

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Knowledge-enhanced Neural Grammar

Induction

Bowen Li

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2021

Abstract

Natural language is usually presented as a word sequence, but the inherent structure

of language is not necessarily sequential. Automatic grammar induction for natural

language is a long-standing research topic in the field of computational linguistics and

still remains an open problem today. From the perspective of cognitive science, the

goal of a grammar induction system is to mimic children: learning a grammar that can

generalize to infinitely many utterances by only consuming finite data. With regard to

computational linguistics, an automatic grammar induction system could be beneficial

for a wide variety of natural language processing (NLP) applications: providing syn-

tactic analysis explicitly for a pipeline or a joint learning system; injecting structural

bias implicitly into an end-to-end model.

Typically, approaches to grammar induction only have access to raw text. Due to

the huge search space of trees as well as data sparsity and ambiguity issues, grammar

induction is a difficult problem. Thanks to the rapid development of neural networks

and their capacity of over-parameterization and continuous representation learning,

neural models have been recently introduced to grammar induction. Given its large

capacity, introducing external knowledge into a neural system is an effective approach

in practice, especially for an unsupervised problem. This thesis explores how to incor-

porate external knowledge into neural grammar induction models. We develop several

approaches to combine different types of knowledge with neural grammar induction

models on two grammar formalisms — constituency and dependency grammar.

We first investigate how to inject symbolic knowledge, universal linguistic rules,

into unsupervised dependency parsing. In contrast to previous state-of-the-art mod-

els that utilize time-consuming global inference, we propose a neural transition-based

parser using variational inference. Our parser is able to employ rich features and sup-

ports inference in linear time for both training and testing. The core component in our

parser is posterior regularization, where the posterior distribution of the dependency

trees is constrained by the universal linguistic rules. The resulting parser outperforms

previous unsupervised transition-based dependency parsers and achieves performance

comparable to global inference-based models. Our parser also substantially increases

parsing speed over global inference-based models.

Recently, tree structures have been considered as latent variables that are learned

through downstream NLP tasks, such as language modeling and natural language in-

ference. More specifically, auxiliary syntax-aware components are embedded into the

iii

neural networks and are trained end-to-end on the downstream tasks. However, such la-

tent tree models either struggle to produce linguistically plausible tree structures, or re-

quire an external biased parser to obtain good parsing performance. In the second part

of this thesis, we focus on constituency structure and propose to use imitation learning

to couple two heterogeneous latent tree models: we transfer the knowledge learned

from a continuous latent tree model trained using language modeling to a discrete one,

and further fine-tune the discrete model using a natural language inference objective.

Through this two-stage training scheme, the discrete latent tree model achieves state-

of-the-art unsupervised parsing performance.

The transformer is a newly proposed neural model for NLP. Transformer-based

pre-trained language models (PLMs) like BERT have achieved remarkable success on

various NLP tasks by training on an enormous corpus using word prediction tasks. Re-

cent studies show that PLMs can learn considerable syntactical knowledge in a syntax-

agnostic manner. In the third part of this thesis, we leverage PLMs as a source of

external knowledge. We propose a parameter-free approach to select syntax-sensitive

self-attention heads from PLMs and perform chart-based unsupervised constituency

parsing. In contrast to previous approaches, our head-selection approach only relies

on raw text without any annotated development data. Experimental results on both

English and eight other languages show that our approach achieves competitive per-

formance.

iv

Acknowledgements
It has been graceful as a winding stream, passionate as fire to live and study in Ed-

inburgh. I would like to express appreciation to everyone who has been with me and

offered help to me during this unforgettable journey.

Foremost, I would like to express my sincere appreciation to my principal supervi-

sor Prof. Frank Keller for the ongoing support of my PhD research, for his patience,

motivation, enthusiasm, and in-depth knowledge. Frank has given me the freedom to

choose research topics and explore possibilities. The feedback and guidance he has

provided has been greatly helpful in narrowing down research directions, formulating

research questions, developing models, and drafting research papers. Moreover, Dr.

Shay Cohen, my second supervisor, also played an essential role in supporting my re-

search with his knowledgeable advice. It was an honour, a pleasure and a fortune for

me to work with Frank and Shay.

In addition, I would like to thank my thesis committee members Ivan Titov and

Joakim Nivre for their efforts to examine my thesis and viva, and for all of the insightful

comments. Special thanks to my collaborators, Yang Liu, Jianpeng Cheng, Lili Mou,

Hao Zheng, Taeuk Kim and Reinald Kim Amplayo, for their brilliant research ideas

and excellent team spirit. I am grateful to Yun Chen, Meng Zhang at Huawei Noah’s

Ark Lab for their valuable mentoring during that wonderful internship. Furthermore,

I would like to recognize the support provided by the China Scholarship Council with

the PhD fellowship.

I consider myself privileged and fortunate to be a part of ILCC in Edinburgh. I

would like to thank all the group members as well as all the faculty who provided

feedback on my PhD projects, presentations and research papers. Special thanks to

Yang Liu, Li Dong and Jianpeng Cheng for their valuable advice on NLP research. I

want to also thank all the Edinburgh Informatics members, Akash, Bailin, Biao, Cole,

Chao, Chaoyun, Chunchuan, Hao, He, Jiangming, Kai, Kunkun, Matt, Shashi, Sicong,

Spandana, Xinchi, Yanpeng, Yumo, etc. I want to specially thank my office mates,

Yang Liu, Kai Xu, Yumo Xu, Joachim Fainberg, Marco Damonte, Sam Ribeiro and

Parag Jain. We created a productive and pleasant working environment together, and

those daily discussions inspired me a lot.

Research isn’t the only part of doctoral life. I would like to thank He Zhang, Kai

Xu, Yumo Xu, Yang Liu, Cole Hurwitz for all the fun times. Many thanks to Yingxuan

Cui, Yuanjun Laili, Pingchuan Ma, Shiwen Ma, Huiyuan Xie, Yifan Mai, Zhiqiang

Zhang, for making my four-year time enjoyable.

v

Lastly, I want to express my deepest gratitude to all of my family members. I

would like to thank my parents for their unconditional love and support throughout

my studies. Special thanks to my grandpa who has supported me since I was a young

child, and my cousin, who has always been there for me.

Will there be a day when time will rewind?
Rewinding back to the good old days we can never return.
Ultimately, there will be a day when we will become yesterday.
It’s you who accompanied me in my one and only life.

—— Mayday

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Bowen Li)

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 3

1.3 Thesis Overview . 5

1.4 Published Work . 8

2 Background 9

2.1 Grammar Induction . 9

2.1.1 Motivation . 9

2.1.2 Problem Formulation . 11

2.1.3 Related Work . 16

2.1.4 Experimental Setup . 19

2.2 Neural Networks . 21

2.2.1 Recurrent and Recursive Neural Networks 21

2.2.2 Transformers . 25

2.2.3 Pre-trained Language Models 28

3 Transition-based Unsupervised Dependency Parsing 33

3.1 Related Work . 35

3.1.1 Generative Models . 35

3.1.2 Discriminative Models . 36

3.1.3 Transition-based Models . 38

3.1.4 Other Techniques . 38

3.2 Problem Formulation . 39

3.2.1 Background . 39

3.2.2 Model Configuration . 40

3.2.3 Training Objective . 42

ix

3.2.4 Posterior Regularization . 44

3.2.5 Variance Reduction in the M-step 46

3.2.6 Limitations . 48

3.3 Experiments . 49

3.3.1 Datasets . 49

3.3.2 Settings . 50

3.3.3 Exploration of Model Variants 51

3.3.4 Parsing Results . 54

3.4 Summary . 56

4 Imitation Learning based Unsupervised Constituency Parsing 59
4.1 Related Work . 61

4.1.1 Latent Tree Learning Through Downstream Tasks 61

4.1.2 Latent Tree Learning Through Language Modeling 62

4.1.3 Imitation Learning . 63

4.1.4 Knowledge Distillation . 64

4.2 Problem Formulation . 65

4.2.1 Parsing-Reading-Predict Network 65

4.2.2 Discrete Syntactic Parser . 68

4.2.3 Imitation Learning . 69

4.3 Experiments . 71

4.3.1 Datasets . 71

4.3.2 Settings . 71

4.3.3 Experimental Results . 71

4.4 Summary . 76

5 Unsupervised Parsing via Pre-trained Language Models 79
5.1 Related Work . 81

5.1.1 Unsupervised Constituency Parsing via Neural Latent Variable

Models . 81

5.1.2 Extracting Trees from Neural Language Models 82

5.1.3 Interpretation of PLMs . 83

5.2 Zero-shot Constituency Parsing via PLMs 85

5.2.1 Chart-based Zero-shot Parsing 85

5.2.2 Ranking-based Zero-shot Parsing 88

5.2.3 How to select K . 92

x

5.3 Grammar Induction . 93

5.3.1 Neural PCFGs . 93

5.3.2 Learning Grammars from Induced Trees 94

5.4 Experiments . 95

5.4.1 General Setup . 95

5.4.2 Results on the English PTB 96

5.4.3 Results for Languages other than English 99

5.4.4 Grammar Analysis . 102

5.5 Summary . 108

6 Conclusion and Future Work 109
6.1 Conclusions . 109

6.2 Future Work . 110

A Appendix 113
A.1 Appendix 1 . 113

Bibliography 115

xi

Chapter 1

Introduction

1.1 Motivation

Natural language demonstrates a simple sequential format, but what is the underlying

structure that governs the surface utterances? This question has fascinated people for

over two thousand years. The earliest known attempts to describe a language in a

systematic way originated in ancient India, commonly dated to the 5th century BCE,

where the desire for a faithful transmission of the sacred scriptures known as the Vedas

brought about the need to describe Sanskrit (McGee and Warms, 2013). Since then,

grammars of natural languages have been studied and complied for the purposes of

education and cultural transmission.

Noam Chomsky (Chomsky, 1965) defines a grammar as:

A fully adequate grammar must assign to each of an infinite range of
sentences a structural description indicating how this sentence is under-
stood by the ideal speaker-hearer.

From this description, we can deduce two prominent characteristics of a grammar:

1. Being abstractive: a grammar regulates the inherent structures of sentences from

a natural language;

2. Being assistive: a grammar helps the understanding of a natural language.

Formally speaking, in linguistics, a grammar is a finite set of structural rules man-

aging the composition of clauses, phrases and words in a natural language. At the same

time, a grammar should be able to generalize to the infinite set of sentences from the

language. Grammar induction, which is learning formal grammars automatically from

1

2 Chapter 1. Introduction

finite language data, is a long-standing and important question in cognitive science and

psycholinguistics. A learned grammar is able to provide syntactical analysis on unseen

sentences; in this sense, grammar induction can serve as the basis for unsupervised

parsing. On the one hand, from a psycholinguistic point of view, a grammar supports

the precise transmission of information in the context of speaker-hearer communica-

tion. On the other hand, from the perspective of computational linguistics, syntactical

analysis, the product of grammar modeling, assists machines to automatically process

natural language data.

Throughout the long history of natural language processing (NLP), syntactical

analysis has played an essential role. In the early days, syntactical analysis was used as

a low-level component to help build high quality pipeline systems for complex down-

stream NLP tasks, such as semantic role labelling (Johansson and Nugues, 2008), ques-

tion answering (Hovy et al., 2000), machine translation (Yamada and Knight, 2001).

However, pipeline based NLP systems easily cause problems like inconsistent anno-

tations and error propagation. These problems have led to joint systems, where syn-

tactical parsing models are investigated to be jointly trained with other components.

Recently, neural networks based models have developed rapidly and gradually become

the dominant approaches in the NLP research. To bring syntax oriented inductive bias

to the learning process of neural NLP models, syntactical analysis has been employed

in various NLP tasks (Socher et al., 2013; Aharoni and Goldberg, 2017).

Normally, tree structures are either provided together with the dataset or produced

by an existing parser that is trained with supervision. However, an annotated dataset

is extremely expensive to obtain because it requires specialized expertise and years

of laborious efforts. Regarding supervised parsers, they also suffer from drawbacks:

for most low resource languages, no annotated data or even no annotation scheme

exists; supervised parsers are often trained on corpora from limited domains, so they

face an out-of-domain issue. Consequently, deriving tree structures directly from raw

text is highly desirable. Besides, from a psycholinguistic point of view, success in

grammar induction or unsupervised parsing also provides empirical evidence against

innate grammar arguments such as “poverty of the stimulus” and universal grammar

(White and White, 2003).

We note that grammar induction and unsupervised parsing are not synonymous.

More details will be discussed in Section 2.1.2. In this thesis, from a utilitarian point of

view, we focus more on the problem of unsupervised parsing for both constituency and

dependency representations. Additionally, we induce probabilistic formal grammars

1.2. Challenges 3

for constituency representations to investigate their linguistic properties.

1.2 Challenges

Typically, grammar induction or unsupervised parsing systems, only have access to

raw text. Although some systems will take advantage of word cluster information such

as part-of-speech (POS) annotations, the information available is still severely lim-

ited, so that grammar induction is considered a difficult problem. Normally, generative

grammars are used for grammar induction models, which model the joint probability

of both parse trees and sentences. They are trained by directly optimizing the marginal

log likelihood of sentences with the expectation maximisation (EM) algorithm. Fol-

lowing this research line, early attempts were largely unsuccessful. The reasons for the

discouraging results are manifold: the ill-posed optimization landscape, overly strict

independence assumptions, the fragile optimization algorithm (EM is sensitive to ini-

tialization and easy to be stuck in local optima). Given the difficulties, follow-up ap-

proaches sought to make improvements by using auxiliary targets (Klein and Manning,

2004), Bayesian priors (Johnson et al., 2007), manually engineered features (Head-

den III et al., 2009), external knowledge (Mareček and Straka, 2013), posterior regular-

ization (Naseem et al., 2010). Recent progress in the development of neural networks

has triggered interests in designing neural models for grammar induction. Thanks to

their capability of continuous representation learning and over-parameterizaiton, neu-

ral approaches have indeed brought improvement to this problem (Jiang et al., 2016;

Kim et al., 2019a).

Given the fruitful prior research of incorporating constraints and knowledge into

traditional grammar induction systems, it is reasonable to conjecture that it could be

effective to do so for neural systems. More specifically, the over-parameterization of

neural models eases the optimization (Arora et al., 2018) and distributed represen-

tations smooth the probabilities of correlated elements in the grammar (Jiang et al.,

2016). External knowledge and constraints provide complementary regularization on

the learned grammar, which is potentially compatible with neural approaches. How-

ever, only limited work has explored how to incorporate external knowledge and con-

straints into neural systems.

Although learning a generative grammar via optimizing the marginal log likeli-

hood of sentences has been a main stream approach so far, researchers have explored

alternative objectives for grammar induction, such as contrastive estimation (Smith and

4 Chapter 1. Introduction

Eisner, 2005), search-based structure prediction (Daumé III, 2009), convex formula-

tion (Grave and Elhadad, 2015), and so no. Recently, unsupervised parsing has been

formalized as a latent variable learning problem, where structure-sensitive components

are embedded into neural networks and are trained in an end-to-end fashion. Under this

formalism, the exploration of alternative objectives for unsupervised structure learn-

ing has been broadened to a wide range of downstream NLP tasks, such as language

modeling (Shen et al., 2018b) and natural language understanding tasks like sentiment

analysis and natural language inference (Maillard et al., 2017; Choi et al., 2018). In this

way, external knowledge can be acquired from a variety of downstream tasks for un-

supervised parsing. These latent tree models either model the tree structures explicitly

where gradients are backpropagated through discrete structures via exact marginaliza-

tion or gradient approximation, or model them implicitly where syntactical features are

employed and the entire model is differentiable. Although these models bring benefits

to downstream tasks, the learned tree structures do not always resemble human anno-

tated trees and are not consistent across random restarts (Williams et al., 2018a). An

algorithm coupling heterogeneous models and different learning objectives could have

a chance to learn more linguistically plausible and more steady parsing strategies.

Transformer-based pre-trained language models (PLMs) like BERT (Devlin et al.,

2019) have achieved the state of the art in many NLP tasks. They changed the paradigm

in the research of natural language understanding: pre-training and fine-tuning has

become the dominant approach. Thanks to the Transformer’s superior capability of

parallelism, PLMs can be efficiently trained on enormous raw text (e.g., common crawl

of the internet) containing billions of tokens. Surprisingly, although PLMs contain no

syntax-aware components, studies show that PLMs rediscover the classic NLP pipeline

(Tenney et al., 2019a) and learn considerable syntactical knowledge (Goldberg, 2019;

Liu et al., 2019a). Interestingly, PLMs show that it is possible to learn syntactical

knowledge by training on massive data in a structure-agnostic manner. Therefore, it is

feasible to employ PLMs as a source of external knowledge for syntactical structure

learning. A challenging problem is how to design an effective and reliable algorithm

to extract syntax related features from PLMs and perform unsupervised parsing and

grammar induction.

1.3. Thesis Overview 5

1.3 Thesis Overview

In this thesis, we investigate existing problems in grammar induction and unsupervised

parsing, and propose novel approaches by taking advantage of neural networks and ex-

ternal knowledge to address the challenges described in the previous section. This the-

sis will study both constituency and dependency structures utilizing knowledge from

symbolic rules, auxiliary objectives and pre-trained language models (PLMs).

Chapter 2

We present background knowledge on grammar induction and neural networks in

Chapter 2. We first introduce the motivation, problem formulation, related work and

common experimental setup on grammar induction and unsupervised parsing for two

formalisms, constituency and dependency. We then review neural networks typically

relevant to our work in this thesis, which include recurrent neural networks, recursive

neural networks, the Transformers and Transformer-based pre-trained language mod-

els.

Chapter 3

In Chapter 3, we study the problem of unsupervised dependency parsing. Previous

state-of-the-art models, including generative and discriminative ones, all rely on global

exact inference, which is implemented by dynamic programming with O(n3) run time.

For the generative models, probabilistic dependency models like dependency mod-

els with valence (DMV; Klein and Manning 2004) are always used as the backbone

model (Jiang et al., 2016; Han et al., 2019). While for the discriminative models, Cai

et al. (2017) used a conditional random field (CRF) parser. Besides, transition-based

models enable faster inference with O(n) run time for both training and test. Although

transition-based models have been shown to perform well in supervised parsing (Kiper-

wasser and Goldberg, 2016), their performance on unsupervised parsing still lags be-

hind their global inference-based counterparts.

In this chapter, we use an autoencoder to integrate discriminative and generative

transition-based parsers, dependency variants of recurrent neural network grammars

(RNNGs; Dyer et al. 2016), yielding a reconstruction process with parse trees as latent

variables. To further introduce regularization, we augment the model with posterior

regularization (Ganchev et al., 2010), which allows us to seamlessly integrate linguistic

6 Chapter 1. Introduction

knowledge in the shape of symbolic linguistic rules and still maintain the efficiency of

transition-based systems. Furthermore, we propose a novel variance reduction method

to stabilize neural variational inference with discrete latent variables. This leads to

better parsing performance on English and eight other languages for transition-based

systems while also achieving superior parsing speed.

Chapter 4

In Chapter 4, we study the latent tree models for unsupervised constituency parsing.

Recent work has explored the idea of leveraging feasible downstream NLP tasks to col-

lect clues for structure learning. Models that follow this research line have investigated

downstream NLP tasks like natural language understanding (NLU) tasks and language

modeling. Generally, they harness neural networks and treat the tree structures as la-

tent variables. Regarding the latent tree structures, two formalisms are often assumed.

The first one is hard as it explicitly models the discrete tree structures in the neural

networks mainly for NLU tasks, where dynamic programming based exact marginal-

ization or gradient approximation is used for backpropagation. While the second one is

soft as it implicitly employs the syntactical features in the neural networks mainly for

language modeling, where tree structures are extracted via an external parsing method

at a post-processing phase.

In practice, discrete hard models trained on NLU tasks perform poorly on parsing

and show low self-agreement with random initialization (Williams et al., 2018a). Con-

tinuous soft models trained on language modeling succeed to produce syntactically

plausible structures (Htut et al., 2018), but it has been pointed out that the employed

external parser is incomplete in theory and biased to English (Dyer et al., 2019). To

mitigate this problem, we propose an imitation learning approach that combines a con-

tinuous soft model (i.e., PRPN; Shen et al. 2018b) with a discrete hard model (i.e.,

Tree-LSTM), both trained without access to gold standard parse trees. We exploit the

advantages of the PRPN (supports backpropagation) by transferring its knowledge to

a discrete parser, which explicitly models tree-building operations. We accomplish the

knowledge transfer by training the discrete parser to imitate the behavior of the PRPN.

Then the discrete parser refines its policy by solely trained on a natural language infer-

ence task. Our approach effectively improves the parsing performance of the discrete

parser and makes the learning reliable, as shown by the improved self-agreement.

1.3. Thesis Overview 7

Chapter 5

In Chapter 5, we study the pre-trained language models (PLMs) for constituency gram-

mar induction. Recent progress on Transformer-based PLMs like BERT (Devlin et al.,

2019) shows that PLMs trained on large-scale corpus, containing billions of tokens,

can bring significant improvements on downstream NLP tasks. Surprisingly, although

PLMs neither are trained on syntax-oriented objectives nor contain syntax-aware com-

ponents, studies show that PLMs have learned considerable syntactical knowledge

(Goldberg, 2019; Liu et al., 2019a). This finding intrigues an interesting problem:

how much syntactical knowledge PLMs have learned and is it possible to leverage

PLMs to do grammar induction?

Existing syntactical analysis on PLMs are limited: hand-crafted test suites (Gold-

berg, 2019) require the laborious compilation of language- and construction-specific

suites of sentences; general probes (also known as diagnostic classifiers; Belinkov

and Glass 2019) need to carefully set the extraction experiments to adequately reflect

differences in representations (Hewitt and Liang, 2019; Voita and Titov, 2020); specifi-

cally designed structural probes (Hewitt and Manning, 2019) lack justification in terms

of the evaluation metric (Hall Maudslay et al., 2020). It is therefore natural to use an

unsupervised parsing task to test whether PLMs have learned syntactical knowledge.

Previous studies (Kim et al., 2020a,b) have tried top-down and chart-based parsing al-

gorithms, but they crucially rely on an annotated development set for feature selection.

In this chapter, we propose a novel approach to build a PLM-based unsupervised parser

without requiring an annotated development set: we rank Transformer heads based on

their inherent properties, such as how likely tokens are to be grouped in a hierarchical

structure. We then ensemble the top-K heads to produce constituency trees. On En-

glish and eight other languages, our approach yields competitive parsing performance.

Moreover, we learn neural probabilistic context-free grammars (PCFGs) from the trees

induced from PLMs using our approach.

Chapter 6

Chapter 6 concludes the thesis and discusses directions for future work.

Contributions

The main contributions of this thesis are:

8 Chapter 1. Introduction

1. A new approach to unsupervised dependency parsing induction that combines

generative and discriminative transition-based dependency parsers using varia-

tional inference, posterior regularization and variance reduction techniques.

2. A novel imitation learning approach to couple both continuous and discrete neu-

ral latent tree models through knowledge transfer and further policy refinement.

3. A ranking-based approach to build a PLM-based unsupervised parser without re-

quiring an annotated development set, which fulfills both constituency grammar

induction and interpretability study on PLMs.

1.4 Published Work

The contributions presented in this thesis are published in the following papers.

Chapter 3 was presented as:

Li, B., Cheng, J., Liu, Y., and Keller, F. 2019. Dependency grammar induction

with a neural variational transition-based parser. In Proceedings of the AAAI

Conference on Artificial Intelligence.

Chapter 4 was presented as:

Li, B., Mou, L., and Keller, F. 2019. An imitation learning approach to unsuper-

vised parsing. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics.

Chapter 5 was presented as:

Li, B., Kim, T., Amplayo, R. K., and Keller, F. 2020. Heads-up! Unsuper-

vised constituency parsing via self-attention heads. In Proceedings of the 1st

Conference of the Asia-Pacific Chapter of the Association for Computational

Linguistics and the 10th International Joint Conference on Natural Language

Processing.

Part of Chapter 5 was presented as an unpublished work:

Kim, T., Li, B., and Lee, S. 2020. Chart-based zero-shot constituency parsing

on multiple languages. arXiv:2004.13805v2.

Chapter 2

Background

2.1 Grammar Induction

2.1.1 Motivation

How children learn their first language by merely listening to the speech in the en-

vironment has been a long-standing and important question in the fields of cognitive

science and psycholinguistics. One famous argument from Noam Chomsky (Chom-

sky et al., 2006), the Poverty of the Stimulus argument, suggests that children are not

exposed to rich enough language data in their surroundings to acquire every feature of

their language. The claim is that the utterances children hear during learning do not

contain enough information to develop a thorough understanding of the grammar of a

language, which is considered contrary to the empiricist idea that language is learned

solely through experience. It is closely related to Plato’s Problem, that knowledge of

geometry concepts was unearthed from a slave who was never explicitly taught them.

However, the idea that the Poverty of the Stimulus supports the innateness hypothesis

remains controversial. Cowie et al. (1999) argues that the Poverty of the Stimulus fails

on both empirical and conceptual grounds to support innateness.

Stemming from the the poverty of the stimulus argument and the existence of some

universal properties of human languages, Universal Grammar (UG; White and White

2003; Chomsky 2018) has been developed, usually credited to Noam Chomsky. The

core notion of UG is that a certain set of structural rules are innate to humans, indepen-

dent of sensory experience. However, some linguists have argued that languages are

so diverse that such universality is rare (Evans and Levinson, 2009). UG has also been

refuted by abundant variation at all levels of linguistic organization (Hinzen, 2012). In

9

10 Chapter 2. Background

addition to that, this criticism on the Poverty of the Stimulus argument as well as UG

is further supported by the success of automatic grammar induction system in learning

hierarchical structures from finite language data.

In early NLP research, syntactical analysis always functions as an essential low-

level component to help build high quality systems for complex downstream NLP

tasks. Within such pipeline-based systems, features or parse trees produced by a syn-

tactical parsing system are fed into the subsequent components for a variety of NLP

tasks, such as speech disfluency correction (Johnson and Charniak, 2004), recogniz-

ing textual entailment (Finkel et al., 2006), semantic role labelling (Johansson and

Nugues, 2008), question answering (Hovy et al., 2000), machine translation (Yamada

and Knight, 2001). However, pipeline based NLP systems run several processors over

the data, which easily causes problems such as inconsistent annotations and error prop-

agation. To this end, syntactical parsing has been investigated to be jointly trained with

tasks like language modeling (Chen, 1995), name entity recognition (Finkel and Man-

ning, 2009), semantic role labelling (Li et al., 2010). In recent years, neural networks

based models have developed rapidly and become the dominant backbone approaches

in the NLP research. To bring syntax oriented inductive bias and regularities to the

learning process of neural NLP models, syntactical analysis has been employed to

various NLP tasks, such as sentiment analysis (Socher et al., 2013), text entailment

(Bowman et al., 2016), neural machine translation (Aharoni and Goldberg, 2017), and

so on.

Typically, such studies assume that tree structures are either provided together with

the dataset or produced by an off-the-shelf syntactic parser. However, an annotated

dataset is extremely expensive to obtain as it requires syntactical expertise and years

to annotate a good-sized dataset. On the other hand, supervised parsers are limited

for several reasons: for most low resource languages, no annotated data is available;

supervised parsers are often trained on a newswire corpus, so they face an out-of-

domain issue. As a natural solution, deriving tree structures directly from raw text data

is therefore highly motivated. Recently, researchers have started to explore how to

induce syntactical tree structures via neural network-based models from downstream

NLP tasks such as language modeling (Shen et al., 2018b, 2019b; Wang et al., 2019),

and sentence understanding tasks like sentiment analysis and natural language infer-

ence (Yogatama et al., 2017; Maillard et al., 2017; Choi et al., 2018).

2.1. Grammar Induction 11

2.1.2 Problem Formulation

The long and substantial exploration by researchers in studying the syntax of natural

language indicates that natural language sentences can be analyzed in the form of tree-

like structures. The two most popular structures are constituency and dependency

structures. They capture different aspects of the syntax of a language and therefore

each has validity in its own terms.

Constituency Grammar

The core notion of the constituency grammar is abstraction, groups of words behaving

as single units or constituents, such as noun phrases (NPs) and verb phrases (VPs). The

constituency tree identifies the constituent phrases in a given sentence and encodes the

order in which the tree is derived. Figure 2.1a shows the constituency tree of a sample

sentence. Detailed annotations will be discussed later.

Identifying phrase-structured grammars from surface text is a classical problem in

computational linguistics, which can be traced back to 1950s. In Chomsky (1956),

Noam Chomsky found that no finite-state Markov process that produces symbols with

state transition can serve as an English grammar and furthermore formalized the notion

of phrase structure. Based on this concept, a set of grammatical transformations are

specified to rewrite sentences with phrase structure into new sentences with derived

phrase structure so that all sentences are constructed by repeated transformations. This

laid the foundation of the well-known context-free grammars (CFGs) for natural lan-

guage analysis. Lamb (1961) used the distributional analysis of Harris (1951) and

Hockett (1958), where the syntax is completely described by a list of distribution

classes of items and a list of constructions. Namely, a construction is characterized

by (1) the distribution classes which enter into it and their relative order, (2) the distri-

bution class membership of the constitutes. Solomonoff (1964) employed the context-

free grammar to deal with the extrapolation of sets of strings, in which the constraints

among the symbols are like those that exist among the words of sentences in European

languages. Horning (1969) introduced probabilistic grammars and demonstrated that

it is possible to learn such grammars from positive examples.

Next, we introduce the formal definition of a context-free grammar. Typically,

A context-free grammar G is defined by the 4-tuple G = (V,Σ,R,S) (Sipser, 1996;

Hopcroft et al., 2001):

• V is a finite set. Each element v ∈ V is called a non-terminal or a variable.

12 Chapter 2. Background

S

VP

NP

PP

NP

NNP

London

TO

to

NP

NN

flight

NN

morning

DT

the

VBP

prefer

NP

PRP

I

NT

NT

NT

NT

T

London

T

to

NT

NT

T

flight

T

morning

T

the

T

prefer

T

I

1

(a) A fully annotated constituency tree.

S

VP

NP

PP

NP

NNP

London

TO

to

NP

NN

flight

NN

morning

DT

the

VBP

prefer

NP

PRP

I

NT

NT

NT

NT

T

London

T

to

NT

NT

T

flight

T

morning

T

the

T

prefer

T

I

1

(b) A constituency tree w/o tag labels.

Figure 2.1: Constituency tree examples. (a): a fully annotated constituency tree, where

nonterminal and preterminal (part-of-speech) tags are labeled. (b): a constituency

tree, where the parse tree is binarized using right-branching and nonterminal (NT) and

preterminal (T) tags are left anonymized.

Each variable represents a different type of phrase or clause in the sentence to

distinguish syntactical categories.

• Σ is a finite set of terminals (i.e., surface words), different from V , which make

up the actual content of the sentence. Σ is actually the alphabet of the language

defined by the grammar G.

• S is the start variable (or start symbol), used to represent the whole sentence. It

is an element of V.

• R is a finite relation in V × (V ∪Σ)∗, where the asterisk indicates the Kleene star

operation. The members of R are production (or rewrite) rules of the grammar.

Specifically, if G is in Chomsky normal form (Chomsky, 1959), R takes the

following form:

S→ A, A ∈V

A→ B C, A,B,C ∈V

T → w, T ∈V, w ∈ Σ.

In one specific formalism where the set V is further split into N(non-terminals)

2.1. Grammar Induction 13

and P (pre-terminals, e.g., POS; Part-of-Speech tags), R takes the form:

S→ A, A ∈ N

A→ B C, A ∈ N, B,C ∈ N∪P

T → w, T ∈ P, w ∈ Σ.

In a probabilistic CFG (PCFG), each production rule will be assigned a proba-

bility.

Figure 2.1a is the parsed constituency structure of a sample sentence. The pro-

duction rules applied in the derivation are (S→ NP,V P), (V P→ V BP,NP), (NP→
DT,NN,NN), (NP→ PRP), (NP→ NNP), etc. In this example, preterminals (POS

tags) are distinguished from the nonterminals. Note that, the CFG underlying this

constituency tree does not take the Chomsky normal form given the production rule

(NP→ DT,NN,NN). But this grammar can be converted to an equivalent Chomsky

normal form by utilizing some rules like binarization.

Normally, the goal of grammar induction for constituency grammars is to identify

the CFG solely from raw text. The learned grammar can then be employed to parse a

given sentence through a parsing algorithm and yield the corresponding constituency

tree structure. Since there is no supervision provided for nonterminal and preterminal

tags, the learned tags will be anonymized. For convenience, the target CFG can be

specified to take the Chomsky normal form. An example is presented in Figure 2.1b.

Dependency Grammar

As opposed to the constituency relation of phrase structure, dependency grammar is

a class of grammatical theories based on the dependency relation. Dependency is the

notion that the syntactic structure of a sentence consists of binary asymmetrical rela-

tions between the words of the sentence. Concretely, basic linguistic units (i.e., words

in a sentence), are connected to each other by directed links. The (finite) verb is taken

to be the center of clause structure. All other units are directly or indirectly connected

to the verb through the directed links, which are called dependencies. A dependency

structure (or representation) is determined by the relation between a word (i.e., a head)

and its dependents. In the phrase structure, for every word in a sentence, there is one or

more nodes in the constituency tree structure that correspond to that word. Regarding

the phrasal constituents, although dependency representations acknowledge phrases,

they lack phrase nodes in the tree structure. Even though dependency representations

can model an ordered tree structures, they often abstract away from linear word order

14 Chapter 2. Background

and just concentrate on the hierarchical order, which means they do not encode actual

word order. As a result, dependency representations are well suited for the analysis

of languages with free word order, such as Czech. Furthermore, given their flexibility,

dependency representations have the potential to achieve cross-linguistically consis-

tency and facilitate multilingual language processing. For example, Universal De-

pendencies (UD; Nivre et al. 2016, 2020) is a open source project aiming to develop

cross-linguistically consistent treebank annotations for many languages to capture sim-

ilarities as well as characteristics among topologically different languages.

PRP VBP DT NN NN IN NNP

I prefer the morning flight to London

root

nsubj

det

compound

obj

case

obl

1

(a) A dependency tree w/ labeled relations.

I prefer the morning flight to London

rootroot

1

(b) A dependency tree w/o labeled relations.

Figure 2.2: Dependency tree examples. (a): a fully annotated dependency tree, where

POS tags and dependency relations are labeled. (b): a dependency tree without any

further annotations.

Normally, in a dependency treebank, dependency relations are also labeled in the

dependency tree structures as presented in Figure 2.2a. For instance, nsubj indicates

nominal subject and obj indicates object. 1 Such dependency relation categories can

be learned in a supervised learning setting. Regarding unsupervised dependency pars-

ing or dependency grammar induction, the aim is to identify the unlabeled pair-wise

relations among words in a given sentence, which means relation labels are omitted

(illustrated in Figure 2.2b).

The seminal work of Tesnière (Tesnière, 1959) is usually considered as the start-

ing point of the modern theoretical tradition of dependency grammar. This tradition

comprises a diverse family of grammatical theories and formalisms (Nivre, 2005). Be-

1More details can be found in https://universaldependencies.org/u/dep/index.html

2.1. Grammar Induction 15

sides the theory of structural syntax developed by Tesnière (1959), there are also Word

Grammar (Hudson, 1984, 2007, 2010), Functional Generative Description (Sgall et al.,

1986), Meaning-Text Theory (Mel’cuk et al., 1988), Constraint Dependency Grammar

(Maruyama, 1990; Harper and Helzerman, 1995; Menzel and Schroder, 1998), Con-

straint Grammar (Karlsson, 1990; Karlsson et al., 1995), and so on. These dependency

grammar formalisms share common core of assumptions, centered upon the notion of

dependency (see above), while they also diverge on some points such as the issue of

projective and non-projective representations.

The earliest work on parsing with dependency representations was tied to formal-

izations of dependency grammar that were very close to context-free grammar, as de-

scribed in Hays (1964) and Gaifman (1965). An argument has been developed that

dependency grammar is only a restricted variant of context-free grammar (Jarvinen

and Tapanainen, 1998). However, this argument is erroneous because the results only

concern the specific version of dependency grammar formalized by Hays (1964) and

Gaifman (1965), which for one thing is restricted to projective dependency structures.

The close relation to context-free grammar in the formalization of dependency gram-

mar by Hays (1964) and Gaifman (1965) indicates that essentially the same parsing

methods can be employed for both types of system. For instance, the parsing algorithm

outlined in Hays (1964) is a bottom-up dynamic programming algorithm resembles the

CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967) proposed for context-

free constituency parsing. 2 A common characteristic of all frameworks that imple-

ment dependency parsing as a form of lexicalized context-free parsing is that they are

restricted to the derivation of projective dependency representations, although some of

them allow post-processing to incorporate non-projective representations (Sleator and

Temperley, 1993).

Grammar Induction vs. Unsupervised Parsing

Parsing is the computational implementation of syntactic analysis based on different

syntactic representations (e.g., constituency or dependency). From the machine learn-

ing perspective, unsupervised parsing particularly denotes learning a parsing model in

an unsupervised manner. On the other hand, grammar induction refers to learning a

formal grammar, a set of production rules (and associated probabilities in the context

of a probabilistic grammar) that gives a systematic account of how natural language

2More examples can be found in the survey (Nivre, 2005).

16 Chapter 2. Background

is generated. Once learned, such a grammar can be evaluated on unsupervised pars-

ing. More specifically, parsing conceptually consists of the derivation of all analyses

that are permissible according to the learned grammar and the selection of the most

probable analysis according to the probabilistic model. Then the predicted parse tree

is compared against the expert-annotated one. In this sense, it is worth noting that

grammar induction and unsupervised parsing are not synonymous.

Regarding the constituency structures, inducing a probabilistic context-free gram-

mar is a classic research problem and has been investigated for over thirty years. There

is also substantial research work only focusing on the unsupervised parsing without

considering the underlying formal grammar (Klein and Manning, 2002; Seginer, 2007;

Shen et al., 2018b, 2019a; Wang et al., 2019; Drozdov et al., 2019, 2020). In this the-

sis, we consider unsupervised constituency parsing in Chapter 4, both unsupervised

constituency parsing and grammar induction in Chapter 5.

Unlike theories and parsers based on constituency analysis, theoretical frameworks

and parsers are often rather less connected for dependency-based analysis. Early at-

tempts on unsupervised dependency parsing were grammar-driven where a formal de-

pendency grammar was relied on and a probabilistic model was induced (e.g., Carroll

and Charniak 1992). On the contrary, modern unsupervised dependency parsing meth-

ods, especially those based on the DMV model (Klein and Manning, 2004), are purely

generative models without involving a formal grammar. In this thesis, we focus on

the problem of unsupervised dependency parsing while consider no underlying formal

grammars in Chapter 3.

2.1.3 Related Work

In this section, we briefly review the early attempts that have been made to address the

problem of grammar induction as well as unsupervised parsing for both constituency

and dependency grammars. More recent work, including neural network-based ap-

proaches, will be reviewed comprehensively in the related work sections of the follow-

ing three chapters.

Constituency Structures

Unfortunately, initial results on constituency grammar induction were mostly negative.

Gold (1967) investigated language learnability via learning to identify an unknown

language by accessing positive examples alone. In this work, the learning algorithm

2.1. Grammar Induction 17

is constrained such that there is some finite time after which the predictions will all

be the same and correct (identification in the limit). Under this constraint, the au-

thor showed that it is not possible to learn even regular grammars. The constructive

procedure is one grammar induction procedure (Solomonoff, 1959; Feldman, 1967;

Feldman et al., 1969), which is the systematic use of sample strings to construct the

rules of the grammar. But constructive methods are incomplete in theory and only sup-

port smaller grammar classes in practice. On the contrary, enumerative methods (Gold,

1967; Feldman et al., 1969; Horning, 1969) are advantageous on these problems; they

enumerate the class of grammars under consideration, examine each grammar in turn,

and select the first grammar which is appropriate for the sample of strings from the

unidentified language. Horning (1969) showed that it is possible to learn probabilistic

grammars from positive examples alone using enumerative methods. However, enu-

merative methods typically require unacceptably large amounts of computation.

Regarding probabilistic context-free grammars (PCFGs), it is generally required to

specify a probabilistic grammar (e.g., formalism) and fit its parameters through opti-

mization. Lari and Young (1990) first empirically showed the possibility of statistical

induction of PCFGs using the EM algorithm, especially with the inside-outside algo-

rithm (Baker, 1979). However, prior work found it hard to induce plausible grammars

from the natural language data, such as directly optimizing the log likelihood with

the EM algorithm (Carroll and Charniak, 1992; Charniak, 1996). Two major reasons

for the failure are the ill-behaved optimization landscape and the strict independence

assumptions of PCFGs. Therefore, follow-up methods to grammar induction have re-

sorted to Variational Bayesian Inference (Kurihara and Sato, 2006; Wang and Blunsom,

2013), Markov Chain Monte Carlo (Johnson et al., 2007), non-parametric Bayesian

model (Liang et al., 2007) and hand-crafted features (Huang et al., 2012; Golland et al.,

2012) to encourage the desired constituency structures to emerge. Recent success on

constituency grammar induction is attributed to neural parameterization (Kim et al.,

2019a; Zhu et al., 2020) and detailed discussions can be found in Section 5.1.1.

There is also prior work on learning an unsupervised parser without considering an

underlying grammar. Klein and Manning (2002) presented a simple generative model

combining the benefits of EM-based parameter search and distributional clustering

methods. Bod (2006) proposed an unsupervised data-oriented-parsing model which

assigns all possible binary trees to a set of sentences and then use all subtrees from

these binary trees to predict the most probable parse trees. Seginer (2007) adopted an

incremental setting for unsupervised parsing by utilizing a representation for syntactic

18 Chapter 2. Background

structure similar to dependency links. More recently, researchers have explored the

induction of constituency structures from neural network-based models via various

tasks, such as language modeling, natural language inference, constituency tests (Shen

et al., 2018b, 2019a; Williams et al., 2018a; Wang et al., 2019; Cao et al., 2020). A

comprehensive review can be found in Section 5.1.

Dependency Structures

Similar to constituency grammars, early efforts on dependency grammar induction

have been discouraging. Carroll and Charniak (1992) presented a set of experiments

trying to induce probabilistic dependency grammar based on the inside-outside algo-

rithm (Baker, 1979; Lari and Young, 1990). They began with all the rules that were

applicable for the sentences in the corpus and iteratively filtered them based on the re-

estimated probabilities. However, the proposed method was tested on small artificial

languages and only worked when the grammar was fairly restricted. DMV (Klein and

Manning, 2004) was the first model that outperformed the trivial right-branching base-

line. The EM and the inside-outside algorithms are generally used to learn the DMV

model. For inference, dynamic programming (DP) is employed to find the optimal

dependency structure.

Since DMV’s first breakthrough, there has been a lot of follow-up work. Smith

and Eisner (2005) investigated using contrastive estimation to estimate the DMV. In

the Bayesian framework, researchers have studied Bayesian priors (Headden III et al.,

2009; Cohen and Smith, 2009), Bayesian non-parametric models (Blunsom and Cohn,

2010) and posterior regularization (Naseem et al., 2010). Mareček and Straka (2013)

exploited prior knowledge of STOP-probabilities obtained from a large raw corpus.

Spitkovsky et al. (2013) proposed to switch between different objectives to break out

of local optima. To enrich the expressiveness of the DMV, researchers introduced

parameter tying (Cohen and Smith, 2009; Headden III et al., 2009), tree substitution

grammars (Blunsom and Cohn, 2010), lexicalization and rich context features (Head-

den III et al., 2009).

There are also alternative approaches to unsupervised dependency parsing that

are not based on the DMV. Daumé III (2009) proposed a stochastic search based

method to do unsupervised transition-based parsing. Rasooli and Faili (2012) pro-

posed a transition-based unsupervised dependency parsing model together with baby-

step training (Spitkovsky et al., 2010) to improve parsing accuracy. Le and Zuidema

(2015) presented a self-training approach that started with trees generated by an unsu-

2.1. Grammar Induction 19

pervised parser and iteratively improved these trees using the richer probability models

used in supervised parsing. Inspired by discriminative clustering, Grave and Elhadad

(2015) formulated the unsupervised dependency parsing problem as convex optimiza-

tion of both the model parameters and the parses of training sentences.

More recently, researchers have introduced neural network-based approaches to un-

supervised dependency parsing on both discriminative and generative modeling (Jiang

et al., 2017; Nivre et al., 2016; Han et al., 2019). A comprehensive review can be found

in Section 3.1.

2.1.4 Experimental Setup

Corpora

Most research work in grammar induction has focused on inducing grammars for En-

glish. ATIS and WSJ are the two datasets typically used in the experiments for eval-

uating the performance of grammar induction approaches. ATIS is a corpus from the

air traffic information system containing short sentences concerning the same domain

and includes topics like reservation; ATIS is less used recently in the evaluation of

grammar induction. WSJ (Wall Street Journal) is a corpus pertaining to news domain

about business and politics and is the most employed benchmark to date. Both ATIS

and WSJ have phrase structure annotations as part of the Penn Treebank (PTB; Mar-

cus et al. 1993) 3 so that the annotations can be directly compared against the induced

ones for evaluation. Regarding the dependency structures, the phrase-structure anno-

tations need to be converted to dependency structures using head-selection techniques

(Collins, 2003; Yamada and Matsumoto, 2003; Johansson and Nugues, 2007; Surdeanu

et al., 2008). 4 For an unannotated corpus, an off-the-shelf supervised parser can be uti-

lized, such as Stanford PCFG parser (Klein and Manning, 2003) and Stanford neural-

network dependency parser (Chen and Manning, 2014); the produced silver parse trees

are then used for evaluation.

Apart from English, multilingual corpora have been developed to evaluate gram-

mar induction systems on other languages. SPMRL (Seddah et al., 2013, 2014) is

a multilingual corpus for a shared task on statistical parsing of morphologically rich

languages. It features data sets from 9 languages, each available both in constituency

3In the context of grammar induction, PTB and WSJ are sometimes synonymous in some recent
studies.

4E.g., an open source treebank converter: LTH conversion tool http://nlp.cs.lth.se/
software/treebank-converter/

http://nlp.cs.lth.se/software/treebank-converter/
http://nlp.cs.lth.se/software/treebank-converter/

20 Chapter 2. Background

and dependency annotation, and additional unannotated data. The PASCAL dataset

(Gelling et al., 2012) is for a competition specially on dependency grammar induction,

which makes use of a 10 different treebanks annotated in a range of different lin-

guistic formalisms and covering 9 languages. In recent years, many researchers have

contributed to the Universal Dependencies project (UD; Nivre et al. 2016, 2020), a col-

lection of treebanks for many languages (183 treebanks representing 104 languages in

its current version 2.7) 5, where the morphological and dependency annotation styles

are unified across the languages.

All forementioned corpora are equipped with annotations of POS tags. Normally,

raw text and the annotated POS tags are available for grammar induction systems.

Previous studies employ either of them or both of them. Some approaches also induce

POS tags (word classes) using some word clustering tools so that they only require the

raw text without any further annotations.

Evaluation Metrics

For constituency grammar induction and unsupervised parsing, the ParsEval metrics

(Black et al., 1991) are evaluation metrics for phrase-structure parse trees. Despite

various drawbacks, they are the de-facto standard for system comparison on phrase-

structure parsing. Assume G and H are phrase-structure gold and hypothesized trees

respectively. Each of them is represented by a set of tuples (i, j) where i and j are

starting and ending indices of a constituent span. In a supervised parsing setting, the

tuple includes an additional constituent label. The ParsEval scores are defined as the

accuracy of the hypothesis in terms of the normalized size of the intersection of the

constituent sets as follows

precision =
G∩H
|H|

recall =
G∩H
|G|

F1 =
2×P×R

P+R
.

(2.1)

ParsEval scores and F1 scores are used synonymously in some studies.

For dependency grammar induction, unlabeled attachment score (UAS), also known

as directed dependency accuracy (DDA), is a standard and the most popular metric for

measuring unsupervised dependency parsing quality. More specifically, it is the per-

centage of words that are correctly attached to their parents. UAS has been shown to be
5https://universaldependencies.org/

https://universaldependencies.org/

2.2. Neural Networks 21

sensitive to annotation variations (Kübler et al., 2009; Schwartz et al., 2011; Tsarfaty

et al., 2011). To address this issue, undirected UAS (UUAS) and neutral edge direction

(NED; Schwartz et al. 2011) have been proposed by researchers. UUAS discards the

direction of dependency edges and is therefore less biased towards such conventions.

NED is defined as: traverse over the tokens and mark a correct attachment if the token’s

induced parent is either (1) its gold parent (2) its gold child or (3) its gold grandparent.

This metric is even more tolerant in assessing parsing errors than UUAS. In this thesis,

for the convenience of comparing with previous studies, we adopt UAS (or DDA) as

our evaluation metric.

2.2 Neural Networks

In this section, we briefly review the popular neural networks for NLP tasks includ-

ing sequential models and tree structured models. Formally speaking, modern neural

NLP models often involve the encoder and decoder, where the former is specialized

for language understanding and the latter for language generation. To have a better

connection with our work that will be presented in the next chapters, we only focus on

the encoder modeling in this section.

2.2.1 Recurrent and Recursive Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of deep neural networks that are spe-

cially designed to process temporal sequences. Derived from feed-forward neural net-

works, RNNs maintain an internal state (or memory) and update it at each time step.

This enables RNNs to handle input sequences of variable lengths. More specifically,

given a sequence of input vectors X = [x1,x2, ...,xn], at each time step t, the RNN takes

the input xt , updates the hidden state ht and outputs yt . A typical implementation, the

Elman network (Elman, 1990), is defined as follows

ht = σh(Whxt +Uhht−1 +bh)

yt = σy(Wyht +by).
(2.2)

In the equations, xt ∈ Rd , ht ∈ Rd , yt ∈ Rd′ ; Wh ∈ Rd×d , Uh ∈ Rd×d and Wy ∈ Rd′×d

are weight matrices; bh ∈ Rd and by ∈ Rd′ are the bias, σh(·) and σy(·) are the non-

linear activation functions. Normally, RNNs are trained by backpropagation through

22 Chapter 2. Background

time (BPTT). A major issue with gradient descent for standard RNNs is vanishing

gradient, where the error gradient vanishes exponentially with the size of time lag. As

one example of the problem cause, some activation functions (e.g., hyperbolic tangent)

have gradients with magnitudes less than 1. When other activation functions are used

whose gradients can take larger values, one risks encountering the related exploding

gradient problem.

Long Short-Term Memory Networks

Long Short-Term Memory Networks (LSTMs; Hochreiter and Schmidhuber 1997) are

specialized RNNs that solve the vanishing and exploding gradient problem. A common

LSTM unit is composed of an internal memory cell, an input gate, a forget gate and

an output gate. The memory cell in the LSTM keeps track of the dependencies among

different elements in the input sequence. At each time step t, the input gate it controls

how much information from a new input flows into the cell; the forget gate ft controls

how much history memory is kept in the cell; the output gate ot controls how much

information in the current cell is used to compute the output. The forward pass of a

LSTM unit is given by

ft

it
ot

c̃t

=

σ

σ

σ

tanh

(W

[
ht−1

xt

]
+b) (2.3)

ct = ft� ct−1 + it� c̃t (2.4)

ht = ot� tanh(ct), (2.5)

where c̃t is cell candidate for the current input, ht is the hidden state also known as

output vector of the LSTM unit, W ∈ R4d×2d is the weight matrix and b ∈ R4d is the

bias. σ and tanh are element-wise sigmoid and hyperbolic tangent functions respec-

tively. � is element-wise multiplication. Figure 2.3 shows an illustration of the update

of the LSTM unit.

Recursive Neural Networks

Recursive Neural Networks (RvNNs) are a class of deep neural networks crafted by

applying the same set of weights recursively over a structured input. Unlike the stan-

dard RNNs that are specified to process the input in a sequential order, RvNNs can

2.2. Neural Networks 23

<latexit sha1_base64="pLTbzYxCoju8C9uEbq519QPMoLc=">AAAB7XicbVBNS8NAEJ34WetX1YvgZbEInkoiih4LXjxWsB/QhrLZbtq1m03YnQgl9D948aCIV/+PN/+NmzYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Nktb5e2d3b39ysFhy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvs399hPXRsTqAScJ9yM6VCIUjKKVWj2kalTuV6puzZ2BLBOvIFUo0OhXvnqDmKURV8gkNabruQn6GdUomOTTci81PKFsTIe8a6miETd+Nrt2Ss6sMiBhrG0pJDP190RGI2MmUWA7I4ojs+jl4n9eN8Xwxs+ESlLkis0XhakkGJP8dTIQmjOUE0so08LeStiIasrQBpSH4C2+vExaFzXvqubeX1brx0UcJTiBUzgHD66hDnfQgCYweIRneIU3J3ZenHfnY9664hQzR/AHzucPBZSOoQ==</latexit>

tanh

<latexit sha1_base64="pLTbzYxCoju8C9uEbq519QPMoLc=">AAAB7XicbVBNS8NAEJ34WetX1YvgZbEInkoiih4LXjxWsB/QhrLZbtq1m03YnQgl9D948aCIV/+PN/+NmzYHbX0w8Hhvhpl5QSKFQdf9dlZW19Y3Nktb5e2d3b39ysFhy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvs399hPXRsTqAScJ9yM6VCIUjKKVWj2kalTuV6puzZ2BLBOvIFUo0OhXvnqDmKURV8gkNabruQn6GdUomOTTci81PKFsTIe8a6miETd+Nrt2Ss6sMiBhrG0pJDP190RGI2MmUWA7I4ojs+jl4n9eN8Xwxs+ESlLkis0XhakkGJP8dTIQmjOUE0so08LeStiIasrQBpSH4C2+vExaFzXvqubeX1brx0UcJTiBUzgHD66hDnfQgCYweIRneIU3J3ZenHfnY9664hQzR/AHzucPBZSOoQ==</latexit>

tanh

<latexit sha1_base64="TbvenVO0+qCjIwgPZ0rU+PPUri4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoseAF48RzAOSJcxOZpMx81hmZoVlyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5nfmdJ6oNU/LBZgkNBR5JFjOCrZPafcNGAg+qNb/uz4FWSVCQGhRoDqpf/aEiqaDSEo6N6QV+YsMca8sIp9NKPzU0wWSCR7TnqMSCmjCfXztFZ04ZolhpV9Kiufp7IsfCmExErlNgOzbL3kz8z+ulNr4JcyaT1FJJFovilCOr0Ox1NGSaEsszRzDRzN2KyBhrTKwLqOJCCJZfXiXti3pwVffvL2sNVMRRhhM4hXMI4BoacAdNaAGBR3iGV3jzlPfivXsfi9aSV8wcwx94nz+Td48F</latexit>�<latexit sha1_base64="TbvenVO0+qCjIwgPZ0rU+PPUri4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoseAF48RzAOSJcxOZpMx81hmZoVlyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5nfmdJ6oNU/LBZgkNBR5JFjOCrZPafcNGAg+qNb/uz4FWSVCQGhRoDqpf/aEiqaDSEo6N6QV+YsMca8sIp9NKPzU0wWSCR7TnqMSCmjCfXztFZ04ZolhpV9Kiufp7IsfCmExErlNgOzbL3kz8z+ulNr4JcyaT1FJJFovilCOr0Ox1NGSaEsszRzDRzN2KyBhrTKwLqOJCCJZfXiXti3pwVffvL2sNVMRRhhM4hXMI4BoacAdNaAGBR3iGV3jzlPfivXsfi9aSV8wcwx94nz+Td48F</latexit>� <latexit sha1_base64="TbvenVO0+qCjIwgPZ0rU+PPUri4=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoseAF48RzAOSJcxOZpMx81hmZoVlyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5nfmdJ6oNU/LBZgkNBR5JFjOCrZPafcNGAg+qNb/uz4FWSVCQGhRoDqpf/aEiqaDSEo6N6QV+YsMca8sIp9NKPzU0wWSCR7TnqMSCmjCfXztFZ04ZolhpV9Kiufp7IsfCmExErlNgOzbL3kz8z+ulNr4JcyaT1FJJFovilCOr0Ox1NGSaEsszRzDRzN2KyBhrTKwLqOJCCJZfXiXti3pwVffvL2sNVMRRhhM4hXMI4BoacAdNaAGBR3iGV3jzlPfivXsfi9aSV8wcwx94nz+Td48F</latexit>�

+

<latexit sha1_base64="0UlcGytm5iEeG96AKraQzEyw8/4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LLgxmUF+4CmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJrwfkRHSoSCUbSS70cUx0GYPc0GOKjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTDm34mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/q3lXdvb+sNUhRRxlO4BTOwYNraMAdNKEFDBJ4hld4c1LnxXl3PhajJafYOYY/cD5/AIcEkeU=</latexit>

xt

<latexit sha1_base64="XsvR6Zmr631TrPEGIV4dFkzhyuQ=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBJRdFlw47KCfUAbwmQ6aYdOHszcFEron7hxoYhb/8Sdf+OkzUJbDwwczrmXe+YEqRQaHefbWlvf2NzaruxUd/f2Dw7to+O2TjLFeIslMlHdgGouRcxbKFDybqo4jQLJO8H4vvA7E660SOInnKbci+gwFqFgFI3k23Y/ojgKwnw083O8dGe+XXPqzhxklbglqUGJpm9/9QcJyyIeI5NU657rpOjlVKFgks+q/UzzlLIxHfKeoTGNuPbyefIZOTfKgISJMi9GMld/b+Q00noaBWayyKmXvUL8z+tlGN55uYjTDHnMFofCTBJMSFEDGQjFGcqpIZQpYbISNqKKMjRlVU0J7vKXV0n7qu7e1J3H61qDlHVU4BTO4AJcuIUGPEATWsBgAs/wCm9Wbr1Y79bHYnTNKndO4A+szx+W6JOE</latexit>

ht�1

<latexit sha1_base64="9YIbwloSDIdCQotJLAOM195ViF4=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBJRdFlw47KCfUAbwmQ6aYdOHszcFEron7hxoYhb/8Sdf+OkzUJbDwwczrmXe+YEqRQaHefbWlvf2NzaruxUd/f2Dw7to+O2TjLFeIslMlHdgGouRcxbKFDybqo4jQLJO8H4vvA7E660SOInnKbci+gwFqFgFI3k23Y/ojgKwpzN/Bwv3Zlv15y6MwdZJW5JalCi6dtf/UHCsojHyCTVuuc6KXo5VSiY5LNqP9M8pWxMh7xnaEwjrr18nnxGzo0yIGGizIuRzNXfGzmNtJ5GgZkscuplrxD/83oZhndeLuI0Qx6zxaEwkwQTUtRABkJxhnJqCGVKmKyEjaiiDE1ZVVOCu/zlVdK+qrs3defxutYgZR0VOIUzuAAXbqEBD9CEFjCYwDO8wpuVWy/Wu/WxGF2zyp0T+APr8wePMZN/</latexit>

ct�1

<latexit sha1_base64="nqLjRQ8eaU+P8IP7PAp1AvE2BIQ=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFclUQUXRbcuKxgH9DWMplO2qGTSZi5UUrIf7hxoYhb/8Wdf+OkzUJbDwwczrmXe+b4sRQGXffbWVldW9/YLG2Vt3d29/YrB4ctEyWa8SaLZKQ7PjVcCsWbKFDyTqw5DX3J2/7kJvfbj1wbEal7nMa8H9KREoFgFK300Aspjv0gDbJBitmgUnVr7gxkmXgFqUKBxqDy1RtGLAm5QiapMV3PjbGfUo2CSZ6Ve4nhMWUTOuJdSxUNuemns9QZObXKkASRtk8hmam/N1IaGjMNfTuZpzSLXi7+53UTDK77qVBxglyx+aEgkQQjkldAhkJzhnJqCWVa2KyEjammDG1RZVuCt/jlZdI6r3mXNffuolonRR0lOIYTOAMPrqAOt9CAJjDQ8Ayv8OY8OS/Ou/MxH11xip0j+APn8wc3+pLf</latexit>

ft
<latexit sha1_base64="CTUf7fF/vEiS9lIhGXDCZ9COlME=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFclUQUXRbcuKxgH9DWMplO2qGTSZi5UUrIf7hxoYhb/8Wdf+OkzUJbDwwczrmXe+b4sRQGXffbWVldW9/YLG2Vt3d29/YrB4ctEyWa8SaLZKQ7PjVcCsWbKFDyTqw5DX3J2/7kJvfbj1wbEal7nMa8H9KREoFgFK300Aspjv0gFdkgxWxQqbo1dwayTLyCVKFAY1D56g0jloRcIZPUmK7nxthPqUbBJM/KvcTwmLIJHfGupYqG3PTTWeqMnFplSIJI26eQzNTfGykNjZmGvp3MU5pFLxf/87oJBtf9VKg4Qa7Y/FCQSIIRySsgQ6E5Qzm1hDItbFbCxlRThraosi3BW/zyMmmd17zLmnt3Ua2Too4SHMMJnIEHV1CHW2hAExhoeIZXeHOenBfn3fmYj644xc4R/IHz+QM8lZLi</latexit>

it
<latexit sha1_base64="HrnD2YrXipc7TG9maAu/VBlubAs=">AAACAHicbVBNS8NAEN3Ur1q/qh48eFksgqeSiKLHghePFWwtNCFsNpt26WYTdidCCbn4V7x4UMSrP8Ob/8ZNm4O2Phh4vDfDzLwgFVyDbX9btZXVtfWN+mZja3tnd6+5f9DXSaYo69FEJGoQEM0El6wHHAQbpIqROBDsIZjclP7DI1OaJ/IepinzYjKSPOKUgJH85pEbExgHUY5d4CJkOS0KP4fCb7bstj0DXiZORVqoQtdvfrlhQrOYSaCCaD107BS8nCjgVLCi4WaapYROyIgNDZUkZtrLZw8U+NQoIY4SZUoCnqm/J3ISaz2NA9NZnqsXvVL8zxtmEF17OZdpBkzS+aIoExgSXKaBQ64YBTE1hFDFza2YjokiFExmDROCs/jyMumft53Ltn130ergKo46OkYn6Aw56Ap10C3qoh6iqEDP6BW9WU/Wi/Vufcxba1Y1c4j+wPr8AY/Ilu0=</latexit>

c̃t
<latexit sha1_base64="8MBBxBClGl2iYp7TkkZIeoL9A74=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZkRRZcFNy4r2Ae0w5BJM21oJhmSjFCHfokbF4q49VPc+Tdm2llo64HA4Zx7uScnSjnTxvO+nbX1jc2t7cpOdXdv/6DmHh51tMwUoW0iuVS9CGvKmaBtwwynvVRRnEScdqPJbeF3H6nSTIoHM01pkOCRYDEj2FgpdGuDBJtxFOdIzsLczEK37jW8OdAq8UtShxKt0P0aDCXJEioM4Vjrvu+lJsixMoxwOqsOMk1TTCZ4RPuWCpxQHeTz4DN0ZpUhiqWyTxg0V39v5DjReppEdrKIqZe9QvzP62cmvglyJtLMUEEWh+KMIyNR0QIaMkWJ4VNLMFHMZkVkjBUmxnZVtSX4y19eJZ2Lhn/V8O4v601U1lGBEziFc/DhGppwBy1oA4EMnuEV3pwn58V5dz4Wo2tOuXMMf+B8/gAXFpND</latexit>

ot

<latexit sha1_base64="TVwZ5ZrOjH58tpWHFjDypVMPfQw=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFclUQUXRbcuKxgH9DWMplO2qGTSZi5UUrIf7hxoYhb/8Wdf+OkzUJbDwwczrmXe+b4sRQGXffbWVldW9/YLG2Vt3d29/YrB4ctEyWa8SaLZKQ7PjVcCsWbKFDyTqw5DX3J2/7kJvfbj1wbEal7nMa8H9KREoFgFK300Aspjv0gZdkgxWxQqbo1dwayTLyCVKFAY1D56g0jloRcIZPUmK7nxthPqUbBJM/KvcTwmLIJHfGupYqG3PTTWeqMnFplSIJI26eQzNTfGykNjZmGvp3MU5pFLxf/87oJBtf9VKg4Qa7Y/FCQSIIRySsgQ6E5Qzm1hDItbFbCxlRThraosi3BW/zyMmmd17zLmnt3Ua2Too4SHMMJnIEHV1CHW2hAExhoeIZXeHOenBfn3fmYj644xc4R/IHz+QMzX5Lc</latexit>

ct

<latexit sha1_base64="4jEIW5k7Ctgt2x3H8ep/F7sNRBo=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFclUQUXRbcuKxgH9DWMplO2qGTSZi5UUrIf7hxoYhb/8Wdf+OkzUJbDwwczrmXe+b4sRQGXffbWVldW9/YLG2Vt3d29/YrB4ctEyWa8SaLZKQ7PjVcCsWbKFDyTqw5DX3J2/7kJvfbj1wbEal7nMa8H9KREoFgFK300Aspjv0gHWeDFLNBperW3BnIMvEKUoUCjUHlqzeMWBJyhUxSY7qeG2M/pRoFkzwr9xLDY8omdMS7lioactNPZ6kzcmqVIQkibZ9CMlN/b6Q0NGYa+nYyT2kWvVz8z+smGFz3U6HiBLli80NBIglGJK+ADIXmDOXUEsq0sFkJG1NNGdqiyrYEb/HLy6R1XvMua+7dRbVOijpKcAwncAYeXEEdbqEBTWCg4Rle4c15cl6cd+djPrriFDtH8AfO5w87DJLh</latexit>

ht

Figure 2.3: Illustration of the LSTM unit. xt , ht , ct and c̃t are the input, hidden state,

memory cell and memory cell candidate at time step t. ht−1, ct−1 are for the previous

time step. ft , it and ot are the forget, input and output gates.
⊙

and
⊕

indicate

element-wise multiplication and summation operators.

be applied to a wide range of structures. Given a structure, RvNNs process the ele-

ments by traversing the structure in its topological order. This property makes RvNNs

favourable in many NLP applications (e.g., sentence representation learning), where

trees are considered to be the underlying structures of natural language.

<latexit sha1_base64="GqIkM/whYzO3IQivtaubkr9OXHk=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BIvgqeyKoseCF48V7Ae0S8mms21oNrsms8Wy9Hd48aCIV3+MN/+NabsHbX0w8PLeDJl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoaeJUc2jwWMa6HTADUihooEAJ7UQDiwIJrWB0O/NbY9BGxOoBJwn4ERsoEQrO0Ep+F+EJMx4r+572yhW36s5BV4mXkwrJUe+Vv7r9mKcRKOSSGdPx3AT9jGkUXMK01E0NJIyP2AA6lioWgfGz+dJTemaVPg1jbUshnau/JzIWGTOJAtsZMRyaZW8m/ud1Ugxv/EyoJEVQfPFRmEqKMZ0lQPtCA0c5sYRxLeyulA+ZZhxtTiUbgrd88ippXlS9q6p7f1mpuXkcRXJCTsk58cg1qZE7UicNwskjeSav5M0ZOy/Ou/OxaC04+cwx+QPn8wd41pJ/</latexit>

concat

<latexit sha1_base64="k0RJf9Uv4WEBYaV1QZUrKHGfQb0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS30eqxoNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoNcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu416u7Dda3pFnGU4QzO4RI8uIEm3EMLfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDWoo6l</latexit>

tanh
<latexit sha1_base64="rOnBD2WEb3pqPrMExyugewY/2vg=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiSi6LLgxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYdWaDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrzxMy6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd27qrv3l7WGW9RRhhM4hXPw4BoacAdNaAEDCc/wCm+Odl6cd+djMVpyip1j+APn8wfG/JDt</latexit>

W

<latexit sha1_base64="DiYscZcthfhc4fRnFX5c6oGNprE=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRS0WXBjcsK9gFNKZPpTTt0MgkzE6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiujet+O6WNza3tnfJuZW//4PCoenzS0XGqGLZZLGLVC6hGwSW2DTcCe4lCGgUCu8H0Lve7T6g0j+WjmSU4iOhY8pAzaqzk+xE1kyDM2HzoDas1t+4uQNaJV5AaFGgNq1/+KGZphNIwQbXue25iBhlVhjOB84qfakwom9Ix9i2VNEI9yBaZ5+TCKiMSxso+achC/b2R0UjrWRTYyTyjXvVy8T+vn5rwdpBxmaQGJVseClNBTEzyAsiIK2RGzCyhTHGblbAJVZQZW1PFluCtfnmddK7q3nXdfWjUmo2ijjKcwTlcggc30IR7aEEbGCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AAdpkaE=</latexit>c1
<latexit sha1_base64="xhTnZbFbT9rOm1r7RkgftkWQtT4=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KUih4LXjxWsK3QlLLZvrRLN5uwuxFK6N/w4kERr/4Zb/4bN20O2jqwMMy8x5udIBFcG9f9dkobm1vbO+Xdyt7+weFR9fikq+NUMeywWMTqMaAaBZfYMdwIfEwU0igQ2Aumt7nfe0KleSwfzCzBQUTHkoecUWMl34+omQRhxubDxrBac+vuAmSdeAWpQYH2sPrlj2KWRigNE1TrvucmZpBRZTgTOK/4qcaEsikdY99SSSPUg2yReU4urDIiYazsk4Ys1N8bGY20nkWBncwz6lUvF//z+qkJbwYZl0lqULLloTAVxMQkL4CMuEJmxMwSyhS3WQmbUEWZsTVVbAne6pfXSbdR967q7n2z1moWdZThDM7hEjy4hhbcQRs6wCCBZ3iFNyd1Xpx352M5WnKKnVP4A+fzBwjtkaI=</latexit>c2

<latexit sha1_base64="4eAxA+zWizcK/G0AWLeOOAQbSWg=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFcSElKRZcFNy4r2Ae0IUymk3boZBJmJoUS8iduXCji1j9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbW1sbm3v7Fb2qvsHh0fH9slpV8WpJLRDYh7LfoAV5UzQjmaa034iKY4CTnvB9L7wezMqFYvFk54n1IvwWLCQEayN5Nv2MMJ6EoRZkvuZe93Ifbvm1J0F0DpxS1KDEm3f/hqOYpJGVGjCsVID10m0l2GpGeE0rw5TRRNMpnhMB4YKHFHlZYvkObo0ygiFsTRPaLRQf29kOFJqHgVmssipVr1C/M8bpDq88zImklRTQZaHwpQjHaOiBjRikhLN54ZgIpnJisgES0y0KatqSnBXv7xOuo26e1N3Hpu1VrOsowLncAFX4MIttOAB2tABAjN4hld4szLrxXq3PpajG1a5cwZ/YH3+AELuk10=</latexit>p1,2

Figure 2.4: Illustration of a simple RvNN architecture. c1, c2 and p1,2 are two children

vectors and one parent vector respectively. p1,2 = tanh(W[c1;c2]), where W is the

weight matrix and [· ; ·] indicates the vector concatenation.

In a basic RvNN, children nodes are combined into parents using a weight ma-

trix that is shared across the whole network, together with a non-linearity such as the

hyperbolic tangent function (shown in Figure 2.4). c1 and c1 are the representation

24 Chapter 2. Background

of two children nodes in a given structure. The representation for the parent can be

computed as

p1,2 = tanh(W

[
c1

c2

]
), (2.6)

where c1 ∈Rd , c2 ∈Rd , p1,2 ∈Rd and W ∈Rd×2d is the weight matrix. The subscript

in p1,2 indicates the node’s children indices. More complicated parameterization for

RvNNs include Matrix-Vector RvNNs (Socher et al., 2012), Recursive Neural Tensor

Networks (Socher et al., 2013), and so on.

Tree-LSTMs

Tree-LSTMs (Tai et al., 2015) are popular parameterization of RvNNs for NLP tasks,

which are a generalization of LSTMs to tree-structured network topologies. The core

idea is to inject syntactic knowledge to sentence modeling by extending the chain-

structured LSTMs to the tree-structured LSTMs. Both dependency trees and con-

stituency trees can be leveraged to obtain the tree structures.

<latexit sha1_base64="VdaVhWvmz1+CMzgCKNexIStl3+E=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IReiqJKHosePFYwbZCG8Jmu2nXbjZhdyPUkF/ixYMiXv0p3vw3btoctHVgYZh5jzc7QcKZ0o7zbVXW1jc2t6rbtZ3dvf26fXDYU3EqCe2SmMfyPsCKciZoVzPN6X0iKY4CTvvB9Lrw+49UKhaLOz1LqBfhsWAhI1gbybfrwwjrSRBmk9zPHtzctxtOy5kDrRK3JA0o0fHtr+EoJmlEhSYcKzVwnUR7GZaaEU7z2jBVNMFkisd0YKjAEVVeNg+eo1OjjFAYS/OERnP190aGI6VmUWAmi5hq2SvE/7xBqsMrL2MiSTUVZHEoTDnSMSpaQCMmKdF8ZggmkpmsiEywxESbrmqmBHf5y6ukd9ZyL1rO7Xmj3SzrqMIxnEATXLiENtxAB7pAIIVneIU368l6sd6tj8VoxSp3juAPrM8fGuuTSw==</latexit>

hj1
<latexit sha1_base64="JJsUND4tEUPn6WqXP8fngr/4UhM=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IReiqJKHosePFYwbZCG8Jmu2nXbjZhdyPUkF/ixYMiXv0p3vw3btoctHVgYZh5jzc7QcKZ0o7zbVXW1jc2t6rbtZ3dvf26fXDYU3EqCe2SmMfyPsCKciZoVzPN6X0iKY4CTvvB9Lrw+49UKhaLOz1LqBfhsWAhI1gbybfrwwjrSRBmJPezBzf37YbTcuZAq8QtSQNKdHz7aziKSRpRoQnHSg1cJ9FehqVmhNO8NkwVTTCZ4jEdGCpwRJWXzYPn6NQoIxTG0jyh0Vz9vZHhSKlZFJjJIqZa9grxP2+Q6vDKy5hIUk0FWRwKU450jIoW0IhJSjSfGYKJZCYrIhMsMdGmq5opwV3+8irpnbXci5Zze95oN8s6qnAMJ9AEFy6hDTfQgS4QSOEZXuHNerJerHfrYzFascqdI/gD6/MHEzmTRg==</latexit>cj1

<latexit sha1_base64="wR+hC71jE5igOEebsvzTi9pjb6g=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iErkpSFF0W3LisYB/QhjCZTtqxk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFvZ4l1IvwWLCQEayN5NvVYYT1JAgzMvezh+bct2tOw1kArRO3IDUo0Pbtr+EoJmlEhSYcKzVwnUR7GZaaEU7nlWGqaILJFI/pwFCBI6q8bBF8js6NMkJhLM0TGi3U3xsZjpSaRYGZzGOqVS8X//MGqQ6vvYyJJNVUkOWhMOVIxyhvAY2YpETzmSGYSGayIjLBEhNtuqqYEtzVL6+TbrPhXjacu4taq17UUYZTOIM6uHAFLbiFNnSAQArP8Apv1pP1Yr1bH8vRklXsnMAfWJ8/FL6TRw==</latexit>cj2

<latexit sha1_base64="mZMGl+gnMuOSWnhoL3GqBZb/5kc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iErkpSFF0W3LisYB/QhjCZTtqxk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n2yptbG5t75R3K3v7B4dV++i4q+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepP7vUcqFYvFvZ4l1IvwWLCQEayN5NvVYYT1JAizydzPHppz3645DWcBtE7cgtSgQNu3v4ajmKQRFZpwrNTAdRLtZVhqRjidV4apogkmUzymA0MFjqjyskXwOTo3ygiFsTRPaLRQf29kOFJqFgVmMo+pVr1c/M8bpDq89jImklRTQZaHwpQjHaO8BTRikhLNZ4ZgIpnJisgES0y06apiSnBXv7xOus2Ge9lw7i5qrXpRRxlO4Qzq4MIVtOAW2tABAik8wyu8WU/Wi/VufSxHS1axcwJ/YH3+ABxwk0w=</latexit>

hj2

<latexit sha1_base64="yA7LTOrRe3hlSgsIrdKMMmlj8tk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iErkoiii4LblxJBfuANpTJdNKOnUzCzESoIV/ixoUibv0Ud/6NkzYLbT0wcDjnXu6Z48ecKe0431ZpbX1jc6u8XdnZ3duv2geHHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe360+vc7z5SqVgk7vUspl6Ix4IFjGBtpKFdHYRYT/wgnWTD9OE2G9o1p+HMgVaJW5AaFGgN7a/BKCJJSIUmHCvVd51YeymWmhFOs8ogUTTGZIrHtG+owCFVXjoPnqFTo4xQEEnzhEZz9fdGikOlZqFvJvOYatnLxf+8fqKDKy9lIk40FWRxKEg40hHKW0AjJinRfGYIJpKZrIhMsMREm64qpgR3+curpHPWcC8azt15rVkv6ijDMZxAHVy4hCbcQAvaQCCBZ3iFN+vJerHerY/FaMkqdo7gD6zPH0b8k2g=</latexit>

hjN
<latexit sha1_base64="AeyEHe3zY8kEPsAsFvI+RWQ+MOc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iErkoiii4LblxJBfuANpTJdNKOnUzCzESoIV/ixoUibv0Ud/6NkzYLbT0wcDjnXu6Z48ecKe0431ZpbX1jc6u8XdnZ3duv2geHHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe360+vc7z5SqVgk7vUspl6Ix4IFjGBtpKFdHYRYT/wgJdkwfbjNhnbNaThzoFXiFqQGBVpD+2swikgSUqEJx0r1XSfWXoqlZoTTrDJIFI0xmeIx7RsqcEiVl86DZ+jUKCMURNI8odFc/b2R4lCpWeibyTymWvZy8T+vn+jgykuZiBNNBVkcChKOdITyFtCISUo0nxmCiWQmKyITLDHRpquKKcFd/vIq6Zw13IuGc3dea9aLOspwDCdQBxcuoQk30II2EEjgGV7hzXqyXqx362MxWrKKnSP4A+vzBz9Kk2M=</latexit>cjN

<latexit sha1_base64="LC3iiuA2g1sFqlE9oNW6Yoiop1Y=">AAAB83icbVDLSgMxFL2pr1pfVZdugkXoqsyIosuCG5cV7AM6Q8mkmTY2kxmSjFiG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtMbnK/+8iU5rG8N9OE+REZSR5ySoyVPC8iZhyE2dNs8DCo1pyGMwdeJW5BalCgNah+ecOYphGThgqidd91EuNnRBlOBZtVvFSzhNAJGbG+pZJETPvZPPMMn1lliMNY2ScNnqu/NzISaT2NAjuZZ9TLXi7+5/VTE177GZdJapiki0NhKrCJcV4AHnLFqBFTSwhV3GbFdEwUocbWVLEluMtfXiWd84Z72XDuLmrNelFHGU7gFOrgwhU04RZa0AYKCTzDK7yhFL2gd/SxGC2hYucY/gB9/gB6RJHj</latexit>xj

<latexit sha1_base64="6qIwN5voL3xq2SK0PCK4dBqJG84=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWARuiqJKLosuHFZwT6gCWEyvWnHTh7MTIQS4sZfceNCEbf+hTv/xkmbhbYeuHA4517uvcdPOJPKsr6Nysrq2vpGdbO2tb2zu2fuH3RlnAoKHRrzWPR9IoGzCDqKKQ79RAAJfQ49f3Jd+L0HEJLF0Z2aJuCGZBSxgFGitOSZR05I1NgPMuwoxoeQ0RznXnafe2bdaloz4GVil6SOSrQ988sZxjQNIVKUEykHtpUoNyNCMcohrzmphITQCRnBQNOIhCDdbPZBjk+1MsRBLHRFCs/U3xMZCaWchr7uLO6Vi14h/ucNUhVcuRmLklRBROeLgpRjFeMiDjxkAqjiU00IFUzfiumYCEKVDq2mQ7AXX14m3bOmfdG0bs/rrUYZRxUdoxPUQDa6RC10g9qogyh6RM/oFb0ZT8aL8W58zFsrRjlziP7A+PwB4H+XFQ==</latexit>

c̃j
<latexit sha1_base64="9Fr4HmpQWRc+wJ5WVcsSrp0/1Ss=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUlE0WXBjcsK9gFtCJPppB07mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hV+b0alYrF41POEehEeCxYygrWRfNseRlhPgjBDBOV+9pT7dt1pOgugdeKWpA4l2r79NRzFJI2o0IRjpQauk2gvw1IzwmleG6aKJphM8ZgODBU4osrLFslzdGGUEQpjaZ7QaKH+3shwpNQ8CsxkkVOteoX4nzdIdXjrZUwkqaaCLA+FKUc6RkUNaMQkJZrPDcFEMpMVkQmWmGhTVs2U4K5+eZ10L5vuddN5uKq3GmUdVTiDc2iACzfQgntoQwcIzOAZXuHNyqwX6936WI5WrHLnFP7A+vwBUeuTXw==</latexit>cj

<latexit sha1_base64="GgaT306Jv8LiJitkJgVEFL+HPpU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUlE0WXBjcsK9gFtCJPppB07mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hV+b0alYrF41POEehEeCxYygrWRfNseRlhPgjBDE5T72VPu23Wn6SyA1olbkjqUaPv213AUkzSiQhOOlRq4TqK9DEvNCKd5bZgqmmAyxWM6MFTgiCovWyTP0YVRRiiMpXlCo4X6eyPDkVLzKDCTRU616hXif94g1eGtlzGRpJoKsjwUphzpGBU1oBGTlGg+NwQTyUxWRCZYYqJNWTVTgrv65XXSvWy6103n4areapR1VOEMzqEBLtxAC+6hDR0gMINneIU3K7NerHfrYzlascqdU/gD6/MHWZ2TZA==</latexit>

hj

<latexit sha1_base64="I2zSeCyM51jKphAhwq0fWOMq1HE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUlE0WXBjcsK9gFtCJPppB07mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hV+b0alYrF41POEehEeCxYygrWRfNseRlhPgjBDDOV+9pT7dt1pOgugdeKWpA4l2r79NRzFJI2o0IRjpQauk2gvw1IzwmleG6aKJphM8ZgODBU4osrLFslzdGGUEQpjaZ7QaKH+3shwpNQ8CsxkkVOteoX4nzdIdXjrZUwkqaaCLA+FKUc6RkUNaMQkJZrPDcFEMpMVkQmWmGhTVs2U4K5+eZ10L5vuddN5uKq3GmUdVTiDc2iACzfQgntoQwcIzOAZXuHNyqwX6936WI5WrHLnFP7A+vwBWyeTZQ==</latexit>

ij

<latexit sha1_base64="7pwnQMy9+Tr23pls2drQhPxfnqM=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahq5KIosuCG5cV7APaEibTSTt2MgkzE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOH3OmtON8W6W19Y3NrfJ2ZWd3b//Arh52VJRIQtsk4pHs+VhRzgRta6Y57cWS4tDntOtPr3O/+0ClYpG407OYDkM8FixgBGsjeXZ1EGI98YMUBSjz0ns38+ya03DmQKvELUgNCrQ8+2swikgSUqEJx0r1XSfWwxRLzQinWWWQKBpjMsVj2jdU4JCqYTqPnqFTo4xQEEnzhEZz9fdGikOlZqFvJvOgatnLxf+8fqKDq2HKRJxoKsjiUJBwpCOU94BGTFKi+cwQTCQzWRGZYImJNm1VTAnu8pdXSees4V40nNvzWrNe1FGGYziBOrhwCU24gRa0gcAjPMMrvFlP1ov1bn0sRktWsXMEf2B9/gDLz5Od</latexit>

fj1

<latexit sha1_base64="LpY0HP383fdj62aqys7jtLQRoxs=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJ0VZKi6LLgxmUF+4A2hMl00o6dTMLMRCkxn+LGhSJu/RJ3/o3TNgttPTBwOOde7pkTJJwp7Tjf1tr6xubWdmmnvLu3f3BoV446Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0m1zO/+0ClYrG409OEehEeCRYygrWRfLsyiLAeB2GGQpT72X0j9+2qU3fmQKvELUgVCrR8+2swjEkaUaEJx0r1XSfRXoalZoTTvDxIFU0wmeAR7RsqcESVl82j5+jMKEMUxtI8odFc/b2R4UipaRSYyVlQtezNxP+8fqrDKy9jIkk1FWRxKEw50jGa9YCGTFKi+dQQTCQzWREZY4mJNm2VTQnu8pdXSadRdy/qzu15tVkr6ijBCZxCDVy4hCbcQAvaQOARnuEV3qwn68V6tz4Wo2tWsXMMf2B9/gDNVJOe</latexit>

fj2

<latexit sha1_base64="CJE8uQ/g1ZMwLfh5CykfVHw2hTo=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJ0VRJRdFlw40oq2Ae0oUymk3bsZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP+ZMacf5tlZW19Y3Nktb5e2d3b19u3LQVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/ucr9zgOVikXiTk9j6oV4JFjACNZGGtiVfoj12A9SFKBskN7fZAO76tSdGdAycQtShQLNgf3VH0YkCanQhGOleq4Tay/FUjPCaVbuJ4rGmEzwiPYMFTikyktn0TN0YpQhCiJpntBopv7eSHGo1DT0zWQeVC16ufif10t0cOmlTMSJpoLMDwUJRzpCeQ9oyCQlmk8NwUQykxWRMZaYaNNW2ZTgLn55mbRP6+553bk9qzZqRR0lOIJjqIELF9CAa2hCCwg8wjO8wpv1ZL1Y79bHfHTFKnYO4Q+szx/34JO6</latexit>

fjN

<latexit sha1_base64="owWi/YXWkXE7IqQ3zYjBiL3pmrc=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUlE0WXBjcsK9gFtCJPppB07mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hV+b0alYrF41POEehEeCxYygrWRfNseRlhPgjBDMcr97Cn37brTdBZA68QtSR1KtH37aziKSRpRoQnHSg1cJ9FehqVmhNO8NkwVTTCZ4jEdGCpwRJWXLZLn6MIoIxTG0jyh0UL9vZHhSKl5FJjJIqda9QrxP2+Q6vDWy5hIUk0FWR4KU450jIoa0IhJSjSfG4KJZCYrIhMsMdGmrJopwV398jrpXjbd66bzcFVvNco6qnAG59AAF26gBffQhg4QmMEzvMKblVkv1rv1sRytWOXOKfyB9fkDZGOTaw==</latexit>oj

……

<latexit sha1_base64="slx5wkr/WaRj+0DWbfEbhtOpt2o=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvQU0lE0WPBiyepYD+gDWGzmbZrNx/sTool5J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5fiK4Qtv+Nkpr6xubW+Xtys7u3v6BeXjUVnEqGbRYLGLZ9akCwSNoIUcB3UQCDX0BHX98M/M7E5CKx9EDThNwQzqM+IAzilryTLOP8ITZXRxA7mWPTu6ZVbtuz2GtEqcgVVKg6Zlf/SBmaQgRMkGV6jl2gm5GJXImIK/0UwUJZWM6hJ6mEQ1Budn88tw600pgDWKpK0Jrrv6eyGio1DT0dWdIcaSWvZn4n9dLcXDtZjxKUoSILRYNUmFhbM1isAIugaGYakKZ5PpWi42opAx1WBUdgrP88ippn9edy7p9f1Ft1Io4yuSEnJIaccgVaZBb0iQtwsiEPJNX8mZkxovxbnwsWktGMXNM/sD4/AHyTZPG</latexit>

Nodej1

<latexit sha1_base64="+/PV37o7FoAq+INzWNjolpApmhE=">AAAB+XicbVBNS8NAEN34WetX1KOXYBF6KklR9Fjw4kkq2A9oQ9hsJu3azQe7k2IJ/SdePCji1X/izX/jts1BWx8MPN6bYWaenwqu0La/jbX1jc2t7dJOeXdv/+DQPDpuqySTDFosEYns+lSB4DG0kKOAbiqBRr6Ajj+6mfmdMUjFk/gBJym4ER3EPOSMopY80+wjPGF+lwQw9fLH+tQzK3bNnsNaJU5BKqRA0zO/+kHCsghiZIIq1XPsFN2cSuRMwLTczxSklI3oAHqaxjQC5ebzy6fWuVYCK0ykrhitufp7IqeRUpPI150RxaFa9mbif14vw/DazXmcZggxWywKM2FhYs1isAIugaGYaEKZ5PpWiw2ppAx1WGUdgrP88ipp12vOZc2+v6g0qkUcJXJKzkiVOOSKNMgtaZIWYWRMnskreTNy48V4Nz4WrWtGMXNC/sD4/AHz0pPH</latexit>

Nodej2

<latexit sha1_base64="+4PThr9RWFAGJpm4RGIHRgNC+BA=">AAAB+XicbVBNS8NAEN34WetX1KOXYBF6Kokoeix48VQq2A9oQ9hsJu3azQe7k2IJ/SdePCji1X/izX/jts1BWx8MPN6bYWaenwqu0La/jbX1jc2t7dJOeXdv/+DQPDpuqySTDFosEYns+lSB4DG0kKOAbiqBRr6Ajj+6nfmdMUjFk/gBJym4ER3EPOSMopY80+wjPGHeSAKYevljY+qZFbtmz2GtEqcgFVKg6Zlf/SBhWQQxMkGV6jl2im5OJXImYFruZwpSykZ0AD1NYxqBcvP55VPrXCuBFSZSV4zWXP09kdNIqUnk686I4lAtezPxP6+XYXjj5jxOM4SYLRaFmbAwsWYxWAGXwFBMNKFMcn2rxYZUUoY6rLIOwVl+eZW0L2rOVc2+v6zUq0UcJXJKzkiVOOSa1MkdaZIWYWRMnskreTNy48V4Nz4WrWtGMXNC/sD4/AEebZPj</latexit>

NodejN

<latexit sha1_base64="8gfiEhpwhvISZlf3cMbhe7cYohw=">AAAB+HicbVBNS8NAEN34WetHox69BIvQU0lE0WPBiyepYD+gDWGzmbZrNx/sTsQa8ku8eFDEqz/Fm//GbZuDtj4YeLw3w8w8PxFcoW1/Gyura+sbm6Wt8vbO7l7F3D9oqziVDFosFrHs+lSB4BG0kKOAbiKBhr6Ajj++mvqdB5CKx9EdThJwQzqM+IAzilryzEof4RGzmziA3Mvuc8+s2nV7BmuZOAWpkgJNz/zqBzFLQ4iQCapUz7ETdDMqkTMBebmfKkgoG9Mh9DSNaAjKzWaH59aJVgJrEEtdEVoz9fdERkOlJqGvO0OKI7XoTcX/vF6Kg0s341GSIkRsvmiQCgtja5qCFXAJDMVEE8ok17dabEQlZaizKusQnMWXl0n7tO6c1+3bs2qjVsRRIkfkmNSIQy5Ig1yTJmkRRlLyTF7Jm/FkvBjvxse8dcUoZg7JHxifP3zWk4s=</latexit>

Nodej

…

Figure 2.5: Illustration of a N-ary Tree-LSTM unit. Node jk is the k th child node of Node j

(1≤ k≤ N). h jk and c jk are the hidden state and memory cell for the child Node jk. h j,

c j, c̃ j and x j are the hidden state, memory cell, memory cell candidate and input for

the parent Node j. f jk is the corresponding forget gate for the child Node jk. i j and o j

are the input and output gate for the parent Node j.

A typical implementation for a N-ary tree structured Tree-LSTM is shown in Figure

2.5. Distinct from the standard LSTM, at a given node j, the input gate i j and output

gate o j are computed based on the hidden states from all its children nodes; separate

2.2. Neural Networks 25

forget gates f jk are computed based on the corresponding children node that is indexed

by k. Then the forward pass for the node j is

i j

o j

c̃ j

=

σ

σ

tanh

(W

h j1

...

h jN

x j

+b) (2.7)

f jk = σ(W f

[
h jk

x j

]
+b f) (2.8)

c j = i j� c̃ j +
N

∑
k=1

f jk� c jk (2.9)

h j = o j� tanh(c j), (2.10)

where x j ∈ Rd represents the input of node j. For the k th child node (1 ≤ k ≤ N),

f jk is the corresponding forget gate, h jk ∈ Rd and c jk ∈ Rd are the hidden state and

cell state. W ∈ R3d×(N+1)d and W f ∈ Rd×2d are the weight matrices. b ∈ R3d and

b f ∈ Rd are the bias. The N-ary Tree-LSTMs are often used on tree structures where

the branching factor is at most N and children are ordered. Therefore, N-ary Tree-

LSTMs are well-suited for constituency trees, such as a commonly used simplified

form, binary constituency trees. In practice, only the leaf node takes the corresponding

word vectors as input on the constituency tree. For dependency trees where branching

factor is high and children are unordered, Child-Sum Tree-LSTMs (Tai et al., 2015)

are a better choice. We refer readers to the original paper for more details.

2.2.2 Transformers

Recurrent models typically factor computation along the element positions of the input

in the sequential order while recursive models factors it in the topological order. Along

the positions of different time steps, they produce a sequence of hidden states. Each

hidden state is conditioned on the previous hidden states as well as the input. This

inherent sequential nature hinders the parallelization at training time, which causes

bottleneck for longer training examples and larger data volume.

The Transformer (Vaswani et al., 2017) is a novel attention mechanism-based archi-

tecture that is proposed to address this problem. Attention mechanisms have become

an essential part of compelling sequence models in various tasks, allowing model-

ing of dependencies regardless of their distance in the input sequence. By utilizing

26 Chapter 2. Background

the causal masks, the Transformer can be fully parallelized for sequential modeling.

More specifically, given a sequence of input vectors X = [x1,x2, · · · ,xn], where xt ∈Rd

(1 ≤ t ≤ n), the Transformer is constructed by stacked multi-head self-attention and

point-wise fully connected layers (shown in Figure 2.6):

Al = LayerNorm (H l−1 +MultiHeadAtt(H l−1)) (2.11)

H l = LayerNorm (Al +FFN(Al)), (2.12)

where H l = [hl
1;hl

2; · · · ;hl
n], hl

t is the representation vector at l th layer at time step t,

Al is the output of the l th self-attention layer. LayerNorm, MultiHeadAtt and FFN are

discussed below.

<latexit sha1_base64="ELGHNfcRBqdx74z7AU4wTXv1fGU=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5CIou4KblxJBfuAJpTJdNIOnUzCzI1YQ7/EjQtF3Pop7vwbJ20FnweGOZxzL/feE6aCa3Ddd6u0sLi0vFJeraytb2xW7a3tlk4yRVmTJiJRnZBoJrhkTeAgWCdVjMShYO1wdF747RumNE/kNYxTFsRkIHnEKQEj9eyqD+wW8ssJ9oHHTPfsmuscuQXwb+I509+toTkaPfvN7yc0i5kEKojWXc9NIciJAk4Fm1T8TLOU0BEZsK6hkpghQT5dfIL3jdLHUaLMk4Cn6teOnMRaj+PQVMYEhvqnV4h/ed0MotMg5zLNgEk6GxRlAkOCixRwnytGQYwNIVRxsyumQ6IIBZNVxYTweSn+n7QOHe/Yca+OavWzeRxltIv20AHy0AmqowvUQE1EUYbu0SN6su6sB+vZepmVlqx5zw76Buv1Awf5k00=</latexit>

N⇥

<latexit sha1_base64="LKikTi+LAUGPKRTA3H0oXhQbMIs=">AAAB9HicbVBNS8NAEN34WetX1aOXxSJ4Kokoeix48WYF+wFtKJvtpF262cTdSbGE/g4vHhTx6o/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmDjVHOo8lrFuBcyAFArqKFBCK9HAokBCMxjeTP3mCLQRsXrAcQJ+xPpKhIIztJLfQXjC7C7FJMVJt1R2K+4MdJl4OSmTHLVu6avTi3kagUIumTFtz03Qz5hGwSVMip3UQML4kPWhbaliERg/mx09oadW6dEw1rYU0pn6eyJjkTHjKLCdEcOBWfSm4n9eO8Xw2s+Esi+B4vNFYSopxnSaAO0JDRzl2BLGtbC3Uj5gmnG0ORVtCN7iy8ukcV7xLivu/UW56uZxFMgxOSFnxCNXpEpuSY3UCSeP5Jm8kjdn5Lw4787HvHXFyWeOyB84nz+ex5KY</latexit>

Output

+

+

+

<latexit sha1_base64="eU1zEA8gGnSGBvm71qUA2KttV88=">AAACBHicbVC7SgNBFJ2NrxhfUcs0g0GwMeyKomXExkaIYB6QLGF29iYZMvtg5q4YlhQ2/oqNhSK2foSdf+NskkITDwwczrmXO+d4sRQabfvbyi0tr6yu5dcLG5tb2zvF3b2GjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesOrzG/eg9IiCu9wFIMbsH4oeoIzNFK3WOogPGB6k0gUxwNgPr1EhDAzx91i2a7YE9BF4sxImcxQ6xa/On7Ek8Dsc8m0bjt2jG7KFAouYVzoJBpixoesD21DQxaAdtNJiDE9NIpPe5EyL0Q6UX9vpCzQehR4ZjJgONDzXib+57UT7F24qQjjxATj00O9RFKMaNYI9YUCjnJkCONKmL9SPmCKcTS9FUwJznzkRdI4qThnFfv2tFy1Z3XkSYkckCPikHNSJdekRuqEk0fyTF7Jm/VkvVjv1sd0NGfNdvbJH1ifPzPBmGQ=</latexit>

Multi-head Attention

<latexit sha1_base64="3G0tK6Bs6yfeap+x2+tLrV6sjck=">AAACA3icbVDLSgNBEJyNrxhfq970MhgET2FXFD0GvHgQiWAekIQwO+kkQ2YfzPSK6xLw4q948aCIV3/Cm3/jJNmDJhY0FFXddHd5kRQaHefbyi0sLi2v5FcLa+sbm1v29k5Nh7HiUOWhDFXDYxqkCKCKAiU0IgXM9yTUveHF2K/fgdIiDG4xiaDts34geoIzNFLH3msh3GN6xRJQ9DpUPpPiYeKNOnbRKTkT0HniZqRIMlQ69lerG/LYhwC5ZFo3XSfCdsoUCi5hVGjFGiLGh6wPTUMD5oNup5MfRvTQKF3aC5WpAOlE/T2RMl/rxPdMp89woGe9sfif14yxd95ORRDFCAGfLurFkmJIx4HQrlDAUSaGMK6EuZXyAVOMo4mtYEJwZ1+eJ7Xjkntacm5OimUniyNP9skBOSIuOSNlckkqpEo4eSTP5JW8WU/Wi/VufUxbc1Y2s0v+wPr8Adu1mD4=</latexit>

Layer Normalization

<latexit sha1_base64="Py01H9okTb38DRGGST3rqO2mLwo=">AAACBXicbVBNS8NAEN34bf2KetTDYhG8WBJR9CgI4kkUbBXaUDabiS7dZMPuxFpCL178K148KOLV/+DNf+P246CtDwYe780wMy/MpDDoed/OxOTU9Mzs3HxpYXFpecVdXasZlWsOVa6k0jchMyBFClUUKOEm08CSUMJ12Drp+df3oI1Q6RV2MggSdpuKWHCGVmq6mw2EByxOAaLdU6XbTEf0HLCtdMt0m27Zq3h90HHiD0mZDHHRdL8akeJ5AilyyYyp+16GQcE0Ci6hW2rkBjLGW+wW6pamLAETFP0vunTbKhGNlbaVIu2rvycKlhjTSULbmTC8M6NeT/zPq+cYHwWFSLMcIeWDRXEuKSrai4RGQgNH2bGEcS3srZTfMc042uBKNgR/9OVxUtur+AcV73K/fOwN45gjG2SL7BCfHJJjckYuSJVw8kieySt5c56cF+fd+Ri0TjjDmXXyB87nD962mME=</latexit>

Feed-Forward Networks

<latexit sha1_base64="3G0tK6Bs6yfeap+x2+tLrV6sjck=">AAACA3icbVDLSgNBEJyNrxhfq970MhgET2FXFD0GvHgQiWAekIQwO+kkQ2YfzPSK6xLw4q948aCIV3/Cm3/jJNmDJhY0FFXddHd5kRQaHefbyi0sLi2v5FcLa+sbm1v29k5Nh7HiUOWhDFXDYxqkCKCKAiU0IgXM9yTUveHF2K/fgdIiDG4xiaDts34geoIzNFLH3msh3GN6xRJQ9DpUPpPiYeKNOnbRKTkT0HniZqRIMlQ69lerG/LYhwC5ZFo3XSfCdsoUCi5hVGjFGiLGh6wPTUMD5oNup5MfRvTQKF3aC5WpAOlE/T2RMl/rxPdMp89woGe9sfif14yxd95ORRDFCAGfLurFkmJIx4HQrlDAUSaGMK6EuZXyAVOMo4mtYEJwZ1+eJ7Xjkntacm5OimUniyNP9skBOSIuOSNlckkqpEo4eSTP5JW8WU/Wi/VufUxbc1Y2s0v+wPr8Adu1mD4=</latexit>

Layer Normalization

<latexit sha1_base64="g4Fy2YdizNbPQF5nTNe5NqstKb8=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBJR9Fjw4rGC/YA2lM120y7d7IbdiVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXJoIb8LxvZ2V1bX1js7RV3t7Z3dt3Kwcto1JNWZMqoXQnJIYJLlkTOAjWSTQjcShYOxxf5377nmnDlbyDScKCmAwljzglYKW+W+kBe4SsoQzPBSKmfbfq1bwZ8DLxC1JFBRp996s3UDSNmQQqiDFd30sgyIgGTgWblnupYQmhYzJkXUsliZkJstnpU3xilQGOlLYlAc/U3xMZiY2ZxKHtjAmMzKKXi/953RSiqyDjMkmBSTpfFKUCg8J5DnjANaMgJpYQqu3zFNMR0YSCTatsQ/AXX14mrbOaf1Hzbs+rda+Io4SO0DE6RT66RHV0gxqoiSh6QM/oFb05T86L8+58zFtXnGLmEP2B8/kDIvyUgg==</latexit>

Positional
<latexit sha1_base64="Qe2stTU0FlxRZXGpCgGDMHFeNI4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE0WNBBI8V7Ae0oWw203bpZhN2J2qJ/SlePCji1V/izX/jts1BWx8MPN6bYWZekAiu0XW/rcLK6tr6RnGztLW9s7tnl/ebOk4VgwaLRazaAdUguIQGchTQThTQKBDQCkZXU791D0rzWN7hOAE/ogPJ+5xRNFLPLncRHjG7jgIIQy4HetKzK27VncFZJl5OKiRHvWd/dcOYpRFIZIJq3fHcBP2MKuRMwKTUTTUklI3oADqGShqB9rPZ6RPn2Cih04+VKYnOTP09kdFI63EUmM6I4lAvelPxP6+TYv/Sz7hMUgTJ5ov6qXAwdqY5OCFXwFCMDaFMcXOrw4ZUUYYmrZIJwVt8eZk0T6veedW9PavU3DyOIjkkR+SEeOSC1MgNqZMGYeSBPJNX8mY9WS/Wu/Uxby1Y+cwB+QPr8wfYi5RS</latexit>

Embeddings

<latexit sha1_base64="Qe2stTU0FlxRZXGpCgGDMHFeNI4=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16CRbBU0lE0WNBBI8V7Ae0oWw203bpZhN2J2qJ/SlePCji1V/izX/jts1BWx8MPN6bYWZekAiu0XW/rcLK6tr6RnGztLW9s7tnl/ebOk4VgwaLRazaAdUguIQGchTQThTQKBDQCkZXU791D0rzWN7hOAE/ogPJ+5xRNFLPLncRHjG7jgIIQy4HetKzK27VncFZJl5OKiRHvWd/dcOYpRFIZIJq3fHcBP2MKuRMwKTUTTUklI3oADqGShqB9rPZ6RPn2Cih04+VKYnOTP09kdFI63EUmM6I4lAvelPxP6+TYv/Sz7hMUgTJ5ov6qXAwdqY5OCFXwFCMDaFMcXOrw4ZUUYYmrZIJwVt8eZk0T6veedW9PavU3DyOIjkkR+SEeOSC1MgNqZMGYeSBPJNX8mY9WS/Wu/Uxby1Y+cwB+QPr8wfYi5RS</latexit>

Embeddings

<latexit sha1_base64="bVrhmm77XsoWsgyUwdQqmWGgnJg=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4Kokoeix48VihX9CEstlO2qWbTdidiCX0b3jxoIhX/4w3/43bNgdtfTDweG+GmXlhKoVB1/121tY3Nre2Szvl3b39g8PK0XHbJJnm0OKJTHQ3ZAakUNBCgRK6qQYWhxI64fhu5nceQRuRqCZOUghiNlQiEpyhlXwf4QnzZjIGNe1Xqm7NnYOuEq8gVVKg0a98+YOEZzEo5JIZ0/PcFIOcaRRcwrTsZwZSxsdsCD1LFYvBBPn85ik9t8qARom2pZDO1d8TOYuNmcSh7YwZjsyyNxP/83oZRrdBLlSaISi+WBRlkmJCZwHQgdDAUU4sYVwLeyvlI6YZRxtT2YbgLb+8StqXNe+65j5cVetuEUeJnJIzckE8ckPq5J40SItwkpJn8krenMx5cd6dj0XrmlPMnJA/cD5/AJoakf4=</latexit>

Token

Figure 2.6: Illustration of a N layer Transformer model.

Multi-head Attention

An attention function can be depicted as mapping a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all vectors. The output is the

weighted sum of the values, where the weight assigned to each value is computed by a

compatibility function of the query and the corresponding key. Instead of performing a

single attention function with d-dimensional keys, values and queries, the Transformer

2.2. Neural Networks 27

linearly project the queries, keys and values K times with different, learnable linear

projections to dk dimension, where dk =
d
K . For example, for the representation at time

step t with the k th head, the attention function is computed as

Q
K
V

=

Wq

Wk

Wv

H (2.13)

headk = softmax
(

QKT
√

dk

)
V, (2.14)

where H ∈ Rd×n is the representation from the previous layer, Wq ∈ Rdk×d , Wk ∈
Rdk×d , Wv ∈ Rdk×d are weight matrices for queries Q ∈ Rdk×n, keys K ∈ Rdk×n and

values V ∈ Rdk×n, headk is the output values with the k th head.

The attention function is performed in parallel on each head and all the yielding

output values are concatenated and once again projected, resulting in the final values,

which is calculated as follows

MultiHeadAttn(H) = Wo[head1; head2; · · · ; headK], (2.15)

where Wo ∈ Rd×d is the output matrix.

Layer Normalization and Feed-Forward Networks

Layer Normalization (Ba et al., 2016) is a simple normalization method to speed up the

training for neural networks. It computes the mean and variance used for normalization

from all the summed inputs to the neurons in a layer on a single training case. Each

neuron is given its own bias and gain which are applied after the normalization. Given

a vector h ∈ Rd , the forward pass of Layer Normalization is

a =
1
d

d

∑
i=1

h[i] (2.16)

b =
1
d

d

∑
i=1

(h[i]−a)2 (2.17)

LayerNorm(h) = WL
h−a√
b+ ε

+bL , (2.18)

where h[i] is the i th element in h, WL is the weight matrix, bL is the bias and ε is a

small scalar to prevent division by zero.

The feed-forward networks (FFN) in the Transformer consists of two linear trans-

formations and ReLU activation function in between. Given the vector h ∈ Rd ,

FFN(h) = W2 max(0,W1h+b1)+b2, (2.19)

28 Chapter 2. Background

where W1 ∈Rd f f×d and W2 ∈Rd×d f f are the weight matrices, b1 ∈Rd f f and b2 ∈Rd

are the bias and max(·) is the element-wise maximum operation.

Positional Embeddings

Since the Transformer contains no recurrence or convolution to model the positional

dependencies among elements, information about the positions of the tokens in the

sequence is injected to the Transformer via positional embeddings. At position t of the

input sequence, the input embedding h0
t is give by

h0
t = xt +PEt , (2.20)

where xt ∈ Rd is the word embedding and PEt ∈ Rd is the positional embedding at

position t in the input sequence. In the original Transformer model, PEt is defined by

sine and cosine functions of different frequencies:

PEt [i] = sin(t/100002i/d) (2.21)

PEt [2i+1] = cos(t/100002i/d), (2.22)

where PEt [i] indicates the i th element in the vector PEt . In this way, each dimension

of the positional embedding corresponds to a sinusoid. For any fixed offset δ, PEt+δ

can be represented as a linear function of PEt , so that the model can easily learn to

attend by relative positions. Follow-up Transformer model variants also treat positional

embeddings as learnable parameters and learn them end-to-end on the various NLP

tasks.

2.2.3 Pre-trained Language Models

In recent years, substantial work has shown that pre-trained language models (PLMs)

are able to learn universal language representations. Such models are pre-trained on

large corpus with unsupervised objectives and are beneficial for downstream NLP tasks

when they are further fine-tuned on annotated data. Surprisingly, this fine-tuned mod-

els can outperform those trained from scratch, usually by large margins. Thanks to

their superior ability to scale up, the Transformer models are always selected as the

backbones of PLMs.

Earlier work on pre-trained models focuses on learning good word embeddings,

such as Skip-Gram (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Due

to the weak computational power in early days and the fact that these models are no

2.2. Neural Networks 29

longer used for downstream tasks (only learned embeddings are used), they are usu-

ally shallow for efficient training. As a result, although the learned word embeddings

can capture semantic meanings of words, they are context-free and struggle to capture

high-level linguistic properties. On the contrast, recent PLMs aim at learning con-

textual word embeddings, such as CoVe (McCann et al., 2017), ELMo (Peters et al.,

2018a), GPT (Radford et al., 2018) and BERT (Devlin et al., 2019). The learned

encoders are employed to compute context-sensitive word representations for down-

stream tasks. Among them, the Transformer-based PLMs are particularly effective as

the models are deeper and larger than RNN-based alternatives.

BERT

Bidirectional Encoder Representations from Transformers (BERT; Devlin et al. 2019)

is a representative Transformer-based PLM that achieves remarkable success by pre-

senting state-of-the-art results in a wide variety of NLP tasks. As opposed to uni-

directional language models, which read the text sequentially (left-to-right, right-to-left

or combined together), the BERT encoder reads the entire input sequence at once. It

means, each token in the BERT encoder has access to the tokens from both sides simul-

taneously. Consequently, conventional uni-directional language modeling is no more

a suitable objective for the BERT encoder. Inspired by the Cloze task (Taylor, 1953),

a novel masked language modeling (MLM) is used for BERT training. The masked

language model randomly masks out some tokens from the original input sequence,

and the objective is to predict the masked tokens based on its bi-directional context.

In addition to the masked language modeling, BERT also introduces a next sentence

prediction task that jointly pre-trains text-pair representations. After pre-training on a

huge corpus including the Wikipedia and books, the BERT encoder can be fine-tuned

with an additional output layer to achieve state of the art on a wide range of NLP tasks

such as question answering and natural language inference.

For a given token, the input representation in BERT is the sum of the correspond-

ing token, segment and position embeddings. More specifically, token embeddings

take the sub-word as the basic unit using WordPiece (Wu et al., 2016); positional em-

beddings are learned to support sequences with length up to 512; the first token of

every sequence is set to be a special classification token ([CLS]); sentence pairs are

packed into a single sequence that are distinguished by a special token ([SEP]) and

segment embeddings. Figure 2.7 illustrates the training process of the BERT encoder

on a given training sample.

30 Chapter 2. Background

<latexit sha1_base64="IKnCjnzVU2UJ2BHZp05JdzmpDjo=">AAACAnicbZDLSsNAFIYn9VbrLepK3AwWwVVJRNFlQQouK9oLtCFMppN26OTCzIlYQnDjq7hxoYhbn8Kdb+M0zUJbfxj4+M85nDm/FwuuwLK+jdLS8srqWnm9srG5tb1j7u61VZRIylo0EpHsekQxwUPWAg6CdWPJSOAJ1vHGV9N6555JxaPwDiYxcwIyDLnPKQFtueZBH9gDpI3MTXMCSHu3jaaTZa5ZtWpWLrwIdgFVVKjpml/9QUSTgIVABVGqZ1sxOCmRwKlgWaWfKBYTOiZD1tMYkoApJ81PyPCxdgbYj6R+IeDc/T2RkkCpSeDpzoDASM3XpuZ/tV4C/qWT8jBOgIV0tshPBIYIT/PAAy4ZBTHRQKjk+q+YjogkFHRqFR2CPX/yIrRPa/Z5zbo5q9ZxEUcZHaIjdIJsdIHq6Bo1UQtR9Iie0St6M56MF+Pd+Ji1loxiZh/9kfH5A0Dcl90=</latexit>

E[SEP]

<latexit sha1_base64="73bVmupHwh8i5vJAvB2qA7jpC5Y=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7Arih4DXjwIRjAPSJYwO+kkQ2YfzPSKyxJ/xYsHRbz6Id78GyfJHjSxoKGo6qa7y4+l0Og431ZhZXVtfaO4Wdra3tnds/cPmjpKFIcGj2Sk2j7TIEUIDRQooR0rYIEvoeWPr6Z+6wGUFlF4j2kMXsCGoRgIztBIPbvcRXjE7DbBOEF6w1JQk55dcarODHSZuDmpkBz1nv3V7Uc8CSBELpnWHdeJ0cuYQsElTErdREPM+JgNoWNoyALQXjY7fkKPjdKng0iZCpHO1N8TGQu0TgPfdAYMR3rRm4r/eZ0EB5deJkLzGIR8vmiQSIoRnSZB+0IBR5kawrgS5lbKR0wxjiavkgnBXXx5mTRPq+551bk7q9RoHkeRHJIjckJcckFq5JrUSYNwkpJn8krerCfrxXq3PuatBSufKZM/sD5/AEnilRI=</latexit>

Output Layer

<latexit sha1_base64="Doz37T8v6fHSQV9jNY3hx6/18LI=">AAAB8XicdVBNSwMxEM36WetX1aOXYBE8LVm1Wm8FLx4r2A9sl5JNs21oNrsks2JZ+i+8eFDEq//Gm//GdFtBRR8MPN6bYWZekEhhgJAPZ2FxaXlltbBWXN/Y3Nou7ew2TZxqxhsslrFuB9RwKRRvgADJ24nmNAokbwWjy6nfuuPaiFjdwDjhfkQHSoSCUbDSbRf4PWTDGCa9Upm4FeJdnBFMXJIjJ1XvxMPeXCmjOeq90nu3H7M04gqYpMZ0PJKAn1ENgkk+KXZTwxPKRnTAO5YqGnHjZ/nFE3xolT4OY21LAc7V7xMZjYwZR4HtjCgMzW9vKv7ldVIIq34mVJICV2y2KEwlhhhP38d9oTkDObaEMi3srZgNqaYMbEhFG8LXp/h/0jx2vYpLrk/LNTyPo4D20QE6Qh46RzV0heqogRhS6AE9oWfHOI/Oi/M6a11w5jN76Aect09gZ5FG</latexit>

hot

+ ++++++ +++ +

<latexit sha1_base64="73bVmupHwh8i5vJAvB2qA7jpC5Y=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7Arih4DXjwIRjAPSJYwO+kkQ2YfzPSKyxJ/xYsHRbz6Id78GyfJHjSxoKGo6qa7y4+l0Og431ZhZXVtfaO4Wdra3tnds/cPmjpKFIcGj2Sk2j7TIEUIDRQooR0rYIEvoeWPr6Z+6wGUFlF4j2kMXsCGoRgIztBIPbvcRXjE7DbBOEF6w1JQk55dcarODHSZuDmpkBz1nv3V7Uc8CSBELpnWHdeJ0cuYQsElTErdREPM+JgNoWNoyALQXjY7fkKPjdKng0iZCpHO1N8TGQu0TgPfdAYMR3rRm4r/eZ0EB5deJkLzGIR8vmiQSIoRnSZB+0IBR5kawrgS5lbKR0wxjiavkgnBXXx5mTRPq+551bk7q9RoHkeRHJIjckJcckFq5JrUSYNwkpJn8krerCfrxXq3PuatBSufKZM/sD5/AEnilRI=</latexit>

Output Layer

<latexit sha1_base64="Mn4zwY25zjQlYxHeKG6FH3nmfP8=">AAACAHicdVDLSkMxFMz1Weur6sKFm2ARXJVctVp3BTe6kYr2AW0puelpG5r7IDlXLJdu/BU3LhRx62e4829MH4KKDgSGmXOSzHiRkgYZ+3BmZufmFxZTS+nlldW19czGZsWEsRZQFqEKdc3jBpQMoIwSFdQiDdz3FFS9/tnIr96CNjIMbnAQQdPn3UB2pOBopVZmu4Fwh4jJhbm05BoChEDAsJXJslyeuafHjLIcG2NMCu6hS92pkiVTlFqZ90Y7FLFvLxCKG1N3WYTNhGuUQsEw3YgNRFz0eRfqlgbcB9NMxgGGdM8qbdoJtT0B0rH6fSPhvjED37OTPsee+e2NxL+8eoydQjORQRSPYk0e6sSKYkhHbdC21CBQDSzhQkv7Vyp6XHOBtrO0LeErKf2fVA5ybj7Hro6yRTqtI0V2yC7ZJy45IUVyTkqkTAQZkgfyRJ6de+fReXFeJ6MzznRni/yA8/YJ6SyXJg==</latexit>

IsNextSentence

+ ++++++ +++ +

<latexit sha1_base64="68RT0KgPVcukC+exCIAMb23Vjw4=">AAACD3icbZDLSsNAFIYn9VbrrerSzWBQXJVEFF0WRHBZwV6gCWEynbZDJ5MwcyKWkDdw46u4caGIW7fufBunTRfa+sPAx3/O4cz5w0RwDY7zbZWWlldW18rrlY3Nre2d6u5eS8epoqxJYxGrTkg0E1yyJnAQrJMoRqJQsHY4uprU2/dMaR7LOxgnzI/IQPI+pwSMFVSPPWAPkF3nQVaQB1yOsWd7dl4YPUXyPKjaTs2ZCi+COwMbzdQIql9eL6ZpxCRQQbTuuk4CfkYUcCpYXvFSzRJCR2TAugYliZj2s+k9OT4yTg/3Y2WeBDx1f09kJNJ6HIWmMyIw1PO1iflfrZtC/9LPuExSYJIWi/qpwBDjSTi4xxWjIMYGCFXc/BXTIVGEgomwYkJw509ehNZpzT2vObdndh3P4iijA3SITpCLLlAd3aAGaiKKHtEzekVv1pP1Yr1bH0VryZrN7KM/sj5/AGJQnWU=</latexit>

E##dra

<latexit sha1_base64="bY0+PHMAAE4hznxvZUazBip12EI=">AAACDnicbZDLSsNAFIYn9VbrrerSzWAouCqJKLosiOCygr1AE8pkOm2HTiZh5kQMIU/gxldx40IRt67d+TZOmy609YeBj/+cw5nzB7HgGhzn2yqtrK6tb5Q3K1vbO7t71f2Dto4SRVmLRiJS3YBoJrhkLeAgWDdWjISBYJ1gcjWtd+6Z0jySd5DGzA/JSPIhpwSM1a/WPGAPkF3n/awgD7hMsWd7dl4Y4zTP+1XbqTsz4WVw52CjuZr96pc3iGgSMglUEK17rhODnxEFnAqWV7xEs5jQCRmxnkFJQqb9bHZOjmvGGeBhpMyTgGfu74mMhFqnYWA6QwJjvVibmv/VegkML/2MyzgBJmmxaJgIDBGeZoMHXDEKIjVAqOLmr5iOiSIUTIIVE4K7ePIytE/r7nnduT2zG3geRxkdoWN0glx0gRroBjVRC1H0iJ7RK3qznqwX6936KFpL1nzmEP2R9fkDq/WdBQ==</latexit>

E##hy

<latexit sha1_base64="GO/pR+64J6LtYmOpQpLl9rLZ644=">AAACD3icbZC7SgNBFIZn4y3GW9TSZnBRrMKuKFoGRLCMYC6QDWF2cqJDZmeXmbNiWPYNbHwVGwtFbG3tfBsnl0ITfxj4+M85nDl/mEhh0PO+ncLC4tLySnG1tLa+sblV3t5pmDjVHOo8lrFuhcyAFArqKFBCK9HAolBCMxxcjOrNe9BGxOoGhwl0InarRF9whtbqlg8DhAfMLvNuNqEAhRrSwA3cfGIg9PK8W3a9ijcWnQd/Ci6ZqtYtfwW9mKcRKOSSGdP2vQQ7GdMouIS8FKQGEsYH7BbaFhWLwHSy8T05PbBOj/ZjbZ9COnZ/T2QsMmYYhbYzYnhnZmsj879aO8X+eScTKkkRFJ8s6qeSYkxH4dCe0MBRDi0wroX9K+V3TDOONsKSDcGfPXkeGscV/7TiXZ+4VTqNo0j2yD45Ij45I1VyRWqkTjh5JM/klbw5T86L8+58TFoLznRml/yR8/kDa4edaw==</latexit>

E##ted
<latexit sha1_base64="Ir+YLg0yInj34f+jgL9gUieMp4Q=">AAAB/XicbZDJSgNBEIZ74hbjNi43L41B8BRmRNFjQASPEcwCSQg9PZWkSc9Cd40Yh8FX8eJBEa++hzffxk4yB038oeHjryqq+vdiKTQ6zrdVWFpeWV0rrpc2Nre2d+zdvYaOEsWhziMZqZbHNEgRQh0FSmjFCljgSWh6o6tJvXkPSosovMNxDN2ADULRF5yhsXr2QQfhAdPrrJfOyIcs69llp+JMRRfBzaFMctV69lfHj3gSQIhcMq3brhNjN2UKBZeQlTqJhpjxERtA22DIAtDddHp9Ro+N49N+pMwLkU7d3xMpC7QeB57pDBgO9XxtYv5XayfYv+ymIowThJDPFvUTSTGikyioLxRwlGMDjCthbqV8yBTjaAIrmRDc+S8vQuO04p5XnNuzcpXmcRTJITkiJ8QlF6RKbkiN1Aknj+SZvJI368l6sd6tj1lrwcpn9skfWZ8/s9iV7A==</latexit>

Ede

<latexit sha1_base64="wKeiOCyOHfil4yt5Cg/bo5E/CI4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIosuCCC4r2Ae0IUymk3boZBJmbsQagr/ixoUibv0Pd/6N0zYLbT0wcDjnXu6ZEySCa3Ccb6u0tLyyulZer2xsbm3v2Lt7LR2nirImjUWsOgHRTHDJmsBBsE6iGIkCwdrB6Grit++Z0jyWdzBOmBeRgeQhpwSM5NsHPWAPkF3nfjZjJMpz3646NWcKvEjcglRRgYZvf/X6MU0jJoEKonXXdRLwMqKAU8HySi/VLCF0RAasa6gkEdNeNk2f42Oj9HEYK/Mk4Kn6e8NE0nocBWYyIjDU895E/M/rphBeehmXSQpM0tmhMBUYYjypAve5YhTE2BBCFTdZMR0SRSiYwiqmBHf+y4ukdVpzz2vO7Vm1jos6yugQHaET5KILVEc3qIGaiKJH9Ixe0Zv1ZL1Y79bHbLRkFTv76A+szx+7c5Xx</latexit>

Eam

<latexit sha1_base64="TrQafkGT+2kVTwbw3/VCxk2ETaY=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiKC7CvYCbQiT6bQdOpmEmRMxhPgqblwo4tYHcefbOG2z0NYfBj7+cw7nzB/EgmtwnG+rtLK6tr5R3qxsbe/s7tn7B20dJYqyFo1EpLoB0UxwyVrAQbBurBgJA8E6weRqWu88MKV5JO8hjZkXkpHkQ04JGMu3q31gj5Bd5342p9s89+2aU3dmwsvgFlBDhZq+/dUfRDQJmQQqiNY914nBy4gCTgXLK/1Es5jQCRmxnkFJQqa9bHZ8jo+NM8DDSJknAc/c3xMZCbVOw8B0hgTGerE2Nf+r9RIYXnoZl3ECTNL5omEiMER4mgQecMUoiNQAoYqbWzEdE0UomLwqJgR38cvL0D6tu+d15+6s1sBFHGV0iI7QCXLRBWqgG9RELURRip7RK3qznqwX6936mLeWrGKmiv7I+vwBxGqVYg==</latexit>

EI

<latexit sha1_base64="y+Li8pS9oGZt7PevcrsQHEVYUHg=">AAACAnicbZDLSsNAFIYnXmu9RV2Jm8EiuCqJKLosFMGFi4r2AmkIk+mkHTq5MHMilhDc+CpuXCji1qdw59s4TbvQ1h8GPv5zDmfO7yeCK7Csb2NhcWl5ZbW0Vl7f2NzaNnd2WypOJWVNGotYdnyimOARawIHwTqJZCT0BWv7w/q43r5nUvE4uoNRwtyQ9CMecEpAW5653wX2ANll7mUFAWRO/frWzXPPrFhVqxCeB3sKFTRVwzO/ur2YpiGLgAqilGNbCbgZkcCpYHm5myqWEDokfeZojEjIlJsVJ+T4SDs9HMRSvwhw4f6eyEio1Cj0dWdIYKBma2Pzv5qTQnDhZjxKUmARnSwKUoEhxuM8cI9LRkGMNBAquf4rpgMiCQWdWlmHYM+ePA+tk6p9VrVuTis1PI2jhA7QITpGNjpHNXSFGqiJKHpEz+gVvRlPxovxbnxMWheM6cwe+iPj8wc3mZfX</latexit>

E[CLS]

<latexit sha1_base64="VzdRp/mHZr4rdruZ+g/KX8x3y3s=">AAAB/XicbZDLSsNAFIYn9VbrLV52bgaL4KokouiyIILLCvYCbQiT6aQdOpmEmROxhuCruHGhiFvfw51v47TNQlt/GPj4zzmcM3+QCK7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0nCrKmjQWseoERDPBJWsCB8E6iWIkCgRrB6OrSb19z5TmsbyDccK8iAwkDzklYCzfPugBe4DsOvezGXGd575ddWrOVHgR3AKqqFDDt796/ZimEZNABdG66zoJeBlRwKlgeaWXapYQOiID1jUoScS0l02vz/Gxcfo4jJV5EvDU/T2RkUjrcRSYzojAUM/XJuZ/tW4K4aWXcZmkwCSdLQpTgSHGkyhwnytGQYwNEKq4uRXTIVGEggmsYkJw57+8CK3Tmntec27PqnVcxFFGh+gInSAXXaA6ukEN1EQUPaJn9IrerCfrxXq3PmatJauY2Ud/ZH3+ANDPlf8=</latexit>

Eis

<latexit sha1_base64="oB39XKGnxcEuhPe4Ak9jXh6fdqs=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWARXJVEFF0WRNBdBXuBNoTJdNIOnUzCzIlYQ/BV3LhQxK3v4c63cdpmoa0/DHz85xzOmT9IBNfgON/WwuLS8spqaa28vrG5tW3v7DZ1nCrKGjQWsWoHRDPBJWsAB8HaiWIkCgRrBcPLcb11z5TmsbyDUcK8iPQlDzklYCzf3u8Ce4DsKvezKd1Anvt2xak6E+F5cAuooEJ13/7q9mKaRkwCFUTrjusk4GVEAaeC5eVuqllC6JD0WcegJBHTXja5PsdHxunhMFbmScAT9/dERiKtR1FgOiMCAz1bG5v/1TophBdexmWSApN0uihMBYYYj6PAPa4YBTEyQKji5lZMB0QRCiawsgnBnf3yPDRPqu5Z1bk9rdRwEUcJHaBDdIxcdI5q6BrVUQNR9Iie0St6s56sF+vd+pi2LljFzB76I+vzB6F1leA=</latexit>

EIt

<latexit sha1_base64="jQ59aDL0h4TToQoaAsSjcyfARik=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLqsiOCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AuDqVWg==</latexit>

EA

<latexit sha1_base64="jQ59aDL0h4TToQoaAsSjcyfARik=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLqsiOCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AuDqVWg==</latexit>

EA

<latexit sha1_base64="jQ59aDL0h4TToQoaAsSjcyfARik=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLqsiOCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AuDqVWg==</latexit>

EA

<latexit sha1_base64="jQ59aDL0h4TToQoaAsSjcyfARik=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLqsiOCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AuDqVWg==</latexit>

EA

<latexit sha1_base64="jQ59aDL0h4TToQoaAsSjcyfARik=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLqsiOCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AuDqVWg==</latexit>

EA
<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="dsecIVRhYHK6Oo4odfkGcD3/Pys=">AAAB/HicbZDLSsNAFIYn9VbrLdqlm8EiuCqJKLosiuCygr1AG8JkOm2HTiZh5kQMIb6KGxeKuPVB3Pk2TtsstPWHgY//nMM58wex4Boc59sqrayurW+UNytb2zu7e/b+QVtHiaKsRSMRqW5ANBNcshZwEKwbK0bCQLBOMLme1jsPTGkeyXtIY+aFZCT5kFMCxvLtah/YI2Q3uZ/N6SrPfbvm1J2Z8DK4BdRQoaZvf/UHEU1CJoEKonXPdWLwMqKAU8HySj/RLCZ0QkasZ1CSkGkvmx2f42PjDPAwUuZJwDP390RGQq3TMDCdIYGxXqxNzf9qvQSGl17GZZwAk3S+aJgIDBGeJoEHXDEKIjVAqOLmVkzHRBEKJq+KCcFd/PIytE/r7nnduTurNXARRxkdoiN0glx0gRroFjVRC1GUomf0it6sJ+vFerc+5q0lq5ipoj+yPn8AucCVWw==</latexit>

EB

<latexit sha1_base64="2aJT7rhIvQOh63TkUtXLqBOuz7Y=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WNBBI8VbC00oWy203bpZhN2J2IJ+RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ndLK6tr6RnmzsrW9s7tX3T9omzjVHFo8lrHuhMyAFApaKFBCJ9HAolDCQzi+nvoPj6CNiNU9ThIIIjZUYiA4Qyv5PsITZjd5L3PzXrXm1t0Z6DLxClIjBZq96pffj3kagUIumTFdz00wyJhGwSXkFT81kDA+ZkPoWqpYBCbIZjfn9MQqfTqItS2FdKb+nshYZMwkCm1nxHBkFr2p+J/XTXFwFWRCJSmC4vNFg1RSjOk0ANoXGjjKiSWMa2FvpXzENONoY6rYELzFl5dJ+6zuXdTdu/NagxZxlMkROSanxCOXpEFuSZO0CCcJeSav5M1JnRfn3fmYt5acYuaQ/IHz+QNErZG5</latexit>

E0

<latexit sha1_base64="pW6pPwjmUCEh0rCWa+oAkmO3Dks=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WNBBI8VbC00oWy223bpZhN2J2IJ+RtePCji1T/jzX/jts1BWx8MPN6bYWZemEhh0HW/ndLK6tr6RnmzsrW9s7tX3T9omzjVjLdYLGPdCanhUijeQoGSdxLNaRRK/hCOr6f+wyPXRsTqHicJDyI6VGIgGEUr+T7yJ8xu8l7m5b1qza27M5Bl4hWkBgWaveqX349ZGnGFTFJjup6bYJBRjYJJnlf81PCEsjEd8q6likbcBNns5pycWKVPBrG2pZDM1N8TGY2MmUSh7YwojsyiNxX/87opDq6CTKgkRa7YfNEglQRjMg2A9IXmDOXEEsq0sLcSNqKaMrQxVWwI3uLLy6R9Vvcu6u7dea1BijjKcATHcAoeXEIDbqEJLWCQwDO8wpuTOi/Ou/Mxby05xcwh/IHz+QNGMpG6</latexit>

E1

<latexit sha1_base64="cnZEHmz3EpfHTjjxXeqTQMJmU0Q=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKewGRY8BETxGMA/ILmF2MpsMmX0w0yuGZX/DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dJwqxtsslrHq+VRzKSLeRoGS9xLFaehL3vUnNzO/+8iVFnH0gNOEeyEdRSIQjKKRXBf5E2a3+SBr5INqza7bc5BV4hSkBgVag+qXO4xZGvIImaRa9x07QS+jCgWTPK+4qeYJZRM64n1DIxpy7WXzm3NyZpQhCWJlKkIyV39PZDTUehr6pjOkONbL3kz8z+unGFx7mYiSFHnEFouCVBKMySwAMhSKM5RTQyhTwtxK2JgqytDEVDEhOMsvr5JOo+5c1u37i1qTFHGU4QRO4RwcuIIm3EEL2sAggWd4hTcrtV6sd+tj0Vqyiplj+APr8wdHt5G7</latexit>

E2

<latexit sha1_base64="k30zmh3iQpCZsNNJWF0hs+/i8vI=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjMu6DEggscIZoHMEHo6NUmTnoXuGjEM8xtePCji1Z/x5t/YSeagiQ8KHu9VUVXPT6TQaNvfVmlldW19o7xZ2dre2d2r7h+0dZwqDi0ey1h1faZBighaKFBCN1HAQl9Cxx/fTP3OIygt4ugBJwl4IRtGIhCcoZFcF+EJs9u8n53n/WrNrtsz0GXiFKRGCjT71S93EPM0hAi5ZFr3HDtBL2MKBZeQV9xUQ8L4mA2hZ2jEQtBeNrs5pydGGdAgVqYipDP190TGQq0noW86Q4YjvehNxf+8XorBtZeJKEkRIj5fFKSSYkynAdCBUMBRTgxhXAlzK+UjphhHE1PFhOAsvrxM2md157Ju31/UGrSIo0yOyDE5JQ65Ig1yR5qkRThJyDN5JW9War1Y79bHvLVkFTOH5A+szx9JPJG8</latexit>

E3

<latexit sha1_base64="VovaVZ/b+CqGviVVnpfndbeLSBY=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexKRI8BETxGMA/ILmF2MpsMmX0w0yuGZX/DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dJwqxtsslrHq+VRzKSLeRoGS9xLFaehL3vUnNzO/+8iVFnH0gNOEeyEdRSIQjKKRXBf5E2a3+SBr5INqza7bc5BV4hSkBgVag+qXO4xZGvIImaRa9x07QS+jCgWTPK+4qeYJZRM64n1DIxpy7WXzm3NyZpQhCWJlKkIyV39PZDTUehr6pjOkONbL3kz8z+unGFx7mYiSFHnEFouCVBKMySwAMhSKM5RTQyhTwtxK2JgqytDEVDEhOMsvr5LORd25rNv3jVqTFHGU4QRO4RwcuIIm3EEL2sAggWd4hTcrtV6sd+tj0Vqyiplj+APr8wdKwZG9</latexit>

E4

<latexit sha1_base64="IPxvrfItWPh5SEDglSu5D28Woxs=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKQY8BETxGMA/ILmF20psMmX0w0yuGZX/DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dJwqDm0ey1j1fKZBigjaKFBCL1HAQl9C15/czPzuIygt4ugBpwl4IRtFIhCcoZFcF+EJs9t8kDXyQbVm1+056CpxClIjBVqD6pc7jHkaQoRcMq37jp2glzGFgkvIK26qIWF8wkbQNzRiIWgvm9+c0zOjDGkQK1MR0rn6eyJjodbT0DedIcOxXvZm4n9eP8Xg2stElKQIEV8sClJJMaazAOhQKOAop4YwroS5lfIxU4yjialiQnCWX14lnYu606jb95e1Ji3iKJMTckrOiUOuSJPckRZpE04S8kxeyZuVWi/Wu/WxaC1Zxcwx+QPr8wdMRpG+</latexit>

E5

<latexit sha1_base64="4Vv46o2LgnLBT3bzo7cb15xY0h0=">AAAB83icbVDJSgNBEO2JW4xb1KOXxiB4CjPidgyI4DGCWSAzhJ5OTdKkZ6G7RgzD/IYXD4p49We8+Td2kjlo4oOCx3tVVNXzEyk02va3VVpZXVvfKG9WtrZ3dveq+wdtHaeKQ4vHMlZdn2mQIoIWCpTQTRSw0JfQ8cc3U7/zCEqLOHrASQJeyIaRCARnaCTXRXjC7DbvZ5d5v1qz6/YMdJk4BamRAs1+9csdxDwNIUIumdY9x07Qy5hCwSXkFTfVkDA+ZkPoGRqxELSXzW7O6YlRBjSIlakI6Uz9PZGxUOtJ6JvOkOFIL3pT8T+vl2Jw7WUiSlKEiM8XBamkGNNpAHQgFHCUE0MYV8LcSvmIKcbRxFQxITiLLy+T9lnduajb9+e1Bi3iKJMjckxOiUOuSIPckSZpEU4S8kxeyZuVWi/Wu/Uxby1Zxcwh+QPr8wdNy5G/</latexit>

E6

<latexit sha1_base64="rER5+GUpZW+buyK70ygclXnZNjw=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKEo8BETxGMA/ILmF20psMmX0w0yuGZX/DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dJwqDm0ey1j1fKZBigjaKFBCL1HAQl9C15/czPzuIygt4ugBpwl4IRtFIhCcoZFcF+EJs9t8kDXyQbVm1+056CpxClIjBVqD6pc7jHkaQoRcMq37jp2glzGFgkvIK26qIWF8wkbQNzRiIWgvm9+c0zOjDGkQK1MR0rn6eyJjodbT0DedIcOxXvZm4n9eP8Xg2stElKQIEV8sClJJMaazAOhQKOAop4YwroS5lfIxU4yjialiQnCWX14lnYu6c1W37y9rTVrEUSYn5JScE4c0SJPckRZpE04S8kxeyZuVWi/Wu/WxaC1Zxcwx+QPr8wdPUJHA</latexit>

E7

<latexit sha1_base64="r3caA2T+bpJc08EEhO3X573wbeE=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKYo4BETxGMA/ILmF20psMmX0w0yuGZX/DiwdFvPoz3vwbJ8keNLGgoajqprvLT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dJwqDm0ey1j1fKZBigjaKFBCL1HAQl9C15/czPzuIygt4ugBpwl4IRtFIhCcoZFcF+EJs9t8kDXyQbVm1+056CpxClIjBVqD6pc7jHkaQoRcMq37jp2glzGFgkvIK26qIWF8wkbQNzRiIWgvm9+c0zOjDGkQK1MR0rn6eyJjodbT0DedIcOxXvZm4n9eP8Wg4WUiSlKEiC8WBamkGNNZAHQoFHCUU0MYV8LcSvmYKcbRxFQxITjLL6+SzkXduarb95e1Ji3iKJMTckrOiUOuSZPckRZpE04S8kxeyZuVWi/Wu/WxaC1Zxcwx+QPr8wdQ1ZHB</latexit>

E8

<latexit sha1_base64="rTZRwFFkiWdf+8ipmhzEXxNzHO0=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKot4CIniMYB6QXcLspDcZMvtgplcMy/6GFw+KePVnvPk3TpI9aGJBQ1HVTXeXn0ih0ba/rdLK6tr6RnmzsrW9s7tX3T9o6zhVHFo8lrHq+kyDFBG0UKCEbqKAhb6Ejj++mfqdR1BaxNEDThLwQjaMRCA4QyO5LsITZrd5P7vO+9WaXbdnoMvEKUiNFGj2q1/uIOZpCBFyybTuOXaCXsYUCi4hr7iphoTxMRtCz9CIhaC9bHZzTk+MMqBBrExFSGfq74mMhVpPQt90hgxHetGbiv95vRSDKy8TUZIiRHy+KEglxZhOA6ADoYCjnBjCuBLmVspHTDGOJqaKCcFZfHmZtM/qzkXdvj+vNWgRR5kckWNyShxySRrkjjRJi3CSkGfySt6s1Hqx3q2PeWvJKmYOyR9Ynz9SWpHC</latexit>

E9

<latexit sha1_base64="pCCd5HodpINSlTRlTY7Nt7VWyts=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KokoeiyI4LGC/YA2lM122y7dbOLupFhCfocXD4p49cd489+4bXPQ1gcDj/dmmJkXxFIYdN1vZ2V1bX1js7BV3N7Z3dsvHRw2TJRoxusskpFuBdRwKRSvo0DJW7HmNAwkbwajm6nfHHNtRKQecBJzP6QDJfqCUbSS30H+hOlt1k09N+uWym7FnYEsEy8nZchR65a+Or2IJSFXyCQ1pu25Mfop1SiY5FmxkxgeUzaiA962VNGQGz+dHZ2RU6v0SD/SthSSmfp7IqWhMZMwsJ0hxaFZ9Kbif147wf61nwoVJ8gVmy/qJ5JgRKYJkJ7QnKGcWEKZFvZWwoZUU4Y2p6INwVt8eZk0ziveZcW9vyhXSR5HAY7hBM7Agyuowh3UoA4MHuEZXuHNGTsvzrvzMW9dcfKZI/gD5/MHuIWR9A==</latexit>

E10

<latexit sha1_base64="RTnRuqm3x4AXcFlJe8YB0NW6rPc=">AAAB9XicbVDLSgMxFM34rPVVdekmWARXZUYUXRbcuKxoH9DWkknvtKGZzJDcUcvQ/3DjQhG3/os7/8ZMOwttPRA4nHMP9+b4sRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNEyWaQ51HMtItnxmQQkEdBUpoxRpY6Eto+qOrzG8+gDYiUnc4jqEbsoESgeAMrXTfQXjC9BYGISic9Eplt+JOQReJl5MyyVHrlb46/YgnWZhLZkzbc2Pspkyj4BImxU5iIGZ8xAbQtlSxEEw3nV49ocdW6dMg0vYppFP1dyJloTHj0LeTIcOhmfcy8T+vnWBw2U2FihMExWeLgkRSjGhWAe0LDRzl2BLGtbC3Uj5kmnG0RRVtCd78lxdJ47TinVfcm7NyleZ1FMghOSInxCMXpEquSY3UCSeaPJNX8uY8Oi/Ou/MxG11y8swB+QPn8wcn3pLU</latexit>

Segment
<latexit sha1_base64="hUFCjmhoFlg2UVe9NALgtnRMhis=">AAAB+nicbVDLSgNBEJyNrxhfiR69DAbBU9gVRY8BETxGMA9IQpid7SRDZmeXmV41rPkULx4U8eqXePNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evWNpvmCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x9dTf3mPWgjInWH4xi6IRso0RecoZV6xVIH4RHT69CHIBBqYCa9YtmtuDPQZeJlpEwy1HrFr04Q8SQEhVwyY9qeG2M3ZRoFlzApdBIDMeMjNoC2pYqFYLrp7PQJPbZKQPuRtqWQztTfEykLjRmHvu0MGQ7NojcV//PaCfYvu6lQcYKg+HxRP5EUIzrNgQZCA0c5toRxLeytlA+ZZhxtWgUbgrf48jJpnFa884p7e1au0iyOPDkkR+SEeOSCVMkNqZE64eSBPJNX8uY8OS/Ou/Mxb8052cwB+QPn8wfTu5RC</latexit>

Embeddings

<latexit sha1_base64="aLjIWEu9DfAPxQ8PvO5bG/veohY=">AAAB83icbVBNS8NAEN34WetX1aOXxSJ4Kokoeix48VihX9CEstlO2qWbTdidiCX0b3jxoIhX/4w3/43bNgdtfTDweG+GmXlhKoVB1/121tY3Nre2Szvl3b39g8PK0XHbJJnm0OKJTHQ3ZAakUNBCgRK6qQYWhxI64fhu5nceQRuRqCZOUghiNlQiEpyhlXwf4QnzZjIGNe1Xqm7NnYOuEq8gVVKg0a98+YOEZzEo5JIZ0/PcFIOcaRRcwrTsZwZSxsdsCD1LFYvBBPn85ik9t8qARom2pZDO1d8TOYuNmcSh7YwZjsyyNxP/83oZRrdBLlSaISi+WBRlkmJCZwHQgdDAUU4sYVwLeyvlI6YZRxtT2YbgLb+8StqXNe+65j5cVeu0iKNETskZuSAeuSF1ck8apEU4SckzeSVvTua8OO/Ox6J1zSlmTsgfOJ8/lUqR7g==</latexit>

Token
<latexit sha1_base64="hUFCjmhoFlg2UVe9NALgtnRMhis=">AAAB+nicbVDLSgNBEJyNrxhfiR69DAbBU9gVRY8BETxGMA9IQpid7SRDZmeXmV41rPkULx4U8eqXePNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evWNpvmCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x9dTf3mPWgjInWH4xi6IRso0RecoZV6xVIH4RHT69CHIBBqYCa9YtmtuDPQZeJlpEwy1HrFr04Q8SQEhVwyY9qeG2M3ZRoFlzApdBIDMeMjNoC2pYqFYLrp7PQJPbZKQPuRtqWQztTfEykLjRmHvu0MGQ7NojcV//PaCfYvu6lQcYKg+HxRP5EUIzrNgQZCA0c5toRxLeytlA+ZZhxtWgUbgrf48jJpnFa884p7e1au0iyOPDkkR+SEeOSCVMkNqZE64eSBPJNX8uY8OS/Ou/Mxb8052cwB+QPn8wfTu5RC</latexit>

Embeddings

<latexit sha1_base64="OlwoVgZPsS9ZhmZDFtSdgIduKVo=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBJR9Fjw4rGC/YA2lM120y7d7IbdiVpif4oXD4p49Zd489+4aXPQ1gcDj/dmmJkXJoIb8LxvZ2V1bX1js7RV3t7Z3dt3Kwcto1JNWZMqoXQnJIYJLlkTOAjWSTQjcShYOxxf5377nmnDlbyDScKCmAwljzglYKW+W+kBe4SsoQzPBSKmfbfq1bwZ8DLxC1JFBRp996s3UDSNmQQqiDFd30sgyIgGTgWblnupYQmhYzJkXUsliZkJstnpU3xilQGOlLYlAc/U3xMZiY2ZxKHtjAmMzKKXi/953RSiqyDjMkmBSTpfFKUCg8J5DnjANaMgJpYQqu3zFNMR0YSCTatsQ/AXX14mrbOaf1Hzbs+rdVzEUUJH6BidIh9dojq6QQ3URBQ9oGf0it6cJ+fFeXc+5q0rTjFziP7A+fwBHiyUcg==</latexit>

Positional
<latexit sha1_base64="hUFCjmhoFlg2UVe9NALgtnRMhis=">AAAB+nicbVDLSgNBEJyNrxhfiR69DAbBU9gVRY8BETxGMA9IQpid7SRDZmeXmV41rPkULx4U8eqXePNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evWNpvmCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x9dTf3mPWgjInWH4xi6IRso0RecoZV6xVIH4RHT69CHIBBqYCa9YtmtuDPQZeJlpEwy1HrFr04Q8SQEhVwyY9qeG2M3ZRoFlzApdBIDMeMjNoC2pYqFYLrp7PQJPbZKQPuRtqWQztTfEykLjRmHvu0MGQ7NojcV//PaCfYvu6lQcYKg+HxRP5EUIzrNgQZCA0c5toRxLeytlA+ZZhxtWgUbgrf48jJpnFa884p7e1au0iyOPDkkR+SEeOSCVMkNqZE64eSBPJNX8uY8OS/Ou/Mxb8052cwB+QPn8wfTu5RC</latexit>

Embeddings

<latexit sha1_base64="zx7vOBmVQe+j68bux+QnehccUL4=">AAACA3icbZDLSsNAFIYn9VbrrepON4NFcFUSUXRZEUEQoaK9QBvKZDpph04mYeZELCHgxldx40IRt76EO9/GaZuFtv4w8PGfczhzfi8SXINtf1u5ufmFxaX8cmFldW19o7i5VddhrCir0VCEqukRzQSXrAYcBGtGipHAE6zhDc5H9cY9U5qH8g6GEXMD0pPc55SAsTrFnTawB0gu0k4yJoCkdX12e+WmaadYssv2WHgWnAxKKFO1U/xqd0MaB0wCFUTrlmNH4CZEAaeCpYV2rFlE6ID0WMugJAHTbjK+IcX7xuliP1TmScBj9/dEQgKth4FnOgMCfT1dG5n/1Vox+KduwmUUA5N0ssiPBYYQjwLBXa4YBTE0QKji5q+Y9okiFExsBROCM33yLNQPy85x2b45KlVwFkce7aI9dIAcdIIq6BJVUQ1R9Iie0St6s56sF+vd+pi05qxsZhv9kfX5A9bTmCs=</latexit>

E[MASK]

<latexit sha1_base64="M4ctIf35ObXS69koCM5AJNUy9Dc=">AAAB+3icdVDJSgNBEO1xjXEb49FLYxQ8hYlE9Bjw4jFCNkiG0NOpSZr09AzdNZIw5Fe8eFDEqz/izb+xswiuD5p+vFdFVb0gkcKg5707K6tr6xubua389s7u3r57UGiaONUcGjyWsW4HzIAUChooUEI70cCiQEIrGF3P/NYdaCNiVcdJAn7EBkqEgjO0Us8tdBHGmNU1UyaMdQR62nOLXqnizUB/k3Jp/ntFskSt5751+zFPI1DIJTOmU/YS9DOmUXAJ03w3NZAwPmID6FiqWATGz+a7T+mpVfrUjrZPIZ2rXzsyFhkziQJbGTEcmp/eTPzL66QYXvmZUEmKoPhiUJhKijGdBUH7QgNHObGEcS3srpQPmWYcbVx5G8LnpfR/0jwvlS9K3m2lWD1ZxpEjR+SYnJEyuSRVckNqpEE4GZN78kienKnz4Dw7L4vSFWfZc0i+wXn9AAhflP0=</latexit>

Transformer

Figure 2.7: Illustration of the BERT encoder trained on the masked language modeling

and next sentence prediction objectives. In this example, two adjacent sentences “It is

hot” and “I am dehydrated” are packed into a single input sequence, where “dehydrated”

is shattered into multiple sub-words (“de”, “##hy”, “##dra”, “##ted”) and “hot” is masked

out for masked language modeling training.

Other PLMs

Inspired by the success of BERT, researchers have put great effort into the Transformer-

based PLMs. RoBERTa (Liu et al., 2019c) is an enhanced version of BERT by modify-

ing BERT: removing the next sentence prediction objective; training the model longer,

over more data, with bigger batches and longer sequences; dynamically changing the

masking pattern applied to the training data. XLNet (Yang et al., 2019) is a general-

ized auto-regressive pre-trained model that still enables learning bidirectional contexts.

Rather than the above models functioning as encoders and focusing on the natural lan-

guage understanding tasks, GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019)

and GPT-3 (Brown et al., 2020) are Transformer-based uni-directional language mod-

els that are pre-trained like Transformer decoders and have the ability of generation.

Transformer-based models have also been pre-trained in the encoder-decoder set-

tings for both natural language understanding and generation. UniLM (Dong et al.,

2019; Bao et al., 2020) extends the mask prediction on three types of language mod-

eling tasks: uni-directional, bi-directional, and sequence-to-sequence (Seq2Seq) pre-

diction. BART (Lewis et al., 2020) constructs a denoising autoencoder for pre-training

2.2. Neural Networks 31

sequence-to-sequence models by corrupting texts with arbitrary noising functions and

learning to reconstruct them. T5 (Raffel et al., 2020) reframes all NLP tasks into a

unified text-to-text-format and is pre-trained on a new cleaned common crawl-based

corpus.

Beyond English, multilingual PLMs have been investigated to learn text represen-

tations across different languages for cross-lingual NLP tasks. Multilingual BERT

(mBERT; Devlin et al. 2019) is pre-trained with the shared vocabulary on Wikipedia

text from over 100 languages. XLM (Conneau and Lample, 2019) improves mBERT

by incorporating a cross-lingual task, translation language modeling, which performs

MLM on the packed parallel bilingual sentence pairs. XLM-RoBERTa (XLM-R; Con-

neau et al. 2020) is a scaled multilingual encoder pre-trained on a significantly in-

creased amount of data with the monolingual masked language modeling objective.

MASS (Song et al., 2019) pre-trains a Seq2Seq model with monolingual Seq2Seq

MLM on multiple languages and achieves significant improvement for unsupervised

neural machine translation. XNLG (Chi et al., 2020) performs a two-stage pre-training

scheme for cross-lingual natural language generation. A multilingual extension of

BART (mBART; Liu et al. 2020), pre-trains the Transformer jointly with a Seq2Seq

denoising autoencoder task on large-scale monolingual corpora across 25 languages

and brings improvement to machine translation tasks.

Although multilingual PLMs perform well across many languages, some research

work points out that PLMs trained on a single language can outperform the multilin-

gual counterparts (Martin et al., 2019; Virtanen et al., 2019). Researchers have also

developed language specific PLMs for Chinese (Cui et al., 2019; Sun et al., 2019b;

Zhang et al., 2019; Sun et al., 2020), French (Martin et al., 2019; Le et al., 2019),

Russian (Yu and Arkhipov, 2019), Finnish (Virtanen et al., 2019), German 6, Korean
7, and so on.

6bert-base-german (https://deepset.ai/german-bert) and
bertbase-dbmdz (https://github.com/dbmdz/berts).

7KoBERTbase (https://github.com/SKTBrain/KoBERT).

Chapter 3

Transition-based Unsupervised

Dependency Parsing

Grammar induction is the task of deriving plausible syntactic structures from raw text,

without the use of annotated training data. In the case of dependency parsing, the syn-

tactic structure takes the form of a tree whose nodes are the words of the sentence,

whose arcs are directed and denote head-dependent relationships between words. In-

ducing such a tree without annotated training data is challenging because of data

sparseness and ambiguity, and because the search space of potential trees is huge,

making optimization difficult. State-of-the-art models, including both the generative

and the discriminative models, all rely on global inference, which is implemented by

dynamic programming with O(n3) run time. For the generative models, probabilistic

dependency grammars are always used. While for the discriminative models, graph-

based models are popular choices. On the other hand, transition-based models enable

faster inference with O(n) run time, but the performance still lags behind their global

inference-based counterparts. In this chapter, we propose a neural transition-based

parser for dependency grammar induction with O(n) run time, whose inference pro-

cedure utilizes rich neural features. We train the parser with integration of variational

inference, posterior regularization and variance reduction techniques. The resulting

framework outperforms previous unsupervised transition-based dependency parsers

and achieves performance comparable to global inference-based models, both on the

English Penn Treebank and eight languages on the Universal Dependency Treebank.

In an empirical comparison, we show that our approach substantially improves parsing

speed over global inference-based models.

Most existing approaches to dependency grammar induction, including both the

33

34 Chapter 3. Transition-based Unsupervised Dependency Parsing

generative and the discriminative models, have used exact global inference. For the

generative models, probabilistic dependency grammars are always used such as the

Dependency Model with Valence (DMV; Klein and Manning 2004). While for the

discriminative models, graph-based models are popular choices. Among them, state-

of-the-art representatives include LC-DMV (Noji et al., 2016), NDMV (Jiang et al.,

2016), L-NDMV (Han et al., 2017) and D-NDMV (Han et al., 2019). Though such

models achieve impressive results, their inference procedure requires O(n3) run time.

Meanwhile, features in these models must be decomposable over substructures to en-

able dynamic programming. In contrast, transition-based models allow faster inference

in linear time and are compatible with richer feature sets. Although relying on local

inference, transition-based models have been shown to perform well in supervised

parsing (Dyer et al., 2015; Kiperwasser and Goldberg, 2016). However, few works

have studied unsupervised transition-based parsers. One exception is the work of Ra-

sooli and Faili (2012), in which search-based structure prediction (Daumé III, 2009) is

used with a simple feature set. In general, for transition-based approaches, there is still

a significant performance gap compared to global inference-based ones.

In this chapter, we make a departure from the existing literature in dependency

grammar induction, by proposing a novel unsupervised transition-based parser. We

borrow the idea from the recurrent neural network grammar (RNNG, Dyer et al. 2016)

to build our backbone parser. RNNG is a probabilistic transition-based model for

constituency parsing. It can be used either in a generative way as a language model or

in a discriminative way as a parser. Cheng et al. (2017) used an autoencoder to integrate

discriminative and generative RNNGs, yielding a reconstruction process with parse

trees as latent variables and enabling the two components to be trained jointly on a

language modeling objective. However, their work uses observed trees for training and

does not study unsupervised learning. Inspired by Cheng et al. (2017), we propose an

unsupervised neural variational transition-based parser. Concretely, we first modify the

transition actions in the original RNNGs into a set of arc-standard actions for projective

dependency parsing and then build a dependency variant of the model of Cheng et al.

(2017). Although this approach performs well for supervised parsing, when applied

in an unsupervised setting, it fails dramatically. We hypothesize that this is because

the parser is relatively unconstrained: no conditional independence assumptions are

made; no prior linguistic knowledge is injected. Therefore, we augment the model with

posterior regularization, allowing us to seamlessly integrate linguistic knowledge in the

shape of a small number of universal linguistic rules and still maintain the efficiency

3.1. Related Work 35

of transition-based models. In addition, we propose a novel variance reduction method

for stabilizing neural variational inference with discrete latent variables. This yields

the first known model that makes it possible to use posterior regularization for neural

variational inference with discrete latent variables.

In the experiments on the English Penn Treebank and on eight languages from the

Universal Dependency (UD) Treebank, we find that our model with posterior regular-

ization outperforms the previous best unsupervised transition-based dependency parser

(Rasooli and Faili, 2012), and approaches the performance of global inference-based

models. We also show how a weak form of supervision can be integrated into our

framework in the form of rule expectations. Furthermore, we present empirical evi-

dence for the complexity advantage of transition-based models: our model attains a

large speed-up compared to a representative global inference-based model. 1

3.1 Related Work

In this section, we start by reviewing the two model variants of the global inference-

based models, i.e., generative models and discriminative models. Then we discuss the

transition-based models and other techniques for unsupervised dependency parsing.

3.1.1 Generative Models

Generative approaches model the joint probability of the sentence as well as the cor-

responding dependency parse tree. Traditional models mostly use probabilistic gram-

mars. Conditional independence assumptions (e.g., the context-free assumption) are

always made by such models to enable efficient inference. In the dynamic-programming

based inference, the joint probability is decomposed into a product of independent

component probabilities or scores. However, such assumptions also lead to unavail-

ability of useful information (e.g., context and generation history) in the generation

process.

Different generative models specify different generation processes of the sentence

and parse tree under their respective independence assumptions. Paskin (2002) first

uniformly sampled a dependency tree skeleton and then populated the nodes with to-

kens conditioned on the dependency tree in a recursive root-to-leaf manner. On the

contrary, the Dependency Model with Valence (DMV; Klein and Manning 2004) gen-

1Our code is available at https://github.com/libowen2121/VI-dependency-syntax

36 Chapter 3. Transition-based Unsupervised Dependency Parsing

erates the sentence and the parse tree simultaneously. In the generation process of

DMV, a decision is first sampled to decide whether to generate a child token or termi-

nate conditioned on the head token and the dependency direction. Then a child token

is sampled additionally conditioned on the valence, defined as the number of the child

tokens already generated from the head token. Empirically, DMV is the first model that

outperforms a simple but strong baseline, right-branching (left-headed), where every

word is attached to the previous word. Based on the vanilla DMV, Headden III et al.

(2009) introduced the valence to the condition of decision sampling. Spitkovsky et al.

(2012) additionally considered sibling words, sentence completeness, and punctuation

context in decision sampling and child token generation.

By default, log marginal likelihood is used to optimize the generative models. Be-

sides, priors and regularization terms are often added to the objective function to in-

corporate various inductive biases. Smith and Eisner (2006) introduced penalty terms

into the objective to control dependency lengths and the root number of the parse tree.

Naseem et al. (2010) proposed to use Posterior Regularization (Ganchev et al., 2010)

to bring prior knowledge into the model as constraints. Tu and Honavar (2012) in-

troduced an entropy term to constrain the ambiguity. Noji et al. (2016) proposed to

inject a hard constraint to the objective that limits the degree of center-embedding of

the parse tree. Mareček and Žabokrtský (2012) and Mareček and Straka (2013) pro-

posed the reducibility principle to model the head-dependant relations in the generation

process.

Moreover, efforts have also been put to improve the Expectation Maximization

(EM) learning algorithm used in the generative models. Smith and Eisner (2005) in-

troduced the contrastive estimation to the learning algorithm. Spitkovsky et al. (2013)

proposed to switch between different objectives to break out of local optima.

3.1.2 Discriminative Models

Different from the generative counterparts, discriminative approaches model the con-

ditional probability or score of the dependency parse tree given the sentence. By con-

ditioning on the whole input sentence, discriminative approaches are able to utilize

not only local features (i.e., features related to the current dependency) but also global

features (i.e., contextual features from the whole sentence).

Autoencoder-based approaches have recently been popular in the development of

discriminative models. They map a sentence into an intermediate representation with

3.1. Related Work 37

an encoder and then reconstruct the observed sentence from the intermediate represen-

tation with a decoder. One common method is to treat the dependency structure as the

intermediate representation. Cai et al. (2017) proposed CRF-AE to use a first-order

graph-based conditional random field (CRF) parser to map the input sentence into the

dependency parse tree. Then the decoder independently generates each token of the

reconstructed sentence conditioned on the head of the token specified by the depen-

dency tree generated by the CRF parser. For marginalization, dynamic programming-

based exact inference is conducted.

Recently, Han et al. (2019) proposed to use a continuous sentence embedding as

the intermediate representation to capture global sentence context, where a LSTM is

utilized as an encoder. The decoder is a neural DMV (Jiang et al., 2016) that is condi-

tioned on the sentence vector generated by the LSTM. In their model, marginalization

over the continuous sentence vector is computationally intractable. Accordingly, varia-

tional inference is employed where a variational autoencoder is formalized. Similarly,

we also utlize variational inference to resolve the marginalization problem. In our

work, we propose a dependency-based recurrent neural network grammar (RNNG,

Dyer et al. 2016) for unsupervised dependency parsing and use the discriminative

RNNG and generative RNNG as the encoder and decoder respectively. In our case,

rich neural feature utilization as well as the linear run time requirement block the exact

inference. So we formulate a variational autoencoder framework to address this prob-

lem. Details of our model will be presented in the following sections. Corro and Titov

(2019a) also proposed a variational autoencoder-based model where the encoder is a

CRF parser and the decoder is a graph convolutional network (GCN) whose structure

is specified by the parse tree generated from the CRF parser.

Aside from the (variational) autoencoder based models, there are also other dis-

criminative models for unsupervised dependency parsing. Le and Zuidema (2015)

designed a complicated reranking-based system. Grave and Elhadad (2015) proposed

the Convex-MST to employ a first-order graph-based discriminative parser, where they

searched for the parses of all the training sentences and learned the parser simultane-

ously. Daumé III (2009) introduced a stochastic search-based method to do unsuper-

vised parsing. Jiang et al. (2017) combined the models of Grave and Elhadad (2015)

and Noji et al. (2016) with dual decomposition inference algorithm.

38 Chapter 3. Transition-based Unsupervised Dependency Parsing

3.1.3 Transition-based Models

Other than the models we reviewed above, another model family is transition-based.

Many transition-based systems exist in the literature, especially for the supervised de-

pendency parsing. We adopt the arc-standard (Nivre, 2003) system for our model in

this chapter (details will be presented in the following section). Compared to models

with global inference, transition-based models are capable of fully utilizing the parsing

history and supports linear parsing run time if greedy decoding is performed. Note that

when the feature set is properly constrained (e.g., a minimal set of bidirectional LSTM

features), practical dynamic programming-based global inference is also available for

transition-based models (Cross and Huang, 2016; Shi et al., 2017; Gómez-Rodrı́guez

et al., 2018).

Transition-based models are also explored as an alternative for unsupervised de-

pendency parsing. Daumé III (2009) proposed a stochastic search-based method to do

unsupervised transition-based parsing, which is a discriminative model. Rasooli and

Faili (2012) proposed a generative unsupervised parsing model together with “baby-

step” training (Spitkovsky et al., 2010) to improve parsing accuracy. In general, transition-

based models are less studied for unsupervised dependency parsing, where a large per-

formance gap exists compared to models with global inference. In this chapter, we

manage to propose a transition-based model that performs competitively compared to

models with global inference and still keeps the linear run time.

3.1.4 Other Techniques

In this section, we briefly review other techniques proposed by researchers to further

improve the unsupervised dependency parsing performance.

In earlier days, Cohen et al. (2009) and Cohen and Smith (2009) leveraged logistic-

normal prior distributions to encourage correlations between POS tags in DMV. More

recently, thanks to the capability of parameter-sharing and over-parameterization, neu-

ral networks have been brought into the research of unsupervised dependency parsing.

To encode correlation between POS tags and smooth the probabilities of grammar

rules, Jiang et al. (2016) for the first time, introduced neural networks into DMV. Han

et al. (2019) extended the generative approach in Jiang et al. (2016) to a discrimina-

tive approach by further utilizing sentence context by a neural network. Our work in

this chapter and Corro and Titov (2019a) use RNNGs and GCNs respectively to score

dependencies in the discriminative models.

3.2. Problem Formulation 39

In the most common setting of unsupervised dependency parsing, the parser is

unlexicalized, where the POS tags are either human annotated or induced from the

training corpus (Spitkovsky et al., 2011; He et al., 2018). However, different words

sharing the same POS tag may have different syntactic behaviour. Researchers have

introduced lexical information into unsupervised parsers (Headden III et al., 2009;

Blunsom and Cohn, 2010; Spitkovsky et al., 2013; Pate and Johnson, 2016; Han et al.,

2017). Our work in this chapter experiments with both unlexical and lexical settings.

3.2 Problem Formulation

To build our dependency grammar induction model, we follow Cheng et al. (2017)

and propose a dependency-based, encoder-decoder RNNG. This model includes (1) a

discriminative RNNG as the encoder (Section 3.2.2) to map the input sentence into a

discrete latent variable, which is a sequence of parse actions to build a dependency tree;

(2) a generative RNNG as the decoder (Section 3.2.2) to reconstruct the input sentence

based on the latent parse actions. The training objective is the marginal likelihood

of the observed input sentence, which is reformulated as an evidence lower bound

(ELBO) and solved with neural variational inference. The REINFORCE algorithm

(Williams, 1992) is utilized to handle discrete latent variables in optimization (Section

3.2.3). Overall, the encoder and decoder are jointly trained, inducing latent parse trees

or actions from only unlabeled text data. To further regularize the space of parse trees

with a linguistic prior, we introduce posterior regularization into the basic framework

(Section 3.2.4). Finally, we propose a novel variance reduction technique to train our

posterior regularized framework more effectively (Section 3.2.5).

3.2.1 Background

RNNG (Dyer et al., 2016) is a top-down transition-based system originally proposed

for constituency parsing. Basically, there are two variants: the discriminative RNNG

and the generative RNNG. The discriminative RNNG takes a sentence as input, and

predicts the probability of a corresponding parse tree conditioned on the sentence. The

model uses a buffer to store unprocessed terminal words and a stack to store partially

completed syntactic constituents. It then follows top-down transition actions to shift

words from the buffer to the stack to construct syntactic constituents incrementally.

The discriminative RNNG can be modified slightly to formulate the generative

40 Chapter 3. Transition-based Unsupervised Dependency Parsing

RNNG, an algorithm for incrementally producing trees and sentences in a generative

fashion. In the generative RNNG, there is no buffer of unprocessed words, but there

is an output buffer to store words that have been generated. Top-down actions are

specified to generate terminals (words) and non-terminals in pre-order. Though not

able to parse on its own, a generative RNNG can be used for language modeling as

long as parse trees are sampled from a known distribution.

We modify the transition actions in the original RNNG into a set of arc-standard

actions for projective dependency parsing. In the discriminative modeling case, the

action space includes:

• SHIFT fetches the first word in the input buffer and pushes it onto the top of the

stack;

• LEFT-REDUCE adds a left arc in between the top two words of the stack and

merges them into a single construct;

• RIGHT-REDUCE adds a right arc in between the top two words of the stack and

merges them into a single construct.

In the generative modeling case, the SHIFT operation is replaced by a GEN opera-

tion:

• GEN generates a word and adds it to the stack and the output buffer.

Running examples are given in Table 3.1 and 3.2 to illustrate discriminative and

generative dependency RNNGs give an input sentence “I saw a girl”.

3.2.2 Model Configuration

Encoder We formulate the encoder as a discriminative dependency RNNG that com-

putes the conditional probability p(a|x) of the transition action sequence a given the

observed sentence x. The conditional probability is factorized over time steps, and

parameterized by a transitional state embedding v:

p(a|x) =
|a|
∏
t=1

p(at |vt), (3.1)

where vt is the transitional state embedding of the encoder at time step t. Specifically,

we use the following features for vt : (1) the stack embedding et obtained with a stack-

LSTM (Dyer et al., 2015, 2016) that encodes the stack of the encoder; (2) the input

buffer embedding it , where we use a bidirectional LSTM to compose the input buffer

3.2. Problem Formulation 41

Stack Input Buffer Discriminative Action Parse Tree

0 φ I saw a girl SHIFT φ

1 I saw a girl SHIFT I

2 I saw a girl LEFT-REDUCE I saw

3 saw a girl SHIFT I saw

4 saw a girl SHIFT I asaw

5 saw a girl φ LEFT-REDUCE I girlasaw

6 saw girl φ RIGHT-REDUCE I girlasaw

7 saw φ - I girlasaw

Table 3.1: The parsing process of the discriminative dependency RNNG give an input

sentence “I saw a girl”.

and represent each word as a concatenation of forward and backward LSTM states.

Finally, vt is computed as:

vt = W2 tanh(W1[et , it]+be), (3.2)

where W1, W2 are weight parameters and be the bias. We note that the encoder is the

actual component for parsing at run time.

Decoder The decoder is a generative dependency RNNG that models the joint prob-

ability p(x,a) of a latent transition action sequence a and an observed sentence x. This

joint distribution can be factorized into a sequence of action and word (emitted by

GEN) probabilities, which are parameterized by a transitional state embedding u:

p(x,a) = p(a)p(x|a)

=
|a|
∏
t=1

p(at |ut)p(xt |ut)
I(at=GEN),

(3.3)

where I is an indicator function and ut is the state embedding at time step t. Specif-

ically, we use the following features: (1) the stack embedding dt which encodes the

42 Chapter 3. Transition-based Unsupervised Dependency Parsing

Stack Output Buffer Generative Action Parse Tree

0 φ φ GEN φ

1 I I GEN I

2 I saw I saw LEFT-REDUCE I saw

3 saw I saw GEN I saw

4 saw a I saw a GEN I asaw

5 saw a girl I saw a girl LEFT-REDUCE I girlasaw

6 saw girl I saw a girl RIGHT-REDUCE I girlasaw

7 saw I saw a girl - I girlasaw

Table 3.2: The generation process of the generative dependency RNNG give an input

sentence “I saw a girl”.

stack of the decoder and is obtained with a stack-LSTM; (2) the output buffer em-

bedding ot , where we use a standard LSTM to compose the output buffer and ot is

represented as the most recent state of the LSTM. Finally, ut is computed as:

ut = W4 tanh(W3[dt ,ot]+bd), (3.4)

where W3, W4 are weight parameters and bd the bias.

The model configuration above is borrowed from Cheng et al. (2017). The differ-

ences are (1) we use neither the parent non-terminal embedding nor the action history

embedding for both the decoder and encoder; (2) we do not use the adaptive buffer

embedding for the encoder. The reason is that the expressive power of the model for

unsupervised parsing should be fairly constrained to avoid overfitting.

3.2.3 Training Objective

Consider a latent variable model in which the encoder infers the latent transition ac-

tions (i.e., the dependency structure) and the decoder reconstructs the sentence from

these actions. The maximum likelihood estimate of the model parameters is deter-

3.2. Problem Formulation 43

mined by the log marginal likelihood of the sentence:

log p(x) = log∑
a

p(x,a). (3.5)

Since the form of the log likelihood is intractable in our case, we optimize the ELBO

by Jensen’s Inequality as follows:

log p(x)> log p(x)−KL[q(a)||p(a|x)]

= Eq(a)[log
p(x,a)
q(a)

] = Lx,
(3.6)

where KL[·||·] is the Kullback-Leibler divergence and q(a) is the variational approxi-

mation of the true posterior p(a|x). This training objective is optimized with the EM

algorithm. In the E-step, the variational distribution q(a|x) is estimated based on the

encoder and the observation x — q(a) is parameterized as qω(a|x), where ω represents

the parameters of the encoder. Similarly, the joint probability p(x,a) is parameterized

by the decoder as pθ(x,a), where θ represents the parameters of the decoder.

In the M-step, the decoder parameters θ can be directly updated by gradient descent

via Monte Carlo simulation:

∂Lx

∂θ
= Eqω(a|x)[

∂ log pθ(x,a)
∂θ

]

≈ 1
M ∑

m

∂ log pθ(x,a(m))

∂θ

(3.7)

where M samples a(m) ∼ qω(a|x) are drawn independently to compute the stochastic

gradient.

For the encoder parameters ω, since the sampling operation is not differentiable,

we approximate the gradients using the policy gradient method:

∂Lx

∂ω
= Eqω(a|x)[l(x,a)

∂ logqω(a|x)
∂ω

]

≈ 1
M ∑

m
l(x,a(m))

∂ logqω(a(m)|x)
∂ω

,
(3.8)

where

l(x,a) = log
pθ(x,a)
qω(a|x)

. (3.9)

Note that, technically we are not using the score function gradient estimator, which is

also known as the REINFORCE algorithm (Williams, 1992; Glynn, 1987; Mohamed

et al., 2020). In our formulation, we consider l as the reward. This gives us some room

to tweak the reward, which will be clear when we incorporate the posterior regulariza-

tion in the next section.

44 Chapter 3. Transition-based Unsupervised Dependency Parsing

3.2.4 Posterior Regularization

As shown in the following section (Section 3.3.3), the basic model discussed previ-

ously performs poorly when directly applied to unsupervised parsing, barely outper-

forming the left-branching baseline for English. We hypothesize the reason is that the

basic model is fairly unconstrained. Without any constraints to regularize the latent

space, the induced parses will be arbitrary, since the model is only trained to maximize

sentence likelihood (Naseem et al., 2010; Noji et al., 2016), especially given the fact

that the dependency RNNGs have strong expressive power.

We therefore introduce posterior regularization (PR; Ganchev et al. 2010) to en-

courage the neural network to generate linguistically plausible trees. Via posterior

regularization, we can give the model access to a small amount of linguistic prior in

the form of syntactic rules, which are universal for all languages. These rules effec-

tively function as features, which impose soft constraints on the neural parameters in

the form of expectations.

To integrate PR constraints into the model, a set Q of allowed posterior distributions

over the hidden variable a can be defined as:

Q = {q(a) : ∃ξ, Eq[φ(x,a)]−b 6 ξ; ||ξ||β 6 ε}, (3.10)

where φ(x,a) is a vector of feature functions, b is a vector of given negative expecta-

tions, ξ is a vector of slack variables, ε is a predefined small value and || · ||β denotes

some norm. The PR algorithm only works if Q is non-empty.

In dependency grammar induction, φk(x,a) (the kth element in φ(x,a)) can be set

to be the negative number of times a given rule (dependency arcs, e.g., Root→ Verb,

Verb→ Noun) occurs in a sentence. We hope to bias the learning so that each sentence

is parsed to contain such kinds of arcs more than a threshold in the expectation. The

posterior regularized likelihood is then:

LQ = max
q∈Q

Lx

= log p(x)−min
q∈Q

KL[q(a) || p(a|x)].
(3.11)

Equation (3.11) indicates that, in the posterior regularized framework, q(a) not only

approximates the true posterior p(a|x) (estimated by the encoder network qω(a|x)) but

also belongs to the constrained set Q. To optimize LQ via the EM algorithm, we get

3.2. Problem Formulation 45

the revised E′-step as:

q(a) = argmax
q∈Q

LQ

= argmin
q∈Q

KL[q(a) || qω(a|x)].
(3.12)

Formally, the optimization problem in the E′-step can be described as:

min
q,ξ

KL[q(a) || qω(a|x)].

s.t. Eq[φ(x,a)]−b 6 ξ; ||ξ||β 6 ε

(3.13)

Following Ganchev et al. (2010), we can solve the optimization problem in (3.13) in

its Lagrangian dual form. Thanks to the fact that our transition-based encoder satis-

fies the decomposition property, the conditional probability qω(a|x) can be factored as

∏
|a|
t=1 qω(at |vt) in (3.1). Thus, the factored primal solution can be written as:

q(a) =
qω(a|x)
Z(λ∗)

exp(−λ
∗T

φ(x,a)), (3.14)

where λ is the Lagrangian multiplier whose solution is given as λ∗= argmaxλ>0−bT λ−
logZ(λ)− ε||λ||β∗2 and Z(λ) is given as:

Z(λ) = ∑
a

qω(a|x)exp(−λ
T

φ(x,a)). (3.15)

We also define the multiplier introduced by PR as:

γ(a,x) =
1

Z(λ)
exp(−λ

T
φ(x,a)). (3.16)

Computing the partition function Z(λ) is also intractable in our case. To address this

problem, we view Z(λ) as an expectation and estimate it by Monte Carlo simulation

as:

Z(λ) = Eqω(a|x)[exp(−λ
T

φ(x,a))]

≈ 1
M ∑

m
exp(−λ

T
φ(x,a(m))).

(3.17)

The Monte Carlo estimate of the partition function Z(λ) will introduce bias and impli-

cate the estimated gradient with respect to λ = 0.

2|| · ||β∗ is the dual norm of || · ||β. Here we use `2 norm for both primal norm || · ||β and dual norm
|| · ||β∗ .

46 Chapter 3. Transition-based Unsupervised Dependency Parsing

The gradients for the encoder and decoder in the M-step is be defined as follows:

∂Lx

∂θ
=

1
M ∑

m

∂ log pθ(x,a(m))

∂θ

∂Lx

∂ω
=

1
M ∑

m
l(x,a(m))

∂ logq(a(m))

∂ω
.

(3.18)

Note that the Monte Carlo simulation should be performed over distribution q(a). In

practice, we perform the importance sampling that we use qω(a|x) as the proposal

distribution.

The original reward without a baseline should be defined as:

log
pθ(x,a)

q(a)
= log

pθ(x,a)
qω(a|x)γ(a,x)

(3.19)

But in practical training, we observe that learning with the reward in Equation (3.19)

is not stable. So we simply use the reward in Equation (3.9). We show how this

modification affects the loss function in Appendix A.1.

As shown in later sections (Section 3.2.5 and 3.3.3), pre-training is empirically

effective, we use γ(x,a) as an extra learning signal and add it to the gradients of both

encoder and decoder. Intuitively, we also would like the decoder also get the reward

from l so that the encoder and decoder can couple better during training. Finally, the

gradients of the encoder and decoder are defined as

∂Lx

∂θ
=

1
M ∑

m
γ(x,a(m))l(x,a(m))

∂ log pθ(x,a(m))

∂θ

∂Lx

∂ω
=

1
M ∑

m
γ(x,a(m))l(x,a(m))

∂ logq(a(m))

∂ω

(3.20)

where l is computed as Equation (3.9).

3.2.5 Variance Reduction in the M-step

Training a neural variational inference framework with discrete latent variables is

known to be a challenging problem (Mnih and Gregor, 2014; Miao and Blunsom, 2016;

Miao et al., 2016). This is mainly caused by the sampling step of discrete latent vari-

ables which results in high variance, especially at the early stage of training when both

encoder and decoder parameters are far from optimal. Intuitively, l(x,a) weighs the

gradient for each latent sample a, and its variance plays a crucial role in updating the

parameters in the M-step.

3.2. Problem Formulation 47

To reduce the variance and stabilize the learning process, previous studies (Mnih

and Gregor, 2014; Miao and Blunsom, 2016; Miao et al., 2016) used the baseline

method (RL-BL), re-defining l as:

lRL-BL(x,a) = l(x,a)−b(x)−b (3.21)

where b(x) is a parameterized, input-dependent baseline (e.g., a neural language model

in our case) and b is the bias. For the baseline (b(x)+ b) in RL-BL, we pre-train a

LSTM language model. During training the RL-BL, we fix the LSTM language model

and rescale and shift the output log p(x) to fit the ELBO of the given sentence as

b(x)+b = α log p(x)+ τ

The baseline method is able to reduce the variance to some extent, but also in-

troduces extra model parameters that complicate optimization. In the following we

propose an alternative generic method for reducing the variance of the gradient esti-

mator in the M-step, as well as another task-specific method which results in further

improvement.

Generic Method The intuition behind the generic method is as follows: the algo-

rithm takes M latent samples for each input x and a score l(x,a(m)) is computed for

each sample a(m), hence the variance can be reduced by normalization within the group

of samples. This motivates the following lRL-SN(x,a):

lRL-SN(x,a) =
l(x,a)− l̄(x,a)

max(1,
√

Var[l(x,a)])
(3.22)

Task-Specific Method Besides the generic variance reduction method which applies

to discrete neural variational inference in general, we further propose to enhance the

quality of lRL-SN(x,a) for the specific dependency grammar induction task. Intuitively,

l(x,a) in (3.20) weights the gradient of a given sample a by a positive or negative value,

while γ(x,a) only weights the gradient by a positive value. As a result, l(x,a) plays a

crucial role in determining the optimization direction. Therefore, we propose to correct

the polarity of our lRL-SN(x,a) with the number of rules s(x,a) = −SUM[φ(x,a)] that

occur in the induced dependency structure, where SUM[] returns the sum of vector

elements. The refined l(x,a) is:

lRL-PC(x,a) =

|lRL-SN(x,a)| ŝ(x,a)> 0

−|lRL-SN(x,a)| ŝ(x,a)< 0
(3.23)

48 Chapter 3. Transition-based Unsupervised Dependency Parsing

where ŝ(x,a) = s(x,a)−s̄(x,a)√
Var[s]

. Since ŝ(x,a) provides a natural corrective, we can obtain

a simpler variant of (3.23) by directly using ŝ(x,a) as the reward:

lRL-C(x,a) = ŝ(x,a) (3.24)

We will experimentally compare the different variance reduction techniques (or re-

wards) of the reinforcement learning objective.

Pre-training Unsupervised models in general face a cold-start problem since no gold

annotations exist to warm up the model parameters quickly. This can be observed

in (3.20): the gradient updates of the model are dependent on the reward l, which in

return relies on the model parameters. At the beginning of training we cannot obtain an

accurately approximated l to update model parameters. To alleviate this problem, one

approach is to ignore it in the gradient update at the early stage. In this case, both the

encoder and decoder are trained with the direct reward from PR (shown in Algorithm

1).

Algorithm 1: Pre-training for Neural Variational Inference Dependency

Parser.
Parameters: ω,θ,λ,ε, || · ||β,M
Constrained Feature Functions: φ(x,a)
Initialization;

while not converged do
Sample a(m) ∼ qω(a|x),1 6 m 6 M;

PR Computation:

Z(λ)≈ 1
M ∑m exp(−λT φ(x,a(m))), γ(x,a(m)) = 1

Z(λ) exp(−λT φ(x,a(m)));

Update parameters in mini-batch:

Update θ w.r.t. its gradient 1
M ∑m γ(x,a(m))∂ log pθ(x,a(m))

∂θ
;

Update ω w.r.t. its gradient 1
M ∑m γ(x,a(m))∂ logqω(a|x)

∂ω
;

Update λ to optimize maxλ>0 −bT λ− logZ(λ)− ε||λ||β∗ (with projected

gradient descent algorithm).

end

3.2.6 Limitations

We admit that the approaches we proposed in this section have their heuristic nature.

Different from the standard REINFORCE algorithm, or the score function estimator,

3.3. Experiments 49

we optimize the model using a more general approach, policy gradient. The variance

reduction methods, including both the generic method and task-specific methods, can

be considered as changes of the objective, modifications of the ELBO. Since we have

tweaked the learning objective, unlike typical unbiased variance reduction techniques,

our methods are biased. On the other hand, the universal rules are not perfect; they can

also be biased.

Given the fact that parsing speed is our first concern, we are using parsers with

linear runtime, namely neural transition-based parsers, in our model. We resort to

universal linguistic rules to regularize the latent space and incorporate complicated ap-

proximation into the learning process for better empirical results. Suppose we did not

have such runtime constraints, we would have tried a neural CRF parser (Cai et al.,

2017) alternatively as the encoder in our model. In this way, we could naturally inject

the context-free assumption and regularize the latent space by maximising the entropy.

Kim et al. (2019a) has investigated this idea and successfully employed it to unsuper-

vised constituency parsing.

3.3 Experiments

3.3.1 Datasets

English Penn Treebank We use the Wall Street Journal (WSJ) section of the English

Penn Treebank (Marcus et al., 1993). To be in line with previous work, the dataset is

preprocessed to strip off punctuation. We train our model on sections 2–21, tune the

hyperparameters on section 22, and evaluate on section 23. Sentences of length ≤ 10

are used for training. We report directed dependency accuracy (DDA) on test sentences

of length ≤ 10 (WSJ-10) and on all sentences (WSJ).

Universal Dependency Treebank We select eight languages from the Universal De-

pendency Treebank 1.4 (Nivre et al., 2016). We train our model on training sentences

of length ≤ 10 and report DDA on test sentences of length ≤ 15 and ≤ 40. We find

that training on short sentences generally increase performance compared to training

on longer sentences (e.g., length ≤ 15).

Projectivity In English, projective trees are sufficient to analyze most sentence types.

In fact, the dependency English Penn Treebank is automatically generated from the

50 Chapter 3. Transition-based Unsupervised Dependency Parsing

original English Penn Treebank and is by convention exclusively projective. 3 In

languages with more flexible word order than English, non-projective trees are more

frequent. The eight languages we select from the UD treebank are all projective. We

note that transition-based parsers can only produce projective trees. It’s reasonable to

expect that our approach will perform less well on non-projective treebanks, such as

Czech.

3.3.2 Settings

We employ the universal linguistic rules from Naseem et al. (2010) and Noji et al.

(2016) for WSJ and the Universal Dependency Treebank, respectively (shown in Table

3.3 and 3.4). For WSJ, we expand the coarse rules defined in Naseem et al. (2010) with

the Penn Treebank fine-grained part-of-speech tags. For example, Verb is expanded as

VB, VBD, VBG, VBN, VBP and VBZ.

Since the universal linguistic rules are defined on POS tags, it’s essential to use

gold POS tags in our approach. Actually, for the task of POS tagging, modern neural

network-based models (Bohnet et al., 2018) can reach 97.96 accuracy on the English

Penn Treebank and 93.40 accuracy on over fifty languages (95.20 accuracy on our

selected eight languages). It will be interesting to evaluate how our approach performs

using predicted POS tags. We leave it for future work.

Root→ Auxiliary Noun→ Adjective

Root→ Verb Noun→ Article

Verb→ Noun Noun→ Noun

Verb→ Pronoun Noun→ Numeral

Verb→ Adverb Preposition→ Noun

Verb→ Verb Adjective→ Adverb

Auxiliary→ Verb

Table 3.3: Universal dependency rules for WSJ (Naseem et al., 2010).

We use AdaGrad (Duchi et al., 2011) to optimize the parameters of the encoder

and decoder, as well as the projected gradient descent algorithm (Bertsekas, 1999) to

optimize the parameters of posterior regularization. During learning, the posterior reg-

3Actually, like we discussed in Section 2.1.4, there exist different ways to convert the original En-
glish Penn Treebank. Some of them may produce non-projective trees. In this section, we use the data
in Jiang et al. (2016).

3.3. Experiments 51

ROOT→ VERB NOUN→ ADJ

ROOT→ NOUN NOUN→ DET

VERB→ NOUN NOUN→ NOUN

VERB→ ADV NOUN→ NUM

VERB→ VERB NOUN→ CONJ

VERB→ AUX NOUN→ ADP

ADJ→ ADV

Table 3.4: Universal dependency rules for the Universal Dependency Treebank (Noji

et al., 2016).

ularization is incorporated on sentence level. 4 We use GloVe embeddings (Pennington

et al., 2014) to initialize English word vectors and FastText embeddings (Bojanowski

et al., 2016) for the other languages. Across all experiments, we test both unlexicalized

and lexicalized variants of our model. The unlexicalized variant uses gold POS tags

as model inputs, while the lexicalized variant additionally use word tokens. Follow-

ing previous work (Buys and Blunsom, 2015), we use Brown clustering (Brown et al.,

1992) to obtain additional features in the lexicalized variant. We report average DDA

and best DDA over five runs for our main parsing results.

3.3.3 Exploration of Model Variants

Posterior Regularization To study the effectiveness of posterior regularization in

our neural grammar induction model, we first implement a fully unsupervised model

without posterior regularization. This model is trained with variational inference, us-

ing the standard REINFORCE objective with a baseline (Mnih and Gregor, 2014; Miao

and Blunsom, 2016; Miao et al., 2016) and employing no posterior regularization. Ta-

ble 3.5 shows the results for the unsupervised model, together with the random and

left- and right-branching baselines. We observe that the unsupervised model (both

unlexicalized and lexicalized) fails to beat the left-branching baseline. These results

4Cheng et al. (2017) optimize their neural variational inference-based model at the sentence level.
For the posterior regularization, in the original paper (Ganchev et al., 2010), the constraints are enforced
at the instance (sentence) level in practice, although the constraints are defined corpus-wide. Thus,
introducing the posterior regularization at the batch level is a better approximation. However, it’s not
trivial to implement mini-batching in this case. The deep learning library we used in this chapter,
PyTorch (Paszke et al., 2019), does not support autobatching. Some other libraries do provide the
autobatching functionality, such as DyNet (Neubig et al., 2017) and JAX (Bradbury et al., 2018). It’s also
viable to construct mini-batching manually like Corro and Titov (2019b) did in the latent dependency
tree learning.

52 Chapter 3. Transition-based Unsupervised Dependency Parsing

Model WSJ-10 WSJ

Random 19.1 16.4

Right branching 20.1 20.6

Left branching 36.2 30.2

UNSUPERVISED 33.3 (39.0) 29.0 (30.5)

L-UNSUPERVISED 34.9 (36.4) 28.0 (30.2)

Table 3.5: Evaluation of the fully unsupervised model (without posterior regularization)

on the English Penn Treebank. We report average DDA and the best DDA (in brackets)

over five runs. “L-” denotes the lexicalized variant.

WSJ-10 WSJ

No Pre-training 47.5 (59.8) 36.7 (46.3)

Pre-training 64.8 (67.1) 42.0 (43.7)

Table 3.6: Evaluation of the posterior-regularized model with and without pre-training

on the WSJ. We report average DDA and best DDA (in brackets) over five runs.

suggest that without any prior linguistic knowledge, the trained model is fairly uncon-

strained. A comparison with posterior-regularized results in Table 3.6 (to be discussed

next) reveals the effectiveness of posterior regularization in incorporating additional

linguistic knowledge.

Pre-training Table 3.6 shows the results of a standard posterior-regularized model

compared to one only with pre-training. Both models use the unlexicalized setup.

We find that the posterior-regularized model benefits a lot from pre-training, which

therefore is a useful way to avoid cold start.

Variance Reduction Previously, we described various variance reduction techniques,

or modified rewards, for the reinforcement learning objective. These include the con-

ventional baseline method (RL-BL), our sample normalization method (RL-SN),

sample normalization with additional polarity correction (RL-PC), and a simplified

version of the later (RL-C). We now compare these techniques; all experiments were

conducted with pre-training and on the unlexicalized model. The experimental results

in Table 3.7 show that RL-SN outperforms RL-BL on average DDA, which indicates

that sample normalization is more effective in reducing the variance of the gradient

3.3. Experiments 53

Generic Task-specific

RL-BL RL-SN RL-C RL-PC

µ 58.7 60.8 64.4 66.7

σ 1.8 0.6 0.3 0.7

Table 3.7: Comparison of models with different variance reduction techniques (or re-

wards) on the WSJ-10 test set. We report the average DDA µ and its standard deviation

σ over five runs. RL-BL: REINFORCE with baseline. RL-SN: REINFORCE with sample

normalization in a group. RL-C: REINFORCE using polarity the correction criteria as

rewards. RL-PC: REINFORCE with polarity correction.

estimator. We hypothesize that the gain comes from the fact that sample normalization

does not introduce extra model parameters, whereas RL-BL does. Polarity correction

further boosts performance. However, polarity correction uses the number of universal

rules present in a induced dependency structure, i.e., it is a task-specific method for

variance reduction. Also RL-C (the simplified version of RL-PC) achieves competi-

tive performance.

Universal Rules In our PR scheme, the rule expectations can be uniformly initial-

ized. This approach does not require any annotated training data; the parser is furnished

only with a small set of universal linguistic rules. We call this setting UNIVERSAL-

RULES. However, we can initialize the rule expectation non-uniformly, which allows

us to introduce a gentle degree of supervision into the PR scheme. Here, we explore

one way of doing this: we assume a training set that is annotated with dependency rules

(e.g., the training portion of the WSJ), based on which we estimate expectations for

the universal rules. In practice, such expectations can be provided by human experts.

We call this setting WEAKLYSUPERVISED. The results of an experiment comparing

these two settings is shown in Table 3.8. In both cases we use pre-training and the best

performing reward RL-PC. Here we report results using both unlexicalized and lexi-

calized settings. It can be seen that the best performing UNIVERSALRULES model is

the unlexicalized one, while the best WEAKLYSUPERVISED model is lexicalized. We

conjecture that a more powerful model (the lexicalized variant) is capable of making

better use of the additional supervision, i.e., the non-uniform rule expectations. Over-

all, WEAKLYSUPERVISED outperforms UNIVERSALRULES, which demonstrates that

our posterior regularized parser is able to effectively use weak supervision in the form

54 Chapter 3. Transition-based Unsupervised Dependency Parsing

Model WSJ-10 WSJ

UNIVERSALRULES 54.7 (58.2) 37.8 (39.3)

L-UNIVERSALRULES 54.7 (56.3) 36.8 (38.1)

WEAKLYSUPERVISED 66.7 (67.6) 43.6 (45.0)

L-WEAKLYSUPERVISED 68.2 (71.1) 48.6 (50.2)

Table 3.8: Comparison of uniformly initialized (UNIVERSALRULES) and empirically es-

timated (WEAKLYSUPERVISED) rule expectation on the WSJ. We report average DDA

and best DDA (in brackets) over five runs.

of an empirical initialization of the rule expectations.

3.3.4 Parsing Results

English Penn Treebank

Since English Penn Treebank is a standard benchmark for unsupervised dependency

parsing, here we do a more comprehensive comparison of our model against other

models including both global inference-based and transition-based models in Table

3.9. For the transition-based models, we compare our unsupervised UNIVERSAL-

RULES model and its WEAKLYSUPERVISED variant with Daumé III (2009) as well

as the state-of-the-art Rasooli and Faili (2012) denoted as RF. Since we use differ-

ent preprocessing, we re-implement the RF model for a fair comparison. For global

inference-based models, although they are not directly comparable to our approach,

we still present them for reference. In particular, we present the results of recent work,

including the state of the art, from the categories of both generative and discrimina-

tive models. Among them, Convex-MST (Grave and Elhadad, 2015) and HDP-DEP

(Naseem et al., 2010) also utilize universal linguistic rules. Specifically, we use the

exactly same rules as HDP-DEP (Naseem et al., 2010), while the rules used in Convex-

MST (Grave and Elhadad, 2015) are slightly different. We refer readers to the original

paper for more details.

Concretely, the parser of Rasooli and Faili (2012) is unlexicalized and count-based.

To reach the best performance, the authors employ baby steps (i.e., they start training

on short sentences and gradually add longer sentences (Spitkovsky et al., 2009)), as

well as two heuristics called H1 and H2. H1 involves multiplying the probability of the

last verb reduction in a sentence by 10−10. H2 involves multiplying each Noun→ Verb,

3.3. Experiments 55

Model WSJ-10 WSJ

Global inference-based models

Generative models

HDP-DEP (Naseem et al., 2010)† 71.9 –

NDMV (Jiang et al., 2016) 72.5 57.6

L-NDMV (Han et al., 2017) 75.1 59.5

Discriminative models

Convex-MST (Grave and Elhadad, 2015)† 60.8 48.6

CRFAE (Cai et al., 2017) 71.7 55.7

D-NDMV (Han et al., 2019) 75.6 61.4

Transition-based models

Generative models

RF (Rasooli and Faili, 2012) 37.3 (40.7) 32.1 (33.1)

RF+H1+H2 (Rasooli and Faili, 2012)‡ 51.0 (52.7) 37.2 (37.6)

Discriminative models

Daumé III (2009) 45.4 -

UNIVERSALRULES† (ours) 54.7 (58.2) 37.8 (39.3)

L-WEAKLYSUPERVISED†† (ours) 68.2 (71.1) 48.6 (50.2)

Table 3.9: Comparison of our models (UNIVERSALRULES and L-WEAKLYSUPERVISED)

with previous work on the English Penn Treebank. †: universal linguistic rules are used.
††: weak supervision is used where rule expectations are estimated from a labeled

training set. ‡: H1 and H2 are two heuristics used in Rasooli and Faili (2012). We

report average DDA and best DDA (in brackets) over five runs for both RF and our

models.

Adjective → Verb, and Adjective → Noun rule by 0.1. These heuristics seem fairly

ad-hoc; they presumably bias the probability estimates towards more linguistically

plausible values.

As the results in Table 3.9 show, our UNIVERSALRULES model outperforms RF

on both WSJ-10 and full WSJ, achieving a new state of the art for transition-based

dependency grammar induction. The RF model does not use universal rules, but its

linguistic heuristics play a similar role, which makes our comparison fair. Note that

our L-WEAKLYSUPERVISED model achieves a further improvement over UNIVER-

SALRULES, making it comparable with global inference-based models, demonstrating

the potential of the neural, transition-based dependency grammar induction approach.

56 Chapter 3. Transition-based Unsupervised Dependency Parsing

Universal Dependency Treebank

Our multilingual experiments use the UD treebank. Here we evaluate the two models

that perform the best on the WSJ: the unlexicalized UNIVERSALRULE model and lex-

icalized L-WEAKLYSUPERVISED model. We use the same hyperparameters as in the

WSJ experiments. Again, we mainly compare our models with the transition-based

model RF (with heuristics H1 and H2). We also include the global inference-based

models for reference including the state of the art.

Table 3.10 shows the UD treebank results. It can be observed that both UNI-

VERSALRULES and L-WEAKLYSUPERVISED significantly outperform the RF on both

short and long sentences. The improvement of average DDA is roughly 20% on sen-

tences of length ≤ 40. This shows that although the heuristic approach employed by

Rasooli and Faili (2012) is useful for English, it does not generalize well across lan-

guages, in contrast to our posterior-regularized neural networks with universal rules. It

is interesting that UNIVERSALRULES even outperforms L-WEAKLYSUPERVISED on

longer sentences on average. We conjecture that universal linguistic rules with uni-

form expectations are robust in the multilingual setting especially given the fact that

we directly utilize the hyperparameters of the English experiment and do not further

tune them for each language. It is notable that our models match the perfomance of

the neural DMV (NDMV, Jiang et al. 2016) which is a strong baseline for this task.

Parsing Speed

To highlight the advantage of our linear time complexity parser, we compare both

lexicalized and unlexicalized variants of our parser with a representative DMV-based

model, LC-DMV (Noji et al., 2016), in terms of parsing speed. The results in Ta-

ble 3.11 show that our unlexicalized parser results in a 1.8-fold speed-up for short

sentences (length ≤ 15), and a speed-up of factor 16 for long sentences (full length).

And our parser does not lose much parsing speed even in a lexicalized setting.

3.4 Summary

In this chapter, we proposed a neural variational transition-based model for depen-

dency grammar induction. The model consists of a generative dependency RNNG for

generation, and a discriminative dependency RNNG for parsing and inference. We

trained the model on unlabeled corpora with integration of neural variational infer-

3.4. Summary 57

Model

Global inference-based Transition-based
Generative Discriminative Generative Discriminative (Ours)

NDMV LC-DMV Conv-MST† D-NDMV RF+H1+H2‡ L-WEAKLYSUP†† UNIVRULES†

Length ≤ 15

Basque 48.3 47.9 52.5 42.7 49.0 (51.0) 55.2 (56.0) 52.9 (55.1)

Dutch 44.1 35.5 43.4 43.0 26.6 (31.9) 38.7 (41.3) 39.6 (40.2)

French 59.5 52.1 61.6 61.7 33.2 (37.5) 56.6 (57.2) 59.9 (61.6)

German 56.2 51.9 54.4 58.5 40.5 (44.0) 59.7 (59.9) 57.5 (59.4)

Italian 72.7 73.1 73.2 63.5 33.3 (38.9) 58.5 (59.8) 59.7 (62.3)

Polish 72.7 66.2 66.7 75.8 46.8 (59.7) 61.8 (63.4) 57.1 (59.3)

Portuguese 34.4 70.5 60.7 69.1 35.7 (43.7) 52.5 (54.1) 52.7 (54.2)

Spanish 38.1 65.5 61.6 66.6 35.9 (38.3) 55.8 (56.2) 55.6 (56.8)

Average 53.3 57.8 59.3 60.1 37.6 (43.1) 54.9 (56.0) 54.4 (56.1)

Length ≤ 40

Basque 47.8 45.4 50.0 42.4 45.4 (47.6) 51.0 (51.7) 48.9 (51.5)

Dutch 35.6 34.1 45.3 43.7 23.1 (30.4) 42.2 (44.8) 42.5 (44.3)

French 38.1 48.6 62.0 58.5 27.3 (30.7) 46.4 (47.5) 55.4 (56.3)

German 50.4 50.5 51.4 52.9 32.5 (37.0) 55.6 (56.3) 54.2 (56.3)

Italian 63.6 71.1 69.1 61.3 27.7 (33.0) 54.1 (55.6) 55.7 (58.7)

Polish 62.8 63.7 63.4 73.0 43.3 (46.0) 57.3 (59.4) 51.7 (52.8)

Portuguese 49.0 67.2 57.9 65.7 28.8 (35.9) 44.6 (48.6) 45.3 (46.5)

Spanish 58.0 61.9 61.9 64.4 26.9 (28.8) 50.8 (54.0) 52.4 (53.9)

Average 50.7 55.3 57.6 57.7 31.9 (36.2) 50.3 (52.2) 50.8 (52.5)

Table 3.10: Evaluation on eight languages of the UD treebank with test sentences of

length ≤ 15 and length ≤ 40. NDMV: Jiang et al. (2016). LC-DMV: Noji et al. (2016).

Conv-MST: Grave and Elhadad (2015). D-NDMV: Han et al. (2019). †: universal linguis-

tic rules are used. ††: weak supervision is used where rule expectations are estimated

from a labeled training set. ‡: H1 and H2 are two heuristics used in Rasooli and Faili

(2012). We report average DDA and best DDA (in brackets) over five runs for both RF

and our models.

58 Chapter 3. Transition-based Unsupervised Dependency Parsing

Sentence length ≤15 ≤40 All

LC-DMV 663 193 74

Our Unlexicalized 1192 1194 1191

Our Lexicalized 939 938 983

Table 3.11: Parsing speed (tokens per second) on the French UD Treebank with test

sentences of various lengths. All experiments are conduct on the same CPU platform.

ence, posterior regularization and variance reduction techniques. This allows us to

use a small amount of universal linguistic rules as prior knowledge to regularize the

discrete latent space. We also showed that it is straightforward to integrate weak su-

pervision into our model in the form of rule expectations. Empirically on English

and eight other languages, our parser obtained a new state of the art for unsupervised

transition-based dependency parsing and significantly narrowed the performance gap

between transition-based models and global inference-based models. With respect to

parsing speed, our model keeps the linear runtime superiority over global inference-

based models. It was also verified empirically that a speed-up of factor 16 on sentences

of full length was achieved by our model when compared with a representative DMV-

based model (i.e., LC-DMV).

It’s a trade-off between the parsing speed and performance. In this chapter, parsing

speed is our major concern, so we employ a transition-based encoder (i.e., discrimina-

tive dependency RNNG). Since the encoder has strong expressive power, complicated

techniques have been used to regularize the model. We believe that the parsing perfor-

mance can be further boosted if the encoder is replaced with a global inference-based

model (e.g., a CRF parser).

Compared to dependency structures, constituency structures are more appealing to

neural NLP architectures, especially to recurrent and recursive neural networks. Con-

stituency structures are easier to be integrated to sequential models, which brings the

modeling convenience. In the next chapter, we will focus on the problem of learning

latent constituency structures from downstream NLP tasks.

Chapter 4

Imitation Learning based

Unsupervised Constituency Parsing

Natural language usually exhibits a sequential surface format, but the underlying struc-

ture governing the sentence is best represented as tree structure, which is widely be-

lieved by cognitive science and computational linguists (Chomsky and Lightfoot, 2002;

Sag et al., 2003). The tree structure, also known as syntax, depict how surface words

are composed into components of the sentence in a hierarchical manner. This phe-

nomenon intrigues researchers to explore the possibility of introducing tree structure

to end-to-end neural NLP models. From a practical point of view, injecting tree struc-

ture into neural NLP models is beneficial in four ways: (1) to obtain a hierarchical

representation with increasing levels of abstraction, exploiting a key characteristic of

deep neural networks (LeCun et al., 2015; Schmidhuber, 2015); (2) to capture com-

plicated linguistic properties, such as compositional effects (Socher et al., 2013); (3)

to address the long-term dependency problem (Tai et al., 2015; Li et al., 2015) where

tokens can be structurally close but far away in sequential order ; (4) to provide short-

cut for gradient backpropagation (Chung et al., 2016) with fewer updates at the more

abstractive high-level layers.

Tree-structured recursive neural networks (Socher et al., 2011; Tai et al., 2015)

are a class of representative syntax-aware neural NLP models. In these models, a

sentence representation is built by incrementally composing children nodes to compute

the representation for the parent node following the corresponding tree structure. They

have been proven to be effective at sentence understanding tasks such as sentiment

analysis (Socher et al., 2013), textual entailment (Bowman et al., 2016) and machine

translation (Eriguchi et al., 2016). A supervised constituency parser is a common way

59

60 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

to obtain tree structures, where trees produced by the parser are used to guide the

composition process.

However, supervised parsers are limited for several reasons: (1) for most low re-

source languages, no annotated data is available, and often not even an annotation

scheme exists; (2) annotated data often comes from a newswire corpus, so a super-

vised parser faces an out-of-domain issue; (3) language may change over time (mainly

on the lexical side), so structured models should evolve accordingly and handle the

changes properly. Learning the tree structure from the data in an unsupervised man-

ner becomes appealing and promising to address the limitations. Specifically, there

has been increasing interest in latent tree induction using neural networks. The aim is

to induce a tree structure for a sentence without having access to labeled trees during

training. This approach has been shown to be beneficial for downstream natural lan-

guage understanding tasks, such as sentiment analysis and natural language inference

(Yogatama et al., 2017; Maillard et al., 2017; Choi et al., 2018). Apart from under-

standing tasks, there is also some research work managing to bring tree structures to

another classic NLP task, language modeling (Shen et al., 2018b, 2019b; Wang et al.,

2019).

A natural question is whether such latent trees, which are the results of optimiz-

ing a training objective on a classification task or language modeling, correspond to

standard syntactic trees as annotated in treebanks. For a classification training ob-

jective, the answer has so far been negative, and furthermore, latent tree induction

shows low self-agreement when randomly initialized multiple times (Williams et al.,

2018a). However, for a language modeling training objective, strong parsing perfor-

mance have been achieved. Controversially, an external biased parsing approach is

utilized to extract tree structures from the model. This approach has been challenged

as it overestimates the parsing performance and is only effective for English (Dyer

et al., 2019).

The parsing-reading-predict network (PRPN, Shen et al. 2018b) is a latent tree neu-

ral language model that achieves remarkable performance on the language modeling

task. With respect to the unsupervised parsing performance, PRPN has been claimed to

be the first latent tree induction model to successfully produce syntactically plausible

structures (Htut et al., 2018). The model is based on a continuous notion of syntac-

tic distance, which can be computed by differentiable structured attention. However,

PRPN does not model the parsing action directly. Constituency trees need to be ex-

tracted externally, working together with a biased parser. This parser is not part of the

4.1. Related Work 61

model and cannot be trained. Model details of PRPN as well as the tree extraction

procedure will be discussed in Section 4.2.1.

To fix this problem, in this chapter, we propose an imitation learning approach

that combines the continuous PRPN model with a discrete parsing model (i.e., Tree-

LSTM), both trained without access to gold standard parse trees. We exploit the ad-

vantages of the PRPN (it is differentiable and supports backpropagation to syntactic

distance) by transferring its knowledge to a discrete parser, which explicitly models

tree-building operations. We accomplish the knowledge transfer by training the dis-

crete parser to mimic the behavior of the PRPN. Then, the discrete parser refines its

policy by straight-through Gumbel-Softmax (ST-Gumbel, Jang et al. 2017). We eval-

uate our approach on a Natural Language Inference dataset (Bowman et al., 2015),

where the task is to classify the inference relationship between two sentences. Our

approach outperforms previous latent tree induction models on this task in terms of

parsing F-score, and also improves self-agreement. 1

4.1 Related Work

4.1.1 Latent Tree Learning Through Downstream Tasks

Tree-structured recursive neural networks (Tree-RvNNs, Socher et al., 2011), espe-

cially tree-structured long short-term memory networks (Tree-LSTMs, Tai et al., 2015)

have been shown to be effective at sentence understanding tasks such as sentiment anal-

ysis (Socher et al., 2011, 2013), textual entailment (Bowman et al., 2016) and machine

translation (Eriguchi et al., 2016). Typically, previous work on tree-structured neu-

ral models assumes that tree structures are either provided together with the data set

or produced by an off-the-shelf syntactic parser (e.g., the Stanford Parser, Klein and

Manning 2003). Some variants of these models (Socher et al., 2011; Bowman et al.,

2016) can also be trained on the existing annotations to parse unseen sentences that

they consume at the inference phase.

As we discussed before, harnessing trees from supervised parsers suffers some

limitations. Recent work focuses more on learning tree structures from the data in an

unsupervised manner, which is called latent tree learning. Yogatama et al. (2017),

for the first time, proposed to learn sentence-specific tree-based compositional archi-

tectures from a downstream task, rather than using explicit supervision from existing

1Our code is available at https://github.com/libowen2121/Imitation-Learning-for-Unsup-Parsing

62 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

annotations. The authors used reinforcement learning and took performance on the

downstream task that used the computed sentence representation as the reward signal.

Maillard et al. (2017) introduced the CYK chart parser (Cocke, 1969; Kasami, 1966;

Younger, 1967) to Tree-LSTMs. Since the chart parser is fully differentiable, the pro-

posed model can be trained end-to-end on a downstream task using stochastic gradient

descent, although the chart parser also brings additional computational complexity.

Choi et al. (2018) proposed Gumbel Tree-LSTMs, where a straight-through Gumbel-

Softmax estimator (Jang et al., 2017) is utilized to decide the parent node at each

step during the tree building process and calculate gradients of the discrete decision.

However, regarding the parsing performance, these models cannot generate plausible

constituency tree structures compared to human expert annotated gold parse trees. A

systematic study (Williams et al., 2018a) shows that, the learned parsing strategies are

not especially consistent across random restarts; the generated constituency trees do

not resemble those of an annotated treebank (i.e., Penn Treebank).

Instead of single sentence modeling, Liu et al. (2018) introduced a model to com-

pare two sentences by matching their latent constituents via a CKY chart for sentence

matching tasks. Shen et al. (2019a) introduced Ordered Memory (OM), which in-

cludes a new memory updating mechanism and a new gated recursive cell, to induce

tree structures on synthetic formal language datasets and sentiment analysis.

Besides the constituency trees, dependency trees have also been investigated in the

research on latent tree learning. Kim et al. (2017) injected a graph-based CRF de-

pendency parser into recurrent neural networks to bias the self-attention mechanism.

Liu and Lapata (2018) proposed to use a variant of Kirchhoff’s Matrix-Tree Theorem

(Koo et al., 2007) to implicitly consider non-projective dependency tree structures for

both sentence and document modeling, where major operations for tree builidng can

be parallelized efficiently on GPUs. Corro and Titov (2019b) used differentiable dy-

namic programming, which allowed for efficient sampling (Corro and Titov, 2019a),

to induce projective dependency trees for sentiment analysis and natural language in-

ference tasks.

4.1.2 Latent Tree Learning Through Language Modeling

As a substitute for natural language understanding-based downstream tasks, language

modeling has also been studied as an objective to learn latent tree structures. Shen

et al. (2018b) proposed the parsing-reading-predict network (PRPN), which can si-

4.1. Related Work 63

multaneously induce the constituency tree structures from the raw sentences. Then

the inferred structures are leveraged to guide the self-attention of a long short-term

memory-network (LSTMN, Cheng et al. 2016) to form a better neural language model.

The LSTMN is an extension of the standard LSTM architecture, where a memory net-

work takes place of a single memory cell. Htut et al. (2018) confirmed that the PRPN

is able to produce meaningful tree structures when compared to the human annotated

treebank. Shen et al. (2019b) further proposed a novel inductive bias Ordered Neurons

and design a new RNN unit ON-LSTM, which enables RNN models to perform tree-

like compositions without breaking its sequential form. Similar to the PRPN, syntactic

distances are utilized for tree extraction. Such distances are computed from a specif-

ically designed forgetting gate in the ON-LSTM, then a biased top-down parsing pro-

cedure (also used in the PRPN) is called to produce the parse tree. In the unsupervised

parsing, the ON-LSTM achieves better performance than the PRPN. However, Dyer

et al. (2019) pointed out that this biased top-down parser can only recover a fraction of

all possible trees in theory. The authors also found that applying this parser, surpris-

ingly, proxies derived from a conventional LSTM language model can produce trees

comparably well to the specialized ON-LSTM. Aside from the conventional unidirec-

tional language modeling, Wang et al. (2019) proposed the Tree Transformer, which

integrates tree structures into bidirectional Transformer encoder for masked language

modeling.

4.1.3 Imitation Learning

Reinforcement learning (RL; Sutton and Barto 2018) is a general-purpose framework

that enables agents to reason about sequential decision-making as an optimization pro-

cess. It usually describes how agents interact with unknown environment, where the

goal is to select actions to maximize a future cumulative reward. With the rapid de-

velopment of deep neural networks, deep reinforcement learning (Mnih et al., 2013,

2015; Silver et al., 2016) has been an active research area that agents learn their own

knowledge directly from raw inputs through neural networks.

When reinforcement learning is applied to the latent tree learning problem, each

decision step in the parsing process can be considered as an action. Typically, there

is no instant reward or supervision for each parsing decision. The ultimate reward or

the learning signal can only be obtained from the loss on a downstream task or lan-

guage modeling, when the entire tree structure is built. It is one of the reasons why the

64 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

learning algorithm is fragile and the model is hard to train. Imitation learning (Schaal,

1999; Argall et al., 2009; Billard et al., 2016), as an approach to help alleviate this prob-

lem, has been investigated to efficiently and intuitively program autonomous behavior.

Typical imitation learning includes two approaches: (1) directly replicating desired be-

havior from a teacher (a human or a well-trained model) via step-by-step supervised

learning, which is called behavioral cloning (Bain and Sammut, 1995); (2) learning

the underlying objectives of the desired behavior from demonstrations, which is called

inverse optimal control (Kalman, 1964) or inverse reinforcement learning (Russell,

1998). Our approach adopts the first one and follows a two-step strategy: behavioral

cloning and policy refinement. Policy refinement is required in our approach because

the teacher is imperfect. Our experiments show the benefits of policy refinement in

this case.

Our work in this chapter also follows the framework of Mou et al. (2017), who

coupled neural and symbolic systems for semantic parsing by pre-training a reinforce-

ment learning executor with neural attention. We extend this idea to syntactic parsing

and show the relationship between parsing and downstream tasks.

4.1.4 Knowledge Distillation

Another approach related to our work in this chapter is knowledge distillation. Knowl-

edge distillation (Buciluǎ et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015) has

been first proposed to transfer the knowledge from a well-trained large neural net-

work (always called the teacher) to a small neural network (always called the student).

Given a set of training samples, the student network is trained with the true targets and

the teacher’s predicted probabilities as soft targets.

Knowledge distillation has been shown to improve performances for various NLP

tasks. Kim and Rush (2016) employed the knowledge distillation for the sequence level

knowledge transfer in neural machine translation systems. Hu et al. (2016) proposed

a framework to enhance different types of neural networks with declarative first-order

logic rules using knowledge distillation, which brings benefits to sentiment analysis

and named entity recognition. Kuncoro et al. (2016) distilled an ensemble of greedy

transition-based dependency parsers to a first-order graph-based dependency parser.

More recently, knowledge distillation has been utilized on large-scale pre-trained trans-

formers. A large volume of research work has explored the application of knowledge

distillation to compress pre-trained transformers into smaller transformers or simpler

4.2. Problem Formulation 65

3

2

1

0

Height

w1 w2

w3 w4

w5

2 23 1Syntactic Distance
<latexit sha1_base64="FfeqU7GMDdD2qsVQcPiFIp8GLQQ=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZcFNy4r2Ae0Y8lkMm1oJhmSjFKG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJTe53H6nSTIp7M02oH+ORYBEj2FjpYRBIHuppbK8snA2rNbfuzoFWiVeQGhRoDatfg1CSNKbCEI617ntuYvwMK8MIp7PKINU0wWSCR7RvqcAx1X42Tz1DZ1YJUSSVPcKgufp7I8OxzqPZyRibsV72cvE/r5+a6NrPmEhSQwVZPBSlHBmJ8gpQyBQlhk8twUQxmxWRMVaYGFtUxZbgLX95lXQu6t5l3b1r1JqNoo4ynMApnIMHV9CEW2hBGwgoeIZXeHOenBfn3flYjJacYucY/sD5/AEyBJLr</latexit>

d

Figure 4.1: An example of a parse tree. The syntactic distance of two adjacent words

is defined as the height of the common ancestor of these words in the parse tree.

architectures (e.g., BiLSTMs) in both task-specific (Tang et al., 2019; Turc et al., 2019;

Sun et al., 2019a; Aguilar et al., 2020) and task-agnostic (Tsai et al., 2019; Sanh et al.,

2019; Jiao et al., 2019; Wang et al., 2020) fashion.

In this chapter, we transfer the knowledge learned from a teacher model to a student

model. However, in our case, the teacher and student models are heterogeneous. So

we conduct knowledge transfer with predicted output rather than predicted soft proba-

bilities. Moreover, our student has a stage of policy refinement, which typically does

not exist in traditional distilling approaches.

4.2 Problem Formulation

4.2.1 Parsing-Reading-Predict Network

Models

The first ingredient of our approach is the parsing-reading-predict network (PRPN;

Shen et al. 2018b), which is trained using a language modeling objective, i.e., it pre-

dicts the next word in the text based on previous words. Given a sentence [w1, ...,wN]

and corresponding input embeddings [w1, ...,wN], the PRPN introduces the concept of

syntactic distance dt (illustrated in Figure 4.1), defined as the height of the common an-

cestor of the two consecutive words (wt−1, wt) in the parse tree , where t is the position

index in a sentence. Since gold standard dt is not available at training time, the PRPN

uses a two-layer convolutional neural network (CNN) to estimate it with d̂t . Specifi-

cally, the convolutional kernel window size for the first layer is L, which determines the

66 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

valid history context length. And the window size for the second layer is 1. The input

is the embeddings of the current word wt and its left context wt−L,wt−L+1, · · · ,wt−1.

The output is given by

d̂t = CNN(wt−L,wt−L+1, · · · ,wt). (4.1)

In fact, absolute distance values are not required, it is sufficient to preserve their order.

In other words, if di < d j, then it is desired that d̂i < d̂ j. However, even the order of

dt is not available at training time, and d̂t is learned end-to-end in an unsupervised

manner to optimize the language modeling objective.

The PRPN computes the difference between d̂t at the current step and all previous

steps d̂ j for 2≤ j < t. The differences are normalized to [0,1]:

α
t
j =

hardtanh(τ(d̂t− d̂ j))+1
2

(4.2)

where hardtanh(x) = max(−1,min(x,1)) and τ is the temperature. Finally, a soft gate

is computed right-to-left in a multiplicatively cumulative fashion:

gt
i =

t−1

∏
j=i+1

α
t
j (4.3)

for 1 ≤ i ≤ t− 1. The gate gt
i is used to reweight another intra-sentence attention s̃ t

i ,

which is computed as:

s̃ t
i = softmax (

h>i (W[ht−1;wt])√
δk

), (4.4)

where ht is the hidden memory tape at time step t, δk is the dimension of the hidden

state and W is a weight matrix. The reweighed intra-sentence attention si then becomes

st
i =

gt
i

∑
t−1
i=1 gt

i
s̃ t

i . (4.5)

It is then used to compute the convex combination of attention candidate vectors, which

are incorporated to recurrently compute an adaptive memory representation to summa-

rize information relevant to the current time step, shown in Figure 4.2. Finally, the next

token is predicted based on all memories that are syntactically and directly relevant.

Tree extraction

The syntactic distances in the PRPN are positive real values, from which tree structures

are inferred using an external procedure. Given the syntactic distances d̂ estimated by

4.2. Problem Formulation 67

Gated-weighted
attention

st
i =

gt
iPt�1

i=1 gt
i

est
i

<latexit sha1_base64="lLjgR1hFWIo8WHX0XV+CrC5/68g=">AAAB6nicbVBNS8NAEJ3Ur1q/6sfNy2IRPIVEFD0WvHisaG2hDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzwlQKg5737ZRWVtfWN8qbla3tnd296v7Bo0kyzXiTJTLR7ZAaLoXiTRQoeTvVnMah5K1wdDP1W09cG5GoBxynPIjpQIlIMIpWunddt1etea43A1kmfkFqUKDRq351+wnLYq6QSWpMx/dSDHKqUTDJJ5VuZnhK2YgOeMdSRWNugnx26oScWqVPokTbUkhm6u+JnMbGjOPQdsYUh2bRm4r/eZ0Mo+sgFyrNkCs2XxRlkmBCpn+TvtCcoRxbQpkW9lbChlRThjadig3BX3x5mTyeu/6l691d1OpHRRxlOIYTOAMfrqAOt9CAJjAYwDO8wpsjnRfn3fmYt5acYuYQ/sD5/AE/YIz4</latexit>...

<latexit sha1_base64="9dbxzP+zdljuBX5q+ilsQHSSV3E=">AAAB6nicbVDLSgNBEOyNrxhf8XHzMhgET2FXFD0GvHiMaEwgWcLsZDYZMjO7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7olQKi77/7RVWVtfWN4qbpa3tnd298v7Bo00yw3iDJTIxrYhaLoXmDRQoeSs1nKpI8mY0vJn6zSdurEj0A45SHira1yIWjKKT7lU36JYrftWfgSyTICcVyFHvlr86vYRlimtkklrbDvwUwzE1KJjkk1InszylbEj7vO2oporbcDw7dUJOndIjcWJcaSQz9ffEmCprRypynYriwC56U/E/r51hfB2OhU4z5JrNF8WZJJiQ6d+kJwxnKEeOUGaEu5WwATWUoUun5EIIFl9eJo/n1eCy6t9dVGpHeRxFOIYTOIMArqAGt1CHBjDowzO8wpsnvRfv3fuYtxa8fOYQ/sD7/AHuW41r</latexit>

m1
<latexit sha1_base64="uf4c9PXyVlWF7397URarY+vhEq4=">AAAB6nicbVDJSgNBEK2JW4xbXG5eGoPgKcwERY8BLx4jmgWSIfR0epImvQzdPUIY8glePCji1S/y5t/YSeagiQ8KHu9VUVUvSjgz1ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqQptEcaU7ETaUM0mblllOO4mmWESctqPx7cxvP1FtmJKPdpLQUOChZDEj2DrpQfRr/XLFr/pzoFUS5KQCORr98ldvoEgqqLSEY2O6gZ/YMMPaMsLptNRLDU0wGeMh7ToqsaAmzOanTtG5UwYoVtqVtGiu/p7IsDBmIiLXKbAdmWVvJv7ndVMb34QZk0lqqSSLRXHKkVVo9jcaME2J5RNHMNHM3YrICGtMrEun5EIIll9eJa1aNbiq+veXlfpJHkcRTuEMLiCAa6jDHTSgCQSG8Ayv8OZx78V79z4WrQUvnzmGP/A+fwDv341s</latexit>

m2
<latexit sha1_base64="khQr8f+jpBfzarZlGhdEgSXyHzg=">AAAB6nicbVDLSgMxFL2pr1pf9bFzEyyCqzLjA10W3LisaB/QDiWTZtrQJDMkGaEM/QQ3LhRx6xe5829M21lo64ELh3Pu5d57wkRwYz3vGxVWVtfWN4qbpa3tnd298v5B08SppqxBYxHrdkgME1yxhuVWsHaiGZGhYK1wdDv1W09MGx6rRztOWCDJQPGIU2Kd9CB7F71yxat6M+Bl4uekAjnqvfJXtx/TVDJlqSDGdHwvsUFGtOVUsEmpmxqWEDoiA9ZxVBHJTJDNTp3gU6f0cRRrV8rimfp7IiPSmLEMXackdmgWvan4n9dJbXQTZFwlqWWKzhdFqcA2xtO/cZ9rRq0YO0Ko5u5WTIdEE2pdOiUXgr/48jJpnlf9q6p3f1mpHeVxFOEYTuAMfLiGGtxBHRpAYQDP8ApvSKAX9I4+5q0FlM8cwh+gzx/xY41t</latexit>

m3

<latexit sha1_base64="dpe7kAiq+L4MFnN+OAQ4c0JHRCY=">AAAB7HicbVBNS8NAEJ34WetX/bh5WSyCp5KIoseCF48VTFtoY9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+Oyura+sbm6Wt8vbO7t5+5eCwaZJMM+6zRCa6HVLDpVDcR4GSt1PNaRxK3gpHt1O/9cS1EYl6wHHKg5gOlIgEo2gl3/S8R+xVqm7NnYEsE68gVSjQ6FW+uv2EZTFXyCQ1puO5KQY51SiY5JNyNzM8pWxEB7xjqaIxN0E+O3ZCzqzSJ1GibSkkM/X3RE5jY8ZxaDtjikOz6E3F/7xOhtFNkAuVZsgVmy+KMkkwIdPPSV9ozlCOLaFMC3srYUOqKUObT9mG4C2+vEyaFzXvqubeX1brx0UcJTiBUzgHD66hDnfQAB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8AghuOVw==</latexit>

st
1

<latexit sha1_base64="k76eQhuMI8c+4pu0+dzC5/pH0us=">AAAB7HicbVBNS8NAEJ3Ur1q/6sfNy2IRPJWkKHosePFYwbSFNpbNdtMu3WzC7kQopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up35rSeujUjUA45THsR0oEQkGEUr+aZXe8ReueJW3TnIKvFyUoEcjV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dknOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoJpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKmrWqd1V17y8r9ZM8jiKcwhlcgAfXUIc7aIAPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fg6GOWA==</latexit>

st
2

<latexit sha1_base64="FMQBWvY9mDy+lr+rZhHLZnF+3Lk=">AAAB7HicbVDLSgNBEOyNrxhf8XHzMhgET2HXB3oMePEYwU0CyRpmJ5NkyOzsMtMrhCXf4MWDIl79IG/+jZNkD5pY0FBUddPdFSZSGHTdb6ewsrq2vlHcLG1t7+zulfcPGiZONeM+i2WsWyE1XArFfRQoeSvRnEah5M1wdDv1m09cGxGrBxwnPIjoQIm+YBSt5JvuxSN2yxW36s5AlomXkwrkqHfLX51ezNKIK2SSGtP23ASDjGoUTPJJqZManlA2ogPetlTRiJsgmx07IadW6ZF+rG0pJDP190RGI2PGUWg7I4pDs+hNxf+8dor9myATKkmRKzZf1E8lwZhMPyc9oTlDObaEMi3srYQNqaYMbT4lG4K3+PIyaZxXvauqe39ZqR3lcRThGE7gDDy4hhrcQR18YCDgGV7hzVHOi/PufMxbC04+cwh/4Hz+AIUnjlk=</latexit>

st
3

<latexit sha1_base64="41HqVTOF1a+oEo7iq6y2G2YUkjc=">AAAB8HicbVDLSgNBEOz1GeMrPm5eBoPgxbArih4DXjxGMA9J1jA7mU2GzM4uM71CWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dQSKFQdf9dpaWV1bX1gsbxc2t7Z3d0t5+w8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJn4zSeujYjVPY4S7ke0r0QoGEUrPZhuhmfe+BG7pbJbcacgi8TLSRly1Lqlr04vZmnEFTJJjWl7boJ+RjUKJvm42EkNTygb0j5vW6poxI2fTQ8ekxOr9EgYa1sKyVT9PZHRyJhRFNjOiOLAzHsT8T+vnWJ47WdCJSlyxWaLwlQSjMnke9ITmjOUI0so08LeStiAasrQZlS0IXjzLy+SxnnFu6y4dxfl6mEeRwGO4BhOwYMrqMIt1KAODCJ4hld4c7Tz4rw7H7PWJSefOYA/cD5/AIw1kBg=</latexit>

st
t�1

<latexit sha1_base64="CMU77yJUJcq/sicsf8xErYdh/fI=">AAAB7nicbVDLSgNBEOyNrxhf8XHzMhgEL4ZdUfQY8OIxgjGBZAmzk0kyZGZ2mekVwpKP8OJBEa9+jzf/xkmyB00saCiquunuihIpLPr+t1dYWV1b3yhulra2d3b3yvsHjzZODeMNFsvYtCJquRSaN1Cg5K3EcKoiyZvR6HbqN5+4sSLWDzhOeKjoQIu+YBSd1FTdDM+DSbdc8av+DGSZBDmpQI56t/zV6cUsVVwjk9TaduAnGGbUoGCST0qd1PKEshEd8Lajmipuw2x27oScOqVH+rFxpZHM1N8TGVXWjlXkOhXFoV30puJ/XjvF/k2YCZ2kyDWbL+qnkmBMpr+TnjCcoRw7QpkR7lbChtRQhi6hkgshWHx5mTxeVIOrqn9/Wakd5XEU4RhO4AwCuIYa3EEdGsBgBM/wCm9e4r14797HvLXg5TOH8Afe5w/1G48s</latexit>

mt�1

<latexit sha1_base64="KoJgGxiLn/gD70yxfB99o3Cy5QI=">AAAB9HicbVDLSsNAFJ3UV62v+ti5GSyCq5KIosuCG5cV7APaUCaTSTt0ZhJnbgol5DvcuFDErR/jzr9x2mahrQcuHM65l3vvCRLBDbjut1NaW9/Y3CpvV3Z29/YPqodHbROnmrIWjUWsuwExTHDFWsBBsG6iGZGBYJ1gfDfzOxOmDY/VI0wT5ksyVDzilICV/D5wEbJMDjLI80G15tbdOfAq8QpSQwWag+pXP4xpKpkCKogxPc9NwM+IBk4Fyyv91LCE0DEZsp6likhm/Gx+dI7PrRLiKNa2FOC5+nsiI9KYqQxspyQwMsveTPzP66UQ3foZV0kKTNHFoigVGGI8SwCHXDMKYmoJoZrbWzEdEU0o2JwqNgRv+eVV0r6se9d19+Gq1jgp4iijU3SGLpCHblAD3aMmaiGKntAzekVvzsR5cd6dj0VrySlmjtEfOJ8/g4GScA==</latexit>

m̃t

Recurrent
Unit

<latexit sha1_base64="GfiyiOJwrM8a+evnsNIx0tGF/Gg=">AAAB6nicbVDLSgNBEOyNrxhf8XHzMhgET2FXFD0GvHiMaEwgWcLsZDYZMjO7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7olQKi77/7RVWVtfWN4qbpa3tnd298v7Bo00yw3iDJTIxrYhaLoXmDRQoeSs1nKpI8mY0vJn6zSdurEj0A45SHira1yIWjKKT7lUXu+WKX/VnIMskyEkFctS75a9OL2GZ4hqZpNa2Az/FcEwNCib5pNTJLE8pG9I+bzuqqeI2HM9OnZBTp/RInBhXGslM/T0xpsrakYpcp6I4sIveVPzPa2cYX4djodMMuWbzRXEmCSZk+jfpCcMZypEjlBnhbiVsQA1l6NIpuRCCxZeXyeN5Nbis+ncXldpRHkcRjuEEziCAK6jBLdShAQz68Ayv8OZJ78V79z7mrQUvnzmEP/A+fwBT9o2u</latexit>

mt

Figure 4.2: The update of the adaptive memory representation in the PRPN language

model. mt is the adaptive memory vector corresponding to the word wt .

the PRPN, an intuitive tree extraction scheme is that the largest distance d̂i is found

and the sentence is split into two constituents (· · · ,wi−1) and (wi, · · ·). This process

is then repeated recursively on the two new constituents. The trees inferred by this

scheme, however, yield poor parsing performance. The results reported by Shen et al.

(2018b) are actually obtained using a different scheme: find the largest syntactic dis-

tance d̂i and obtain two constituents (· · · ,wi−1) and (wi, · · ·). If the latter constituent

contains two or more words, then further split it into (wi) and (wi+1, · · ·), regardless

of the syntactic distance d̂i+1. This scheme introduces a bias for right-branching trees,

which presumably explains why it yields better parsing performance than the intuitive

unbiased parsing scheme for English.

Dyer et al. (2019) called this right-branching biased parser COO parser. A COO

parser can generate all binary trees that do not cover the bracketed string “...)((...”. The

avoidance of close-open-open leads to the name COO. This parser only recovers a

fraction of possible trees, because the ratio of the extractable parses to all possible bi-

nary parsers converges logarithmically to 0 as the sentence length grows. The reliance

on this trick illustrates the point we make in this chapter: syntactic distance has the

advantage of being a continuous value, which can be computed as an attention score in

a differentiable model. However, this comes at a price that the PRPN does not model

trees or tree-building operations directly. These operations need to be stipulated exter-

nally, in an ad-hoc inference procedure. This procedure is not part of the model and

cannot be trained, but yet is crucial for good parsing performance.

68 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

4.2.2 Discrete Syntactic Parser

To address this problem, we combine the PRPN with a parser which explicitly models

tree-building operations. Specifically, we use the Gumbel Tree-LSTM (Choi et al.,

2018) shown in Figure 4.3 (a). Gumbel Tree-LSTM is a pyramid-shaped tree-based

LSTM where reinforcement learning in this model is relaxed by Gumbel-Softmax.

Concretely, let w1,w2, · · · ,wN be the embeddings of the words in a sentence. The

model tries every possible combination of two consecutive words by Tree-LSTM, but

then uses softmax (with N− 1 ways) to predict which composition is appropriate at

this step. Let h(1)
1 , · · · ,h(1)

N−1 be the candidate Tree-LSTM composition at the bottom

layer, where the superscript is the layer index. With q being a query vector, the model

computes a distribution p:

p(1)i = softmax{q>h(1)
i }. (4.6)

Assuming the model selects an appropriate composition at the current step, we copy all

other words intactly, shown as orange arrows in Figure 4.3 (a). This process is applied

recursively, forming the structure in the figure.

The Tree-LSTM model is learned by straight-through Gumbel-Softmax (ST-Gumbel;

Jang et al. 2017). ST-Gumbel resembles reinforcement learning, where it samples ac-

tions from its predicted probabilities, exploring different regions of the latent space

other than a maximum posteriori tree. In the forward propagation of ST-Gumbel train-

ing, the model samples an action — in the Tree-LSTM model, the position of com-

position — from the distribution p by the Gumbel trick. The sampled action can be

represented as a one-hot vector a, whose elements take the form:

ai =

1, if i = argmax j{log(p j)+g j}
0, otherwise

(4.7)

where gi is the Gumbel noise, given by:

gi =− log(− log(ui)) (4.8)

ui ∼ Uniform(0,1). (4.9)

It is shown that a is an unbiased sample from the original distribution p (Jang et al.,

2017).

During backpropagation, ST-Gumbel substitutes the selected one-hot action a given

by argmax in Equation (4.7) with a softmax operation

p̃i =
exp{(log(pi)+gi)/τ}

∑ j exp{(log(p j)+g j)/τ} , (4.10)

4.2. Problem Formulation 69

where τ is a temperature parameter that can also be learned by backpropagation. Con-

tinuous relaxations of one-hot vectors are suitable for scenarios where we are con-

strained to sampling discrete variables. But this gradient estimator is clearly biased,

as described the biased path derivative estimator in Bengio et al. (2013). More specif-

ically, in the Gumbel Tree-LSTM model, the gradient flow may not satisfy the tree

constraint. It is likely to cause issues especially for long sentences. In some extreme

case, the true gradient will have a chance to point in the opposite direction of the esti-

mate.

The Tree-LSTM model is trained using the loss in a downstream task (e.g., cross-

entropy loss for classification problems). Compared with reinforcement learning, the

ST-Gumbel trick allows more information to be propagated back to the bottom of the

Tree-LSTM in addition to the selected actions, although it does not follow exact gra-

dient computation. For prediction (testing), the model selects the most probable com-

position according to its predicted probabilities.

The training involves doubly stochastic gradient descent (Lei et al., 2016): the first

stochasticity comes from sampling input from the data distribution, and the second

stochasticity comes from sampling actions for each input. Therefore, ST-Gumbel is

difficult to train (similar to reinforcement learning), and may be stuck in poor local

optima, resulting in low self-agreement for multiple random initializations (Williams

et al., 2018a).

4.2.3 Imitation Learning

Our aim is to combine the PRPN’s continuous notion of syntactic distance and a parser

with discrete tree-building operations. The mapping from the sequence of Tree-LSTM

composition operations to a tree structure is not injective. Given a parse tree, we can

have multiple different composition sequences. This ambiguity could confuse the Tree-

LSTM during training. We solve this problem using the PRPN’s notion of syntactic

distance.

In a predicted parse tree, if more than one operation is applicable, we first group

together the candidates with the lowest syntactic distance. For example, in Figure

4.1, w3 and w4 are first merged. For candidate pairs with the same syntactic distance,

we set the composition order randomly among them. In this way, we can extract the

composition order from the trees infered by a pre-trained PRPN. Then we train the

Tree-LSTM model in a step-by-step (SbS) supervised fashion. Let t̂ (j) be a one-hot

70 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

w1 w2 w3 w4

<latexit sha1_base64="gNIP9Hl+2rpvHKVQwU52/Xnzc8M=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi3iKYB6QLGF2MpsMmZ1dZ3qFsOQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn6rSeujYjVA44T7kd0oEQoGEUrte96GVIzmvTKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+b3TshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDaz4RKUuSKzReFqSQYk+nzpC80ZyjHllCmhb2VsCHVlKGNqGRD8BZfXibNs6p3UXXvzyu1yzyOIhzBMZyCB1dQg1uoQwMYSHiGV3hzHp0X5935mLcWnHzmEP7A+fwBRwqQFg==</latexit>

Jtask

<latexit sha1_base64="Ecyi3qlSN5nqm66/JVVzTbc+t0c=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjK1Yzu7ghuXLdgHtEPJpJk2NpMZk4xQhn6BGxeKuPWT3Pk3pg9BRQ9cOJxzL/feEyScKY3Qh5VbW9/Y3MpvF3Z29/YPiodHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek6u537mnUrFY3OhpQv0IjwQLGcHaSM27QbGE7LJ3Ub7wILIrl8ituoY4Nc9zXOjYaIESWKExKL73hzFJIyo04VipnoMS7WdYakY4nRX6qaIJJhM8oj1DBY6o8rPFoTN4ZpQhDGNpSmi4UL9PZDhSahoFpjPCeqx+e3PxL6+X6rDmZ0wkqaaCLBeFKYc6hvOv4ZBJSjSfGoKJZOZWSMZYYqJNNgUTwten8H/SLtuOa6NmpVSvr+LIgxNwCs6BA6qgDq5BA7QAARQ8gCfwbN1aj9aL9bpszVmrmWPwA9bbJ1uFjU8=</latexit>q

<latexit sha1_base64="Ecyi3qlSN5nqm66/JVVzTbc+t0c=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjK1Yzu7ghuXLdgHtEPJpJk2NpMZk4xQhn6BGxeKuPWT3Pk3pg9BRQ9cOJxzL/feEyScKY3Qh5VbW9/Y3MpvF3Z29/YPiodHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek6u537mnUrFY3OhpQv0IjwQLGcHaSM27QbGE7LJ3Ub7wILIrl8ituoY4Nc9zXOjYaIESWKExKL73hzFJIyo04VipnoMS7WdYakY4nRX6qaIJJhM8oj1DBY6o8rPFoTN4ZpQhDGNpSmi4UL9PZDhSahoFpjPCeqx+e3PxL6+X6rDmZ0wkqaaCLBeFKYc6hvOv4ZBJSjSfGoKJZOZWSMZYYqJNNgUTwten8H/SLtuOa6NmpVSvr+LIgxNwCs6BA6qgDq5BA7QAARQ8gCfwbN1aj9aL9bpszVmrmWPwA9bbJ1uFjU8=</latexit>q

<latexit sha1_base64="r7jXK0evaFS8MADZ7e4uFA1Ozvg=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi3iKYB6SLGF20psMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7woQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRbFBYx6rdkg0ciaxYZjh2E4UEhFybIWjm6nfekKlWSwfzDjBQJCBZBGjxFjp8a6XJURpnPTKFa/qzeAuEz8nFchR75W/uv2YpgKloZxo3fG9xAQZUYZRjpNSN9WYEDoiA+xYKolAHWSzgyfuiVX6bhQrW9K4M/X3REaE1mMR2k5BzFAvelPxP6+Tmug6yJhMUoOSzhdFKXdN7E6/d/tMITV8bAmhitlbXTokilBjMyrZEPzFl5dJ86zqX1S9+/NK7TKPowhHcAyn4MMV1OAW6tAACgKe4RXeHOW8OO/Ox7y14OQzh/AHzucPDOCQiA==</latexit>

Jparse

<latexit sha1_base64="r7jXK0evaFS8MADZ7e4uFA1Ozvg=">AAAB8HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PAi3iKYB6SLGF20psMmZldZmaFsOQrvHhQxKuf482/cZLsQRMLGoqqbrq7woQzbTzv2ymsrK6tbxQ3S1vbO7t75f2Dpo5TRbFBYx6rdkg0ciaxYZjh2E4UEhFybIWjm6nfekKlWSwfzDjBQJCBZBGjxFjp8a6XJURpnPTKFa/qzeAuEz8nFchR75W/uv2YpgKloZxo3fG9xAQZUYZRjpNSN9WYEDoiA+xYKolAHWSzgyfuiVX6bhQrW9K4M/X3REaE1mMR2k5BzFAvelPxP6+Tmug6yJhMUoOSzhdFKXdN7E6/d/tMITV8bAmhitlbXTokilBjMyrZEPzFl5dJ86zqX1S9+/NK7TKPowhHcAyn4MMV1OAW6tAACgKe4RXeHOW8OO/Ox7y14OQzh/AHzucPDOCQiA==</latexit>

Jparse
<latexit sha1_base64="mma6N1ReRW5y5dxAUwrD68I5K5I=">AAAB/3icbVDJSgNBEO1xjXGLCl68NAbBQwgzQdGLEPDiMYJZYDKEnk5N0qRnobtGDGMO/ooXD4p49Te8+Td2loMmPih4vFdFVT0/kUKjbX9bS8srq2vruY385tb2zm5hb7+h41RxqPNYxqrlMw1SRFBHgRJaiQIW+hKa/uB67DfvQWkRR3c4TMALWS8SgeAMjdQpHLYRHjCTzAc5olfUtUtOyfY6haJdtiegi8SZkSKZodYpfLW7MU9DiJBLprXr2Al6GVMouIRRvp1qSBgfsB64hkYsBO1lk/tH9MQoXRrEylSEdKL+nshYqPUw9E1nyLCv572x+J/nphhcepmIkhQh4tNFQSopxnQcBu0KBRzl0BDGlTC3Ut5ninE0keVNCM78y4ukUSk752X79qxYrcziyJEjckxOiUMuSJXckBqpE04eyTN5JW/Wk/VivVsf09YlazZzQP7A+vwB9YGUsg==</latexit>

label = [0, 1, 0]

<latexit sha1_base64="eGZJ6jdq+3bI/UdSXFYDM9flBlY=">AAAB/XicbVDJSgNBEO2JW4xbXG5eGoPgQcJMUPQiBLx4jGAWmAyhp1OTNOlZ6K4R4xD8FS8eFPHqf3jzb+wsB018UPB4r4qqen4ihUbb/rZyS8srq2v59cLG5tb2TnF3r6HjVHGo81jGquUzDVJEUEeBElqJAhb6Epr+4HrsN+9BaRFHdzhMwAtZLxKB4AyN1CketBEeMJPMBzmiV9R1Tm2vUyzZZXsCukicGSmRGWqd4le7G/M0hAi5ZFq7jp2glzGFgksYFdqphoTxAeuBa2jEQtBeNrl+RI+N0qVBrExFSCfq74mMhVoPQ990hgz7et4bi/95borBpZeJKEkRIj5dFKSSYkzHUdCuUMBRDg1hXAlzK+V9phhHE1jBhODMv7xIGpWyc162b89K1cosjjw5JEfkhDjkglTJDamROuHkkTyTV/JmPVkv1rv1MW3NWbOZffIH1ucPEjuUQg==</latexit>

label = [1, 0]

PRPN

(a) Gumbel Tree-LSTM (b) Imitation Learning

Figure 4.3: Overview of our approach. (a): we make use of the Gumbel Tree-LSTM

model of Choi et al. (2018). (b): the model is first trained with step-by-step supervision,

after which Gumbel-Softmax is applied to refine the policy.

vector for the j th step of Tree-LSTM composition, where the hat denotes imperfect

target labels. The parsing loss is defined as:

Jparse =−∑
j
∑

i
t̂(j)
i log p(j)

i , (4.11)

where p(j) is the probability predicted by the Tree-LSTM model. The subscript i in-

dexes the i th position among in 1, . . . ,N j−1, where N j is the number of nodes at the

j th composition step. The overall training objective is a combination of the loss of the

downstream task and the parsing loss (weighted by λ):

J = Jtask +λJparse (4.12)

After step-by-step training, we perform policy refinement to let the Tree-LSTM

model improve its policy by ST-Gumbel. It should be emphasized that how the Tree-

LSTM model builds the tree structure differs between step-by-step training and ST-

Gumbel training. For step-by-step training, we assume an imperfect parsing tree is in

place; therefore, the Tree-LSTM model exploits existing partial structures and predicts

the next composition position. For ST-Gumbel, the tree structure is sampled from its

predicted probability, enabling the model to explore the space of trees beyond the given

imperfect tree.

4.3. Experiments 71

4.3 Experiments

4.3.1 Datasets

We conduct experiments on the AllNLI dataset, the concatenation of the Stanford Nat-

ural Language Inference Corpus (SNLI; Bowman et al. 2015) and the Multi-Genre NLI

Corpus (MultiNLI; Williams et al. 2018b), which is used in other latent tree learning

work for its non-syntactic classification labels for the task of textual entailment. As the

MultiNLI test set is not publicly available, we follow previous work (Williams et al.,

2018a; Htut et al., 2018) and use the development set for testing. For early stopping,

we remove 10k random sentence pairs from the AllNLI training set to form a validation

set. Thus, our AllNLI dataset contains 931K, 10K, and 10K sample pairs for training,

validation, and test, respectively.

4.3.2 Settings

We build the PRPN model and the Tree-LSTM parser following the hyperparameters

in previous work (Shen et al., 2018b; Choi et al., 2018) using publicly released code

bases 2 3. For the SbS training stage, we set λ to be 0.03. For policy refinement stage,

the initial temperature is manually set to be 0.5. PRPN is trained using a language mod-

eling loss on the AllNLI training sentences, whereas the Tree-LSTM model is trained

using a cross-entropy loss for AllNLI classification. We adopt the standard metric

and compute the unlabeled F-score of the constituents predicted by our parsing model

against those given by the Stanford PCFG Parser 3.5.2 (Klein and Manning, 2003). Al-

though the Stanford parser itself may make parsing errors, it achieves generally high

performance and is a reasonable approximation of correct parse trees.

4.3.3 Experimental Results

Main Parsing Results

Parsing results are given in Table 4.1, where left-/right-branching and balanced trees

are included as trivial baselines. The ST-Gumbel Tree-LSTM model and the PRPN

were run for five times with different initializations. For imitation learning given a

PRPN trajectory, we perform SbS training once, as well as policy refinement for five

2https://github.com/yikangshen/PRPN
3https://github.com/nyu-mll/spinn/tree/is-it-syntax-release

72 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

Model Mean F Self-agreement RB-agreement

w/ Punctuation

Left-Branching 18.9 - -

Right-Branching 18.5 - -

Balanced-Tree 22.0 - -

ST-Gumbel 21.9 56.8 38.1

PRPN 51.6 65.0 27.4

Imitation (SbS only) 52.0 70.8 20.6

Imitation (SbS + refine) 53.7† 67.4 21.1

w/o Punctuation

Left-Branching 20.7 - -

Right-Branching 58.5 - -

Balanced-Tree 39.5 - -

ST-Gumbel 36.4 57.0 33.8

PRPN 46.0 48.9 51.2

Imitation (SbS only) 45.9 49.5 62.2

Imitation (SbS + refine) 53.3† 58.2 64.9

Table 4.1: Parsing performance with and without punctuation. Mean F indicates mean

parsing F-score against Stanford Parser (early stop by F-score). Self-/RB-agreement

indicates self-agreement and agreement with right-branching across multiple runs. †

indicates statistically different from corresponding PRPN baseline using a paired one-

tailed t-test.

runs. We evaluate two settings in which we keep and remove punctuation and report

the average F-score against the Stanford Parser.

In the setting of keeping all punctuation, we see that the Tree-LSTM model, trained

by ST-Gumbel from random initialization, does not outperform trivial baselines like

balanced trees, whereas the PRPN outperforms them by around 30%. Our PRPN repli-

cation results are consistent with Htut et al. (2018).

Our first stage in imitation learning (SbS training) is able to successfully transfer

the knowledge induced by the PRPN to the Tree-LSTM model, achieving an F-score

of 52.0, which is clearly higher than the 21.9 achieved by Tree-LSTM trained with ST-

Gumbel alone, and even slightly higher than the PRPN itself. The second stage, policy

refinement, achieves a further improvement in latent tree induction, outperforming the

PRPN by 2.1 F-score points. The difference between the PRPN baseline and policy

4.3. Experiments 73

refinement is as significant as indicated by paired one-tailed t-tests (paired tests are

appropriate, as the models in question use the same training trajectories).

We also evaluate the self-agreement by computing the mean F-score across 25 runs

for policy refinement and 5 runs for other models. We see that our imitation learning

achieves improved self-agreement in addition to parsing performance.

Effect of Punctuation

In the literature of unsupervised parsing, stripping off all punctuation is a normal set-

ting. It is interesting to investigate whether removing punctuation makes the latent tree

learning task easier. Table 4.1 also shows the parsing performance without punctua-

tion. In the setting of without punctuation, our imitation learning approach with policy

refinement can outperform the PRPN by a larger margin (7.3 F-score points) than

the setting of with punctuation. But surprisingly, right-branching sets such a strong

baseline that reaches the best parsing performance for this setting. Even using extra

right-branching bias in the tree-decoding procedure, the PRPN still cannot outperform

the right-branching baseline.

It makes sense that right-branching coincides better with real parsing structures

when punctuation are removed. A simple example is that, an ending period is always

attached to a high-level constituent while right-branching sets it to the bottom level and

consequently causes a lot of errors.

We also compute the agreement with right-branching. In can be found that in the

setting of without punctuation, the PRPN sets an initial policy that more or less agrees

with right-branching, and the parsing policy coincides better with right-branching af-

ter imitation learning. However, in the setting of with punctuation, the right-branching

agreement changes in an opposite way. We conjecture that right-branching is a rea-

son why our imitation learning can get larger improvement over the PRPN without

punctuation. Right-branching provides a relatively flat local optimum so that imitation

learning can do further exploring with a low chance to jump out of it.

In our experiments, we evaluate the constituency trees predicted by our approach

against non-gold parse trees, which are produced by the Stanford PCFG Parser 3.5

(Klein and Manning, 2003). This parser is trained on the standard training set as well

as on the Brown Corpus (Francis and Kucera, 1979), which has been shown to improve

the parse quality of the descriptive sentences and noun phrases (Bowman et al., 2015).

In the AllNLI dataset, the sentence length is relatively short (14.9 on average), which

makes it easy for a parser. The Stanford parser achieves generally high performance

74 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

Type # Occur ST-Gumbel PRPN Imitation (SbS + refine)

NP 69k 22.6 53.2 49.5

VP 58k 4.9 49.4 57.0

S 42k 44.3 63.9 66.0

PP 29k 13.9 55.4 52.4

SBAR 12k 6.9 38.9 41.4

ADJP 4k 10.6 44.2 46.5

Table 4.2: Parsing accuracy for six phrase types which occur more than 2k times in the

MultiNLI development set with keeping punctuation.

and is a reasonable approximation of correct parse trees. It is also the default parser

adopted in the AllNLI dataset (Bowman et al., 2015; Williams et al., 2018b). However,

the Stanford parser itself may still make parsing errors. It’s possible that the Stanford

parser produces some bias that our approach could take advantage of (like the right-

branching pattern in the experiment without punctuation). If it happens, the reported

parsing performance of our approach is thus probably somewhat inflated.

Parsing Performance across Constituent Types

We break down the performance of latent tree induction across constituent types for

the setting of keeping punctuation. From Table 4.2, we see that, among the six most

common ones, our imitation approach outperforms the PRPN on four types. However,

we also notice that for the most frequent type (NP), our approach is 4% worse than

the PRPN. This shows that the strengths of the two approaches complement each other

to some extent, and in future work ensemble methods may be employed to combine

them.

Classification Performance on NLI

Our results show the usefulness of a downstream task for latent tree induction: step-

by-step imitation learning with policy refinement improves the parsing performance of

a state of the part latent tree model such as the PRPN. This provides evidence against

previous studies where researchers claim that an external, non-syntactic task such as

NLI does not improve parsing performance (Williams et al., 2018a; Htut et al., 2018).

One natural question is how the learned models perform on the NLI task. Our

results are compatible with findings of Shi et al. (2018) that a range of different tree

4.3. Experiments 75

This is a powerful evocativeand museum . This is a powerful evocativeand museum .

He seemed triflea .

�D��7UHH�H[DPSOHV�RI�3531 �E��7UHH�H[DPSOHV�RI�RXU�PRGHO��6E6���UHƉQH�

embarrassed He seemed triflea .embarrassed

Figure 4.4: Parse tree examples of PRPN and our model (SbS + refine).

structures yield similar classification accuracy on NLI. The NLI mean accuracy of ST-

Gumbel and our imitation learning with policy refinement on AllNLI development set

in a setting of keeping punctuation is 69.9% and 69.2% respectively, which means the

NLI classification performance of our approach remains the same level as ST-Gumbel.

An interesting follow-up question is why ST-Gumbel improves latent tree induc-

tion when trained with an NLI objective. It has been argued that NLI as currently

formulated is not a difficult task (Poliak et al., 2018); this is presumably why models

can perform well across a range of different tree structures (see above), only some of

which are syntactically plausible. However, this does not imply that the Tree-LSTM

model will learn nothing when trained with NLI. We can think of its error surface be-

ing very rugged with many local optima; the syntactically correct tree corresponds to

one of them. If the model is initialized in a meaningful catchment basin, then NLI

training is more likely to recover that tree. The intuition also explains why the Tree-

LSTM model alone achieves low parsing performance and low self-agreement. On

a very rugged high-dimensional error surface, the chance of getting into a particular

local optimum (corresponding to a syntactically correct tree) is low, especially in rein-

forcement learning and ST-Gumbel that are doubly stochastic.

Parse Tree Examples

In Figure 4.4, we present a few parse tree examples generated by the PRPN and our

model (SbS + refine). As can be seen, our model is able to handle the period correctly

in the examples. Although this could be specified by human-written rules, it is in

fact learned by our approach in an unsupervised manner, since a punctuation mark is

76 Chapter 4. Imitation Learning based Unsupervised Constituency Parsing

treated as a token like other words and our training signal offers no clue regarding how

a punctuation mark should be processed.

Moreover, our model is able to parse verb phrases more accurately than the PRPN,

such as “is a powerful and evocative museum” and “seemed a trifle embarrassed”. This

is also evidenced by quantitative measures in Table 4.2.

4.4 Summary

In this chapter, we proposed a novel way of inducing syntactic structure from down-

stream tasks. We started from a state-of-the-art latent tree induction model learned

from a language modeling objective, the PRPN model of Shen et al. (2018b). The

structured attention mechanism in the PRPN is continuous and fully differentiable al-

though explicit tree structures are extracted through a non-trainable biased procedure.

We pre-trained a PRPN on the raw sentences from a downstream task (i.e., Natural

language Inference, NLI) and transfered the knowledge induced by the PRPN to a dis-

crete tree-structured model, the Tree-LSTM, using step-by-step imitation learning. We

then used straight-through Gumbel-Softmax gradient estimator trained against the NLI

objective to refine the parsing policy of the Tree-LSTM.

Our step-by-step imitation learning as well as the policy refinement resulted in

an improvement of around two points in parsing F-score compared with the PRPN

model. We also improved the self-agreement at the same time. Our work revealed

a new angle towards the latent tree learning problem and provided evidence against

previous work that a downstream, non-syntactic task such as NLI does not improve

parsing performance (Williams et al., 2018a; Htut et al., 2018). Kim et al. (2019a) also

showed that a pre-trained recurrent neural network grammar (RNNG, Dyer et al. 2016)

can produce better parsing performance when further fine-tuned on the unsupervised

RNNG (URNNG, Kim et al. 2019b) objective, the marginal sentence likelihood.

By observing the generated tree structures, we find that different models are ef-

fective at identifying different constituents. In future work, we would like to combine

more potential parsers — including chart-style parsing and shift-reduce parsing — and

transfer knowledge from one to another in a co-training setting.

Our approach has the potential to be a general framework to couple two heteroge-

neous neural latent tree learning models, where adaptation should be especially con-

sidered. For example, given a pre-trained soft tree model, the syntactic knowledge can

be transferred to a student chart parser-based model (e.g., Maillard et al. 2017). In

4.4. Summary 77

the knowledge transfer training phase, given the trees produced by the soft tree model,

the chart parser can be trained by minimizing the hinge loss Gaddy et al. 2018; Ki-

taev and Klein 2018. Beyond constituency trees, our approach can also be applied to

latent dependency tree learning. For instance, suppose some imperfect dependency

tree annotations are available to set up good initialization for a latent dependency tree

model (e.g., Corro and Titov 2019b), the parser can be first learned by maximizing

the log-likelihood of annotated trees (Lafferty et al., 2001) and then be optimized on

downstream tasks.

Chapter 5

Unsupervised Parsing via Pre-trained

Language Models

Transformer-based pre-trained language models (PLMs), particularly BERT (Devlin

et al., 2019) and others (Yang et al., 2019; Liu et al., 2019c; Radford et al., 2019), have

dramatically improved the state of the art in NLP. Such models make it possible to

train a large generic language model on vast unannotated datasets, and fine-tune it for

a specific task using a small amount of annotated data. The success of PLMs has led

to a large literature investigating the linguistic knowledge that PLMs learn implicitly

during pre-training (Liu et al., 2019a; Clark et al., 2019; Kovaleva et al., 2019; Pimentel

et al., 2020), sometimes referred to as BERTology (Rogers et al., 2020).

BERTology has been particularly concerned with the question whether BERT-type

models learn syntactic structure. Typical approaches include test suites of sentences

that instantiate specific syntactic structures (Goldberg, 2019; Warstadt et al., 2019;

Ettinger, 2020), general probes (also known as diagnostic classifiers, Belinkov and

Glass 2019) or specifically designed structural probes (Hewitt and Manning, 2019).

All of these approaches are limited: the first one requires the laborious compilation of

language- and construction-specific suites of sentences; the second one sometimes fails

to adequately reflect differences in representations (Zhang and Bowman, 2018; Hewitt

and Liang, 2019); the third one involves designing a novel extraction model that fo-

cuses on a specifically designed novel metric, but it lacks justification (Hall Maudslay

et al., 2020).

It is therefore natural to use a parsing task to test whether the representations

learned by PLMs contain usable syntactic information. This enables us to test syn-

tactic structure in general, rather than specific constructions, and doesn’t require a spe-

79

80 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

cialized probe. In this chapter, we propose to construct an unsupervised constituency

parser by using attention heads in PLMs. Previously, related approaches have been

proposed under the heading of zero-shot constituency parsing (Kim et al., 2020a,b).1

However, this prior work crucially relies on an annotated development set for feature

selection, identifying transformer heads that are sensitive to syntactic structures. 2 As-

suming a development set is not a realistic experimental setup (Kann et al., 2019). For

most low resource languages, no such annotated data is available, and often not even

an annotation scheme exists. A recent study (Shi et al., 2020) showed that, if a suitable

development set is available, an existing supervised parser trained on a few-shot setting

can outperform strong unsupervised parsing methods by a significant margin.

In this chapter, we propose a novel approach to build a PLM-based unsupervised

parser that requires no annotated development sets: we rank transformer heads based

on their inherent properties, such as how likely tokens are to be grouped in a hierar-

chical structure. We then ensemble the top-K heads to produce constituency trees. We

evaluate our approach and previous zero-shot approaches on the English Penn Tree-

bank (PTB) and eight other languages on the SPMRL dataset. If the development set

is absent, our approach largely outperforms previous zero-shot approaches on the En-

glish PTB. On the other hand, if previous zero-shot approaches are equipped with a

development set, our approach can still match the parsing performance of these ap-

proaches that use the single best head or layer-wise ensemble. For the multilingual

experiment, we take advantage of the top-K heads selected in English and directly

parse other languages using our approach. On five out of nine languages, this crosslin-

gual unsupervised parser matches previous approaches that rely on a development set

in each target language with the single best head or layer-wise ensemble. However, our

fully unsupervised method lags behind the previous state-of-the-art zero-shot parser if

a top-K ensemble is used.

Furthermore, our approach can be use as a tool to analyze the capability of PLMs

in learning syntactic knowledge. As no human annotation is required, our approach

has the potential to reveal the grammars PLMs have learned implicitly. Here, we learn

neural probabilistic context-free grammars (PCFGs) from the trees induced from PLMs

using our approach. We study the learned constituency grammars by comparing them

1Like Kim et al. (2020b), we use zero-shot to refer to the transfer from language modeling to con-
stituency parsing.

2Although it is not rigorously practical to assume the existence of an annotated develop set, a number
of previous studies (Shen et al., 2018b, 2019b; Kim et al., 2019a; Drozdov et al., 2019, 2020) have used
such a set for hyperparameter tuning or early-stopping.

5.1. Related Work 81

against the English PTB. Quantitatively, we evaluate the internal tags (both pretermi-

nal and nonterminal tags) against the English PTB. Qualitatively, we first visualize

the alignment of preterminals and nonterminals of the learned grammars and the gold

labels; then we showcase parse trees to illustrate some characteristics of the learned

grammars.

5.1 Related Work

In this section, we first review the recent work on unsupervised constituency parsing

via neural latent variable models and neural language models. We then discuss emerg-

ing studies on the interpretation of pre-trained language models.

5.1.1 Unsupervised Constituency Parsing via Neural Latent Vari-

able Models

Thanks to their superior capability of distributed representation learning and over-

parameterization (Arora et al., 2018; Du et al., 2019), neural networks have recently re-

newed interest in unsupervised constituency parsing. Neural models with constituency

trees as latent variables are one major approach, where the EM algorithm is used for

optimization. Earlier work (Yogatama et al., 2017; Maillard et al., 2017; Choi et al.,

2018) attempted to induce grammar by optimizing a sentence classification objective,

but this has been proven to be ineffective in parsing (Williams et al., 2018a). Follow-up

work (Shen et al., 2018b) showed that a language modeling objective is more suitable

for unsupervised parsing and such models were claimed to be able to generate mean-

ingful tree structures (Htut et al., 2018).

Probabilistic context-free grammars (PCFGs) were generally used for grammar in-

duction in earlier days. The standard way to parameterize a PCFG is to simply as-

sociate a scalar with each production rule. This direct parameterization is algorith-

mically convenient but struggles to learn meaningful grammars from natural language

data (Carroll and Charniak, 1992). Kim et al. (2019a) introduced neural parameterized

PCFGs to the latent tree model to overcome this issue and further enhanced the model

via latent sentence vectors to reduce the independence assumptions. Furthermore, Zhu

et al. (2020) brought lexical dependencies to PCFGs and proposed a unified framework

for both constituency and dependency grammar induction. Another model, the unsu-

pervised recurrent neural network grammar (URNNG, Kim et al. 2019b), uses varia-

82 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

tional inference over latent trees to perform unsupervised optimization of the RNNG

(Dyer et al., 2016).

On the other hand, Drozdov et al. (2019) proposed the deep inside outside recur-

sive autoencoder (DIORA) to compute two representations for each cell in the chart

by both bottom-up inside pass and top-down outside pass. DIORA optimizes an au-

toencoder objective such that the outside representation for each leaf cell in the tree

should reconstruct the corresponding leaf input word, analogous to masked language

modeling (Devlin et al., 2019). The authors extended DIORA to obtain an improved

variant, S-DIORA (Drozdov et al., 2020), to encode a single tree rather than a weighted

mixture of trees by using a hard argmax operation and a beam at each cell in the chart.

5.1.2 Extracting Trees from Neural Language Models

Another thread of work is to extract constituency tree structures from neural language

models. One way is to manipulate the conventional neural language models to ease the

extraction of tree structures. It involves injecting specifically designed tree structure-

sensitive components to neural language models or fine-tuning the neural language

models to meet linguistic plausibility oriented criteria. Shen et al. (2019b) introduced

the Ordered Neuron LSTM (ON-LSTM) model, which is a modified LSTM language

model where the forgetting gate typically respects the constituent boundary. Wang

et al. (2019) proposed the Tree Transformer, which introduces an extra constraint to

attention heads of the Transformer-based language model in order to encourage the

attention heads to follow tree structures. Cao et al. (2020) introduced an approach to

unsupervised parsing based on the linguistic notion of a constituency test. The authors

designed an unsupervised parser by specifying a set of transformations and fine-tuning

a transformer-based pre-trained language model as an unsupervised neural acceptabil-

ity model to make grammaticality decisions. In this approach, given a sentence, tree

structures are obtained by aggregating its constituency test judgments and minimum

risk decoding. Enhanced by refinement and URNNG fine-tuning, this approach has

substantially outperformed the previous best model and reached 71.3 F1 score 3 on the

English Penn Treebank, approaching the performance of the supervised binary RNNG

+ URNNG with a gap of only 1.5 points.

Instead of intervening in the neural language models for tree extractions, there is

also research work focusing on tree extraction in a parameter-free manner. With the

3This result is obtained by selecting the best model from multiple runs using labeled data, where the
mean score is 67.9 F1. We refer readers to the original paper for more information.

5.1. Related Work 83

rapid development of BERT-type models, approaches in this line have put special ef-

fort into PLMs and also conducted the interpretability study on the syntactic knowledge

learned by PLMs. Zero-shot constituency parsing, whose goal is to automatically ex-

tract trees from PLMs in a parameter-free fashion, was proposed by Kim et al. (2020a).

This parser utilizes the concept of syntactic distance (Shen et al., 2018a), where trees

are induced by an algorithm that recursively splits a sequence of words in a top-down

manner. However, this approach suffers from its greedy search mode, failing to take

into account all possible subtrees. The chart-based zero-shot parser (Kim et al., 2020b)

applies chart parsing to address this problem. One major drawback for these methods is

that they heavily require a separately annotated development set to select the best pars-

ing configuration. Wu et al. (2020) introduced a parameter-free probing technique to

analyze PLMs via perturbed masking on constituency, dependency as well as discourse

structures. Apart from neural language models, there is also research work on extract-

ing constituency trees from the Transfomer-based neural machine translation system.

Mareček and Rosa (2018) proposed heuristic approaches to convert attention weights

to trees. They further introduced a chart-based tree extraction method in transformer-

based neural machine translation encoders and provided a quantitative study (Mareček

and Rosa, 2019).

Our work in this chapter falls in the research line of parameter-free tree extraction

from the PLMs. Particularly, we rank transformer attention heads based on their inher-

ent properties, and create an ensemble of high-ranking heads to produce the final tree.

In this way, our ranking-based parser can work in a fully unsupervised manner where

only raw sentences are required.

5.1.3 Interpretation of PLMs

Contextualized embeddings obtained from PLMs such as BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019c), XLNet (Yang et al., 2019) and ALBERT (Lan et al.,

2020) have recently obtained the state of the art on a variety of NLP tasks including

both natural language understanding and generation tasks. PLMs are trained on large

amounts of unlabeled raw text and subsequently fine-tuned on downstream supervised

tasks. Unlike convolutional or recurrent neural networks, the Transformers have little

cognitive motivation, and the size of PLMs limits the ability to perform ablation studies

on the pre-training phase. Thus, numerous studies recently have attempted to reveal the

reasons behind the impressive performance of PLMs. Such studies are often dubbed

84 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

BERTology (Rogers et al., 2020).

Attention is widely considered to be essential for understanding Transformer mod-

els. Several studies (Raganato and Tiedemann, 2018; Clark et al., 2019; Kovaleva

et al., 2019) have investigated the regular patterns of attention in PLMs: attending to

the token itself, to previous/next tokens, to the end of the sentence, to special tokens

(e.g., [SEP], [CLS], punctuation) and broadly over the entire input sequence.

From a linguistic point of view, researchers are interested in the linguistic knowl-

edge, especially syntactic knowledge, encoded in the PLMs. Artificially crafted test

suites or datasets are a popular approach to manipulate features of interests to an-

alyze PLMs. Goldberg (2019) constructed test suites using naturally-occurring and

manually crafted stimuli for subject-verb agreement and reflexive anaphora phenom-

ena. Warstadt et al. (2019) used a single linguistic phenomenon, negative polarity item

(NPI) licensing in English, to perform a case study for BERT. Ettinger (2020) intro-

duced a suite of diagnostics drawn from psycholinguistic studies to better understand

the linguistic competencies acquired by BERT.

Another commonly employed approach in this field is supervised probes, also

known as diagnostic classifiers (Belinkov and Glass, 2019). Specifically, auxiliary

supervised models, such as linear functions and multi-layer perceptrons (MLPs), are

trained from a constrained view of the representation to predict linguistic properties

like part-of-speech, morphological information, syntactic and semantic information

(Peters et al., 2018b; Tenney et al., 2019b; Liu et al., 2019a). However, as long as

a representation is a lossless encoding, a sufficiently expressive probe with enough

training data can learn any task on top of it. When a probe achieves high accuracy on

a linguistic task, it is still hard to conclude that the representation encodes correspond-

ing linguistic knowledge. Zhang and Bowman (2018) first raised this issue and put

probing accuracy in context using random representation baselines. Hewitt and Liang

(2019) introduced control tasks, which associate word types with random outputs, to

complement linguistic tasks. In this way, a good probe that reflects the representation,

should achieve high probing accuracy and low control task accuracy. Pimentel et al.

(2020) argued that one should always select the highest performing probe one can,

even if it is more complicated. Because it produces a tighter estimate of the mutual

information between a linguistic property and BERT representation. Voita and Titov

(2020) proposed the information-theoretic probing with minimum description length

to additionally consider the amount of effort that a probe needs to reach the probing

accuracy.

5.2. Zero-shot Constituency Parsing via PLMs 85

Besides supervised probes for general purposes, Hewitt and Manning (2019) pro-

posed a structural probe, which evaluates whether syntax trees are embedded in a lin-

ear transformation of a neural model’s representation space. The probe identifies a

linear transformation under which squared L2 distance encodes the distance between

words in the dependency tree, and one in which squared L2 norm encodes depth in

the tree. Hall Maudslay et al. (2020) showed that a more traditional parser with an

identical lightweight parameterization as this structural probe is able to identify more

syntax under a commonly used metric in dependency parsing, undirected unlabeled at-

tachment score (UUAS), while the structural probe outperforms the parser on a novel

metric proposed in Hewitt and Manning (2019). The authors (Hall Maudslay et al.,

2020) therefore argued that a new metric should be clearly justified when it is applied

in probing.

5.2 Zero-shot Constituency Parsing via PLMs

In this section, we briefly review the chart-based zero-shot parser and then introduce

our ranking-based zero-shot parser.

5.2.1 Chart-based Zero-shot Parsing

In chart-based zero-shot parsing, a real-valued score stree(t) is assigned for each tree

candidate t, which decomposes as:

stree(t) = ∑
(i, j)∈t

sspan(i, j), (5.1)

where sspan(i, j) is the score (or cost) for a constituent that is located between positions

i and j (1≤ i≤ j≤ n, where n is the length of the sentence). Specifically, for a span of

length 1, sspan(i, j) is defined as 0 when i = j. For a span longer than 1, the following

recursion applies:

sspan(i, j) = scomp(i, j)+ min
i≤k< j

ssplit(i,k, j) (5.2)

ssplit(i,k, j) = sspan(i,k)+ sspan(k+1, j), (5.3)

where scomp(·, ·) measures the validity or compositionality of the span (i, j) itself, while

ssplit(i,k, j) indicates how plausible it is to split the span (i, j) at position k. Two

alternatives have been developed in Kim et al. (2020b) for scomp(·, ·): the pair score

function sp(·, ·) and the characteristic score function sc(·, ·).

86 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

The pair score function sp(·, ·) computes the average pair-wise distance in a given

span:

sp(i, j) =
1(j−i+1
2

) ∑
(wx,wy)∈pair(i, j)

f (g(wx),g(wy)), (5.4)

where pair(i, j) returns a set consisting of all combinations of two words (e.g., wx,

wy) inside the span (i, j).

Functions f (·, ·) and g(·) are the distance measure function and the representation

extractor function, respectively. For g, given l as the number of layers in a PLM,

g is actually a set of functions g = {gd
(u,v)|u = 1, . . . , l,v = 1, . . . ,a}, each of which

outputs the attention distribution of the vth attention head on the uth layer of the PLM.

The hidden representations of the given words can also serve as an alternative for g.

But Kim et al. (2020a) showed that the attention distributions provide more syntactic

clues under the zero-shot setting. In case of the function f , there are also two options,

Jensen-Shannon (JSD) and Hellinger (HEL) distance. Thus, f = {JSD,HEL}.
The characteristic score function sc(·, ·) measures the distance between each word

in the constituent and a predefined characteristic value c (e.g., the center of the con-

stituent):

sc(i, j) =
1

j− i+1 ∑
i≤x≤ j

f (g(wx),c),

c =
1

j− i+1 ∑
i≤y≤ j

g(wy).

(5.5)

Since scomp(·, ·) is well defined, it is straightforward to compute every possible case

of sspan(i, j) using the CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967).

Finally, the parser outputs t̂, the tree that requires the lowest score (cost) to build, as a

prediction for the parse tree of the input sentence: t̂ = argmint stree(t).

For attention heads ensemble, both a layer-wise ensemble and a top-K ensemble

are considered. The first one averages all attention heads from a specific layer, while

the second one averages the top-K heads across different layers. At test time, given an

input sentence and selected K heads, K separate chart matrices are first obtained, and

then each chart matrix is converted into the corresponding syntactic distance vector

(described in Algorithm 2). Finally, the average of the syntactic distance vectors is

computed and translated into the final parse tree (described in Algorithm 3). In prac-

tice, this ensemble approach, marrying chart-based parser and top-down parser, yields

better performance than simply averaging the attention distributions. The chart-based

zero-shot parser achieves the state of the art in zero-shot constituency parsing.

5.2. Zero-shot Constituency Parsing via PLMs 87

Algorithm 2: Chart to Syntactic Distance (from Kim et al. 2020b)
n: length of an input sentence S.

C ∈ Rn×n: a chart matrix whose elements are sspan(i, j).

P ∈ Rn×n: a matrix, whose (i, j)th element is the split point of the span(i, j) of

the sentence S.

s: index of the start position, initialized as 1.

e: index of the end position, initialized as n.

Function C2D(C, P, s, e):
if s = e then

return [] // (empty vector)

else
v←C[s][e]

p← P[s][e]

return [C2D(C, P, s, p); v; C2D(C, P, p+1, e)] // ([· ; ·]:

vector concatenation)

end

Algorithm 3: Syntactic Distance to Binary Constituency Tree (from Kim

et al. 2020a)
S = [w1,w2, ...,wn]: words in a sentence of length n.

d = [d1,d2, ...,dn−1]: a vector whose elements are the syntactic distances

between every two adjacent words.

Leaf(·): return a leaf node given a token.

Node(·, ·): return a node given two children.

Function D2T(S, d):
if d = [] then

node← Leaf(S[0])

else
i← argmax(d)

childl ← D2T(S≤i, d<i)

childr← D2T(S>i, d>i)

node← Node(childl , childr)

end
return node

88 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

5.2.2 Ranking-based Zero-shot Parsing

The chart-based zero-shot parser relies on the existing development set of a tree-

bank (e.g., the English PTB) to select the best configuration, i.e., the combination of

{g | gd
(u,v),u= 1, . . . , l,v= 1, . . . ,a}, { f | JSD,HEL}, {scomp | sp,sc}, and heads ensem-

ble that achieves the best parsing accuracy. Such a development set always contains

hundreds of sentences, hence considerable annotation effort is still required. Another

argument against using a development set is that the linguistic assumptions inherent

in the expert annotation required to create the development set potentially restrict our

exploration of how PLMs model the constituency structures. It could be that the PLM

learns valid constituency structures, which however do not match the annotation guide-

lines that were used to create the development set.

Here, we take a radical departure from the previous work in order to extract con-

stituency trees from PLMs in a fully unsupervised manner. We propose a two-step

procedure for unsupervised parsing: (1) identify syntax-related attention heads directly

from PLMs without relying on a development set of a treebank; (2) ensemble the se-

lected top-K heads to produce the constituency trees. Figure 5.1 illustrates the pipeline

of our ranking-based zero-shot parser.

For identification of the syntax-related attention heads, we rank all heads by scoring

them with a chart-based ranker. We borrow the idea of the chart-based zero-shot parser

to build our ranker. Given an input sentence and a specific choice of f and scomp,

each attention head gd
(u,v) in the PLM yields one unique attention distribution. Using

the chart-based zero-shot parser in Section 5.2.1, we can obtain the score of the best

constituency tree as:

sparsing(u,v) = stree(t̂) = ∑
(i, j)∈t̂

sspan(i, j), (5.6)

where t̂ = argmint stree(t).

Our ranking method works approximately as a maximum a posteriori probability

(MAP) estimate, since we only consider the best tree the attention head generates. In

unsupervised parsing, marginalization is a standard method for model development.

We have tried to apply marginalization to our ranking algorithm where all possible

trees are considered and the sum score is calculated (using the logsumexp trick) for

ranking. But marginalization does not work well for attention distributions, where an

attending-broadly head with higher entropy is more favourable under this measurement

than a syntax-related head with lower entropy. For this reason, we only consider the

5.2. Zero-shot Constituency Parsing via PLMs 89

Transformer

Layers

Attention Heads

�
Ranking

Ensemble
Parsing

Figure 5.1: Our proposed two-step approach to unsupervised parsing. The purple heat

map corresponding to the Transformer illustrates how likely a specific attention head

is syntax-related. Each head corresponds to a self-attention distribution (given a sam-

ple sentence), showcased by three small heat maps. Intuitively, syntax-related heads

show patterns like local chunking, while syntax-unrelated heads show other patterns

like diagonals, columns or other noisy patterns.

score of the best parse tree.

It is obvious that all combinations of { f | JSD,HEL} and {scomp | sp,sc} will

produce multiple scores for a given head. Here we average the scores of all such

combinations to get one single score. Then we rank all attention heads and select the

syntax-related heads for parsing. However, directly applying the chart-based zero-shot

parser in Section 5.2.1 for ranking delivers a trivial, ill-posed solution. The recur-

sion in Equation (5.3) only encourages the intra-similarity inside the span. Intuitively,

one attention head that produces the same attention distribution for each token (e.g., a

uniform attention distribution or one that forces every token to attend to one specific

token) will get the lowest score (cost) and the highest ranking. Such cases do exist

in PLMs. Clark et al. (2019) showed that BERT exhibits clear surface-level attention

patterns. Some of these patterns will deliver ill-posed solutions in ranking: attending

broadly, attending to a special tokens (e.g., [SEP]), attending to punctuation (e.g., pe-

riod). Figure 5.2b showcases some ill-posed patterns.

To address this issue, we first introduce inter-similarity into the recursion in Equa-

90 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

tion (5.3) and get the following:

ssplit(i,k, j) = sspan(i,k)+ sspan(k+1, j)− scross(i,k, j), (5.7)

where the cross score scross(i,k, j) is the similarity between two subspans (i,k) and (k+

1, j). However, this formulation forces the algorithm to go to the other extreme: one

attention head that produces a totally different distribution for each token (e.g., force

each token to attend to itself or the previous/next token) will get the highest ranking,

which is confirmed in Figure 5.2c. To balance the inter- and intra-similarity and avoid

introducing a tunable coefficient, we simply add a length-based weighting term to

Equation (5.2) and get:

sspan(i, j) =
j− i+1

n
(scomp(i, j)+ min

i≤k< j
ssplit(i,k, j)), (5.8)

where j− i+1 is the length of the span (i, j). The length ratio functions as a regulator

to assign larger weights to longer spans. This is motivated by the fact that longer

constituents should contribute more to the scoring of the parse tree, since the inter-

similarity always has stronger effects on shorter spans. In this way, the inter- and

intra-similarity can be balanced. Figure 5.2d shows the top-6 heads selected by our

ranking algorithm. Compared to the syntax-related heads decided by the single head

parsing performance in Figure 5.2a, although our ranking algorithm is still not perfect,

it can successfully identify the syntax-related properties.

With respect to the choice for scross(i,k, j), we follow the idea of sp and sc in

Equation (5.4) and (5.5) and propose the pair score function spx and the characteristic

score function scx
4 for cross score computation. spx is defined as:

spx(i, j) =
1

(k− i+1)(j− k) ∑
(wx,wy)∈prod(i,k, j)

f (g(wx),g(wy)), (5.9)

where prod(i,k, j) returns a set of the product of words from the two subspans (i,k)

and (k+1, j). And scx is defined as:

scx(i, j) = f (ci,k,ck+1, j), (5.10)

where ci,k =
1

k−i+1 ∑i≤x≤k g(wx), ck+1, j =
1

j−k ∑k+1≤y≤ j g(wy).

We average all the combinations of { f | JSD,HEL}, {scomp | sp,sc} and {scross | spx,scx}
to rank all the attention heads and select the top-K heads. After the ranking step, we

4Subscripts in the naming of functions in this paper: p – pair score, c – characteristic score, x – cross
score.

5.2. Zero-shot Constituency Parsing via PLMs 91

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Top-3 attention heads selected by ranking the single head parsing performance.

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

(b) Top-3 attention heads selected by ranking algorithm: the zero-shot chart-based parser.

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Top-3 attention heads selected by ranking algorithm: the zero-shot chart-based parser +

cross score.

92 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available

ex
pe

rts ar
e

pr
ed

ict
in

g a
bi

g
in

flu
x of

ne
w

sh
ow

s in N
wh

en a
se

rv
ice

ca
lle

d
au

to
m

at
ic

nu
m

be
r

in
fo

rm
at

io
n

wi
ll

be
co

m
e

wi
de

ly
av

ai
la

bl
e

experts
are

predicting
a

big
influx

of
new

shows
in
N

when
a

service
called

automatic
number

information
will

become
widely

available
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) Top-6 attention heads selected by ranking algorithm: the zero-shot chart-based parser +

cross score + length weighting (ours).

Figure 5.2: Top-K attention heads selected by different ranking algorithms.

perform constituency parsing by ensembling the selected heads. We employ the en-

semble method in Section 5.2.1 and average all the combinations of { f | JSD,HEL}
and {scomp | sp,sc} to get a single predicted parse tree for a given sentence.

5.2.3 How to select K

For ensemble parsing, Kim et al. (2020b) proposed three settings: the best head, layer-

wise ensemble, and top-K ensemble. To prevent introducing a tunable hyperparameter,

we propose to select a value for K dynamically based on the property of the ranking

score in Equation (5.6).

Since we use a similarity-based distance, the lower the ranking score, the higher

the ranking. Assuming that scores are computed for all attention heads, we can sort

the scores in ascending order. Intuitively, given the order, we would like to choose

the k for which ranking score increases the most, which means syntactic relatedness

drops the most. Suppose sparsing(k) is the ranking score where k is the head index in

the ascending order, then this is equivalent to finding the k with the greatest gradient

on the curve of the score. We first estimate the gradient of sparsing(k) and then find the

5.3. Grammar Induction 93

k with the greatest gradient. Finally, K is computed as:

K =argmax
k

∑
k−δ≤ j≤k+δ

j 6=k

sparsing(k+ j)− sparsing(k)
j

, (5.11)

where we smooth the gradient by considering δ steps. Here, we set δ = 3.

In practice, we find that the greatest gradient always happens in the head or the tail

of the curve. For the robustness, we select the K from the middle range of the score

function curve, i.e., starting from 30 and ending with 75% of all heads. Although our

ranking algorithm can filter out noisy heads, by observing the attention heatmaps, we

find that noisy heads sometimes still rank high. We do not do any post-processing to

further filter out the noisy heads, so we empirically search k starting at 30. We also

provide a lazy option for K selection, which simply assume a fixed value of 30 for the

top-K ensemble.

5.3 Grammar Induction

We are also interested in exploring to what extent the syntactic knowledge acquired by

PLMs resembles human-annotated constituency grammars. For this exploration, we

infer a constituency grammar, in the form of probabilistic production rules, from the

trees induced from PLMs. This grammar can then be analyzed further, and compared

to human-derived grammars. Thanks to the recent progress in neural parameteriza-

tion, neural PCFGs have been successfully applied to unsupervised constituency pars-

ing (Kim et al., 2019a). We harness this model 5 to learn probabilistic constituency

grammars from PLMs by maximizing the joint likelihood of sentences and parse trees

induced from PLMs. In the following, we first briefly review the neural PCFG and

then introduce our training algorithm.

5.3.1 Neural PCFGs

A probabilistic context-free grammar (PCFG) consists of a 5-tuple grammar G =

(S,N ,P ,Σ,R) and rule probabilities π = {πr}r∈R , where S is the start symbol, N
is a finite set of nonterminals, P is a finite set of preterminals, Σ is a finite set of ter-

minal symbols, and R is a finite set of rules associated with probabilities π. The rules
5A more advanced version of the neural PCFG, the compound PCFG, has also been developed in Kim

et al. (2019a). In this model variant, a compound probability distribution is built upon the parameters of
a neural PCFG. In preliminary experiments, we found the compound PCFG learns similar grammars as
the neural PCFG. So we only use the more light-weight neural PCFG in this chapter.

94 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

are of the form:
S→ A, A ∈N
A→ BC, A ∈N , B,C ∈N ∪P
T → w, T ∈ P ,w ∈ Σ.

Assuming TG is the set of all possible parse trees of G , the probability of a parse tree

t ∈ TG is defined as p(t) = ∏r∈tR πr, where tR is the set of rules used in the derivation

of t. A PCFG also defines the probability of a given sentence x (string of terminals

x∈ Σ∗) via p(x) = ∑t∈TG (x) p(t), where TG(x) = {t|yield(t) = x}, i.e., the set of trees

t such that t’s leaves are x.

The traditional way to parameterize a PCFG is to assign a scalar to each rule πr un-

der the constraint that valid probability distributions must be formed. For unsupervised

parsing, however, this parameterization has been shown to be unable to learn meaning-

ful grammars from natural language data (Carroll and Charniak, 1992). Distributed

representations, the core concept of the modern deep learning, have been introduced

to address this issue (Kim et al., 2019a). Specifically, embeddings are associated with

symbols and rules are modeled based on such distributed and shared representations.

In the neural PCFG, the log marginal likelihood:

log pθ(x) = log ∑
t∈TG (x)

pθ(t) (5.12)

can be computed by summing out the latent parse trees using the inside algorithm

(Baker, 1979), which is differentiable and amenable to gradient based optimization.

We refer readers to the original paper of Kim et al. (2019a) for details on the model

architecture and training scheme.

5.3.2 Learning Grammars from Induced Trees

Given the trees induced from PLMs (described in Section 5.2.2), we use neural PCFGs

to learn constituency grammars. In contrast to unsupervised parsing, where neural

PCFGs are trained solely on raw natural language data, we train them on the sentences

and the corresponding tree structures induced from PLMs. Note that this differs from

a fully supervised parsing setting, where both tree structures and internal constituency

tags (nonterminals and preterminals) are provided in the treebank. In our case, the

trees induced from PLMs have no internal annotations.

For the neural PCFG training, the joint likelihood is given by:

log p(x, t̂) = ∑
r∈t̂R

logπr, (5.13)

5.4. Experiments 95

where t̂ is the induced tree and t̂R is the set of rules applied in the derivation of t̂.
Although tree structures are given during training, marginalization is still involved:

all internal tags will be marginalized to compute the joint likelihood. Therefore, the

grammars learned by our method are anonymized: nonterminals and preterminals will

be annotated as NT-id and T-id, respectively, where id is an arbitrary ID number.

5.4 Experiments

We conduct experiments to evaluate the unsupervised parsing performance of our

ranking-based zero-shot parser on English and eight other languages (Basque, French,

German, Hebrew, Hungarian, Korean, Polish, Swedish). For the grammars learned

from the induced parse trees, we perform qualitative and quantitative analysis on how

the learned grammars resemble the human-crafted grammar of the English PTB.

5.4.1 General Setup

We prepare the PTB (Marcus et al., 1993) for English and the SPMRL dataset (Seddah

et al., 2013) for eight other languages. We adopt the standard split of each dataset to

divide it into development and test sets. For preprocessing, we follow the setting in

Kim et al. (2019a,b). Regarding PLMs, we follow the treatment in Kim et al. (2020b)

for special functional tokens (e.g., [CLS], [SEP]). Specifically, special tokens are kept

untouched at the forward pass of PLMs, then the corresponding dimensions in the

attention matrix are trimmed.

We run our ranking algorithm on the development set to select the syntax-related

heads and the ensemble parsing algorithm on the test set. We only use the raw sen-

tences in the development set, without any syntactic annotations. We average all con-

figurations both for ranking (f , scomp and scross) and parsing (f and scomp); hence we

do not tune any hyperparameters for our algorithm. For K selection, we experiment

with fixed top-K (i.e., top-30) and dynamically searching the best K described in Sec-

tion 5.2.3, dubbed dynamic K. We report the unlabeled sentence-level F1 score to eval-

uate the extent to which the induced trees resemble the corresponding gold standard

trees.

For neural PCFG training, we modify some details but keep most of the model

configurations of Kim et al. (2019a); we refer readers to the original paper for more

information. We train the models on longer sentences for more epochs. Specifically,

96 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

Model Top-down Chart-based Our ranking-based

Configuration

Single Single Top Top Top Dynamic Full

/Layer† /Layer† -K -K‡ -K K heads

w/ dev trees w/o dev trees

BERT-base-cased 32.6 37.5 42.7 29.3 34.8 37.1 35.8

BERT-large-cased 36.7 41.5 44.6 21.5 36.1 38.7 33.2

XLNet-base-cased 39.0 40.5 46.4 38.4 41.2 42.7 42.4

XLNet-large-cased 37.3 39.7 46.4 34.1 40.6 41.1 41.2
RoBERTa-base 38.0 41.0 45.0 35.9 41.7 42.1 39.6

RoBERTa-large 33.8 38.6 42.8 30.2 33.1 37.5 35.7

GPT2 35.4 34.5 38.5 21.9 26.1 27.2 26.1

GPT2-medium 37.8 38.5 39.8 19.4 29.1 29.1 27.2

AVG 36.3 39.0 43.3 28.8 35.3 36.9 35.1

AVG w/o GPT2 * 36.2 39.8 44.7 31.6 37.9 39.8 38.0

Table 5.1: Unlabeled sentence-level parsing F1 scores on the English PTB test set. †:

the best results of the top single head and layer-wise ensemble. ‡: directly applying

the chart-based parser for ranking (without development set trees) and ensembling

the top-K heads for parsing. *: average F1 scores without GPT2 and GPT2-medium.

Bold figures highlight the best scores for the two different groups: with and without

development trees.

we train on sentences of length up to 30 in the first epoch, and increase this length

limit by five until the length reaches 80. We train for 30 epochs and use a learning rate

scheduler.

5.4.2 Results on the English PTB

We first evaluate our ranking-based zero-shot parser on the English PTB dataset. We

apply our methods to four different PLMs for English: BERT (Devlin et al., 2019), XL-

Net (Yang et al., 2019), RoBERTa (Liu et al., 2019c), and GPT2 (Radford et al., 2019).

We follow previous work (Kim et al., 2020a,b) in using two variants for each PLM,

where the X-base variants consist of 12 layers, 12 attention heads, and 768 hidden

dimensions, while the X-large ones have 24 layers, 16 heads, and 1024 dimensions.

5.4. Experiments 97

With regard to GPT2, the GPT2 model corresponds to X-base while GPT2-medium to

X-large.

Table 5.1 shows the unlabeled F1 scores for our ranking-based zero-shot parser as

well as for previous zero-shot parsers in two settings, with and without an annotated

development set. We employ the chart-based parser in a setting without development

trees, where Equations (5.2) and (5.3) are used for ranking and ensembling the top-K

(i.e., top-30) heads. Compared to our method under the same configuration, its poor

performance confirms the effectiveness of our ranking algorithm.

With respect to the K selection, our dynamic K method beats both fixed top-30

and full heads. Surprisingly, using all attention heads for ensemble parsing yields

nearly the same performance as using top-30 heads. This suggests that although our

ranking algorithm filters out some noisy heads, it is still not perfect. On the other hand,

the ensemble parsing method is robust to noisy heads when full attention heads are

used. Figure 5.3 shows how the ensemble parsing performance changes given different

K selection. We can identify a roughly concave shape of the parsing performance

curve, which indicates why our ranking algorithm works. Interestingly, the parsing

performance does not drop too much when K reaches the maximum for XLNet. We

conjecture that syntactic knowledge is more broadly distributed across heads in XLNet.

Our ranking-based parser performs badly on GPT2 and GPT2-medium, which is

not unexpected. Unlike other PLMs, models in the GPT2 category are auto-regressive

language models, whose attention matrix is strictly lower triangular. It makes it hard

for our ranking algorithm to work properly. But for top-down and chart-based zero-

shot parsers, tuning against an annotated development set can alleviate this problem.

We focus on BERT, XLNet and RoBERTa and only evaluate these three models in

the rest of our experiments. Except for GPT2 variants, our parser with dynamic K

outperforms the top-down parser in all cases. On average (without GPT2 variants),

even though our parser only requires raw sentence data, it still matches the chart-based

parser with the top single head or layer-wise ensemble. To explore the limit of the

chart-based parser, we also present the results by selecting the top-K (i.e., top-20)

heads using the annotated development set (Kim et al., 2020b). Selecting heads against

a development set ensures the quality of high ranking heads; top-20 heads are optimal

in this setting (Kim et al., 2020b), unlike top-30 in our setting. Note that in this setting,

the best configuration, i.e., the combination of g, f and scomp as well as K are selected

against the development set. This setting serves as an upper bound of the chart-based

zero-shot parsing and largely outperforms our ranking-based method.

98 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

0 20 40 60 80 100 120 140
k heads

31

32

33

34

35

36

37

38

pa
rs

in
g

f1

0.6

0.5

0.4

0.3

0.2

sc
or

e

parsing f1
score

(a) BERT-base-cased

0 50 100 150 200 250 300 350 400
k heads

31

32

33

34

35

36

37

38

39

pa
rs

in
g

f1

0.6

0.5

0.4

0.3

0.2

0.1

sc
or

e

parsing f1
score

(b) BERT-large-cased

0 20 40 60 80 100 120 140
k heads

35

36

37

38

39

40

41

42

43

pa
rs

in
g

f1

0.7

0.6

0.5

0.4

0.3

0.2

sc
or

e

parsing f1
score

(c) XLNet-base-cased

0 50 100 150 200 250 300 350 400
k heads

36

37

38

39

40

41

42

43

pa
rs

in
g

f1

0.7

0.6

0.5

0.4

0.3

0.2

sc
or

e

parsing f1
score

(d) XLNet-large-cased

0 20 40 60 80 100 120 140
k heads

37

38

39

40

41

42

pa
rs

in
g

f1

0.6

0.5

0.4

0.3

0.2

sc
or

e

parsing f1
score

(e) RoBERTa-base

0 50 100 150 200 250 300 350 400
k heads

33

34

35

36

37

38

pa
rs

in
g

f1

0.6

0.5

0.4

0.3

0.2

sc
or

e

parsing f1
score

(f) RoBERTa-large

Figure 5.3: Relations between K for top-K and parsing performance on different PLMs.

The blue curve shows the ranking score of heads where heads are sorted in an as-

cending order. The red curve shows the parsing performance that is evaluated on the

PTB test set given every 10 heads. The green dashed line indicates the dynamic K.

Table 5.2 presents the parsing scores as well as recall scores on different con-

stituents of trivial baselines and our parser. It indicates that trees induced from XLNet-

5.4. Experiments 99

Model F1 SBAR NP VP PP ADJP ADVP

Balanced 18.5 7 27 8 18 27 25

Left branching 8.7 5 11 0 5 2 8

Right branching 39.4 68 24 71 42 27 38

BERT-base-cased 37.1 36 49 30 42 40 69

BERT-large-cased 38.7 38 50 30 46 42 72
XLNet-base-cased 42.7 45 58 31 46 46 72
XLNet-large-cased 41.1 44 54 30 42 48 64

RoBERTa-base 42.1 38 58 31 47 42 71

RoBERTa-large 37.5 35 53 29 33 36 54

Table 5.2: Unlabeled parsing scores and recall scores on six constituency tags of triv-

ial baseline parse trees as well as ones achieved by our parser using dynamic K on

different PLMs.

base-cased, XLNet-large-cased and RoBERTa-base can outperform the right-branching

baseline without resembling it. This confirms that PLMs can produce non-trivial parse

trees. Large gains on NP, ADJP and ADVP compared to the right branching baseline

show that PLMs can better identify such constituents.

5.4.3 Results for Languages other than English

Low-resource language parsing is one of the main motivations for the development of

unsupervised parsing algorithms, which makes a multilingual setting ideal for evalua-

tion. Multilingual PLMs are attractive in this setting because they are trained to process

over one hundred languages in a language-agnostic manner. Kim et al. (2020b) investi-

gated the zero-shot parsing capability of multilingual PLMs assuming that a small an-

notated development set is available. Here, by taking advantage of our ranking-based

parsing algorithm, we only require raw sentences in the target language. Furthermore,

we also evaluate a more radical crosslingual setting, where we rank attention heads

only on sentences in English and directly apply the parser to eight other languages. We

follow Kim et al. (2020b) and use four multilingual PLMs: a multilingual version of

the BERT-base model (M-BERT, Devlin et al. 2019), the XLM model (Conneau and

Lample, 2019), the XLM-R and XLM-R-large models (Conneau et al., 2020). Each

multilingual PLM differs in architecture and pre-training data, and we refer readers to

100 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

Language English Basque French German Hebrew Hungarian Korean Polish Swedish AVG

Trivial baselines

Balanced 18.5 24.4 12.9 15.2 18.1 14.0 20.4 26.1 13.3 18.1

Left branching 8.7 14.8 5.4 14.1 7.7 10.6 16.5 28.7 7.6 12.7

Right branching 39.4 22.4 1.3 3.0 0.0 0.0 21.1 0.7 1.7 10.0

Ta
rg

et
la

ng
ua

ge
fo

rh
ea

d
se

le
ct

io
n

Chart-based (Single/Layer) †

M-BERT 41.2 38.1 30.6 32.1 31.9 30.4 46.4 43.5 27.5 35.7

XLM 43.0 35.3 35.6 41.6 39.9 34.5 35.7 51.7 33.7 39.0

XLM-R 44.4 40.4 31.0 32.8 34.1 32.4 47.5 44.7 29.2 37.4

XLM-R-large 40.8 36.5 26.4 30.2 32.1 26.8 45.6 47.9 25.8 34.7

AVG 42.4 37.6 30.9 34.2 34.5 31.0 43.8 46.9 29.1 36.7

Chart-based (Top-K) †

M-BERT 45.0 41.2 35.9 35.9 37.8 33.2 47.6 51.1 32.6 40.0

XLM 47.7 41.3 36.7 43.8 41.0 36.3 35.7 58.5 36.5 41.9
XLM-R 47.0 42.2 35.8 37.7 40.1 36.6 51.0 52.7 32.9 41.8

XLM-R-large 45.1 40.2 29.7 37.1 36.2 31.0 46.9 47.9 27.8 38.0

AVG 46.2 41.2 34.5 38.6 38.8 34.3 45.3 52.6 32.5 40.4

Ranking-based (Top-K) ‡

M-BERT 41.5 38.9 33.9 30.2 36.3 30.9 39.0 18.4 26.3 31.7

XLM 44.6 21.0 29.8 39.2 30.5 25.2 23.8 55.2 30.3 31.9

XLM-R 44.8 36.0 34.1 31.8 36.4 32.5 40.3 29.6 26.7 33.4

XLM-R-large 41.1 36.8 30.3 26.8 33.4 24.9 37.4 17.5 26.3 29.2

AVG 43.0 33.2 32.0 32.0 34.2 28.4 35.1 30.2 27.4 31.6

Ranking-based (Dynamic K) ‡

M-BERT 40.7 39.1 28.4 25.5 26.9 31.2 41.3 22.2 21.3 29.5

XLM 44.9 20.8 29.9 40.3 34.4 27.7 23.6 55.1 31.2 32.9

XLM-R 45.5 37.3 30.7 31.5 31.8 34.1 40.8 36.0 27.4 33.7

XLM-R-large 41.0 36.5 29.0 30.1 32.6 25.3 43.9 30.0 25.5 31.6

AVG 43.0 33.4 29.5 31.9 31.4 29.6 37.4 35.8 26.4 31.9

E
ng

lis
h

fo
rh

ea
d

se
le

ct
io

n

Crosslingual ranking-based (Top-K) ‡

M-BERT - 37.9 33.4 31.2 31.5 29.4 45.3 33.4 27.2 34.5

XLM - 25.9 34.4 39.2 39.5 31.9 27.5 50.4 34.2 36.4

XLM-R - 37.9 33.9 35.1 36.8 33.3 44.7 39.7 30.3 37.4

XLM-R-large - 35.7 28.5 28.5 34.7 25.5 44.5 36.9 27.1 33.6

AVG - 34.3 32.6 33.5 35.6 30.0 40.5 40.1 29.7 35.5

Crosslingual ranking-based (Dynamic K) ‡

M-BERT - 38.2 31.0 31.0 29.0 27.1 43.3 30.7 25.8 33.0

XLM - 26.6 35.8 39.7 39.6 32.9 28.0 50.1 34.1 36.9

XLM-R - 38.2 34.0 35.5 36.7 33.5 45.2 39.4 29.9 37.6
XLM-R-large - 37.9 28.0 28.0 31.3 24.6 44.4 32.2 24.9 32.5

AVG - 34.7 32.4 33.5 35.0 29.8 40.4 39.2 29.2 35.3

Table 5.3: Parsing results on nine languages with multilingual PLMs. Except for the triv-

ial baselines, all experimental results are divided into two groups: using target language

for head selection and using English for head selection (crosslingual). †: results of the

best configurations of f , g, scomp and K are decided on an annotated development set.
‡: results where only raw sentences are required. For top-K, 20 is used for chart-based

and 30 is used for our ranking-based. Bold figures highlight the best scores for the two

different groups: using target language and English for head selection.

5.4. Experiments 101

the original papers for more details.

We present a comprehensive analysis of the chart-based parser and our ranking-

based parser on the multilingual setting in Table 5.3. For our ranking-based method, we

conduct experiments using target language or English for head selection with both Top-

K (i.e., top-30) ensemble and dynamic K ensemble. Our method outperforms the trivial

baselines in all cases by a large margin. Through the comparison between different

K selection strategies, we find that our ranking-based parser with Top-K ensemble

matches that using dynamic K ensemble. In contrast to the superiority of dynamic K on

English PLMs in Table 5.1, multilingual PLMs produce similar parsing performance

with a lazy top-30 ensemble. We conjecture that there could be no clear concave pattern

(unlike in Figure 5.3) in the relation of K and parsing performance in this crosslingual

setting.

In terms of head selection via different languages, interestingly, we observe a con-

siderable parsing performance drop on both top-K and dynamic K ensemble. We sus-

pect that our chart-based ranking algorithm (e.g., the inherent context free grammar

assumption) does not work equally well on all languages, at least for the annotation

scheme provided by the SPMRL dataset. In this scenario, using English for head se-

lection has a better chance to capture syntax-related attention heads. Again, as we

discussed before, using annotated trees in the target language can always ensure the

quality of the selected top-K heads.

Compared with the chart-based parser with the top head or layer-wise ensemble,

our crosslingual parser can match the performance on five out of nine languages. Our

method still lags behind the chart-base zero-shot parser with a top-K ensemble. Among

four model variants, XLM-R and XLM-R-large have identical training settings and

pre-training data, and so form a controlled experiment. By directly comparing XLM-R

and XLM-R-large, we conjecture that, as the capacity of the PLM scales, the model

has more of a chance to learn separate hidden spaces for different languages. This

is consistent with a recent study on multilingual BERT (Dufter and Schütze, 2020)

showing that underparameterization is one of the main factors that contribute to mul-

tilinguality. In their study, the authors demonstrate that if the Transformer is severely

overparameterized, the model has enough capacity to model each language separately

without creating a multilingual space. However, if the number of parameters is small,

the model is likely to identify common structures among languages and model them

together.

102 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

5.4.4 Grammar Analysis

By not relying on an annotated development set, we have an unbiased way of investi-

gating the tree structures as well as the grammars that are inherent in PLMs. Specif-

ically, we first parse the raw sentences using our ranking-based parser described in

Section 5.2.2 and then train a neural PCFG given the induced trees using the method in

Section 5.3.2. We conduct our experiments on the English PTB and evaluate how the

learned grammar resembles PTB syntax in a quantitative way on preterminals (POS

tags) and production rules. We visualize the alignment of preterminals and nonter-

minals of the learned grammar and the gold labels as a qualitative study. We also

showcase parse trees of the learned grammar to get a glimpse of some distinctive char-

acteristics of the learned grammar. For brevity, we refer to a neural PCFG learned from

trees induced of a PLM as PCFGPLM and to a neural PCFG learned from the gold parse

trees as PCFGGold.

In Table 5.4, we report preterminal (unsupervised POS tagging) accuracies and pro-

duction rule accuracies of PCFGPLM and PCFGGold on the corpus level. For pretermi-

nal evaluation, we map the anonymized preterminals to gold POS tags using many-to-

one (M-1) mapping (Johnson, 2007), where each anonymized preterminal is matched

onto the gold POS tag with which it shares the most tokens. For production rule eval-

uation, we map both nonterminals and preterminals to gold tags using M-1 mapping

to get the binary production rules. Regarding the gold annotations, we drop all unary

rules. For n-ary rules (n > 2), we convert them to binary rules by right branching and

propagating the parent tag. For example, a n-ary rule A→ B C D yields A→ B A and

A→C D.

Regarding unsupervised POS tagging, we find that all PCFGPLM grammars except

for PCFGRoBERTa-large outperform a discrete HMM baseline (62.7, He et al. 2018) but

are far from the state of the art for neural grammar induction (80.8, He et al. 2018).

All PCFGPLM produce similar accuracies on preterminals as PCFGGold. However, for

the production rules, PCFGPLM lags behind PCFGGold by a large margin. This makes

sense as presumably the tree structures heavily affect nonterminal learning. We also

present the parsing F1 scores of corresponding trees against the gold trees in Table 5.4

for comparison. We observe that for all PCFGPLM, both preterminal accuracies and

production rule accuracies correlate with the parsing F1 scores of the corresponding

trees.

Since the recall scores in Table 5.2 have shown ability of PLMs to identify dif-

5.4. Experiments 103

Trees
Preterminal Rule Parsing

Acc† Acc‡ F1

Gold* 66.1 46.2 -

BERT-base-cased 64.4 24.8 37.1

BERT-large-cased 64.0 22.3 38.7

XLNet-base-cased 67.7 26.1 42.7

XLNet-large-cased 65.8 27.3 41.1

RoBERTa-base 65.7 27.2 42.1

RoBERTa-large 62.4 25.1 37.5

Table 5.4: Preterminal (POS tag) and production rule accuracies of PCFGPLM and

PCFGGold on the entire PTB. †: POS tagging accuracy using the many-to-one map-

ping (Johnson, 2007). ‡: production rule accuracy where anonymized nonterminals and

preterminals are mapped to the gold tags using the many-to-one mapping. *: PCFGGold.

ferent nonterminals, here we visualize the alignment between PCFG internal tags and

corresponding gold labels in Figures 5.4 and 5.5. For the nonterminal alignment, some

of the learned nonterminals clearly align to gold standard labels, in particular for fre-

quent ones like NP and VP. Compared to PCFGGold , PCFGPLM learns a more uncertain

grammar, resulting in overall lower precision. But for the preterminal (POS tag) align-

ment, no clear difference can be identified between PCFGGold and PCFGPLM. This is

consistent with the finding in Table 5.4 that all PCFGPLM produce similar accuracies

on preterminals as PCFGGold.

In Figure 5.6, we show parse trees obtained by PCFGGold, PCFGPLM and the gold

standard reference on a sample sentence. In this sample, PCFGGold predicts the con-

stituency tree structure accurately. On the development set, PCFGGold reaches around

72 unlabeled F1 score, as it is supervised by the PTB trees. Although this is a low

F1-score, it is not untypical for PCFG-based models, which are limited by their insuf-

ficiently flexible rules and their lack of lexicalization. Also note that the oracle binary

trees yield 84.3 F1 (Cao et al., 2020), which are produced by by taking the gold trees

and binarizing them arbitrarily. PCFGPLM perform worse than PCFGGold when com-

pared against the gold tree. They are able to identify short NPs, but don’t work well

for larger constituents. We also observe some frequent incorrect patterns which are

also present in this example, e.g., grouping VBD with the preceding NP, or IN with the

preceding VBD.

104 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(a) PCFGBERT-base-cased

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(b) PCFGXLNet-base-cased

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(c) PCFGRoBERTa-base

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(d) PCFGBERT-large-cased

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(e) PCFGXLNet-large-cased

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(f) PCFGRoBERTa-large

S
SB

AR NP VP PP ADJP
ADVP

Othe
rs

pre
c

NT- 1
NT- 2
NT- 3
NT- 4
NT- 5
NT- 6
NT- 7
NT- 8
NT- 9
NT-10
NT-11
NT-12
NT-13
NT-14
NT-15
NT-16
NT-17
NT-18
NT-19
NT-20
NT-21
NT-22
NT-23
NT-24
NT-25
NT-26
NT-27
NT-28
NT-29
NT-30

(g) PCFGGold

Figure 5.4: Alignment of induced nonterminals of PCFGPLM and PCFGGold on the entire

PTB. The last column prec shows the precision with which a nonterminal predicts a

particular gold constituent.

5.4. Experiments 105

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(a) PCFGBERT-base-cased

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(b) PCFGBERT-large-cased

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(c) PCFGXLNet-base-cased

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(d) PCFGXLNet-large-cased

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(e) PCFGRoBERTa-base

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(f) PCFGRoBERTa-large

DT JJ
NNS

VBD NN CC RB IN JJS NNP CD TO JJR VBG
PO

S
VBP

VBN
RBR

WRB
PR

P
PR

P$ WDT EX MD VB
VBZ

NNPS WP RP
PD

T
WP$ RBS FW UH

SY
M LS

T- 1
T- 2
T- 3
T- 4
T- 5
T- 6
T- 7
T- 8
T- 9
T-10
T-11
T-12
T-13
T-14
T-15
T-16
T-17
T-18
T-19
T-20
T-21
T-22
T-23
T-24
T-25
T-26
T-27
T-28
T-29
T-30
T-31
T-32
T-33
T-34
T-35
T-36
T-37
T-38
T-39
T-40
T-41
T-42
T-43
T-44
T-45
T-46
T-47
T-48
T-49
T-50
T-51
T-52
T-53
T-54
T-55
T-56
T-57
T-58
T-59
T-60

(g) PCFGGold

Figure 5.5: Alignment of induced preterminals (POS tags) of PCFGPLM and PCFGGold

on the entire PTB.

106 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

S

VP

SBAR-TMP

S

VP

PP-CLR

NP

NNS

currencies

JJ

major

JJS

most

IN

against

VBD

weakened

NP-SBJ

NN

dollar

DT

the

IN

as

VBD

surged

NP-SBJ

NNS

bonds

JJ

Foreign

1

(a) Gold

NT-1 [S]

NT-29 [VP]

NT-30 [PP]

NT-1 [S]

NT-29 [VP]

NT-30 [PP]

NT-17 [NP]

NT-10 [NP]

T-12 [NNS]

currencies

T-41 [NN]

major

T-37 [JJ]

most

T-57 [IN]

against

T-25 [VBD]

weakened

NT-23 [NP]

T-27 [NN]

dollar

T-17 [DT]

the

T-38 [IN]

as

T-25 [VBD]

surged

NT-23 [NP]

T-47 [NNS]

bonds

T-42 [JJ]

Foreign

1

(b) PCFGGold

NT-21 [S]

NT-1 [VP]

NT-13 [NP]

T-33 [NN]

currencies

T-53 [JJ]

major

NT-5 [PP]

T-23 [DT]

most

T-28 [IN]

against

NT-30 [NP]

NT-9 [NP]

T-55 [RB]

weakened

NT-28 [NP]

T-22 [NN]

dollar

T-23 [DT]

the

NT-4 [NP]

T-26 [TO]

as

NT-15 [S]

T-15 [VBD]

surged

NT-28 [NP]

T-40 [NNS]

bonds

T-56 [JJ]

foreign

1

(c) PCFGBERT-base-cased

NT-1 [S]

NT-27 [VP]

NT-14 [NP]

NT-8 [NP]

T-49 [NNS]

currencies

T-3 [JJ]

major

T-11 [JJ]

most

NT-26 [NP]

T-26 [IN]

against

T-4 [VBD]

weakened

NT-12 [NP]

NT-25 [PP]

NT-15 [NP]

T-53 [NN]

dollar

T-23 [DT]

the

T-26 [IN]

as

NT-21 [S]

T-4 [VBD]

surged

NT-15 [NP]

T-49 [NNS]

bonds

T-3 [JJ]

foreign

1

(d) PCFGBERT-large-cased

5.4. Experiments 107

NT-21 [S]

NT-1 [VP]

NT-12 [PP]

NT-14 [NP]

NT-13 [NP]

T-16 [NNS]

currencies

T-17 [JJ]

major

T-50 [JJ]

most

T-26 [IN]

against

NT-4 [S]

T-58 [VBD]

weakened

NT-3 [NP]

NT-7 [NP]

T-22 [NN]

dollar

T-23 [DT]

the

T-24 [IN]

as

NT-30 [NP]

T-58 [VBD]

surged

NT-3 [NP]

T-16 [NNS]

bonds

T-17 [JJ]

foreign

1

(e) PCFGXLNet-base-cased

NT-1 [S]

NT-27 [VP]

NT-4 [NP]

NT-23 [NP]

T-16 [NN]

currencies

T-9 [JJ]

major

T-23 [DT]

most

NT-26 [NP]

T-7 [IN]

against

T-54 [VBD]

weakened

NT-12 [NP]

NT-11 [PP]

NT-28 [NP]

T-49 [NN]

dollar

T-23 [DT]

the

NT-26 [NP]

T-7 [IN]

as

T-54 [VBD]

surged

NT-9 [NP]

T-47 [NNS]

bonds

T-45 [JJ]

foreign

1

(f) PCFGXLNet-large-cased

NT-11 [S]

NT-27 [VP]

NT-22 [NP]

NT-19 [NP]

T-47 [NNS]

currencies

T-41 [JJ]

major

T-41 [JJ]

most

NT-10 [VP]

T-26 [IN]

against

T-30 [VBD]

weakened

NT-16 [NP]

NT-18 [PP]

NT-15 [NP]

T-22 [NN]

dollar

T-23 [DT]

the

T-26 [IN]

as

NT-9 [S]

T-30 [VBD]

surged

NT-19 [NP]

T-36 [NNS]

bonds

T-51 [NN]

foreign

1

(g) PCFGRoBERTa-base

NT-21 [S]

NT-1 [VP]

NT-18 [NP]

T-4 [NN]

currencies

T-50 [JJ]

major

NT-7 [VP]

T-14 [PRP$]

most

T-26 [IN]

against

NT-30 [NP]

NT-23 [NP]

NT-13 [NP]

T-53 [NN]

weakened

T-39 [NN]

dollar

T-23 [DT]

the

NT-4 [PP]

T-57 [IN]

as

NT-15 [S]

T-7 [VBD]

surged

NT-13 [NP]

T-22 [NN]

bonds

T-9 [JJ]

foreign

1

(h) PCFGRoBERTa-large

Figure 5.6: Parse tree samples of gold standard, PCFGGold, and PCFGPLM. The

mapped tag (marked in red) for each anonymized nonterminal and preterminal is ob-

tained via many-to-one mapping.

108 Chapter 5. Unsupervised Parsing via Pre-trained Language Models

5.5 Summary

In this chapter, we set out to analyze the syntactic knowledge learned by transformer-

based pre-trained language models. In contrast to previous work relying on test suites

and probes, we proposed to use a zero-shot unsupervised parsing approach. This ap-

proach parses sentences by ranking and ensembling the attention heads of the PLM.

Our approach is able to completely do away with a development set annotated with

syntactic structures, which makes it ideal in a strictly unsupervised setting, e.g., for

low resource languages. We evaluated our method against previous methods on nine

languages. When only raw sentences are available, our method can outperform pre-

vious methods by a large margin. When annotated development sets are available for

previous methods, our method can match them or produce competitive results if they

use the top single head or layer-wise ensemble of attention heads, but lags behind them

if they ensemble the top-K heads. Furthermore, we presented an analysis of the gram-

mars learned by our approach: we used the induced trees to train a neural PCFG and

evaluated the pre-terminal and non-terminal symbols of that grammar. In future work,

we will develop further methods for analyzing the resulting grammar rules. Another

avenue for follow-up research is to use our method to determine how the syntactic

structures inherent in PLMs change when these models are fine-tuned on a specific

task.

Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this thesis, we investigated the problem of unsupervised parsing for two formalisms,

dependency and constituency. It has been considered a difficult problem due to am-

biguity and huge search space. With the rapid development of deep neural networks,

neural models have been brought to bear on unsupervised parsing to ease optimization

and smooth rule probabilities. We explored how to incorporate external knowledge

into neural unsupervised parsing models and demonstrated that neural models can be

improved by leveraging three knowledge sources: (1) symbolic linguistic rules; (2)

alternative learning objectives; (3) large-scale pre-trained language models. We also

induced probabilistic context-free grammars for constituency structures.

Firstly, we studied the problem of unsupervised dependency parsing. Previous

state-of-the-art models all rely on global inference with O(n3) run time. For transition-

based models, although they enable faster inference with O(n) run time and perform

well in supervised parsing, their performance on unsupervised parsing still lags be-

hind. In Chapter 3, we used an autoencoder to integrate discriminative and generative

transition-based parsers, dependency variants of recurrent neural network grammars

(RNNGs; Dyer et al. 2016), yielding a reconstruction process with parse trees as latent

variables. For regularization, we augmented the model with posterior regularization

(Ganchev et al., 2010), which allowed us to seamlessly integrate linguistic knowledge

in the shape of symbolic linguistic rules and still maintained the efficiency of transition-

based systems. Furthermore, we proposed a novel variance reduction method to sta-

bilize neural variational inference with discrete latent variables. Experimental results

on English and eight other languages showed that our model outperforms previous

109

110 Chapter 6. Conclusion and Future Work

unsupervised transition-based dependency parsers and substantially increases parsing

speed over global inference-based models.

Apart from symbolic linguistic rules, knowledge from alternative learning objec-

tives can also be beneficial for grammar induction. In Chapter 4, we focused on la-

tent tree learning for unsupervised constituency parsing. We proposed an imitation

learning approach to combine two typical latent tree models, a continuous soft model

(i.e., PRPN; Shen et al. 2018b) and a discrete hard model (i.e., Tree-LSTM). We ex-

ploited the advantages of the PRPN (being differentiable) by transferring its knowl-

edge learned from a language modeling objective to a discrete parser, which explicitly

models tree-building operations. Then the discrete parser refined its policy by solely

trained on a classification task. Experiments were performed on the Natural Language

Inference dataset (Bowman et al., 2015). Empirical results showed that our approach

outperforms previous models on this task in terms of parsing performance and self-

agreement, confirming the effectiveness of the proposed approach. Our results also

indicated that a downstream, non-syntactic task can be useful for latent tree induction.

Pre-trained language models (PLMs) have achieved remarkable success in many

NLP tasks. Recent studies (Goldberg, 2019; Liu et al., 2019a) showed that PLMs

can learn considerable syntactical knowledge. This suggests that PLMs can be em-

ployed as a resource of knowledge for grammar induction. In Chapter 5, we proposed

a novel approach to build a PLM-based unsupervised constituency parser without re-

quiring an annotated development set. More specifically, we ranked Transformer heads

based on their inherent properties and then ensembled the top-K heads to produce con-

stituency trees. On English and eight other languages, our approach yields competitive

parsing performance. For grammar induction, we learned neural probabilistic context-

free grammars (PCFGs) from the trees induced from PLMs using our approach. We

confirmed that PLMs have captured considerable syntactic knowledge and provided a

novel approach to extract full grammars (not only parse trees) from PLMs.

6.2 Future Work

We would like to once again discuss why grammar induction, or general unsupervised

structure learning, is worth investigation in the future research. Concerning down-

stream NLP tasks like language modeling or text classification, from an absolute per-

formance standpoint, neural models that contain no structure-aware components or

employ no structure knowledge are incredibly effective. Substantial studies, including

6.2. Future Work 111

our work in Chapter 5, have shown that linguistic structures are captured implicitly

within hidden layers of such neural models (e.g., PLMs) through end-to-end training.

Nonetheless, unsupervised structure learning can be useful in modern NLP. Explic-

itly modeling structures as latent variables provides a principled probabilistic way to

inject effective inductive bias and linguistically plausible constraints into neural NLP

models. It also delivers interpretability, transparency and controllability to end-to-end

neural models that typically lack these properties. On the other hand, from a utilitarian

point of view, high-quality syntactical analysis, can still bring performance gains to

large-scale PLMs on downstream tasks such as structured prediction (Kuncoro et al.,

2020) and information extraction (Sachan et al., 2020). 1 Recent work (Cao et al.,

2020) has obtained promising results on unsupervised parsing by utilizing an English

PLM (i.e., RoBERTa; Liu et al. 2019c), approaching the performance of a supervised

parser. It sets up a strong starting point and leaves open questions for follow-up re-

search. An unsupervised parsing system can be applied to real-world applications if it

could finally reach the performance of a supervised one.

With respect to model development, there are still remaining challenges. Firstly,

regarding deep latent variable models, backpropagating through discrete structures is

a challenging problem. It is also a key factor whether meaningful latent structures

can be learned in end-to-end training. To this end, more advanced gradient estimators

could be studied and adapted to unsupervised structure learning. Apart from two popu-

lar approximations used in this thesis, REINFORCE and Gumbel-Softmax, alternative

approaches have been actively studied such as differentiable sparse mappings (Niculae

et al., 2018; Correia et al., 2020) and reducing sampling noise (Grathwohl et al., 2018;

Liu et al., 2019b; Kool et al., 2020). Secondly, combining heterogeneous parsers could

be beneficial. Different parsers may have different assumptions and characteristics,

a combination can achieve ensemble effects. Similar to our work in Chapter 4, fine-

tuning on URNNG (Kim et al., 2019b) has been shown to be effective in unsupervised

constituency parsing (Kim et al., 2019a; Cao et al., 2020). Thirdly, external knowledge

from other modalities is worth investigating for grammar induction. In this thesis, we

have shown that harnessing external knowledge can effectively improve grammar in-

duction systems. Visually grounded grammar induction work (Shi et al., 2019; Zhao

and Titov, 2020) suggests that visual groundings can produce more accurate and stable

parsing models than text-only approaches. Another direction is language games, such

1In Sachan et al. (2020), the authors stress that the performance gains are highly contingent on the
availability of human-annotated dependency parses.

112 Chapter 6. Conclusion and Future Work

as language based multi-agent simulations. While current research work (Ren et al.,

2020; Chaabouni et al., 2020) focuses on identifying compositionality in the context

of concepts transmission, grammar learning can be performed in more sophisticated

simulations. Last but not the least, multilingual unsupervised parsing is a fascinating

avenue for future research. Low resource languages are one of the main motivations

to develop unsupervised parsing algorithms. In Chapter 5, we have shown that multi-

lingual PLMs, which are jointly trained on over 100 languages, have the potential for

cross-lingual parsing. Multilingual PLMs offer a new angle and could inspire follow-

up work on this problem.

Appendix A

Appendix

A.1 Appendix 1

In Chapter 3, we modify the score function in Equation (3.19) to be a simpler version

as Equation (3.9). We show how this modification affects the loss function.

Eq(a)[logγ(x,a)]

= ∑
a

q(a) logγ(x,a)

= ∑
a

qω(a|x)γ(x,a) logγ(x,a)

6 ∑
a

qω(a|x)γ(x,a)γ(x,a)

= Eqω(a|x)[γ
2(x,a)]

= Varqω(a|x)[γ(x,a)]+Eqω(a|x)[γ(x,a)]
2

(A.1)

Since

Eqω(a|x)[γ(x,a)] = ∑
a

qω(a|x)γ(x,a) = 1 (A.2)

we have

Eq(a)[log
pθ(x,a)
qω(a|x)

]

= Eq(a)[log
pθ(x,a)

qω(a|x)γ(a,x)
+ logγ(a,x)]

= Eq(a)[log
pθ(x,a)

q(a)
]+Eq(a)[logγ(a,x)]

6 Lx +Varqω(a|x)[γ(x,a)]+1.

(A.3)

Thus, in theory, Varqω(a|x)[γ(x,a)] can be viewed as a regularization for posterior regu-

larization. And practically, this help the learning process to be more steady.

113

Bibliography

Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., and Guo, C. (2020). Knowledge

distillation from internal representations. In Proceedings of the AAAI Conference on

Artificial Intelligence, pages 7350–7357.

Aharoni, R. and Goldberg, Y. (2017). Towards string-to-tree neural machine transla-

tion. In Proceedings of the 55th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 2: Short Papers), pages 132–140, Vancouver, Canada.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and autonomous systems, 57(5):469–483.

Arora, S., Cohen, N., and Hazan, E. (2018). On the optimization of deep networks:

Implicit acceleration by overparameterization. In Dy, J. G. and Krause, A., edi-

tors, Proceedings of the 35th International Conference on Machine Learning, ICML

2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-

ceedings of Machine Learning Research, pages 244–253.

Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In Advances in

neural information processing systems, pages 2654–2662.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

Bain, M. and Sammut, C. (1995). A framework for behavioural cloning. In Machine

Intelligence 15, pages 103–129.

Baker, J. K. (1979). Trainable grammars for speech recognition. The Journal of the

Acoustical Society of America, 65(S1):S132–S132.

Bao, H., Dong, L., Wei, F., Wang, W., Yang, N., Liu, X., Wang, Y., Gao, J., Piao,

S., Zhou, M., and Hon, H.-W. (2020). UniLMv2: Pseudo-masked language models

115

116 Bibliography

for unified language model pre-training. In III, H. D. and Singh, A., editors, Pro-

ceedings of the 37th International Conference on Machine Learning, volume 119 of

Proceedings of Machine Learning Research, pages 642–652, Virtual.

Belinkov, Y. and Glass, J. (2019). Analysis methods in neural language processing: A

survey. Transactions of the Association for Computational Linguistics, 7:49–72.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gra-

dients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Billard, A. G., Calinon, S., and Dillmann, R. (2016). Learning from humans. In

Springer handbook of robotics, pages 1995–2014. Springer.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman, R., Harrison, P., Hin-

dle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S.,

Santorini, B., and Strzalkowski, T. (1991). A procedure for quantitatively comparing

the syntactic coverage of English grammars. In Speech and Natural Language: Pro-

ceedings of a Workshop Held at Pacific Grove, California, February 19-22, 1991.

Blunsom, P. and Cohn, T. (2010). Unsupervised induction of tree substitution gram-

mars for dependency parsing. In Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages 1204–1213, Cambridge, MA.

Bod, R. (2006). An all-subtrees approach to unsupervised parsing. In Proceedings of

the 21st International Conference on Computational Linguistics and 44th Annual

Meeting of the Association for Computational Linguistics, pages 865–872, Sydney,

Australia.

Bohnet, B., McDonald, R., Simões, G., Andor, D., Pitler, E., and Maynez, J. (2018).

Morphosyntactic tagging with a meta-BiLSTM model over context sensitive to-

ken encodings. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 2642–2652, Melbourne,

Australia. Association for Computational Linguistics.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching word vectors

with subword information. arXiv preprint arXiv:1607.04606.

Bibliography 117

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated

corpus for learning natural language inference. In Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, pages 632–642,

Lisbon, Portugal.

Bowman, S. R., Gauthier, J., Rastogi, A., Gupta, R., Manning, C. D., and Potts, C.

(2016). A fast unified model for parsing and sentence understanding. In Proceed-

ings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1466–1477, Berlin, Germany.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,

G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:

composable transformations of Python+NumPy programs.

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-

based n-gram models of natural language. Computational linguistics, 18(4):467–

479.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot

learners. arXiv preprint arXiv:2005.14165.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 535–541.

Buys, J. and Blunsom, P. (2015). Generative incremental dependency parsing with

neural networks. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), pages 863–869, Beijing, China.

Cai, J., Jiang, Y., and Tu, K. (2017). CRF autoencoder for unsupervised dependency

parsing. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pages 1638–1643, Copenhagen, Denmark.

Cao, S., Kitaev, N., and Klein, D. (2020). Unsupervised parsing via constituency tests.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing, pages 4798–4808, Online.

118 Bibliography

Carroll, G. and Charniak, E. (1992). Two experiments on learning probabilistic de-

pendency grammars from corpora. In Workshop Notes, Statistically Based NLP

Techniqies, pages 1–13. Proceedings of the AAAI Conference on Artificial Intelli-

gence.

Chaabouni, R., Kharitonov, E., Bouchacourt, D., Dupoux, E., and Baroni, M. (2020).

Compositionality and generalization in emergent languages. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, pages 4427–

4442, Online.

Charniak, E. (1996). Statistical language learning. MIT press.

Chen, D. and Manning, C. (2014). A fast and accurate dependency parser using neural

networks. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing, pages 740–750, Doha, Qatar.

Chen, S. F. (1995). Bayesian grammar induction for language modeling. In 33rd

Annual Meeting of the Association for Computational Linguistics, pages 228–235,

Cambridge, Massachusetts, USA.

Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term memory-networks for

machine reading. In Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, pages 551–561, Austin, Texas.

Cheng, J., Lopez, A., and Lapata, M. (2017). A generative parser with a discriminative

recognition algorithm. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 118–124, Vancou-

ver, Canada.

Chi, Z., Dong, L., Wei, F., Wang, W., Mao, X.-L., and Huang, H. (2020). Cross-lingual

natural language generation via pre-training. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 7570–7577.

Choi, J., Yoo, K. M., and Lee, S.-g. (2018). Learning to compose task-specific tree

structures. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence,

pages 5094–5101.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions

on information theory, 2(3):113–124.

Bibliography 119

Chomsky, N. (1959). On certain formal properties of grammars. Information and

control, 2(2):137–167.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT press.

Chomsky, N. (2018). Tool module: Chomsky’s universal grammar.

Chomsky, N. et al. (2006). On cognitive structures and their development: A reply to

piaget. Philosophy of mind: Classical problems/contemporary issues, 751.

Chomsky, N. and Lightfoot, D. W. (2002). Syntactic structures. Walter de Gruyter.

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierarchical multiscale recurrent neural

networks. arXiv preprint arXiv:1609.01704.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D. (2019). What does BERT

look at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 276–

286, Florence, Italy.

Cocke, J. (1969). Programming languages and their compilers: Preliminary notes.

Cohen, S., Gimpel, K., and Smith, N. A. (2009). Logistic normal priors for unsuper-

vised probabilistic grammar induction. In Advances in Neural Information Process-

ing Systems, volume 21, pages 321–328.

Cohen, S. and Smith, N. A. (2009). Shared logistic normal distributions for soft param-

eter tying in unsupervised grammar induction. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American Chapter of the

Association for Computational Linguistics, pages 74–82, Boulder, Colorado.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Com-

putational linguistics, 29(4):589–637.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F.,

Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V. (2020). Unsupervised cross-

lingual representation learning at scale. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 8440–8451, Online.

Conneau, A. and Lample, G. (2019). Cross-lingual language model pretraining. In

Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

120 Bibliography

R., editors, Advances in Neural Information Processing Systems 32, pages 7059–

7069.

Correia, G. M., Niculae, V., Aziz, W., and Martins, A. F. (2020). Efficient marginal-

ization of discrete and structured latent variables via sparsity. In Advances in Neural

Information Processing Systems.

Corro, C. and Titov, I. (2019a). Differentiable perturb-and-parse: Semi-supervised

parsing with a structured variational autoencoder. In Proceedings of the Interna-

tional Conference on Learning Representations.

Corro, C. and Titov, I. (2019b). Learning latent trees with stochastic perturbations and

differentiable dynamic programming. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages 5508–5521, Florence, Italy.

Cowie, F. et al. (1999). What’s within?: nativism reconsidered. Oxford University

Press on Demand.

Cross, J. and Huang, L. (2016). Incremental parsing with minimal features using bi-

directional lstm. arXiv preprint arXiv:1606.06406.

Cui, Y., Che, W., Liu, T., Qin, B., Yang, Z., Wang, S., and Hu, G. (2019). Pre-training

with whole word masking for chinese bert. arXiv preprint arXiv:1906.08101.

Daumé III, H. (2009). Unsupervised search-based structured prediction. In Proceed-

ings of the 26th Annual International Conference on Machine Learning, pages 209–

216. ACM.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, Minneapolis, Minnesota.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M., and Hon,

H.-W. (2019). Unified language model pre-training for natural language understand-

ing and generation. In Advances in Neural Information Processing Systems, pages

13063–13075.

Bibliography 121

Drozdov, A., Rongali, S., Chen, Y.-P., O’Gorman, T., Iyyer, M., and McCallum, A.

(2020). Unsupervised parsing with S-DIORA: Single tree encoding for deep inside-

outside recursive autoencoders. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing, pages 4832–4845, Online.

Drozdov, A., Verga, P., Yadav, M., Iyyer, M., and McCallum, A. (2019). Unsupervised

latent tree induction with deep inside-outside recursive auto-encoders. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 1129–1141, Minneapolis, Minnesota.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2019). Gradient descent provably

optimizes over-parameterized neural networks. In Proceedings of the International

Conference on Learning Representations.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. JMLR, 12(Jul):2121–2159.

Dufter, P. and Schütze, H. (2020). Identifying necessary elements for bert’s multilin-

guality. arXiv preprint arXiv:2005.00396.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., and Smith, N. A. (2015). Transition-

based dependency parsing with stack long short-term memory. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 334–343, Beijing, China.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A. (2016). Recurrent neural

network grammars. In Proceedings of the 2016 Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 199–209, San Diego, California.

Dyer, C., Melis, G., and Blunsom, P. (2019). A critical analysis of biased parsers in

unsupervised parsing. arXiv preprint arXiv:1909.09428.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Eriguchi, A., Hashimoto, K., and Tsuruoka, Y. (2016). Tree-to-sequence attentional

neural machine translation. In Proceedings of the 54th Annual Meeting of the As-

122 Bibliography

sociation for Computational Linguistics (Volume 1: Long Papers), pages 823–833,

Berlin, Germany.

Ettinger, A. (2020). What BERT is not: Lessons from a new suite of psycholinguistic

diagnostics for language models. Transactions of the Association for Computational

Linguistics, 8:34–48.

Evans, N. and Levinson, S. C. (2009). The myth of language universals: Language

diversity and its importance for cognitive science. Behavioral and brain sciences,

32(5):429–448.

Feldman, J. (1967). First thoughts on grammatical inference. Stanford University.

Feldman, J. A., Gips, J., Horning, J. J., and Reder, S. (1969). Grammatical complexity

and inference. Technical report, Stanford University.

Finkel, J. R. and Manning, C. D. (2009). Joint parsing and named entity recognition.

In Proceedings of Human Language Technologies: The 2009 Annual Conference

of the North American Chapter of the Association for Computational Linguistics,

pages 326–334, Boulder, Colorado.

Finkel, J. R., Manning, C. D., and Ng, A. Y. (2006). Solving the problem of cascad-

ing errors: Approximate Bayesian inference for linguistic annotation pipelines. In

Proceedings of the 2006 Conference on Empirical Methods in Natural Language

Processing, pages 618–626, Sydney, Australia.

Francis, W. N. and Kucera, H. (1979). Brown corpus manual.

Gaddy, D., Stern, M., and Klein, D. (2018). What’s going on in neural constituency

parsers? an analysis. In Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 999–1010, New Orleans, Louisiana.

Association for Computational Linguistics.

Gaifman, H. (1965). Dependency systems and phrase-structure systems. Information

and control, 8(3):304–337.

Ganchev, K., Gillenwater, J., Taskar, B., et al. (2010). Posterior regularization for struc-

tured latent variable models. Journal of Machine Learning Research, 11(Jul):2001–

2049.

Bibliography 123

Gelling, D., Cohn, T., Blunsom, P., and Graça, J. (2012). The PASCAL challenge on

grammar induction. In Proceedings of the NAACL-HLT Workshop on the Induction

of Linguistic Structure, pages 64–80, Montréal, Canada.

Glynn, P. W. (1987). Likelilood ratio gradient estimation: an overview. In Proceedings

of the 19th conference on Winter simulation, pages 366–375.

Gold, E. M. (1967). Language identification in the limit. Information and control,

10(5):447–474.

Goldberg, Y. (2019). Assessing BERT’s syntactic abilities. arXiv preprint

arXiv:1901.05287.

Golland, D., DeNero, J., and Uszkoreit, J. (2012). A feature-rich constituent context

model for grammar induction. In Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), pages 17–22,

Jeju Island, Korea.

Gómez-Rodrı́guez, C., Shi, T., and Lee, L. (2018). Global transition-based non-

projective dependency parsing. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 2664–

2675, Melbourne, Australia.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duvenaud, D. (2018). Backpropaga-

tion through the void: Optimizing control variates for black-box gradient estimation.

In Proceedings of the International Conference on Learning Representations.

Grave, É. and Elhadad, N. (2015). A convex and feature-rich discriminative approach

to dependency grammar induction. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages 1375–

1384, Beijing, China.

Hall Maudslay, R., Valvoda, J., Pimentel, T., Williams, A., and Cotterell, R. (2020).

A tale of a probe and a parser. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 7389–7395, Online.

Han, W., Jiang, Y., and Tu, K. (2017). Dependency grammar induction with neural

lexicalization and big training data. In Proceedings of the 2017 Conference on Em-

124 Bibliography

pirical Methods in Natural Language Processing, pages 1683–1688, Copenhagen,

Denmark.

Han, W., Jiang, Y., and Tu, K. (2019). Enhancing unsupervised generative dependency

parser with contextual information. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, pages 5315–5325, Florence, Italy.

Harper, M. P. and Helzerman, R. A. (1995). Extensions to constraint dependency

parsing for spoken language processing. Computer Speech and Language, 9(3):187–

234.

Harris, Z. S. (1951). Methods in structural linguistics.

Hays, D. G. (1964). Dependency theory: A formalism and some observations. Lan-

guage, 40(4):511–525.

He, J., Neubig, G., and Berg-Kirkpatrick, T. (2018). Unsupervised learning of syntactic

structure with invertible neural projections. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing, pages 1292–1302, Brussels,

Belgium.

Headden III, W. P., Johnson, M., and McClosky, D. (2009). Improving unsupervised

dependency parsing with richer contexts and smoothing. In Proceedings of Hu-

man Language Technologies: The 2009 Annual Conference of the North American

Chapter of the Association for Computational Linguistics, pages 101–109, Boulder,

Colorado.

Hewitt, J. and Liang, P. (2019). Designing and interpreting probes with control tasks.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China.

Hewitt, J. and Manning, C. D. (2019). A structural probe for finding syntax in word

representations. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers), pages 4129–4138, Minneapolis, Min-

nesota.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531.

Bibliography 125

Hinzen, W. (2012). The philosophical significance of universal grammar. Language

Sciences, 34(5):635–649.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9(8):1735–1780.

Hockett, C. F. (1958). A course in modern linguistics.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to automata

theory, languages, and computation. Acm Sigact News, 32(1):60–65.

Horning, J. J. (1969). A study of grammatical inference. Technical report, Stanford

Computer Science Tech Report.

Hovy, E., Gerber, L., Hermjakob, U., Junk, M., and Lin, C.-Y. (2000). Question an-

swering in webclopedia. In TREC, volume 52, pages 53–56.

Htut, P. M., Cho, K., and Bowman, S. (2018). Grammar induction with neural language

models: An unusual replication. In Proceedings of the 2018 EMNLP Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 371–

373, Brussels, Belgium.

Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. (2016). Harnessing deep neural net-

works with logic rules. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 2410–2420, Berlin,

Germany.

Huang, Y., Zhang, M., and Tan, C. L. (2012). Improved constituent context model

with features. In Proceedings of the 26th Pacific Asia Conference on Language,

Information, and Computation, pages 564–573.

Hudson, R. (2007). Language networks: The new word grammar. Oxford University

Press.

Hudson, R. (2010). An introduction to word grammar. Cambridge University Press.

Hudson, R. A. (1984). Word grammar. Blackwell Oxford.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with Gumbel-

softmax. In Proceedings of the International Conference on Learning Representa-

tions.

126 Bibliography

Jarvinen, T. and Tapanainen, P. (1998). Towards an implementable dependency gram-

mar. In Proceedings of the Workshop on Processing of Dependency-Based Gram-

mars, pages 1–10.

Jiang, Y., Han, W., and Tu, K. (2016). Unsupervised neural dependency parsing. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 763–771, Austin, Texas.

Jiang, Y., Han, W., and Tu, K. (2017). Combining generative and discriminative ap-

proaches to unsupervised dependency parsing via dual decomposition. In Proceed-

ings of the 2017 Conference on Empirical Methods in Natural Language Processing,

pages 1689–1694, Copenhagen, Denmark.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., and Liu, Q.

(2019). Tinybert: Distilling bert for natural language understanding. arXiv preprint

arXiv:1909.10351.

Johansson, R. and Nugues, P. (2007). Extended constituent-to-dependency conver-

sion for English. In Proceedings of the 16th Nordic Conference of Computational

Linguistics, pages 105–112, Tartu, Estonia.

Johansson, R. and Nugues, P. (2008). Dependency-based syntactic–semantic analysis

with PropBank and NomBank. In CoNLL 2008: Proceedings of the Twelfth Confer-

ence on Computational Natural Language Learning, pages 183–187, Manchester,

England.

Johnson, M. (2007). Why doesn’t EM find good HMM POS-taggers? In Proceedings

of the 2007 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL), pages 296–305,

Prague, Czech Republic.

Johnson, M. and Charniak, E. (2004). A TAG-based noisy-channel model of speech

repairs. In Proceedings of the 42nd Annual Meeting of the Association for Compu-

tational Linguistics, pages 33–39, Barcelona, Spain.

Johnson, M., Griffiths, T., and Goldwater, S. (2007). Bayesian inference for PCFGs via

Markov chain Monte Carlo. In Human Language Technologies 2007: The Confer-

ence of the North American Chapter of the Association for Computational Linguis-

tics; Proceedings of the Main Conference, pages 139–146, Rochester, New York.

Bibliography 127

Kalman, R. E. (1964). When is a linear control system optimal?

Kann, K., Cho, K., and Bowman, S. R. (2019). Towards realistic practices in low-

resource natural language processing: The development set. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and

the 9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP), pages 3342–3349, Hong Kong, China.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running text. In

COLNG 1990 Volume 3: Papers presented to the 13th International Conference on

Computational Linguistics.

Karlsson, F., Voutilainen, A., Heikkilä, J., and Anttila, A. (1995). Constraint Gram-

mar: a language-independent system for parsing unrestricted text. De Gruyter Mou-

ton.

Kasami, T. (1966). An efficient recognition and syntax-analysis algorithm for context-

free languages. Coordinated Science Laboratory Report no. R-257.

Kim, T., Choi, J., Edmiston, D., and goo Lee, S. (2020a). Are pre-trained language

models aware of phrases? simple but strong baselines for grammar induction. In

Proceedings of the International Conference on Learning Representations.

Kim, T., Li, B., and Lee, S.-g. (2020b). Multilingual zero-shot constituency parsing.

arXiv preprint arXiv:2004.13805v2.

Kim, Y., Denton, C., Hoang, L., and Rush, A. M. (2017). Structured attention net-

works. In Proceedings of the International Conference on Learning Representa-

tions.

Kim, Y., Dyer, C., and Rush, A. (2019a). Compound probabilistic context-free gram-

mars for grammar induction. In Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, pages 2369–2385, Florence, Italy.

Kim, Y., Rush, A., Yu, L., Kuncoro, A., Dyer, C., and Melis, G. (2019b). Unsuper-

vised recurrent neural network grammars. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers), pages 1105–1117,

Minneapolis, Minnesota.

128 Bibliography

Kim, Y. and Rush, A. M. (2016). Sequence-level knowledge distillation. In Proceed-

ings of the 2016 Conference on Empirical Methods in Natural Language Processing,

pages 1317–1327, Austin, Texas.

Kiperwasser, E. and Goldberg, Y. (2016). Simple and accurate dependency parsing

using bidirectional LSTM feature representations. Transactions of the Association

for Computational Linguistics, 4:313–327.

Kitaev, N. and Klein, D. (2018). Constituency parsing with a self-attentive encoder.

In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 2676–2686, Melbourne, Australia. As-

sociation for Computational Linguistics.

Klein, D. and Manning, C. (2004). Corpus-based induction of syntactic structure:

Models of dependency and constituency. In Proceedings of the 42nd Annual Meeting

of the Association for Computational Linguistics, pages 478–485, Barcelona, Spain.

Klein, D. and Manning, C. D. (2002). A generative constituent-context model for

improved grammar induction. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, pages 128–135, Philadelphia, Pennsyl-

vania, USA.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings

of the 41st Annual Meeting of the Association for Computational Linguistics, pages

423–430, Sapporo, Japan.

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured prediction

models via the matrix-tree theorem. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), pages 141–150, Prague, Czech Republic.

Kool, W., van Hoof, H., and Welling, M. (2020). Estimating gradients for discrete ran-

dom variables by sampling without replacement. In Proceedings of the International

Conference on Learning Representations.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the dark

secrets of BERT. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong, China.

Bibliography 129

Kübler, S., McDonald, R., and Nivre, J. (2009). Dependency parsing. Synthesis lec-

tures on human language technologies, 1(1):1–127.

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., and Smith, N. A. (2016). Distilling

an ensemble of greedy dependency parsers into one MST parser. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, pages

1744–1753, Austin, Texas.

Kuncoro, A., Kong, L., Fried, D., Yogatama, D., Rimell, L., Dyer, C., and Blunsom, P.

(2020). Syntactic structure distillation pretraining for bidirectional encoders. Trans-

actions of the Association for Computational Linguistics, 8:776–794.

Kurihara, K. and Sato, T. (2006). Variational bayesian grammar induction for natural

language. In International Colloquium on Grammatical Inference, pages 84–96.

Springer.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings of

the 18th International Conference on Machine Learning, pages 282–289.

Lamb, S. M. (1961). On the mechanization of syntactic analysis. Readings in Machine

Translation, pages 109–114.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020).

Albert: A lite bert for self-supervised learning of language representations. In Pro-

ceedings of the International Conference on Learning Representations.

Lari, K. and Young, S. J. (1990). The estimation of stochastic context-free grammars

using the inside-outside algorithm. Computer speech & language, 4(1):35–56.

Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M., Lecouteux, B., Allauzen, A.,

Crabbé, B., Besacier, L., and Schwab, D. (2019). Flaubert: Unsupervised language

model pre-training for french. arXiv preprint arXiv:1912.05372.

Le, P. and Zuidema, W. (2015). Unsupervised dependency parsing: Let’s use super-

vised parsers. In Proceedings of the 2015 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pages 651–661, Denver, Colorado.

130 Bibliography

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–

444.

Lei, T., Barzilay, R., and Jaakkola, T. (2016). Rationalizing neural predictions. In

Proceedings of the 2016 Conference on Empirical Methods in Natural Language

Processing, pages 107–117, Austin, Texas.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-

anov, V., and Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-

training for natural language generation, translation, and comprehension. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 7871–7880, Online.

Li, J., Luong, M.-T., Jurafsky, D., and Hovy, E. (2015). When are tree structures

necessary for deep learning of representations? arXiv preprint arXiv:1503.00185.

Li, J., Zhou, G., and Ng, H. T. (2010). Joint syntactic and semantic parsing of Chinese.

In Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 1108–1117, Uppsala, Sweden.

Liang, P., Petrov, S., Jordan, M., and Klein, D. (2007). The infinite PCFG using

hierarchical Dirichlet processes. In Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), pages 688–697, Prague, Czech Republic.

Liu, N. F., Gardner, M., Belinkov, Y., Peters, M. E., and Smith, N. A. (2019a). Lin-

guistic knowledge and transferability of contextual representations. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 1073–1094, Minneapolis, Minnesota.

Liu, R., Regier, J., Tripuraneni, N., Jordan, M., and Mcauliffe, J. (2019b). Rao-

blackwellized stochastic gradients for discrete distributions. In Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 4023–4031, Long Beach, California, USA.

Liu, Y., Gardner, M., and Lapata, M. (2018). Structured alignment networks for match-

ing sentences. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 1554–1564, Brussels, Belgium.

Bibliography 131

Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M., and Zettle-

moyer, L. (2020). Multilingual denoising pre-training for neural machine transla-

tion. arXiv preprint arXiv:2001.08210.

Liu, Y. and Lapata, M. (2018). Learning structured text representations. Transactions

of the Association for Computational Linguistics, 6:63–75.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L., and Stoyanov, V. (2019c). Roberta: A robustly optimized bert pretraining

approach. In arXiv preprint arXiv:1907.11692.

Maillard, J., Clark, S., and Yogatama, D. (2017). Jointly learning sentence embeddings

and syntax with unsupervised tree-lstms. arXiv preprint arXiv:1705.09189.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large anno-

tated corpus of english: The penn treebank. Computational linguistics, 19(2):313–

330.

Mareček, D. and Rosa, R. (2018). Extracting syntactic trees from transformer en-

coder self-attentions. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks for NLP, pages 347–349, Brussels,

Belgium.

Mareček, D. and Rosa, R. (2019). From balustrades to pierre vinken: Looking for

syntax in transformer self-attentions. In Proceedings of the 2019 ACL Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 263–

275, Florence, Italy.

Mareček, D. and Straka, M. (2013). Stop-probability estimates computed on a large

corpus improve unsupervised dependency parsing. In Proceedings of the 51st An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 281–290, Sofia, Bulgaria.

Mareček, D. and Žabokrtský, Z. (2012). Exploiting reducibility in unsupervised depen-

dency parsing. In Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning,

pages 297–307, Jeju Island, Korea.

132 Bibliography

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y., Romary, L., de la Clergerie, É. V.,

Seddah, D., and Sagot, B. (2019). Camembert: a tasty french language model. arXiv

preprint arXiv:1911.03894.

Maruyama, H. (1990). Structural disambiguation with constraint propagation. In 28th

Annual Meeting of the Association for Computational Linguistics, pages 31–38.

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in translation:

Contextualized word vectors. In Advances in Neural Information Processing Sys-

tems, pages 6294–6305.

McGee, R. J. and Warms, R. L. (2013). Theory in social and cultural anthropology:

An encyclopedia. Sage Publications.

Mel’cuk, I. A. et al. (1988). Dependency syntax: theory and practice. SUNY press.

Menzel, W. and Schroder, I. (1998). Decision procedures for dependency parsing using

graded constraints. In Processing of Dependency-Based Grammars.

Miao, Y. and Blunsom, P. (2016). Language as a latent variable: Discrete genera-

tive models for sentence compression. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pages 319–328, Austin, Texas.

Miao, Y., Yu, L., and Blunsom, P. (2016). Neural variational inference for text pro-

cessing. In Proceedings of The 33rd International Conference on Machine Learning,

volume 48 of Proceedings of Machine Learning Research, pages 1727–1736, New

York, New York, USA.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in

neural information processing systems, pages 3111–3119.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief

networks. In Proceedings of the 31st International Conference on Machine Learn-

ing, volume 32 of Proceedings of Machine Learning Research, pages 1791–1799,

Bejing, China.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. In Proceed-

ings of the 2013 NIPS Deep Learning Workshop.

Bibliography 133

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. nature, 518(7540):529–533.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020). Monte carlo gradient

estimation in machine learning. Journal of Machine Learning Research, 21(132):1–

62.

Mou, L., Lu, Z., Li, H., and Jin, Z. (2017). Coupling distributed and symbolic execu-

tion for natural language queries. In Proceedings of the 34th International Confer-

ence on Machine Learning, pages 2518–2526.

Naseem, T., Chen, H., Barzilay, R., and Johnson, M. (2010). Using universal linguistic

knowledge to guide grammar induction. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing, pages 1234–1244, Cambridge,

MA.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A.,

Ballesteros, M., Chiang, D., Clothiaux, D., Cohn, T., Duh, K., Faruqui, M., Gan,

C., Garrette, D., Ji, Y., Kong, L., Kuncoro, A., Kumar, G., Malaviya, C., Michel, P.,

Oda, Y., Richardson, M., Saphra, N., Swayamdipta, S., and Yin, P. (2017). Dynet:

The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980.

Niculae, V., Martins, A., Blondel, M., and Cardie, C. (2018). SparseMAP: Differen-

tiable sparse structured inference. In Dy, J. and Krause, A., editors, Proceedings of

the 35th International Conference on Machine Learning, volume 80 of Proceedings

of Machine Learning Research, pages 3799–3808, Stockholmsmässan, Stockholm

Sweden.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Pro-

ceedings of the Eighth International Conference on Parsing Technologies, pages

149–160, Nancy, France.

Nivre, J. (2005). Dependency grammar and dependency parsing. MSI report,

5133(1959):1–32.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič, J., Manning, C. D.,

McDonald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman, D.

134 Bibliography

(2016). Universal Dependencies v1: A multilingual treebank collection. In Proceed-

ings of the Tenth International Conference on Language Resources and Evaluation

(LREC’16), pages 1659–1666, Portorož, Slovenia.

Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., Schus-

ter, S., Tyers, F., and Zeman, D. (2020). Universal Dependencies v2: An evergrow-

ing multilingual treebank collection. In Proceedings of the 12th Language Resources

and Evaluation Conference, pages 4034–4043, Marseille, France.

Noji, H., Miyao, Y., and Johnson, M. (2016). Using left-corner parsing to encode

universal structural constraints in grammar induction. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 33–43,

Austin, Texas.

Paskin, M. A. (2002). Grammatical bigrams. In Advances in Neural Information

Processing Systems, pages 91–97.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,

Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,

S. (2019). Pytorch: An imperative style, high-performance deep learning library. In

Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

R., editors, Advances in Neural Information Processing Systems 32, pages 8024–

8035. Curran Associates, Inc.

Pate, J. K. and Johnson, M. (2016). Grammar induction from (lots of) words alone. In

Proceedings of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pages 23–32, Osaka, Japan.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word

representation. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, pages 1532–1543, Doha, Qatar.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,

L. (2018a). Deep contextualized word representations. In Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–

2237, New Orleans, Louisiana.

Bibliography 135

Peters, M., Neumann, M., Zettlemoyer, L., and Yih, W.-t. (2018b). Dissecting contex-

tual word embeddings: Architecture and representation. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 1499–

1509, Brussels, Belgium.

Pimentel, T., Valvoda, J., Hall Maudslay, R., Zmigrod, R., Williams, A., and Cotterell,

R. (2020). Information-theoretic probing for linguistic structure. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, pages

4609–4622, Online.

Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., and Van Durme, B. (2018). Hy-

pothesis only baselines in natural language inference. In Proc. 7th Joint Conf. Lexi-

cal and Computational Semantics, pages 180–191.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improv-

ing language understanding by generative pre-training. URL https://s3-us-west-

2. amazonaws. com/openai-assets/research-covers/languageunsupervised/language

understanding paper. pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Lan-

guage models are unsupervised multitask learners.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,

W., and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified

text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Raganato, A. and Tiedemann, J. (2018). An analysis of encoder representations in

transformer-based machine translation. In Proceedings of the 2018 EMNLP Work-

shop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages

287–297, Brussels, Belgium.

Rasooli, M. S. and Faili, H. (2012). Fast unsupervised dependency parsing with arc-

standard transitions. In Proceedings of the Joint Workshop on Unsupervised and

Semi-Supervised Learning in NLP, pages 1–9, Avignon, France.

Ren, Y., Guo, S., Labeau, M., Cohen, S. B., and Kirby, S. (2020). Compositional

languages emerge in a neural iterated learning model. In Proceedings of the Inter-

national Conference on Learning Representations.

136 Bibliography

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020). A primer in bertology: What we

know about how bert works. arXiv preprint arXiv:2002.12327.

Russell, S. (1998). Learning agents for uncertain environments. In Proceedings of the

eleventh annual conference on Computational learning theory, pages 101–103.

Sachan, D. S., Zhang, Y., Qi, P., and Hamilton, W. (2020). Do syntax trees help pre-

trained transformers extract information? arXiv preprint arXiv:2008.09084.

Sag, I. A., Wasow, T., and Bender, E. M. (2003). Syntactic theory: A formal introduc-

tion. Center for the Study of Language and Information, Stanford, CA.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version

of bert: smaller, faster, cheaper and lighter. In Proceedings of the 2019 NeurIPS

Workshop on Energy Efficient Machine Learning and Cognitive Computing.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in

cognitive sciences, 3(6):233–242.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

networks, 61:85–117.

Schwartz, R., Abend, O., Reichart, R., and Rappoport, A. (2011). Neutralizing linguis-

tically problematic annotations in unsupervised dependency parsing evaluation. In

Proceedings of the 49th Annual Meeting of the Association for Computational Lin-

guistics: Human Language Technologies, pages 663–672, Portland, Oregon, USA.

Seddah, D., Kübler, S., and Tsarfaty, R. (2014). Introducing the SPMRL 2014 shared

task on parsing morphologically-rich languages. In Proceedings of the First Joint

Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic

Analysis of Non-Canonical Languages, pages 103–109, Dublin, Ireland.

Seddah, D., Tsarfaty, R., Kübler, S., Candito, M., Choi, J. D., Farkas, R., Foster,

J., Goenaga, I., Gojenola Galletebeitia, K., Goldberg, Y., Green, S., Habash, N.,

Kuhlmann, M., Maier, W., Nivre, J., Przepiórkowski, A., Roth, R., Seeker, W., Vers-

ley, Y., Vincze, V., Woliński, M., Wróblewska, A., and Villemonte de la Clergerie, E.

(2013). Overview of the SPMRL 2013 shared task: A cross-framework evaluation

of parsing morphologically rich languages. In Proceedings of the Fourth Workshop

on Statistical Parsing of Morphologically-Rich Languages, pages 146–182, Seattle,

Washington, USA.

Bibliography 137

Seginer, Y. (2007). Fast unsupervised incremental parsing. In Proceedings of the 45th

Annual Meeting of the Association of Computational Linguistics, pages 384–391,

Prague, Czech Republic.

Sgall, P., Hajicová, E., Hajicová, E., Panevová, J., and Panevova, J. (1986). The mean-

ing of the sentence in its semantic and pragmatic aspects. Springer Science & Busi-

ness Media.

Shen, Y., Lin, Z., Jacob, A. P., Sordoni, A., Courville, A., and Bengio, Y. (2018a).

Straight to the tree: Constituency parsing with neural syntactic distance. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1171–1180, Melbourne, Australia.

Shen, Y., Lin, Z., wei Huang, C., and Courville, A. (2018b). Neural language mod-

eling by jointly learning syntax and lexicon. In Proceedings of the International

Conference on Learning Representations.

Shen, Y., Tan, S., Hosseini, A., Lin, Z., Sordoni, A., and Courville, A. C. (2019a). Or-

dered memory. In Advances in Neural Information Processing Systems, volume 32,

pages 5037–5048.

Shen, Y., Tan, S., Sordoni, A., and Courville, A. (2019b). Ordered neurons: Integrating

tree structures into recurrent neural networks. In Proceedings of the International

Conference on Learning Representations.

Shi, H., Livescu, K., and Gimpel, K. (2020). On the role of supervision in unsupervised

constituency parsing. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing, pages 7611–7621, Online.

Shi, H., Mao, J., Gimpel, K., and Livescu, K. (2019). Visually grounded neural syn-

tax acquisition. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 1842–1861, Florence, Italy.

Shi, H., Zhou, H., Chen, J., and Li, L. (2018). On tree-based neural sentence modeling.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 4631–4641, Brussels, Belgium.

Shi, T., Huang, L., and Lee, L. (2017). Fast(er) exact decoding and global training for

transition-based dependency parsing via a minimal feature set. In Proceedings of

138 Bibliography

the 2017 Conference on Empirical Methods in Natural Language Processing, pages

12–23, Copenhagen, Denmark.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. nature,

529(7587):484–489.

Sipser, M. (1996). Introduction to the theory of computation. ACM Sigact News,

27(1):27–29.

Sleator, D. D. and Temperley, D. (1993). Parsing english with a link grammar. In Third

International Workshop on Parsing Technologies (IWPT), pages 277–292.

Smith, N. A. and Eisner, J. (2005). Guiding unsupervised grammar induction using

contrastive estimation. In Proc. of IJCAI Workshop on Grammatical Inference Ap-

plications, pages 73–82.

Smith, N. A. and Eisner, J. (2006). Annealing structural bias in multilingual weighted

grammar induction. In Proceedings of the 21st International Conference on Compu-

tational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics, pages 569–576, Sydney, Australia.

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. (2012). Semantic composi-

tionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computa-

tional Natural Language Learning, pages 1201–1211, Jeju Island, Korea.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011).

Semi-supervised recursive autoencoders for predicting sentiment distributions. In

Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 151–161, Edinburgh, Scotland, UK.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts,

C. (2013). Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 1631–1642, Seattle, Washington, USA.

Bibliography 139

Solomonoff, R. J. (1959). A new method for discovering the grammars of phrase

structure languages. In Communications of the ACM, volume 2, pages 20–20. As-

sociation For Computing Machinery.

Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and

control, 7(2):224–254.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2019). MASS: Masked sequence to

sequence pre-training for language generation. In Chaudhuri, K. and Salakhutdinov,

R., editors, Proceedings of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research, pages 5926–5936, Long

Beach, California, USA.

Spitkovsky, V. I., Alshawi, H., Chang, A. X., and Jurafsky, D. (2011). Unsupervised

dependency parsing without gold part-of-speech tags. In Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing, pages 1281–

1290, Edinburgh, Scotland, UK.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2009). Baby steps: How “less is more”

in unsupervised dependency parsing. NIPS: Grammar Induction, Representation of

Language and Language Learning, pages 1–10.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010). From baby steps to leapfrog:

How “less is more” in unsupervised dependency parsing. In Human Language Tech-

nologies: The 2010 Annual Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics, pages 751–759, Los Angeles, California.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2012). Three dependency-and-

boundary models for grammar induction. In Proceedings of the 2012 Joint Con-

ference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning, pages 688–698, Jeju Island, Korea.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2013). Breaking out of local optima

with count transforms and model recombination: A study in grammar induction. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1983–1995, Seattle, Washington, USA.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. (2019a). Patient knowledge distillation for

BERT model compression. In Proceedings of the 2019 Conference on Empirical

140 Bibliography

Methods in Natural Language Processing and the 9th International Joint Confer-

ence on Natural Language Processing (EMNLP-IJCNLP), pages 4323–4332, Hong

Kong, China.

Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., Tian, X., Zhu, D., Tian, H., and

Wu, H. (2019b). Ernie: Enhanced representation through knowledge integration.

arXiv preprint arXiv:1904.09223.

Sun, Y., Wang, S., Li, Y.-K., Feng, S., Tian, H., Wu, H., and Wang, H. (2020). Ernie

2.0: A continual pre-training framework for language understanding. In Proceedings

of the AAAI Conference on Artificial Intelligence, pages 8968–8975.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and Nivre, J. (2008). The conll

2008 shared task on joint parsing of syntactic and semantic dependencies. In CoNLL

2008: Proceedings of the Twelfth Conference on Computational Natural Language

Learning, pages 159–177.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT

press.

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representa-

tions from tree-structured long short-term memory networks. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 1556–1566, Beijing, China.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019). Distill-

ing task-specific knowledge from bert into simple neural networks. arXiv preprint

arXiv:1903.12136.

Taylor, W. L. (1953). “cloze procedure”: A new tool for measuring readability. Jour-

nalism quarterly, 30(4):415–433.

Tenney, I., Das, D., and Pavlick, E. (2019a). BERT rediscovers the classical NLP

pipeline. In Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics, pages 4593–4601, Florence, Italy.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Durme,

B. V., Bowman, S., Das, D., and Pavlick, E. (2019b). What do you learn from

Bibliography 141

context? probing for sentence structure in contextualized word representations. In

Proceedings of the International Conference on Learning Representations.

Tesnière, L. (1959). Éléments de syntaxe structurale.

Tsai, H., Riesa, J., Johnson, M., Arivazhagan, N., Li, X., and Archer, A. (2019). Small

and practical BERT models for sequence labeling. In Proceedings of the 2019 Con-

ference on Empirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

3632–3636, Hong Kong, China.

Tsarfaty, R., Nivre, J., and Andersson, E. (2011). Evaluating dependency parsing:

Robust and heuristics-free cross-annotation evaluation. In Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing, pages 385–396,

Edinburgh, Scotland, UK.

Tu, K. and Honavar, V. (2012). Unambiguity regularization for unsupervised learning

of probabilistic grammars. In Proceedings of the 2012 Joint Conference on Empiri-

cal Methods in Natural Language Processing and Computational Natural Language

Learning, pages 1324–1334.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Well-read students learn

better: The impact of student initialization on knowledge distillation. arXiv preprint

arXiv:1908.08962.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008.

Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., Ginter, F.,

and Pyysalo, S. (2019). Multilingual is not enough: Bert for finnish. arXiv preprint

arXiv:1912.07076.

Voita, E. and Titov, I. (2020). Information-theoretic probing with minimum description

length. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing, pages 183–196, Online.

Wang, P. and Blunsom, P. (2013). Collapsed variational bayesian inference for pcfgs.

In Proceedings of the Seventeenth Conference on Computational Natural Language

Learning, pages 173–182.

142 Bibliography

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou, M. (2020). Minilm: Deep

self-attention distillation for task-agnostic compression of pre-trained transformers.

In Advances in Neural Information Processing Systems.

Wang, Y., Lee, H.-Y., and Chen, Y.-N. (2019). Tree transformer: Integrating tree

structures into self-attention. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Confer-

ence on Natural Language Processing (EMNLP-IJCNLP), pages 1061–1070, Hong

Kong, China.

Warstadt, A., Cao, Y., Grosu, I., Peng, W., Blix, H., Nie, Y., Alsop, A., Bordia, S., Liu,

H., Parrish, A., Wang, S.-F., Phang, J., Mohananey, A., Htut, P. M., Jeretic, P., and

Bowman, S. R. (2019). Investigating BERT’s knowledge of language: Five analysis

methods with NPIs. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 2877–2887, Hong Kong, China.

White, L. and White, L. (2003). Second language acquisition and universal grammar.

Cambridge University Press.

Williams, A., Drozdov, A., and Bowman, S. R. (2018a). Do latent tree learning models

identify meaningful structure in sentences? Transactions of the Association for

Computational Linguistics, 6:253–267.

Williams, A., Nangia, N., and Bowman, S. R. (2018b). A broad-coverage challenge

corpus for sentence understanding through inference. In Proceedings of the North

American Chapter of the Association for Computational Linguistics.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144.

Wu, Z., Chen, Y., Kao, B., and Liu, Q. (2020). Perturbed masking: Parameter-free

probing for analyzing and interpreting BERT. In Proceedings of the 58th Annual

Bibliography 143

Meeting of the Association for Computational Linguistics, pages 4166–4176, On-

line.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with support

vector machines. In Proceedings of the Eighth International Conference on Parsing

Technologies, pages 195–206.

Yamada, K. and Knight, K. (2001). A syntax-based statistical translation model. In

Proceedings of the 39th Annual Meeting of the Association for Computational Lin-

guistics, pages 523–530.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).

Xlnet: Generalized autoregressive pretraining for language understanding. In Ad-

vances in Neural Information Processing Systems 32, pages 5753–5763.

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., and Ling, W. (2017). Learning

to compose words into sentences with reinforcement learning. In Proceedings of the

International Conference on Learning Representations, Toulon, France.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.

Information and control.

Yu, K. and Arkhipov, M. (2019). Adaptation of deep bidirectional multilingual trans-

formers for russian language. Computational Linguistics and Intellectual Technolo-

gies, (18):333–339.

Zhang, K. and Bowman, S. (2018). Language modeling teaches you more than transla-

tion does: Lessons learned through auxiliary syntactic task analysis. In Proceedings

of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural

Networks for NLP, pages 359–361, Brussels, Belgium.

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and Liu, Q. (2019). ERNIE: Enhanced

language representation with informative entities. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics, pages 1441–1451,

Florence, Italy.

Zhao, Y. and Titov, I. (2020). Visually grounded compound PCFGs. In Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing, pages

4369–4379, Online.

144 Bibliography

Zhu, H., Bisk, Y., and Neubig, G. (2020). The return of lexical dependencies: Neural

lexicalized PCFGs. Transactions of the Association for Computational Linguistics.

	cover sheet
	thesisXXX.pdf
	Introduction
	Motivation
	Challenges
	Thesis Overview
	Published Work

	Background
	Grammar Induction
	Motivation
	Problem Formulation
	Related Work
	Experimental Setup

	Neural Networks
	Recurrent and Recursive Neural Networks
	Transformers
	Pre-trained Language Models

	Transition-based Unsupervised Dependency Parsing
	Related Work
	Generative Models
	Discriminative Models
	Transition-based Models
	Other Techniques

	Problem Formulation
	Background
	Model Configuration
	Training Objective
	Posterior Regularization
	Variance Reduction in the M-step
	Limitations

	Experiments
	Datasets
	Settings
	Exploration of Model Variants
	Parsing Results

	Summary

	Imitation Learning based Unsupervised Constituency Parsing
	Related Work
	Latent Tree Learning Through Downstream Tasks
	Latent Tree Learning Through Language Modeling
	Imitation Learning
	Knowledge Distillation

	Problem Formulation
	Parsing-Reading-Predict Network
	Discrete Syntactic Parser
	Imitation Learning

	Experiments
	Datasets
	Settings
	Experimental Results

	Summary

	Unsupervised Parsing via Pre-trained Language Models
	Related Work
	Unsupervised Constituency Parsing via Neural Latent Variable Models
	Extracting Trees from Neural Language Models
	Interpretation of PLMs

	Zero-shot Constituency Parsing via PLMs
	Chart-based Zero-shot Parsing
	Ranking-based Zero-shot Parsing
	How to select K

	Grammar Induction
	Neural PCFGs
	Learning Grammars from Induced Trees

	Experiments
	General Setup
	Results on the English PTB
	Results for Languages other than English
	Grammar Analysis

	Summary

	Conclusion and Future Work
	Conclusions
	Future Work

	Appendix
	Appendix 1

	Bibliography

