
Representation and stochastic resolution

of ambiguity in constraint-based parsing

Darstellung und stochastische Auflösung

von Ambiguität in constraint-basiertem

Parsing

Von der philosophischen Fakultät der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Philosophie (Dr. phil)

genehmigte Dissertation

von

Andreas Eisele,
Meylan

Hauptberichter: Prof. Dr. Christian Rohrer
Mitberichter: Prof. Dr. Mats Rooth

Tag der mündlichen Prüfung: 9. Februar 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/147540751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Hiermit erkläre ich, daß ich die vorliegende Dissertation
eigenständig verfasst habe und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

Meylan, den 20. Januar 1999

__

(Andreas Eisele)

Contents

Zusammenfassung 1
Ambiguität in der Analyse natürlicher Sprache 1
Zwei Wege zum Umgang mit Ambiguität 7
Aufbau der Arbeit . 9

1 Introduction 13
1.1 Ambiguity in Natural Language Processing 13
1.2 Two Ways to Cope with Ambiguity 18
1.3 Structure of this Thesis 20

2 Unifying Disjunctive Feature Descriptions 23
2.1 Introduction . 23

2.1.1 Unification-Based Formalisms 24
2.2 Feature Terms . 25

2.2.1 Disjunction Names 25
2.2.2 Syntax and Semantics of Feature Terms 26

2.3 Context-Unique Feature Descriptions 28
2.4 Normal Feature Descriptions 31

2.4.1 Simplification Rules for Normalization 32
2.4.2 Soundness, Completeness and Termination 34
2.4.3 An Example . 36
2.4.4 Algorithmic Considerations 37
2.4.5 Maxwell and Kaplan’s Approach 38

2.5 Conclusion . 39

3 Parse Forests and Disjunctive Descriptions 41
3.1 Introduction . 41

iii

iv CONTENTS

3.2 Phrasal and Functional Constraints 43

3.3 Parsing as Grammar Intersection 53

3.4 “Parsing” in Linear Time and Space 58

3.5 Summary . 62

4 Stochastic Models and their Role in NLP 63

4.1 Competence versus Performance 63

4.2 Stochastic Language Models 69

4.3 Some Problems of Stochastic Models 72

4.4 Statistical Models as Glue 75

5 Stochastic Models of Large Vocabularies 77

5.1 Motivation . 77

5.2 The Laws by Zipf and Mandelbrot 78

5.3 The Good/Turing Formula 83

5.4 Generalized Absolute Discounting 88

5.5 Decomposing Words . 91

5.6 Coping with Errors in the Training Data 101

5.7 Exploiting Heterogeneous Training Data 104

5.8 Summary . 107

6 Bigram Probabilities 109

6.1 Motivation . 109

6.2 Overwiew of Published Work 111

6.3 Generalizing Absolute Discounting to the
Two-Dimensional Case 120

6.4 Exploiting Similarities 122

6.5 Summary . 125

7 Using More Context 127

7.1 Introduction . 127

7.2 Stochastic Models of Richer Interactions 130

7.3 Augmenting a Constraint-Based Grammar with Proba-
bilities . 132

7.4 Summary . 136

CONTENTS v

8 Stochastic Ranking of LFG Analyses 137
8.1 Introduction . 137
8.2 Evaluation Criteria . 140
8.3 The Experiment . 147
8.4 Future Work . 150

9 Conclusion and Outlook 153
9.1 Summary . 153
9.2 Future Work . 154

Bibliography 157

vi CONTENTS

Zusammenfassung

Ambiguität in der Analyse natürlicher

Sprache

Die natürliche Sprache spiegelt die menschlichen intellektuellen
Fähigkeiten wider, die bei weitem nicht voll verstanden sind. Solange
wir die Prozesse, die bei Denken und Verstehen ablaufen, nicht for-
mal beschreiben können, müssen auch die formalen Beschreibungen des
menschlichen Sprachverhaltens grobe Approximationen bleiben. Ein
markantes Beispiel für diesen generellen Sachverhalt ist das Problem
der Disambiguierung sprachlicher Äußerungen. Da unser Gebrauch von
Worten unseren Fähigkeiten entspricht, deren Sinn, Kontext und Ab-
sicht zu verstehen, können Systeme, denen solche Fähigkeiten abge-
hen, bestenfalls Mengen möglicher Analysen produzieren. Es ist
wohlbekannt, daß solche Mengen in der Praxis sehr groß werden können.
Mehrdeutigkeit ist eines der Grundprobleme in der automatischen
Sprachverarbeitung, und jedes sprachverarbeitende System benötigt
Methoden, damit umzugehen.

Mehrdeutigkeiten existieren auf vielen linguistischen Ebenen. Wir
können grob lexikalische und strukturelle Ambiguität unterscheiden,
aber dies sind wiederum Sammelbegriffe für eine Vielzahl unter-
schiedlicher Probleme. Lexikalische Mehrdeutigkeit kann die Wort-
art eines gegebenen Wortes betreffen, seine morphologischen Eigen-
schaften, seine Subkategorisierung (also die Anzahl und der Typ der
Komplemente, mit denen dieses Wort auftritt), seine Bedeutung oder
jegliche sonstige Information, die diesem Wort zugeordnet wird.

[Bar-Hillel1960] gab das Beispiel “The box is in the pen” um zu

1

2 Zusammenfassung

zeigen, daß die Bestimmung der Wortbedeutung1 ein sehr schweres
Problem darstellt, zu dessen Auflösung in manchen Fällen eine unbe-
grenzte Menge an Weltwissen notwendig ist. Das Problem der Dis-
ambiguierung der Wortbedeutung wurde daher als “KI-vollständig”
charakterisiert. Ein ausführlicher Überblick über den Stand der
Forschung findet sich in [Ide and Véronis1998].

Strukturelle Mehrdeutigkeit ist Mehrdeutigkeit in der Zusammen-
wirkung mehrerer Worte. Sie tritt auf, wenn Worte auf unterschiedliche
Weisen gruppiert werden können, oder wenn es verschiedene Interpre-
tationen gibt, in welcher Relation Worte oder größere Konstituenten
stehen. Diese Unterschiede können die Anbindung bestimmter Phrasen
betreffen, den Skopus von Quantifikatoren oder den Bezug von anapho-
rischen Ausdrücken. Dies ist nur ein sehr kleiner Ausschnitt der rele-
vanten Phänomene. Ein sehr berühmtes Beispiel ist der Satz “I saw
the man on the hill with the telescope.” (Ich sah/säge den Mann auf
dem Berg mit dem Fernrohr), der etliche unterschiedliche Interpreta-
tionen hat, die sich – neben der lexikalischen Ambiguität des Verbes –
in der Zuordnung der Präpositionalphrasen “on the hill” und “with the
telescope” unterscheiden.

Die Unterscheidung zwischen lexikalischer und struktureller Ambi-
guität ist jedoch nicht ganz eindeutig. Wenn wir beispielsweise entschei-
den müssen, ob ein Paar aufeinanderfolgender Worte eine lexikalische
Einheit bilden oder ob sich die Bedeutung dieser Wortgruppe komposi-
tionell aus der Bedeutung der einzelnen Worte herleiten läßt, dann ist es
eine Frage der Definition, diese Art von Mehrdeutigkeit als lexikalische
oder strukturelle Ambiguität oder als beides zu klassifizieren.

Im Allgemeinen interagieren Mehrdeutigkeiten auf verschiedenen
Ebenen in dem Sinne, daß die Festlegung bestimmter möglicher
Entscheidungen (z.B. die Wortart eines Wortes) auch die Zahl der
Möglichkeiten in einigen anderen Entscheidungen verringert. In dem
ebenfalls sehr bekannten Beispiel “Time flies like an arrow.” kann
flies entweder Verb (= fliegt) oder Nomen (= Fliegen) sein, und
diese lexikalische Mehrdeutigkeit interagiert mit den verschiedenen
möglichen Bedeutungen von time und mit der Mehrdeutigkeit, die die
gesamte syntaktische Struktur dieses Satzes betrifft.

1“Pen” steht hier für einen Laufstall.

Ambiguität in der Analyse natürlicher Sprache 3

In vielen praktischen Anwendungen stellt die Art und Weise,
in der Äußerungen in das sprachverarbeitende System eingegeben
werden, eine weitere Quelle von Unsicherheit dar. Sehr oft
weichen die eingegebenen Daten vom Ideal einer wohlgeformten
natürlichsprachlichen Äußerung ab. Systeme, die textuelle Eingabe
verarbeiten, müssen sehr oft mit Tipp- oder Schreibfehlern klarkom-
men. Text, der durch ein OCR-System automatisch digitalisiert
wurde, enthält typischerweise mehrere Fehler pro Seite. Die Situa-
tion verschlimmert sich, wenn OCR auf Handschrift angewandt wird,
oder wenn ein sprachverarbeitendes System die Ausgabe maschineller
Spracherkennung verwenden soll. Zwar gibt es in diesen Situatio-
nen Wege, die Qualität der Daten automatisch zu verbessern, diese
Techniken können jedoch nicht unabhängig von der linguistischen Ver-
arbeitung eingesetzt werden, da sie Zugang zu linguistischen Wis-
sensquellen und zum Kontext der Äußerungen benötigen. Die Korrek-
tur fehlerhafter Eingaben führt oft nicht zu einem eindeutigen Resultat
und verschlimmert daher das Problem der Mehrdeutigkeit. Im Falle der
maschinellen Spracherkennung ist es offensichtlich, daß die Abbildung
von Lauten nach Worten nicht eindeutig sein kann, da verschiedene
Worte gleich klingen können. Jedes System, das gesprochene Eingaben
in deren korrekte Schreibweise überführen soll, muß daher in solchen
Fällen Wissen über den Kontext heranziehen. Da Mehrdeutigkeiten
gleichzeitig auf mehreren Ebenen in derselben Äußerung auftreten
können, kann sich die Zahl der Möglichkeiten zu einer enormen An-
zahl an Kombinationen multiplizieren.
Ein erstaunlicher Aspekt des Problems ist die Tatsache, daß Men-

schen die Mehrdeutigkeiten ihrer Äußerungen normalerweise nicht be-
merken. In einer typischen kommunikativen Situation versucht der
Sprecher sich so auszudrücken, daß die Adressaten die Äußerung
“kapieren”. Grice hat das kooperative Prinzip der Kommunikation
formuliert, und unter den vier Anforderungen, die er unter dem Ax-
iom der Art und Weise aufführt, nennt er ausdrücklich “Vermeide
Mehrdeutigkeit” [Levinson1983]. Das genaue Ergebnis davon hängt
von den Annahmen ab, die der Sprecher über das Wissen des Addres-
saten macht. Wer jemals versucht hat, einen technischen oder wis-
senschaftlichen Fachtext eines ihm fremden Bereichs zu verstehen, wird
wissen, daß selbst die einfachsten Schritte der syntaktischen Analyse

4 Zusammenfassung

fehlschlagen können, wenn die Bedeutung mancher Worte nicht bekannt
ist. Mehrdeutigkeit ist daher das Problem fehlenden Wissens auf seiten
eines verarbeitenden Systems, für das eine Äußerung ursprünglich nicht
bestimmt war.
Menschliche Disambiguierung benutzt viele unterschiedliche Wis-

sensquellen, die jedoch auf nahtlose Weise zusammenarbeiten. Die
linguistische Forschung hat andererseits stets gut daran getan,
die Regelmäßigkeiten auf verschiedenen sprachlichen Ebenen ge-
trennt zu beschreiben, und unterscheidet deshalb beispielsweise Mor-
phologie (Wortbildung), Syntax, Semantik und die Modellierung
domänenspezifischen ontologischen Wissens.
Für diese Ebenen sind verschiedenen Arten von Wissen rele-

vant, zu deren Beschreibung unterschiedliche Formalismen geeignet
sind, für die die maschinelle Sprachverarbeitung unterschiedliche Ve-
rarbeitungsstrategien entwickelt hat. In manchen dieser Ebenen
können die beobachteten Regelmäßigkeiten am besten mittels sym-
bolischer Regeln formuliert werden, die die Menge der Strukturen,
die in Betracht kommen, klaren Bedingungen unterwerfen. Aller-
dings beschränken sich diese regelbasierten symbolischen Beschreibun-
gen auf ja-nein Unterscheidungen; sie können daher graduelle Unter-
schiede in der Annehmbarkeit von Äußerungen oder Interpretationen
nicht ausdrücken. Sie werden typischerweise zur Charakterisierung der
menschlichen Sprachkompetenz benutzt, d.h. im Rahmen einer Theorie
aller wohlgeformten Äußerungen und aller möglichen Interpretationen
derselben. Eine Theorie der Kompetenz alleine kann uns nicht sagen,
wie Mehrdeutigkeiten aufzulösen sind. Wenn eine Äußerung mehrere
mögliche Interpretationen hat, gibt sie keinen Hinweis, wie zwischen
ihnen entschieden werden kann.
Wenn wir uns jedoch der menschlichen Sprachperformanz zuwen-

den, also der Frage, wie der unendlich Vorrat potentieller Äußerungen
praktisch genutzt wird, so finden wir viele weitere relevante Wis-
sensquellen. Beobachten wir, wie grammatikalische Konstruktionen im
menschlichen Diskurs tatsächlich verwendet werden, so finden wir weit-
eren Regelmäßigkeiten, wie beispielsweise die relative Häufigkeit solcher
Konstruktionen, Beschränkung der Verschachtelungstiefe bei Konstruk-
tionen mit zentraler Einbettung, oder die Tendenz, daß koordinierte
Phrasen sich in Struktur und Komplexität ähneln.

Ambiguität in der Analyse natürlicher Sprache 5

Aber wir können Information über die Häufigkeit einer Kon-
struktion nicht einfach in eine Beurteilung der Annehmbarkeit einer
Äußerung umsetzen. Es gibt beispielsweise keine klare Grenze für die
Verschachtelungstiefe, und der tatsächliche Gebrauch hängt von vie-
len Faktoren wie Textsorte und persönlichem Stil ab. Die Tendenz zur
Parallelität in der Koordination kann nicht in eine Menge exakter Be-
dingungen übersetzt werden, die den Fakten gerecht wird. Ähnliche
Beobachtungen können hinsichtlich der partiell freien Anordnung von
Konstituenten in vielen Sprachen gemacht werden [Uszkoreit1984].
Untersuchen wir Phänomene der Wortwahl, indem wir statistische

Information über das gemeinsame Vorkommen von Worten sammeln,
so können wir ebenfalls starke Tendenzen und Muster auffinden, die
sich nicht in harte Fakten übersetzen lassen. Die Muster hängen nicht
nur von Textsorte und Stil ab, sondern auch in ganz starkem Maße vom
Gegenstandsbereich des Diskurses. Durch diese Vielfalt wird jegliche
theoretische Betrachtung erheblich erschwert.
Bei genauerer Betrachtung können wir zwei Quellen “weicher

Constraints” unterscheiden. Zum einen sind dies linguistische
Präferenzen, die eine von mehreren Möglichkeiten, einen bestimmten
Inhalt auszudrücken, wahrscheinlicher machen als die anderen. Diese
Präferenzen betreffen Wortwahl und linguistische Konstruktionen, und
sie hängen von Textsorte und Stil ab. Die andere Quelle weicher Con-
straints hängt mit den Inhalten zusammen, die in den Äußerungen
beschrieben werden. Bestimmte Inhalte sind wahrscheinlicher als
andere; wenn also eine Äußerung so verstanden werden kann, daß
sie mit unterschiedlichen Wahrscheinlichkeiten verschiedene Inhalte
beschreiben könnte, dann werden wir die wahrscheinlichste Interpreta-
tion bevorzugen2. Natürlich hängen solche Wahrscheinlichkeiten vom
Gegenstandsbereich des Diskurses ab, aber auch von vielen weiteren
Eigenschaften der Situation, in der eine Äußerung vollzogen wird. Die
Schätzung von Wahrscheinlichkeiten liegt außerhalb der Möglichkeiten
der Linguistik, aber offensichtlich ist solches Wissen notwendig, um die
menschliche Fähigkeit zum Umgang mit Sprache im Allgemeinen und

2Dies entspricht nicht notwendigerweise der wahrscheinlichsten Tatsache. Wir
müssen pragmatische Gesichtspunkte wie das kooperative Prinzip von Grice (siehe
[Levinson1983]) berücksichtigen, um zu bewerten, welche Interpretationen in einer
bestimmten Dialogsituation wahrscheinlich sind.

6 Zusammenfassung

zur Disambiguierung im Besonderen simulieren zu können.

Werden die verschiedenen Ebenen der linguistischen Theorie im-
plementiert und zum Bau eines sprachverarbeitenden Systems verwen-
det, so mag es notwendig erscheinen, alle diese Ebenen in einer großen
Maschinerie zu kombinieren, die alles verfügbare Wissen verwendet und
alle Teilprobleme in einem Durchlauf erledigt. Aber ein solches inte-
griertes System würde die Modularität verlieren und wäre daher sehr
schwer zu verwalten. Deshalb werden in einer traditionellen Architek-
tur die verschiedenen linguistischen Ebenen als Module einer sequen-
tiellen, mehrphasigen Verarbeitungsarchitektur realisiert, die spezial-
isierte Prozessoren für jede Ebene vorsieht, durch die die Eingabe
durchgereicht wird. Allerdings ist es in einer solchen Architektur
schwierig, die Interaktion der vielen Wissensquellen zu modelieren, die
auf den unterschiedlichen Ebenen operieren.

Wenn wir verlangen, daß jede dieser Komponenten eine einzige und
eindeutige Repräsentation ihrer Ausgabe an die nächste Komponente
abliefert, so muß sie Entscheidungen treffen, für die sie nicht genügend
Information besitzt. Es ist wichtig, der Versuchung zu widerstehen,
Mehrdeutigkeiten sofort (ad hoc) aufzulösen, sobald sie auftreten, denn
eine lokale Analyse, die von irgend einem Verarbeitungsmodul vorzeitig
verworfen wird, könnte für eine korrekte Behandlung der gesamten
Äußerung in einer späteren Komponente wesentlich sein.

Eine naheliegende Lösung für Probleme dieser Art besteht darin,
Mengen von Analysen zwischen den Komponenten auszutauschen, die
in späteren Verarbeitungsschritten verwendet oder aber verworfen wer-
den können. Das praktische Problem hierbei ist die Vielzahl der
Ambiguitäten, insbesondere die Tatsache, daß diese oft unabhängig
voneinander sind, so daß sie in ihrer Gesamtheit zu einem exponen-
tiellen Anwachsen der Zahl der Lösungen führen. Bereits eine Un-
sicherheit in der Interpretation eines einzelnen Wortes kann die Anzahl
der Interpretationen der gesamten Äußerung verdoppeln. Lösungen in
solchen Mengen stimmen oft in großen Teilen der in ihnen enthalte-
nen Information überein. Wenn die jeweils nächste Komponente in der
Verarbeitungskette gezwungen ist, alle Lösungen einzeln zu betrachten,
so wird sie solche Gemeinsamkeiten nicht ausnützen können und eine
exponentielle Menge an Verarbeitungsressourcen verbrauchen.

Zwei Wege zum Umgang mit Ambiguität 7

Zwei Wege zum Umgang mit Ambiguität

Die vorliegende Arbeit untersucht Techniken, die linguistische und
statistische Wissensquellen kombinieren, um syntaktische und lexikalis-
che Ambiguität zu repräsentieren und aufzulösen.
Die Vorgehensweise beruht auf einer constraintbasierten Gram-

matik, die als einfache Formalisierung der syntaktischen Regelmäßigkei-
ten der vorliegenden Sprache dient. Durch den Gebrauch einer solchen
Grammatik können wir die Aufmerksamkeit auf syntaktisch wohlge-
formte Äußerungen konzentrieren und solche Äußerungen in Mengen
zugrundeliegender Strukturen abbilden, die typischerweise syntaktische
und etwas semantische Information enthalten. Ich werde versuchen, die
Methode – so weit wie möglich – unabhängig von Einzelheiten des For-
malismus und der Grammatik zu halten. In Fällen, in denen Einzel-
heiten notwendig sind, werde ich Beispiele auf der Grundlage von LFG
[Kaplan and Bresnan1982] oder DCG [Pereira and Warren1980] ver-
wenden. Ich werde annehmen, daß die Strukturen, die von der Gram-
matik aufgebaut werden, eine implizite oder explizite Repräsentation
der zugrundeliegenden Prädikat-Argument-Struktur enthalten, d.h. daß
sie festlegen, welche Einheiten in welcher Art von Handlungen verwick-
elt sind.
In diesem Rahmen betrifft Ambiguität alle Situationen, in denen

einer einzelnen Äußerung mehr als eine solche Struktur zugeordnet
wird. Die genaue Auswahl an Phänomenen, die durch diese gener-
ische Definition abgedeckt sind, hängt von den Einzelheiten der Gram-
matik ab. Wir können eine Grammatik schreiben, die die Worte in
die Konzepte einer semantischen Ontologie abbildet. In diesem Fall
werden für sehr viele Worte ambige Analysen entstehen, und die Auf-
gabe, für jedes Wort das richtige Konzept zu identifizieren, ist sehr
viel schwieriger als in Situationen, in denen die Menge der Prädikate
weitgehend durch die Worte bestimmt wird, die betroffen sind. Die
vorliegende Arbeit versucht nicht, im Detail die verschiedenen Formen
der Ambiguität zu analysieren und für jede von ihnen eine spezielle
Methode zur Disambiguierung anzugeben. Sie zielt vielmehr auf ein
allgemeines Schema, das je nach Bedarf auf viele Formen der Ambi-
guität angewandt werden kann.
Im ersten Teil, der aus den Kapiteln 2 und 3 besteht, skizziere

8 Zusammenfassung

ich Wege, die Disambiguierung zu vermeiden, indem mehrere mögliche
Interpretationen in einer kompakten Form representiert werden. Die
darin beschriebene Arbeit basiert auf Ideen, die maßgeblich von Ron
Kaplan, Martin Kay und John Maxwell im Zusammenhang mit Imple-
mentierungen von LFG entwickelt wurden. Vergleichbare Ansätze wur-
den auch im Zusammenhang mit Logik-basierter Sprachverarbeitung
vorgestellt. Es ist allerdings nützlich, die verschiedenen Methoden für
gepackte Repräsentationen von Lösungsmengen in einer einheitlichen
Form darzustellen, um dabei einige zugrundeliegenden gemeinsame
Prinzipien zu beleuchten.
Im zweiten Teil stelle ich eine Methode zur partiellen Auflösung

von Ambiguität mittels stochastischer Modelle vor. Das Ziel der Dis-
ambiguierung wird hierbei nicht in erster Linie darin gesehen, eine
einzelne Lösung aus der Menge der möglichen Lösungen auszuwählen,
sondern darin, jeder Analyse eine Bewertung in Form einer Wahrschein-
lichkeit zuzuordnen. Diese Bewertung führt in naheliegender Weise
zur Auswahl einer “besten” Lösung, falls eine solche Auswahl er-
forderlich sein sollte. Eine probabilistische Bewertung ist jedoch
sehr viel mächtiger. Sie definiert eine Rangordnung, d.h. eine nach
Wahrscheinlichkeit sortierte Aufzählung der Lösungen. Anhand einer
solchen Rangordnung können wir ermitteln, ob zwischen der ersten und
zweiten Lösung ein großer Unterschied besteht, was nützlich bei der
Entscheidung sein kann, ob die erste Lösung ohne weitere Prüfung aus-
gewählt werden soll, oder ob weitere (möglicherweise aufwendigere)
Mechanismen zur Auswahl herangezogen werden sollen. Von einer
Wahrscheinlichkeitsverteilung über Lösungen können wir außerdem die
Wahrscheinlichkeiten bestimmter Eigenschaften der Lösungen ermit-
teln, was zur Sammlung von zusätzlichem statistischem Trainingsmate-
rial dienen kann, oder dazu, die interaktive Disambiguierung möglichst
effizient zu gestalten.
Ein weiterer Vorteil dieser probabilistischen Bewertung kommt

zum Vorschein, wenn wir die Analyse als Eingabe weiterer Verar-
beitungschritte verwenden wollen, beispielsweise zum Transfer in eine
andere Sprache, oder um in einem Dialogsystem bestimmte Handlungen
durchzuführen. Die nachfolgende Komponente kann möglicherweise
nicht jede Analyse akzeptieren, die von der syntaktischen Analyse pro-
duziert wird, oder sie könnte bestimmte Eingaben anderen vorziehen.

Aufbau der Arbeit 9

In beiden Situationen bietet die Existenz einer stochastisch bewerteten
Sammlung von Möglichkeiten einen guten Weg, weiche oder harte Con-
straints beider Komponenten zu verbinden, um die insgesamt beste
Lösung zu finden.
Die Integration grammatikalischer und statistischer Ansätze zur

Sprachverarbeitung ist ein Gebiet, in dem zur Zeit intensiv geforscht
wird, wobei noch keine abschließenden Ergebnisse gefunden wurden.
Ich versuche in meiner Arbeit einige Bausteine anzubieten, die zu einer
Lösung beitragen könnten. Die volle Integration in ein sprachverar-
beitendes System und der Vergleich mit anderen Techniken, die in der
mittlerweile sehr umfangreichen Literatur vorgeschlagen wurden, muß
jedoch zukünftiger Arbeit vorbehalten werden.
Während die Aufgabe der Disambiguierung zwischen konkur-

rierenden syntaktischen Analysen die Hauptmotivation dieser Ar-
beit darstellt, bestehen auch starke Querbezüge zu Arbeiten zur
stochastischen Sprachmodellierung, also zu Ansätzen, die Wahrschein-
lichkeitverteilungen über mögliche Äußerungen definieren. Einerseits
verwende ich einige Techniken, die für die Sprachmodellierung ent-
wickelt wurden und verallgemeinere diese, um sie für Verteilungen
auf syntaktischen Dependenzstrukturen verwenden zu können. An-
dererseits stellen die so definierten Modelle implizit auch stochastis-
che Modelle der Zeichenketten dar, mit denen diese Dependenzstruk-
turen assoziiert sind. Dabei ist zu hoffen, daß durch Ausnutzung syn-
taktischer Abhängigkeiten neue und bessere Sprachmodelle geschaf-
fen werden können, die prinzipiell die Genauigkeit von Spracherken-
nung, OCR oder anderen Anwendungen erhöhen können, bei denen
eine beeinträchtigte oder ambige Repräsentation natürlicher Sprache
dekodiert werden muß.

Aufbau der Arbeit

Die Arbeit ist folgendermaßen gegliedert.
Im Kapitel 2 bespreche ich einige untereinander verwandte

Vorschläge zur Darstellung disjunktiver Information bei der Analyse
mittels constraintbasierter Grammatiken. Kapitel 3 untersucht die
Frage, wie ambige Ergebnisse beim kontextfreien Parsing kompakt

10 Zusammenfassung

repräsentiert werden können, und wie die Schemata zur Repräsentation
disjunktiver Merkmalsinformation in die Repräsentation von Parse-
Wäldern integriert werden können.
Kapitel 4 gibt eine informelle Einführung in die Verwendung von

stochastischen Modellen in der Sprachverarbeitung im Allgemeinen,
und zu Disambiguierung im Besonderen. In Kapitel 5 skizziere ich
Wege, die Wahrscheinlichkeit von Worten zu schätzen, wobei der Kon-
text ignoriert wird. Obwohl diese Fragestellung per se nicht sehr in-
teressant oder wichtig erscheint, erlaubt sie doch einige Einsichten in
das allgemeinere Schätzproblem. Ich untersuche auch, wie mittels mor-
phologischer Information die Schätzung von Wortwahrscheinlichkeiten
verbessert werden kann und wie lexikalische Information und Trainings-
daten von anderen Domänen ausgenutzt werden können.
Kapitel 6 behandelt einfache Lösungen zum Problem, bilexikalische

Wahrscheinlichkeiten zu schätzen, d.h. die Wahrscheinlichkeiten, daß
ein Wortpaar in einer bestimmten syntaktischen Relation auftritt. Ich
untersuche Methoden, die auf einer Mischung von kontextsensitiven
Verteilungen und Randverteilungen basieren. Ich beschreibe, wie die
in Kapitel 5 entwickelte Technik zur Kombination spezieller und allge-
meiner Evidenz auf Häufigkeiten von Bigrammen verallgemeinert wer-
den kann, was zu einer neuartigen Schätzmethode führt. Das Kapitel
untersucht auch, wie Ähnlichkeiten der Verteilung zwischen Worten
ausgenützt werden können, um verbesserte Schätzungen von Bigram-
Wahrscheinlichkeiten zu erhalten. Ich gebe einen Überblick über eine
größere Zahl von Techniken, die bisher für dieses Problem verwendet
wurden, die von harter Gruppierung (clustering) über weiche Grup-
pierung bis hin zu Ansätzen reichen, die die nächsten Nachbarn zur
Schätzung heranziehen. Ich diskutiere einige Alternativen bei der Wahl
geeigneter Ähnlichkeitmaße und skizziere, wie Probleme mit der Platz-
und Zeitkomplexität dieser Verfahren gelöst werden können. Kapitel 7
diskutiert die Frage, wie mehrere Quellen kontextueller Evidenz kom-
biniert werden können, ohne daß dies zu einem exponentiellen Anwach-
sen der zu schätzenden Parametern führt. Ein Weg, stochastische Mod-
elle stärker kontextsensitiv zu machen, besteht darin, sie direkt auf eine
Beschreibung in einer ausdrucksstärkeren Sprache aufzubauen, wie z.B.
auf eine constraintbasierte Grammatik. Dadurch wird es prinzipiell
möglich, beliebige strukturelle Eigenschaften in die Bewertungsfunk-

Aufbau der Arbeit 11

tion aufzunehmen. Allerdings erschwert dieser allgemeine Ansatz die
Schätzung der Parameter. Kapitel 8 beschreibt ein Experiment, in dem
viele der besprochenen Techniken gemeinsam verwendet werden, um die
mit einer großen lexikalisch funktionalen Grammatik erhaltenen Parse-
Wälder zu disambiguieren. Schließlich enthält Kapitel 9 eine kurze
Zusammenfassung und beschreibt mögliche Richtungen zukünftiger Ar-
beit.

12 Zusammenfassung

Chapter 1

Introduction

1.1 Ambiguity in Natural Language Pro-

cessing

Natural language mirrors the human intellectual capacities, which are
far from being understood. As long as we can not formally describe the
processes involved in thinking and understanding, formal descriptions
of human language behavior have to be rough approximations. One
particular instance of this general fact is the problem of disambiguation
of human utterances. Since our use of words fits our capabilities of
understanding their meaning, context and intent, systems that do not
have such capabilities can, at best, produce sets of possible analyses. It
is well known that such sets can be very large in practice. Ambiguity
is hence one of the basic problems in automatic processing of natural
language, and any natural language processing (NLP) system needs
ways to cope with it.

Ambiguity exists on many linguistic levels. Roughly, we can dis-
tinguish lexical and structural ambiguities, but each of them is again
a collective term for rather diverse sets of problems. Lexical ambiguity
can affect the part of speech of a given word, its morphological features,
its subcategorization, i.e. the number and types of the complements
the word comes with, its meaning, or any other information assigned to
it. [Bar-Hillel1960] gave the example “The box is in the pen” to show

13

14 CHAPTER 1. INTRODUCTION

that determining the proper sense of a word1 is a very hard problem
that, in some cases, requires an unlimited amount of world knowledge
to be resolved. The problem of word sense disambiguation has therefore
been described as “AI-complete”. An extensive survey of the state of
the art in word sense disambiguation is given in [Ide and Véronis1998].

Structural ambiguity is ambiguity in the way in which words inter-
act. It comes up if there are different possible groupings of the words or
different interpretations of the interrelations between words or larger
constituents. These differences can affect the attachment of certain
phrases, the scope of quantifiers, and the reference of anaphora, among
many other phenomena. One very famous example is the sentence “I
saw the man on the hill with the telescope.” which has several possible
interpretations, differing in the attachment of the prepositional phrases
“on the hill” and “with the telescope”.

However, the distinction between lexical and structural ambiguity
is not clear-cut. For instance, if we have to decide if a pair of adjacent
words form a lexical unit or if the meaning of this word group can
be inferred from the individual meanings in a compositional way, it is
a matter of definition to classify this kind of ambiguity as lexical or
structural or both.

More generally, ambiguity on different levels interact in the sense
that fixing some of the possible decisions, such as the choice of the
part of speech of a word, can also reduce the number of possibilities in
some other choices, like the possible attachments of a phrase. In the
also very well known example “Time flies like an arrow.”, flies can be
verb or noun, and this lexical ambiguity interacts with the ambiguity
concerning the overall syntactic structure of this sentence.

In many practical applications, the way utterances are entered into
the linguistic processing system is a source of additional uncertainty.
Very often, the input data deviates from the ideal of well-formed natu-
ral language utterances. Systems that process textual input often need
to cope with typing or spelling errors. Text that has been automati-
cally digitized by OCR typically contains several errors per page. The
situation is worse if OCR has been applied to hand writing or if NLP is
to work on the output of a speech recognition system. Although there

1pen in this case means an enclosure with a fence, or a play-pen.

1.1. AMBIGUITY IN NATURAL LANGUAGE PROCESSING 15

are some ways to automatically improve the quality of the data un-
der such circumstances, these techniques cannot be applied separately
from linguistic processing, since they need access to linguistic knowl-
edge sources and the context of the utterance. Correction of ill-formed
input typically does not lead to a unique result and hence adds to the
ambiguity problem. In the case of speech recognition, it is quite ob-
vious that the mapping from sounds to words cannot be unique, since
different words may sound alike. Any system that needs to restore
the correct orthography from spoken input will have to use contextual
knowledge in these cases. Since ambiguity can simultaneously appear
on several levels in the same utterance, the number of possibilities can
multiply to an enormous space of combinations.
A striking fact about the problem is that humans usually don’t

even perceive the ambiguity of the utterances they use. In typical
communicative situations, speakers try to express themselves in such
a way that that their intended audience will “get the message”. Grice
has stated the co-operative principle of communication, and among the
four requirements listed under the maxim of manner, he lists “avoid
ambiguity” [Levinson1983]. The exact result of this depends on the
speaker’s assumption about the knowledge of the audience. Anyone
who has ever tried to understand technical or scientific text from an
unfamiliar domain will know that even basic steps of parsing can fail
if the meaning of some of the words is unknown. Hence ambiguity is
mainly a problem of missing knowledge on the side of the system for
which some utterance was not intended.
Human disambiguation makes use of many knowledge sources of

very different nature, and they seem to interact in a seamless way.
Linguistic research, on the other hand, has always, and for good rea-
sons, distinguished several relevant levels, such as morphology, syntax,
semantics, and the modeling of domain-dependent ontological knowl-
edge.
For these levels, different kinds of knowledge and different descrip-

tion formalisms seem most appropriate, and computational linguistics
has used different processing strategies for them. For some of these lev-
els, the observed regularities are most naturally described using sym-
bolic rules, which impose hard constraints on the set of structures that
should be taken into consideration. However, rule-based symbolic de-

16 CHAPTER 1. INTRODUCTION

scriptions are limited to yes-no distinctions and cannot express gradual
differences in the acceptability of utterances or interpretations. They
are typically used for a characterization of human language competence,
i.e. a theory of all well-formed utterances and their possible interpre-
tations. A theory of competence alone cannot tell us how to resolve
ambiguity. If an utterance has several possible interpretations, there is
no way to differentiate between them.

However, if we turn our attention to human language performance,
we find many additional potential knowledge sources. By observing the
way grammatical constructions are actually used in human discourse,
we can find more regularities, such as the relative frequency of these
constructions, limitations in the depth of center embedding recursion,
or the tendency of coordinated phrases to be similar in structure and
complexity. But we cannot simply turn information on the frequency
of a construction into a judgment of the acceptability of an utterance.
For instance, there is no hard limit on the number of recursive embed-
dings, and actual usage depends on many factors such as text genre
and personal style. There is no way to translate the tendency of par-
allelism in coordination into a set of hard constraints on the structures
that would adequately describe the facts. Similar observations can
be made with respect to partially free order of constituents in many
languages[Uszkoreit1984].

If we start to study matters of lexical choice by collecting statisti-
cal information on word co-occurrences, we can again find quite strong
tendencies and patterns which yet cannot be translated into hard facts.
The patterns depend not only on genre and style, but also quite heavily
on the domain of discourse. This variety makes any theoretical inves-
tigation considerably more complex.

If we look more closely, we can distinguish two sources of soft con-
straints. One is linguistic preferences, that make one of several possible
ways to express some given meaning more likely than another. These
preferences affect words and linguistic constructions, and they depend
on genre and style. The other source of soft constraints has to do with
the meanings that are described in the utterances. Some meanings are
more likely than others, hence if some utterance could be understood as
describing different meanings with different probabilities, we will prefer

1.1. AMBIGUITY IN NATURAL LANGUAGE PROCESSING 17

the most likely interpretation2. Of course, such probabilities depend on
the domain of the discourse, but also on many more properties of the
situation in which an utterance is made. Estimating these probabilities
in a given situation is beyond the scope of linguistics, but obviously such
knowledge is important for simulating the human language processing
capabilities in general and disambiguation behavior in particular.
When the different levels of linguistic theory are implemented and

used to build an NLP system, one might feel the need to integrate all
these levels into one big machinery that uses all available knowledge
and does everything in one pass. But such an integrated system would
lose its modularity and become quite hard to manage. Hence a tra-
ditional architecture will translate the linguistic levels into modules of
a sequential, multi stage processing architecture with specialized pro-
cessors for each of the levels, through which the input is passed. But
in such an architecture, it is difficult to model the interaction of many
knowledge sources that operate on different levels.
If we force each module to deliver a single and unambiguous repre-

sentation of its output to the next component, it must make decisions
for which it does not have sufficient information. It is important to
resist the temptation to resolve ambiguities as soon as they appear, in
an ad-hoc manner, since a local analysis that is prematurely rejected
by some processing module may be essential for a correct treatment of
the overall utterance in some later component.
A straightforward solution to these kinds of problems is to pass sets

of analyses between the components, which may be filtered in subse-
quent processing steps. However, the practical problem here is that
there are so many ambiguities, that they are often independent, and
that their totality may lead to an exponential increase in the number
of solutions. An uncertainty in the interpretation of a single word may
already double the number of interpretations of the whole utterance.
Solutions in such sets often have large proportions of their information
in common. If the next component in the chain is forced to look at all
the solutions in isolation, it will not be able to exploit common parts of

2This is not necessarily the interpretation that describes the most probable fact.
We have to take pragmatic constraints such as Grice’s co-operative principle (see
[Levinson1983]) into account to assess which interpretations are probable in a cer-
tain dialog situation.

18 CHAPTER 1. INTRODUCTION

the structures and will require an exponential amount of computational
resources.

1.2 Two Ways to Cope with Ambiguity

This thesis investigates techniques that combine linguistic and statisti-
cal knowledge sources for the representation and resolution of syntac-
tical and lexical ambiguities. It tries to integrate two complementary
approaches to deal with the problem.
The basic setup relies on a constraint-based grammar which is seen

as a simple formalization of the syntactic regularities of the given lan-
guage. By using such a grammar, we are able to restrict attention
to syntactically well-formed utterances and to map such utterances
into sets of underlying structures which typically contain syntactic and
some semantic information. I will try to keep the treatment as inde-
pendent as possible from the details of the formalism and the gram-
mar. In cases where details are needed, I will use examples from LFG
[Kaplan and Bresnan1982] or from DCG [Pereira and Warren1980]. I
will assume that the structures constructed by the grammar contain an
implicit or explicit representation of the underlying predicate/argument
structure, i.e. they define what entities are involved in what kind of ac-
tions.
In this framework, ambiguity refers to all kinds of situations where

a single utterance has more than one possible analysis. The exact set
of phenomena that are covered by this generic definition depends of
course on the details of the grammar. We can write a grammar that
maps words into the concepts of a semantic ontology. In this case, there
are ambiguous analyses for many words, and the task of identifying the
right concept for each word is much harder than in situations where the
set of predicates is largely determined by the words that are involved.
This thesis does not try to analyze in detail the various forms of ambi-
guity and to device a specific disambiguation methodology for each of
them. It is rather aimed at the definition of a general scheme, which
can be applied on various forms of ambiguity, according to demand.
In the first part, which consists of Chapters 2 and 3, I sketch ways to

avoid disambiguation by representing several possible interpretations in

1.2. TWO WAYS TO COPE WITH AMBIGUITY 19

a compact form. The work described here is based on ideas that have
been developed mainly by Ron Kaplan, Martin Kay, and John Maxwell
in connection with implementations of LFG. Similar approaches have
been proposed in connection with logic-based NLP. However, it is useful
to present the various methods for packed representations of solution
spaces in a somewhat unified way, in order to highlight some underlying
common principles.
In the second part, I will present a method for the partial resolution

of ambiguity with the help of stochastic models. The goal of disam-
biguation, as seen here, is not primarily to extract a single solution out
of a set of possible analyses, but to assign to every analysis a score in
the form of a probability. This assessment leads straightforwardly to
the selection of a “best” solution, should such a selection be required.
A probabilistic assessment, however, is much more powerful. It defines
a ranking, i.e. an enumeration of solutions, sorted by probability. From
such a ranked list, we can find out if there is a big difference between
the best and the second best solution, which may be useful to decide if
the best solution should be taken unconditionally, or if further (maybe
more expensive) mechanisms should be employed to reach a decision.
From a probability distribution over solutions, we can also extract prob-
abilities of certain properties of a solution, which can be useful for the
collection of additional statistical training material, or to optimize the
efficiency of interactive disambiguation.
A further advantage of this probabilistic scoring becomes apparent

if we want to use the analysis as an input to further processing steps,
such as transfer into another language, or taking some action in a dialog
system. The following component may not be able to accept every input
that can be produced by the syntactic analysis, or it may prefer certain
inputs over others. In both situations, the existence of a stochastically
ranked collection of possibilities is a good way to combine soft or hard
constraints from both components to find the best overall solution.
The integration of grammatical and statistical approaches to lan-

guage is an area of ongoing, intensive research activity, which did not
yet lead to conclusive results. I try to offer some building blocks that
may contribute to a solution, but I have to leave for the future the
full integration into an NLP system and the comparison with other
techniques that have been proposed in the meanwhile very extensive

20 CHAPTER 1. INTRODUCTION

literature.
Whereas the task of disambiguation between competing analyses

is the main motivation of this work, there are strong connections with
work on stochastic language modeling, i.e. approaches that define prob-
ability distributions on possible utterances. On one hand, I use some
techniques that have been developed for language modeling and gen-
eralize them to be useful for probability distributions on syntactic de-
pendency structures. On the other hand, the models defined here are
implicitly also stochastic models for the strings these structures come
with. The hope is that by exploiting syntactic dependencies, we ob-
tain innovative and superior language models that could, at least in
principle, help to increase the accuracy of speech recognition, OCR, or
any other application where a distorted or ambiguous representation of
natural language has to be decoded.

1.3 Structure of this Thesis

The structure of the thesis is as follows.
In Chapter 2, I review a couple of related proposals to the rep-

resentation of disjunctive information in constraint-based grammars.
Chapter 3 investigates the question how ambiguous results of context-
free parsing may be represented compactly, and how the schemes for
representing disjunctive feature information can be integrated into rep-
resentations of parse forests.
In Chapter 4, I introduce some concepts and notations from prob-

ability and information theory that seem relevant for linguistic appli-
cations. I also shortly discuss ways to measure the quality of language
models, and try to motivate the use of cross entropy as an evaluation
criterion.
In Chapter 5, I sketch ways to estimate the probability of words,

ignoring the context. Whereas this does not seem very interesting or
important per se, it gives some insights into the more general estimation
problem. I also investigate how morphological information can be used
to obtain refined probability estimates, and how lexical data and train-
ing data from different domains can be exploited. Chapter 6 addresses
simple solutions to the problem of estimating bi-lexical probabilities,

1.3. STRUCTURE OF THIS THESIS 21

i.e. the probabilities that a pair of words appears in a given syntactic
relation. I first concentrate on estimation methods that use mixtures
of context-aware and marginal distributions, I discuss some of their
properties, and compare them to the more sophisticated application of
the Good/Turing formula to this problem given by Church/Gale. I de-
scribe how the technique of merging specific and general evidence from
Chapter 5 can be further generalized and applied to bigram frequencies,
leading to a novel estimation method. The chapter also investigates the
question how distributional similarities between words can be exploited
to get better estimates for bigram probabilities. I give an overview of
the large set of techniques that have been used for this problem so far,
ranging from hard over soft clustering up to nearest-neighbor-type ap-
proaches. I discuss some ways of defining suitable similarity measures,
and sketch solutions to problems with time and space complexity of
these approaches.
Chapter 7 investigates ways of combining the evidence from sev-

eral contextual clues without exponential increase of the parameters
to be estimated, which is not possible in the context-free approaches.
Stochastic models can be made more context-aware by basing them
directly on a description in a more expressive language, such as as
constraint-based grammar formalism. In such approaches, it is in prin-
ciple possible to incorporate arbitrary structural properties into the
scoring function. However, this general approach makes the parameter
estimation more difficult. Chapter 8 describes an experiment in which
most of the techniques introduced so far are taken together to per-
form syntactic disambiguation on a set of parse forests produced with
a large-scale LFG grammar. Finally, Chapter 9 gives a short summary
of the thesis and sketches possible directions of further work.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Unifying Disjunctive Feature
Descriptions

2.1 Introduction

This chapter introduces the language of feature terms containing sorts,
variables, negation and named disjunction for the specification of fea-
ture structures. We show that the possibility to label disjunctions with
names has major advantages both for the use of feature logic in com-
putational linguistics and its implementation. We give an open world
semantics for feature terms, where the denotation of a term is deter-
mined in dependence on the disjunctive context , i.e. the choices taken
for the disjunctions. We define context-unique feature descriptions, a
relational, constraint-based representation language and give a normal-
ization procedure that allows to test consistency of feature terms. This
procedure does not only avoid expansion to disjunctive normal form
but maintains also structure sharing between information contained in
different disjuncts as much as possible. Context-unique feature descrip-
tions can be easily implemented in environments that support ordinary
unification (such as Prolog). This chapter is based on a joint paper
with Jochen Dörre and has been published as [Dörre and Eisele1990].

23

24 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

2.1.1 Unification-Based Formalisms

For about a decade, many formal theories of natural language have
tried to describe their subject in terms of so called feature structures,
i.e. potentially nested bundels of features that are assigned to words
and phrases. These structures are sometimes seen as abstract linguis-
tic objects, which are described using a suitable description language,
sometimes they are given a concrete shape in form of finite automa-
tons and regarded themselves as descriptions of the linguistic objects
[Kasper and Rounds1986]. Despite such differences in interpretation,
there is a consensus among the theories that linguistic descriptions
should provide constraints concerning feature structures and that a set
of such constraints gives a partial description of the feature structures
associated with a phrase. A set of constraints defines a minimal model,
i.e. a minimal structure satisfying all constraints in the set. The union
of two sets of constraints not contradicting each other leads to a mini-
mal model which is the least common extension of the models of both
sets. Such minimal common extensions can be constructed by unifica-
tion of the given models, hence the term unification-based formalisms.

There is also a consensus among feature-based theories that ambigu-
ity should be described with disjunctive formulas, and most formalisms
offer ways to specify them. If disjunction is present, there is usually a
finite number of minimal models instead of only one. However, until
now, the way such disjunctive specifications have been processed com-
putationally was not quite satisfactory. An enumeration of the possi-
bilities using a backtracking scheme or a chart, which corresponds to
an expansion to disjunctive normal form in the underlying logic, often
leads to computational inefficiency.

Approaches to improve the situation both in terms of the logic and
the implementation (see e.g. [Karttunen1984, Kasper1987, Eisele1987,
Maxwell and Kaplan1989]) can be subdivided in those assuming dis-
junctive values for features and those allowing for more general forms
of disjunction. Roughly, we can state that formalisms and implemen-
tations that provide value disjunction can be implemented more easily
and more efficiently, since they can exploit the fact that disjunctive in-
formation for a certain feature has no effect on other features (as long
as disjunctive information does not interact with path equivalences,

2.2. FEATURE TERMS 25

see [Eisele1987]). But the restriction to value disjunction decreases the
expressive power of the formalism, since disjunctions concerning dif-
ferent features must be stated on a higher level. Schemes providing
for general disjunction allow for a more compact representation of such
cases. But if disjunctive information is not local to single features, the
interaction between different parts of the description is more difficult
to handle (see e.g. [Kasper1987]).

The method we propose combines advantages of both approaches.
It can be seen as a generalization of value disjunction, which allows for
a concise description of disjunction concerning more than one feature or
path. It can also be seen as an efficient implementation of general dis-
junction which allows to exploit the locality of disjunctive information
whenever this is possible.

2.2 Feature Terms

2.2.1 Disjunction Names

The background of our approach is the simple observation that general
disjunction affecting more than one feature can be reduced to value dis-
junction for those features, provided that the correspondence between
such disjunctions can be expressed within the formalism. In order to
state such correspondences, we will label disjunctions with a disjunction
name. Take, for instance, the formula (1) that could be used to express
that the directional reading of the german preposition “in” (=into) cor-
responds to the accusative case of the following noun phrase, whereas
the static reading (=in) corresponds to the dative case. This can also
be expressed by (2), where the index d1 at the disjunction sign indicates
the mutual dependence of both disjunctions. Throughout this paper,
we will assume that each disjunction is labelled with a name. Even in
cases where a disjunction appears only once in the initial description,
naming it will help us to treat the interaction between disjunction and
path equivalence correctly.

26 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

s, t −→ A a sort
| x a variable
| ¬A | ¬x simple complements
| f:s selection
| s ∧ t conjunction (intersection)
| s ∨d t named disjunction (union)

[[A]]α,κ := AI

[[x]]α,κ := {α(x)}
[[¬s]]α,κ := U − [[s]]α,κ
[[f:s]]α,κ := {a ∈ U | fI(a) ∈ [[s]]α,κ}
[[s ∧ t]]α,κ := [[s]]α,κ ∩ [[t]]α,κ
[[s ∨d t]]α,κ :=

{
[[s]]α,κ if κ(d) = l
[[t]]α,κ if κ(d) = r

Figure 2.1: Syntax and Semantics of Feature Terms

(1) (syn : arg : case : dat ∧ sem : rel : stat in)
∨ (syn : arg : case : acc ∧ sem : rel : dir in)

(2) syn : arg : case : (dat ∨d1 acc)
∧ sem : rel : (stat in ∨d1 dir in)

2.2.2 Syntax and Semantics of Feature Terms

We incorporate named disjunction into a language of so-called feature
terms (similar to those in [Smolka1988]), where each feature term de-
scribes a set of possible feature structures. The language allows for
the use of sort symbols A,B,C . . . ∈ S, on which some partial order �
induces a lower semilattice (i.e. ∀A,B ∈ S : GLB(A,B) ∈ S). � and
⊥ are the greatest and least element of S. We also distinguish a set
of singleton sorts (a, b, c . . . ∈ Sg ⊂ S), which include the special sort
none. ⊥ is the only sort smaller than a singleton sort. The language
provides a set F of feature symbols (written f, g, h, . . .), an infinite set
V of variables (written x, y, z, x1, y1, . . .) to express path equivalence,
and an infinite set D of disjunction names (written d, d1, d2, . . .). S,

2.2. FEATURE TERMS 27

F, V and D are pairwise disjoint. Sort symbols and variables can be
negated to express negative values and path equivalence (simple nega-
tion). The restriction of negation to sort symbols and variables is not
essential, since the negation of any feature term can always be reduced
to these forms in linear time [Smolka1988].

Definition 1 (Feature Terms) We define the set FT of feature
terms with variables, simple negation and named disjunction by the
context-free production rules given in Fig. 2.1. Letters s, t, t1, . . . will
always denote feature terms.

The semantics of our terms is defined with respect to an interpreta-
tion, which is a pair (U , ·I) of a universe of the interpretation and an
interpretation function such that:

• �I = U and ⊥I = ∅
• for all sorts A,B: GLB(A,B)I = AI ∩BI

• singleton sorts are mapped onto singleton sets
• for every feature f : fI is a function U → U .
• if a is a singleton sort and f is a feature symbol, then fI maps
aI into none

I

When interpreting a feature term with variables and named dis-
junctions, we have to make sure that the same value is assigned to each
occurrence of a variable and that the same branch is chosen for each
occurrence of a named disjunction. To achieve this, we introduce vari-
able assignments that map variables to elements of the universe and
disjunctive contexts that assign to each disjunction name the branch
that has to be taken for this disjunction and hence specify a possible
interpretation of a formula with named disjunction. Since we limit our-
selves to binary disjunctions, a branch of a disjunction can be specified
by one of the symbols l or r.

Definition 2 (U-Assignment) A U-assignment α is an element of
UV, i.e. a function from V to U .
Definition 3 (Context) A context is an element of {l, r}D, i.e. a
function from D to the set {l, r}. The symbols κ, κ′, etc. will always
denote contexts.

28 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

For a given interpretation, we define the denotation of a feature term in
a context κ ∈ {l, r}D under an assignment α ∈ UV as shown in Fig. 2.1.
The denotation of a feature term as such is defined by:

[[s]] :=
⋃

κ∈{l,r}D

⋃
α∈UV

[[s]]α,κ

2.3 Context-Unique Feature Descriptions

To describe the computational mechanisms needed for an implementa-
tion, we will introduce a relational language to express constraints over
variables. Unlike similar approaches (e.g. [Smolka1988]), our constraint
language will also be used to express disjunctive information. For this
language, we will define a normal form that exhibits inconsistencies,
and simplification rules that allow to normalize a given specification.
Our language will provide only two kinds of constraints, one that relates
a variable to some feature term (written x | t) and one that expresses
that certain contexts are excluded from consideration because the in-
formation known for them is inconsistent (written ⊥[k]).
In order to refer to sets of contexts, we define

Definition 4 (Context Descriptions) A context description is a
propositional formula where the constant true, variables written di: l
and di:r with di ∈ D, and the operators ∧, ∨ and ¬ may be employed.
CD will denote the set of context descriptions. The symbols k, k1, . . .
will always denote members of CD.
The set of purely conjunctive context descriptions (not containing the
operators ∨ and ¬) is denoted by CDc.
Each context κ satisfies the context description true (written κ |=c
true), whereas κ |=c d: b for b ∈ {l, r} only if κ(d) = b. The meaning
of context descriptions involving ∧, ∨ and ¬ is defined as in proposi-
tional logic.
If κ |=c k, we will also say that k describes or covers κ or that κ lies in
k.
A context description is called contradictory, if no context satisfies it.
Two context descriptions k, k′ which are satisfied by exactly the same
contexts are called equivalent (written k ≡ k′).

2.3. CONTEXT-UNIQUE FEATURE DESCRIPTIONS 29

An important form of constraints for our approach are constraints
like x | x1 �d1 x2 which expresses that x and x1 have to be equal in
contexts where κ(d1) = l and so do x and x2 in contexts where κ(d1) =
r. Such constraints are called bifurcations and x1, x2 are called (the d1: l-
and d1:r-) variants of x. Assume an additional constraint x1 |x3�d2 x4,
then x3 will be called the d1: l∧d2: l-variant of x and so on. Now, instead
of accumulating constraints on the variable x which might be effective
in different contexts and could interact in complicated ways, we can
introduce new variables as variants of x and attach the information to
them.
We will sometimes refer to a variant of a variable x without having

a variable name for this variant. To this end, we will use a special
notation x/k to denote the k-variant of x. Such expressions will be
called contexted variables.

Definition 5 (Contexted Variables) A contexted variable is a pair
x/k where x ∈ V and k ∈ CDc.
Vc will denote the union of V with the set of contexted variables. El-
ements of Vc will be written with capital letters X, Y, Z,X1, Y1 . . . To
mark the distinction, we will sometimes call the members of V pure
variables.

During the normalization of feature descriptions we will sometimes
need variable substitution. If a description contains e.g. x | y, where
other constraints might express conflicting information about x and y,
we want to concentrate this information on one variable (say x) by
substituting all occurences of y in other constraints by x. This could
lead to problems when constraints attached to x and y are relevant in
different contexts. One way to treat this situation correctly would be
the introduction of conditional substitution (see [Eisele and Dörre1990]
for details). The way we choose here is to restrict the use of variables
in such a way that it is always safe to use conventional substitution.
Our trick will be to require that essentially all occurences of a vari-

able x are relevant to the same set of contexts. We call this condition
(defined more precisely below) the context-uniqueness of variables. We
will set up the normal form and the rewrite system in such a way, that
context-uniqueness of a description is maintained during the simplifi-
cation process. (See [Eisele and Dörre1990] for a more detailed moti-

30 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

vation of context-uniqueness). The set of relevant contexts will be re-
garded as an inherent and invariant property of variables, and we will
introduce a context assignment , i.e. a partial function Con : V �→ CDc

that maps each variable in use to a purely conjunctive description of
the contexts it is relevant to. We extend Con to contexted variables by
defining Con(x/k) := Con(x) ∧ k.
In order to obtain context-unique descriptions, we generalize our

feature terms so that they may also contain contexted variables.

Definition 6 (Contexted Feature Terms) A contexted fea-
ture term is built according to definition 1, but where both pure and
contexted variables may occur. The set of contexted feature terms will
be denoted by FTc. The symbols s, t, t1 . . . may henceforth also denote
contexted feature terms.

The denotation of a contexted feature term in a context κ ∈ {l, r}D
under an assignment α ∈ UV is defined as for usual feature terms by
adding:

[[x/k]]α,κ :=

{
{α(x)} if κ |=c k
∅ otherwise

We can now define the context compatibility of a feature term. This
definition is somewhat technical and the reader can skip it, since our
algorithm will produce only context-unique descriptions, anyway.

Definition 7 (Context compatibility) Given a partial assignment
Con : V �→ CDc, a contexted feature term t is context-
compatible to a context description k with respect to Con,
written t ∼Con k, according to the following conditions.

A ∼Con k for arbitrary k ∈ CDc

X ∼Con k iff Con(X) ≡ k
¬t ∼Con k iff t ∼Con k
f: t ∼Con k iff t ∼Con k
s � t ∼Con k iff s ∼Con k and t ∼Con k
s �d t ∼Con k iff s ∼Con k ∧ d: l

and t ∼Con k ∧ d:r

Definition 8 (Context-unique feature descriptions) A context-
unique feature description (x0, CUC,Con) is a triple such that:

2.4. NORMAL FEATURE DESCRIPTIONS 31

• x0 ∈ V, called the root variable
• CUC is a set of context-unique constraints which either have the
form
⊥[k], where k ∈ CD or
X | t, where X ∈ Vc, t ∈ FTc and t ∼Con Con(X)

• Con is a context assignment which is defined for all variables in
CUC

The semantics of context-unique feature descriptions is given by the
satisfaction relation |=Con between variable assignments1, contexts and
constraints, which is parametrized with a context assignment.

α, κ |=Con X | t iff κ �|=c Con(X) or α(X) ∈ [[t]]α,κ
α, κ |=Con ⊥[k] iff κ �|=c k

The denotation of a context-unique f-description is:

[[(x0, CUC,Con)]] := {α(x0) | α ∈ UV, κ ∈ {l, r}D s.t.
∀c ∈ CUC : α, κ |=Con c}

Given a feature term t not containing the variable x0, we can find
an equivalent context-unique feature description (x0, {x0 | t′}, Con) as
follows. We initialize the context assignment Con so that x0 and all
variables contained in t are mapped to true (they are regarded as
relevant to all contexts). Then we obtain the contexted feature term
t′ by replacing all occurences of variables in t which are embedded in
disjunctions by their appropriate variants, such that t′ ∼Con true

2.

Proposition: If t does not contain the variable x0, and if Con and
t′ are obtained from t as described above, then [[t]] = [[(x0, {x0 |
t′}, Con)]]. For a proof see [Eisele and Dörre1990].

2.4 Normal Feature Descriptions

One way to eliminate a contexted variable (take e.g. x/d1 : l) from a
description is to introduce a bifurcation (x | x1 �d1 x2) and replace

1α is extended to contexted variables by: α(x/k) := α(x)
2In the sequel we will also assume that inaccessible disjuncts resulting from

nested disjunctions with identical names (e.g. t2 in t1 �d (t2 �d t3)) are removed.

32 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

the variable by an appropriate variant (in this case x1). Analogously,
contexted variables with more complex context descriptions can be re-
placed by introducing several bifurcations. However, it turns out that
our representation can be more compact if we allow for the use of con-
texted variables. But we have to prevent conflicting information from
being attached to variants of a variable. Our normal form will therefore
allow the use of contexted variables in certain places, but in some cases,
a pure variable has to be used.
A context-unique feature description (x0, CUC,Con) is normal if it

satisfies the following conditions:

A) All constraints in CUC have one of the forms:

• ⊥[k]
• x |x1 �d x2
• x |¬y, where x �= y
• x |A or x |¬A
• x |f:Y

where k ∈ CD, x1, x2, x, y ∈ V, Y ∈ Vc, d ∈ D and A ∈ S\{�,⊥}
B) The following restrictions apply:

1. If ⊥[k] and x | t are in CUC, then Con(x)∧¬k is not contradictory
2. if x |A and x |B are in CUC, then A = B
3. if x |a and x | t are in CUC, then t = a
4. if x |A and x |¬B are in CUC, then A �≤ B and GLB(A,B) �= ⊥
5. if x |¬A and x |¬B are in CUC, then A �< B
6. if x |f:Y and x |f:Z are in CUC, then Y = Z
7. if ⊥[k] and ⊥[k′] are in CUC, then k = k′
8. if x |x1 �d x2 and x | t are in CUC, then t = x1 �d x2

2.4.1 Simplification Rules for Normalization

For normalization, we have to consider all ways a context-unique feature
description could fail to be normal, and we have to find an equivalent
description that is in (or closer to) normal form. To this end, we give
simplification rules for each possible case. Since there are many different
ways to violate normal form, we get a lot of different rules, but each
of them is very simple and their correctness should be easy to see.

2.4. NORMAL FEATURE DESCRIPTIONS 33

The rules are parametrized with the root variable (which should not
be substituted away) and with the context assignment, which will be
extended to new variables during simplification. To facilitate notation,
we use c & CUC to denote {c} ∪ CUC where CUC is supposed
not to contain the constraint c, and CUCx→y denotes CUC with all
occurences of x replaced by y. Also, if we write d : b ∧ k′, then k′ is
supposed not to contain d:b. The cases we have to handle are grouped
in those that treat single non-normal constraints (S) and those that
treat interactions between different constraints (M).
There are S-Rules for all forms of constraints which conflict with

condition A), i.e. which are of one of the forms

1. x/k | t
2. x |¬y/k
3. x |Y
4. x | t or x |¬t, where t has the form �, ⊥ or x
5. x |f: t1, where t1 �∈ Vc

6. x | t1 � t2
7. x | t1 �d t2, where {t1, t2} �⊂ V

Among the situations in which a contexted variable x/k conflicts
with normal form, we have to distinguish several cases. If k ≡ true,
then the context description is irrelevant and we can replace x/k by x
(Rule Scu1b). Otherwise, if there exists already a bifurcation x |xl�dxr,
such that k ≡ d : b ∧ k′ for some b ∈ {l, r} and k′ ∈ CDc, where k

′

does not contain d : b, then we can replace x/k by the shorter term
xb/k

′ (Rule Scu1c). If there is a bifurcation x |xl�d xr where d does not
appear in k, the constraint attached to x/k is distributed over the vari-
ables xl and xr (Rule Scu1d). In order to maintain context-uniqueness,
the variables appearing in the constraint have to be replaced by their
respective d : l- and d : r-variants. We use t/k as a shorthand for a
contexted feature term, where each variable has been replaced by its
k-variant, i.e. z has been replaced by z/k and z′/k′ by z′/(k′ ∧ k) (see
also rule (Mcu8c), below). Only if no bifurcation exists for x we have
to introduce a new bifurcation (Rule Scu1e). We select a disjunction
name d from k such that k ≡ d:b∧k′ for some b ∈ {l, r} and k′ ∈ CDc,
where k′ does not contain d : b, we add a bifurcation x |xl�dxr to CUC,
where xl and xr are new variables, and we extend Con by mapping xl

34 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

to Con(x) ∧ d: l and xr to Con(x) ∧ d: r. Now we can replace x/k by
xb/k

′.
The other rules handle equalities by substituting a variable by some

other variable, eliminate redundant constraints, handle inconsistencies,
or decompose constraints with complex feature terms into a set of sim-
ple constraints.
The cases where a pair of constraints violates some of the condi-

tions B1–7 can be treated as for similar non-disjunctive rewrite systems
(see [Smolka1988] or [Eisele and Dörre1990]). Rules Mcu1 − 7 handle
those. When a bifurcation x |x1 �d x2 occurs together with some other
constraint on x, this could lead to a contradiction with information
known about x1 and x2. Here, we distinguish three cases. If the other
constraint happens to be a bifurcation x | y1 �d y2 with the same dis-
junction name d, we get equalities between both d: l-variants and both
d : r-variants (Rule Mcu8a). If the other constraint is a bifurcation
x |y1�d′ y2 with a different disjunction name, then the two disjunctions
interact and have to be multiplied out for the variable x (Rule Mcu8b).
To this end, four new variables are introduced as variants of x and new
bifurcations are installed that link the new variables to those already
in use. Con is extended for the new variables. In any other case, the
constraint attached to x is distributed over both variants, and context
descriptions for variables on the right-hand side of the constraint are
introduced or adapted as required by context-uniqueness (RuleMcu8c).

2.4.2 Soundness, Completeness and Termination

We can show that our simplification rules constitute an algorithm for
the consistency (or unification) problem, which is sound and complete
and guaranteed to terminate. For detailed proofs the reader is referred
to [Eisele and Dörre1990]. Below, we give the key intuitions or strate-
gies for the proofs. Soundness can be seen by inspecting the rules.
Each rule rewrites a clause to one with an equivalent denotation. To
show that the algorithm always finds an answer, we first observe that to
every context-unique feature description that is produced during trans-
lation or normalization and that is not normal at least one of the rules
applies. When the result of simplification is the single constraint ⊥[k]
where k ≡ true, this means that the description failed to unify. In

2.4. NORMAL FEATURE DESCRIPTIONS 35

(Scu1a) x=k jx=k0 & CUC !x0;Con CUC (k � k0 due to context-uniqueness)
(Scu1b) x=k j t & CUC !x0;Con x j t & CUC, if k � true

(Scu1c) x=k j t & x jxl td xr & CUC !x0;Con xb=k
0 j t & x jxl td xr & CUC, if k � d:b^ k0

(Scu1d) x=k j t & x jxl td xr & CUC !x0;Con xl=k j t=d: l & xr=k j t=d:r & x jxl td xr & CUC;

if (Scu1c) does not match
(Scu1e) x=k j t & CUC !x0;Con xb=k

0 j t & x jxl td xr & CUC

if (Scu1a; b; c; d) do not match, k � d:b^ k0; xl; xr are new,
and Con(xb) := Con(x) ^ d:b

(Scu2) x j:y=k & CUC !x0;Con y=k j:x & CUC

(Scu3a) x jy=k & CUC !x0;Con y=k jx & CUC

(Scu3b) x jy & CUC !x0;Con CUCx!y , if x 6= x0
(Scu3c) x0 jy & CUC !x0;Con CUCy!x0

(Scu4a) x j t & CUC !x0;Con ?[Con(x)] & CUC , if t = ?, t = :> or t = :x
(Scu4b) x j t & CUC !x0;Con CUC , if t = >, t = :? or t = x

(Scu5) x jf : t & CUC !x0;Con x jf : y & y j t & CUC , if t 62 Vc

where y is new and Con(y) := Con(x)
(Scu6) x j t1 u t2 & CUC !x0;Con x j t1 & x j t2 & CUC

(Scu7) x j tl td tr & CUC !x0;Con x jxl td xr & xl j tl & xr j tr & CUC

where ft1; t2g 6� V, xb are new and Con(xb) := Con(x) ^ d:b

(Mcu1) ?[k] & x j t & CUC !x0;Con ?[k] & CUC, if Con(x) ^ :k is contradictory
(Mcu2) x jA & x jB & CUC !x0;Con x jGLB(A;B) & CUC

(Mcu3a) x ja & x j:y & CUC !x0;Con x ja & y j:a & CUC

(Mcu3b) x ja & x jf:Y & CUC !x0;Con x ja & Y jnone & CUC

(Mcu4a) x jA & x j:B & CUC !x0;Con ?[Con(x)] & CUC, if A � B

(Mcu4b) x jA & x j:B & CUC !x0;Con x jA & CUC, if GLB(A;B) = ?
(Mcu5) x j:A & x j:B & CUC !x0;Con x j:B & CUC, if A < B

(Mcu6) x jf:Y & x jf:Z & CUC !x0;Con x jf:Y & Z jY & CUC

(Mcu7) ?[k] & ?[k0] & CUC !x0;Con ?[k _ k0] & CUC

(Mcu8a) x jx1 td x2 & x jy1 td y2 & CUC !x0;Con x jx1 td x2 & (CUCy1!x1
)y2!x2

(Mcu8b) x jx1 td1
x2 & x jy td2

z & CUC !x0;Con x jx1 td1
x2 & x1 jy1 td2

z1 & x2 jy2 td2
z2 &

y jy1 td1
y2 & z jz1 td1

z2 & CUC,
where d1 6= d2 and y1; y2; z1; z2 are new

(Mcu8c) x jx1 td x2 & x j t & CUC !x0;Con x jx1 td x2 & x1 j t=d: l & x2 j t=d:r & CUC

where t is not a bifurcation

Figure 2.2: Simplification Rules

36 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

any other case we can construct models from the normal form result.
The basic idea is to choose a context κ which is not covered by the con-
text description of a constraint ⊥[k] in our formula and ‘project’ the
formula into this context by regarding only those constraints which are
relevant to this context, thereby degenerating bifurcations to nondis-
junctive bindings x | y. This nondisjunctive set of constraints can be
made into a model.
In order to prove termination we construct a complexity measure for

descriptions (a natural number) which is decreased in every rewrite step
(see [Eisele and Dörre1990]). Here we take advantage of the fact that
although there are rules which increase the number of constraints and
hence seem to add to complexity, these rules also can be seen as part
of an inherently irreversible process, since they distribute information
attached to a variable over variables in more specific contexts. But since
the number of disjunction names is limited, the contexts associated to
variables can not be arbitrarily specific and hence, this process must
terminate.

2.4.3 An Example

Due to lack of space, our example can not demonstrate all capabilities of
the formalism, but will concentrate on the treatment of disjunction and
the support of structure sharing between different disjuncts. Assume
as initial feature term f : (x � g : tG) � h : ((x �d y) � i : tI) where
tG and tI might be themselves complex. Translation to context-unique
form will produce the description (x0, {x0|f : (x � g : t′G) � h : ((x/d:
l �d y/d: r) � i : t′I)}, Con1) where t′G and t′I might contain contexted
variables if necessary. Partial normalization then produces

x0,

x0|f : x,
x0|h : z,

x|g : xG,
z|x/d: l �d y/d:r,
z|i : xI ,

xG|t′G,
xI |t′I

 , Con2

where the further decomposition of the constraints xG|t′G, xI |t′I need
not interest us. Since the bifurcation for z contains contexted vari-
ables, it is replaced by z|zl �d zr, zl|x/d: l, zr|y/d: r, but the latter two
constraints lead to the introduction of bifurcations also for x and y.
Furthermore, the feature constraints on x and z are distributed over

2.4. NORMAL FEATURE DESCRIPTIONS 37

their respective variants. We eventually get:

x0,

x0|f : x,
x0|h : z,
x|zl �d xr,
y|yl �d zr,
z|zl �d zr,

zl|g : xG/d: l,
zl|i : xI/d: l,
xr|g : xG/d:r,
zr|i : xI/d:r,

xG|t′G,
xI |t′I

, Con3

Although the resulting description contains contexted variables which
refer to variants of xG and xI , we do not have to introduce bifurcations
for these variables. Hence the information contained in constraints on
the variables xG and xI is not duplicated, although both variables are
used within a disjunction. However, if there would be more information
on the values of the g− or i−features of zl, xr, or zr, for instance a
constraint of the form zl|g : x′, this would lead to the introduction of a
bifurcation for xG, and some parts of the structure embedded under xG
would have to be distributed over the variants of xG. But the unfolding
of the structure below xG would be limited to the minimal necessary
amount, since those parts of the structure that do not interact with
information known about x′ could make use of contexted variables.
Informally speaking, if we unify a structure with a disjunction, only

those parts of the structure have to be copied that interact with the
information contained in the disjunction.

2.4.4 Algorithmic Considerations

One major advantage of our treatment is its similarity with conven-
tional rewrite systems for feature logic. Since we perform only conven-
tional substitution of variables (opposed to conditional substitution as
in [Maxwell and Kaplan1989]), our system can be easily implemented
in environments providing term unification (Prolog), or the almost
linear solution of the union/find problem could be exploited (see e.g.
[Äıt-Kaci1984]). The only essential extension we need concerns the
treatment of context descriptions. A context description contained in
a contexted variable is always purely conjunctive. Hence the necessary
operations (comparison with true, locating, adding or deleting a sim-
ple conjunct) can each be implemented by one simple list operation. In

38 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

the constraint expressing inconsistent contexts (⊥[k]), k is a disjunc-
tion of the inconsistencies found so far (which themselves are purely
conjunctive). This could be also represented in a list of (purely con-
junctive) contexts. However, the exclusion of irrelevant constraints x | t,
where Con(x) is covered by k in ⊥[k], and the (final) test if k ≡ true

involves a bit more propositional calculation. Since these tests might
occur more often than the detection of a new inconsistency, it might
be worthwile to use a representation that facilitates the test for entail-
ment. In any case, the implementation can make use of fast bit-vector
operations.

2.4.5 Maxwell and Kaplan’s Approach

An approach which ours is especially interesting to compare
with is the disjunctive constraint satisfaction procedure given in
[Maxwell and Kaplan1989], because of the similar representations in-
volved in the two approaches. They use also disjunction names
and contexts to represent disjunctive constraints and propose a gen-
eral transformation procedure which turns a rewrite system for non-
disjunctive constraints into one which handles disjunction of con-
straints with the use of contexted constraints, having the implica-
tional form (k → φ), where φ is some non-disjunctive constraint.
This is done by replacing every rewrite rule by its “contexted ver-
sion”, e.g., φ1 ∧ φ2 −→ φ3 is replaced by (k1 → φ1) ∧ (k2 → φ2) −→
(k1 ∧ ¬k2 → φ1) ∧ (k2 ∧ ¬k1 → φ2) ∧ (k1 ∧ k2 → φ3), where k1 and k2
are variables for context descriptions. There are two severe efficiency-
critical problems if we want to use the outcome of this translation
without further optimization. First, any rule of the generated form
should only apply to a pair of contexted constraints whose contexts are
compatible, i.e. k1 ∧ k2 is not contradictory. But now, since context
descriptions may include conjunction and negation at any level, this
test itself is an NP-complete problem, which has to be solved before
every application of a rule. The second problem concerns substitution.
Consider a rule like x

.
= y ∧ Φ −→ Φy→x. The translation produces a

rule in which Φ is rewritten to both Φ and Φy→x, indexed with different
context descriptions. Thus, we cannot simply perform a replacement,
but instead, have to make a copy of Φ (or at least those parts of Φ

2.5. CONCLUSION 39

containing y). Unfortunately, this prevents also the efficient union/find
method to be employed for building equivalence classes for variables in-
stead of actual substitution. All of these problems are avoided if we let
the context description of a contexted constraint depend implicitly on
the variables in it through the introduction of context-unique variables.
From this point of view, our method can be seen as an optimized im-
plementation of the translated rewrite system for unification in feature
logic with sorts and negation.

2.5 Conclusion

To summarize, we have presented a new unification method for the
full language of feature logic including variables, sorts and negation
which avoids expansion to disjunctive normal form, if possible. The
basic principle is to minimize unnecessary interaction of different dis-
junctions by keeping them local to those attributes which they spec-
ify different values for through the introduction of disjunction names.
With this treatment we avoid exponential explosion in many practical
cases. A precursor of this algorithm [Dörre and Eisele1989] has been
implemented and was successfully used in a grammar development en-
vironment. Besides the obvious advantage of increased efficiency, our
compact representation of disjunctive information also facilitates the
comparison of alternative solutions with common parts, which has been
proved to be a very valuable property in our application. Our algorithm
is specified in a completely formalised way as a rewrite system for which
a model-theoretic semantics is given. It may seem that there are a lot
of rules, but this can be explained by the following facts: we include
a complete reduction from feature terms (like in Kasper/Rounds logic)
to feature descriptions (as used in LFG); we handle all different types
of constraints, including sorts and negation in one framework; and our
rules only involve few primitive operations for which simple and fast
implementations exist.

40 CHAPTER 2. DISJUNCTIVE FEATURE DESCRIPTIONS

Chapter 3

Parse Forests and
Disjunctive Descriptions

3.1 Introduction

In the last chapter we have introduced techniques for the representa-
tion of disjunctive information concerning features of certain linguistic
entities.

It would be very useful if these techniques could give a compact
representation of all possible readings of a string as a constituent of
a certain category. However, this is not as straightforward as it might
seem. Explicit disjunctions in grammar and lexicon are only one of sev-
eral sources of ambiguity in the analysis of natural language. Another
source are implicit disjunctions that show up as soon as the context-
free skeleton of grammar is ambiguous and hence assigns more than
one possible structure to a given string.

This chapter will investigate what role the techniques already intro-
duced can serve in constraint-based parsing, where explicit disjunctions
from grammar and lexicon and implicit disjunctions from the parsing
chart interact.

Assume for a simplified example a grammar for noun compounds
that has a rule like

N → N: ↓ ∈ (↑ Compound);
N: ↑ = ↓ .

41

42 CHAPTER 3. PARSE FORESTS

When used to parse a noun compound with more than two com-
ponents, this rule will create multiple possible attachments. For “ink
jet cartridge”, we will get the correct reading “[ink jet] cartridge” as
well as the wrong attachment “ink [jet cartridge]”. For a longer com-
pound like “Xerox Customer Support Center telephone number” we
get 42 readings. The number of readings grows exponentially with the
length of the compound1. The question that will be investigated here
is whether and how the schemes for representing disjunctive informa-
tion in a single structure discussed in the last chapter can be used to
represent all the possible readings of such an expression.

Most of the work described in this chapter is taken from the lit-
erature. I will start from a very practical point of view as given in
[Maxwell and Kaplan1993], in which the authors discuss various ways
to organize the interaction of constraints in the context-free skeleton of
the grammar with the constraints from the functional annotations of
the grammar.

I will then switch to a more theoretical treatment of the problem
along the lines given in [Billot and Lang1989, Lang1994]. Here, the
parsing problem is seen as one of intersecting two sets of strings that are
given in implicit, generative form. On one hand we have the grammar
which is a finite description of an infinite set of strings (plus their
syntactic structures). One the other hand, we have the input string,
which is a special case of a regular language. Standard techniques from
automata theory can be used to construct a grammar that generates
exactly the intersection of a context-free grammar with a regular set.
It turns out that the view of parsing as building this intersection has
several advantages. If we remove parts of the resulting grammar that
cannot generate strings, we get a concise characterization of all possible
syntactic structures of the input, i.e. a compact representation of the
parse forest. The size of this representation is O(nl+1), where l is
the maximal length of the right-hand side of grammar rules, which
means that the complexity is comparable to representations that are

1More precisely, the number of readings of a compound of length n is given by
the Catalan number C(n) = 1

n+1

(
2n
n

)
, which is of the order of Θ(4n/n1.5). The

approximation C(n) ≈ 0.14104 ∗ 4n/(n− 0.2695)1.5 has a relative error of less than
1% for n > 1.

3.2. PHRASAL AND FUNCTIONAL CONSTRAINTS 43

constructed by standard parsing algorithms. Furthermore, the fact
that the same algorithm also works for more general regular languages
as input has a very important practical application, in the parsing of
word lattices as they are produced by typical state-of-the-art speech
recognition systems.
I will discuss some extensions of this idea for constraint-based gram-

mars along the lines given in [Dymetman1997], where parsing is per-
formed via local transformations of an initial program that is derived
from a context-free chart into a form that syntactically excludes the
possibility of unification failures. The outcome of this transformation
is a compact representation of all possible parsing results.
An original contribution in this chapter is in the last section, in

which I will show that the problem of disjunctive constraint satisfaction
actually subsumes the parsing problem in a certain sense. I will show
that it is possible to set up a parser as a pre-processor that produces
for a given string w with |w| = n a description D(w), in time and space
of O(n), such that there is a one-to-one correspondence between the
solutions of D and the well-formed parses of w. This result is, as far as
I know, original, since the most compact representation of all possible
parsing results reported in the literature need O(n3) space and time.
However, it is more of theoretical than of practical importance. Even
if we can represent the results compactly in a formula of size O(n),
the language we have to use for this representation contains disjunctive
constraints, and we know that resolving such a description needs, in
the worst case, exponential time. If we now show that all problems of
a certain type can be rewritten in the language of disjunctive formulas
over functional constraints, this is not necessarily a step towards a
more efficient general treatment of these problems. It could as well
just remain another proof of the expressive power of the disjunctive
formalism we are using.

3.2 Phrasal and Functional Constraints

[Maxwell and Kaplan1993] investigate parsing architectures for gram-
mar formalisms that combine of a context-free component of phrasal
constraints with a separate component of attribute-value or functional

44 CHAPTER 3. PARSE FORESTS

constraints. This is directly applicable to LFG, where these two de-
scriptive levels are very explicit in a grammar, but it can also be useful
for similar formalisms like Functional Unification Grammar [Kay1979]
or HPSG [Pollard and Sag1987], where the phrase structure is more
implicit.

The computational problems of deciding the well-formedness of a
string w according to such a grammar (recognition) or of representing
the possible results of syntactic analysis (parsing) can also be divided
into two parts, since it must be determined whether the string sat-
isfies the constraints of both types. For the first part, dealing with
the phrasal constraints, there are well-known algorithms that work in
time polynomial to the size of the input. This is essentially equiv-
alent to the problem of recognition or parsing with a context-free
grammar, which can be done in O(|w|3) ([Younger1967, Earley1970,
Graham, Harrison, and Ruzzo1980]). The second part of the problem,
determining the consistency of a set of functional constraints, can only
be solved efficiently in cases where the functional description is purely
conjunctive [Nelson and Oppen1980, Knight1989]. Such cases can be
solved essentially in time linear to the size of the description. The
more general problem of solving a boolean combination of functional
constraints is NP-complete, hence a solution in polynomial time is very
unlikely to exist.

One simple strategy to solve the combined problem assumes a cas-
cade of steps, in which first the context-free problem is solved com-
pletely and a representation of all possible parse trees is produced.
From this parse forest, all the trees can be enumerated, and for each
of them, the functional constraints can be solved. Unfortunately, this
simple combination of well-known techniques leads to a computational
disaster. The number of context-free solutions grows exponentially with
the size of the input2. Even if each one can be tested efficiently, the
overall computational complexity will be exponential.

Maxwell and Kaplan describe a set of possibilities for more finely
integrated solution algorithms. The first of them, called interleaved

2Assuming that the context-free grammar or the way it is interpreted exclude
the possibility of unbounded non-branching recursion. Otherwise there will be an
infinite number of solutions for certain inputs.

3.2. PHRASAL AND FUNCTIONAL CONSTRAINTS 45

pruning, integrates the solution of the functional constraints into the
context-free parser. This has the advantage that partial analyses with
inconsistent functional constraints can be determined very early and
such intermediate results can be pruned from the chart immediately,
which can save the computation for constructing analyses that make
use of these inconsistent partial results. On the other hand, since this
strategy implies to keep track of functional constraints used with the
grammar rules, the intermediate representations cannot be as compact
as in the context-free case. Therefore the net effect of this strategy
depends on details of the grammar and the representations used, and
in some cases, using interleaved pruning may actually increase the com-
putational overhead.

They then go on to discuss in a more abstract way a set of properties
of the constraint systems that can be exploited to produce different
interface strategies. They identify the following properties:

Monotonicity: The fact that a inconsistent partial analysis can never
take part in an overall solution. This property is an important precon-
dition for pruning inconsistent partial results3.

Independence: Two systems of constraints are independent if no
new constraints can be deduced if the systems are conjoined. If two
descriptions of partial results are independent, the overall solutions can
be described without an explicit enumeration of all combinations. The
compact representations of context-free parse forests make use of this
property: By using a pair of pointers to the representations of adjacent
constituents, we can implicitly represent all possible combinations of
such internal structures without actually enumerating them explicitly.
It is this property of context-free analyses that makes it possible to
represent an exponential number of results in polynomial space. The
methods for disjunctive constraint satisfaction as sketched in the last
chapter exploit the independence of functional constraints that affect
different features of some linguistic entity. A system of constraints

3Whereas monotonicity holds in a “pure” constraint-based grammar formalism,
this is not always the case for LFG, which makes use of “meta-constraints” that can
be used to require the introduction of certain descriptive elements in other parts
of the description. It is the essence of these meta-constraints that they cannot be
checked locally. Hence a partial analysis for which such meta-constraints are not
satisfied cannot be pruned from the solution space

46 CHAPTER 3. PARSE FORESTS

is said to be in free-choice form if it is a conjunction of independent
disjunctions and all of the disjuncts are satisfiable. If the disjuncts
themselves are in free-choice form, one speaks of nested free-choice form.
Conciseness: A constraint system (or a solution) is said to be concise

if its size is a polynomial function of the input that it was derived from.
Bringing a constraint system into nested free-choice form may or may
not leave it concise, depending on its nature.
The authors also mention the order invariance of the constraint sys-

tems usually used for linguistic descriptions, i.e. the property that the
order in which various constraints are processed does not influence the
result of the processing (although the order might dramatically affect
processing efficiency). Finally, they observe that the constraint systems
sometimes overlap in the sense that they allow a certain freedom which
one of them to use for the expression of some of the constraints. In
LFG, it is sometimes possible to express a certain distinction on the
level of phrasal categories or to move it instead into the space of feature
values. This will not essentially change the set of possible results, but
it can have a major impact on the processing efficiency.
Based on these properties, a number of new interfacing strategies

are discussed. In non-interleaved pruning, all of the phrasal constraints
are processed first, giving rise to a parse forest. This representation
is then traversed in a top-down manner, which makes sure that all
constituents that are encountered in this traversal actually contribute
to some overall analysis of the input string. For each local subtree that
is reached in the traversal, the constraints of the daughter nodes are
solved first, to make sure that they actually have a nonempty set of
solutions. If one of the constituents turns out not to have any solution,
there is no need to traverse the remaining constituents. Only if all the
constituents have found to have satisfiable constraints, their solutions
are checked for mutual compatibility, which may or may not lead to a
solution of the constraints for the mother node of the local subtree. In
case solutions are found, these are explicitly stored with the nodes to
which they belong, to avoid re-computation in case the same node is
used in an alternative branch of the traversal.
Compared to interleaved pruning, the non-interleaved approach may

avoid the solution of an exponential number of intermediate results that
cannot contribute to an analysis spanning the complete input. On the

3.2. PHRASAL AND FUNCTIONAL CONSTRAINTS 47

Bill saw the girl with the telescope

NP V D N P D N

NPNP

PP

NP

VPVP

S

a b c d e f g

h i j
k

l

m

n

op

q

r

s

t

u

v

Figure 3.1: A parse forest

other hand, it may require the computation of phrasal structures that
involve functionally inconsistent constituents. However, the superflu-
ous computations can maximally require polynomial time, whereas an
exponential amount of computation may be saved. So this strategy
cannot lead to an asymptotic deterioration of performance, but it may
actually improve efficiency.
An approach quite different from the pruning strategies is that of

factored extraction. Here, the idea is to construct a formula that ex-
presses the functional constraints on a solution in a concise way by
factoring out common sub-formulae. For example the parse forest in
Fig. 3.1, annotated with functional constraints a . . . v, will lead to a
representation which expands to the following formula4

a ∧ u ∧ [(b ∧ p ∧ c ∧ h ∧ d ∧ i ∧ q ∧ e ∧ l ∧ f ∧ j ∧ g ∧ k ∧m ∧ r) ∨
(b ∧ s ∧ c ∧ h ∧ d ∧ i ∧ n ∧ e ∧ l ∧ f ∧ j ∧ g ∧ k ∧m ∧ o ∧ t)] ∧ v
If common parts of this formula are recognized and factored out,

the size of the formula can be reduced, and more of the constraints can
be moved into the conjunctive part of the description.
a∧u∧b∧c∧h∧d∧i∧e∧l∧f ∧j∧g∧k∧m∧p∧[(q∧r)∨(n∧o∧t)]∧v
By making use of some additional knowledge concerning the equiv-

alence of some of these constraints, the system can finally be brought

4The authors assume that the traversal actually leads to a re-entrant data struc-
ture which is of polynomial size, but which may be unfolded to a structure of
exponential size when printed out.

48 CHAPTER 3. PARSE FORESTS

into a form where the syntactic ambiguity affects only a minimal part
of the description, as in the following formula.
a∧ u∧ b∧ c∧ h∧ d∧ i∧ e∧ l∧ f ∧ j ∧ g ∧ k ∧m∧ p∧ q ∧ (r∨ o)∧ v
Whereas this technique works out quite nicely in the example given

in the paper, it is not so clear how well it can be applied in the general
case. On one hand, it would be nice to express the shared use of sub-
formulae in an explicit way that does not resort to hidden details of the
implementation, such as the use of re-entrant data structures. On the
other hand, it is not clear how the specific knowledge about properties
of the actual grammar that lead to the last of the simplifications shown
above could be made available and exploited in the general case.

Factored pruning is a combination of factoring with the non-
interleaved pruning strategy. Instead of computing all solutions for
a certain constituent and storing them with that consituent in an enu-
meration, the common parts of the solutions are identified and stored
in a factored representation.
As a last possible strategy that can be exploited to facilitate the

parsing task, Maxwell and Kaplan describe selective feature movement,
i.e. the possibility to move certain constraints from the feature space
to the space of phrasal categories. Whereas expressing all necessary
distinctions in the context-free part of the grammar is not possible at
all or would exponentially increase the size of the grammar, it may
be advantageous in selected cases where a certain distinction interacts
strongly with the possible syntactic structures. They give as an ex-
ample the distinction between sentences with and without preceeding
complementizer. This distinction could be reflected just in the func-
tional structure, but since it influences the way sentences can be nested,
it might be advantageous to reflect it in the context-free skeleton of the
grammar.
Maxwell and Kaplan experimentally evaluated a set of combinations

of these strategies with several variants of unification algorithms, some
of which involved contexted unification (as discussed in Chapter 2) or
the method for solving a boolean combination of functional constraints
that was described in [Kasper1987]. They used a corpus of 20 sentences
and a grammar that was developed for independent purposes.
Their measurements show that the variant of their grammar where

they have moved some constraints into the context-free skeleton was al-

3.2. PHRASAL AND FUNCTIONAL CONSTRAINTS 49

ways processed faster than the original version. Non-interleaved prun-
ing was always faster than interleaved pruning, and factored pruning
was even faster. Their results concerning factored extraction were less
uniform. This strategy gave the best results for the modified grammar,
if used with contexted unification, but for the original grammar the
results were extraordinarily bad.
A somewhat related, but little known method for representing

and resolving both functional and phrasal disjunctions is given in
[Block and Schmid1992]. They assume that the functional constraints
can be represented using Prolog terms (with possibly shared variables)
as categories. The set of partial analyses of a substring can hence be
encoded in a straightforward way by an enumeration of such terms,
which is related to the expansion to disjunctive normal form. As a
more compact representation, they use a set forming expression, i.e.
a pair {Template|Constraint}, where Template is a Prolog term and
Constraint is a boolean combination of equations between Prolog terms.
For instance, all possible readings of the German determiner “die” with
respect to its Agreement, Gender and Case features can be encoded in
the expression

{ det(agr(3prs,Num),Gen,Case) |

(Num = sg, Gen = fem

; Num = pl

),

(Case = nom

; Case = acc

)

}

In a similar way, the notation

A -> X1, X2, ... , Xn | Constraint

is used for a grammar rule that is supposed to mean that the con-
stituents X1, X2, ... , Xn can be combined to A if Constraint is sat-
isfied. If a bottom-up parser now encounters a sequence of constituents

50 CHAPTER 3. PARSE FORESTS

encoded by the terms {T1 | C1}, {T2 | C2}, ... , {Tn | Cn}

(which are assumed not to contain shared variables), and tries to re-
duce them using the rule given above, the possible outcomes can be
described by the expression

{ A | X1 = T1, X2 = T2, ... , Xn = Tn, C1, ... , Cn, Constraint }

In order to check that this system of constraints is actually satis-
fyable, we can just “run” the constraint, which will use Prolog’s back-
tracking mechanism to search for a solution.
A noteworthy feature of this representation is that the variables

that appear in the constituents { Ti | Ci } are not actually instanti-
ated. The complex constraint built for A only records how the variables
should be instantiated if this branch of the solution is taken. Other
branches of the solution space might still refer to these constituents in
a different, and actually incompatible, way. Because there is no pos-
sibility of unintended cross-talk between the solutions in a chart, they
can all be collected without the need of copying partial results.
However, this representation in form of constraints will lead to in-

creasingly complex constraints, and each processing step that needs to
ensure satisfiability of some constraint might have to search over the
same set of solutions of embedded constraints over and over. To avoid
this type of repetition, Block and Schmid describe a method to anno-
tate a complex constraint with a description of combinations that do
not need to be searched because they are known not to contain any
solutions. The key idea is that each possible way to satisfy a complex
constraint can be characterized by a string over {l, r}, where the sym-
bols indicate which branch to take for each disjunction encountered in
a systematic top-down and left-to-right traversal of the formula. This
characterization of a solution is called its position.
If solutions are generated systematically via backtracking, the po-

sitions characterizing the solutions appear in a lexicographic order.
When a complex constraint is assembled and built into the chart for the
first time, a search for a solution has to be made to ensure satisfiability.
During this search, a certain number of disjuncts is traversed without
producing an overall solution. If the set of choices made for the first

3.2. PHRASAL AND FUNCTIONAL CONSTRAINTS 51

solution is kept, later uses of the complex constraint can use this set of
choices as the starting point of their search for (additional) solutions.
Block and Schmid use the notation Constraint/Bound for a constraint
for which the first solution has been found with Bound as the associated
string.
There are a number of possible refinements and variants of Block

and Schmid’s scheme, which are not discussed in their paper. Ap-
parently, they assume that the satisfiability of the constraints asso-
ciated to any constituent that appears is checked immediately. In
that sense, they perform interleaved pruning. However, as discussed in
[Maxwell and Kaplan1993], later parts of the input string may render
a successfully analyzed constituent useless, and this is why in the non-
interleaved pruning strategy a polynomial amount of computation with
phrasal constraints can save an exponential amount of search among
functional constraints.
It is possible to combine the idea of non-interleaved pruning with

the Block/Schmid representation of constraints and partial solutions.
During context-free parsing, a representation of all solutions according
to all possible phrasal structures can be built in the way described by
Block/Schmid, but no constraint is actually checked.
Once a complete phrase structure has been built, the constraint

for the top-level node can be traversed and checked for satisfiability.
Constituents whose constraints turn out to be satisfiable are marked
by the position of the first solution, so that alternative traversals can
save the time for fruitless search. Constituents whose constraints are
not satisfiable at all are marked as well, so that alternative traversals
can ignore this constituent immediately5

In this situation, a straightforward left-to-right traversal of the con-
stituents of a local subtree does not always make optimal use of the
available information, since some constituent used later might be known
to be inconsistent. We can avoid traversing any left sister of such a
constituent, by first checking all daughters if they have been marked as

5Unfortunately, the marking of constituents cannot be nicely integrated into the
backtracking search for solutions via the instantiation of Prolog variables, since
backtracking from a choice would then delete all the marks recorded during travers-
ing this choice. We need a mechanism that allows to record the marks in a more
persistent way, such as recording them in the Prolog database.

52 CHAPTER 3. PARSE FORESTS

inconsistent, before going into the recursion6.
There is a certain asymmetry in the way the local search space is

pruned in the scheme given in Block/Schmid. When a solution for
a complex constraint is found the first time, the fact that there is no
other solution before it is recorded, and the associated part of the search
space will never be looked at any more. However, it might be that there
are many possible combinations of disjuncts in later parts of the local
search space, but only very few of them (or none at all) are consistent.
However, if this constituent is reused very often, this expensive search
will be redone frequently.
It seems as if this overhead could be avoided by a simple extension

of the basic scheme along the following lines. In the case that a solu-
tion of a local constraint cannot be used in the context in which this
constraint appears, and further enumeration of possibilities is required,
the positions of further solutions can be recorded in the same way as
the first one. In the general case, we will hence maintain a list of solu-
tion positions, to which new positions will be added at the end in cases
where the existing solutions do not suffice. Each time a solution of the
constraint is needed, the list of recorded positions is scanned and each
of the solutions is reconstructed and delivered. If this list is exhausted,
new solutions are generated via backtracking, but the last recorded so-
lution is used as the lower bound to start further enumeration from.
Newly created solution positions are then added to the list of recorded
solutions. If backtracking does not deliver any more new solutions, we
record the fact that the set of solutions has been exhausted.
This method does not add to the asymptotic complexity of solving

the system of constraints, but it may lead to a considerable reduction in
search effort for constraint systems with many embedded disjunctions
that interact so strongly that only relatively few solutions remain. One
drawback is the fact that the solutions of an embedded constraint have
to be produced in isolation from the context, in order to avoid that
influences from contextual variable bindings prune away solutions that

6It is not obvious what to do in cases where long right hand sides have been
split artificially into binary branching subtrees. Maybe, one would like to traverse
an entire subtree to be sure that there is no inconsistent node in it before checking
the consistency of any node in it. Maybe this would introduce more bookkeeping
overhead than it would save computation.

3.3. PARSING AS GRAMMAR INTERSECTION 53

would be needed in other contexts of the constraint. Abstracting from
the context may lead to an increased number of solutions which then
have to be filtered out. In return, we may get a collection of solutions
that is reusable in other circumstances.
One could say that the approach of Block and Schmid is mainly

optimized for the task of delivering the first solution as fast as possi-
ble, but might have problems with enumerating further solutions at a
high rate because it might have to traverse exponential search spaces
repeatedly7. The improvement sketched above can help to avoid this
problem and can hence allow to achieve a complete enumeration of
all solutions at a higher rate, without arbitrary long delays between
individual solutions.
However, a more fundamental problem of this approach is the fact

that we try to enumerate individual solutions at all. In situations in
which many disjunctions are independent and hence an exponential
amount of solutions exist, any scheme based on the individual enumer-
ation of them will eventually lead to performance problems. The only
real cure is a factored representation of the solutions in some free-choice
form, from which we can tell from syntactical conditions that any way
of selecting a branch of a disjunction is consistent with any possible
choice in other disjunctions.

3.3 Parsing as Grammar Intersection

In this chapter, we have so far employed a rather practical view on
parsing with constraint grammars. We were looking for efficient ways
of finding individual solutions, but we were not very much concerned
with the question how a factored representation of the solutions space
should look like. Some of the technical means we have mentioned, like
the use of re-entrant data structures, or the way the satisfiability of
constraints is checked, have been rather close to the implementation,
and we have to ask ourselves if a more formal and explicit way of dealing
with these issues would not be a better choice.

7There is however no guarantee for a fast way to the first solution. The problem
of a “trap” in the search space can as well appear before the first overall solution is
found.

54 CHAPTER 3. PARSE FORESTS

This is in contrast to the last chapter, where we have used a repre-
sentation that allowed to encode an exponential amount of solutions in
polynomial time and space, and where we have shown how to manip-
ulate a description of the solution space in form of a set of constraints
in such a way that it finally obeys certain syntactic conditions that
guarantee satisfiability.

Actually, we can see both the representation of the parsing chart
and the constraints attached to it in a more abstract and at the same
time more uniform way, as that of a system of definitions that can be
used to produce enumerations of individual solutions, but that could as
well be seen as a computational representation of the entire solutions
space that can be manipulated as a whole.

When we write a constraint of the form Var = val1 ; Var = val2,
this can be seen as a definition for the value of Var, which has two dif-
ferent branches. Unless there are other constraints on the same variable
that might conflict with any of these values, there is no need to actually
replace Var, we can just leave the definition as is and wait that further
information comes up (maybe in a later processing step) for which this
decisions plays a role. If we have a set of variables with disjunctive
definitions for each of them, we can as well leave them as is. They
provide a concise description of an exponential number of possibilities.

The cases where the choices come from the ambiguity of a context-
free parse are more interesting, because in such cases the constraints
on individual constituents interact. Can we still represent all possible
solutions to a parse in free-choice form?

For the context free case, a representation of all possible parses
in a shared-packed forest can be seen as a context-free grammar
that is specialized to the given input string, see [Billot and Lang1989,
van Noord1995]. Parsing a string w according to a grammar G can,
in this framework, be seen as constructing a specific variant G′ of the
grammar, such that L(G′) = L(G) ∩ {w}. More generally, we may be
given a set of strings in form of a finite-state representation A and may
be interested in the question whether any of the strings in L(A) can
be generated by G8. In this case, we want to obtain G′ as a compact

8The similar question, whether G generates all the strings in L(A), is undecidable
in the general case

3.3. PARSING AS GRAMMAR INTERSECTION 55

representation of all syntax trees compatible with both G and A.
A systematic way to construct G′ is given

in [Bar-Hillel, Perles, and Shamir1961] (cited after [Lang1994]). The
construction essentially annotates the non-terminals in G with a pair of
indices, which are the states in A. A grammar rule of the formX → Y Z
is replaced by rules of the form 〈ai, X, aj〉 → 〈ai, Y, ak〉〈ak, Z, aj〉, where
ai, aj , ak range over all states in the finite state description A. A rule
of the form X → x is replaced by the rules 〈ai, X, aj〉− > ε if the finite
state machine A, being in state ai can produce the terminal x and go
to state aj . Rules with longer right-hand sides can be treated similarly.
This construction needs space and time O(np+1), where n is the

number of states of A and p is the length of the longest rule right-
hand-side in G. Hence this is cubic in the case where the grammar
is in binary form. This construction will lead to a lot of useless and
unreachable symbols, which can be pruned from the grammar in a sep-
arate step. More recent optimized parsing algorithms that produce
packed representations such as [Earley1970] can be seen as instances
of this scheme in which the construction of G′ is interleaved with the
pruning, to make sure that the nonterminals and rules introduced in
G′ satisfy certain conditions on their usefulness, such as actually gen-
erating a nonempty language or being accessible via a valid left-most
derivation.
A nice property of this construction is that we can easily generalize

it to the case of a constraint-based grammar (see [van Noord1995]).
This means that we can generate a finite representation of all possible
solutions in polynomial time and space. The problem with this simple
approach is, however, that this representation is not in free-choice form,
i.e. it is not obvious which branches in a disjunction will lead to an
overall consistent solution. In general, the recognition problem for a
DCG is undecidable [Pereira and Warren1983]. One way to guarantee
decidability is to require the grammar to be off-line parsable, i.e. to
require that the context-free skeleton for any given string contains only
finitely many analyses9

9[van Noord1995] shows that off-line parsability does not guarantee decidability
in the generalized case in which the input is a cyclic finite-state machine that gen-
erates an infinite language. In such cases, the recursion in A can drive the recursion
in G in such a way that an indefinite number of rule applications can be be invoked,

56 CHAPTER 3. PARSE FORESTS

After applying this construction to specialize a DGC G to a gram-
mar G′ that generates only strings that agree with the given input A,
we can see G′ as a representation of all possible analyses of strings in
L(A). This representation is compact in the sense that it is polyno-
mial in the size of the input, although it contains many superfluous
rules. However, this representation is not useful unless we can actually
extract the solutions efficiently. The usual way to make the notion of
efficient extraction more precise is to require that any choice we make
in a top-down traversal of the grammar will lead to an overall solution.
To ensure this property, we have to exclude the situation that a cer-
tain choice in the traversal of the representation is incompatible with
choices in other parts of the chart.
In the literature there have been several proposals that use program

transformations to bring a logic program into a form that guarantees
the free choice among disjuncts in each disjunction. This idea has been
described in [Hasida1986a] under the name “conditioned unification”.
The key observation is that in a conjunction of Prolog goals G1, . . . , Gn
in which each variable appears exactly once, each goal can be solved
independently from the others. In such cases, the conjunction of these
goals can be seen as a compact representation of a set of solutions which
might otherwise be exponential in size.
A conjunction of such independent goal is called modular. In cases

where modularity is violated due to the use of shared variables, there
is a potential conflict between variable bindings in the solutions to the
goals, and free choice of solutions cannot be guaranteed any more.
In this case, the goals can be partially expanded, and a new defini-

tion can be created which uses only modular goals. The partial expan-
sion of goals is closely related to the unfold transformation described
in [Tamaki and Sato1984, Kanamori and Horiuchi1987].
[Tsuda1993] describes the implementation of a logic programming

language CU-Prolog, which uses this mechanism, together with the
possibility to collapse a conjunction back onto a single goal, called
the fold transformation, as a basic mechanism instead of SLD resolu-

despite off-line parsability. Since the DGC can be defined to do arbitrary manipu-
lations on the arguments during the recursion, the system as a whole gets Turing
power. The proof in [van Noord1995] uses a reduction from Post’s Correspondence
Problem.

3.3. PARSING AS GRAMMAR INTERSECTION 57

tion. This language has been used for natural language processing in
[Tsuda, Hasida, and Sirai1989, Hasida1986b]. [Nakano1991] describes
a variant called constraint projection that allows to keep the definitions
more compact and avoids the propagation of irrelevant arguments.
Independent of this, [Dymetman1997] has described a similar

scheme to bring a system of definitions that describes all possible solu-
tions of a parse with a constraint-based grammar into a form that guar-
antees the free choice of the alternatives. His scheme is very directly
based on the Bar-Hillel/Perles/Shamir construction of a complete parse
forest and on the notion of grammar transformation to turn a grammar-
based description of a set of possible solutions into a normal form that
excludes the possibility of inconsistent constraints for features.
[Dymetman1997] motivates his approach as

a more abstract and formal specification of the algorithms described
in [Maxwell and Kaplan1996b], which underlies the implementation of
the parser in the XLE system [Maxwell and Kaplan1996a].
The algorithms for parsing and constraint resolution in

[Maxwell and Kaplan1996b] are described in a manner that is closer
to the actual implementation, making use of disjunctive lazy copy links
to avoid copying of disjunctive constraint on feature values except for
the cases where these constraints interact with information from other
parts of the parse tree.
But actually, the differences between [Dymetman1997] and

[Maxwell and Kaplan1996b] are far from being superficial. In the lat-
ter, the parsing result is not given in free-choice form, but in form of a
contextualized feature description, similar to the descriptions in Chap-
ter 2, where individual constraints on feature values are annotated with
boolean formulas over a set of propositional variables. Certain assign-
ments to these propositional variables may be known as inconsistent,
and the information on such inconsistencies is stored in a special rep-
resentation, called the nogood database.
The possibility of storing information on the interaction between

feature values separately can have the advantage that the representa-
tion of feature information can be kept more compact. On the other
hand, the overall representation is more sophisticated, which means
that processing modules that take the parsing results as input need to
be prepared to deal with this extra complexity.

58 CHAPTER 3. PARSE FORESTS

The question which representation is better suited for a certain ap-
plication can not be answered in a general way, as the effects that show
up during the processing of larger structures depend strongly on prop-
erties of the grammars in use and on the interaction of these grammars
with properties of the implementation.
So it has to remain an open question whether a more gen-

eral approach based on program transformation along the lines in
[Nakano1991] or [Dymetman1997] or a more sophisticated solution as
the one given in [Maxwell and Kaplan1996b] will give more workable
results in the long run.

3.4 “Parsing” in Linear Time and Space

In this section, I will show how a parser can construct a representation
of all parsing results in time linear to the length of the string. This
implies that the size of the representation has to be linear as well. The
word parsing has to be put in inverted commas, since is not directly
possible to extract parsing results from this representation. It is not
even obvious to see if a representation of this kind contains any solutions
at all. The main point of this exercise is to show that a language that
allows to express disjunctions and equations between terms is powerful
enough to express the parsing problem for constraint-based languages.
The material in this section is based on a combination of ideas from

two sources. One of them are the considerations and papers discussed
in this chapter so far. Another source has been a paper that considered
resource limitations of a parser to find psycho-linguistically plausible
models of parsing, [Abney and Jonson1991].
This paper points out the observation that a psycho-linguistically

plausible parser cannot make active use of an unbounded amount of
storage capacity, since the amount of storage available to the language
processing machinery in the human brain is assumed to be finite. Actu-
ally, humans typically have problems understanding deeply embedded
syntactic structures, especially if they make use of center-embedding.
However, similar restrictions on the depth of left- or right-branching
structures do not seem to exist. This observation has lead the authors
to the conclusion that a plausible model of human parsing should be

3.4. “PARSING” IN LINEAR TIME AND SPACE 59

able to process, with finite amount of memory, both left- and right-
embedded recursive structures to an arbitrary depth, but that it may
be allowed to fail with deeply center-embedded constructions.

A consequence of a finite amount of memory is that the processor
cannot keep an unlimited amount of decisions open for review in later
processing steps. Hence the amount of information that has to be
extracted from a string during the parsing process has to be, in a certain
sense, distributed uniformly over the string.

Many well-known parsers do not have this property. A recursive
descent parser for general context free languages, that include the pos-
sibility of left-branching constructions of unlimited depth will have to
be able to do an unlimited amount of recursion steps without consum-
ing any words, which will lead to an unlimited amount of material on
its stack of expected constituents10.

A shift-reduce parser, on the other hand, has no difficulty with left-
recursive structures, which it can handle with a stack of constant size.
However, in order to process arbitrary deeply nested right-branching
structures, it has to collect all pieces used in such a structure on the
stack, until the last one appears, and only then it can start to combine
them into larger constituents. Hence it needs a stack of unbounded size
in order to process arbitrary deeply nested right-branching structures.

A left-corner parser can be seen as dealing with a stack of partially
completed trees that are still missing a right [sic!] corner. We can
imagine that a stack of such partial trees is kept, and that after reading
a word, the parser may decide to use it to fill the right corner of the
topmost tree on the stack (turning it into a complete tree), or push
the word onto the stack separately. In any case, the top element on
the stack will be complete. In the next step this complete tree may
optionally be used to fill the open slot of the topmost partial tree,
and this is exactly the idea on which the standard left-corner parser is
built. However, if we go this way, we would also have to allow that after

10It is rather easy to see that this processing model is not very plausible. In order
to be able to do an unlimited number of expansion steps, the parser has to be able
to get into some cycle of possible expansions, but it also has to leave this cycle
spontaneously at the right moment. In general, it cannot see enough of the context
to make an informed decision, it just has to guess right! For this reason top-down
parsers cannot be used in connection with left-recursive grammars.

60 CHAPTER 3. PARSE FORESTS

reading one word, an unlimited number of such completion operations
could take place, which would require an unlimited stack, even for
unlimited right-branching structures.
It turns out that a simple modification of the left-corner parser can

avoid this problem11. If we assume that the partial trees contained on
the stack will never be combined directly, but there will always be some
intermediate constituent, we can achieve a rather uniform distribution
of the parsing actions over the string.
For each partial tree that is introduced, the parser has to decide

immediately if it will be a right daughter (in this case the mother is
known and the link is made immediately), or a left daughter of some
node to come later. The fact that this parser has to make certain deci-
sions earlier than a standard LC parser is not necessarily an advantage
since it might have to guess in cases where the original LC parser could
wait and see. On the other hand, it gives the parsing algorithm a high
regularity. Essentially, for each word the following decisions have to be
made:

• Choose a lexical category for the next word

• Choose if the lexical category should hang left (in this case it is
unified with the missing right corner of the topmost incomplete
tree) or right (in this case it is pushed on the stack as is).

In each case the stack now contains a complete tree on top, and
incomplete trees below. To continue, the parser has to do two further
actions:

• Chose a rule (i.e. a right sibling and a mother) for the topmost
tree, turning it into an incomplete one.

• Decide if the topmost (incomplete) tree combines with the incom-
plete tree below it (in this case merge them) or if it will eventually
be the left daughter of a node to come later (in this case leave
everything as is).

11The following discussion and algorithm assumes the grammar to be given in
Chomsky normal form.

3.4. “PARSING” IN LINEAR TIME AND SPACE 61

The following little Prolog programmay make this description some-
what clearer.

% The ‘‘parser’’

parse(String,Result) :-

parse(String,’$EMPTY_STACK$’,Result).

parse([Word|Words],Stack,Result) :-

lex(Word,Cat),

maybe_merge(Stack+Cat,Stack1+Top),

(Words=[],

Stack1=’$EMPTY_STACK$’,

Result=Top

; rule(M,Top,Right),

maybe_merge(Stack1+M,Stack2),

parse(Words, Stack2-Right,Result)

).

maybe_merge(Stack-Const+Const,Stack).

maybe_merge(Stack,Stack).

% example lexicon and grammar

lex(der,a(der)).

lex(frau,n(frau)).

lex(auf,p(auf)).

rule(np(np(A,N)),a(A),n(N)).

rule(np(np(N,P)),np(N),pp(P)).

rule(pp(pp(P,N)),p(P),np(N)).

It is straightforward to rewrite this program in such a way that
the calls to the auxiliary predicate maybe_merge/2 are not executed
directly during parsing, but are instead collected in a list. This list
will grow linearly with the length of the input, and in a certain, very
implicit, way represents all possible parses of the input string under
the given grammar. However, in order to find out if this representation

62 CHAPTER 3. PARSE FORESTS

contains any solution at all, an exponential amount of search might
have to take place.
When I defined this method of extracting a formula of size O(|w|)

from a given parsing problem, I hoped that this representation would
allow the application of methods of disjunctive constraint satisfaction
like those described in the last chapter or the heuristic of residuation,
as described in [Smolka1993], where constraints that can be satisfied
without introducing choice points have priority over the real disjunc-
tive constraints12 . The idea was that in typical situations the local
context around a certain parsing decision would give enough evidence
to guide the parser to make certain unambiguous simplifications, so
that, overall, a representation could be found in which the remaining
disjunctions essentially mirror the remaining free choices, related to the
real ambiguity in the utterance.
However, informal experiments with this strategy turned out that

this is not the case. Typically, many disjunctions remained open, and
the constraint solver needed to be forced to make decisions, in order to
propagate the interdependencies through the constraint space.

3.5 Summary

In this chapter, I have given an overview on techniques that use compact
representations of parse forests to represent structural ambiguities. I
have reviewed some related techniques proposed in the literature that
try to generalize parsing algorithms for context-free grammars to the
case of constraint-based grammars, and yet preserve the polynomial
computational complexity in cases where this is possible. Finally, I
have given an algorithm that creates a disjunctive representation of all
solutions of a parsing problem with a DCG in Chomsky normal form
that used only linear time and space. However, the decision whether
this compact encoding actually contains a solution remains an NP-
complete problem in the general case.

12Residuation is also the central mechanism for treating disjunction in the CUF
implementation, [Dörre and Dorna1993]

Chapter 4

Stochastic Models and their
Role in NLP

This chapter gives a short and very informal motivation for the use of
stochastic models in natural language processing, and hence constitutes
an introduction to the second part of this thesis.

4.1 Competence versus Performance

Since the end of the fifties, initiated by Chomsky’s work on formal
grammars[Chomsky1957], there has been a sharp distinction between
the techniques used in formal and computational linguistics on one
hand, and in natural language related pattern recognition on the other
hand.

Formal linguistics has mainly concentrated on questions of human
language competence, i.e. mathematical characterizations of the totality
of well-formed utterances using formal grammars and the mapping of
such utterances to underlying structures. These considerations lead
to the development of formalisms for the specification of grammars
and lexicons and to algorithms for natural language processing, such
as parsing and generation systems. However, these systems did not
try to address some important aspects of human language use, such as
the question which of several possible interpretations of an ambiguous
utterance should be preferred in a given situation.

63

64 CHAPTER 4. STOCHASTIC MODELS IN NLP

This omission was intentional, as it was always assumed that ac-
tual human language performance could be described or explained on a
separate, largely independent level[Chomsky and Miller1963]. By def-
inition, syntax does not provide enough constraints to distinguish a
meaningful from a syntactically well-formed, but meaningless or im-
plausible utterance. It is therefore obvious that many ambiguities can-
not be resolved using purely syntactical knowledge sources.
The preceding two chapters assumed a rule-based description of the

relation between well-formed utterances and their possible interpreta-
tions, and investigated techniques to efficiently compute and represent
the set of all interpretations for a given utterance, assuming gram-
mar and lexicon that embody a given theory of linguistic competence.
These methods can be seen as the most appropriate way of dealing with
ambiguity, when a model of competence is all we have.
But many applications cannot easily handle large sets of interpreta-

tions of ambiguous utterances, and it would be good to have techniques
to select the right interpretation out of such sets. People who tried to
build systems for speech recognition, OCR, or other applications where
a distorted or ambiguous representation of natural language has to be
decoded, made the observation that, in order to improve their per-
formance, such systems also needed a way to distinguish more likely
inputs from less likely ones. It seems therefore natural to complement
a rule-based description of syntactic language competence with models
of language performance, in order to handle such ambiguities in a useful
way.
However, language performance is a much more complex field, and

its description has to rely on many, and rather diverse knowledge
sources, such as syntactic preferences, semantic properties of the con-
cepts that appear in an utterance, up to pragmatic considerations in-
volving the dialog situation and assumptions the speaker makes about
the intended audience of the utterance. I think it is fair to say that only
a tiny fraction of the knowledge that would be required for an adequate
model has so far been captured in theory and is therefore available to
computational processing. For most of the relevant knowledge sources,
research has not even fixed a formal framework in which a systematic
treatment could take place. Even if such a framework exists, it has
been filled by content only to a quite limited amount, as the required

4.1. COMPETENCE VERSUS PERFORMANCE 65

knowledge is often highly domain-specific, and capturing it manually in
a rule-based description is an extremely difficult and expensive process.
In applications that could not be restricted to sharply limited do-

mains, it turned out to be difficult to base such models on the deeper
insights into the formal structure of language. Hence the models that
were proposed for this kind of disambiguation have been extremely sim-
plistic, based on statistics of adjacent words, ignoring essentially all the
linguistic structure of an utterance. The main idea behind these mod-
els was the estimation of the probability of the next word wi, given
the context of the preceding words w1, ..., wi−1, and a key technique to
attack the enormous sparseness problem was to ignore most of the con-
text, except for the last two words. Since the estimation of probabilities
of word trigrams from textual data still suffers from a severe sparse-
ness problem, the main focus in the construction of these models was
devoted to the question how the probability of a word wi, given its left
context wi−2, wi−1 could be estimated from the word uni-, bi- and tri-
gram frequencies. These models have been regarded as boring, “brute
force” engineering techniques by the linguists that were interested in
the structural properties of language.
Despite their structural poverty, these simple approximations were

able to provide a holistic, quantitative model of some syntactic,
semantic, and thematic co-occurrence patterns, as long as atten-
tion is restricted to a very narrow context. From these models,
one could derive an upper bound for the entropy of the English
language[Brown et al.1992], that has so far not been improved upon
using more sophisticated techniques.
However, for a long time it was not clear how such a brute-force

approach could be reconciled with the more ambitious theoretical ques-
tions that were investigated in formal linguistics.
Even when the ambiguity problem is a very hard one, it would be

wrong to draw the conclusion that natural language processing is not
feasible for the time being. Obviously, there are applications where
maximal depth and correctness of the analysis are not required, or
where we can get away with a (compact) representation of all possible
readings of the input.
In my eyes, the best way to build up the theoretical foundation

that is required for the construction of really ambitious systems that

66 CHAPTER 4. STOCHASTIC MODELS IN NLP

come close to natural language understanding is by the use of suitable
approximations of such theories for building concrete systems that can
contribute to a systematic evaluation and specific improvement of the
evolving theories.
We can see such a stochastic model as an oracle or replacement

for the high-level semantic and pragmatic theories we currently do not
have. We should not expect that this oracle achieves very high accuracy,
but it should at least be able to separate the wheat from the chaff.
I don’t think that approximations are a bad thing per se. Even

if we can say very little about human language processing, we can be
sure that even humans are very often not in the complete possession of
all knowledge that would be required for a correct interpretation. The
need to take decisions in absence of complete information is one of the
basic facts of human live, and the interpretation of natural language
utterances is no exception. Insofar, a combination of partial theories,
combined with stochastic approximations of the missing parts might be
a rather realistic model of human language perception.
The drawback that stochastic models are just approximations of the

truth is compensated by the hope that their acquisition is much easier
than the tedious process of a complete and detailed formalization of
the knowledge that is needed.
Utterances that are ambiguous with respect to a theory of com-

petence offer an important field of application for statistical models,
where both views can be reconciled.
We can see the true interpretation of the utterance as the real signal,

and the rendering of the utterance in words can be seen as the result
of a transmission through some channel (perhaps a physical part of our
brain?), in which some parts of the original message get lost. Seen
that way, the problem of interpretation of ambiguous utterances is just
another instance of a “noisy channel”, in which more or less standard
methods of statistical pattern recognition are applicable.
When adopting this view, the right starting point of a stochastic

model is of course not the observable string of words, but some un-
derlying structure that is seen as the original message. Since these
structures can never be observed directly, but need to be postulated,
based on linguistic insight, there is much freedom in the choice of the
level of this interpretation and in the details of the structures that are

4.1. COMPETENCE VERSUS PERFORMANCE 67

postulated.
I do not believe that these decisions need to be made in advance. We

can as well pursue an evolutionary approach, where we start with very
simple assumptions that are shared by most linguistic theories, train
stochastic models on them, and only if we notice systematic errors in
the decisions made by the model, we can refine the theory just as much
as is needed to fix the problem. Following this general methodology, we
can be sure that the details we introduce into the theory are justified
by the data, and we use the data to guide the effort in the refinement
of the theory.
In the late eighties and the nineties, the insight that statistical mod-

els should be used to complement purely competence-oriented formal
grammars has gained wide popularity. Based on early work on for-
mal grammars [Booth and Thompson1973], there were many papers
that tried to use stochastic context free grammars for this purpose (see
[Charniak1993] for a representative treatment). However, it was clear
from the outset that these models could not make any use of lexical
affinities between words, which, as can be seen from the ngram models,
constitute a rather important knowledge source.
One of the earliest examples for the successful use of a

stochastic model of such bilexical affinities has been given in
[Hindle and Rooth1991]. Another important instance of the success
of this idea is the work described in [Collins1996]. Popular linguistic
formalisms like HPSG and LFG can be used as the symbolic skeleton
of such hybrid approaches, which has been shown in [Brew1995] for
HPSG and in [Johnson et al.1999] for LFG.
At the end of the nineties, even some of the most enthu-

siastic advocates of the theory-poor, data-driven approach have
started to explore models that use somewhat richer linguistic
structure[Chelba and Jelinek1998].
On can say that the historical contrast between purely statistical

and purely rule-based approaches diminishes, since researchers working
in both camps now recognize that a combination of both approaches is
necessary for many important tasks.
Ambiguity is not the only potential use for stochastic models. An-

other problem that often shows up in purely rule-based accounts is
that of the inherent incompleteness of the symbolic resources, due to

68 CHAPTER 4. STOCHASTIC MODELS IN NLP

the difficulty of knowledge acquisition. Symbolic grammars often re-
strict themselves to the description of ordinary constructions and do
not in detail spell out all possibilities for rare and exotic ways how peo-
ple express themselves. This problem is even more striking for lexical
information, where it is practically impossible to describe the inventory
of words and word combination by exhaustive enumeration. So for all
practical matters we have to face the situation where the symbolic re-
sources we are using are incomplete.
Many natural language processing systems already have means to

deal with this kind of situation. Part of speech taggers typically assume
some probability distribution on possible categories of unknown words
(where of course the open word classes are regarded as much more
likely than the functional categories), and often certain orthographic
aspects such as capitalization or ending influence this estimate. Even if
these “guessers” alone are not very reliable, the context often provides
enough additional information to make a correct classification possible.
Although this mechanism is very simple, this constitutes an example

of a system that can cope with the absence of symbolic knowledge
by using a quantitative model of its own imperfection. One can see
this as a kind of meta-knowledge, that allows the system to keep a
good balance in the relative weighting of its symbolic and stochastic
knowledge sources. It is interesting to note that we can often derive
from text corpora not only the raw form of lexical information, such as
a word list with frequencies, but additionally also an estimate of the
completeness of this resource, in form of probability estimates that the
next word from the same source would already be known. This kind
of meta-knowledge can be obtained by simple statistical techniques as
the Good/Turing formula or cross-validation.
The remaining part of this thesis explores questions that arise when

we model uncertain knowledge of various kinds with probability dis-
tributions. It is based on the assumption that probabilistic reasoning
constitutes a sound formal foundation to represent quite different kinds
of uncertainty in a uniform way.
Using probabilistic models, it is straightforward to represent prefer-

ences and “soft constraints”, i.e. regularities that are clearly observable,
but cannot be turned into clear-cut rules. But an even more important
property of such models is that they can be automatically adapted to

4.2. STOCHASTIC LANGUAGE MODELS 69

the properties of a system from which observations can be sampled.
They are able to “learn” from a set of training data, and are hence able
to overcome the knowledge acquisition bottleneck. This feature makes
them very useful in connection with natural language processing, as the
collection of data has become rather easy, and the amounts of text that
is available to the interested researcher is practically unlimited.

4.2 Stochastic Language Models

A stochastic language model is a probability distribution p over all
strings in a formal language L ⊂ Σ∗ (over some alphabet Σ), i.e. a
function p taking values in the interval [0, 1] such that

p(w) = 0 if w �∈ L

and ∑
w∈L

p(w) = 1

In the sequel, we will sometimes use the term rather loosely, and
speak also of language models when referring to a distribution over
similar domains, such as a set of trees or a set of structures, generated
by some suitable set of definitions.
Particularly, assume that a constraint-based grammar G defines a

relation R(G) between strings (over Σ) and some interpretations, taken
from a set I, i.e. R(G) ⊂ Σ∗ × I. We will also call a probability
distribution over the pairs in this relation a language model, i.e. the
joint distribution p of strings and interpretations, for which

p(w, i) = 0 if 〈w, i〉 �∈ R(G)

and ∑
〈w,i〉∈R(G)

p(w, i) = 1

This allows us to apply stochastic language models in a situation
in which some signal, consisting of a natural language utterance s, has
been modified during some transmission, leading to an observation of t,
and we are interested in restoring the original. If we have a stochastic

70 CHAPTER 4. STOCHASTIC MODELS IN NLP

model p(s) of the source signal and another model p(t|s) of the distor-
tions that happen in the “noisy channel”, we can apply Bayes’ decision
rule and search for the input signal ŝ that minimizes the probability of
error, or maximizes the conditional probability of s, given t.
Since p(t) is constant for given t, it does not matter whether we max-

imize the conditional probability p(s|t) or the joint probability p(s, t)
of source and target. A simple application of the Bayes formula gives
us:

ŝ = argmax
s
p(s|t) = argmax

s

p(s, t)

p(t)

= argmax
s
p(s, t) = argmax

s
p(s)p(t|s)

In many important applications of this scheme, we can assume that
models of the source and models of the channel can be built indepen-
dently of each other, using different types of training data from different
sources. We can see this combination of two models as an example how
multiple sources of uncertain information can be combined in a manner
that is theoretically sound.
Language models of a simple type have already been studied in

[Shannon1948], and one of the most important applications of Shan-
non’s information theory was to quantify and maximally exploit the ca-
pacity of available transmission channels in telecommunications. Later,
similar approaches have been successfully used in other applications
where restoring distorted signals is important. [Duda and Hart1973] is
a very good introduction into the general Bayesian approach to statis-
tical pattern recognition, which is a generalization of the above situ-
ation, and gives applications to image analysis. The paradigm of the
noisy channel constitutes the standard approach to speech recognition,
starting with [Jelinek1976], and described thoroughly in [Jelinek1998].
[Kernighan, Church, and Gale1990] apply the same idea to the prob-
lem of correction of typing errors. An application of this approach to
machine translation has been tried [Brown et al.1993], and is subject
to ongoing research [Wu and Wong1998, Nießen et al.1998].
Stochastic language models open the way for a large number of po-

tential applications, that are quite hard to imagine without the proba-
bilistic component. The following enumeration can only show a small
fragment.

4.2. STOCHASTIC LANGUAGE MODELS 71

Identification and correction of (typing) errors: The state of current
technology does not allow for a reliable automatic distinction between
correct and faulty utterances, due to restriction in lexical resources,
grammars, and other knowledge sources. It is questionable if such a
distinction will ever be feasible. However, stochastic approximations
allow to make an gradual distinction into utterances that a correct or
faulty with high probability. If a part of an utterance looks defective,
one can use stochastic models of well-formed utterances and stochastic
error models to look for the most plausible correction.
Morphological Disambiguation: Large lexicons and models of pro-

ductive morphological mechanisms often lead to an abundance of unex-
pected morphological analyses for a given word. A stochastic evaluation
can mark many of these possibilities as relatively implausible, without
totally excluding them.
Syntactical disambiguation: Syntactical analysis with grammars of

a reasonable coverage often lead to a large set of alternative syntactical
structures, which cannot be disambiguated alone with syntactic criteria.
Stochastic models of sub-categorization and lexical semantics can help
to evaluate the alternative readings.
Semantic disambiguation, anaphora resolution: A deeper semantic

analysis that includes a mapping of words into semantic concepts or the
resolution of anaphoric references has to cope with multiple sources of
ambiguities. Typically, “hard rules” for disambiguation are not avail-
able or not sufficient. Stochastic models can rank and structure the
set of possible analyses, so that a correct analysis can be selected with
some probability.
Machine translation (MT): As one of the most ambitious goals of

natural language processing, MT has to cope with all of the difficulties
already mentioned. Selection of a fitting translation usually cannot be
described with “hard” symbolic conditions. Hence, stochastic models
may play an extremely important role for this kind of application.
Information retrieval and text categorization: Techniques for re-

trieval of relevant documents from a huge amount of available texts
are quickly gaining practical importance. Typically, the relevance of a
document cannot be assessed by a yes/no decision. It is not astonishing
that stochastic models play an important role in this area since a long
time. Also for text categorization, stochastic models are essential.

72 CHAPTER 4. STOCHASTIC MODELS IN NLP

Writing aids: If we assume for a moment the existence of a stochastic
model that is very good in the prediction of the continuation of a partial
utterance or text, it is conceivable that such a model could contribute
substantially to systems that try to help people to express themselves.
The choice of a probabilistic model has several important advan-

tages. One crucial point is the fact that one can rely on some well-
established methods for the automatic acquisition of models. In the
simplest case, one can use maximum-likelihood estimates of parameter
values based on observed frequencies. In cases where a part of the neces-
sary information is missing, one can use the expectation-maximization
(EM) algorithm [Dempster, Laird, and Rubin1977] to replace the miss-
ing part of the data by some estimate. This has been applied for
the training of Hidden Markov Models and of stochastic grammars
[Baum1971, Baker1979, Pereira and Schabes1992]. Newer generaliza-
tions based on Markov Random Fields have dropped the assumption
that the data is produced by a hierarchical stochastic process. Instead,
characteristic properties of the data are modeled by features that can
interact in rich ways. The influence of the features on the probabili-
ties of the configurations is determined via weights. These weights are
adapted to the training data by methods that iteratively optimize the
weights of all features[Darroch and Ratcliff1972, Winkler1995].
Another important point is the fact that they can be evaluated in

a systematic way. The notion of cross entropy provides a uniform scale
to evaluate different models according to their ability to predict testing
data. Here, the model with the best prediction of real data will have
the smallest empirical cross entropy.

4.3 Some Problems of Stochastic Models

Even if probability theory offers a suitable formal framework to model
uncertain knowledge, there is quite a number of aspects that hamper
the application of standard techniques to natural language processing.
A characteristic problem in the representation of lexical knowledge

are the large domains that appear. To give an example, the newspaper
texts collected in the “huge german corpus” at IMS Stuttgart, contain-
ing about 200 million tokens, contain about 3 million different word

4.3. SOME PROBLEMS OF STOCHASTIC MODELS 73

types. Although many of these forms turn out not to be words in a
narrow sense, even a very restrictive selection or lemmatization can-
not reduce this number substantially. At least in languages that allow
to build compounds relatively freely, such as German, one should be
prepared to deal with an unlimited lexical inventory.
Another problem is the fact that any useful definition of a linguistic

probability (e.g. for the choice of the next word in a partially completed
sentence) has to refer to the context of the utterance, which may consist
of some prefix of it, but which may also include an arbitrary amount
of additional information, such as topic or dialog context, in order to
achieve good accuracy. Since such context also contains lexical infor-
mation, the problem mentioned above will be exponentially increased,
since the context is described by a large number of features, each of
which has values taken from large domain.
The general problem is to determine the conditional probability

p(e|C) of an event e in the context C, where C can be decomposed
into a sequence of features c1, . . . , cn such that e and each of the ci
has values from a large domain. The probability should be derived
from examples, the training data, which in the ideal case should be
frequent and which should be used to automatically derive the relevant
parameters of the model. Due to the multitude of possible events and
contexts we practically always face the situation that the number of
parameters of some model is huge in relation to the available training
data. Collecting larger training samples does not really help against
this sparseness problem, since the domains will grow with the samples.
A possible way out of the problem is not to model the probability of

words or lemmata, but to restrict the models to suitable abstractions.
For a stochastic model of syntax, one could for instance abstract from
the contents of the words and only take the syntactical categories into
account. Another example is to map the words into a conceptual or
ontological hierarchy, together with the attempt to use occurrences of
such concepts as context features or as events to predict. However, this
leads to a couple of difficulties.

• The abstractions are usually not given naturally, but result from
a specific theoretical approach. Hence models based on such map-
pings are harder to compare with each other.

74 CHAPTER 4. STOCHASTIC MODELS IN NLP

• The mapping of lexemes into more abstract units requires the
expensive construction of large lexicons, which might be not gen-
erally useful if the underlying classification depends on specific
theoretical assumptions.

• The mapping is usually not unique. Hence, available data has
to be manually annotated before it can be used fro training or
testing of he models.

Closely related with these problems is the difficulty to integrate
existing theories and knowledge sources into a stochastic model. This
makes models and training methods much more complex and requires
a considerable overhead for the integration.
On the other hand, models that contain little or no theoretic con-

cepts also face a set of specific difficulties. Such models are typically
built on large amounts of training data, and in the task of predicting
more data of the same source they often achieve a quality that is hard
to improve upon1. One explanation of this is that such models real-
ize a holistic representation of all properties of the training data that
are relevant for the prediction task, that is so fine-tuned that it can-
not easily be improved upon, even if the direction of of improvement
is theoretically justified. The mixture contains a certain amount of
local syntactical knowledge, knowledge about word frequencies in gen-
eral and about local, semantically conditioned dependencies in lexical
choice. This knowledge is represented in an implicit form, multiplied
out into a huge number of isolated numerical values.
However, in practice the situation in which data from a specific

source can be modeled using an abundant amount of training material
in sufficient quality is not at all typical, for reasons already indicated
above. It is much more common that one needs a model of a much
more specific source, for which training data is very hard to get. In
such a situation it would be good to be able to use small amount of
application-specific data to adapt a large, general model optimally to
the needs of a domain.

1To my knowledge, there exists so far no improvement on the values given in
[Brown et al.1992] as an estimate for the upper bound for the entropy of English,
which are essentially based on a well-smoothed trigram model.

4.4. STATISTICAL MODELS AS GLUE 75

It is easy to conceive that a stochastic model could consist of various
modules that model different aspects of the data, such as genre, style,
theme, etc. If such a model has to be adapted to a source that is
different in certain, but not all aspects, one could reuse a part of these
modules and only re-train those modules that are no more useful for
the new application. The knowledge within each of the modules should
be represented more compactly, using less parameters, and this would
give some hope that training of single modules would need significantly
less training data.
Obviously, it would be quite hard to exploit the idea of cross-

fertilization between theory and applications mentioned above, if the
application is based on representations that do not contain any of the
existing theoretical concepts.
Finally, one of the major problems of the “theory-poor” models is

the fact that today even the best existing models are very far apart from
the goal we want to achieve, which is a language model that is aware
of long distance dependencies and other non-trivial information from
context. And we cannot expect much improvement over the the cur-
rent state of the art unless we find good ways to combine linguistically
informed approaches with statistical models.2

4.4 Statistical Models as Glue

Nowadays, as lexical resources that even cover some semantic infor-
mation become more and more easily available[Miller et al.1990], one
might question whether crude approximations offered by stochastic
models are still needed. I see a couple of related reasons why I think
that stochastic knowledge sources will be even more important in the
future than they are now.
Specialized applications need to deal with highly domain-specific

terminologies. The lexical information cannot be found even in large
general-purpose resources. Applications get more demanding and re-
quire more sophisticated knowledge sources, that do not yet exist with

2Work in Jelinek’s new group[Chelba and Jelinek1998] has produced a language
model using a head-lexicalized stochastic grammar and reported substantial im-
provement in perplexity over a trigram model.

76 CHAPTER 4. STOCHASTIC MODELS IN NLP

a broad coverage. More sophistication of a knowledge source means
higher costs for its construction, but typically also implies more do-
main dependency and lower chance of re-usability.
We may want to combine several symbolic knowledge sources, with

complementary imperfections, in the hope that some combination of
them is more suitable for a given task than each of the components. For
instance, we may have a small, domain-specific terminological lexicon
with many omissions in the general vocabulary, and want to combine
this with a large, general purpose lexicon, which does not contain the
domain-specific terms. Still, these resources may overlap, and may
occasionally offer conflicting information for their common entries. To
achieve a good integration of these resources, we may want to use more
or less sophisticated schemes for weighing the resources and we may
still need some fall-back mechanism for dealing with cases where both
of them fail to deliver the required information.
In the extreme case, we may have a large set of resources, differing

in the type, size, and quality, and want to make the best use of this
information for all kinds of decisions in a given task. Since the best
way of exploiting such a set of resources also depends on the application
domain and the task, we may need to optimize this mixture in different
ways for every new application.
This new area, the integration of heterogeneous knowledge sources,

will be a very important application for stochastic models for many
years to come. Unfortunately, this thesis only offers some small first
steps in this direction. I will show how probability estimates for words
in specific domains can be obtained by an suitable combination of
counts taken from large, general and from small, specific corpora. This
combination can be optimized by a generalization of techniques for word
probabilities, such as the Good/Turing formula and absolute discount-
ing. I assume that this technique can be further generalized to many of
the more complex situations sketched above, but a proof of this claim
will require more work.

Chapter 5

Stochastic Models of Large
Vocabularies

5.1 Motivation

Large corpora of naturally occuring text show that increasing the num-
ber of running words (tokens) will inevitably also increase the number
of different word forms (types). Agglutinating languages or languages
with compounding have vocabularies that are in principle unlimited.
Even for languages with a shorter average wordlength like English it
is – due to technical terms, loanwords, neologisms etc. – practically
impossible to fix the overall number of word types without setting ar-
bitrary limits.
Trying to define a probability for the occurrence of certain words

leads to a number of interesting questions.

• Can one derive a meaningful probability from an observed fre-
quency? How?

• What is the probability of observing a “new” word?

• What kinds of information on words can help to improve the
estimates?

• Can estimates based on training data of a certain sort be reused
for a different domain?

77

78 CHAPTER 5. LARGE VOCABULARIES

Some motivation for linguistic probabilities in general has been
given above. The specific question discussed here is that of estimating
probabilities ignoring the context, so-called “unigram”-probabilities.
This problem is not very interesting when taken verbatim, since com-
plete ignorance of the context would exclude knowledge about the do-
main and even knowledge of the language from which the next word will
come. So let us assume we know both language and kind of text and, if
we need a specific example, let us take German newspaper text. Still,
the problem of estimating the probability of a word in isolation looks
somewhat artificial, but one motivation for investigating this rather
closely is that the techniques we will use for this problem will be gen-
eralized to the more interesting cases in subsequent chapters.
In newspapaer text, we often find very long words, and one can eas-

ily imagine a situation where a language processing system has to deal
with an input that, due to some typo or transmission error, contains an
unknown character. Take as an example “Wohnumfeldverbesserungs-
maßn§hmen”, where § stands for the unknown character. We can now
ask, which one of the possible completions of this word has the highest
probability, and take this information to correct the error. In a case like
this, the word itself provides enough information to decide this ques-
tion. On the other hand, the word is very long and specific, so that
we cannot expect to find this word in a text corpus.1 Even if we find
instances of possible completions, these cannot be directly translated
into useful probabilities, as this example shows. (For more examples of
errors in corpora, see section 5.6.) The answer we get depends on the
type of knowledge we bring to bear.

5.2 The Laws by Zipf and Mandelbrot

The fact that natural languages possess an apparently unlimited sup-
ply of rare words has been known since a long time, and there have
been many quantitative descriptions of this phenomenon. If words
are sorted by corpus frequency and the frequency is plotted against

1Actually, the CD “10 Jahre TAZ” contains one occurrence of “Wohnumfeld-
verbesserungsmaßnehmen” (probably a typo) and “Wohnumfeldverbesserungsmaß-
nahmen” (measures to improve the residential area).

5.2. THE LAWS BY ZIPF AND MANDELBROT 79

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

fr
eq

ue
nc

y

rank

’hgc-rank’
2e7/x

Figure 5.1: Rank-Frequency Relation in the HGC

the rank of the word in a doubly logarithmic scale, a very regular
pattern shows up, which is related to “Zipf’s law”. According to
[Chomsky and Miller1963], similar laws date back to [Estoup1916] and
[Condon1928]. Zipf’s law has the form

f(wr) = k/r

where r is the rank of word wr in a list sorted by the frequency f(wr).
k is a constant that grows with the size of the sample. This formula is
not very plausible for small values of r; the claim that the most frequent
word is exactly twice as frequent as the next one can be easily refuted.
However, for higher ranks, there usually exist considerable segments of
the list where this law holds with surprising accuracy. An example is
given in Fig. 5.1 that shows the rank-frequency relation for German
words in the HGC2 in a doubly logarithmic plot. For comparison, a
function inversely proportional to the rank is also given.
In this diagram we can make a couple of interesting observations.

For ranks below 100, the graph is somewhat unsteady, but gets rather

2HGC = “Huge German Corpus”, a collection of several newspaper corpora that
exist at IMS Stuttgart. Overall size is about 200 million word tokens.

80 CHAPTER 5. LARGE VOCABULARIES

smooth after that. Between rank 2 and about 10000, Zipf’s law seems
to hold approximately. Beyond rank 10000, the curve bends off, i.e. rare
words appear less frequently as they are predicted by Zipf’s law. For
higher ranks, the function is so smooth that it seems plausible to look
for a simple characterization. For very small frequencies, the function
gets stair-shaped, since we can only observe integer frequencies. The
last step of this stair represents the words that have been observed once
(singletons).
A simple reflection shows that Zipf’s law cannot hold for an infinite

vocabulary. Otherwise, the probability that word wr of rank r occurs
would be p(wr) = k/r. However, the harmonic series does not converge,
and it is not possible to find a probability distribution that follows this
law assymptotically.
However, for arbitrary b > 1, we have

∞∑
i=1

i−b = ζ(b)

where ζ stands for Riemann’s Zeta function. In principle, we can gener-
alize Zipf’s law to the form p(wr) = ζ(b)/i

−r, which gives a distribution
in which the expected frequencies diminish a bit faster than in the origi-
nal form of Zipf’s law. Distributions of this class have been investigated
in [Mandelbrot1954]. Fig 5.2 shows each an example of the Zipfian and
the Mandelbrot distribution.
However, analysis of large corpora like the HGC or the British Na-

tional Corpus shows that the frequency decreases faster for higher than
for medium ranks. It is not possible to obtain such a behaviour by
varying the parameters of the above formula.
Zipf and other authors tried to explain the regularity of the fre-

quency distribution as a consequence of deeper reasons, such as the
principle of least effort in human behaviour and the like. However, as
has already been shown in [Chomsky and Miller1963], we do not need
to resort to such complex explanations, since similar characteristics
can be observed in data sampled from very simple stochastic processes.
Take as an example an unlimited sequence of independent and uni-
formly distributed binary digits and group it into pairs, such that the
pairs 00, 01, 10 and 11 each appear with the probability 0.25. Regard

5.2. THE LAWS BY ZIPF AND MANDELBROT 81

0.0001

0.001

0.01

0.1

1 10 100 1000

re
la

tiv
e

fr
eq

ue
nc

y

rank

0.1/x
(8+x)**-1.5

Figure 5.2: Zipfian versus Mandelbrot Distribution

00 as a word boundary, and treat all symbols between subsequent word
boundaries as a word. This leads to a denumerable infinite vocabulary
and to a probability distribution on it that we can very easily study
analytically. For each n ≥ 0, we have 3n different words of length 2n,
each of them with the probability 0.25(n+1). The words of length 2n
occupy the ranks (3n + 1)/2 up to (3n+1 − 1)/2.
Fig. 5.3 shows word frequencies in a random sample of size 106

according to this distribution (points), the values that would be
theoretically expected (steps), as well as the plot of the function
2.5 ∗ 105/xlog(4)/log(3) that connects the centers of the steps. Ignor-
ing the zigzag shape, this distribution follows the Zipf/Mandelbrot law
with b = 1.2618595072.

The plot shows that the expected steps show up very nicely in the
experimental results for higher frequencies. For medium frequencies,
the random variation leads to a smoothing of the steps. For even higher
ranks, the fact that we can only observe integer frequencies leads to an-
other sequence of steps, which is a kind of “discretization noise”. It is
interesting that the observed frequencies deviate systematically from

82 CHAPTER 5. LARGE VOCABULARIES

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06

H
ae

uf
ig

ke
it

Rang

’a4’
25e4/x**(log(4)/log(3))

’a4th’

Figure 5.3: Rank-Frequency Relation of a Random Text.

5.3. THE GOOD/TURING FORMULA 83

the expected frequencies in such a way that the last step is shifted
rightwards from the expected position. Apparently, many values have
been observed exactly once, even if their expected frequency is consid-
erably lower than one. The reverse case, that a word is less frequent
than expected also exists, but not that often.

For determining the probability of rare events, it would be very
helpful to know the course of the underlying distribution in the domain
of low frequencies. But just in this domain the observed data is subject
to high uncertainty, and needs considerable correction.

5.3 The Good/Turing Formula

A situation where we know details of a probability distribution, as
described in the last section, does not often occur in practice.

In any practical situation, we only have a set of examples, the train-
ing data, and we are trying to predict properties of the underlying
distribution from this observation. Of course, all stochastic models
we can come up with are bound to be a quite drastic idealization of
the real facts; a simple mathematical model that is built in the hope
that it might predict some observable properties of reality. No claim
whatsoever is made that the real processes underlying human language
production or perception can be described in such simple-minded ways.

This chapter is based on a quite drastic idealization. We model the
generation of natural language utterances as a multinomial distribution
on a countably infinite vocabulary, i.e. a memoryless stochastic process
that emits random words according to this distribution. The only ques-
tion we are interested in is the estimation of a word probability, given
the frequency counts of some observed sample.

Of course, the assumption of a multinomial distribution does not
constrain the possibilities very much. Given the observations, any dis-
tribution that assigns a non-zero probability to the observed events
could have produced the data. How can we choose any of them to pre-
dict the probabilities of additional observations from the same source?

For each distribution φ, we can calculate the probability that the

84 CHAPTER 5. LARGE VOCABULARIES

model produced the data as

P (fi|φ) =
(∑

fi
fi

)∏
i

φfii

and we can ask ourselves for what model this probability would be
maximal. However, we are varying the model, and not the possible
outcome of a fixed model, so this method does not define a probability
distribution over possible models. Usually, this function on models is
called the likelihood of the model, given the data. We can try to look
for the model that maximizes the likelihood, and call this the maximum
likelihood estimate (MLE). It turns out that in our case the maximum
likelihood estimate is well-defined and is exactly the one that assigns
each event its observed relative frequency in the training data.
The MLE seem to have the advantage of being independent of ad-

ditional assumptions. However, in our application, the MLE has the
very unfortunate property to predict that any event that was not seen
in the training data has probability 0, i.e. is impossible. It is obviously
not very useful under circumstances in which we have to assess the
probability of unseen events.
To get more useful probability estimates, we have to address three

questions.

• What is a realistic probability that a future event will be new, i.e.
of an event type that is not contained in the training sample.

• How should we reduce the probability estimates of the observed
events, in order to save the necessary probability mass.

• How should we distribute this probability over the (usually infi-
nite) set of possible, but unseen events.

For the first two of these problems, we can apply a method that has
been originally suggested by A. Turing and futher investigated and pub-
lished by I.J. Good [Good1953]. Here, the set of all possible events is
partitioned into equivalence classes according to the observed frequen-
cies, and an identical probability estimate is assigned to all members
of a class.

5.3. THE GOOD/TURING FORMULA 85

Let nf be the number of types that have been observed exactly f
times in a sample of size N =

∑
f f ∗ nf . For each observed frequency

f we want to obtain a corrected value f ∗, as an expected frequency of
an event seen f times. The Good/Turing formula states

f ∗ = (f + 1) ∗ nf+1/nf

[Church and Gale1991] gives a proof that this formula is correct up
to a relative error of 1/N if it uses the expected values of the class sizes
instead of the actually observed values.
In our application, there is an infinite number of unseen event types,

so the formula is not directly applicable for them. However, we can still
take n1/N as a (typically very good) estimate of the probability that
the next event is new.
The formula can also be motivated by considering the following

experiment. Assume that the sample is partitioned randomly into a
training set and a cross-validation set. An estimator should be evalu-
ated by its ability to predict the cross-validation item from the training
set. To avoid random effects of the selection of the cross-validation set
and to exploit the available data optimally, we take each possible choice
of the cross-validation set of size 1 into account and try to find values
for f ∗ that give optimal prediction in all these cases. More precisely,
we are looking for a function ·∗ with the constraint ∑f f

∗∗nf = N that
maximizes the leaving-one-out probability

∏
f

(
(f − 1)∗
N − 1

)f

Intuitively, each event seen f times in the overall training data has
to be produced f times in this leaving-one-out scenario, but each time,
this has to happen based on the evidence given in the reduced training
set, where this event was seen only f − 1 times. Hence the class of
events seen f −1 times has to produce f ∗nf events, and should get an
according fraction of the overall probability, which leads directly to the
formula given above. Effectively, this formula redistributes all counts
obtained for the class of events seen f times onto the class of events
seen f − 1 times.

86 CHAPTER 5. LARGE VOCABULARIES

It is a very nice property of this formula that it does not make any
assumption on the underlying distribution. We can, for instance, take
a sample of size k ∗ n from a uniform multinomial distribution with
n possible event types, where we expect k events for every type. The
actually observed frequency of any type can then be approximated by
a Poisson distribution with parameter k, i.e. we expect kf

ekf !
event types

that appear exactly f times. If we would actually observe this class
sizes, and put them back into the Good/Turing formula, we would get
out the correct value k, no matter the value of f we actually observed3.

In order to see what the Good/Turing formula does, we can apply
it to word counts from the HGC as shown in the following table.

3The independence of the Good/Turing formula from the actual distribution does
not seem to be widely known, and one can sometimes see people derive one of them
from the other. [Samuelsson1996] investigates the somewhat artificial question what
kind of distributions would be invariant under the correction by the Good/Turing
formula, and explores similarities of this class and zipfian distributions.

5.3. THE GOOD/TURING FORMULA 87

Nf f f ∗

∞ 0 – NA – pneu=0.00919051
1882337 1 0.44760
421266 2 1.32056
185435 3 2.36247
109521 4 3.33639
73081 5 4.41825
53815 6 5.32905
40969 7 6.49057
33239 8 7.29092
26927 9 8.41089
22648 10 9.33698
19224 11 10.3695
16612 12 11.4302
14606 13 12.4367
12975 14 13.5468
11718 15 14.1744
10381 16 15.5589
9501 17 16.6890
8809 18 16.9984
7881 19 18.2160
7178 20 20.1721
6895 21 19.7793
6199 22 22.2579
5999 23 22.1877
5546 24 23.1563
5137 25 24.3753
4816 26 24.5164
4373 27 27.4109
4281 28 26.7713
3952 29 28.3451
3734 30 29.1735
3514 31 31.9909
3513 32 30.7361

Applying the leaving-one-out idea avoids some problems with over-
fitting of the data, but it should not be seen as a panacea. One potential
problem is that the training sample might not actually consist of in-

88 CHAPTER 5. LARGE VOCABULARIES

dependent observations. Assume for instance that, after some sample
has been drawn, a certain fraction of it is mistakenly counted mutliple
times, a problem which happens in practice more often than one would
assume. This will increase the apparent size of the sample, but it will
not increase the number of different word types. Most likely, it will
actually decrease n1, the number of events seen exactly once. Conse-
quently, the estimated probability of unseen events will be much lower
than for the original source4.
Another problem with the Good/Turing formula is that we do not

know the expected class sizes, but have to derive them from the actual
observations. Directly using the observed sizes leads to unmotivated
jumps in the estimates, and for higher frequencies, for which the class
sizes are typically 0 or 1, the estimates alternate between 0 and ∞.
This problem shows up very clearly in the example given above,

where the events seen 21 times have a smaller probability than the
events seen 20 times, which is quite implausible.
[Good1953] makes detailed suggestions on how to smooth these

sizes, but these are mathematically complex, and the theoretical status
of these methods is not clear.
There are a number of intuitively plausible constraints on the shape

of the discounting function, e.g. that it should be monotonically increas-
ing and “smooth” in a certain sense, but these consideration affect the
intended outcome of the Good/Turing formula, and it is not obvious
how the input to the formula should be treated in order to get results
with the required properties.

5.4 Generalized Absolute Discounting

[Ney and Essen1993] observe that for frequencies of words and n-grams,
the application of the Good/Turing formula usually results in “absolute
discounting”, i.e. in a reduction of the observed counts by a constant
amount that is usually somewhere between 0 and 1. Informally, this
can be explained by the fact that in Zipfian distributions, there are
more unlikely events which might have appeared more than expected

4However, the new estimate will still be realistic if we assume that the process
we are modeling is sampling of the original data including the random duplication.

5.4. GENERALIZED ABSOLUTE DISCOUNTING 89

to produce a certain number of observations than events which might
be “underrepresented”. It would be interesting to investigate more
closely the relation between the discounting constant on one hand and
the properties of the distribution and the sample size on the other. But
as Ney and his colleagues show, the leaving-one-out method is a good
way to get reliable estimates in many practical situations, so that a
deeper and theoretically more satisfying justification does not seem to
promise immediate practical advantages.
In the sequel, I will present a variant of the absolute discounting

method that has some advantages over it, insofar as it also works quite
well in cases of non-Zipfian distributions and it leaves more flexibility
for the probability of events seen once, which often do not fit into the
general pattern.
The idea is to compose a discounting function as a linear mixture of

several components, where each of them concentrates on the prediction
of events from different frequency classes. We can find the optimal mix-
ture of these components using the EM algorithm on cross validation
data or under the leaving-one-out training regime.
We specify

f ∗ = λ0m0(f) + λ1m1(f) + λ2m2(f) + λ3m3(f)

where
∑
i λi = 1 and the models mi are defined as follows:

m0(f) =

{
N/n0 if f = 0
0 if f > 0

m1(f) =

{
N/n1 if f = 1
0 if f �= 1

m2(f) =

{
N/(t− n1) if f > 1
0 if f < 2

m3(f) =

{
(f − 2)/(N − 2 ∗ t+ n1) if f > 2
0 if f < 3

Here, t stands for the number of observed event types t =
∑
f nf .

To make things a bit more perspicuous, we can visualize the four con-
tributions as in Figure 5.4.

90 CHAPTER 5. LARGE VOCABULARIES

0

1

2

3

4

0 1 2 3 4 5

Figure 5.4: Components of the discounting mixture

Since we are looking for a mixture of four components, there are
only three free parameters to optimize. Two of them can even be given
in a closed-form expression, since we can read off from the data the
contributions of the first and second component5. It is only the relative
weight of m2 and m3 that is a bit harder to determine, since many
observations (all events for event types with f > 2) can be generated
by either of them.

However, if we make the additional plausible assumption that the
slope of the resulting function should be 1 for higher frequencies, we
obtain an easy way to compute all needed parameters in a simple way,
without any iteration6.

5The values we get for f = 0 and f = 1 are exactly those we get via direct
application of the Good/Turing formula. We implicitly assume that the observed
nf for f < 3 are exact enough to be used as input to G/T, which is definitely the
case for large enough samples from Zipf-shaped distributions, but may not hold
otherwise.

6In section 5.7 we will discuss a more general setup where we do not assume
that all the training data comes from the same source we want to characterize.
This situation will lead to functions with slopes << 1.
Using plausibility arguments in this context raises another question. If a slope of 1
is most plausible and leads to a nice formula, what about the situations in which
the exact calculation leads to significantly different results?

5.5. DECOMPOSING WORDS 91

5.5 Decomposing Words

We have explored various ways to estimate word probabilities by “dis-
counting” the relative frequencies of words from the training data, but
so far, we have said little about the question how the saved probability
mass should be redistributed among the infinite number of words we
have not seen. It is clear that we cannot treat all of them equally and
we would like to exploit the training data and possibly other knowledge
sources to make this redistribution more informed. One might wonder
what role this question can play in connection with the problem of dis-
ambiguation, since in such settings the words are normally given. One
answer is that once we have a good way of estimating probabilities for
unseen words, we may try to apply it to the somewhat more difficult
problem of estimating the probability of a unknown word with some
given property (e.g. its part of speech). If we have good estimators for
a couple of properties, and we find an unknown word in an utterance to
be analyzed, we can apply Bayes rule to find a probability distribution
on the properties of this word. This can be useful to guess properties
of unknown words in a more flexible, example-driven way. Another
answer is that we could use good probability distribution over words in
a spelling-correction setting. Conventional, dictionary-based spelling
correctors are often tedious to use because of the limitations of their
lexicons. Having a good way of predicting new words might help. A
third answer is to use such a module for the analysis of long, domain-
specific compounds in languages like German. Very often, a complex
technical term cannot be analysed because one of its compounts is so
specific that it is not in the lexicon. The risk of such failures grows with
the length of the word, with the effect that the failure rate is highest for
the most informative words. Having a good way to distinguish plau-
sible unknown components from implausible ones could help to deal
more gracefully with this kind of problems.

Among the character strings that do not occur within the 3193939
types in the HGC we find quite normal words that would have consid-
erable chances to appear in a similar corpus, but also very long words
that are very unlikely or nonsensical. Most of the possible strings would
not be recognized as words at all, and although they could in principle
appear in a similar corpus, their probability is extremely small.

92 CHAPTER 5. LARGE VOCABULARIES

There are a several properties of such strings we could use to model
the probability of an unknown word, such as wordlength, probabilities
of characters and character sequences that appear in it, or knowledge
about possible components and about morphology.
However, we have to keep in mind that we want to model unknown

words, that appear rarely in corpora. We should not expect that a
morphological component will be as useful for such a task as for the
analysis of average words. We cannot fully rely on knowledge-based
approaches, but always have to consider the exceptional cases which
are not covered by our rules (or lexicons). We should also keep in mind
that we eventually want to model distributions on words in a way that
makes strong use of contextual information. Hence it does not make
much sense to develop a sophisticated methodology for a simplified task
if there is no way to apply it to the really interesting cases.
Therefore, I want to specify in the sequel some simple models for

rare words. They are Markov models, i.e. stochastic processes based on
finite automatons, that contain, for every possible state, a probability
distribution on possible transitions into new states. In every state, there
is additionally a certain probability to end the symbol sequence. This
defines a probability distribution on the strings that can be produced,
and it depends on a suitable choice of the parameters if this distribution
is a good model of the real data. Of course, the parameters should
not be assigned by hand, but rather be optimized based on a training
sample.
We can exploit the fact that the frequency based model given above

gives away a constant part of the sample frequency for the model of
new words. These contributions can be used by the Markov model.
The event types can also be seen as a representative sample of the data
that should be modeled by the finite automaton. We can hence expect
that training on the observed types can give better results than training
on tokens, because the Markov model is supposed to complement, but
not to replace the frequency-based estimates.
A very simple Markov model could be based on trigrams of charac-

ters, such that the contexts (i.e. prefixes of the words) are collected into
equivalence classes according to the last two characters they contain,
and for each such class, a probability distribution on the next character
is estimated on the basis of relative frequencies. However, we get, in

5.5. DECOMPOSING WORDS 93

a smaller scale, similar problems as for word n-gram models. On one
hand, the context contains clearly too little information, and the model
collapses contexts that should be kept apart. On the other hand, many
two-character combinations are possible, but so rare, that a distribution
on the possible continuations cannot reliably be estimated. Therefore,
a suitably smoothed trigram model cannot be much more than a very
superficial ad-hoc approach to the problem of missing words.

Using morphological information

The trigram model mentioned in the last chapter can give only a very
rough approximation. It is very simple to compose meaningless and
hence very unlikely words from frequent character trigrams, and the
estimated probability of such words will be relatively high. It looks
plausible that a linguistically motivated description of morphological
regularities will give us a much better distinction between possible and
impossible words, which will enable us to estimate the probabilities in
a much better way.
I do not want to go into the fine details of morphological theories

and formalisms, but instead assume a morphological description and the
implementation of the assiciated tools as given, and show how a prob-
abilistic model can be built out of these ingredients. Since the seminal
work of [Koskenniemi1983] and the implementation of suitable compil-
ers [Karttunen1994], the framework of the 2-level formalism has been
used to build morphological description for a large number of languages
(see http://www.xrce.xerox.com/research/mltt/Tools/morph.html for
an overview). These contain stem lexicons for inflected parts-of-speech,
the description of inflectional classes, and rules that describe phonolog-
ical effects that modify the strings when certain sounds or characters
are concatenated. These knowledge sources can be represented as finite
automata. Some of these automata operate on two levels, which means
that all of the transitions are annotated with pairs of symbols for the
two levels. Eventually, all the knowledge sources can be compiled into
a large finite state transducer (FST), that defines the mapping between
orthographical strings and strings of symbols on a more abstract level
of representation, the lexical level.
The relation between these strings is a regular relation

94 CHAPTER 5. LARGE VOCABULARIES

[Kaplan and Kay1994]. The FSTs and the mapping they define can
be seen as a declarative, reversible description, that can be used in
both directions, i.e. given one of the strings, the set of strings that
can potentially be associated to it can be computed efficiently. The
FST can also be used to enumerate the set of all pairs in this relation,
provided this set is finite.

Because such an FST contains all the lexical knowledge that went
into its construction, it is typically rather large7, so that a direct manual
inspection or manipulation of it is not feasible.

There are two possibilities to use a morphology component to build
a stochastic language model.

One one hand, we can model the process of generating strings di-
rectly based on the given finite automaton. We can turn the FST into
a Markov model by annotating the transition with probabilities. This
simplifies the task, because the structure of the model is given, and all
we have to add are the probabilities. Of course, this simplicity can be
a disadvantage, if it turns out that the stochastic regularities cannot
be described in the framework of the given structure. This is to be
expected, because the tools that generate the FST will collapse states
that cannot be distinguished symbolically. But the actual use of words
may show regularities that cannot be expressed in this way8. Generally,
even in morphology, complex semantic and pragmatic aspects play an
important role, and we cannot expect that all relevant knowledge can
be encoded in an atomic state.

Alternatively, we might use a stochastic model of the strings that
appear on the lexical level, that is independent from inner structure of
the FST, which then would merely provide the translation between the
stochastic model and the strings that can actually be observed.

7The German morphology component DMOR by Anne Schiller that has been
used for the experiments described in the sequel, leads to a cyclic transducer that
has 139758 states and 389476 transitions.

8A mass noun as “Bier” (beer) might almost always be used in its singular
form, but since the plural form also exists, the morphology may use a standard
continuation class for it. There are also many verbs for which the first or second
person forms are extremely rare for semantic reasons, as e.g. for “regnen” (to rain).
Building noun compounds should consider possible semantic relations between the
components.

5.5. DECOMPOSING WORDS 95

This architecture looks much more plausible from a linguistic point
of view. The stochastic model of the lexical strings should allow to
model arbitrary interrelations that exists on the lexical level, and we
could abstract from the idiosyncracies of the morphology. Unfortu-
nately, this leads to a number of problems.
We cannot assume that a consistent stochastic model of lexical

strings will be transduced into a consistent stochastic word model by
the given FST, since this might produce for a given lexical string a set
of words with a cardinality different from 1. In this case, we would not
have a probability distribution on the set of words.
A model that is composed from a lexical generator and a morphology

transducer will only work for words that are known to both components.
Such a system will have far more problems with coverage and robustness
than a integrated model.
The interrelations between the components of a noun compound

may be very important, but their treatment requires techniques that
will be introduced in the Chapters 6 and 7.
For these reasons, it seems reasonable to start with a model that

is formally rather simple, before trying to account more accurately for
more complex effects.
A simple stochastic model of morphology can be obtained by an-

notating all possible transitions of an FST with probabilities. If the
probabilities of all transitions that leave a certain state plus the prob-
ability that the transducer will stop in this state sum up to 1 for all
states, the stochastic transducer defines a probability distribution on
all pairs of strings that can be produced by the model9.
Let 〈wlex, wsurf〉 be a pair of lexical and surface strings that are

produced by the model, we have

∑
wlex,wsurf

p(wlex, wsurf) = 1

This joint distribution of string pairs can also be used for the com-
parative assessment of competing analyses, by computing for a given

9To be quite precise, we have to require that for each state there is a path to
a final state with positive probability. Otherwise, some fraction of the probability
could be lost on infinite cycles in a dead end of the transducer.

96 CHAPTER 5. LARGE VOCABULARIES

surface string wsurf the values

p(wlex|wsurf) =
p(wlex, wsurf)∑
wlex

p(wlex, wsurf)

Since the number of possible analyses (=lexical strings) of a given
word is typically small, the sum in the denominator can be computed
in a simple procedure based on backtracking.
Since a morphological FST has typically a large number of states

and transitions, it is essential for a practical application of this idea
to acquire the parameters of the model10 automatically from train-
ing data. Ideally, we would like to use a set of morphologically dis-
ambiguated word occurrences, i.e. a collection of pairs of the form
〈wlex, psurf〉. However, data of this form is not easy to obtain, be-
cause the morphological interpretation of a word occurrence is de-
termined by the context, and can only be disambiguated manually
or by the application of very powerful tools, if considerable accu-
racy is required. As an alternative, one can use a method that
needs only surface strings and estimates probabilities for the associ-
ated lexical strings. This is a classical application of the expecta-
tion maximisation (EM) algorithm[Dempster, Laird, and Rubin1977,
McLachlan and Krishnan1998] that uses a preliminary model to com-
pute expectations for missing parts of the training data. The data
completed in such a way can them be used to estimate the parameters
of a new model.
By iterating these steps, the model (and the estimated part of the

training data) is modified until no further increase of the likelihood
is achieved. Each step in the iteration is guaranteed not to decrease
the likelihood of the observed data, which leads to an overall conver-
gence towards a (possibly local) maximum likelihood estimate. The
EM algorithm is applicable under very general conditions and has
frequently been used in connection with tasks related to NLP with
stochastic models. Applications range from the training of Markov
models in phonetics (in form of the forward-backward (FB-) algorithm
[Baum1971, Juang and Rabiner1992]), of stochastic context-free gram-
mars (inside-outside algorithm[Baker1979, Lari and Young1990]), over

10The number of free parameters of the model is the number of transitions minus
the number of non-final states.

5.5. DECOMPOSING WORDS 97

For each Transition k :
f [k] := 0;

For each word wsurf in the training corpus:

pcum := 0;
For each possible analysis A:

pcum := pcum + p(A);
For each possible analysis A:

For each transition k used for A:
f [k] := f [k] + 1/pcum;

Figure 5.5: Simple EM-algorithm for transition probabilities

schemes for soft classification ([Rooth1995, Saul and Pereira1997]).
Here, FB and IO algorithms are specific refinements of the EM al-
gorithm that make it possible to apply the algorithm in polynomial
time to the problems for which a naive implementation would lead to
exponential complexity. This can be achieved by storing and re-using
intermediate results. The characteristic property of these algorithms
is therefore the combination of the EM algorithm with techniques of
dynamic programming[Aho and Ullman1972].
Athough the model used here is formally a Markov model, it is in

this case not essential to use the FB algorithm, because for each given
word the number of analyses is so small that an explicit enumeration
is easily feasible. This leads to the version of the EM algorithm given
in Figure 5.5. p(A) is the product of the probabilities of all transitions
used in A.
Training of the model can be speeded up considerably by using fre-

quency word list and analysing only once each word type that appears
in the corpus. The estimates of the transition probabilities have to be
multiplied with the frequency of the word. Using this procedure, I es-
timated transition frequencies for the 388918 edges in the DMOR FST
and used them to construct weighted transducers. I kept the counts
after the first and after the third iteration of the EM algorithm. The
latter gave much sharper distinctions, but there are also cases in which
repeated applications of EM leads to the suppression of desired read-
ings.
Because the probabilities cannot be more than very crude approx-

98 CHAPTER 5. LARGE VOCABULARIES

imations, for which the order of magnitude is much more important
than the exact value, I used a logarithmic representation for them in 8
bits per transition. This keeps the space consumption for the weights
much more compact than for the FST proper11 Fig. 5.6 shows the mor-
phological analyses of the word “Träger” (Noun: carrier, Adj: lazier),
together with the conditional probabilities assigned to the readings af-
ter the first and the third iteration of the training procedure.

It is clearly visible that the iteration reduces the probability of the
adjective readings, which are rather implausible. Some of them are
reduced by several orders of magnitude. However, in order to decide
if the resulting values are actually realistic, one would have to manu-
ally investigate a rather large number of corpus references for a larger
number of words, which is difficult to justify.

The original goal of the stochastic extension of DMOR was not
to perform an absolute stochastic assessment of the joint probabilities
of the pairs p(wlex, wsurf) and hence implicitly estimate P (wsurf). The
goal was to assess for a given word wsurf the set of possible readings, i.e.
to construct a model for p(wlex|wsurf) for those words that are known
to the morphology. As a sole stochastic word model, the weighted
DMOR automaton cannot be used, because of its incomplete coverage.
It would have to be complemented by mechanisms that assign a positive
probability to arbitrary strings. One possibility would be the mixture
of the weighted DMOR FST and a stochastic model based on character
trigrams, which would solve the problem with missing coverage, albeit
in a very crude way. The probability of a word would then be given by

p(w) = λpmorph(w) + (1− λ)ptri

where pmorph is the model based on morphology, ptri that based on
trigrams, and λ is an empirically optimized mixing factor12.

11In my implementation, I used an encoding that uses 4 Bytes per transition and
that doesn’t need extra space per state. This is somewhat less compact than the
encodings used by Xerox, but very easy to use.

12Under the assumption that the morphology-based model spents much less prob-
ability on non-words than the trigram model, we can estimate that the optimal
mixture factor is approximately equal to the coverage of the morphology, i.e. about
95%.

5.5. DECOMPOSING WORDS 99

p(A|w, 1.It.) p(A|w, 3.It.) A
0.145830 0.169450 Träger+NN.Masc.Akk.Pl
0.145830 0.169450 Träger+NN.Masc.Akk.Sg
0.145830 0.169450 Träger+NN.Masc.Nom.Pl
0.145830 0.169450 Träger+NN.Masc.Nom.Sg
0.145830 0.169450 Träger+NN.Masc.Dat.Sg
0.137645 0.150962 Träger+NN.Masc.Gen.Pl
0.013656 0.000156 *träg+ADJ.Comp.Adv
0.013656 0.000156 *träg+ADJ.Comp.Pred
0.013656 0.000139 träge^ADJ.Pos+NN.Fem.Dat.Sg.St
0.013656 0.000139 träge^ADJ.Pos+NN.Masc.Nom.Sg.St/Mix
0.013656 0.000139 träge^ADJ.Pos+NN.NoGend.Gen.Pl.St
0.013656 0.000139 träg^ADJ.Pos+NN.Fem.Dat.Sg.St
0.013656 0.000139 träg^ADJ.Pos+NN.Masc.Nom.Sg.St/Mix
0.013656 0.000139 träg^ADJ.Pos+NN.Fem.Gen.Sg.St
0.004301 0.000139 träge^ADJ.Pos+NN.Fem.Gen.Sg.St
0.004301 0.000139 träg^ADJ.Pos+NN.NoGend.Gen.Pl.St
0.002151 0.000074 *träge+ADJ.Pos.Masc.Nom.Sg.St/Mix
0.002151 0.000059 *träge+ADJ.Pos.Fem.Gen.Sg.St
0.002151 0.000059 *träge+ADJ.Pos.Fem.Dat.Sg.St
0.001916 0.000052 *träge+ADJ.Pos.NoGend.Gen.Pl.St
0.001279 0.000031 *träge+ADJ.Comp.Pred
0.001279 0.000031 *träge+ADJ.Comp.Adv
0.001139 0.000015 *träg+ADJ.Pos.Fem.Dat.Sg.St
0.001139 0.000015 *träg+ADJ.Pos.Fem.Gen.Sg.St
0.001075 0.000015 *träg+ADJ.Pos.NoGend.Gen.Pl.St
0.001075 0.000014 *träg+ADJ.Pos.Masc.Nom.Sg.St/Mix

Figure 5.6: Probability Estimates for Morphological Analyses

100 CHAPTER 5. LARGE VOCABULARIES

This external component leads to a complete coverage of all possible
(and impossible) words, but the price for this coverage is that the frac-
tion of theoverall probability that is distributed over unknown words is
spread over all possible strings in a very crude manner.

A better model can be achieved based on the assumption that even
for words that eventually cannot be analyzed, the morphology FST is
able to construct reasonable partial analyses. One can observe that
relatively many failures happen for long noun compounds where not
all of the compounds appear in the stem lexicon13. If one were able to
recognize and isolate such unknown parts of a word, and still analyze
the rest, one could even (especially if the stem of the last component
of the word is known) perform a plausible guess of part-of-speech and
morpho-syntactic features, which are determined by the last compo-
nent.

This leads to a model in which the missing coverage of the original
transducer is rectified via the addition of transitions. It looks very
promising to induce such new transitions empirically from frequency
word lists, which would lead a way to a semi-automatic, data-driven
extension of the morphological lexicon. However, this leads to a couple
of problems, for which I did not find satisfactory solutions so far.

A transition in a morphological FST carries relatively much infor-
mation (source and target states, pair of labels). If one assumes that
all transitions are possible, and tries to estimate probabilities for them
from training data, the number of parameters to estimate is overwhelm-
ing in relation to the training data that is available. A related problem
is teh fact that the number of possible analyses of a given word will be
astronomical.

A possibility to cope with these problems is the following model.
The transducer is extended with one additional state, which is linked
to all other states by transitions in both directions. These transitions
carry an empty label on the surface side, and a special mark on the
lexical side, which leaves a trace in the analysis, should such a detour
be taken. This extension needs two additional parameters per original

13Of course, this effect is limited to languages like German that build such com-
pounds. It is particularly visible in connection with technical or scientific text, in
which compounds tend to be longer and contain domain-specific components.

5.6. COPING WITH ERRORS IN THE TRAINING DATA 101

state, which would approximately double the number of parameters int
the DMOR example. With such an extensions, the FST can sponta-
neously jump from any given state to any other state, without con-
suming any input symbols14. Such a model can accept strings that are
composed from characters that appear on some surface transition. The
transition probabilities can be optimized via the EM algorithm. Train-
ing about 500000 parameters from a frequency word list with some
million entries seems still to be feasible.
However, the approach that has been sketched above, where all

possible analysis paths have been enumerated in backtracking, is not
feasible any more under circumstances that would introduce massively
ambiguous results for each word in the training data, because the com-
plexity would grow exponentially with the length of the input word.
Training the probabilities of such a model therefore requires the appli-
cation of the forward-backward algorithm, which allows all necessary
computations be performed in time that grows linear with the length
of the input word.

5.6 Coping with Errors in the Training

Data

Working with large amounts of naturally occurring text frequently leads
to problems related to the low quality of these texts. The dilemma
lies in the fact that we need, on one hand, large amounts of data to
train useful models, but that this requirement makes it on the other
hand necessary to use data of questionable quality. Cleaning such data
manually is typically not feasible, because it would require an enormous
amount of manual labour. This seems to be a considerable handicap
for data-driven construction of linguistic resources. For instance, in a
list of approximately 70000 types that have been annotated as verb
lemmata in the HGC, more than half of the entries turned out to be

14Some unknown stem would hence have to be composed from pieces of known
stems, which may lead to somewhat arbitrary results. More regular results could
be achieved using transitions that originate and end in the new state, carrying all
possible surface labels. On the other hand, reusing larger parts of existing words
might lead to a model that adapts better to the properties of the actual data.

102 CHAPTER 5. LARGE VOCABULARIES

wrong [Eckle, personal communication]. Here, several sources of errors,
like typing errors in the raw data, errors in tagging and lemmatizing
act in combination. If one collects the data as is into a word list,
one random error takes as much space in this list as a correct entry
that is used quite frequently. In a way, correct information gets more
and more diluted with random errors, that generate much more word
types15, and it requires much effort to extract high-quality information
from such a collection. On the other hand one of the welcome properties
of statistical models is the fact that influence from poor data is more or
less randomly distributed, whereas the characteristic properties of the
correct data stands out against this random noise via steadily growing
frequency.

This very general remark is not very helpful in a situation where
we have a large list of forms, each appearing once, and we know from

15The HGC contains the following spellings of one lemma, for which the mor-
phological paradigm before the German spelling reform provided only four possible
inflectional forms:
3219 Untersuchungsausschuß

49 Untersuchungsauschuß 138 Untersuchungsausschüsse
14 Untersuchungssausschuß 2 Untersuchungsausschusse
5 Untersuchungausschuß
2 Untersuchungsauuschuß 87 Untersuchungsausschüssen
2 Untersuchungsaussschuß
2 Untersuchungsausschuss 804 Untersuchungsausschusses
1 untersuchungsausschuß 18 Untersuchungsauschusses
1 tersuchungssausschuß 4 Untersuchungssausschusses
1 Untesuchungsausschuß 4 Untersuchungsausschußes
1 Unteruchungsausschuß 3 Untersuchungausschusses
1 Untersuchuungsausschuß 1 ntersuchungsausschusses
1 Untersuchungsausschß 1 Untersuchungsauswschusses
1 Untersuchungsausschußhaben 1 Untersuchungsaussschusses
1 Untersuchungsausschu 1 Untersuchungsausschüsses
1 Untersuchungsausschiß 1 Untersuchungsauschußes
1 Untersuchungsauschuss 1 Untersuchunggsausschusses
1 Untersuchungsaus 1 Untersuchungaausschusses
1 UntersuchungsAusschuß 1 Unterschungsausschusses
1 Untersuchunfsausschuß 1 Unterrsuchungsausschusses
1 Untersuchtungsausschuß
1 Untersuchsausschuß
1 Unterssuchungsausschuß
1 Unterschungsausschuß

5.6. COPING WITH ERRORS IN THE TRAINING DATA 103

checking samples that it contains a large number of errors, but also so
much useful information, that we cannot afford to ignore this data.

Basically, this is a problem of classification, and not so much one
of data modeling. One way to address it is to make use of an explicit
model of typical errors, such as insertions, deletions, swapping of ad-
jacent characters or confusion with other characters 16. Such an error
model can be implemented as a weighted FST, and it can be used to
represent, for a given correct form a probability distribution over pos-
sible misspellings of it, or vice versa.

If we make additional use of a stochastic model of correctly spelled
words, that reserves an appropriate probability for unseen words, we
could compare, for each unseen word, the probability that it is actually
a new, correct word, with the probability that it is a misspelled variant
of a different word. Using this technique, one could then again derive
a new, improved model of correct words (and maybe also a modified
wrror model), and iterate this until now new errors in the data is found.

This idea leads to the practical question how the possible corrections
of a potentially misspelled word can be found efficiently. The minimal
number of modifications that is necessary to transform a given word
into a different one is called their Lehvenstein distance. It can be
calculated using a dynamic programming algorithm, the complexity of
which grows with the product of the lengths of both words. However,
given the huge)or even infinite) number of forms that could serve as
a potential correction of a given word, the naive enumeration of all
possibilities is not feasible.

If the known words are represented in a finite atomaton or an FST,
one can interpret this automaton in a way that tolerates a certain num-
ber of deviations. One can regard this a dynamic way of composing the
Markov model for creating the corret word (the source model) with a
Markov model of introducing errors (the channel model).

Although it is looking plausible, it might not be feasible to per-
form the composition of the two finite automata in a compilation step,
because the resulting transducer would get too big. Therefore, the com-

16Depending on the source of the errors, one can use specific confusion matri-
ces that give higher probabilities for the confusion of keys that are adjacent on a
keybord, or for the confusion of phonetically similar characters etc.

104 CHAPTER 5. LARGE VOCABULARIES

position has to happen at run time, where the number of states that
can be reached is limited by the given word.

Experiments with this kind of error-tolerant, FST-based access to
the lexicon are described in [Oflazer1996], which is however not based
on a probabilistic model. Similar methods for error correction have
already been described in [Kernighan, Church, and Gale1990].

It looks plausible that a suitable stochastic model of unknown words
and of typing errors can lead to a significantly better error correction.
However, this requires a considerable implementation effort, and I can-
not present concrete results in the framework of this thesis.

5.7 Exploiting Heterogeneous Training

Data

The examples discussed in the last sections are somewhat artificial. We
assumed to have large (huge) amounts of training data from a source we
assume to be homogeneous17, and we use this to estimate a probability
distribution on events that are produced from exactly the same source.
By lumping everything together we may ignore very useful distinctions,
and this will lead to a measurable decrease in performance.

In this section, I will show how we can apply the same underly-
ing ideas (optimizing a simple parametrized discounting function) in a
slightly more complex situation in order to achieve refined estimates of
measurable higher quality.

Assume the realistic situation where we have some task connected
to a certain application domain (lets take newspaper articles about
computers for illustration), for which we need good estimates of word
probabilities18. Assume that we do not only have a limited amount of
text material S1 from this domain, but also a (perhaps huge) amount
S0 of unrelated text (articles from a larger newspaper collection, say),
which might or might not contain relevant parts. Can we make any
reasonable use of this additional knowledge source to get more reliable

17I.e. we choose to ignore the inner structure, although we know it exists, in order
to simplify our treatment.

18Still ignoring the local context

5.7. EXPLOITING HETEROGENEOUS TRAINING DATA 105

probabilities?
A priory, this is hard to decide. The huge data source may actually

be very heterogeneous, and there may be material from our target do-
main hidden inside, with no cheap way to quantify its ratio. We may
also be unlucky and have no task-specific data in S0, but having some
contribution from it might still help to fill the gaps with respect to the
general language that exist in S1. So it seems that S0 should be useful,
but we don’t know to what extent.
It is a nice property of statistical approaches that questions like this

can sometimes be answered by a closer look at a sufficient amount of
data.
We can start by a argumentation similar to the leaving-one-out

scenario that motivated the Good/Turing formula. For each event type,
we have two statistics f0 and f1, the number of occurrences in both
corpora. We will lump all event types with the same statistics into an
equivalence class and estimate uniform probabilities for all events of a
class.
We can set up a contingency table that gives for each pair of fre-

quencies 〈f0, f1〉 the number nf0,f1 of event types that appeared with
these frequencies in the two samples.
The following data uses word frequencies from two sources: a

2.1 million word sample from the German weekly magazine “Com-
puterzeitung” and a 103 million word sample from the German part
of the “European Languages News Corpus” from Linguistic Data
Consortium19.

0 1 2 3 4 5 6 7 8 9 10 >10 f(cz)

0 infty 57793 7901 2792 1364 824 531 378 248 183 159 944
1 646995 5200 1099 467 262 142 102 67 67 49 33 270
2 220569 3053 715 346 188 103 74 55 28 23 20 160
3 100518 2093 524 229 116 64 43 36 27 22 18 110
4 60318 1570 455 170 95 64 39 34 25 22 7 77
5 38700 1418 355 141 78 53 34 16 22 17 8 91
6 30237 1128 338 140 77 48 27 17 11 11 12 94
7 23192 1049 299 119 54 52 23 11 12 12 8 67

8 18368 835 276 107 62 29 34 19 10 6 3 39
9 15319 749 248 85 57 29 23 20 11 9 6 48

10 12483 686 222 94 61 37 24 14 7 8 5 50
>10 146229 16831 7831 4599 3227 2244 1742 1350 1108 928 754 11174

f(ELNC-D)

To estimate a probability p1(f0, f1) that a word with statistics
〈f0, f1〉 will show up in a further sample from S1, the leaving-one-out

19I did not use the larger HGC, because is subsumes the CZ corpus.

106 CHAPTER 5. LARGE VOCABULARIES

argumentation will advice us to redistribute the counts that fall into
the cell 〈f0, f1〉 into the cell 〈f0, f1 − 1〉, with other words, to assume
that the expected frequency x1(f0, f1) of such events is

x1(f0, f1) =
(f1 + 1)n(f0, f1 + 1)

n(f0, f1)

This method, without further smoothing of the class sizes, will lead
to the following estimates:

0 1 2 3 4 5 6 7 8 9 f(cz)

0 -------- 0.273 1.060 1.954 3.021 3.867 4.983 5.249 6.641 8.689
1 0.008 0.423 1.275 2.244 2.710 4.310 4.598 8.000 6.582 6.735
2 0.014 0.468 1.452 2.173 2.739 4.311 5.203 4.073 7.393 8.696
3 0.021 0.501 1.311 2.026 2.759 4.031 5.860 6.000 7.333 8.182
4 0.026 0.580 1.121 2.235 3.368 3.656 6.103 5.882 7.920 3.182
5 0.037 0.501 1.192 2.213 3.397 3.849 3.294 11.000 6.955 4.706

6 0.037 0.599 1.243 2.200 3.117 3.375 4.407 5.176 9.000 10.909
7 0.045 0.570 1.194 1.815 4.815 2.654 3.348 8.727 9.000 6.667
8 0.045 0.661 1.163 2.318 2.339 7.034 3.912 4.211 5.400 5.000
9 0.049 0.662 1.028 2.682 2.544 4.759 6.087 4.400 7.364 6.667

10 0.055 0.647 1.270 2.596 3.033 3.892 4.083 4.000 10.286 6.250
>10 0.115 0.931 1.762 2.807 3.477 4.658 5.425 6.566 7.538 8.125

f(ELNC-D)

A subjective inspection of these estimates indicates that the fre-
quency in the auxiliary corpus actually has some systematic influence
on the estimates of word probabilities. This influence is most drastic
for words that do not appear in CZ at all, here the expectation varies
between 0.008 for words that appear once in ELNC-D and 0.115 for
words that appear more then ten times, i.e. a factor of more than 14.
For words that appear in CZ exactly once, the estimate varies between
0.273 for fELNC−D = 0 and 0.931 for fELNC−D > 10. For words that
appear repeatedly in CZ, the class sizes get small and the estimates get
somewhat noisy. One can say, however, that a good estimate is f1 − d,
where d varies between 1 for fELNC−D = 0 and 0.3 for fELNC−D > 10.
We can summarize the situation by saying that the word frequency

in a large, general corpus can have a significant influence on word proba-
bility estimates, and that we can quantify this effect quite well for small
frequencies, if the corpora are not quite small.
Before using such estimates for a stochastic model of the domain-

specific corpus, especially if the corpora are not so large, it is advisable
to smooth out the jumps that come from random fluctuations in the
class sizes. We can use the techniques already discussed above and do a

5.8. SUMMARY 107

smoothed estimation for each level of f0, or we can even lump together
intervals of f0, in order to get more reliable estimates. It would be even
nicer to get a parametric characterization of x1(f0, f1) as function of
f0 and f1 and to optimize the parameters, but it is not quite obvious
from which set of functions to choose. We may assume that we have
an additive mixture of two parts, that only depend on f0 and on f1,
respectively. But this assumption would have to level out the effect of
f0 for positive f1 in order not to exaggerate its effect for f1 = 0. A good
compromise may be to model the first two columns independently, and
assume a additive mixture of the remaining columns.
It should be noted that this use of cross-corpus frequencies is of

course by far not the only possible application of this knowledge source.
The frequency ratio between general and specific text corpora can be
used as an important input for the extraction of terminological infor-
mation, i.e. words that are much more likely in the domain than they
are in general. This terminological application is in a certain way com-
plementary to the use suggested here, since it has to concentrate on
higher frequencies, for which this ratio can be determined reliably. Our
application concentrates more on the small frequencies, and the infor-
mation we extract should be rather seen as a statistical property of the
corpora involved than as information on the single words involved.

5.8 Summary

In this chapter, I have presented various techniques that can be used
to model stochastic models of large vocabularies. I first investigated
typical properties of distributions on such large domains, and gave some
motivation and some examples of the use of the Good/Turing formula.
As this formula cannot be applied directly in many circumstances, I
gave a related method, generalized absolute discounting, that can be
applied in similar situations as the Good/Turing formula, but which is
supposed to give more robust estimates.
I showed how a morphological description given in form of a finite

state transducer can be turned into a stochastic model for the genera-
tion of words, how this can be used for morphological disambiguation,
and how such a model can be made more robust, so that it can produce

108 CHAPTER 5. LARGE VOCABULARIES

or accept arbitrary strings with low probability.
I sketched a method how the parameters of a morphological model

can be trained from data that contains errors, and how models for
word probabilities can be adapted to domains that are different from
the source of the training data.
Some of the techniques given in this chapter are mainly intended

as building blocks, that can be used as modules in a larger system or
further generalized to the more interesting cases in which the estimates
are influenced by contextual information.

Chapter 6

Bigram Probabilities

6.1 Motivation

As already explained in Chapter 4, the estimation of bigram probabil-
ities can serve as a central building block for many different stochastic
models for linguistic structures. As soon as we generalize the classical
notion of bigrams, based on adjacent tokens in the input string, to pairs
of lexical items that stand in certain linguistic relations, it becomes
clear that these can be incorporated into many different approaches to
grammar, and hence are useful to construct stochastic language models
out of such grammatical theories.

The details of how such an enrichment can be performed still depend
somewhat on the theory to be enriched, and cannot be discussed in full
generality.

The basic idea is to exploit dependency relations between lexical
items to assign a probability to any possible analysis of an utter-
ance. We assume that an analysis provides a hierarchical organiza-
tion of the concepts involved, and we try to model the generation
of an utterance via a stochastic process (more precisely: a Markov
branching process) that constructs the dependency structure of the ut-
terance, step by step, where the probability of each individual step
is conditioned on a small amount of contextual information, mainly
consisting of the immediately dominating predicate. Models of this
type have been heavily studied and described in recent literature

109

110 CHAPTER 6. BIGRAM PROBABILITIES

([Carroll and Charniak1992, Sleator and Temperley1991, Collins1996,
Carroll and Rooth1998, Eisner1996, Chelba and Jelinek1998]), and it
has been shown in [Johnson1996] that a similar model can be inte-
grated into an LFG framework. Linguistically, these models are related
to grammar formalisms that describe the dependency structure between
words of an utterance. This idea (actually a commonplace) is the core
of Dependency Grammar, but also shows up in Categorial Grammar,
HPSG, and LFG. Examples for this will be shown in later chapters.
This chapter will concentrate on the “pure” problem of estimating the
probability of a composite linguistic event 〈a, b〉 from frequency data
on such events.
As we have seen in the last chapter, even the estimation of word

probabilities suffers from a considerable sparseness problem. If we now
switch to composite events from a much larger domain, it is obvious
that smoothing gets much more important.
For the sake of concreteness, we will use frequency data taken from

real text. Since we aim eventually at models of linguistically meaningful
relations, we want to base our experiments on such data, which makes
the collection of the necessary data somewhat more difficult, since an
exhaustive, high-quality classification of linguistic relations occuring
in large amounts of naturally occuring text requires linguistic tools
that do not yet exist. In the trade-off between quantity and quality of
training data, we choose a compromise by concentrating on data from
one relevant relation, that of co-occurring adjectives and nouns. Such
pairs can be extracted with existing tools (taggers) efficiently and with
relatively high accuracy; both nouns and adjective are very large and
informative domains that are subject to severe sparseness problems;
they actually show a lot of interesting interdependencies, and we hope
to find a stochastic model for bigrams that has considerably better
prediction than a model based on the independence assumption. Last
not least, this combination is so frequent, that extracting such pairs
uses a substantial fraction of all tokens in a large corpus.
One application in which an estimate of the probability of an adjec-

tive/noun pair would be very useful is the translation of noun phrases of
the part-of-speech shape ADJ NOUN and NOUN from English or German
into a language like French, where adjectives are typically postponed.
The adjective could either refer to the first noun or to the conjunction

6.2. OVERWIEW OF PUBLISHED WORK 111

of both nouns, and the translation depends on this choice1. To find
the right translation for “religious belief and practice”, it is important
to know whether “religious practice” is a plausible noun phrase, i.e.
to estimate its probability. As “religious practice” appears 41 times
in the BNC, and as “practice” alone is much more general than “reli-
gious belief”, the grouping “religious [belief and practice]” appears to
be more probable than “[religious belief] and practice”. Apart from
MT, there are obvious decoding applications, where one of the words
cannot be recognized with certainty by an OCR or speech recognition
system. In such a situation, it might for instance be necessary to decide
between “abandoned farm” and “abandoned form” based on probability
estimates for adjective/noun pairs.
However, things are not always that simple. Collecting adjec-

tive/noun pairs from the BNC, we can easily see the extent of the
sparseness problem. Using tools available at IMS, I extracted 5096635
pairs, which, after lemmatization, gave rise to 1563742 different types.
1086313 of them appear exactly once in the corpus. An application of
the Good/Turing formula shows that the expected ratio of unseen pairs
is more than 21%. In contrast to this, only 53262 noun lemmata and
67611 adjective lemmata appear exactly once in this data, giving rise
to an estimated “failure rate” of 1% and 1.3%, respectively. Obviously,
finding good probability estimates for unseen pairs will be crucial in
order to achieve reasonable results in the general case.

6.2 Overwiew of Published Work

There is ample literature related to the subject, so that the following
discussion must stay far from being exhaustive. The publications can
be distinguished along various criteria:

• Goals

– optimizing probability estimates

1One can avoid a decision by swapping the order of the nouns in the translation,
but this does not always work, as the gender of the target adjective might depend
on its scope, and there is also a certain risk to distort nonlocal references, e.g. if the
next sentence goes on to compare “the former” vs. “the latter”.

112 CHAPTER 6. BIGRAM PROBABILITIES

– finding meaningful clusters and similar words

– reducing resource consumption of model

• Scope of problem and background

– statistical work on estimation from large, sparse contingency
tables

– work on stoachstic language modeling based on adjacent n-
grams

– work on nonadjacent bigrams

• Approaches and methods

– based on Good-Turing formula

– mixtures of bigram and unigram estimates

– based on clustering

∗ hard clusters
∗ soft clusters

– based on similarity

– dimensionality reduction

The goals are of course somewhat interrelated, but there is also a
trade-off between them. For instance, finding and exploiting meaning-
ful clusters may help to improve probability estimates and compactness
of the representation to some extent, but since almost any assumption
of independence can be refuted with samples of enough size, one can-
not expect optimal prediction from a model that is heavily based on
clusters and the underlying independence assumptions. Methods based
on mixtures of fine-grained and coarse models usually outperform both
of their ingredients, but this gain in performance has its price in some
computational overhead, since both the fine-grained and the more gen-
eral model have to be stored and used.
Some articles do not only describe specific methods, but actually

compare the performance of various alternatives on the same datasets
on one or several of the criteria given.

6.2. OVERWIEW OF PUBLISHED WORK 113

Given the difficulty to classify the papers, I will organize them in
groups of similar papers, which I put approximately in temporal order.
The earliest treatment of the problem I have looked at is given in

[Good1956].

Good describes a method that is applicable to tables where the
assumption of independence has been rejected, and where there is no
natural way to collapse (lump) rows and columns according to their
similarity. In passing, Good defines a method for “weighted lumping”,
based on correlations between rows and columns, but admits that there
are many related variants, and that more research would be needed to
decide between them. The method described in the core of the paper
is based on the assumption that the probability of a joint event 〈s, t〉
can be written as a product of the probability under the assumption of
independence and an association factor xr,s that depends on the cell.

pr,s = pr.p.sxr,s

xr,s is assumed to behave according to some prior distribution (Good
gives two possible priors and shows how to estimate their parameters
from the data), and expectations for actual cell values are estimated in
a Bayesian way by integration over all possible values for xr,s.
The method is demonstrated with two examples. One consists of a

table that associates occupations of fathers and sons (14 x 14 profes-
sions), the other is based on a larger table that associates occupations
with causes of death, from which Good manually selected 18 represen-
tative occupations and 13 causes of death to do his calculations. Due
to the concentration on frequent events, the data is much less sparse
than typical language data, so it is questionable how well the method
would work for our applications.
Good performs the calcualtions using two different prior distribu-

tions (one a log-normal, the other a Pearson distribution of the third
kind), and stresses that the results are not very much sensitive to the
choice of the priors.
The result of his computation can be seen as a “compromise” be-

tween the observed value and the expected value under assumption of
independence, and depends only on these two values. For instance, in
one table he estimates an expectation of 3.3 for an unseen event, for

114 CHAPTER 6. BIGRAM PROBABILITIES

which the independence assumption would lead to an expectation of 5.

Given new estimates for the cell probabilities, the parameters of the
distribution of association factors can be reestimated, which however
leads only to minimally different values in the examples he shows.

In [Good1964], ideas on weighted lumping are given in somewhat
more detail. The general formula for expected cell frequencies is given
as

∑
i′,j′

(
ni′j′
N

ni.n.j
ni′.n.j′

f1(ρ1(i, i
′))f2(ρ2(j, j

′))
)

∑
i′ f1(ρ1(i, i′))

∑
j′ f2(ρ2(j, j′))

where ρ1(i, i
′) and ρ2(j, j

′) are sample product-moment correlation
coefficients between pairs of rows i, i′ and pairs of columns j, j′, respec-
tively, and where fi and f2 are increasing functions of their arguments.
Good states that these functions should depend on the observed fre-
quency ni,j in the cell to be estimated

2 But without concrete proposals
for the choice of the functions fx and without any empirical investiga-
tion, the discussion stays somewhat abstract and speculative.

Another interesting thought pursued in [Good1964] is the use of sin-
gular value decomposition of the contingency matrix, an idea that has
recently attracted many reasearchers in information retrieval and NLP
[Deerwester et al.1990, Schütze1993, Schütze1992]. Good gives many
interesting mathematical insights, but does not address the problem
that an approximation of a frequency matrix by a rank k matrix that
minimizes the euclidean distance to the observed data will lead to neg-
ative cell estimates, which are not useful as estimates of frequencies.

A method for smoothing bigram probabilities that has been very
popular in speech recognition applications is that of a linear mixture of
various estimators. In speech recognition, the task of language model-
ing is usually formulated as that of estimating the conditional proba-
bility of some word wi given some left context in a short window, which
usually does not exceed two words, i.e. P (wi|wi−2, wi−1). N-gram statis-
tics derived from training data leads to three three natural estimators

2Being more liberal in the correction of small values than in large ones is in-
tuitively appealing, but can lead to inconsistent estimates. Good does not discuss
how to avoid this problem.

6.2. OVERWIEW OF PUBLISHED WORK 115

for this probability, based on relative frequencies. We may take the
relative frequency of trigrams, given the bigram

f(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

or we might ignore certain parts of the available information on the
context and use

f(wi|wi−1) =
C(wi−1, wi)

C(wi−1)

or even

f(wi) =
C(wi)

N)

where N is the number of words in the sample. These estimators
have in a way complementary weaknesses. f(wi|wi−2, wi−1) will in
the limit give the most accurate estimates, since ti takes more con-
text information into account, but it has so many parameters that
there will rarely be enought training data for all of them. The
other estimators are less informed and hence worse in the limit,
but they do not suffer that much from the problem of sparse data,
so that they may provide valuable distinctions among unseen tri-
grams. In a long series of papers [Jelinek1976, Jelinek and Mercer1980,
Nadas1984, Nadas1985, Katz1987, Jelinek, Mercer, and Roukos1992],
the IBM speech recognition group has produced many interesting ways
to combine these estimators. A general form of this combination is
given in [Brown et al.1992] as

P (wi|wi−2, wi−1) = λ3(wi−2, wi−1)f3(wi|wi−2, wi−1)

+ λ2(wi−2, wi−1)f2(wi|wi−1)

+ λ1(wi−2, wi−1)f1(wi)

+ λ0(wi−2, wi−1)f0

where the fi are relative frequencies based on i-grams and the λs are
mixture factors (with

∑
i λi = 1) that are based on the frequencies

C(wi−2wi−1).
The fact that the mixture coefficients depend on the frequency of the

context allows quite some flexibility in applying this kind of mixture.

116 CHAPTER 6. BIGRAM PROBABILITIES

Intuitively, the mixture should give more weight to the trigram estimate
in frequent contexts where this seems well estimated, but should fall
back to bigram or even less informed estimates in less frequent contexts.
Details of how the mixture can be optimized using a cross validation
technique (they call it deleted estimation) are given in [Jelinek1998].
The variant of this flexible mixture described in [Katz1987] makes

explicit use of the Good/Turing formula as described in [Good1956] to
estimate the relative contribution of the various parts of the model. The
approach has been widely used and is usually referred to as “back-off”
model.
If we restrict attention to the case of bigram estimates, and apply it

to estimate the joint probability of two events P (A,B), this approach
essentially boils down to a flexible mixture of a model derived from the
joint distribution of both events f(A,B) and the marginal distributions
f(A) and f(B).
A more recent enhancement to these models is described in

[Brown et al.1992]. Here, the intuition is that distributional similar-
ities among words can be used to group similar words into classes and
use this classification to derive estimates that suffer less from the prob-
lem of sparse data. The idea is to assign each word w to some class
C(w) and to assume that the probability P (wi|wi−1) can be written as

P (wi|wi−1) = P (wi|C(wi))P (C(wi)|C(wi−1))

which essentially contains an assumption of conditional independence
between adjacent words, once their class is given. This assumption is
clearly wrong in some cases, and any nontrivial classification will lead
to fitting the training data somewhat less than a model based on words.
However, the hope is that a classification that gives a relative good fit
to the data will incorporate some useful generalizations, which might
help to predict unseen events.
The authors concentrate mainly on the practical question of how

to find a classification that maximizes the mutual information between
both components. There is, however, no known algorithm that would
solve this problem in polynomial time, so any implementation of such
models must be based on some approximations. The authors use a
greedy algorithm that successively merges those pairs of classes for

6.2. OVERWIEW OF PUBLISHED WORK 117

which such a “merger” results in a minimal loss of mutual information.
Even this approximation would involve a computational complexity of
O(V 5) operations, where V is the size of the vocabulary. The authors
have found a way to reduce this to O(V 3) operations by clever reuse
of intermediate results, and they apply it to very large vocabularies in
a way where merging of clusters and incorporation of new words (in
frequency order) are interleaved, to achieve a further reduction in com-
putation overhead. They mention in passing that this agglomerative
clustering yields more information by providing a classification tree and
hence a kind of similarity measure over the entire vocabulary.

The model that results from this classification is bound to lose many
idiosyncatic distinctions involving specific words, and even if one can
get a somewhat better generalization power in return, it is not to be
expected that a model based on a relatively strong independence as-
sumption can fit the data as well as a model based on words. However,
it turns out that a mixture of a class-based model with a word-based
one can be better than both of them alone, and the authors were able to
achieve a 3.3% reduction in perplexity, compared to the model without
classes.

A systematic and very detailed evaluation of various estimators of
bigram probabilities is given in [Church and Gale1991]. It is based on
a corpus of about 44 million words taken from the 1988 AP news wire,
which the authors randomly split into two halfs for training and testing
purpose. All the methods they compare try to estimate an expected
cell frequency based on the observed frequency r = fij and on the
expected frequency under assumption of independence jii = fi.f.j/f...
They compare the following estimators: STD: the “gold standard”,
trained on all available data (including test data), MLE: the maxi-
mum likelihood estimator based on fij , without smoothing, BGT: ba-
sic Good/Turing smoothing applied to fij, ignoring the marginals, UE:
unigram estimator based on the marginal alone, EDE: enhanced es-
timator using deleted estimation and EGT: enhanced estimator using
the Good/Turing formula. Here, the enhanced methods are based on a
grouping of the data into bins according to the second predictor, and
using deleted estimation or the Good/Turing formula to find optimal
prediction for each group.

118 CHAPTER 6. BIGRAM PROBABILITIES

They do not only evaluate some overall figure of merit such as the
perplexity, but instead show plots for various values of fij, where the
estimates of the methods are plotted against jii. Since these plots
also show the values of STD, which would be optimal under the given
circumstances, it is relatively easy to read systematic problems of the
estimators from the plots, and also get an impression of some arbitrary-
ness visible in random fluctuations of the STD estimator.
The result of their study is essentially that deleted estimation and

Good/Turing estimators show comparable performance, with a slight
advantage for the Good/Turing approach. Not surprisingly, the en-
hanced methods perform better than their basic counterparts.
Although this study provides a lot of very valuable insights, there

are some aspects to their method that make it look less fortunate as a
basis of a practical system. Their application of the Good/Turing for-
mula assumes that the frequency data is itself smoothed, before being
entered into the formula. They use a smoother by Shirey and Hastie
(1988), but they do not give a reference, and I was not able to locate
the details. Also, grouping of the cells according to the expectation un-
der assumption of independence looks somewhat tedious and does not
automatically incorporate certain plausible constraints on the mono-
tonicity of the estimators (e.g. in their approach, for a given observed
frequency, a higher value of jii might lead to a smaller estimate). Last
not least, it is questionable whether the product of the marginal dis-
tributions is the best additional evidence we could use for refining the
basic methods. From the bigram data we can easily extract informa-
tion about the spread of the distribution per row and per column, and
it looks unwise not to use such information. Also, the autors do not
consider the use of corpus-derived similarity information to get more
reliable estimates of the frequencies.
Another group of

papers on the subject has been published by the group of Hermann
Ney [Ney and Essen1993, Ney, Essen, and Kneser1994].
In [Essen and Steinbiss1992], the authors investigate the idea of

smoothing bigram probabilities using information on co-occurrence.
From bigram frequencies, they derive confusion probabilities, which
they use as a similarity measure they use for smoothing. Apparently,
the results were not as promising compared to to the implementa-

6.2. OVERWIEW OF PUBLISHED WORK 119

tional difficulties, so that this group did not continue the work on
co-occurrence based smoothing.

Pereira has co-authored a set of papers that explore various
approaches to soft clustering and similarity-based smoothing. In
[Pereira, Tishby, and Lee1993], the authors set up a soft classification
scheme in which pair of events is assumed to be generated by a hid-
den class. The classification is probabilistic, i.e. each hidden class has
probability distributions over the two components of the pair, which
are assumed to be independent, given the class. We have

p(a, b) =
∑
c

p(c)p(a|c)p(b|c)

Since the training data does not specify the classes that may have gen-
erated it, they employ a divisive clustering procedure, in which, starting
from a unique cluster, random splits are investigated and the split that
achieve the best reduction in training set entropy is chosen, until a
specified number of clusters is reached. As expected, they observe a
tradeoff between generalization cabability (which is optimal for a small
number of clusters) and the flexibility to fit the data, which increases
with the number of clusters, at the price of overfitting the data.

[Rooth1995] uses the same underlying idea of probabilistic classifi-
cation, but employs the EM-algorithm in a more or less straightforward
way to achieve the classification, starting from randomly initialized dis-
tributions. My own experimentations with this setup lead me to the
conclusion that the variation speed of the parameters is very heteroge-
neous, in the sense that a large number of iteration is needed until the
high frequency events are sorted into reasonable classes, whereas the
low frequency events show a drastic overlearning effect even after few
iterations and even for small number of clusters.

In [Dagan, Pereira, and Lee1994], the authors base the estimation
of bigram probabilities on a dynamic combination of statistics from
similar words, where the similarity is defined using the Kullback-Leibler
distance, an information-theoretic distance measure on the empirical
distributions. [Lee1997] is a somewhat more systematic exploration of
this idea, comparing a set of distance measures (including the confusion
probabilities of [Essen and Steinbiss1992]).

120 CHAPTER 6. BIGRAM PROBABILITIES

Finally, [Hofmann and Puzicha1998] gives a rather extensive
overview of methods based on soft clustering, which are also put in
a somewhat broader context.

I also want to mention contributions by [Grefenstette1994] and
[Schütze1992, Schütze1993], which, although not directly aimed at the
estimation of co-occurrence probabilities, show that a systematic explo-
ration of co-occurrence patterns in textual corpora can reveal very in-
teresting semantic similarities between words. Grefenstette shows how
such similarities can be used to speed up the construction of domain-
dependent semantic resources, whereas Schütze uses SVD as a tech-
nique for dimensionality reduction of the co-occurrence relations for a
broad variety of applications, including information retrieval.

It is interesting to observe that formally, the matrix decomposition
that is done in SVD is closely related to the probabilistic decompo-
sition based on hidden classes used by [Pereira, Tishby, and Lee1993]
and [Rooth1995].

6.3 Generalizing Absolute Discounting to

the Two-Dimensional Case

As we have seen in the last chapter, absolute discounting, i.e. sub-
tracting a small constant from all observed counts and redistributing
the saved probability mass in some proper way can lead to quite rea-
sonable estimates. In this section, we want to explore to what extent
this method can be applied to two-dimensional contingency tables. We
want to use some form of absolute discounting to gain some probability
mass which we then redistribute in some plausible way on the cells. To
give some idea of what will follow, we might first make the simplifying
assumption that we do not want to modify the marginal distributions
and assume somewhat implausibly that the amount of probability re-
distributed to a cell is proportional to the product of the probabilities
collected form the cell’s row and column. This leads to the following
formula3:

3In the sequel, we will use the following notation. We assume that cell frequencies
are given as f(a, b), where a and b are linguistic events. For any i ∈ N0, we define

6.3. ABSOLUTE DISCOUNTING 121

x(a, b) = f(a, b) + d ∗ (t(a,) ∗ t(, b)/t− t(a, b))
A nice property of this formula is that there is only one parameter d

to estimate. We can employ the Good/Turing formula to find out how
much probability mass should be redistributed on empty cells and use
this to set an appropriate value for d. However, we need to compensate
for probability that flows back to nonempty cells. Before we go into
details of how to estimate the parameters, we should try to find a more
general formula that addresses the problems that have been mentioned
above. Redistribution proportional to the product t(a,) ∗ t(, b) may
not give the right balance between frequent and infrequent parts of the
table, so we would like to have a component that depends only on some
row statistics or on some column statistics, but not on the product of
both. We also might want to have some contribution spread uniformly
over the whole matrix.
Whereas absolute discounting seems to be a good heuristic for a

rough approximation, in many linguistic datasets we can observe that
the application of the Good/Turing formula results in a different dis-
counting constant for event types seen once than for those seen more
than once. We can make the mixture flexible enough to accomodate
for this effect by treating events seen once differently from those seen
more than once.
An estimator that is general enough to cover all of these phenomena

can be defined as follows.

x(a, b) = κ1n1(a, b) +κ2m(a, b) +κ3r(a, b)
+µ001 +µ01n1(, b) +µ02m(, b) +µ03r(, b)

+µ10n1(a,) +µ11n1(a,)n1(, b) +µ12n1(a,)m(, b) +µ13n1(a,)r(, b)
+µ20m(a,) +µ21m(a,)n1(, b) +µ22m(a,)m(, b) +µ23m(a,)r(, b)
+µ30r(a,) +µ31r(a,)n1(, b) +µ32r(a,)m(, b) +µ33r(a,)r(, b)

In this formula,m(a, b) stands for t(a, b)−n1(a, b), which is 1 for cells
with frequencies larger than one, and r(a, b) is defined as f(a, b)−t(a, b),

ni(a, b) as 1 if f(a, b) = i, and 0 otherwise. We define t(a, b) =
∑∞

i=1 ni(a, b), i.e.
t(a, b) = 1 iff f(a, b) > 0. We write f(a,) as shortcut for

∑
b f(a, b), f(, b) for∑

a f(a, b) and f for
∑

a,b f(a, b). ni(a,), ni(, b), ni and t(a,), t(, b), t are defined

analogously.

122 CHAPTER 6. BIGRAM PROBABILITIES

i.e. it is the frequency reduced by one if it was positive. The κs and µs
are supposed to contain the normalization constants, i.e. all coefficients
are non-negative and set up in such a way that

∑
a,b x(a, b) = 1.

This estimator is a mixture of 17 components, i.e. we have an op-
timization problem with 16 free parameters. A natural criterion to
maximize is cross entropy on unseen data. In order to achieve maximal
exploitation of the available data, we can train the mixture of the com-
ponents using a combination of the EM-algorithm with cross-validation
or leaving-one-out training.

6.4 Exploiting Similarities

In order to make best use of similarities between rows and/or columns
to get more reliable probability estimates, we need to address a couple
of questions.

• What similarity measure should we employ?

• How to find the best amount of smoothing from a given similarity
value?

• How to control the computational implications of such an ap-
proach?

Many similarity measures have already been investigated for
the task of smoothing. Prominent examples are correlation
coefficients[Good1964], confusion probability[Essen and Steinbiss1992],
cosine and euclidean distance[Schütze1992], and various distance mea-
sures inspired by information theory[Lee1997].
Usually, some high enough similarity between certain rows or

columns is taken as a justification to mix the estimates from these rows
or columns to some degree that depends on the similarity. If two rows
are to be smoothed against each other, usually some fraction of the
frequencies of these rows are pooled and the estimates from this pool
are then again redistributed. This technique is in a way analogous to
linear discounting, since high counts are subject to more modification
than low counts. This is problematic when applied to natural language

6.4. EXPLOITING SIMILARITIES 123

frequency data, in which collocations and idiomatic expressions play an
important role. Such combinations usually do not generalize to simi-
lar words, even if many other partners can be interchanged freely. If
the goal is to achieve high accuracy in the probability estimates, we
should not use high counts for smoothing at all. In the sequel, I want
to pursue an alternative that does not have this problem. The main
idea is to apply smoothing only to a nonlinear fraction of the observed
frequencies, for instance by taking only that part of a count that has
been discounted.
A related argument applies to the choice among similarity measures.

Any such measure that concentrates on high frequencies might miss im-
portant similarity structures which are hidden behind very frequent id-
iosyncratic combinations. It seems therefore more more plausible to use
similarity measures that concentrate on those parts of the distributions
that are most relevant for smoothing, i.e. their tails. This argument
rules out most of the distance or similarity measures mentioned above,
since they are all dominated by high frequencies.
Of course, such an intuitive argumentation needs to be validated

empirically. One approach for the identification of the best similarity
measure would be to implement some of them and to determine em-
pirically which one gives the best results in the prediction task. This
is essentially the idea behind the work described in [Lee1997]. Apart
from being somewhat tedious, this approach has the disadantage that
the optimal similarity measure might not be in the set that has been
implemented. Therefore, I want to explore a somewhat different strat-
egy, which takes the motto “let the data decide” to an extreme. We can
set up some space of smoothing schemes in parametric form and use an
unsupervised training procedure to find a set of parameter values that
is optimal for the given task and data. However, such an approach re-
quires great care to avoid problems with overtraining. It is therefore not
very wise to set up a model that allows free exchange between arbitrary
pairs of rows and/or pairs of columns, and hope that the training proce-
dure might find the pairs for which smoothing is most important. Such
a model has far too many parameters to be trained with any amount
of available training data. Instead, we can try to identify some simple
statistical indicators of similarity and define the smoothing scheme in
such a way that more similarity will result in more smoothing. If there

124 CHAPTER 6. BIGRAM PROBABILITIES

is a choice between the indicators, or if it is unclear how much smooth-
ing should be applied for a given similarity level, we can try automatic
training procedures to optimize these details empirically.

For any given pair of rows or colums, we can collect statistics on
co-occuring events and use this to find some indication on the amount
of smoothing that would be appropriate among this pair. One pos-
sible measure is the Jaccard coefficient[Romesburg1990], that relates
the intersection of the sets of possible partners with the union. This
ignores all frequency information (apart from the distiction 0 vs. pos-
itive), and is therefore a good candidate for a measure that does not
get confused by high frequencies. However, we might get a somewhat
finer distinction by using frequency information in the following way.

If we concentrate on the situation in which smoothing is most impor-
tant, namely the prediction of unseen events, we can simulate the gen-
eration of such events in a leaving-one-out setting as predicting events
seen exactly once from data where just this observation has been re-
moved. To generate a singleton event 〈a, b〉 , we can assume that it
has been generalized from seen events in the same row or column, i.e.
events of the form 〈a′, b〉 or 〈a, b′〉 with a′ �= a, b′ �= b and positive
f . In case where multiple possibilities exist we can divide the count
equally among them. We can keep track of such generalization steps
by accumulating fractional counts for pairs 〈a′, a〉 and 〈b′, b〉.
The “optimal flow” from row a′ to row a is then given as4.

flow(a′ → a) =
∑

f(a,b)=1

t(a′, b)

t(a,) + t(, b)− 1

Using this technique, we get quite detailed estimates for the optimal
mutual flow of counts between rows and between columns, which we
can then use to obtain much finer distinctions. Of course, finer distinc-
tions are always subject to overtraining, and hence this method might
sometimes fail to smooth out random sampling effects as well as a less

4This is only one of several possible variants. We might as well do the simi-
larity calculation for rows and columns independently, we might also weaken the
contribution of very rare events by adding a constant to the denominator or using
some completely different weighting scheme like the logarithmic weights used in
information retrieval [Grefenstette1994, Deerwester et al.1990]

6.5. SUMMARY 125

finegrained method. But this situation is quite familiar. We often have
to find compromises between finegrained but overtrained models and
better estimated, but coarser models. We can assume that we can find
a good combination using a linear mixture of these estimators, and as
usual, we can apply the EM-algorithm to optimize this mixture.
A more severe problem is however the question of computational

complexity and practical feasibility. If we perform the computation
sketched above offline, we will have to store a confusion matrix for one
or even two dimensions, which is much less sparse than the original
data matrix. We can try to avoid this by computing and using the
smoothing parameters on the fly for those pairs that show up in an
application, but this implies summations that may not be feasible at
runtime. A third possibility would be to compute the confusion matrix
off-line, but prune it in such a way that only those pairs have to be
represented for which the similarity is significantly above some general
level.

6.5 Summary

In this chapter, I have given an overview of techniques that allow to
estimate probabilities of word pairs. The intended application of these
techniques is not primarily for bigrams of adjacent words, but for word
pairs that stand in a certain linguistic relation, such as a dependency
relation. I first give an overview of the most important published ap-
proaches to the problem. I then sketch how the method for estimat-
ing word probabilities from Section 5.4 can be generalized to the two-
dimensional case, resulting in an estimation method that does not only
use marginal frequencies, but also somewhat more information on the
scattering in the rows and columns, which can be derived from marginal
statistics on types and singletons. Finally, I shortly discuss approaches
that determine and use similarity measures between rows and between
columns. I try to motivate why the measures of similarity that are typ-
ically used in such approaches are not optimal for this task and sketch
possible alternatives.

126 CHAPTER 6. BIGRAM PROBABILITIES

Chapter 7

Using More Context

7.1 Introduction

Stochastic language models based on word n-grams make rather strong
independence assumptions, and hence are very selective in the use of
context for their predictions. This has been the target of heavy criti-
cism. Grammar-based language models are based on different indepen-
dence assumptions, which still seem to exclude many important sources
of evidence. In this chapter, I want to discuss approaches to overcome
this limitation.

Context ignorance in simple generative models

So far, the stochastic models typically used in speech recognition are
based on trigrams of adjacent words. Superficially, these models use
more context information than a grammar-based bigram model, but
this can only partially compensate the problem that the type of context
they use is often not a all informative. For instance, a trigram model
that is to predict the noun hole in the sequence “drill a small hole”
does not know about the verb drill, because it is already too far to the
left. The model has to rely on the context a small, which is so general
that the probability of hole in this context is not particularly high.
The obvious presence of dependencies over longer distances

has been the standard argument against these models made by
many linguistic researchers, in the tradition of [Chomsky1957]. In

127

128 CHAPTER 7. USING MORE CONTEXT

[Chomsky and Miller1963], the authors give as an example the sen-
tence “The people who called and wanted to rent your house when you
go away next year are from California”, where the plural subject people
and the plural verb are stand in an agreement relation. They then go
on to explain that a stochastic n-gram model that was able to capture
this kind of dependency would lead to an astronomic number of pa-
rameters, which would have to be learned from data, a model which is
ridiculously unrealistic.
Despite these principled problems, some research in language mod-

eling for speech recognition went into n-gram models with n > 3
[O’Boyle, Owens, and Smith1994]. This had some limited success in
restricted domains, but in the general case, the number of possible n-
grams gets so huge that the chance of reusing a larger context as is
is practically zero, and the extension of the context in this crude way
does not improve the quality of the model. A different approach that
has been pursued tries to exploit the fact that people tend to reuse
recent words in their utterances. [Kuhn and De Mori1990] describes a
cache-based language model in which the probability of words that have
been uttered previously is increased. However, in practice, this effect
is not limited to repetition of identical words, but affects also words
that stand in a semantical relationship. Such effects cannot be easily
accounted for in a cache-based model.
Reasons like this have motivated work on the incorporation of

stochastic models into structurally richer grammatical formalisms such
as PCFGs. Grammar-based bigram models are able to exploit context
up to an unlimited distance, and they are able to combine evidence
found in this context in an interesting way. In the example given above,
we can assume that both the presence of drill and of small in the con-
text increase the probability of hole, i.e. p(hole|drill a small) > p(hole|
a small) and p(hole|drill a small) > p(hole| a 〈ADJ〉), and a grammar-
based language model is able to exploit such cumulation of evidence,
even in cases where additional material (e.g. adjuncts) of arbitrary
length comes between the verb and the object noun.
But also context free models make very strong independence as-

sumptions, and even if they are lexicalized as in the case of the bilexi-
cal grammars [Carroll and Charniak1992, Sleator and Temperley1991,
Collins1996, Carroll and Rooth1998,

7.1. INTRODUCTION 129

Eisner1996, Chelba and Jelinek1998], the amount of context informa-
tion they can support is still rather limited. It is the characteristic
property of context-free models that the subtree below a node with a
given category depends only on that category, and nothing else. In the
lexicalized models, the category is enriched with the head lemma of the
constituent, which can be taken as additional information on which to
conditionalize the generation of modifiers. But we still have the situa-
tion that the annotation of this node is a kind of “bottleneck” through
which all dependencies between the local subtree and the context of it
have to be mediated.
One way to phrase the problem is that the amount of context infor-

mation that can maximally be used by a model based on a context-free
structure is limited by the information that can be encoded in one
category symbol.
There are important kinds of dependencies that cannot easily be

represented in such a context-free manner. The idea that subject and
object of a verb are generated independently after the generation of the
verb, and that all interdependencies between them have to be commu-
nicated through the verb is a strong simplification of the facts. This
is particularly striking in cases where the verb expresses a very general
semantic relation, such as “contain”, where the assumption of inde-
pendence between subject and object would lead to a large probability
for implausible combinations. We could of course try to find a spe-
cial treatment of such cases that propagates more information through
the structure and assume that the generation of complements is not
only conditioned on the head, but also on the complements that have
already been generated. But even if we take a much richer notion of
local context into account, there are long-term effects, such as theme,
discourse structure, genre and individual style which all influence the
lexical choice. I think it will be very difficult to find any pair of prop-
erties 〈A,B〉 of natural language utterances that can be shown to be
stochastically independent, or any triple 〈A,B,C〉 of such properties,
which form a Markov chain, i.e. for which conditional independence of
A and C, given B can be shown.
In the light of this conjecture, the goal of simple stochastic language

models based on bigrams can not be to build a realistic model of lan-
guage performance. It should be rather seen as providing the closest

130 CHAPTER 7. USING MORE CONTEXT

approximation that is possible under a set of constraints that guarantee
a certain regularity and simplicity.

There are some arguments that can be made in favor of such im-
poverished models. We might for instance argue that a conventional
(i.e. non-lexicalized) PCFG is a suitable way to express syntactic prefer-
ences, with other words, we could take the expressive power of a certain
formalism as a more or less natural way to separate different descrip-
tive levels. But I do not think that this argument is valid, because
even syntax is usually and most naturally described in more expressive
formalisms, like constraint-based grammars. Furthermore, simple syn-
tactic preferences, like the dispreference of center-embedding or certain
attachment preferences cannot easily be incorporated into a context-
free grammar. Restrictions of the formal power of a grammar formalism
can be circumvented by increasing the number of the symbols that are
allowed, so they do not seem to be the right way to separate the lin-
guistic levels.

Another, more practical argument in favor of stochastic models
based on random processes is that the optimal setting of the parame-
ters can be determined based on relative frequencies, if we ignore the
sparseness problem and assume access to an unlimited amount of train-
ing data. As we will see below, this property does not hold for more
general ways of combining contextual evidence.

7.2 Stochastic Models of Richer Interac-

tions

If our goal is to optimize the predictive power of a theory, given lim-
ited resources, we should also look at ways to represent the relevant
information more compactly. Whereas CFGs are based on an unstruc-
tured vocabulary of atomic categories, constraint-based grammars use
feature vectors as their representation, which do not only allow for a
more compact expression of generalizations, but which are also able to
store more information in the categories. It should be possible to use
this expressive power to build language models that give better results
with a description of fixed size.

7.2. STOCHASTIC MODELS OF RICHER INTERACTIONS 131

In the literature there are several approaches that try to use stochas-
tic knowledge from multiple descriptive levels and combine it into one
predictive model. One of the earliest of them is [Mark et al.1992], where
the authors multiply the probability of a given string under a SCFG
model with a score that depends on the adjacent word bigrams that
appear in the string. The problem with such a combination is that it is
not obvious how to set it up to give a model that is overall consistent,
i.e. generates a string with probability 1. To determine the parameters
for this model, the authors apply a sampling procedure based on the
Metropolis algorithm that allows to generate a random sample accord-
ing to a given distribution of this form, which is then used to iteratively
adjust the bigram scores to improve the model.

This procedure is an application of a more general method to train
parameters for a Markov Random Field, which is a very popular ap-
proach to model prior distributions on bitmaps in image processing
([Geman and Geman1985] see also [Winkler1995] for an overview). The
general idea behind these models is to define a probability distribution
over possible configurations in terms of certain properties of such con-
figurations, where the presence of such properties make a configuration
more or less likely.

If we look at the problem in a more general way1, we can see it
as that of estimating the cell probability in a high-dimensional contin-
gency table, which is studied in multivariate categorical data analysis
[Agresti1990]. A standard approach is then to use log-linear models, in
which the probability P (〈e1, . . . , en〉) of some vector of events is mod-
eled as the product of several terms, each of which depends only on some
proper subset of the vector. [Franz1997] has used log-linear models for
the resolution of attachment ambiguity with considerable success.

1And ignore for a moment the structural information that is conveyed in the
context

132 CHAPTER 7. USING MORE CONTEXT

7.3 Augmenting a Constraint-Based

Grammar with Probabilities

A proposal that is closer to the idea of constraint based grammars was
given in [Eisele1994]. The original idea was to attach probabilities to
the context-free skeleton of a constraint-based grammar specified in the
CUF formalism [Dörre and Dorna1993]. But as nothing in that paper
was specifically related to CUF, we could also assume a definite clause
grammar or any other formalism that allows to enrich a context-free de-
scription with features. The idea behind the proposal was that a logical
program with probabilistically weighted clauses defines, analogously to
a PCFG, a random branching process for the generation of proof trees.
Different from the context-free case, the nodes in the proof tree are
annotated with first-order terms in the DCG case or with constraints
on feature values in the CUF case. These annotations can make proof
trees inconsistent, so that the model does not generate a consistent tree
with probability 12.

In order to obtain a probabilistic model over all proof trees that
are consistent with a given goal to prove, I proposed in [Eisele1994]
to renormalize all the resulting probabilities by their sum. One might
wonder why this technical trick should be useful to introduce context-
dependencies that cannot be expressed in the original branching pro-
cess, but actually, it allows for the expression of arbitrary log-linear
models, which form a very general class of statistical models.

Assume that p(A,B,C) is a ternary relation over atomic values that
is to be modeled in a logic program with weighted clauses3. According

2PCFGs do not necessarily define probability distributions over the set of all
the finite trees (and hence strings) they generate. But in the context free case,
the possible loss of probability mass is a somewhat exotic marginal case, that can
be easily detected [Booth and Thompson1973] and which does not appear if the
parameters are trained from data [Sánchez and Benedi1997]. In the probabilistic
extension to CUF, it is a central property that cannot easily be avoided.

3Here and in the sequel, we will drop the requirement that the probabilities for
all clauses of a predicate sum up to 1. We will, however, assume that for all goals,
the sum of the weights of all possible solutions converges. This can be guaranteed
by requiring that no goal can have infinitely ambiguous solutions or that all clauses
involved in such infinite enumerations have weight < 1.

7.3. AUGMENTING CONSTRAINT GRAMMARS 133

to the kind and strengths of the independence assumptions we want to
make, we can define it in one of the following ways, where the predicates
on the right-hand sides are assumed to be defined in an enumeration
of weighted facts:

• independence
p(A,B,C) :- q(A), r(B), s(C).

• partial independence
p(A,B,C) :- q(A), r(B,C).

• conditional independence
p(A,B,C) :- q(A,B), r(A,C).

• no-three-way interaction
p(A,B,C) :- q(A,B), r(A,C), s(B,C).

• saturated
p(a1,b1,c1).

...

The augmentation of a DCG with probabilities, or vice versa the
augmentation of a SCFG with features, looks like a simple and straight-
forward synthesis of these concepts. However, it has a rather dramatic
effect on the way the parameters for such a model have to be deter-
mined. In [Eisele1994], I gave the following simple example to highlight
the problem.
s(X) ←1 p(X), q(X).

p(a)←pa.

p(b)←pb.

p(c)←pc.

q(a)←qa.

q(b)←qb.

q(c)←qc.

134 CHAPTER 7. USING MORE CONTEXT

and the training data
?- s(a). (9 times)
?- s(b). (once)
If the standard method to find a maximum-likelihood model is ap-

plied to the unnormalized probabilities, the training algorithm will try
to maximize (pa ∗ qa)9 ∗ (pb ∗ qb) under the constraint that the pi and
qi sum to 1 respectively. The optimal solution (without smoothing) to
this will be pa = qa = 0.9, pb = qb = 0.1, pc = qc = 0, and that is what
the training procedure sketched above will converge to. But this leads
to a probability ratio between s(a) and s(b) of 81:1, instead of 9:1, as
might perhaps be expected.
If one takes into account that the scores computed by the model are

subject to normalization, the right value to maximize is (pa ∗ qa/(pa ∗
qa+pb∗qb+pc∗qc))9 ∗ (pb∗qb/(pa ∗qa+pb ∗qb+pc ∗qc)), which means to
maximize the probability of the training data relative to the cases where
a consistent proof tree is built. This leads to different optimal values,
e.g. pa = qa = 0.75, pb = qb = 0.25, pc = qc = 0, which reproduce the
right probability ratio for s.
One can look at this problem as follows: Our model allows both

predicates p and q to influence the probability distribution of the com-
mon variable X. Hence multiplying the probabilities leads to a model
which, informally speaking, counts the evidence given in the training
data twice. In [Eisele1994], I had to admit that the standard proce-
dure for maximizing the unnormalized probability such a model assigns
to the training data is not applicable, and I observed that the correct
criterion to maximize is the normalized probability, which is more dif-
ficult because a modification of one of the parameters affects also the
normalization constant, i.e. both the numerator and the denominator
of the fraction to be maximized. The most severe obstacle in this situa-
tion is the fact that the denominator contains a sum over all consistent
proof trees for the goals in the training data, which are typically not
expressible in a closed form.
In [Abney1997], Steven Abney defines stochastic attribute-value

grammars and shows that they can be seen as variants of a Markov Ran-
dom Field. His way of attaching weights to the structures generated by
the grammar is different from that of [Eisele1994], as he attaches the

7.3. AUGMENTING CONSTRAINT GRAMMARS 135

weights not to program clauses that are used, but to nodes of the struc-
tures according to certain properties, which are given in form of a set
of local subtrees. Actually, he assumes that the set of properties that
can influence the probabilities of the configurations is not pre-specified
by the grammar writer, but that it is determined dynamically, during
parameter estimation, in a procedure that adds from a set of candidate
properties one that gives a best improvement in the Kullback-Leibler
distance between the model and the training data.
The question whether the properties to which the probabilistic

weights attach should be selected by the grammar writer or by the
training algorithm can not be decided theoretically as its answer might
depend on the circumstances. Of course, automatic property selec-
tion is preferable, provided that it is actually able to identify the set
of relevant properties. However, it could very well be that the gram-
mar writer has an intuition about important dependencies in the data,
which might be based on a more general view of the linguistic reality
than anything an automated procedure might infer from a (possibly
small) set of training data. In this sense, it is a more conservative ap-
proach to separate property selection from the training of the optimal
weights of the properties, and assume that the former might be done
manually, based on linguistic intuition.
No matter how this question is decided, the general term for the

probability of a certain configuration x is given by

p(x) =

∏
i β

fi(x)
i∑

y∈Ω
∏
i β

fi(y)
i

where βi is the weight for the property i and fi(x) is the fre-
quency of occurrence of property i in the configuration x. This
is the form of a Gibbs distribution, which has been used in sta-
tistical physics and later as a solution to the problem of find-
ing a maximum entropy distribution that follows a given set of
constraints[Jaynes1995]. Models based on Gibbs distributions have
been used for reasoning under uncertainty [Pearl1988] and in cer-
tain types of artificial neural networks called Boltzmann machines
[Ackley and Hinton1985]. In computational linguistics, they have been
popularized mainly by the group around the Della Pietras and used for

136 CHAPTER 7. USING MORE CONTEXT

a variety of applications [Della Pietra, Della Pietra, and Lafferty1995,
Berger, Della Pietra, and Della Pietra1996].
In all these models, the optimal values for the weights cannot be

directly read off a set of annotated training instances, but have to be
determined using random sampling. The purpose of this is to guarantee
that the expected frequency of a property in a sample generated from
the model is identical to the relative frequency of the property in the
training data. If a random sample taken from a preliminary model
reveals that this does not hold for a certain property, the weight of
that property can be adjusted incrementally. [Riezler1998] gives a very
nice overview on a probabilistic version of constraint logic programming
that is based on Gibbs distributions. He gives a method for parameter
estimation that combines properties of the EM algorithm with random
sampling and is hence suitable for unsupervized learning, i.e. acquisition
of the parameters from ambiguous training data.
The difficulty in parameter estimation may be one of the major

reasons why the simpler, but contextually impoverished models based
on generative stochastic processes are still very popular.

7.4 Summary

In this Chapter, I have discussed some properties of stochastic models
based on generative processes, such as Markov models and stochastic
context free grammars. I have given examples that show that these
models cannot express stochastic dependencies that obviously exist in
natural language. As an alternative, I have sketched a probabilistic vari-
ant of a constraint logic programming language that was first described
in [Eisele1994]. This formalism has strong similarities with Gibbs dis-
tributions, maximum entropy models, and Markov random fields that
have since been propagated in the literature. However, it also shares the
problem that parameter estimation relies on random sampling, which
makes the model somewhat difficult to use for expressing co-occurrence
statistics on large lexical domains.

Chapter 8

Stochastic Ranking of LFG
Analyses

8.1 Introduction

In this chapter, I want to present an experimental evaluation of a disam-
biguation system that is based on some of the concepts and techniques
introduced in the preceeding chapters.

This evaluation is intended as a feasibility study, i.e. the goal is
to demonstrate that these techniques can actually be helpful contribu-
tions to solve the disambiguation task. It does not try to achieve a
fine-grained integration and optimization of these techniques, nor can
the results obtained in this experiment directly compared to results
in similar experiments that aim at the evaluation of the performance
of general purpose parsing systems [Black and othersl1991]. I am con-
vinced that the techniques presented here will eventually contribute to
the construction of parsing systems that are, in some measurable sense,
better than system that already exists. But the prove that this is in
fact the case will require more work that is outside the scope of this
thesis.

The experiment described in this chapter is based on the idea that
the notion of stochastic language models can be applied in a frame-
work based on Lexical Functional Grammar. [Johnson1996] describes
a way to apply a generative stochastic model to the functional struc-

137

138 CHAPTER 8. RANKING LFG ANALYSES

tures that play a prominent role in LFG. He sees the generation of
natural language as a two step process, in which first a more abstract
representation, the f-structure, is generated, which is then in a second
step “translated” into a linear string.
This idea is appealing, because functional structures look like an

appropriate level to express many of the weak regularities that can be
observed in actual use of natural language. Hence a stochastic model
that operates on this level should be able to exploit these patterns in a
better way than models that operate directly on the level of strings. In
a certain way, an LFG-based stochastic model tries to capture lexical
co-occurrence patterns on a similar level as bilexical models like those in
[Carroll and Charniak1992, Collins1996, Carroll and Rooth1998]. But
the fact that the representations on which a model operates are based
on an independently existing linguistic theory like LFG can be seen
as a strong advantage, because this allows us to re-use the theoretical
and implementational facilities that already exist. There are, however
some drawbacks that are caused by the fact that f-structures and the
corrsponding strings do not stand in a one-to-one correspondence or
that are consequences of other problems of the current state of the art
of LFG-based parsing.

• If one f-structure could be realized by several different strings, a
stochastic model of f-structures does not lead to stochastic lan-
guage model in the usual sense, which would be a model of the
corresponding strings. This would make it difficult to compare
the performance of different lanuage models in a straightforward
waym e.g. by using cross-entropy. [Johnson1996] circumvents
this problem by postulating that the f-structures have to encode
enough information to make the generation of a string from a
given structure deterministic.

• f-structures in general have the shape of a graph, which can con-
tain re-entrancies and cycles. It is not obvious how to set up a
stochastic model for the generation of such structures. The model
of branching processes that underlies the usual PCFGs, even the
lexicalized variants, does not apply.

• Since we cannot directly observe naturally occurring f-structures,

8.1. INTRODUCTION 139

and the utterances that appear in text corpora are very often
highly ambiguous, it is not obvious how we can collect the data
to train the paramters of a stochastic model. But this problem is
not specific to an LFG-based approach, as any stochastic model
that assigns non-trivial structures to utterances will have to find
a way to train the parameters from ambiguous training examples.
A usual and staightforward way of learning from incomplete data
this is the application of the EM algorithm, in which a prelimi-
nary model is used to obtain estimated frequencies of completed
observations, which are then used to obtain improved estimates.

• Analyzing free text with a LFG requires a certain level of robust-
ness both of the linguistic resources and the implementation of
the parser, which can currently not yet been taken for granted.
Also the need to analyze large text corpora to get sufficiently high
counts imposes certain constraints on speed and robustness, that
are currently somewhat hard to satisfy.

To cope with these problems, I have made a couple of simplifying
assumptions that are theoretically not well motivated, but seem to
approximate the real facts good enough to achieve useful results.
One of these compromises is the assumption that is is currently too

early to use an LFG-based analysis for a general-purpose stochastic
language model in the style of the models of the IBM speech recognition
group, which have been trained on very large corpora1

Instead, we will test the disambiguation performance on relatively
small set of manually disambiguated utterances, taken from a technical
domain. Details of the evaluation method are described in the next
section.
Another compromise is that I will not take some consequences of

the graph-structured organization of f-structures into account, but will
use a stochastic model of the creation of f-structures that is essentially
a branching process in which the generation of a feature value is con-
ditioned on the Pred-feature of one of the surrounding f-structures. I

1[Brown et al.1992] describes a model that has been trained on about 583 Million
words of English text and then tested on the Brown corpus (about 1 Million words)
for performance evaluation.

140 CHAPTER 8. RANKING LFG ANALYSES

will even go further and ignore all syntactic features except the Pred
and the syntactic relations that connect different levels of f-structures.
The reason for these inaccuracies is the difficulty to obtain suffi-

cient amounts of training data that has been analyzed with an LFG.
Instead, I will use more superficial ways of analysing free text, based
on a shallow parser [Grefenstette1994, Ait-Mokhtar and Chanod1997],
to obtain significant amounts of lexical training data. The hope is that
such tools for shallow analysis are good enough to obtain statistical data
that reflects the basic facts of language use and word co-occurrences,
and that this information, although it has a certain error rate and does
not contain all the fine details that would be relevant, are still useful
for some baseline functionality. One can see the pred-pred relations
as a least common denominator between an LFG-based and a shallow
parser analysis, hence statistical information on such relations seems to
be a suitable interface between the two worlds.

8.2 Evaluation Criteria

There are several ways to measure the performance of a stochastic
disambiguator, and I will discuss some of the possibilities and motivate
my choice.
If ambiguous analyses are analyzed with the LFG grammar, the

parser will construct representations of complete parses, i.e. of all pos-
sible analyses that are compatible with the given lexicon and grammar.
In the XLE system I used for my experiments, this representation is
packed, i.e. common properties of several solutions are represented only
once.
If we see as the goal of parsing to produce a unique solution, we can

say that a packed representation is only a partial solution in the sense
that it leaves some decisions open. A parser that has access only to
the syntactical knowledge represented in the LFG descriptions adds too
little information to the input string to allow for a unique result. Using
notions from Information Theory, we can even quantify the amount of
missing information, which is equal to the number of bits we would
need to identify the right solution.
If we now use additional knowledge sources that give us preferences

8.2. EVALUATION CRITERIA 141

for certain solutions, we will in general get a ranking of the analyses
according to these preferences. How can we measure the quality of such
a ranking?

An obvious measure is to always take the best solution according to
this ranking (the Viterbi analysis), ignore everything else, and measure
the fraction of the cases in which the parser did exactly right. This is
essentially the measure called “labelled tree rate” in [Goodman1996].
A problem with this measure is that the precision measured in this
way depends very strongly on the granularity in which the problem is
given. Assume for an extreme example a very long and highly struc-
tured sentence2. The chance that a parser gets all details of such a
sentence exactly right is practically 0, so the correctness of the Viterbi
parse is not a very meaningful measure. Even if we measure the correct-
ness on rather large corpora, the number of analyses that are exactly
right in all details will be so small that their number is dominated by
random effects and a meaningful comparison between different methods
is not possible.

This fact has led researchers in the field to the definition of weaker
notions of correctness, which give more meaningful results. One popular
way of weakening the requirements is to look at certain properties of the
result computed by the parser and determine the agreement between
these properties and the manually selected reference solutions. For
instance, we can calculate the number of constituents that have been
correctly identified (i.e. agree in the category label, in start and end
position) and calculate the ratio of correctly identified constituents to
their overall number. A discussion of various evaluation mettrics is
given in [Goodman1996], which also shows that a parsing algorithm
that is trained in a way that maximizes the probability of being exactly
right may achieve suboptimal results if measured with different criteria
like precision and recall of the constituents or bracketings.

In our case, the goal is not only to identify a correct syntactic struc-
ture of the utterance, but also to get the functional structure right. We
could decompose this goal into many simpler subgoals like getting the
value of a specific feature correct and define evaluation criteria linked

2There are certain domains like patents or political texts where sentences with
thousands of words are not unusual.

142 CHAPTER 8. RANKING LFG ANALYSES

to such properties of the solutions. But the figures we would get in such
an evaluation would depend strongly on the granularity of the proper-
ties we use, and more generally on the details of the LFG analyses we
are assuming.
There is, however, a quite different way to achieve a weaker or

finer grained evaluation metric. Instead of decomposing the analyses
into simpler properties, we can stick to the goal of getting everything
exactly right, but instead of using the Viterbi analysis, we accept the
fact that the parser produces a ranked set of possible solutions. One
way of seeing this situation is to assume that the result of parsing is
a probability distribution over possible analyses. The goal is then to
maximize the probability of the correct analysis under this distribution.
In the ideal case, where the parser knows how to find the right result
(and it knows that it knows this), this solution should get probability 1.
In the rather unfortunate case where the parser has n possible results
s1, . . . , sn and absolutely no way to distinguish between them, the best
strategy would then be to assign a uniform probability of 1/n to each
of them. If we randomly choose one of the solutions according to this
uniform distribution, there is a chance of 1/n of making the right choice.
In the more interesting cases where we can exploit weak knowledge

sources K to distinguish between the results, all available knowledge
can be used to get a distribution that models the remaining uncertainty
as accurately as possible. We would hence try to set up a distribution
p(si|w,K) in the hope that guessing the right solution according to this
distribution will increase the chance of making the right choice. But
how should we quantify the increase in parsing accuracy that a good
ranking of the solutions brings about?
For the purposes of this chapter, I will apply a very simple and

general method, in which the quality of a parser that produces am-
biguous solutions annotated with probabilities is calculated as the
chance of getting perfect results if the probabilities estimated by the
parser are taken as the basis of a random choice. So if the parser
is confronted with the sentences {w1, . . . , wt} and produces the so-
lutions {{〈s1,1, p1,1〉, . . . , 〈s1,n1, p1,n1〉}, . . . , {〈st,1, pt,1〉, . . . , 〈st,nt, pt,nt〉}}
and the correct analysis of sentence wi is sci, then the probability of an
overall correct solution is given as Pcorr =

∏
i pi,ci.

For long test sets, this probability will be very low, so we will mea-

8.2. EVALUATION CRITERIA 143

sure this quantity on a scale that makes the numbers more manageable
by taking the inverse and normalizing the number by taking the kth
root, where k is some indicator of the size of the test set, such as the
number of words, the number of utterances, or the the number of am-
biguous utterances
This way of evaluating performance is essentially equivalent to stan-

dard measure of perplexity ([Jelinek1998]) of the complexity of a lan-
guage source in work on speech recognition, hence we will call this
number the perplexity of the disambiguation task. In the case of com-
plete ignorance, where the same probability estimated gets assigned to
every solution, this will lead to a value we call baseline perplexity

PPbase =
∏
i

n1/ki

It can be interpreted as saying that guessing the right solution overall
is as difficult as guessing, k times in sequence, the right value out of a
hypothetical list of PPbase possibilities.
If we now have ways to make an informed probability estimate on

the possible solutions, this will hopefully decrease the perplexity of the
remaining decision problem. In the extreme case, where no uncertainty
remains, the perplexity will be 1. The ratio between the baseline per-
plexity and the perplexity for the stochastic model will tell us how much
of the original uncertainty could be resolved by stochastic disambigua-
tion.
However, informal experiments show that the probability estimates

returned by the stochastic model are qualitatively good, in the sense
that they often give preference to the right analysis, but that the ratio
between the estimated probabilities are too noisy to use the estimates
directly. For instance, we can have the situation that the correct solu-
tion is always assigned to one of the first two ranks, but in some cases
where it gets rank 2 the solution on rank 1 is estimated to be much
more likely.
In such situations, there are a couple of strategies we can follow

to get better estimates. It might not be too difficult to identify and
inspect some of the most problematic cases and find an correction of
the stochastic model that will improve them.
In practice, it often turns out that the disambiguation model is too

144 CHAPTER 8. RANKING LFG ANALYSES

focussed, i.e. that it puts too much probability onto the solutions it
prefers and leaves too little probability for the rest. This situation is
quite frequent, and there are at least two different factors that con-
tribute to this effect.
Typically, some intermediate probabilities are estimated in a too

crude way, especially due to an unfortunate handling of sparseness prob-
lems. The estimation of unseen events gives the strongest fluctuations
in the overall results.
Furthermore, the probabilistic model usually incorporates strong in-

dependence assumptions, as discussed in the last chapter. For instance,
it might assume that the subject and the object of some verb are cho-
sen independently. In reality, natural language phenomena are rarely
independent. Hence the choice of a rare subject and a rare object at the
same time might be much more probable than predicted by the model.
Both of these problems have already been discussed, and the Chap-

ters 5, 6, and 7 provide techniques to improve the probability estimates
in the face of these situations. However, the solutions proposed in these
chapters are somewhat complex, and it is not immediately obvious how
to combine them.
Instead of looking for fine-grained improvements to the individual

parts of the probability model, we can also try to iron these prob-
lems problems out in a more general fashion and employ a mechanism
to “translate” the original probability estimates of our model into a
corrected estimate. There are many ways to do this, and we can use
some of the techniques discussed in Section 5.4 to obtain a method for
deriving correction formulas.
Before going into details, we have to decide what information we

want to use for this purpose. One possibility is to ignore the actual
probability estimates and use only the ranking information they pro-
vide. We could set up families of parametric distributions that map
ranks into probabilities and use manually disambiguated training ex-
amples to select families of distributions and optimize the parameters.
Instead of using only the rank information, we can additionally extract
certain statistical properties of the estimated distributions, such as the
entropy, and let these influence the corrected distribution.
Another possibility is to build a linear combination of the original

estimates with a uniform distribution, where the mixing factors might

8.2. EVALUATION CRITERIA 145

or might not depend on certain statistical properties of the original
distribution. Mixing with a uniform distribution would essentially level
out the tails of the original distribution, without affecting the high-
probability estimates too much.
A third possibility is to reduce the slope of the distributions on a

logarithmic scale in a uniform way, by raising the probabilities to some
small power and renormalizing, i.e. setting p′(s) to p(s)k/

∑
s p(s)

k with
0 < k < 1
One can use training schemes for mixture distributions based on

the EM algorithm to find optimal parameters for these possibilities, or
even an optimal combination of several of these. However, this method
should not be exaggerated, since optimizing a very detailed scheme for
re-interpreting the original probabilities, based on a larger number of
parameters, is likely to lead to an overlearning effect. On the other
hand, the impact of this kind of overlearning is limited by the fact that
all the transformations proposed above are monotonic, i.e. they do not
influence the relative order of the solutions compared to the original
ranking.
One can say that such a training procedure in a certain sense tries to

identify meta-knowledge about the reliability of the original probability
estimates.
In the sequel, I will not try to perform a sophisticated optimization,

but use only a simple and regular special case. I will assume that we
can abstract from the probability estimates and use only the ranking in-
formation, and I will additionally postulate that the corrected estimate
is of the form

p′(rank = r|outcomes = n) = br/(
n∑
i=1

br)

This implies that there is a constant factor b by which a solution on
rank r + 1 is less probable than the solution on rank r, and that this
factor is constant not only across the solutions of one disambiguation
problem, but globally3.

3This assumption may not be justified in the presence of massive ambiguity, in
which typicall a small set of high-quality solutions co-exists with a huge set of low-
quality solutions. In such cases, it is more plausible to assume a Zipfian function to
get from ranks back to probabilities.

146 CHAPTER 8. RANKING LFG ANALYSES

Given some training data {w1, . . . , wt} that has been ranked by our
model, such that input wi has ni solutions and the correct one is on rank
ri, we can ask ourselves which value of b will give the best prediction
of the data, i.e. what value of b will maximize

p(d|M, b) =
∏
i

bri ∗ (1− b)
b(1− bni)

In the cases where our ranking is very good, b should be small in order
to give a relatively high weight to the solutions preferred by the model.
In the cases where our ranking is almost random, a value of b ≈ 1
will lead to an almost uniform distribution of the corrected probability
estimates, i.e. the ranking produced by the model will be essentially
ignored.

Unfortunately, there does not seem to be a simple way of comput-
ing the optimal value for b in the general case. We can simplify the
situation by assuming that the number of outcomes per experiment is
large compared to the rank of the correct solution, so that 1 − bni can
be approximated by 1. Then the value for b that maximizes the overall
probability is given by

b̂ = argmax
b

∏
i

br1−1(1− b) = argmax
b
b
(
∑

i
ri)−t

(1− b)t = 1− t∑
i ri

If we compare two models M ′ and M ′′, and assume that both of
them can be approximated using the same value for b, the likelihood
ratio depends only on the sum of the ranks these models give to the
correct solutions

p(d|M ′, b)/p(d|M ′′, b) = b
(
∑

i
r′
i
−
∑

i
r′′
i
)

I will take this (relatively informal) argumentation as a justification
to use the sum of the solution ranks as a simple and meaningful in-
dicator of the quality of a stochastic disambiguation model. To make
the results less sensitive to the fraction of ambiguous and unambiguous
instance, I will in the sequel use the cumulated offset off =

∑
i(ri− 1)

as an indicator of the ranking quality, i.e. count the number of bad re-

8.3. THE EXPERIMENT 147

sults one has to skip until one gets to the good ones4. There are cases
in which the stochastic model cannot distinguish between competing
analyses, because they differ only in the values of features for which
no probabilities have been estimated. In this case, I use the arithmetic
mean of the best and the worst possible rank the selected analysis could
get if such ties are broken arbitrarily.

8.3 The Experiment

For the experiment, I use a large-scale LFG description of the En-
glish language, as it has been constructed by the NLTT group at Xe-
rox Parc[Butt et al.1999] in the course of the ParGram project. This
grammar is intended as a general-purpose resource, with (few) specific
additions for peculiarities of the current domain.
The NLTT group took approximately 1000 sentences of tech-

nical text5, from the user manual of HomeCentre, an integrated
scanning/printing device produced by the Xerox corporation, sent
it through the XLE parser, and manually disambiguated all the f-
structure analyses. The result of this work is a bank of parsing charts
in a compact representation, as a set of contexted facts, where the
contexts are propositional clauses along the lines given in Chapter 2.
The items in this collection represent all possible pairs of syntax

trees and functional structures (including their correspondences on sub-
ordinate levels) that are possible under the given LFG, plus a identifi-
cation of the pairs that have been manually selected as the appropriate
one in this context.
For the disambiguation, I used statistical data on the co-occurrences

of English lemmata in certain linguistic relations. The data was ob-
tained by applying IFSP (a shallow, finite-state-based parser, described
in [Ait-Mokhtar and Chanod1997]) to the British National Corpus.
For the experiment, I implemented tools to read in from files the

packed representations of f-structure charts, as they are produced by the

4This figure of merit has also a rather practical interpretation in the context of
a system in which further processing of an unwanted analysis has a certain cost in
terms of manual or computational effort.

5After removing duplicates and inconsistencies, 985 sentences remained

148 CHAPTER 8. RANKING LFG ANALYSES

XLE implementation of the LFG formalism, to enumerate all possible
readings that are represented in the chart, to extract from f-structures a
set of predicates that appear in them, where each predicate is annotated
with some simple characteristics of the context in which this predicate
appears, and finally to determine the average rank of the solutions given
in each of the sets under the given stoachastic model.
When extracting predicate information from a given f-structure,

we record for all the Pred-features that appear in the structure one
or several contextual stimuli, such as predicates of superordinate f-
structures (or a dedicated value Root for Preds on the outermost
levels. There is a choice in the accuracy to which this context is taken
into account. We can try to abstract away some details concerning the
relation in which the context stands to the current Pred-value. In the
most extreme case, we will conflate all possible relations and only keep
the pure lexical information. This will obviously introduce inaccuracies,
but on the other hand, it can reduce the number of different contexts
to consider and hence slightly reduce the sparseness problem. Ideally,
the prediction of a Pred can use both the full context and a simplified
version of it, and use a suitable combination of these predictors, which
can be optimized automatically.
This approach brings up the question what to do with multiple

contextual evidence. In a sentence like “The Status property page lets
you monitor the progress of the current print job.”, “you” is at the
same time object of “lets” and subject of “monitor”, which itself is
embedded as an xcomp in the outermost structure. We can assume
that the object is generated given both verbs, and in this case, we need
a way to estimate probabilities for the object pred given both words
in the context. One possibility for this would be to estimate trigram
probabilities, but then the sparseness problem would become even more
severe, especially as this type of construction is not that frequent in the
available data.
For this feasibility study, I decided to sacrifice some accuracy and

theoretical soundness, and use a simpler approximation. In cases where
we have to use p(x|y ∧ z) from estimators for p(x|y) and p(x|z), I will
instead use a pseudo-probability

p′(x|y ∧ z) = max(p(x|y), p(x|z))

8.3. THE EXPERIMENT 149

Correct results gets rank 1 224 46%
Correct results in top group 93 19%

Other 172 35%

Figure 8.1: Overall result of LFG disambiguation

If for any x, p(x|y) �= p(x|z), the result of such a point-wise maximiza-
tion is not a probability distribution, as

∑
x p

′(x|y ∧ z) > 1. However,
given the difficulties to obtain reliable lexical probabilities in the first
place, I am convinced that such a small inaccuracy will not have a
significant impact on the quality of the results.
Given the rather limited amount of training data, it is important to

exploit it to the maximal possible amount. But of course we need to
evaluate the quality of the method on independent test data that did
not contribute to the estimation of the parameters.
For the experiments, I used a leaving-one-out procedure in which

only training instances different from the current annotated sentence
are used to obtain the disambiguation parameters. However, it is not
the current sentence itself, but only its annotation that should be kept
out of the training. It is therefore legal to enumerate all possible anal-
yses of the current sentence and to use fractional counts for the events
that appear in these hypotheses. This can be seen as an application of
the EM algorithm, but in the experiment, I did not try to find differ-
ent probabilities for the possible readings before counting the fractional
events.
The overall results of the experiment are given in Fig. 8.1. The per-

centages are based on the 489 cases that are actually ambiguous. These
have, overall, 3203 analyses, which means that the average ambiguity
per ambiguous sentence is 6.55.
In many cases, there was not a unique best result, as the ranking is

based on the predicate-argument structure which does not reflect many
of the finer distinctions made by the grammar. If we collapse the cases
in which the correct result has the best rank or is in the top group, we
can say that there is a success rate of 65%.
A slightly finer grained presentation of the results is given in Fig. 8.2.

Here, the sentences have been grouped into three classes, according to
the level of ambiguity they contain. To simplify the presentation, the

150 CHAPTER 8. RANKING LFG ANALYSES

2-way ambiguity (239 charts):
Rank: 1 1-2 2
Cases: 140 60 39

3- or 4-way ambiguity (95 charts):
Rank: 1 x-2 x-3 x-4
Cases: 41 20 15 19

5- or more way ambiguity (155 charts):
Rank: 1 x-2 x-3 x-4 other
Cases: 43 20 16 20 56

Figure 8.2: Results grouped by amount of ambiguity

outcomes have been further clustered. A class of the form x-2 means
that the correct result has been given rank 1-2 or 2, and analogous for
the classes x-3 and x-4.

These results show that the method does fairly well for simple cases,
but in the case of broader ambiguity, the ranks assigned by the method
look somewhat unsatisfactory. It should be kept in mind that in the
presense of broad ambiguity even one wrong decision made by the dis-
ambiguator can lead to the assignment of a very bad rank to the correct
solution.

8.4 Future Work

There are several obvious ways in which the results reported in the last
section could be improved.
Using more features: The current model uses only values of the

Pred-feature and the syntactic functions to distinguish between the
alternatives. It is a straightforward completion of this model to esti-
mate and use probabilities for the remaining features. The fact that
in less than half of the cases the correct analyses is unambiguously

8.4. FUTURE WORK 151

given the highest rank is a strong motivation to explore the use of such
additional knowledge sources. However, as there are no large corpora
analyzed with the LFG grammar, the sentences in the treebank are
essentially all data we can use to train this part of the model, which
may lead to strong overlearning effects.
Smoothing against background models: The sparseness problem is

a severe issue for all lexicalized models, so the use of “external” knowl-
edge sources like lexical co-occurrences in large, general corpora is a
promising way to improve the estimates. I have started experiments
to automatically optimize mixtures of domain-dependent and external
distributions in a way that is based on the techniques from Chapters 5
and 6. Unfortunately, this part of the experiment has not yet been
completed and I have not yet obtained a ranking based on these mix-
tures.
Using “optimality marks”: The LFG grammars make use of an-

notations for preferred and dispreferred syntactic constructions, see
[Frank et al.1998] for a description of the formalism and its use. For
any given input, this system singles out a set of so called optimal so-
lutions, that satisfy the most important preferences and do not violate
the most important dispreferences. Whereas the idea behind the sys-
tem is that the correct solution should always be in the set of optimal
solutions, it is not trivial to define the ranking between the marks in
a way that actually guarantees this property. It is conceivable that a
re-interpretation of the optimality marks as soft, weighted preferences
could enable an automatic training procedure to induce their relative
importance. This would lead to a joint ranking of optimal and subopti-
mal solutions, in which the optimality marks attached to the solutions
contribute as one of several knowledge sources.
Incorporating more general dependencies: Even if compromises are

made in some details, the stochastic model of f-structures used in the
experiment follows basically the idea of a stochastic process that gen-
erates a structure piece by piece, where the probability of each deci-
sion in this process is estimated based on the material that is already
present. The models that are introduced in Chapter 7 or described in
[Abney1997, Riezler1998] do not follow this pattern. Here, arbitrary
properties of a configuration can contribute to its probability, and the
properties can refer to overlapping parts of the configurations, can have

152 CHAPTER 8. RANKING LFG ANALYSES

cycles etc. This makes the models more expressive, but also the train-
ing of the weights considerably more involved. In connection with such
models, it would be interesting to investigate whether for a small set
of additional properties, added manually after an error analysis has
revealed systematic problems in the stochastic disambiguator, weights
could be trained automatically, and whether this can significantly im-
prove the performance on unseen data.

Chapter 9

Conclusion and Outlook

9.1 Summary

This thesis has investigated two complementary approaches to cope
with the ambiguity problem. In the first part, techniques for the com-
pact encoding and efficient processing of (possibly large) sets of solu-
tions have been reviewed. It has been shown that even exponential
ambiguity can be handled in polynomial time by suitable algorithms
that avoid unneccessary enumerations.

In the second part, several techniques for the estimation of linguistic
probabilities and for the construction of stochastic language models
have been proposed. The major problem for this type of models, the
estimation of probabilities for unseen events, has been investigated in
depth, and several novel techniques are given, that may contribute to
the creation of stochastic language models of a new type. Finally, some
of these techniques that had been introduced and studied in isolation,
have been evaluated in the somewhat more ambitious task of ranking
the results of ambiguous real-world utterances that have been processed
with a large-scale LFG.

153

154 CHAPTER 9. CONCLUSION AND OUTLOOK

9.2 Future Work

Processing packed representations

Although some of the techniques discussed in the first part of this the-
sis are currently being used in practical implementations and allow to
deal with large-scale grammars with satisfactory performance, there are
several dimensions along which work should be done.
It would be useful to perform a more fine-grained analysis of

the techniques described in [Maxwell and Kaplan1996b] and those in
[Dymetman1997]. Whereas the latter is intended as a logical recon-
struction of the techniques described in the former paper and actually
implemented in the XLE system [Maxwell and Kaplan1996a], there are
some differences between the approaches that need to be studied in
more detail. For instance, the method given in [Dymetman1997] does
not make use of a component that collects and processes propositional
constraints on disjunctive “contexts” that are a crucial feature of the
XLE implementation [Maxwell and Kaplan1989].
Another possible line of work would investigate how the techniques

to process compact representations of sets of solutions can be used
in applicatioons different from parsing, such as transfer or genera-
tion. Work in these areas has already lead to significant successes
[Shemtov1997, Dymetman and Tendeau1998], but it would be inter-
esting to investigate whether these problems can be seen as specific
instances of a more general task of “transduction of ambiguous linguis-
tic structures”, whether general transduction algorithms can be found
that avoid the enumeration of individual solutions, and whether ef-
ficient parsers, generators, transfer components, knowledge extractors
and so on can be derived as special cases of such a schematic algorithm.

Estimating linguistic probabilities

The various techniques for estimation of linguistic probabilities that
have been presented and discussed in this thesis can not more than
scratch the surface of what needs to be done. The methods for smooth-
ing lexical probability estimates that have been presented here and
elsewhere need to be generalized so that a much richer context can

9.2. FUTURE WORK 155

be taken into account. It seems plausible that log-linear or maximum
entropy models can be used to achieve a theoretically sound combina-
tion of contextual evidence that does not lead to an explosion of the
parameters that have to be estimated. The techniques for parameter
estimation for maximum entropy models have to be improved to reduce
their computational complexity, so that an application to linguistically
rich grammatical resources that operate on large lexical domain be-
comes feasible. In the meantime, the techniques presented here might
be generalized to operate as well on structurally richer models. Noth-
ing in the way bigram probabilities are estimated in Section 6.3 is in-
herently limited to the two-dimensional case. Also, the generalization
of similarity-based smoothing techniques to the multi-dimensional case
should be relatively straightforward, once the computatitonal problems
for the two-dimensional case are solved.
I am convinced that the combination of linguistic and stochastic

knowledge, of hard rules and soft preferences, can lead to NLP systems
of so far unattained quality and scope. However, the stochastic part of
these models has been introduced for two quite different reasons. One
one hand, statistical models are supposed to formalize linguistic pref-
erences that cannot be expressed by hard rules. I believe that this part
will remain, once the details have been worked out more precisely, as
such models may be the most appropriate description of the linguistic
reality. On the other hand, statistical models are used as an approxi-
mative replacement for knowledge that could be described symbolically,
but has not been acquired. Statistical models can help to cope with
missing lexical coverage, and can “simulate” semantic and other high-
level knowledge, that so far has resisted formalization and/or capture.
This motivation for the use of stochatic models is as essential as the

formalization of preferences, as we will never reach a state where all
necessary knowledge will be completely available in a symbolic formal-
ization.
However, these applications of stochastic models may have a more

transient nature, as they allow the construction of processing techniques
that are at the same time more accurate and more robust. Together
with the steady improvement in computational resources and the avail-
ability of unmeasurable amounts of textual data, the hope is that these
models will allow to construct large text corpora with automatically

156 CHAPTER 9. CONCLUSION AND OUTLOOK

high-quality annotations, from which missing knowledge can be ex-
tracted. Hence, the focus of the application of stochastic techniques
as a replacement for missing knowledge will gradually shift away from
lower levels like morphology and syntactic valency and start to adress
even more difficult (and interesting) problems of semantics and dis-
course structure.

Integration of symbolic and stochastic processing

Another area where future work is needed is the integration of sym-
bolic and stochastic processing techniques. In this thesis, both com-
ponents where either juxtaposed, in the sense that the stochastic
model was applied after the symbolic processor had delivered its re-
sult, or they were integrated in a relatively straightforward way, e.g.
in a morphological transducer that incidentally adds up some log
probs while doing its usual work. However, a much finer integration
might be achievable if the scores produced in the stochastic model are
used to reduce the amount of work the symbolic components have
to perform. Using clever thresholding, we could avoid computation
that cannot (or is not likely to) lead to highly ranked results, or we
could at least try to postpone such computaitons until their need
becomes obvious. Work in this direction is already being performed
(see [Charniak, Goldwater, and Johnson1998, Goodman1998], to name
only two), but a very interesting new direction would try to inte-
grate stochastic preferences into transformation techniques that try to
achieve interaction-free representations of sets of solutions, so that the
algorithm concentrates on those parts of the representation that are
likely to contribute to highly-ranked solutions.

Bibliography

[Abney1997] Abney, Steven. 1997. Stochastic attribute-value gram-
mars. Computational Linguistics, 23(4):597–618.

[Abney and Jonson1991] Abney, Steven and Mark Jonson. 1991. Mem-
ory requirements and local ambiguities of parsing strategies. Journal
of Psycholinguistic Research, 20(3):233–250.

[Ackley and Hinton1985] Ackley, D.H. and G.E. Hinton. 1985. A learn-
ing algorithm for Boltzmann machines. Cognitive Science, 9:147–169.

[Agresti1990] Agresti, Alan. 1990. Categorical Data Analysis. John
Wiley & Sons, New York.

[Aho and Ullman1972] Aho, Alfred V. and Jeffrey D. Ullman. 1972.
The Theory of Parsing, Translation and Compiling. Prentice Hall,
Englewood Cliffs, N.J.

[Ait-Mokhtar and Chanod1997] Ait-Mokhtar, Salah and Jean-Pierre
Chanod. 1997. Incremental finite-state parsing. In ANLP’97, pages
72–79, Washington.

[Alshawi1992] Alshawi, Hiyan, editor. 1992. The Core Language En-
gine. MIT Press, Cambridge, Massachusetts.

[Äıt-Kaci1984] Äıt-Kaci, Hassan. 1984. A Lattice-Theoretic Approach
to Computation Based on a Calculus of Partially Ordered Type Struc-
tures. Ph.D. thesis, University of Pennsylvania, Philadelphia, Pa.

[Baker1979] Baker, J. 1979. Trainable grammars for speech recogni-
tion. In D. Klatt and J. Wolf, editors, Speech Communication Papers

157

158 BIBLIOGRAPHY

for the 97th Meeting of the Acoustic Society of America. ASA, pages
547–50.

[Bar-Hillel1960] Bar-Hillel, Y. 1960. Automatic translation of lan-
guages. In Franz Alt, A. Donald Booth, and R.E. Meagher, editors,
Advances in Computers. Academic Press, New York.

[Bar-Hillel, Perles, and Shamir1961] Bar-Hillel, Y., M. Perles, and
E. Shamir. 1961. On formal properties of simple phrase structure
grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kom-
munikationsforschung, 14:142–172.

[Baum1971] Baum, L. E. 1971. An inequality and associated max-
imization technique in statistical estimation for probabilistic func-
tions of a markov process. In Shisha and Qved, editors, Inequalities
III. Academic Press, New York, pages 1–8.

[Baum and Sell1968] Baum, Leonard E. and George R. Sell. 1968.
Growth transformations for functions on manifolds. Pacific Jour-
nal of Mathematics, 27(2):211–227.

[Berger, Della Pietra, and Della Pietra1996]
Berger, Adam L., Stephen A. Della Pietra, and Vincent J. Della
Pietra. 1996. A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1):39–71.

[Billot and Lang1989] Billot, S. and B. Lang. 1989. The structure of
shared forests in ambiguous parsing. In 27th Meeting of the Associ-
ation for Computational Linguistics.

[Black and othersl1991] Black, Ezra and othersl. 1991. A Procedure for
Quantitatively Comparing the Syntactic Coverage of English Gram-
mars. In Proceedings, DARPA Speech and Natural Language Work-
shop. pages 306–311.

[Block and Schmid1992] Block, H. Ulrich and Ludwig A. Schmid. 1992.
Using disjunctive constraints in a bottom-up parser. In Proceedings
of KONVENS’92, pages 169–177.

BIBLIOGRAPHY 159

[Booth and Thompson1973] Booth, Taylor L. and Richard A. Thomp-
son. 1973. Applying probability measures to abstract languages.
IEEE Transactions on Computers, C-22(5):442–450.

[Brew1995] Brew, Chris. 1995. Stochastic HPSG. In EACL 7, pages
83–89.

[Brown et al.1992] Brown, Peter F., Stephen A. Della Pietra, Vincent
J. Della Pietra, Jennifer Lai, and Robert L. Mercer. 1992. An esti-
mate of an upper bound for the entropy of english. Computational
Linguistics, 18(1):31–40.

[Brown et al.1993] Brown, Peter F., Stephen A. Della Pietra, Vincent
J. Della Pietra, and Robert L. Mercer. 1993. The mathematics of sta-
tistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–312.

[Brown et al.1992] Brown, Peter F., Vincent J. Della Pietra, Peter V.
deSouza, Jenifer C. Lai, and Robert L. Mercer. 1992. Class-based
n-gram models of natural language. Computational Linguistics,
18(4):467–479.

[Butt et al.1999] Butt, M., T.H. King, M.-E. Niño, and F. Segond.
1999. A Grammar-Writer’s Cookbook. CSLI Publications, Stanford,
CA.

[Carroll1996] Carroll, Glenn. 1996. Learning probabilistic grammars
for language modelling. Technical report, Brown Computer Science
Dept.

[Carroll and Charniak1992] Carroll, Glenn and Eugene Charniak.
1992. Learning probabilistic dependency grammars from labelled
text. In Proceedings of the AAAI Fall Symposium, pages 25–32.

[Carroll and Rooth1998] Carroll, Glenn and Mats Rooth. 1998. Va-
lence induction with a head-lexicalized pcfg. In Third Conference on
Empirical Methods in Natural Language Processing.

160 BIBLIOGRAPHY

[Charniak, Goldwater, and Johnson1998] Charniak, E., S. Goldwater,
and M. Johnson. 1998. Edge-based best-first chart parsing. In
Proceedings of the Workshop on Very Large Corpora.

[Charniak1993] Charniak, Eugene. 1993. Statistical language learning.
MIT Press, Cambridge, Mass.

[Chelba and Jelinek1998] Chelba, Ciprian and Frederick Jelinek. 1998.
Exploiting syntactic structure for language modeling. In Coling-ACL.

[Chomsky1957] Chomsky, Noam. 1957. Syntactic Structures. Mouton,
The Hague.

[Chomsky and Miller1963] Chomsky, Noam and George A. Miller.
1963. Finitary models of language users. In R. Luce, editor, Hand-
book of Mathematical Psychology, volume 2. John Wiley and Sons,
New York, pages 419–491.

[Church and Gale1991] Church, Kenneth W. and William A. Gale.
1991. A comparison of the enhanced good-turing and deleted estima-
tion methods for estimating probabilities of english bigrams. Com-
puters, Speech, and Language, 5.

[Collins1996] Collins, Michael. 1996. A new statistical parser based on
bigram lexical dependencies. In Proceedings of ACL-96, Sant Cruz,
CA, USA.

[Collins1997] Collins, Michael. 1997. Three generative, lexicalised mod-
els for statistical parsing. In Proceedings of ACL/EACL-97, Madrid,
Spain.

[Condon1928] Condon, E.V. 1928. Statistics of vocabulary. Science,
67.

[Corman, Leiserson, and Rivest1990] Corman, Thomas H., Charles E.
Leiserson, and Ronald L. Rivest. 1990. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts.

[Cover and Thomas1991] Cover, Thomas M. and Joy A. Thomas. 1991.
Elements of Information Theory. John Wiley and Sons, Inc., New
York.

BIBLIOGRAPHY 161

[Dagan, Pereira, and Lee1994] Dagan, Ido, Fernando C. N. Pereira,
and Lillian Lee. 1994. Similarity-based estimation of word cooc-
currence probabilities. In ACL.

[Darroch and Ratcliff1972] Darroch, J. N. and D. Ratcliff. 1972. Gener-
alized Iterative Scaling for Log-Linear Models. The Annals of Math-
ematical Statistics, 43:1470–1480.

[Deerwester et al.1990] Deerwester, Scott, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391–407.

[Della Pietra, Della Pietra, and Lafferty1995]
Della Pietra, S., V. Della Pietra, and J. Lafferty. 1995. Inducing
features of random fields. Technical report, CMU. cmp-lg/9506014.

[Dempster, Laird, and Rubin1977] Dempster, A. P., N. M. Laird, and
D. B. Rubin. 1977. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistics Society, Series B,
39:1–38.

[Dörre1997] Dörre, Jochen. 1997. Efficient construction of underspeci-
fied semantics under massive ambiguity. In Proc. ACL, Madrid.

[Dörre and Dorna1993] Dörre, Jochen and Michael Dorna. 1993. CUF
- a formalism for linguistic knowledge representation. Deliverable
R.1.2A, DYANA 2, August.

[Dörre and Eisele1989] Dörre, Jochen and Andreas Eisele. 1989. De-
termining consistency of feature terms with distributed disjunctions.
In Dieter Metzing, editor, GWAI-89. 13th German Workshop on
Artificial Intelligence, pages 270–279. Springer-Verlag. Informatik
Fachberichte 216.

[Dörre and Eisele1990] Dörre, Jochen and Andreas Eisele. 1990. Fea-
ture logic with disjunctive unification. In Proceedings of the 13th
International Conference on Computational Linguistics, Helsinki.

162 BIBLIOGRAPHY

[Duda and Hart1973] Duda, Richard O. and Peter E. Hart. 1973. Pat-
tern Classification and Scene Analysis. John Wiley & Sons, New
York.

[Dymetman1997] Dymetman, Marc. 1997. Interaction-free grammars,
chart-parsing, and the compact representation of ambiguity. In Proc.
IJCAI, Nagoya.

[Dymetman and Tendeau1998] Dymetman, Marc and Frédéric Ten-
deau. 1998. An algorithm for the transfer of packed linguistic struc-
tures. unpublished manuscript.

[Earley1970] Earley, Jay. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

[Eisele1987] Eisele, Andreas. 1987. Eine Implementierung rekursiver
Merkmalstrukturen mit disjunktiven Angaben. Diplomarbeit, Insti-
tut für Informatik, Universität Stuttgart, Stuttgart. in German.

[Eisele1994] Eisele, Andreas. 1994. Towards probabilistic extensions of
constraint-based grammars. In Jochen Dörre, editor, Computational
Aspects of Constraint-Based Linguistic Description II, DYANA-2 de-
liverable R1.2.B. ESPRIT, Basic Research Project 6852, September.

[Eisele and Dörre1990] Eisele, Andreas and Jochen Dörre. 1990. Dis-
junctive Unification. IWBS Report 124, IWBS, IBM Deutschland,
Stuttgart, May.

[Eisner1996] Eisner, Jason M. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proceedings of COLING-96,
Kopenhagen, Denmark.

[Essen and Steinbiss1992] Essen, Ute and Volker Steinbiss. 1992.
Coocurrence smoothing for stochastic language modeling. In
ICASSP, volume I. pages 161–164.

[Estoup1916] Estoup, J.B. 1916. Gammes Sténographiques. Paris.

[Frank et al.1998] Frank, Anette, Tracy Holloway King, Jonas Kuhn,
and John Maxwell. 1998. Optimality theory style constraint ranking

BIBLIOGRAPHY 163

in large-scale LFG grammars. In Miriam Butt and Tracy Holloway
King, editors, Proceedings of the LFG98 Conference, University of
Queensland, Brisbane. CSLI Online Publications, Stanford, CA.

[Franz1997] Franz, Alexander. 1997. Independence assumptions con-
sidered harmful. In Proceedings of ACL 35 and EACL 8, pages 182–
189, Morristown NJ. Association of Computational Linguistics.

[Fujii1998] Fujii, Atsushi. 1998. Corpus-based word sense disambigua-
tion. Technical report, Tokyo Institute of Technology.

[Geman and Geman1985] Geman, Stuart and Donald Geman. 1985.
Stochastic relaxation, gibbs distributions and the bayesian restora-
tion of images. IEEE Transations on Pattern Analysis and Machine
Intelligence, 6(6):721–42.

[Good1953] Good, I. J. 1953. On the population frequencies of species
and the estimation of population parameters. Biometrika, 40:237–
264.

[Good1956] Good, I. J. 1956. On the estimation of small frequencies
in contingency tables. J. Roy. Statisti. Soc., B, 18:113–124.

[Good1964] Good, I. J. 1964. The estimation of probabilities. MIT
Press, Cambridge, MA.

[Goodman1996] Goodman, Joshua. 1996. Parsing algorithms and met-
rics. In Proceedings of ACL-96, Sant Cruz, CA, USA.

[Goodman1998] Goodman, Joshua. 1998. Parsing Inside-Out. Ph.D.
thesis, Harvard University, Cambridge, MA.

[Graham, Harrison, and Ruzzo1980] Graham, S.L., M.A. Harrison,
and W.L. Ruzzo. 1980. An improved context-free recognizer. ACM
Transactions on Programming Languages and Systems, 2(3):415–462.

[Grefenstette1994] Grefenstette, G. 1994. Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Press, Boston.

[Hasida1986a] Hasida, Kôiti. 1986a. Conditioned unification fro natu-
ral language processing. In Coling, pages 85–87.

164 BIBLIOGRAPHY

[Hasida1986b] Hasida, Kôiti. 1986b. Sentence processing as constraint
transformation. In ECAI, pages 339–344.

[Höhfeld and Smolka1988] Höhfeld, Markus and Gert Smolka. 1988.
Definite relations over constraint languages. LILOG Report 53,
IWBS, IBM Deutschland, Postfach 80 08 80, 7000 Stuttgart 80, W.
Germany, October. To appear in the Journal of Logic Programming.

[Hindle and Rooth1991] Hindle, Donald and Mats Rooth. 1991. Struc-
tural ambiguity and lexical relations. In Proceedings of ACL, pages
229–236.

[Hindle and Rooth1993] Hindle, Donald and Mats Rooth. 1993. Struc-
tural ambiguity and lexical relations. Computational Linguistics,
18:103–120.

[Hofmann and Puzicha1998] Hofmann, Thomas and Jan Puzicha.
1998. Statistical models for co-occurrence data. Technical report,
Massachusetts Institute of Technology.

[Ide and Véronis1998] Ide, Nancy and Jean Véronis. 1998. Introduc-
tion to the special issue on word sense disambiguation: The state of
the art. Computational Linguistics, 24(1):1–40.

[Jaynes1957] Jaynes, Edwin T. 1957. Information theory and statistical
mechanics. Physical Review, 106:620–630.

[Jaynes1995] Jaynes, Edwin T. 1995. Probability Theory:
The Logic of Science. Fragmentary edition. available from
http://omega.math.albany.edu:8008/JaynesBook.html.

[Jelinek1976] Jelinek, F. 1976. Continuous speech recognition by statis-
tical methods. In Proceedings of the IEEE, volume 64, pages 532–56.

[Jelinek1998] Jelinek, Frederick. 1998. Statistical Methods for Speech
Recognition. MIT Press, Cambridge MA.

[Jelinek and Mercer1980] Jelinek, Frederick and Robert L. Mercer.
1980. Interpolated estimation of Markov source parameters from
sparse data. In Proceedings of the Workshop on Pattern Recognition
in Practice, Amsterdam, The Netherlands. North-Holland.

BIBLIOGRAPHY 165

[Jelinek, Mercer, and Roukos1992] Jelinek, Frederick, Robert L. Mer-
cer, and Salim Roukos. 1992. Principles of lexical language modeling
for speech recognition. In Sadaoki Furui and M. Mohan Sondhi,
editors, Advances in Speech Signal Processing. Mercer Dekker, Inc.

[Johnson1996] Johnson, Mark. 1996. Ranking LFG analyses. unpub-
lished manuscript.

[Johnson and Dörre1995] Johnson, Mark and Jochen Dörre. 1995.
Memoization of coroutined constraints. In ACL95, pages 100–107,
San Francisco. Morgan Kaufmann.

[Johnson et al.1999] Johnson, Mark, Stuart Geman, Stephen Canon,
Zhiyi Chi, and Stefan Riezler. 1999. Estimators for stochastic
”unification-based” grammars. In Proceedings of ACL.

[Juang and Rabiner1992] Juang, Biing-Hwang and Lawrence R. Ra-
biner. 1992. Issues in using hidden markov models for speech recog-
nition. In Sadaoki Furui and Mohan M. Sondhi, editors, Advances
in Speech Signal Processing. Marcel Dekker, New York.

[Kanamori and Horiuchi1987] Kanamori, Tadashi and Kenji Horiuchi.
1987. Construction of logic programs based on generalized un-
fold/fold rules. In Jean-Louis Lassez, editor, Logic Programming:
Proceedings of the Fourth International Conference, volume 2, pages
744–768, Cambridge, Massachusetts. The MIT Press.

[Kaplan and Bresnan1982] Kaplan, Ronald M. and Joan Bresnan.
1982. Lexical-Functional grammar: A formal system for grammatical
representation. In Joan Bresnan, editor, The Mental Representation
of Grammatical Relations. MIT Press, chapter 4, pages 173–281.

[Kaplan and Kay1994] Kaplan, Ronald M. and Martin Kay. 1994. Reg-
ular models of phonological rule systems. Computational Linguistics,
20(331-378):1–40.

[Karttunen1984] Karttunen, Lauri. 1984. Features and values. In
Proceedings of the 10th International Conference on Computational
Linguistics, pages 28–33, Stanford, Cal.

166 BIBLIOGRAPHY

[Karttunen1994] Karttunen, Lauri. 1994. Constructing Lexical Trans-
ducers. In Proceedings of the 15th International Conference on Com-
putational Linguistics, Coling, Kyoto, Japan.

[Kasper1987] Kasper, Robert T. 1987. A unification method for dis-
junctive feature descriptions. In Proceedings of the 25th Annual Meet-
ing of the ACL, Stanford University, pages 235–242, Stanford, Cal.

[Kasper and Rounds1986] Kasper, Robert T. and William C. Rounds.
1986. A logical semantics for feature structures. In Proceedings of
the 24th Annual Meeting of the ACL, Columbia University, pages
257–265, New York, N.Y.

[Katz1987] Katz, Slava M. 1987. Estimation of probabilities from
sparse data for the language model component of a speech recog-
nizer. IEEE Transactions on Acoustics, Speech and Signal Process-
ing, 35(3):400–401.

[Kay1979] Kay, Martin. 1979. Functional grammar. In Proceedings of
the Fifth Annual Meeting of the Berkeley Linguistics Society, Berke-
ley, CA.

[Kernighan, Church, and Gale1990] Kernighan, Mark D., Kenneth W.
Church, and William A. Gale. 1990. A spelling correction program
based on a noisy channel model. In Coling, pages 205–210.

[Knight1989] Knight, K. 1989. Unification: A multidisciplinary sur-
vey. Association for Computing Machinery, Computing Surveys,
21(1):93–124.

[Koskenniemi1983] Koskenniemi, Kimmo. 1983. Two-Level Morphol-
ogy: A General Computational Model for Word-Form Recognition
and Production. University of Helsinki.

[Krenn and Samuelsson1996] Krenn, Brigitte and Christer Samuels-
son. 1996. The linguist’s guide to statistics. Technical report, Uni-
versität des Saarlandes.

[Kuhn and De Mori1990] Kuhn, Roland and Renato De Mori. 1990.
A cache-based natural language model for speech recognition.

BIBLIOGRAPHY 167

IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(6):570–583.

[Lafferty, Sleator, and Temperley1992] Lafferty, John, Daniel Sleator,
and Davy Temperley. 1992. Grammatical trigrams: A probabilistic
model of link grammar. In Proceedings of the AAAI-92 Fall Sympo-
sium: Probabilistic Approaches to Natural Language, pages 89–97.

[Lang1994] Lang, Bernard. 1994. Recognition can be harder than
parsing. Computational Intelligence, 10.

[Lari and Young1990] Lari, K. and S.J. Young. 1990. The Estima-
tion of Stochastic Context-Free Grammars Using the Inside-Outside
Algorithm. Computers, Speech, and Language, 4(1):35–56.

[Lee1997] Lee, Lillian. 1997. Similarity-based approaches to natural
language processing. Technical Report TR-11-97, Harvard Univer-
sity.

[Levinson1983] Levinson, Stephen C. 1983. Pragmatics. Cambridge
University Press, Cambridge, England.

[Lyons1968] Lyons, John. 1968. Introduction to theoretical linguistics.
Cambridge University Press, Cambridge, England.

[Lyons1977] Lyons, John. 1977. Semantics. Cambridge University
Press, Cambridge, England.

[Mandelbrot1954] Mandelbrot, Benoit. 1954. Structure formelle des
textes et communication. Word, 10(1–27).

[Manning and Schütze1998] Manning,
Christopher and Hinrich Schütze. 1998. Foundations of Statisti-
cal Natural Language Processing. MIT Press, Cambridge MA. In
progress.

[Mark et al.1992] Mark, Kevin, Michael Miller, Ulf Grenander, and
Steve Abney. 1992. Parameter estimation for constrained context-
free language models. In Proceedings, Fifth DARPA Speech and Nat-
ural Language Workshop. Morgan Kaufman, San Mateo, CA.

168 BIBLIOGRAPHY

[Maxwell and Kaplan1989] Maxwell, John T. and Ronald M. Kaplan.
1989. An overview of disjunctive constraint satisfaction. In Proceed-
ings of the International Workshop on Parsing Technologies, pages
18–27, Pittsburgh, PA.

[Maxwell and Kaplan1993] Maxwell, John T. and Ronald M. Kaplan.
1993. The interface between phrasal and functional constraints. Com-
putational Linguistics, 19(4):571–590, December.

[Maxwell and Kaplan1996a] Maxwell, John T. and Ronald M. Kaplan.
1996a. An efficient parser for LFG. In First LFG Conference, Greno-
ble, France, August. http://www-csli.stanford.edu/user/mutt/.

[Maxwell and Kaplan1996b] Maxwell, John T. and Ronald M. Kaplan.
1996b. Unification-based parsers that automatically take advantage
of context freeness. unpublished manuscript.

[McLachlan and Krishnan1998] McLachlan, G.J. and T. Krishnan.
1998. The EM Algorithm and Extensions. John Wiley & Sons, New
York.

[Miller et al.1990] Miller, George A., Richard Beckwith, Christiane
Fellbaum, Derek Gross, and Katherine J. Miller. 1990. Introduction
to WordNet: An on-line lexical database. Journal of Lexicography,
3(4):235–244.

[Nadas1984] Nadas, Arthur. 1984. Estimation of probabilities in the
language model of the IBM speech recognition system. IEEE Trans-
actions on Acoustics, Speech and Signal Processing, ASSP-32(4):859–
861.

[Nadas1985] Nadas, Arthur. 1985. On Turing’s formula for word prob-
abilities. IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, ASSP-33(6):1414–1416.

[Nakano1991] Nakano, Mikio. 1991. Constraint projection: An efficient
treatment of disjunctive feature descriptions. In Proceedings of the
Twenty-Ninth Annual Meeting of the ACL, pages 307–314, Berkeley,
CA. Association for Computational Linguistics.

BIBLIOGRAPHY 169

[Nelson and Oppen1980] Nelson, Greg and Derek C. Oppen. 1980. Fast
decision procedures based on congruence closure. Journal of the As-
sociation for Computing Machinery, 27(2):356–364.

[Ney and Essen1993] Ney, Hermann and Ute Essen. 1993. Estimat-
ing ‘small’ probabilities by leaving-one-out. In European Conference
on Speech Communication and Technology. Berlin, Germany, pages
2239–2242.

[Ney, Essen, and Kneser1994] Ney, Hermann, Ute Essen, and Reinhard
Kneser. 1994. On structuring probabilisitic dependences in stochastic
language modeling. Computers, Speech, and Language, 8(1):1–38.

[Nießen et al.1998] Nießen, S., S. Vogel, H. Ney, and C. Tillmann. 1998.
A DP based search algorithm for statistical machine translation. In
Coling-ACL, pages 960–967.

[O’Boyle, Owens, and Smith1994] O’Boyle, P., M. Owens, and F. J.
Smith. 1994. A weighted average n-gram model of natural language.
Computers, Speech, and Language, 8(4).

[Oflazer1996] Oflazer, Kemal. 1996. Error-tolerant finite state recog-
nition with applications to morphological analysis and spelling cor-
rection. Computational Linguistics, 22(1):73–90.

[Pearl1988] Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kaufmann, San
Mateo.

[Pereira and Schabes1992] Pereira, Fernando C. N. and Yves Schabes.
1992. Inside-outside reestimation from partially bracketed corpora.
In ACL, pages 128–135.

[Pereira, Tishby, and Lee1993] Pereira, Fernando C. N., Naftali Z.
Tishby, and Lillian Lee. 1993. Distributional clustering of English
words. In ACL, pages 183–190.

[Pereira and Warren1983] Pereira, Fernando C. N. and David H. D.
Warren. 1983. Parsing as deduction. In Proceedings of the 21th

170 BIBLIOGRAPHY

Annual Meeting of the Association for Computational Linguistics,
pages 137–144, MIT, Cambridge, MA, June.

[Pereira and Warren1980] Pereira, Fernando C.N. and David H.D.
Warren. 1980. Definite clause grammars for language analysis—a
survey of the formalism and a comparison with augmented transi-
tion networks. Artificial Intelligence, 13:231–278.

[Pereira and Warren1983] Pereira, Fernando C.N. and David H.D.
Warren. 1983. Parsing as deduction. In The Proceedings of the
21st Annual Meeting of the Association for Computational Linguis-
tics, pages 137–144, M.I.T., Cambridge, Massachusetts.

[Pollard and Sag1987] Pollard, Carl and Ivan A. Sag. 1987.
Information-Based Syntax and Semantics, Volume I. Number 13
in CSLI Lecture Notes. CSLI, Stanford University.

[Riezler1998] Riezler, Stefan. 1998. Probabilistic constraint logic pro-
gramming. Technical report, Universität Tübingen.

[Rissanen1989] Rissanen, Jorma. 1989. Stochastic Complexity in Sta-
tistical Inquiry. World Scientific, Singapore.

[Romesburg1990] Romesburg, H. Charles. 1990. Cluster Analysis for
Researchers. Krieger Publishing Company, Malabar, Florida.

[Rooth1995] Rooth, Mats. 1995. Two-dimensional clusters in gram-
matical relations. Paper presented at IJCAI Lexicon workshop.

[Samuelsson1996] Samuelsson, Christer. 1996. Relating turing’s for-
mula and zipf’s law. Procs. 4th Workshop on Very Large Corpora,
pages 70–78.

[Saul and Pereira1997] Saul, L. and F. Pereira. 1997. Aggregate and
mixed-order markov models for statistical language processing. In
Second Conference on Empirical Methods in Natural Language Pro-
cessing.

[Schütze1992] Schütze, Hinrich. 1992. Dimensions of meaning. In
Proceedings of Supercomputing ’92, pages 787–796, Minneapolis MN.

BIBLIOGRAPHY 171

[Schütze1993] Schütze, Hinrich. 1993. Word space. In Stephen José
Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neu-
ral Information Processing Systems 5. Morgan Kaufmann Publishers,
San Mateo CA, pages 895–902.

[Schütze1997] Schütze, Hinrich. 1997. Ambiguity Resolution in Lan-
guage Learning. Number 71 in CSLI Lecture Notes. CSLI Publica-
tions, Stanford, CA.

[Shannon1948] Shannon, Claude E. 1948. The mathematical theory of
communication. Bell System Technical Journal, 27:398–403.

[Shemtov1997] Shemtov, Hadar. 1997. Ambiguity Management in Nat-
ural Language Generation. Ph.D. thesis, Stanford.

[Sleator and Temperley1991] Sleator, D. and D. Temperley. 1991.
Parsing english with a link grammar. Technical report, Carnegie
Mellon University.

[Smolka1988] Smolka, Gert. 1988. A feature logic with subsorts.
LILOG Report 33, IWBS, IBM Deutschland, Postfach 80 08 80, 7000
Stuttgart 80, W. Germany, May.

[Smolka1993] Smolka, Gert. 1993. Residuation and guarded rules for
constraint logic programming. In Frédéric Benhamou and Alain
Colmerauer, editors, Constraint Logic Programming: Selected Re-
search. The MIT Press, Cambridge, Mass, chapter 22, pages 405–
419.

[Sánchez and Benedi1997] Sánchez, J-A and J-M Benedi. 1997. Con-
sistency of stochastic context-free grammars from probabilistic es-
timation based on growth transformations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(9):1052ff.

[Tamaki and Sato1984] Tamaki, Hisao and Taisuke Sato. 1984. Un-
fold/Fold transformation of logic programs. In S. Å. Tärnlund, ed-
itor, Proceedings of the Second International Conference on Logic
Programming, pages 127–138, Uppsala, Sweden.

172 BIBLIOGRAPHY

[Tsuda1993] Tsuda, Hiroshi. 1993. A guide to CU-prolog III. Technical
report, ICOT.

[Tsuda, Hasida, and Sirai1989] Tsuda, Hiroshi, Koiti Hasida, and
Hidetosi Sirai. 1989. JPSG parser on constraint logic programming.
In Proceedings of 4th ACL European Chapter, pages 95–102.

[Uszkoreit1984] Uszkoreit, Hans Jürgen. 1984. Word Order and Con-
stituent Structure in German. Ph.D. thesis, Univ. of Texas, Austin,
December.

[van Noord1995] van Noord, Gertjan. 1995. The intersection of finite
state automata and definite clause grammars. In ACL95, San Fran-
cisco. Morgan Kaufmann.

[Winkler1995] Winkler, Gerhard. 1995. Image Analysis, Random
Fields, and Dynamic Monte Carlo Methods. Springer.

[Wu and Wong1998] Wu, Dekai and Hongsing Wong. 1998. Machine
translation with a stochastic grammatical channel. In Coling-ACL,
pages 1408–1415.

[Younger1967] Younger, D. H. 1967. Recognition and parsing of
context-free languages in time n3. Information and Control, 10:189–
208.

