training data.

Effectiveness of non-parametric transforms: The overall structure of “MC-
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Table 3.1: Hyperparameters of the matching-Net and evaluation-Net. Here, “Conv”,

“Mp” and “Fc” denote the convolutional, the max pooling, and the fully connected

layers respectively.

matching-Net evaluation-Net

Attributes Kernel, quantity and stride Attributes Kernel, quantity and stride

Input 11× 11× 6, 1 Input 101× 101× 2, 1

Conv1(2D) 3× 3× 1, 32, 1× 1× 1 Conv1(2D) 3× 3× 1, 16, 1× 1× 1

Conv2(3D) 3× 3× 2, 128, 1× 1× 2 Mp1 2× 2× 1, 16, 2× 2× 1

Conv3(3D) 3× 3× 3, 64, 1× 1× 1 Conv2(2D) 3× 3× 1, 32, 1× 1× 1

FC1 1600 Mp2 2× 2× 1, 32, 2× 2× 1

FC2 128 Conv3(2D) 3× 3× 1, 64, 1× 1× 1

Output 2 Mp3 2× 2× 1, 64, 2× 2× 1

Conv4(3D) 3× 3× 2, 128, 1× 1× 1

Mp4 2× 2× 1, 128, 2× 2× 1

FC1 128

Output 2
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(a) (b) (c)

Figure 3.8: Comparison of dense disparity maps. The top stereo image pair (“ArtL”)

contains lighting condition changes, whereas the bottom pair (“Recyc”) contains areas

with low texture (a). Compared to the results generated by “MC-CNN-acrt” (b), the

disparity maps generated by the proposed approach (c) are much smoother.

CNN-acrt” and matching-Net are quite similar. The key difference is that the input

patches of “MC-CNN-acrt” are grayscale images only, whereas the matching-Net

uses additional non-parametric transforms. Hence, to evaluate the effectiveness of

non-parametric transforms, the raw disparity maps generated by the two approaches

are compared. Based on the same training dataset from Middlebury [77], Figure

3.8 directly compares the raw disparity maps generated by “MC-CNN-acrt” and

matching-Net. It suggests that the additional transforms allow the network to better

handle challenging cases. The raw disparity maps of 15 training pairs generated by
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the matching-Net achieves 18.69% regarding the mean percentage error (MPE) (over

1-pixel difference for half resolution) of non-occlusion areas compared to 22.91% by

“MC-CNN-acrt”.

Comparison with sparse stereo matching approaches: Almost all state-of-

the-art sparse stereo matching approaches have submitted their results to the Mid-

dlebury evaluation site [77]. The proposed approach (referred as “DCNN”) on “test

sparse” currently ranks 3rd under the “bad 2.0” category. I would like to empha-

size that simply comparing error rates of sparse disparities maps does not offer the

whole picture on algorithm performance as it favors approaches that output fewer

disparity values (that is, more invalid pixels). For a fair comparison, a non-occlusion

error rates vs. invalid pixels rates plot is used to show the performance of different

approaches on both the training and testing dataset; see Figure 3.9. The comparison

suggests that the proposed approach under the R = 0.9 setting provides a very good

balance between output disparity density and disparity accuracy. In addition, the

plot on the training dataset also shows that, under the same output disparity density,

The approach presented here provides lower non-occlusion error rates than existing

approaches. Figure 3.10 further visually compares the disparity maps generated by

different approaches.

The root-mean-square (RMS) metric [77] is also used here for evaluation. Since

square errors are used, the RMS metric provides a stronger penalty to large disparity

errors than the average absolute error (“avgerr”) metric. The proposed approach on

the testing dataset currently ranks on the top under the “rms” category; see Table

3.2.

AUC evaluation: The AUC metric introduced by Hu and Mordohai [30] has
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(a) training

(b) testing

Figure 3.9: Comparison with the top ten approaches on the Middlebury Stereo

Evaluation site [77]: SED [66], R-NCC (anonymous), r200high [43], ICSG [82], SGM

[29], MotionStereo (anonymous), IDR [47], TMAP [72] and SNCC [16]. Performances

of different approaches on both training (a) and testing (b) datasets are plotted on

non-occlusion error rates v.s. invalid pixels rates plot. The relative position of these

approaches on the two datasets are similar. On training datasets, where the ground

truth disparity maps are available, the performance of the proposed approach under

different confidence threshold R settings is shown as a curve.44



Figure 3.10: Comparison of sparse disparity maps for “Austr”, “Crusa” and “ClassE”

(with lighting variation) of the testing dataset on the Middlebury Stereo Evaluation

site [77]. The first row shows the ground truth, and rows 2 to 5 are the disparity

maps generated by DCNN, TMAP [72], IDR [47] and SGM [29] respectively.
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Table 3.2: Comparisons of the state-of-the-art approaches under the RMS metric.

Name RMS

DCNN 3.861

R-NCC(anonymous) 4.612

IDR [47] 8.073

MPSV [5] 9.254

INTS [34] 10.65

SGM [29] 10.96

been used as a metric for evaluating various confidence measures over the past few

years. It measures how effectively the confidence measures can filter out mismatches

under different parameter settings, rather than only checking the performance under

one set of parameters. Since a large set of sparse disparity maps need to be evaluated,

this measure can only be computed on datasets with published ground truth. Fol-

lowing the practice in Tosi et al. [89], the dual-CNN approach is trained only on the

13 additional image pairs with ground truth from Middlebury [77] and then tested

on the 15 training image pairs. The proposed approach achieves a competitive mean

AUC value of 0.0522 compared to 0.0728, 0.0680 and 0.0637 attained respectively by

the state-of-the-art approaches APKR [45], O1 [67] and CCNN [68] reported in Tosi

et al. [89], which compares various confidence measures on the raw disparity maps

from Zbontar et al. [103].
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3.4 Summary

A novel learning-based semi-dense stereo matching algorithm is presented in this

chapter. The algorithm employs two CNN models. The first model evaluates how

well two image patches match. It serves the same purpose as “MC-CNN-acrt”, but

takes additional rank and companion transforms as input. These two transforms

introduce global information and distinguishable patterns into the network; and hence

areas with lighting changes and/or lack of texture can be more accurately matched.

As a result, the optimal disparity values can be computed using the simplest WTA

optimization. No complicated global disparity optimization algorithms or additional

post-processing steps are required. The second CNN model is used for evaluating

the disparity values generated and filtering out mismatches. Taking only one of the

stereo images and the disparity map as input, the evaluation-Net can effectively label

mismatches, without the needs for heuristically designed process such as left-right

consistency check and median filtering.

The pipeline introduced in this chapter is limited to binocular stereo cases. How

to handle multi-view stereo matching for 3D reconstruction applications is discussed

next.
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Chapter 4

A Global-Matching Framework for

Multi-View Stereopsis

The previous two chapters focused on binocular stereo matching and proposed com-

pelling solutions to address various challenges. This chapter explores how to recon-

struct 3D models from images captured under different perspectives based on stereo

correspondence, which is termed Multi-View Stereopsis (MVS). Substantial efforts

have been made in this research field. A well-established pipeline starts from imagery

collection to model refinement [17].

Given a 3D point p captured by a set of images, supporting domains from neigh-

boring images are used to compute p’s 3D location under the epipolar constraint.

Although traditional matching algorithms generate promising results, many attempts

on training neural networks to select potential matching pairs have been made over

the past few years. Unlike many state-of-the-art methods, which use local cropped

image patches as input for training and enforce smoothness of depth values in the
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post-processing stage, the proposed framework aims at computing matching scores

on entire images. This scheme allows pixels having the same depth value in the ref-

erence image to be computed at the same time, and hence the global smoothness of

the depth map can be learned by the neural network. To reconstruct the scene, each

depth map is further integrated into a point cloud using the camera transformation

matrix.

The main contributions of this chapter are two-fold: 1) to present a novel net-

work that can learn global smoothness constraint and directly perform MVS matching

based on global information, and 2) to demonstrate that the method is highly robust

and can be applied to different image datasets without the need for retraining, re-

gardless of how the resolution and depth range change. Based on the evaluation on

the DTU dataset [1], the proposed approach is comparable to existing algorithms in

terms of completeness; see Figure 4.1.

4.1 Related work

Over the past decade, many practical approaches using traditional stereo algorithms

for 3D modeling have been developed. Campbell et al. [8] utilized Normalized Cross-

Correlation (NCC) to calculate patch-wise matching costs. To address false predic-

tions in the depth maps caused by repeated texture, they enforced a spatial consis-

tency constraint on neighboring pixels and demonstrated how to select accurate depth

from multiple depth hypotheses using Markov Random Field (MRF) optimization.

Furukawa and Ponce [18] proposed using photometric and visibility consistency to

enhance the effectiveness of multi-view stereopsis based on epipolar geometry, and
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(a) Model (b) Reference (c) The proposed (d) Ji [37]

(e) Camp [8] (f) Furu [18] (g) Tola [87] (h) Gipuma [19]

Figure 4.1: Comparison with the state of the arts on 3D reconstruction for model

10 from the DTU dataset [1]. The approach proposed here, (c), generates the most

complete result.

introduced two filtering steps to remove patches lying outside and inside the surface

separately. For modeling applications, they further merged the collected patches into

meshes through smoothness control.

The above approaches tend to assume that pixels within a supporting patch have

constant depth and therefore may miscalculate depth values for slanted surfaces. Tar-

geting this challenge, Bleyer et al. [3] introduced an effective algorithm referred to as

PatchMatch, which initializes a random 3D plane for each pixel and gradually discov-

ers the optimal plane through iterations of spatial and view propagation. As advanced

optical sensors were developed to catch images with higher resolution, attempts were

also made to accelerate the reconstruction process for stereopsis. Following the idea of

PatchMatch, Galliani et al. [19] presented a novel diffusion-like approach which cat-

egorizes pixels into different groups as a checkerboard pattern so that high-resolution
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images can be addressed by an extensively parallel scheme implemented on a GPU.

Tola et al. [87] proposed generating depth maps by using DAISY descriptors, which

generate gradient histograms from different orientation layers to efficiently implement

similarity score computation on whole images, and directly selected matching pairs

with notably larger scores than other candidates. Moreover, depth prediction was per-

formed on sparse areas first to restrict the disparity searching range on neighboring

pixels for fast performance.

The past few years have witnessed a rapid expansion of learning-based approaches

for 3D reconstruction. Here, these approaches are grouped into two categories: patch-

wise and global matching.

4.1.1 Patch-wise Methods

Inspired by the successful practice of patch-wise stereo matching within traditional

algorithms, early learning-based approaches are devoted to using neural networks

to replace window-based matching cost computation. Works were first proposed to

address binocular stereo matching and then extended to multi-view cases [35, 64, 97,

103].

Galliani and Schindler [20] opted for the matching algorithm proposed in their

earlier work [19] to generate initial 3D points and vector fields, and trained a CNN

model to perform normal prediction on raw image patches from multiple views. To

obtain 3D models, depth and normal maps are merged together with Poisson recon-

struction. The obtained surface normals are beneficial for reliable reconstruction of

areas that have no valid MVS points. Huang et al. [33] presented a deep CNN model,
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which exploits the structure of U-Net [75], to generate a bunch of plane-sweep vol-

umes by performing stereo matching on 64×64 patches and thereafter compute depth

maps for MVS. Hartmann et al. [28] proposed to directly learn multi-patch similarity

using a N-way Siamese network architecture [7]. To implement this idea, a reference

image patch, together with multiple matching patches from neighboring views, are

assembled as an input sample for training. A similar work can be found in Yao et

al. [96], where much wider patches and homography warping are harnessed to train

an end-to-end deep learning framework. In addition, matching cost aggregation and

depth map regression are integrated into the training pipeline. Ji et al. [37] proposed

another end-to-end structure. They converted images to 3D voxel representations

through projection and trained a CNN model, referred to as SurfaceNet, to predict

each voxel’s probability of lying on the surface of models. SurfaceNet takes cropped

voxel cubes as input, thus the learning process is also based on local information.

Since patch-wise approaches generally perform prediction for each pixel individu-

ally, the computation cost tends to hinder their applicability to larger datasets with

high-resolution images. A solution to accelerate patch-wise matching is to apply pre-

diction only on image patches with enough vision cues, though with consequence

being a loss in completeness [70] .

4.1.2 Global Methods

When it comes to objects lacking texture, patch-based approaches mostly require

overall smoothness control during their post-processing steps. In contrast, this op-

eration is automatically tackled by learning-based approaches using neural networks
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Figure 4.2: MVS framework. Given a set of images with geometry parameters [1],

fronto-parallel back-projections are first obtained to generate matching score images

stored in a matching cost volume, from which depth and confidence maps are then

computed and filtered for point cloud registration. In the depth maps, the warmer

the color, the higher the predicted depth values are.

trained on global information. Inspiring results have been achieved on binocular

stereo cases [9, 41, 63], but few attempts have been made to apply global match-

ing on MVS. Performing global matching on multiple high-resolution images directly

demands tremendous parallel computational resources, but separately applying two-

view global matching on MVS as presented here is likely to be manageable.

4.2 Methodology

As discussed above, the proposed approach in this chapter is robust enough to han-

dle different datasets without the need of retraining. It only requires that the input

images have known intrinsic/extrinsic camera parameters and are lens-distortion cor-
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rected. All images from public stereo datasets, such as DTU [1], KITTI [61], and

Middlebury [77], satisfy this requirement. A few notable differences among these

datasets are image resolutions, experimental objects, and lighting conditions, which

makes it challenging for a learning-based approach to process them without retraining.

The overall pipeline of the proposed MVS approach is shown in Figure 4.2. Given

an MVS dataset, each image, Ir, is used as a reference image and its neighboring

views are selected. Ir is then paired with each of its neighboring views, Iv, to com-

pute a depth map and an associated confidence map (Section 4.2.1). The former map

provides us the best depth hypothesis for each pixel in Ir, whereas the latter indi-

cates how likely this depth hypothesis is correct. The depth map computed using an

individual image pair can be noisy, and hence the depth/confidence maps computed

using all of Ir’s neighboring views need to be merged together to obtain a clean depth

map under the image space of Ir. Finally the clean depth maps computed under the

image spaces of different views are registered into a 3D point cloud (Section 4.2.3).

4.2.1 Pair-wise image matching

When matching points between a pair of images, the epipolar geometry defines that

a 3D point seen in the reference image Ir only appears along the epipolar line in each

neighboring view Iv. For a rectified binocular stereo image pair, the epipolar lines are

parallel to scanlines. However, for general input images from multi-view stereo, the

epipolar lines have arbitrary directions, making the search for matching points more

difficult.

To simplify the problem, Iv will be back-projected to the fronto-parallel planes of Ir
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Figure 4.3: Fronto-parallel back-projection. Given a reference image Ir and one of

its neighboring views Iv, fronto-parallel planes at different depth z are used to back-

project Iv toward the image space of Ir. The resulting images, referred to as Bv→r|z,

are used to search matching pixels.

at the same resolution; see Figure 4.3. Here, the image obtained by back-projecting Iv

to the fronto-parallel planes of Ir at depth z is denoted by Bv→r|z. Under this strategy,

to find the matching pixel for a given pixel p in Ir, one need only to search among

pixels at the same coordinates as p in Bv→r|z under different z values. In addition,

3D points having the same depth value with respect to Ir will find matches in the

same back-projected image [13] and hence matching smoothness can be effectively

enforced. Note that the same scheme can be also applied to binocular stereo pairs,

where the back-projection only shifts the image along the x axis, resulting matching

pixels shown at the same location on the corresponding back-projection plane.
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4.2.2 canvas-Net

As mentioned above, the goal here is to train a neural network that can directly pro-

cess high resolution stereo images from a variety of datasets. Since images from these

datasets have different resolutions, the network needs to accommodate the highest

resolution images. When the reference image Ir and back-projected images Bv→r|z

have lower resolutions, they are simply processed using the center portion of the net-

work, without the need for scaling the images to match the network resolution. Here

the network is referred to as canvas-Net and HC ×WC denotes the resolution of the

network (canvas).

However, when training the canvas-Net, always placing Ir and Bv→r|z at the center

of the canvas will cause neurons in the area of missing data to be improperly trained.

To address this problem, both Ir and Bv→r|z will be randomly shifted within the

range of the canvas size. That is: rh and rw are random offsets used for shifting Ir

and all back-projected images Bv→r|z in each training batch where rh = rand(e,HC −

hI − e) and rw = rand(e,WC − wI − e). The padding size, e, is set to 5 to exclude

invalid convolutional operation on the edges, and hI × wI is the resolution of Ir,.

Owing to image regularization in the previous stage, two canvases carrying grayscale

information from the reference image Ir and one of its neighboring back-projected

images Bv→r|z can be stacked together as a 3D canvas to be fed into the canvas-Net.

Note that the input can be extended to accommodate RGB channels of images or one

reference image with multiple back-projected images. The main goal of the model is

to select all accurate matches between corresponding pixels in Ir and Bv→r|z.

The canvas-Net has a similar structure as U-Net [75] but with a much larger
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receptive field; see Table 4.1. To accommodate high-resolution image pairs from all

selected datasets in the Hc × WC × 2 canvas, HC is set to 1280 and WC is set to

1664. This allows for all high-resolution images to be handled without the need

of down-sampling,, a process that would otherwise affect the accuracy of generated

depth maps. For the reference image under each depth hypothesis, the canvas-Net

outputs a matching score map to accentuate the locations of precisely matched pixels

by marking them with higher confidence values.

To train the model for matching computation, stereo images with ground truth are

desired. Since the input only consists of two layers, the training samples are extracted

from multi-view and/or binocular imagery. Given Ir and Bv→r|z=d, an ideal matching

score image here should filter out all domains among them with the same coordinates

offering invalid depth estimation. In practice, a pixel (x, y) in the expected depth

map is considered as mismatched if and only if ‖Dt(x, y)− d‖ > T , where Dt denotes

the ground truth and T is a threshold value.

Unlike other attempts to improve U-Net [75] by involving abundant layers and

complicated substructures, the novelty of the canvas-Net lies in the well-designed

scheme of loss calculation so that an effective learning process can be performed

without greatly increasing the computational cost. The loss function in U-Net [75]

cannot be directly adopted here since it equally addresses each pixel in the output,

lacking a scheme to highlight those pixels that require more attention. To compute

training loss between an estimated matching score image S(e,d) and its ground truth

S(t,d), the peripheral regions generated by canvas fitting first need to removed. The

masks of “0” M0 and “1” M1 divided by T within S(t,d) are highly unbalanced, i.e.,

the output at most pixel locations should be “0” whereas only a small number of
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Table 4.1: Parameters of the canvas-Net. “Conv”, “Dconv”, “Mp” and “_” denote

convolutional, deconvolutional, max pooling and concatenation operations, respec-

tively.

Input Operation Kernel and channel Stride Output, size and channel

3D canvas Conv 1× 1× 2, 16 1× 1× 1 O1, 1280× 1664× 2, 16

O1 Conv 5× 5× 1, 16 1× 1× 1 O2, 1280× 1664× 2, 16

O2 Conv 5× 5× 2, 16 1× 1× 1 O3, 1280× 1664× 2, 16

O3 Conv 5× 5× 2, 16 1× 1× 1 O4, 1280× 1664× 2, 16

O4 Mp 2× 2× 2, 16 2× 2× 1 O5, 640× 832× 2, 16

O5 Conv 5× 5× 2, 32 1× 1× 1 O6, 640× 832× 2, 32

O6 Mp 2× 2× 2, 32 2× 2× 1 O7, 320× 416× 2, 32

O7 Conv 5× 5× 2, 64 1× 1× 1 O8, 320× 416× 2, 64

O8 Mp 2× 2× 2, 64 2× 2× 1 O9, 160× 208× 2, 64

O9 Conv 5× 5× 2, 64 1× 1× 1 O10, 160× 208× 2, 64

O10 Mp 2× 2× 2, 64 2× 2× 1 O11, 80× 104× 2, 64

O11 Conv 5× 5× 2, 64 1× 1× 1 O12, 80× 104× 2, 64

O12 Mp 2× 2× 2, 64 2× 2× 1 O13, 40× 52× 2, 64

O13 Dconv 5× 5× 1, 64 2× 2× 1 O14, 80× 104× 2, 64

O14
_O12 Dconv 5× 5× 1, 64 2× 2× 1 O15, 160× 208× 2, 64

O15
_O10 Dconv 5× 5× 1, 64 2× 2× 1 O16, 320× 416× 2, 64

O16
_O8 Dconv 5× 5× 1, 32 2× 2× 1 O17, 640× 832× 2, 32

O17
_O6 Dconv 5× 5× 1, 32 2× 2× 1 O18, 1280× 1664× 2, 32

O18
_O4 Conv 5× 5× 2, 6 1× 1× 1 O19, 1280× 1664× 2, 6

O19 Mp 1× 1× 2, 6 1× 1× 2 O20, 1280× 1664× 1, 6

O20 Conv 5× 5× 1, 1 1× 1× 1 O21, 1280× 1664× 1, 1
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pixels should output “1”. Hence, a coefficient mask M is introduced to counteract

the amount of variation. In addition, another threshold R in M0 is used to isolate the

minor mismatches forming mask Ma from the rest Mb by fulfilling ‖Dt(x, y)−d‖ < R,

where R is slightly larger than T . M is then computed by:

M = ( |M0|M1

|M1| + w1
|M1+Mb|Ma

|Ma| + w2Mb) , (4.1)

where |U | is the size of set U . The two weight parameters w1 and w2 can be set

additionally to achieve an optimal trade-off among all regional influences. Moreover,

the training loss is computed by:

loss = mean(‖S(e,d) − S(t,d)‖ ·M) . (4.2)

The canvas-Net trained above computes a set of matching score images stacked

as a 3D cost volume Cs(x, y, d) for each reference image. To generate the depth map

De(x, y) and confidence map Fe(x, y), the WTA algorithm is employed to select the

best depth hypothesis for each pixel by De(x, y) = arg maxdCs(x, y, d) and Fe(x, y) =

maxd Cs(x, y, d).

4.2.3 Point Cloud Registration

For a reliable point cloud registration, filtering is applied to both Fe(x, y) and De(x, y)

mentioned above to exclude the depth outliers and isolated points in the reconstruc-

tion stage.

Dramatic errors are likely to be generated when 3D points projected in Ir do not

occur in other views. An effective method to partially remove them is to demand

Fe(x, y) > G, where G is the minimum matching score required for a valid depth
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Depth filtering. Two separated depth maps (a,b) and their confidence

maps (c,d) are generated when the same reference is paired with different neighboring

views. Their confidence masks (e, f) and depth variation mask (g) are computed by

setting G = 0.7 and V = 1.0, and merged into one mask to filter out invalid values

for precise estimation (h).

value. By assembling the same reference image Ir with different neighboring views,

multiple depth maps together as Pe can be generated and combined for an optimal

one Do(x, y), where each valid depth shares no more than a variation threshold V with

all its candidates from Pe. This integration scheme further filters out more outliers;

see Figure 4.4. A 3D point cloud can then be reconstructed by merging all pruned

depth maps together with the geometry parameters of camera views.
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4.3 Experimental Results

As mentioned above, the goal in this chapter is to develop a robust approach that can

handle different scenes without the need to retrain the network. To validate whether

this goal is achieved, the DTU [1] dataset, which consists of a large variety of scenes

compared to other accessible MVS datasets, is selected for testing. In addition, the

binocular stereo datasets, KITTI [61] and Middlebury [77], were deliberately chosen

to train the network. This is a more challenging experimental setup than existing

approaches that retrain the network before testing it on a given dataset.

Unlike many existing approaches plainly practicing training and testing on the

same dataset, Here, canvas-Net is forced to fulfill feature learning from the binocular

stereo datasets KITTI [61] and Middlebury [77] and the attained filters are applied

to other datasets. An added benefit of this setup is the avoidance of overfitting. The

multi-view images from DTU are limited to objects in an experimental environment

under stable lighting conditions. Combining KITTI and Middlebury, by contrast,

populates the training dataset with indoor and outdoor scenes and facilitates feature

extraction capability.

The algorithm is implemented with Tensorflow on a GTX 1080 Ti GPU. Around

4, 000 training samples with random offsets are generated for each training epoch,

and a stable state can be achieved after 20 epochs by embedding an exponentially

decreasing learning rate from 0.005 to 0.00001. Additionally, T = 1.0, R = 3.0,

w1 = 0.5 and w2 = 0.5 are set to calculate the loss, and the entire process takes about

4 days to complete. When applying the canvas-Net on DTU, it takes around 0.3s to

generate each matching score map.
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4.3.1 Testing on DTU

The DTU dataset [1] contains 124 experimental scenes in total, and 49 fixed positions

are set up to capture views from different perspectives. For a fair and direct com-

parison with existing approaches, two metrics, accuracy and completeness in Aanaes

et al. [1] are chosen to evaluate the proposed approach. The former is specified by

measuring the Euclidean distance from a point cloud to its ground truth and vice

versa for the latter. The better performance of the algorithm, the lower the values

for both metrics.

All results here are built on the calibrated 1200 × 1600 resolution images with

both internal and external camera parameters. To comply with the trained model

above, each reference image, along with one of its neighboring views, is assembled as

an input pattern for testing. With regards to DTU, the sampling unit Uz was set

to 0.5mm along the Z axis when generating the back-projected images. To remove

invalid depth estimates precipitated by WTA, G was set to 0.7 and V was set to

1.0, and the initial point clouds were reconstructed; see Table 4.2 for more parameter

settings.

4.3.2 Quantitative Comparison

When applying patch-wise CNN models as in other works [11, 33, 70, 96] on the

DTU [1] dataset, the computational cost is barely manageable to generate quanti-

tative results since a large number of high-resolution images are captured for each

scene. In addition, existing binocular global-matching algorithms [9, 41, 63] lack the

flexibility to address resolution and depth range variations. Therefore, the focus here
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(a)

(b)

Figure 4.5: Qualitative comparison using 22 models [1] on completeness vs. accu-

racy (a) shows that the proposed framework is comparable to the state-of-the-art

approaches on mean completeness. Visual comparisons (b) show the ground truth

(1st column), the results from the proposed approach(2nd column), and the point

clouds generated by Campbell et al. [8], Furukawa and Ponce[18], and Tola et al. [87]

(colums 3, 4, and 5 respectively).
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is on comparison with 3 traditional algorithms [8, 18, 87] and 2 learning-based meth-

ods [37, 19]. Note that the latter two approaches are directly trained on DTU, and

therefore scenes selected for evaluation require isolation from their training data. For

a fair comparison, the same 22 scenes suggested in Ji et al. [37] are used here.

Mean accuracy and completeness are calculated for all selected scenes. Although

direct numerical comparison based on either metric can be made, an accuracy vs.

completeness plot is used here to compare different algorithms on both aspects; see

Figure 4.5 (a). The proposed framework makes full use of global feature correlation

and therefore is more capable of performing stereo matching when lacking vision cues.

Figure 4.5 (b) visually compares the point clouds produced by different approaches.

4.3.3 Real-world Application

Here, a cross-library framework is presented to eliminate the needs for retraining

when handling different datasets. The canvas-Net trained above is directly applied to

the task of reconstructing large scale outdoor scenes captured by a DJI drone. Even

though the input images (750×1000 in resolution) barely resemble the training data,

the proposed framework still can reconstruct dense 3D point clouds; see Figure 4.6.

4.4 Summary

A competent learning-based MVS approach is presented in this chapter. Unlike ex-

isting learning-based methods that work at patch level, the network in this chapter

is trained over entire high-resolution images. As a result, the network can learn

global features and implicitly enforce a global smoothness constraint. A novel data
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preparation approach and loss function are proposed to reduce memory requirements

and handle imbalanced classes. The experiments demonstrate the robustness of the

proposed approach. When training on binocular datasets (KITTI and Middlebury)

and tested on multi-view dataset (DTU), the proposed approach achieved overall

best performance in terms of completeness vs. accuracy among the state-of-the-

art approaches. While the point clouds generated using the proposed approach are

promising, scattered outliers do exist, which need to be eliminated for clearer scene

representations. In addition, when combining point clouds calculated under different

views, a point set surface-thinning operation is needed. How to perform these tasks

using a learning-based approach is addressed in the next chapter.
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Table 4.2: Evaluation on model 13 in Aanaes et al. [1] under different settings.

Settings
Accuracy Completeness

Uz(mm) |Pe|

1.0 2 0.526 3.848

0.5 2 0.460 3.879

0.5 3 0.369 4.359

Ji [37] 0.417 3.974

Camp [8] 0.477 4.517

Furu [18] 0.406 4.943

Tola [87] 0.313 5.041

Gipuma [19] 0.340 5.630
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(a)

Figure 4.6: Reconstructing large scale outdoor scenes using the proposed MVS frame-

work.
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Chapter 5

Point Cloud Consolidation through

Learning-based Projection

High-quality 3D representations for real objects are often needed in various Com-

puter Vision and Graphics applications. In many of these cases, passive reconstruc-

tion through multi-view stereo matching is preferred, as introduced in the previous

chapters. However, many factors, such as sensor noise, lack of texture, occlusion,

and extreme lighting conditions, can contaminate the reconstructed depth informa-

tion. To generate solid point clouds, consolidation is widely practiced as a subsequent

process when primitive results are acquired. Various consolidation algorithms have

been proposed to address the problem from the perspectives of denoising [76], outliers

removal [2], upsampling [100], and completion [27]. Nevertheless, there is no perfect

solution for this ill-posed problem and most existing approaches are designed for

point clouds captured by 3D scanners, which are much cleaner than those generated

by multi-view stereo matching.
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In addition, many conventional consolidation approaches rely on smoothness as-

sumptions and use tools such as the Poisson equation [40], smoothing filters [83], or

normal propagation [31]. These tools can indeed suppress noise but also soften sharp

edges, which occur ubiquitously in real-world scenes. Edge-preserving techniques [32]

have been proposed to address this issue, but they rely on manually tuned parameters

to distinguish fine geometry features from noise and the parameters likely need to be

readjusted for different datasets.

Inspired by the success of deep neural networks, which automatically optimize the

parameters when various cases are involved in training, a learning-based approach

is proposed for point consolidation. The network, referred to as projection-Net, is

trained to predict a 3D projection vector v for each point p in the point cloud based

on p’s neighboring points, so that p+v is closer to the ground truth surface. Existing

learning-based approaches, however, perform overall adjustment on full point clouds

or local patches and thus lack the capability to selectively alter individual points.

5.1 Related Work

Consolidation of point clouds plays a vital role in 3D reconstruction. Early con-

solidating algorithms generally propose smoothness constraints to perform various

adjustments, while the past few years have witnessed a number of inspiring works

based on neural networks.
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5.1.1 Smoothness Constraints

Noise is inevitably involved during scene reconstruction, and smoothness constraints

have been principally applied to alleviate them with an underlying assumption that

the target scenes have smooth surfaces. An early smoothing practice based on nor-

mal estimation was proposed by Huang et al. [31], where points are first thinned and

equally scattered by a locally optimal projector (LOP) and then used to calculate

normals via a predictor-corrector iteration. The consolidation of points is gradually

achieved when the reliable normals are propagated. They further demonstrated [32]

that iteratively applying bilateral smoothing on normals facilitates edge unveiling.

Preiner et al. [71] proposed using a Gaussian mixture to describe the density of in-

put points and applied a continuous LOP formulation to fast normal reconstruction.

When it comes to recovering sharp features, Sun et al. [83] introduced a smooth-

ing approach based on the L0 norm. The implemented L0-Minimization algorithm

is capable of eliminating noise and maximizing smooth regions. To tackle moving

objects represented by a dynamic point cloud sequence (DPCS), Arvanitis et al. [2]

proposed enforcing spatial and temporal coherence between consecutive frames to

exclude outliers and used a weighted Laplacian matrix for interpolation.

5.1.2 Neural Networks

Neural networks have been emerging as alternative solutions for consolidation as

promising models [73, 74] are trained to resolve point set segmentation and classifica-

tion. Roveri et al. [76] introduced using a generative neural network for consolidation.

Trained on dense point clouds with ground truth, the proposed model is capable of
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separately turning local noisy patches into organized ones, leading to favorable surface

representations.

Data-driven attempts have also been made on surface completion. For low quality

point clouds, Yu et al. [100] proposed an upsampling network, referred to as PU-Net,

to output denser results. PU-Net extracts local patches from a point cloud and

applies hierarchical feature learning [74] and multi-level aggregation to obtain local

and global characteristics for feature expansion. They later extended this work for

an edge-aware consolidation model referred to as EC-Net [99]. Another compelling

work on upsampling was recently proposed by Wang et al. [98]. They presented

a patch-based network, which consists of multiple sub-networks extracting details

on different levels, to upsample the patch iteratively. Given an incomplete surface

represented by 2563 volumetric distance fields, Han et al. [27] proposed an end-

to-end deep learning framework to recover missing portions. Two sub-networks are

involved in this framework to infer overall structure and optimize local geometry,

respectively. Attempts have also been made on training neural networks to study

geometric properties such as surface normals and curvature from local point patches

to facilitate consolidation [4, 25]. To date, little work has been done on relocating

original points to improve accuracy.

5.2 Methodology

As mentioned above, various algorithms of consolidation can be developed and inte-

grated to fine-tune point clouds. Outlier filtering (Section 5.2.1) is typically the initial

process of consolidation. Since points alongside the surface have great potentials to be
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Figure 5.1: Algorithm pipeline and network architecture. Given a raw point cloud,

scattered outliers are first identified and filtered. For each remaining point p, regard-

less of whether it is already on the surface or not, its neighboring points are located.

These point locations, as well as the desired projection vector for p, are randomly ro-

tated before being fed into the network for training. The network consists of multiple

projection blocks that are chained together. Information exchange between blocks is

implemented by building concatenation on fully-connected layers.

projected correctly by analyzing their correlation with those precisely placed points,

local vectors (Section 5.2.2) containing spatial information between each point and

its neighbors can be generated to train the network (5.2.3) to predict a projection

vector; see Figure 5.1 for the consolidation pipeline.
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5.2.1 Outlier Filtering

Scattered outliers are normally involved in the generation of point clouds due to

many factors such as lens contamination, sensor damage, and scene occlusion. These

outliers typically appear at randomly distributed locations; see Figure 5.2 (a). In the

proposed approach, the detection of outliers is integrated in the process of searching

the supporting neighborhood for point projection. That is, for each point p, its

neighborhood Ωp can be found using the k-Nearest-Neighbors (kNN) algorithm. If p

is an isolated outlier, its neighboring points generally spread over a large area, leading

to a high mean distance 1
‖Ωp‖

∑
q∈Ωp
‖p− q‖. All points whose mean distance value is

larger than a threshold D can be removed as a result.

5.2.2 Vector Generation

After outlier filtering, the remaining points all have sufficiently close neighbors and

need to be projected onto the latent object surface to achieve the goal of point con-

solidation. This is done by computing a projection vector ∆p for each point p so

that p+ ∆p is on or closer to the latent surface. As a learning-based approach, ∆p is

computed by training a network, instead of using a handcrafted algorithm based on a

smoothness constraint. Hence at the training stage, ∆p is computed to approximate

the correct projection vector vt, which gives the minimum distance between point p

and the known ground truth surface.

A notable difference between the proposed approach and other learning-based

consolidation algorithms [76, 98, 100, 99] is that the former is trained on local vec-

tors instead of point patches. This scheme maintains the structure of local points
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(a) (b)

Figure 5.2: kNN neighborhood search. A given point is labeled as an outlier and

filtered (e.g., points highlighted using purple squares in (a)), if its kNN neighbors

have high mean distance. Otherwise, vectors connecting the point and its neighbors

are used to compute the desired projection vector (magenta vector in (b)).

but detaches their locations so that the training data is independent from various

coordinate systems. In addition, the vectors are assembled here based length and

normalized to [−1.0, 1.0] to minimize the variation of length range and density when

applied to different data.

It was observed that each vector starting from p to one of its closest neighbors

plots a possible moving direction but the correct path tends to be determined by

collective effects; see Figure 5.2 (b). Note that the points that have already been

placed correctly may be trivially altered or remain in the same positions.

5.2.3 Projection-Net

The projection-Net is built to extract spatial information and predict a projection

vector ∆p for each 3D point p. As shown in Figure 5.1, the input of the network is a
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n× 3 vector matrix, which stores the offset vectors q − p for each point q ∈ Ωp, and

the expected output, a 1 × 3 projection vector, gives the shortest path to project p

onto the ground truth surface. By default, n is set to 500.

5.2.3.1 Rigid Rotation

Ideally, the ground truth projection vectors in the training data should uniformly

sample all directions so that proper projection vectors can be inferred during testing,

regardless of local path orientations. However, in practice, the ground truth projection

vectors can be highly biased toward particular orientations. To reduce the bias, the

input n× 3 matrix and the ground truth vt were deliberately and arbitrarily rotated

to generate data with different orientations to train the network. A constraint for this

process is that the distance between any two vectors need to remain constant as a

rigid body, and the transformation using T-net introduced in Qi et al. [73] cannot be

applied here. Hence, different 3×3 rigid rotation matrices are generated to randomly

rotate vector samples within the same training batch.

5.2.3.2 Model Design

The projection-Net consists of multiple blocks, with each block containing mainly

convolution and fully-connected layers. The use of multiple blocks allows the network

to gradually project the input points onto the optimal positions. Within the ith block,

the input n×3 matrix first goes through convolution operations with 1×3 kernels to

extract features along the x, y, and z axes, respectively. The feature maps computed

are fed into fully-connected layers to compute an optimal projection vector ∆pi. The

updated point location p + ∆pi is then used to compute the new offset vectors to
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(a) (b)

Figure 5.3: Point consolidation. Given the input raw point cloud generated by Fu-

rukawa and Ponce [18] for DTU model #1 (a) and #24 (b), the projection vectors

(blue arrows) point toward the latent surface and hence help to clean up the data.

points in Ωp. This forms a new n× 3 matrix, which is used as input for the (i + 1)th

block. At the end of all blocks, the output projection vector is the sum of local

projection vectors, i.e., ∆p =
∑

i ∆pi.

Different blocks currently perform vector computation independently, but build-

ing information exchange across different blocks can provide successive projection

stages with momentum effects. Concatenation is applied to fully-connected layers,

since these layers conduct high-level features in each block. In terms of network opti-

mization, the training loss is measured by ‖vr −∆p‖2, where vr is the rotated vector

of vt.

5.3 Experiments

Here, the above approach is applied to point clouds generated by existing MVS algo-

rithms. Details of the implementation and results are presented in this section, and

the validation is based on the DTU [1] dataset.
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Table 5.1: Experimental settings for the Projection-Net. Here “Rt”, “Conv”, “Fc”

and “_” denote rotation, convolutional, fully-connected, and concatenation opera-

tions respectively. The dropout rate of all fully-connected layers was set to 0.2.

Block Input Operation Neurons Output and Size

I Rt 3× 3 I1, 500× 3

1: I1 Conv 1× 3, 32 O1, 500× 3× 32

O1 Conv 1× 3, 64 O2, 96000(500× 3× 64)

O2 Fc 256 O3

O3 Fc 128 O4

O4 Fc 3 ∆p1

2: I1 −∆p1 Conv 1× 3, 32 O5, 500× 3× 64, 32

O5 Conv 1× 3, 64 O6, 96000(500× 3× 64)

O6 Fc 256 O7

O7
_O3 Fc 128 O8

O8 Fc 3 ∆p2

5.3.1 Data and Parameters

To implement the network, point clouds with ground truth are needed for training.

As a well-built 3D modeling dataset, DTU consists of 124 scenes covering various

objects, of which the ground truth (reference data) was obtained using a structured

light scanner and has been used widely as a MVS benchmark. The two metrics,

accuracy and completeness [1] mentioned in Chapter 4, are used for evaluation. The

former is evaluated based on a distance set Φm→t that is computed from each point
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in a MVS reconstruction Sm to its closest point in the ground truth St. That is:

Φm→t = {min
y∈St

(‖x− y‖) | x ∈ Sm}. (5.1)

Similarly a second distance set, Φt→m, is computed from each point in the ground

truth St to a reconstruction result Sm, which is used to evaluate the completeness.

Also, the DTU [1] dataset provides point clouds reconstructed by existing algo-

rithms [8, 18, 87] for all the scenes. A value of D = 1.5mm was chosen to apply

outlier filtering to these results. Excluding the test group suggested in Ji et al. [37],

1.4 million points were randomly sampled from the remaining datasets for training.

Each point is used to generate the corresponding 500×3 input matrix and the desired

output projection vector using the ground truth.

An experimental structure (ProjNet) of the projection-Net is given in Table 5.1.

The network is implemented using the open-source machine learning library Tensor-

flow. A stable state can be achieved after 200 training epochs when an exponentially

decreasing learning rate from 0.005 to 0.00001 and a fixed batch size of 512 are em-

ployed. The entire process takes about 2 days on a Nvidia GTX 1080 Ti GPU. The

projection vectors computed by the proposed network are visually presented in Figure

5.3. It shows that the proposed approach can effectively project points toward the

latent surface for various scenes to obtain a clearer and thinner representation.

5.3.2 Ablation Study

To evaluate the importance of the proposed multi-block projection and concatenation

strategy, an ablation study was conducted using two altered network structures. One

removes the second projection block in the network structure presented by Table 5.1
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Figure 5.4: Loss comparison between the proposed network and two altered versions

as a function of training epoch.

(referred to as ProjNet-B1), whereas the other only breaks the concatenation shown

in Figure 5.1 by replacing O7
_O3 with O7 (referred to as ProjNet-B2).

Figure 5.4 compares the training performances of the proposed architecture and

the two altered ones. The proposed model that uses two blocks with concatenation

achieves the best performance but takes more training time. On the other hand, using

a single network block and repetitively processing the point clouds twice (referred to

as ProjNet-B1 × 2) yields promising results, but is slower and still not as robust as

ProjNet and ProjNet-B2 based on all metrics; see Table 5.2. Even better results can

be achieved when including more blocks, but at higher computational cost.

5.3.3 Validation on MVS

The proposed approach is developed as a general consolidation step and can be applied

to point clouds generated by different MVS approaches. The validation here is per-

formed on point clouds generated for 17 test scenes by 3 existing algorithms [8, 18, 87].
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Table 5.2: Results of model 1 and 24 from Furukawa and Ponce [18]. Mean and

median (Med) values of Φm→t and Φt→m are computed to compare ProjNet, ProjNet-

B2 and ProjNet-B1 × 2, and lower values here are better. ProjNet outperforms the

others based on overall performance.

Model Metric Raw ProjNet ProjNet-B2 ProjNet-B1 × 2

1:
Φm→t

Mean 0.255 0.210 0.205 0.201

Med 0.145 0.129 0.124 0.125

Φt→m

Mean 3.048 3.006 3.037 3.066

Med 0.339 0.282 0.315 0.346

24:
Φm→t

Mean 0.318 0.281 0.279 0.271

Med 0.221 0.203 0.202 0.203

Φt→m

Mean 0.309 0.288 0.304 0.326

Med 0.181 0.171 0.181 0.186

The mean and median values of both Φm→t and Φt→m are computable using the DTU

evaluation code [1] for these point clouds before and after applying the consolidation

approach.

As Figure 5.5 illustrates, the proposed approach achieves considerable improve-

ment on the results of all three algorithms with respect to Φm→t. The reasons why

the proposed approach somewhat increases Φt→m of a few scenes is because it tends

to either filter out isolated points or project them to nearby point clusters. When

these isolated points are close to latent surfaces, moving them reduces the level of

completeness.
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5.3.4 Consolidation Comparison

As of now, few attempts have been made on consolidation through projecting individ-

ual points. Compared to the state-of-the-art works [32, 76, 98, 99, 100], the approach

proposed have no limitation on consolidating point clouds with various sizes. When

testing on large-scale point clouds as in DTU, the patch-based networks proposed by

Yu et al. [99] and Wang et al. [98] are the only existing approaches that can per-

form consolidation under reasonable memory cost (12 GB) and computation time.

Here, comparison with these two works is presented; see Figure 5.6. The proposed

consolidation method can generate convincing results.

5.4 Summary

This chapter presented a learning-based approach for 3D point cloud consolidation.

Trained on vectors extracted from a given point p and its neighboring points, the

proposed network can effectively predict a projection vector ∆p to move p closer

to the latent surface. As a result, thinner and more accurate point clouds can be

obtained without involving any heuristic algorithms. The experiments demonstrate

that the proposed approach can effectively consolidate raw point clouds generated by

the proposed MVS approach and 3 different MVS algorithms for DTU datasets.
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(a)

(b)

(c)

(d)

Figure 5.5: Consolidation performance. Results (a-d) are generated by consolidat-

ing point clouds generated in Chapter 4 and by Campbell et al. [8], Furukawa and

Ponce [18] and Tola et al. [87], respectively. Percentage change of Φm→t and Φt→m are

plotted here for better viewing. The proposed approach can improve various point

clouds in regard to Φm→t. 82
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Figure 5.6: Consolidation on point clouds in Tola et al. [87]. Column 1 shows the

raw results. Columns 2 to 4 are consolidated by the proposed approach, [99] and [98]

respectively. The results generated by the proposed approach is promising based on

all metrics.
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Chapter 6

Conclusions and Future Work

In this thesis, a review of the existing works on binocular and multi-view stereo match-

ing, matching-based 3D reconstruction, and point cloud consolidation was presented.

Through the design of novel network architectures, four new deep learning-based algo-

rithms were developed for detecting mismatches in binocular stereo matching results,

generating more accurate semi-dense matches under challenging conditions, perform-

ing multi-view stereo matching using a network trained on binocular image pairs, and

consolidating point clouds obtained from different viewpoints.

Currently, the proposed semi-dense stereo matching approach [57] still ranks at the

top of the sparse results on the Middlebury site under the metric of “rms”. This inves-

tigation suggests that, once sufficient information is fed to the network, CNN-based

models can effectively predict the correct matches and detect mismatches. When it

comes to stereo matching for 3D reconstruction, the presented MVS framework [56]

trained on global features is capable of generating more complete DTU results com-

pared to those of the state-of-the-art methods. Although the proposed consolidation
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approach is still under review for publication, the experiments demonstrate that it

can considerably enhance various MVS algorithms.

Many future directions are worth investigating to further improve the presented

approaches. Firstly, the best depth hypothesis for each pixel in a given reference image

is currently selected through WTA, and the depth maps in the MVS framework are

merely validated among different image pairs. Replacing these heuristic operations

with learning-based methods could further improve the robustness and performance

of the overall matching algorithms. In addition, how to effectively exploit global

information of the point clouds obtained from different reference images for overall

consolidation is worth investigating. It would be interesting to validate the presented

algorithms on large-scale real-world scenes captured by unmanned aerial vehicles.

Finally, how to reduce the training and labeling costs so that the algorithms can be

applied to real-time applications is another exciting direction.
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