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Abstract.  Performance-based seismic design offers enhanced control of structural damage for different levels of 

earthquake hazard. Nevertheless, the number of studies dealing with the optimum performance-based seismic 

design of reinforced concrete frames is rather limited. This observation can be attributed to the need for nonlinear 

structural analysis procedures to calculate seismic demands. Nonlinear analysis of reinforced concrete frames is 

accompanied by high computational costs and requires a priori knowledge of steel reinforcement. To address 

this issue, previous studies on optimum performance-based seismic design of reinforced concrete frames use 

independent design variables to represent steel reinforcement in the optimization problem. This approach drives 

to a great number of design variables, which magnifies exponentially the search space undermining the ability of 

the optimization algorithms to reach the optimum solutions. This study presents a computationally efficient 

procedure tailored to the optimum performance-based seismic design of reinforced concrete frames. The novel 

feature of the proposed approach is that it employs a deformation-based, iterative procedure for the design of 

steel reinforcement of reinforced concrete frames to meet their performance objectives given the cross-sectional 

dimensions of the structural members. In this manner, only the cross-sectional dimensions of structural members 

need to be addressed by the optimization algorithms as independent design variables. The developed solution 

strategy is applied to the optimum seismic design of reinforced concrete frames using pushover and nonlinear 

response-history analysis and it is found that it outperforms previous solution approaches. 

 

Keywords: Reinforced concrete; seismic design; performance-based; structural optimization; computationally 

efficient; nonlinear structural analysis; genetic algorithms 

 

1 Introduction 

 

The need for enhanced control of damage of structural systems subjected to earthquake 

ground motions has led to the development of deformation- and performance-based seismic 

design methodologies. Deformation-based seismic design offers direct control of structural 

damage that is related to member deformations (Priestley et al. 2007, Fardis 2009). Several 

deformation-based seismic design methodologies (e.g. Priestley et al. 2007, Panagiotakos & 

Fardis 2001, Kappos & Stefanidou 2010) have been presented in the literature and an 

interesting comparative study of them can be found in (fib 2003). Furthermore, performance-

based seismic design offers advanced control of structural damage by requiring a set of 
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performance objectives, in terms of structural damage, to be met for different levels of seismic 

hazard (SEAOC 2000). Performance- and deformation-based seismic design is now widely 

acknowledged and adopted in modern seismic design guidelines such as the one included in 

the fib Model Code 2010 (fib 2010, Fardis 2013) that is meant to serve as a basis for future 

design codes of concrete structures. 

A basic prerequisite of reliable performance-based seismic design is the accurate calculation 

of seismic demands in terms of both member deformations and forces. To serve this goal, 

nonlinear structural analysis procedures are required that are able to reproduce inelastic 

response of structural systems subjected to strong ground motions. The most rigorous method 

for calculating inelastic seismic demands is the nonlinear response-history analysis with step-

by-step integration of the equation of motion in the time domain. Alternatively, pushover 

analysis can be used to avoid the complexity and computational effort of nonlinear response-

history analysis. However, this analysis procedure exhibits several limitations, mainly related 

to its inability to account for higher mode effects (Krawinkler 1996). Therefore, it is generally 

recommended for regular frames with no significant higher mode effects (Krawinkler 1996, 

CEN 2004).  

Efficient design should not only control the level of structural damage but also lead to 

sustainable structural solutions in terms of both economic cost and environmental impact 

(Mergos 2018). The demand for sustainable structural design solutions in limited time has 

driven to the development of automated optimum structural design methodologies making use 

of efficient optimization algorithms that are able to solve complex engineering problems in 

limited time (Yang 2014, Lagaros 2014).  

Extensive research has been conducted on automated optimum design of structural systems 

(Lagaros 2014). However, only a limited number of studies has focussed on deformation- and 

performance-based seismic design of reinforced concrete frames with the aid of nonlinear 

structural analysis procedures (Fragiadakis & Lagaros 2011, Lagaros 2014). A list of these 

studies is presented in the following. Clearly, this list is not intended to be exhaustive but 

simply to provide a brief overview of the design variables, objective functions and constraints 

as well as the structural analysis procedures used in these research efforts.  

Ganzerli et al. (2000) were the first to consider optimum seismic design with performance-

based constraints of a simple reinforced concrete portal frame. Performance constraints were 

expressed in terms of member ends plastic rotations following FEMA-273 guidelines (FEMA 

1997). Seismic demands were evaluated using pushover analysis. Material cost was selected 

as the single design objective. Cross-sectional dimensions and longitudinal reinforcing steel 

areas were set as the design variables. Transverse reinforcement was not considered as it was 

expected not to appreciably change the outcome of the optimum solution. Chan and Zou (2004) 

used optimality criteria approach to examine optimum seismic design of reinforced concrete 

frames using pushover analysis. The proposed methodology is divided in two steps. First, 

member section dimensions are selected to fulfill the Serviceability Limit State (SLS) for 

frequent earthquakes. Next, member longitudinal steel reinforcement is designed to withstand 

demands of rare earthquakes for the Ultimate Limit State (ULS). This approach has the 

advantage of splitting the optimization problem into two smaller-scale optimization tasks that 

can be more easily resolved. However, it does not consider the fact that the response of 

reinforced concrete frames, even at the SLS, is a function of the existing longitudinal steel 

reinforcement (Priestley et al. 2007, Fardis 2009). Fragiadakis and Papadrakakis (2008) 

developed a performance-based optimum seismic design methodology for reinforced concrete 

frames using nonlinear response-history analysis and following both a deterministic and 

reliability-based approach. Inter-story drifts were used as performance criteria and material 

cost was set as the design objective to be minimized. Design variables were determined by 

using tables of concrete sections with pre-determined longitudinal steel reinforcement and 



 

applying the concept of multi-database cascade optimization. Lagaros and Fragiadakis (2011) 

compared optimum performance-based seismic designs of reinforced concrete buildings by 

using three different pushover methods. Cross-sectional dimensions and longitudinal steel 

reinforcement are used as design variables. The expected life cycle cost is set as design 

objective that consists of the initial construction cost and the limit state cost accounting for the 

costs related to damages induced by earthquakes during the lifetime of the structures. Gencturk 

(2013) examined performance-based seismic design optimization of reinforced concrete and 

reinforced engineered cementitious composites (ECC) frames. Initial cost and seismic 

performance, in terms of inter-storey drifts for the 10/50 hazard level, are set as the design 

objectives. Cross-sectional dimensions and longitudinal steel reinforcement ratios are used as 

design variables. Transverse reinforcement of the reinforced concrete frames is evaluated 

based on ACI 318-08 (ACI 2008) guidelines and it is included in the calculation of the initial 

cost of the design solutions. Mergos (2017) compared optimum seismic designs of reinforced 

concrete frames designed according to the deformation- and performance-based design 

methodology of fib Model Code 2010 (fib 2010) and the prescriptive approach of Eurocode 8 

– Part 1 (CEN 2004). In this study, material cost is set as the design objective and cross-

sectional dimensions, longitudinal and transversal reinforcing steel properties are used as 

design variables. Nonlinear response-history analysis is used to calculate seismic demands. It 

is found that the fib Model Code (MC2010) approach drives to significant cost savings, 

especially in regions of low seismicity, and controls better the levels of seismic damage. 

It can be inferred from this literature review that previous studies dealing with the optimum 

performance-based seismic design of reinforced concrete structures include the steel 

reinforcement (typically the longitudinal reinforcement) in the form of independent design 

variables in the optimization problem. This approach increases greatly the number of design 

variables expanding exponentially the search space and undermining the efficiency of the 

optimization algorithms to track the optimum solutions. The problem is magnified by the high 

computational costs needed to conduct nonlinear seismic analyses that turn, in many cases, the 

time required to perform optimum performance-based seismic design of reinforced frames 

prohibitive. 

In this study, a new methodology for the computationally efficient performance-based 

seismic design of reinforced concrete frames using nonlinear structural analysis procedures is 

developed. The novel feature of the proposed approach is that it employs a simple, 

deformation-based, iterative procedure for the design of steel reinforcement of reinforced 

concrete frames to meet their performance objectives given the cross-sectional dimensions of 

their structural members. In this manner, only the cross-sectional dimensions of structural 

members need to be set as independent design variables reducing greatly the search space of 

the optimization problem and facilitating the optimization algorithms to reach the optimum 

solutions. In the following, the proposed methodology is first developed. Next, it is applied to 

different reinforced concrete frames and it is compared with the performance of a more 

standard approach using steel reinforcement bars as independent design variables. 

 

2 Optimum seismic design of reinforced concrete frames methodology 

 

2.1 Optimization problem formulation 

 

Optimum seismic design of reinforced concrete frames can be formulated as a standard 

optimization problem with discrete design variables. This is the case because the design 



 

variables (i.e. cross-sectional dimensions, steel reinforcement bars) can take only pre-

determined discrete values specified by construction industry. A single-objective optimization 

problem with discrete design variables is generally written as: 

 

Minimize: Ƒ(𝒙) 

Subject to: 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1 𝑡𝑜 𝑚  (1) 

Where: 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 

𝑥𝑖 ∈ 𝐷𝑖 = (𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝑘𝑖
) , 𝑖 = 1 𝑡𝑜 𝑛 

 

In this formulation, Ƒ(𝒙) represents the objective function to be minimized by the optimization 

problem. The vector x is the candidate design solution that contains n independent design 

variables xi (i =1 to n). Design variables xi take values from discrete sets of values Di = (di1, 

di2, …, diki), where dip (p = 1 to ki) is the p-th possible discrete value of design variable xi and 

ki is the number of possible discrete values of xi. Furthermore, the solution should be subject 

to m number of constraints gj(x) ≤ 0 (j = 1 to m). The objective function, design variables and 

design constraints as well as the solution strategies and algorithms used in this study to solve 

the optimization problem of Eq. (1) are discussed in detail in the subsequent sections. 

 

2.2 Objective function 

 

The objective function Ƒ(𝒙) addressed in this study is the material cost of reinforced 

concrete frames. This cost can be taken as the sum of costs of concrete Cc(x), steel Cs(x) and 

formworks Cf(x). The cost of concrete is taken equal to the product of total concrete volume 

Vc (m
3) times the cost of concrete per unit volume Cco (€ / m3). The cost of steel is calculated 

by multiplying the total mass of steel reinforcement ms (kg) by the cost of steel per unit mass 

Cso (€ / kg). The cost of formworks is found as the product of the total area Af (m2) of 

formworks times their cost per unit area Cfo (€ / m2). Vc, ms and Af are calculated by summing 

up the contributions of all beams and columns of the concrete frames. The following unit prices 

are assumed in the rest of this study: Cco = 100 € / m3, Cso = 1 € / kg and Cfo = 15 € / m2. 

 

2.3 Design parameters and variables 

 

In optimum design problems, the input data can be divided in design parameters that keep 

their values fixed during the optimization process and design variables. In the sizing 

optimization problem examined herein, design parameters are assumed the geometry, material 

properties, concrete cover and external loading of the reinforced concrete frames.  On the other 

hand, design variables determine dimensions and steel reinforcement of section properties. 

Design variables are grouped in sub-vectors that they form the design vector x by assembly as 

described in the following. 

Column section properties design variable sub-vectors are the heights hc and widths bc of 

the rectangular column sections, the diameters dbc and numbers nc of main bars per side, 

assumed herein the same for all sides of a section for simplicity, the diameters dbwc, spacings 

sc and numbers of legs nwc of transverse reinforcement assumed again the same in both 

directions of a section for simplification purposes (Fig. 1a). Beam section properties design 

variable sub-vectors are the heights hb and widths bb of the beam sections, the diameters dbt 

and numbers of main bars ntb at the top, the diameters dbb and numbers nbb of main bars at the 

bottom, the diameters dbwb, spacings sb and numbers of legs nwb of transverse reinforcement 

parallel to beam section heights (Fig. 1b). 



 

It can be easily deducted that the design variables can be further grouped in three distinct 

compound design sub-vectors. The cross-sectional dimensions sub-vector xcd = [hc, bc, hb, bb], 

the longitudinal steel reinforcement bars sub-vector xsl = [dbc, nc, dbt, ntb, dbb, nbb] and the 

transverse steel reinforcement bars sub-vector xsw = [dbwc, nwc, sc, dbwb, nwb, sb]. These three 

sub-vectors can be assembled to form the design vector x = [xcd, xsl, xsw].  

Having established section properties, member properties need to be defined. These include 

both design parameters like member lengths, material properties and concrete cover as well as 

section properties. Two section properties per member property are used in this study 

representing member end sections. It is assumed that seismic demands control the structural 

design of the examined frames and therefore member end sections are the critical locations of 

the structural members. Furthermore, for simplicity, it is assumed that the end section 

properties are used throughout the corresponding half member lengths. Further cost reductions 

are feasible by optimizing the supplied steel reinforcement along member lengths. However, 

this should also take into account the ease of construction and it is not expected to alter the 

main findings of this study. 

 
 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

Fig. 1: Design variables: a) column sections; b) beam sections 

 

2.4 Design constraints 

 

The design constraints of the optimization problem examined herein are mainly related to the 

deformation- and performance-based seismic design methodology adopted in MC2010 (fib 

2010). However, prior to the seismic design provisions, construction practice constraints and 

constraints referring to structural design for static loads must be addressed. In this study, 

design constraints for static loads are based on the provisions of Eurocode 2 (EC2) (CEN 

2000). EC2 design constraints are either related to Engineering Demand Parameters (EDP) 

(i.e. forces, displacements, drifts, etc.) or Structural Detailing Parameters (SDP). A detailed 

description of these constraints and how they can be expressed in the generic form gj(x) ≤ 0 of 

Eq. (1) can be found in (Mergos 2017). 

MC2010 adopts a fully-fledged, performance-based seismic design methodology (Fardis 

2013). The code requires the verification of 4 Limit States. The Operational (OP) and 

Immediate Use (IU) which are SLS and the Life Safety (LS) and Collapse Prevention (CP) 

which represent ULS. All Limit States are verified by comparing chord rotation demands θEd, 

for different levels of Seismic Hazard, with chord rotation limit values θlim as presented in 

Table 1.  

In Table 1, θy is the yield chord rotation of concrete members. For beams and rectangular 

columns with ribbed bars, θy is given by Eq. (2), where 𝜑𝑦is the end section yield curvature, 

Ls the shear span of the member on the side of the end section, z is the lever arm of the end 
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section, ascr is a coefficient equal to 1 if shear cracking precedes flexural yielding or equal to 

0 if not, h is the end section height, dbl and fyl are the diameter and yield strength of longitudinal 

reinforcement (MPa) and fc the concrete strength of the member in MPa. It is interesting to 

observe in this equation that θy is independent of the transverse reinforcement (Priestley et al. 

2007, Fardis 2009). 

 

 𝜃𝑦 =
𝜑𝑦(𝐿𝑠+𝑎𝑠𝑐𝑟⋅𝑧)

3
+ 0.0014 ⋅ (1 +

1.5ℎ

𝐿𝑠
) +

𝜑𝑦𝑑𝑏𝐿𝑓𝑦𝑙

8√𝑓𝑐
 (2) 

 

Furthermore, θpl
u,k is the characteristic ultimate plastic hinge rotation capacity derived by 

the respective mean value θpl
um divided by the partial safety factor γRd. For rectangular beams 

and columns with ductile steel reinforcement and without diagonal reinforcement, γRd can be 

taken equal to 1.75 if θpl
u,m is calculated by Eq. (3). In this equation, 𝜔1 and 𝜔2 are the 

mechanical ratios of reinforcement in tension and compression zone respectively, 𝑣 is the 

normalized axial load ratio, 𝑎 is the confinement effectiveness factor and 𝜌𝑤and 𝑓𝑦𝑤are the 

volumetric ratio and yield strength of transverse reinforcement. It is evident in this equation 

that θpl
um strongly depends on the transverse reinforcement. Therefore, the latter should be 

adjusted accordingly so that the ULS are satisfied. 

 

𝜃𝑢𝑚
𝑝𝑙 = 0.0143 ⋅ 0.25𝑣 ⋅ 𝑓𝑐

0.2 ⋅ (
max(0.01;𝜔2)

max(0.01;𝜔1)
)

0.3

⋅ (min (9;
𝐿𝑠

ℎ
))

0.35

⋅ 25
(

𝑎𝜌𝑤𝑓𝑦𝑤

𝑓𝑐
)
          (3) 

 

Furthermore, for the ULS, brittle shear failures should be prevented by ensuring that shear 

force demands VEd are lesser than design shear force limit values (capacities) Vlim = VRd. VRd 

values outside plastic hinge regions are calculated as for static loadings. Inside plastic hinge 

regions, fib MC2010 specifies a strut inclination of 45o when plastic rotation θpl exceeds 2·θy 

and 21.8o for elastic response. Interpolation is allowed for intermediate values of θpl.  

Conveniently, all MC2010 performance-based constraints can be expressed in the generic 

form gj(x) ≤ 0 by Eq. (4), where EDPs represent chord rotations and shear forces. It is also 

important to clarify herein that MC2010 follows a purely performance-based approach and no 

additional prescriptive rules (i.e. detailing rules, capacity design principles) are set to meet its 

performance objectives apart from the ones used for static loads. 

 

 𝐸𝐷𝑃 ≤ 𝐸𝐷𝑃𝑙𝑖𝑚 → 𝑔𝑗(𝑥) =
𝐸𝐷𝑃

𝐸𝐷𝑃𝑙𝑖𝑚
− 1 ≤ 0 (𝑗 = 1 𝑡𝑜 𝑚)   (4) 

 

Seismic demands according to fib MC2010 should be calculated by rigorous nonlinear 

structural analysis employing lumped plasticity finite elements with bilinear moment-rotation 

hysteretic models and realistic rules for stiffness degradation during unloading and reloading. 

Furthermore, the finite element model applied should use realistic estimates of the effective 

elastic stiffness of concrete members EIeff. It is therefore recommended that EIeff is taken from 

Eq. (5), where My represents the member end section yield moments and the other parameters 

have been previously defined. It is important to identify here that EIeff is directly proportional 

to member’s flexural strength that is strongly influenced by the amount of longitudinal steel 

reinforcement. Therefore, calculation of seismic demands requires the knowledge of 

longitudinal steel reinforcement even at the SLS.   

 

 𝐸𝐼𝑒𝑓𝑓 =
𝑀𝑦𝐿𝑠

3𝜃𝑦
 (5) 

 



 

The one-component lumped plasticity finite element (Giberson, 1967) is used in this study 

for calculating seismic demands. This is a series model of an elastic element and two nonlinear 

rotational springs at its ends, where all inelastic deformations are lumped. Hysteretic rules 

representative of well-detailed and flexure-controlled reinforced concrete members are used 

since this study is focussing on the design of new structures. More particularly, mild stiffness 

degradation during unloading is considered following the recommendations by Sivaselvan and 

Reinhorn (2000) and Mergos and Kappos (2012). Furthermore, it is assumed that reloading 

aims at the point of previous maximum excursion in the opposite direction (Filippou et al. 

1992, Mergos and Kappos 2012). For simplicity, a fixed post-yield hardening ratio close to 

zero (elastic-perfectly plastic behaviour) is assumed for the bilinear moment-rotation 

hysteretic models following the recommendations by Fardis (2013). 

 
Table 1: Limit States, Seismic Hazard levels and Deformation Limits recommended by fib MC2010 for 

ordinary structures 

Limit State Seismic Hazard Deformation Limits θlim 

Operational (OP) 
Frequent with 70% probability of 

exceedance in 50 years (70/50) 
Mean value of θy 

Immediate Use 

(IU) 

Occasional with 40% probability of 

exceedance in 50 years (40/50) 
Mean value of θy may be exceeded by a 

factor of 2.0 

Life Safety (LS) 
Rare with 10% probability of exceedance 

in 50 years (10/50) 
Safety factor γ*R of 1.35 against θpl

u,k 

Collapse 

Prevention (CP) 

Very rare with 2% probability of 

exceedance in 50 years (2/50) 
θpl

u,k capacity may be reached (γ*R =1) 

 

2.5 Solution strategies 

 

In this section, the strategies followed to solve the afore-described optimization problem 

are presented. The first strategy (Fig. 2a) examined herein is named for simplicity “standard” 

because it is more representative of previous studies on optimum performance-based seismic 

design of reinforced concrete structures, where both the cross-sectional dimensions and the 

longitudinal reinforcement of concrete members are set as design variables (e.g. Ganzerli et 

al. 2000, Fragiadakis and Papadrakakis 2008, Gencturk 2013, Mergos 2017). It is emphasised, 

however, that the ‘standard’ approach examined in this study by no means represents fully the 

special characteristics of specific previous studies and such comparisons are not implied 

herein. 

In this strategy, the optimizer selects the xcd and xsl design sub-vectors. The candidate 

designs are first checked to verify that they comply with construction practice and detailing 

rules for static loads limitations (e.g. the width of beams cannot be greater than the width of 

adjoining columns, maximum longitudinal reinforcement ratio). Next, the adequacy of the 

selected xsl is verified based on the results of structural design for the static load combinations 

that requires solely knowledge of xcd. If the candidate design is acceptable, then the nonlinear 

structural analysis finite element model for the purposes of performance-based seismic design 

is composed. This model requires knowledge of My, θy and EIeff of all structural members ends 

that can be directly calculated by the selected xcd and xsl design sub-vectors. Using the 

developed finite element model, chord rotation demands θEd are calculated first for the OP and 

IU Limit States. These are compared with the corresponding limit values that are solely a 

function of the yield chord rotations θy, that are determined by xcd and xsl from Eq. (2). If the 

SLS constraints are satisfied, then the EDPs in terms of chord rotations and shear forces are 

calculated for the LS and CP Limit States. Based on these EDP values and the selected xcd and 

xsl sub-vectors, the transverse steel reinforcement sub-vector xsw is chosen to provide adequate 

θpl
u,k and VRd capacities so that the performance checks of the ULS are satisfied. In addition, 



 

the selected xsw should satisfy the transverse reinforcement requirements and detailing rules 

for static loads and be consistent with construction practice. If the selection of xsw to satisfy all 

corresponding constraints is successful, the candidate design is branded as feasible and its 

objective function value is returned to the optimizer. Otherwise, the solution is considered as 

not feasible and a penalty term is added to the value of the objective function. 

The second strategy (Fig. 2b) is the one proposed in this study because it reduces greatly 

the search space of the optimization algorithm driving to more computationally efficient 

optimum solutions. According to this strategy, the optimizer selects only the cross-sectional 

dimensions design sub-vector xcd. Knowing xcd and after checking for construction practice 

limitations, structural analysis for the static load combination is conducted and the required 

longitudinal steel reinforcement areas are calculated using standard structural design 

procedures. Then, an initial xsl design sub-vector is selected that satisfies both longitudinal 

steel reinforcement area requirements and detailing rules for static loads in the most cost-

efficient way. In fact, this task is an independent optimization problem that is typically 

resolved with negligible computational cost using exhaustive search or any other optimization 

algorithm. Having established xcd and the initial xsl sub-vectors, an initial nonlinear finite 

element model is composed and the corresponding θEd demands are calculated for the OP and 

IU Limit States and compared to the respective limit values θlim (see Table 1) similarly to the 

standard solution strategy. In the proposed methodology, however, if the SLS performance 

constraints are not satisfied (i.e. θEd > θlim) then an iterative procedure is launched, where the 

xsl is successively modified until these constraints are satisfied.  

More particularly, for each member end section and for both Serviceability Limit States 

(i.e. OP and IU), the required yield moment value My
req of the new iteration step is estimated 

by Eq. (6) from the yield moment My and ratio θEd / θlim calculated at the same section using 

the xsl sub-vector of the previous step. Next, the required longitudinal steel reinforcement areas 

are calculated based on either the estimated My
req for both SLS or the static load combination, 

whichever is more demanding. Then, the design sub-vector xsl of the new iteration step is 

selected to satisfy the required steel reinforcement areas as well as construction practice and 

static loads detailing rules in the most efficient manner. The afore-described procedure is 

repeated until the OP and IU Limit States constraints are satisfied. 

 

 𝑀𝑦,𝑆𝐿𝑆
𝑟𝑒𝑞 = 𝑀𝑦,𝑆𝐿𝑆 ⋅ (

𝜃𝐸𝑑

𝜃𝑙𝑖𝑚
)

𝑆𝐿𝑆
(𝑆𝐿𝑆 = 𝑂𝑃, 𝐼𝑈)     (6) 

 

Equation (6) is inspired by the “equal displacement rule” of Single Degree of Freedom 

Systems (SDOFs). According to this rule, an elastoplastic SDOF system develops the same 

maximum displacement response as that of an infinitely elastic system with the same mass, 

damping and elastic stiffness. It has been found (Panagiotakos and Fardis 1999, MC2010) that 

this rule applies well on average for local member deformations of concrete structures and 

especially the regular ones. This is the case because concrete structures have fundamental 

periods (estimated using EIeff) that are in the range where the equal displacement rule applies 

fairly well for SDOF systems.  

However, the proposed methodology does not rely on elastic analyses to calculate seismic 

demands and therefore is not limited by the approximations of the equal deformation rule. On 

the contrary, it uses rigorous nonlinear structural analysis procedures that calculate accurately 

local deformation demands. Therefore, performance checks are always reliably satisfied. This 

effectively means that the proposed approach can also be applied to concrete structures, where 

the equal deformation rule does not hold reliably (e.g. irregular structures). 

Figure 3 demonstrates the equal deformation rule used herein in terms of member chord 

rotations. An elastoplastic response with the yield moment My of the previous iteration step, 



 

an elastoplastic response with the required yield moment of the new step My
req and a fully 

elastic response are shown. All responses are controlled by the same EIeff value and therefore 

are expected to develop the same chord rotation demand θEd. The deformation limit value for 

the previous iteration step is θlim = μθ,lim · θy, where μθ,lim is the limit chord-rotation ductility 

with μθ,lim = 1 for the OP and μθ,lim = 2 for the IU Limit States respectively (see Table 1). As 

shown in Fig. 3, θEd exceeds θlim and therefore the SLS performance constraint is not satisfied 

in the previous iteration step. For the performance constraint to be satisfied, the required 

deformation limit θlim
req = μθ,lim · θy

req of the new iteration step should be equal to the 

deformation demand θEd. θy
req is the required yield chord-rotation corresponding to the required 

yield moment My
req of the new iteration step. From the geometry of Fig. 3, it holds that θlim

req 

= μθ,lim · θy
req = μθ,lim · θy · (My

req / My) = θlim · (My
req / My). By setting θlim

req = θEd and solving 

for My
req, Eq. (6) is derived. It is worth noting here that the same procedure is used for both 

Serviceability Limit States and that Eq. (6) can be used also to reduce the required yielding 

moment of the new iteration step My
req, when the performance criteria are conservatively 

satisfied, leading to more cost-efficient solutions. 

 

 
Fig. 3: Equal deformation rule 

 

As discussed previously, Eq. (6) is based on the equal deformation rule at the member end 

sections level using the EIeff values of the previous iteration step (Fig. 3). The latter is not 

accurate since EIeff is directly proportional to the yield moments of reinforced concrete 

members end sections (see Eq. 5). Due to these approximations, an iterative procedure is 

required. It is noted, however, that application of the proposed iterative scheme to the case 

studies presented later in this study shows that convergence is rapid (typically 1-4 iterations 

are needed). This can be attributed to the proportional nature of the correction procedure (the 

more the chord rotation limit values are exceeded the more the My values are increased) and 

the fact that the provided steel reinforcement areas are often greater than the required due to 

the limitations in available steel bar diameters in construction practice. To further increase the 

convergence rate of the proposed procedure, My
req in Eq. (6) can be multiplied by a factor ξ 

greater than unity (ξ ≥ 1). However, ξ should be kept as close as possible to unity since over-

conservative designs may be derived otherwise. 

After satisfying SLS constraints, the EDP values are calculated for the LS and CP Limit 

States and then an appropriate xsw is chosen in a similar fashion to the standard solution 

strategy. If the selection of an appropriate xsl sub-vector to meet SLS objectives and the 

selection of an appropriate xsw sub-vector to fulfil the ULS objectives are successful, then the 

candidate designs are branded as feasible and the value of the objective function is calculated. 

Otherwise, the solution is treated as not feasible and a penalty term is added. The values of the 

objective functions are then returned to the optimizer to select the new xcd sub-vectors. 

From the previous discussion, the advantages of the proposed solution strategy become 

apparent. In the proposed approach, only the xcd variables are treated as independent design 

θy
req 

My
req 

θ 

M 

θy 

My 

θEd = θlim
req θlim 

EIeff 



 

variables by the optimization algorithm, whereas the xsl and xsw sub-vectors are subsequently 

determined from xcd. In the standard approach, both xcd and xsl sub-vectors are considered as 

independent design variables and only the xsw sub-vector is later defined. Hence, the proposed 

approach drives to a great reduction of the required independent design variables considering 

that typical beam and column series of reinforced concrete frames are prismatic with different 

longitudinal steel reinforcement at the various end sections and in the case of beam members 

different top and bottom steel reinforcement.  

 

 

  

Fig. 2: Flowcharts of optimum seismic design strategies a) standard; b) proposed approach 

 

2.6 Solution algorithms 

 

For small scale discrete optimization problems, exhaustive search can be employed. For larger 

scale problems, metaheuristic optimization algorithms can be used instead (Yang 2014). In this 

study, the GA implemented in MATLAB-R2017a (Mathworks 2017) is applied. GAs (Holland 

1975) are metaheuristic optimization algorithms imitating Darwin’s theory of evolution. They 

gradually modify populations (generations) of candidate design vectors x (individuals). 

Individuals of next generations (children) are formed from selected individuals of previous 

generations (parents) based on their objective function values. The algorithm adopted herein 

is capable of handling discrete design variables by using special crossover and mutation 

functions (Deep et al. 2009). It is emphasised, however, that the solution procedures proposed 
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in this study can be applied by employing any other automated optimization algorithm that 

treats discrete design variables. 

 

3 Optimum seismic design of RC frames applications 

 

3.1 Introduction 

 

In this section, applications of the optimum seismic design methodologies described previously 

to reinforced concrete frames are presented. The goal is to compare the computational 

performance of the different solution strategies and investigate the applicability of the 

proposed approach. More particularly, a simple portal, a 3-storey 3-bay and a 6-storey 2-bay 

reinforced concrete frames are designed in accordance with the deformation and performance-

based methodology of MC2010. Since no specifications are provided in MC2010 for the 

serviceability checks of non-structural components, these checks are conducted herein by limiting 

inter-storey drifts according to EC8-Part 1 (CEN 2004) recommendations for buildings with brittle 

non-structural elements. Nonlinear structural analyses are conducted with the general finite 

element program for the inelastic damage analysis of structures IDARC2D Version 7.0 

(Reinhorn et al. 2007) developed at the State University of New York at Buffalo. The analyses 

are performed on a personal computer using each time one core of an Intel i5-7500 processor 

with operating frequency 3.40 GHz.  

 

3.2 Portal frame 

 

In this section, a simple portal reinforced concrete frame (Fig. 4) is optimally designed. The 

span of the frame is 4m and the height 3m. Concrete C25/30 and reinforcing steel B500C in 

accordance with EC2 specifications are used. Concrete cover is assumed to be 30mm. Storey 

weight for the quasi-permanent combination is 288kN and it is applied in the form of two equal 

vertical point loads at the locations of the columns. The reinforced concrete frame is part of a 

building of ordinary importance that rests on soil class B according to the classification of EC8 

– Part 1. It is designed for 0.36g peak ground acceleration (PGA) for the 10/50 seismic hazard 

level. PGAs for the other seismic hazard levels of MC2010 (Table 1) are calculated by 

multiplying the 10/50 values by the importance factor γI calculated by the equation proposed 

in EC8. Pushover analysis is employed to calculate seismic demands of this frame in 

accordance with the N2 method as prescribed in EC8.  

Due to symmetry, columns C1 and C2 are assumed to have the same section and the beam 

the same end sections and the same top and bottom longitudinal reinforcement. Moreover, for 

simplicity, square sections are used for the column members. Furthermore, it is assumed that 

the longitudinal and transverse reinforcement do not vary along members’ length. In this 

manner, only one cross-section is required for the column members and one cross-section for 

the beam member.  

It is considered that the column cross-sectional dimensions and the beam height can take 

discrete values starting from 0.25 m and increasing by 0.05 m up to 0.80 m. Beam width is 

assumed to be 0.25 m. Longitudinal bar diameters of 14 mm and transverse bar diameters of 

8mm are used for the beam and column members. Transverse reinforcement spacing may take 

values starting from 0.10 m and increasing by 0.025 m up to 0.30 m. The number of 

longitudinal steel bars and legs of the transverse reinforcement can take any integer value 

between 2 and 6 for all frame members. 

Following the previous design assumptions, 4 independent design variables are required for 

the standard solution strategy. These are the square column cross-sectional dimension, the 



 

beam height, the number of longitudinal steel bars per side of the column sections and the 

number of the top or bottom steel reinforcing bars of the beam member. The possible 

combinations of these 4 design variables are 3600. On the other hand, for the proposed solution 

strategy, 2 independent design variables are required (columns cross-sectional dimension and 

beam height) with only 144 possible combinations.  

Due to the rather small scale of this problem, exhaustive search is used to derive the 

optimum solutions. The main advantage of this method is that it is guaranteed to provide the 

global optimum solution. Using the standard solution strategy, the analysis was terminated 

after 3170 secs and the optimum cost was found to be 511.1 € corresponding to the solution 

provided in Table 2. Using the proposed strategy, the exhaustive search was terminated after 

125 secs (approximately 25 times faster) yielding the same solution as the standard approach. 

This observation shows both the computational efficiency and validity of the proposed 

approach. It should be clarified here that the computational times reported have only relative 

value since they generally depend on many issues not directly related to the proposed 

methodology (e.g. speed of reading the output files of the finite element analysis program from 

MATLAB). However, in this study, the standard and the proposed methodologies use similar 

procedures and therefore their computational times can be directly compared. 

It is interesting to discuss at this point the convergence of iterations used in the proposed 

methodology to select the appropriate xsl sub-vector following the selection of the optimal sub-

vector xcd by the optimizer shown in Table 2. The initial (1st iteration) xsl sub-vector selected 

to satisfy static loads and construction practice constraints fails to satisfy OP and IU Limit 

States constraints. If SoV is defined as the sum of constraints violations 𝑔𝑗(𝑥), given by Eq. 

(4) when positive and taken as zero when negative, for all end sections and for both Limit 

States then SoV is found approximately equal to 1.9 for the 1st iteration. Hence, a second xsl 

sub-vector is selected, based on the procedure shown in Fig. 2b, for which SoV drops rapidly 

to approximately 0.1. In the 3rd iteration, SoV is zero and the selection of the xsl sub-vector 

(presented in Table 2) becomes feasible. 

Figure 5 presents MC2010 checks of rotation and shear force constraints (Eq. 4) for all 

Limit States as obtained for the optimum solution of Table 2. Column sections are defined by 

the column member number (e.g. C01) and a letter designating the location of the section in 

the member (i.e. B=bottom and T=top). Similarly, beam sections are defined by the beam 

member number (e.g. B01) and a letter designating the location of the section in the member 

(i.e. L=left and R=right). Limit States are stated by the acronyms shown in Table 1. It is evident 

that all constraints checks are satisfied and the optimum solution is feasible. 

 

 

Fig. 4: Reinforced concrete portal frame 

 

Table 2: Portal frame optimum design solution obtained by the standard and proposed approach 

Members Columns Beams 

Property hc bc nc dbc nwc dbwc sc hb bb ntb dbt nbb dbb nwb dbwb sb 
Units m m  mm  mm m m m  mm  mm  mm m 

 0.40 0.40 4 14 2 8 0.15 0.40 0.25 4 14 4 14 2 8 0.25 

 

 

 

 

 

 

 

 
B1 

C1 C2 

4m 



 

  

  

Fig. 5: MC2010 chord rotation and shear force constraints checks of the reinforced concrete portal frame 

optimum design solution obtained by the standard and proposed solution strategy 

 

3.3 Three-storey three-bay frame 
 

In this section, a three-storey three-bay reinforced concrete frame (Fig. 6) is examined. Frame 

spans are 5 m and storey heights 3 m. Concrete C25/30 and reinforcing steel B500C are used. 

Concrete cover is assumed to be 30mm. Storey weight for the quasi-permanent combination is 

864 kN and it is applied in the form of vertical point loads of 144 kN at the locations of the 

exterior and 288 kN at the interior columns. The frame is part of a building of ordinary 

importance that rests on soil class B. It is designed for 0.36g peak ground acceleration (PGA) 

for the 10/50 seismic hazard level. Pushover analysis is employed to calculate seismic demands 

of this frame following the N2 method. For simplicity, an invariant lateral load pattern 

proportional to lateral forces consistent with the 1st mode of vibration is used in the pushover 

analysis of this low-rise and regular in elevation frame. 

For simplicity, square sections are assumed for the column members that are different for 

the exterior and interior columns. Furthermore, column cross-sectional dimensions do not 

change along frame height. The steel reinforcement is assumed uniform along the length of 

column members, but may change between different storeys. Beam cross-sectional heights do 

not change inside storeys but can be different for the different storeys. The same beam width 

is assumed for all storeys of the frame that cannot be greater than the column sections. 

Different steel reinforcement is used for the exterior and interior supports of the beam series. 

The same top and bottom steel reinforcement is applied for the beam sections due to symmetry. 

It is interesting to note that this observation must be applied externally by the user in the case 

of the standard solution strategy reducing significantly its independent design variables. In the 

case of the proposed methodology, however, this feature is derived automatically by the 

a) b) 

c) d) 



 

solution procedure and has no effect on the number of the independent design variables. This 

shows the versatility of the proposed approach.  

In addition to the previous, it is assumed herein that column cross-sectional dimensions and 

beam heights take values starting from 0.30 m and increasing by 0.05 m up to 1.00 m. Beams 

width is assumed to take one of the following values: 0.30 m, 0.35 m and 0.40 m. Longitudinal 

bar diameters of 16 mm and transverse bar diameters of 8 mm are used for all concrete 

members. Transverse reinforcement spacing takes values starting from 0.10 m and increasing 

by 0.025 m up to 0.30 m. The number of longitudinal steel bars and legs of the transverse 

reinforcement can take any integer value between 2 and 10 for all frame members. 

 

 
Fig. 6: Reinforced concrete three-storey three-bay frame 

 

Following the previous assumptions and due to symmetry, 6 different column sections and 

6 beams sections are applied. The locations of these sections are shown in Tables 3 and 4. 

Furthermore, 6 independent design variables are required by the proposed approach (2 column 

cross-sectional dimensions, 3 beam heights and 1 beam width) and 18 design variables by the 

standard strategy (6 cross-sectional dimensions plus the numbers of longitudinal bars of the 6 

beam and 6 column sections).  

Due to the larger scale of this problem, the GA described in §2.6 is employed for its 

solution. For both solution strategies, a population size of 100 individuals with 5 elite 

individuals as recommended in Mathworks (2017) for an optimization problem with 18 design 

variables as the case of the standard approach. A smaller population size is recommended in 

MATLAB for the 6 design variables of the proposed approach. However, it was decided to 

use the same population size for both methodologies so that this parameter will not affect their 

comparison.  

It is important to clarify at this point that more than one iterations may be required by the 

proposed strategy for each candidate design. Therefore, a comparison of the number of 

individuals and generations examined by the two solution approaches is not directly reflecting 

their computational costs (it would favour the proposed approach). Hence, it was decided to 

compare the two methodologies in terms of their performance with respect to computational 

time. To serve this goal, all GA analyses were terminated 8 hours after start and their obtained 

minimum objective function values were compared. To account for the stochastic nature of 

GA analyses, 10 independent GA runs were performed for each solution strategy. 

Fig. 7a compares the minimum costs of all GA analyses obtained for both solution 

strategies. It is evident that the proposed methodology leads to an optimum solution that is 6% 

(4244 € instead of 4502 €) less expensive than the standard methodology. The structural 

configuration of the optimum solution from the proposed approach is shown in Tables 3 and 

4. Furthermore, to examine the variability of the GA predictions, Fig. 7b presents the minimum 
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costs obtained from all GA runs for both solution methodologies in the form of box plots. The 

box plots show the minimum, maximum and median (red line) minimum costs obtained from 

the 10 GA runs. Inside the boxes, the 25th to 75th percentile solutions are contained. The mean 

minimum cost prediction of the proposed approach is 8% less expensive than the standard 

solution. It is noteworthy that the best prediction of the standard approach is worse than the 

worst prediction of the proposed methodology. It is also significant to observe that the 

variability of the proposed method is significantly lesser than the standard approach (i.e. 

Coefficient of Variation 1.7% instead of 7.2%). 

Moreover, Fig. 7c shows the variation of minimum costs with time of the optimum cost 

solutions presented in Fig. 7a. It can be concluded that the solution based on the proposed 

strategy is always more cost efficient than the standard approach. Fig. 7d presents the variation 

of the same costs with the number of generations produced by the GA optimizer in the time 

span of 8 hours. The GA produces almost 10 times more generations and individuals in the 

standard approach with respect to the proposed methodology. This does not mean, however, 

that the candidate designs of the proposed methodology require on average 10 iterations to 

converge to the selection of the longitudinal reinforcement so that both approaches conduct 

the same number of nonlinear analyses. Most of the individuals of the standard methodology 

fail to satisfy the early detailing constraints set by EC2 (e.g. maximum and minimum 

longitudinal reinforcement ratio, distance between longitudinal bars) for the design against 

static loads since the xcd and xsl sub-vectors are chosen arbitrarily by the optimizer. These 

individuals are computationally inexpensive as they are not subjected to nonlinear analyses to 

avoid unnecessary computational cost (Fig. 2a). Furthermore, the standard approach designs 

that fail to satisfy the OP and IU constraints are not subjected to nonlinear analyses for the LS 

and CP Limit States (Fig. 2a). In the proposed approach, however, all candidate designs are 

subjected to nonlinear analyses for all Limit States. At this point, it is important to recall that 

a smaller population size is recommended in MATLAB for the 6 design variables of the 

proposed approach (60 instead of 100). This would lead to more generations for the proposed 

approach and even better performance in the same time span.   

Figure 7e presents the progress of SoV, as defined in §3.2, with the number of iterations for 

the optimum design solution presented in Tables 3 and 4. SoV drops rapidly and monotonically 

from approximately 3.8 for the 1st iteration to 0 for the 5th iteration, where the selection of xsl 

sub-vector is branded as feasible. In these analyses, it is assumed that ξ = 1. To investigate the 

influence of ξ on the convergence of the xsl selection, the design of xsl for the same xcd sub-

vector of Tables 3 and 4 is repeated with ξ = 1.1. As shown in Fig. 7e, the convergence of SoV 

to zero is significantly faster with only 3 iterations required to select an appropriate xsl sub-

vector. However, this improvement of computational performance comes with an increase in 

the optimum cost of the reinforced concrete frame from 4244 € to 4306 € (1%).  

Moreover, Fig. 7f shows the variation with time of the mean values of the minimum costs 

of the 10 GA runs using the standard and the proposed approach. Again, the proposed approach 

exhibits better performance along the entire time span of the GA runs. The cost savings are 

even more important at the first stages of the GA runs. It is also important to note that the 

means of the predictions of the proposed approach tend to stabilize after 7 hours meaning that 

this methodology, on average, reaches convergence. This is not the case for the standard 

approach. 



 

  

  

 

 
Fig. 7: Comparison of the computational performance of the standard and proposed solution strategies for 

the 3-storey 3-bay reinforced concrete frame 

 

Figure 8 shows the checks of rotation and shear force constraints according to MC2010 for 

all Limit States as obtained for the two optimum solutions of Fig. 7a. For clarity, only the 

checks that contain one constraint value greater than -0.25, either for the standard or the 

proposed solution strategy, are presented. It is evident that all constraints checks are satisfied 

and the optimum solutions are feasible. It is interesting to observe that in many cases the 

constraints are very close to the limit zero value, which shows the efficiency of the derived 

optimum solutions. 

a) b) 

c) d) 

e) f) 



 

  

  

Fig. 8: MC2010 chord rotation and shear force constraints checks of the best reinforced concrete 3-storey 3-

bay frame design solutions obtained by the standard and proposed solution strategy 

 
Table 3: Columns detailing of the 3-storey 3-bay frame optimum design solution obtained by the proposed 

approach 

 

 Property: hc bc nc dbc nwc dbwc sc 

Sections Locations m m  mm  mm m 
1 C1, C4 0.3 0.3 3 16 2 8 0.175 

2 C2, C3 0.5 0.5 4 16 2 8 0.175 

3 C5, C8 0.3 0.3 2 16 2 8 0.175 

4 C6, C7 0.5 0.5 3 16 3 8 0.1 

5 C9, C12 0.3 0.3 2 16 2 8 0.175 

6 C10, C11 0.5 0.5 2 16 2 8 0.125 

 
Table 4: Columns detailing of the 3-storey 3-bay frame optimum design solution obtained by the proposed 

approach 

 

 Property: hb bb ntb dbt nbb dbb nwb dbwb sb 

Sections Locations m m  mm  mm  mm m 
1 B1L, B3R 0.65 0.3 2 16 2 16 2 8 0.3 

2 B1R, B2L, B2R, B3L 0.65 0.3 4 16 4 16 2 8 0.3 

3 B4L, B6R 0.3 0.3 4 16 4 16 2 8 0.175 

4 B4R, B5L, B5R, B6L 0.3 0.3 6 16 6 16 2 8 0.175 

5 B7L, B9R 0.4 0.3 2 16 2 16 2 8 0.25 

6 B7R, B8L, B8R, B9L 0.4 0.3 2 16 2 16 2 8 0.25 

 

  

a) b) 

c) d) 



 

 

3.4 Six-storey two-bay frame 
 

In this section, a six-storey two-bay reinforced concrete frame (Fig. 9) is optimally designed. 

Frame spans are 5 m and storey heights 3 m. Concrete C25/30 and reinforcing steel B500C are 

used. Concrete cover is assumed to be 30mm. Storey weight for the quasi-permanent 

combination is 576kN and it is applied in the form of vertical point loads of 144kN at the 

exterior and 288kN at the interior joints. The frame is part of a building of ordinary importance 

that rests on soil class B. It is designed for 0.24g peak ground acceleration (PGA) for the 10/50 

seismic hazard level. Based on this information, the EC8 – Part 1 elastic pseudo-acceleration 

response spectrum for regions of high seismicity is composed, as shown in Fig. 10b, that serves 

as the target response spectrum in this study. 

 

 
Fig. 9: Reinforced concrete six-storey two-bay frame 

 

The frame is designed to resist the Tabas 1978 earthquake ground motion as recorded at station 

ST59 in the X-direction and scaled in amplitude (Fig 10a) so that its elastic response spectrum 

is not lower than 90% of the target response spectrum as shown in Figure 10b and in 

accordance with the recommendations of MC2010. Nonlinear response-history analysis is 

employed to calculate seismic demands of this frame to demonstrate the applicability of the 

proposed methodology when using also this nonlinear structural analysis procedure. It is 

clarified that according to MC2010, at least 3 ground motions are required to use maximum 

and 7 ground motions to use average response values in the seismic design of concrete 

structures. However, the main objective of this section is to compare the performance of the 

different solution strategies. Therefore, it was deemed more appropriate to focus on a single 

ground motion record rather than repeating a great number of nonlinear response history 

analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 x 5m 

6 
x 

3m
 



 

  
Fig. 10: Tabas 1978 scaled ground motion: a) acceleration time history; b) elastic response spectrum 

 

The same simplifications and assumptions are made for the detailing of the 6-storey 2-bay 

frame of this section as in §3.3. The only difference in this frame is that it is assumed, for 

simplicity reasons, that the cross-sectional dimensions of the beam members and the steel 

reinforcement of both the beam and column members are changed every 2 storeys rather than 

each storey. Following these assumptions and due to symmetry, 6 different column sections 

and 6 beams sections are required. The locations of these sections are shown in Tables 5 and 

6. In total, 6 independent design variables are required by the proposed approach (2 column 

cross-sectional dimensions, 3 beam heights and 1 beam width) and 18 design variables by the 

standard strategy (cross-sectional dimensions plus the numbers of longitudinal bars of the 6 

beam and 6 column sections). Furthermore, the cross-sectional dimensions and steel 

reinforcement variables are assumed to take values from the same discrete variables sets as in 

§3.3. Again, the GA described in §2.6 is applied herein for both solution strategies with a 

population size of 100 individuals and 5 elite individuals. Ten independent GA runs were 

conducted for each solution methodology that lasted 8 hours each. 

Fig. 11a compares the minimum costs of all GA analyses obtained for both solution 

strategies. The proposed strategy yields an optimum solution with 21% (5391 € instead of 

6820 €) less cost than the standard approach. The structural configuration of the optimum 

solution from the proposed methodology can be found in Tables 5 and 6. In addition, Fig. 11b 

illustrates the minimum costs obtained from all GA runs for both solution methodologies in 

the form of box plots as in §3.3. It is shown that the mean minimum cost prediction of the 

proposed approach is 28% less expensive than the standard solution. It is noted that the best 

prediction of the standard approach is significantly worse than the worst prediction of the 

proposed methodology. Moreover, the variability of the proposed method is smaller than the 

standard approach (i.e. Coefficient of Variation 3.5% instead of 6.0%). 

Furthermore, Fig. 11c presents the variation of minimum costs with time of the optimum 

cost solutions presented in Fig. 11a. It is evident that the proposed solution is continuously 

less costly than the standard approach. Additionally, Fig. 11d shows the variation of the same 

costs with the number of generations produced by the GA for both design approaches and in 

the same time length. Very similar comments to the respective figure of §3.3 can generally be 

made. Moreover, Fig. 11e presents the variation with time of the mean values of the minimum 

costs of the 10 GA runs using the standard and the proposed methodologies. Again, the 

proposed methodology exhibits significantly better performance along the entire time span of 

the GA solutions. It is also noted that the means of the predictions of the proposed approach 

tend to converge, which is not the case for the standard methodology. 

a) b) 



 

Regarding the convergence in the selection of xsl for the optimal xcd sub-vector of Tables 5 

and 6, it is immediate in this case because the xsl sub-vector selected to fulfil the static loads 

constraints is also found to satisfy the OP and IU Limit States constraints. 

Lastly, Fig. 12 presents rotation and shear force constraints checks of MC2010 for the two 

optimum solutions of Fig. 11a. Only the checks that contain one constraint value greater than 

-0.25, either for the standard or the proposed solution strategy are shown for illustration 

reasons. As expected, all constraints checks are satisfied and the optimum solutions are 

acceptable.  

  

  

 

 

Fig. 11: Comparison of the computational performance of the standard and proposed solution strategies for 

the 6-storey 2-bay reinforced concrete frame 

a) b) 

c) d) 

e) 



 

  

  

Fig. 12: MC2010 chord rotation and shear force constraints checks of the best reinforced concrete 6-storey 

2-bay frame design solutions obtained by the standard and proposed solution strategy 

 
Table 5: Columns detailing of the 6-storey 2-bay frame optimum design solution obtained by the proposed 

approach 

 

 Property: hc bc nc dbc nwc dbwc sc 

Sections Locations m m  mm  mm m 
1 C1, C3, C4, C6 0.3 0.3 4 16 2 8 0.175 

2 C2, C5 0.55 0.55 6 16 2 8 0.15 

3 C7, C9, C10, C12 0.3 0.3 3 16 2 8 0.175 

4 C8, C11 0.55 0.55 5 16 2 8 0.175 

5 C13, C15, C16, C18 0.3 0.3 2 16 2 8 0.175 

6 C14, C17 0.55 0.55 3 16 3 8 0.175 

 
Table 6: Columns detailing of the 6-storey 2-bay frame optimum design solution obtained by the proposed 

approach 

 

 Property: hb bb ntb dbt nbb dbb nwb dbwb sb 

Sections Locations m m  mm  mm  mm m 
1 B1L, B2R, B3L, B4R 0.4 0.3 2 16 2 16 2 8 0.25 

2 B1R, B2L, B3R, B4L 0.4 0.3 2 16 2 16 2 8 0.25 

3 B5L, B6R, B7L, B8R 0.3 0.3 2 16 2 16 2 8 0.175 

4 B5R, B6L, B7R, B8L 0.3 0.3 2 16 2 16 2 8 0.175 

5 B9L, B10R, B11L, B12R 0.3 0.3 2 16 2 16 2 8 0.175 

6 B9R, B10L, B11R, B12L 0.3 0.3 2 16 2 16 2 8 0.175 

 

4 Conclusions 

 

a) b) 

c) d) 



 

Deformation- and performance-based seismic design offers direct control of structural 

damage for different levels of seismic hazard limiting losses caused by earthquakes. However, 

the number of applications and research studies on optimum performance- and deformation-

based seismic design of reinforced concrete frames is rather limited. This observation can be 

mainly attributed to the computational cost of the nonlinear structural analysis procedures 

required to calculate reliably inelastic seismic demands and the great number of design 

variables required to describe the nonlinear response of these structural systems. 

The present study develops a new computationally efficient strategy for the automated 

optimum deformation- and performance-based seismic design of reinforced concrete frames 

using nonlinear static and/or dynamic analysis procedures. The proposed methodology is 

based on a simple, deformation-based, iterative procedure that designs the steel reinforcement 

of concrete frames to meet their performance objectives provided the cross-sectional 

dimensions of their structural members. The longitudinal steel reinforcement is first selected 

to satisfy the Serviceability Limit States and the transverse steel reinforcement is then 

appropriately chosen to fulfil the Ultimate Limit States.  

Following the proposed approach, only the cross-sectional dimensions of reinforced 

concrete frames should be set as independent design variables in the optimization problem. 

This drastically reduces the search space allowing the optimization algorithms to yield more 

cost efficient and robust optimum solutions.  

The proposed solution strategy is applied to the design of various reinforced concrete 

frames according the fib Model Code 2010 deformation- and performance-based seismic 

design methodology. More particularly, a portal frame, a 3-storey 3-bay and a 6-storey 2-bay 

frames are examined. Additionally, the performance of the new methodology is compared with 

a more standard solution approach, where both the cross-sectional dimensions and the 

longitudinal steel reinforcement are used as independent design variables. 

In the case of the simple portal frame, where exhaustive search is applied, it is found that 

the proposed approach yields the same global optimum as the standard approach in 

significantly less computational time. In the case of the other two frames, where a stochastic 

GA was employed, it is found that, in the same computational time, the proposed approach 

provides less costly and more robust design solutions than the standard methodology. 

Therefore, it is believed that the proposed solution strategy can become a valuable tool in the 

automated, optimum deformation- and performance-based seismic design of reinforced 

concrete frames with nonlinear structural analysis procedures. Nevertheless, further research 

is required to extend and validate the proposed methodology to complex, three dimensional 

reinforced concrete frames with a great number of design variables. Furthermore, additional 

considerations are needed to extend the developed methodology to address other types of 

concrete structures such as infilled frames, wall and dual systems. 
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