1,208 research outputs found

    Life-Cycle Cost Model and Design Optimization of Base-Isolated Building Structures

    Get PDF
    Design of economic structures adequately resistant to withstand during their service life, without catastrophic failures, all possible loading conditions and to absorb the induced seismic energy in a controlled fashion, has been the subject of intensive research so far. Modern buildings usually contain extremely sensitive and costly equipment that are vital in business, commerce, education and/or health care. The building contents frequently are more valuable than the buildings them-selves. Furthermore, hospitals, communication and emergency centres, police and fire stations must be operational when needed most: immediately after an earthquake. Conventional con-struction can cause very high floor accelerations in stiff buildings and large interstorey drifts in flexible structures. These two factors cause difficulties in insuring the safety of both building and its contents. For this reason base-isolated structures are considered as an efficient alternative design practice to the conventional fixed-base one. In this study a systematic assessment of op-timized fixed and base-isolated reinforced concrete buildings is presented in terms of their initial and total cost taking into account the life-cycle cost of the structures

    Optimal design algorithm for seismic retrofitting of RC columns with steel jacketing technique

    Get PDF
    Steel jacketing (SJ) of beams and columns is widely employed as retrofitting technique to provide additional deformation and strength capacity to existing reinforced concrete (RC) frame structures. The latter are many times designed without considering seismic loads, or present inadequate seismic detailing. The use of SJ is generally associated with non-negligible costs depending on the amount of structural work and non-structural manufacturing and materials. Moreover, this kind of intervention results in noticeable downtime for the building. This paper presents a new optimization framework which is aimed at obtaining minimization of retrofitting costs by optimizing the position and the amount of steel jacketing retrofitting. The proposed methodology is applied to the case study of a 3D RC frame realized in OpenSEES and handled within the framework of a genetic algorithm. The algorithm iterates geometric and mechanical parameters configurations, based on the outcomes of static pushover analysis, in order to match the optimal retrofitting solution, intended as the one minimizing the costs and, at the same time, maintaining a specified safety level. Results of the proposed framework will provide optimized location and amount of steel-jacketing reinforcement. It is finally shown that the use of engineering optimization methods can be effectively used to limit retrofitting costs without a substantial modification of structural safety

    A European Project for Safer and Energy Efficient Buildings: Pro-GET-onE (Proactive Synergy of inteGrated Efficient Technologies on Buildings\u2019 Envelopes)

    Get PDF
    The paper describes the progress of the four-year European project Pro-GET-onE currently under implementation. This research and innovation project is based on the assumption that greater efficiency, attractiveness, and marketable renovation can only be achieved through an integrated set of technologies where all the different requirements (energy, structural, functional) are optimally managed. Thus, the project focuses on the unprecedented integration of different technologies to achieve a multi-benefit approach that is provided by a closer integration between energy and non-energy related benefits. The project aims to combine different pre-fabricated elements in a unified and integrated system resulting in a higher performance in terms of energy requirements, structural safety, and social sustainability. The project attempts to achieve this goal through the introduction of innovative solutions for building envelopes to optimally combine the climatic, structural, and functional aspects through a significant architectural transformation and a substantial increase of the real estate value of the buildings. This augmented value obtained through the application of the inteGrated Efficient Technologies (GETs) is extremely important when considering the necessity of creating an innovative and attractive market in the energy renovation of existing buildings towards the target of nearly zero energy buildings (nZEBs)

    Safety and sustainability of school buildings

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A practical methodology for optimum seismic design of RC frames for minimum damage and life-cycle cost

    Get PDF
    The design criteria in current seismic design codes are mainly to control lateral displacements and provide adequate strength to sustain expected design load combinations. However, to achieve the most economic design solutions, the life-cycle total cost (TLCC), which includes both initial structural cost and expected damage cost, should be also considered for the probable earthquakes during the lifetime of the structure. In the present study, the TLCC of the buildings is used as the main objective function for optimum seismic design of reinforced concrete (RC) frames. First, it is demonstrated that the blind increase of the reinforcement ratios does not necessarily reduce the displacement demands and the damage costs. Subsequently, a practical methodology is developed for the optimum seismic design of RC frames based on the concept of uniform damage distribution (UDD). Using an adaptive iterative procedure, the distribution of inter-storey drifts and TLCC of the floors is modified along the height of the structure. To demonstrate the efficiency of the method, 5, 8 and 12 storey RC frames are optimized using the proposed algorithm. The results indicate that, while all predefined performance targets are satisfied, the maximum inter-storey drift ratio and TLCC of the frames are considerably reduced (up to 56% and 45%, respectively) only after a few steps. The proposed method should prove useful for more efficient performance-based design of RC frames in practice
    • …
    corecore