208 research outputs found

    Modeling Dependencies in Natural Languages with Latent Variables

    Get PDF
    In this thesis, we investigate the use of latent variables to model complex dependencies in natural languages. Traditional models, which have a fixed parameterization, often make strong independence assumptions that lead to poor performance. This problem is often addressed by incorporating additional dependencies into the model (e.g., using higher order N-grams for language modeling). These added dependencies can increase data sparsity and/or require expert knowledge, together with trial and error, in order to identify and incorporate the most important dependencies (as in lexicalized parsing models). Traditional models, when developed for a particular genre, domain, or language, are also often difficult to adapt to another. In contrast, previous work has shown that latent variable models, which automatically learn dependencies in a data-driven way, are able to flexibly adjust the number of parameters based on the type and the amount of training data available. We have created several different types of latent variable models for a diverse set of natural language processing applications, including novel models for part-of-speech tagging, language modeling, and machine translation, and an improved model for parsing. These models perform significantly better than traditional models. We have also created and evaluated three different methods for improving the performance of latent variable models. While these methods can be applied to any of our applications, we focus our experiments on parsing. The first method involves self-training, i.e., we train models using a combination of gold standard training data and a large amount of automatically labeled training data. We conclude from a series of experiments that the latent variable models benefit much more from self-training than conventional models, apparently due to their flexibility to adjust their model parameterization to learn more accurate models from the additional automatically labeled training data. The second method takes advantage of the variability among latent variable models to combine multiple models for enhanced performance. We investigate several different training protocols to combine self-training with model combination. We conclude that these two techniques are complementary to each other and can be effectively combined to train very high quality parsing models. The third method replaces the generative multinomial lexical model of latent variable grammars with a feature-rich log-linear lexical model to provide a principled solution to address data sparsity, handle out-of-vocabulary words, and exploit overlapping features during model induction. We conclude from experiments that the resulting grammars are able to effectively parse three different languages. This work contributes to natural language processing by creating flexible and effective latent variable models for several different languages. Our investigation of self-training, model combination, and log-linear models also provides insights into the effective application of these machine learning techniques to other disciplines

    Rich Linguistic Structure from Large-Scale Web Data

    Get PDF
    The past two decades have shown an unexpected effectiveness of Web-scale data in natural language processing. Even the simplest models, when paired with unprecedented amounts of unstructured and unlabeled Web data, have been shown to outperform sophisticated ones. It has been argued that the effectiveness of Web-scale data has undermined the necessity of sophisticated modeling or laborious data set curation. In this thesis, we argue for and illustrate an alternative view, that Web-scale data not only serves to improve the performance of simple models, but also can allow the use of qualitatively more sophisticated models that would not be deployable otherwise, leading to even further performance gains.Engineering and Applied Science

    Advances in discriminative dependency parsing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 167-176).Achieving a greater understanding of natural language syntax and parsing is a critical step in producing useful natural language processing systems. In this thesis, we focus on the formalism of dependency grammar as it allows one to model important head modifier relationships with a minimum of extraneous structure. Recent research in dependency parsing has highlighted the discriminative structured prediction framework (McDonald et al., 2005a; Carreras, 2007; Suzuki et al., 2009), which is characterized by two advantages: first, the availability of powerful discriminative learning algorithms like log-linear and max-margin models (Lafferty et al., 2001; Taskar et al., 2003), and second, the ability to use arbitrarily-defined feature representations. This thesis explores three advances in the field of discriminative dependency parsing. First, we show that the classic Matrix-Tree Theorem (Kirchhoff, 1847; Tutte, 1984) can be applied to the problem of non-projective dependency parsing, enabling both log-linear and max-margin parameter estimation in this setting. Second, we present novel third-order dependency parsing algorithms that extend the amount of context available to discriminative parsers while retaining computational complexity equivalent to existing second-order parsers. Finally, we describe a simple but effective method for augmenting the features of a dependency parser with information derived from standard clustering algorithms; our semi-supervised approach is able to deliver consistent benefits regardless of the amount of available training data.by Terry Koo.Ph.D

    Darstellung und stochastische Auflösung von AmbiguitÀt in constraint-basiertem Parsing

    Get PDF
    Diese Arbeit untersucht zwei komplementĂ€re AnsĂ€tze zum Umgang mit Mehrdeutigkeiten bei der automatischen Verarbeitung natĂŒrlicher Sprache. ZunĂ€chst werden Methoden vorgestellt, die es erlauben, viele konkurrierende Interpretationen in einer gemeinsamen Datenstruktur kompakt zu reprĂ€sentieren. Dann werden AnsĂ€tze vorgeschlagen, die verschiedenen Interpretationen mit Hilfe von stochastischen Modellen zu bewerten. FĂŒr das dabei auftretende Problem, Wahrscheinlichkeiten von seltenen Ereignissen zu schĂ€tzen, die in den Trainingsdaten nicht auftraten, werden neuartige Methoden vorgeschlagen.This thesis investigates two complementary approches to cope with ambiguities in natural language processing. It first presents methods that allow to store many competing interpretations compactly in one shared datastructure. It then suggests approaches to score the different interpretations using stochastic models. This leads to the problem of estimation of probabilities of rare events that have not been observed in the training data, for which novel methods are proposed

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Knowledge-enhanced neural grammar Induction

    Get PDF
    Natural language is usually presented as a word sequence, but the inherent structure of language is not necessarily sequential. Automatic grammar induction for natural language is a long-standing research topic in the field of computational linguistics and still remains an open problem today. From the perspective of cognitive science, the goal of a grammar induction system is to mimic children: learning a grammar that can generalize to infinitely many utterances by only consuming finite data. With regard to computational linguistics, an automatic grammar induction system could be beneficial for a wide variety of natural language processing (NLP) applications: providing syntactic analysis explicitly for a pipeline or a joint learning system; injecting structural bias implicitly into an end-to-end model. Typically, approaches to grammar induction only have access to raw text. Due to the huge search space of trees as well as data sparsity and ambiguity issues, grammar induction is a difficult problem. Thanks to the rapid development of neural networks and their capacity of over-parameterization and continuous representation learning, neural models have been recently introduced to grammar induction. Given its large capacity, introducing external knowledge into a neural system is an effective approach in practice, especially for an unsupervised problem. This thesis explores how to incorporate external knowledge into neural grammar induction models. We develop several approaches to combine different types of knowledge with neural grammar induction models on two grammar formalisms — constituency and dependency grammar. We first investigate how to inject symbolic knowledge, universal linguistic rules, into unsupervised dependency parsing. In contrast to previous state-of-the-art models that utilize time-consuming global inference, we propose a neural transition-based parser using variational inference. Our parser is able to employ rich features and supports inference in linear time for both training and testing. The core component in our parser is posterior regularization, where the posterior distribution of the dependency trees is constrained by the universal linguistic rules. The resulting parser outperforms previous unsupervised transition-based dependency parsers and achieves performance comparable to global inference-based models. Our parser also substantially increases parsing speed over global inference-based models. Recently, tree structures have been considered as latent variables that are learned through downstream NLP tasks, such as language modeling and natural language inference. More specifically, auxiliary syntax-aware components are embedded into the neural networks and are trained end-to-end on the downstream tasks. However, such latent tree models either struggle to produce linguistically plausible tree structures, or require an external biased parser to obtain good parsing performance. In the second part of this thesis, we focus on constituency structure and propose to use imitation learning to couple two heterogeneous latent tree models: we transfer the knowledge learned from a continuous latent tree model trained using language modeling to a discrete one, and further fine-tune the discrete model using a natural language inference objective. Through this two-stage training scheme, the discrete latent tree model achieves stateof-the-art unsupervised parsing performance. The transformer is a newly proposed neural model for NLP. Transformer-based pre-trained language models (PLMs) like BERT have achieved remarkable success on various NLP tasks by training on an enormous corpus using word prediction tasks. Recent studies show that PLMs can learn considerable syntactical knowledge in a syntaxagnostic manner. In the third part of this thesis, we leverage PLMs as a source of external knowledge. We propose a parameter-free approach to select syntax-sensitive self-attention heads from PLMs and perform chart-based unsupervised constituency parsing. In contrast to previous approaches, our head-selection approach only relies on raw text without any annotated development data. Experimental results on both English and eight other languages show that our approach achieves competitive performance

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language

    Adjunction in hierarchical phrase-based translation

    Get PDF
    • 

    corecore