1,304 research outputs found

    Conceptualization and scalable execution of big data workflows using domain-specific languages and software containers

    Get PDF
    Big Data processing, especially with the increasing proliferation of Internet of Things (IoT) technologies and convergence of IoT, edge and cloud computing technologies, involves handling massive and complex data sets on heterogeneous resources and incorporating different tools, frameworks, and processes to help organizations make sense of their data collected from various sources. This set of operations, referred to as Big Data workflows, requires taking advantage of Cloud infrastructures’ elasticity for scalability. In this article, we present the design and prototype implementation of a Big Data workflow approach based on the use of software container technologies, message-oriented middleware (MOM), and a domain-specific language (DSL) to enable highly scalable workflow execution and abstract workflow definition. We demonstrate our system in a use case and a set of experiments that show the practical applicability of the proposed approach for the specification and scalable execution of Big Data workflows. Furthermore, we compare our proposed approach’s scalability with that of Argo Workflows – one of the most prominent tools in the area of Big Data workflows – and provide a qualitative evaluation of the proposed DSL and overall approach with respect to the existing literature.publishedVersio

    Conceptualization and scalable execution of big data workflows using domain-specific languages and software containers

    Get PDF
    Big Data processing, especially with the increasing proliferation of Internet of Things (IoT) technologies and convergence of IoT, edge and cloud computing technologies, involves handling massive and complex data sets on heterogeneous resources and incorporating different tools, frameworks, and processes to help organizations make sense of their data collected from various sources. This set of operations, referred to as Big Data workflows, requires taking advantage of Cloud infrastructures’ elasticity for scalability. In this article, we present the design and prototype implementation of a Big Data workflow approach based on the use of software container technologies, message-oriented middleware (MOM), and a domain-specific language (DSL) to enable highly scalable workflow execution and abstract workflow definition. We demonstrate our system in a use case and a set of experiments that show the practical applicability of the proposed approach for the specification and scalable execution of Big Data workflows. Furthermore, we compare our proposed approach’s scalability with that of Argo Workflows – one of the most prominent tools in the area of Big Data workflows – and provide a qualitative evaluation of the proposed DSL and overall approach with respect to the existing literature.publishedVersio

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    New design companions opening up the process through self-made computation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-75).This thesis is about man and machine roles in the early conception of designs where it investigates computational methods that support creativity and surprise. It discusses the relationship between human and digital medium in the enterprise of Computer-Aided Design', and Self-Made Computation to empower the designer as driver of digital processes taking the computer as an active collaborator, or a sharp apprentice, rather than a master. In a design process tool personalization enables precise feedback between human and medium. In the field of architecture, every project is unique, and there are as many design workflows as designers. However current off-the-shelf design software has an inflexible built-in structure targeting general problem-solving that can interfere with non-standard design needs. Today, those with programming agility look for customized processes that assist early problem-finding instead of converging solutions. Contributing to alleviate software frustrations, smaller tailor-made applications prove to be precisely tailored, viable and enriching companions in certain moments of the project development. Previous work on the impact of standardized software for design has focused on the figure of the designer as a tool-user, this thesis addresses the question from the vision of the designer as a tool-maker. It investigates how self-made software can become a design companion for computational thinking - observed here as a new mindset that shifts design workflows, rather than a technique. The research compares and diagrams designer-toolmaker work where self-made applets where produced, as well as the structures in the work of rule-maker artisans. The main contributions are a comparative study of three models of computer-aided design, their history and technical review, their influence in design workflows and a graphical framework to better compare them. Critical analysis reveals a common structure to tailor a creative and explorative design workflow. Its advantages and limitations are exposed to guide designers into alternative computational methods for design processes. Keywords: design workflow; computation; applets; self-made tools; diagrams; design process; feedback; computers; computer-assisted-designby Laia Mogas-Soldevila.S.M

    Context-Aware and Secure Workflow Systems

    Get PDF
    Businesses do evolve. Their evolution necessitates the re-engineering of their existing "business processes”, with the objectives of reducing costs, delivering services on time, and enhancing their profitability in a competitive market. This is generally true and particularly in domains such as manufacturing, pharmaceuticals and education). The central objective of workflow technologies is to separate business policies (which normally are encoded in business logics) from the underlying business applications. Such a separation is desirable as it improves the evolution of business processes and, more often than not, facilitates the re-engineering at the organisation level without the need to detail knowledge or analyses of the application themselves. Workflow systems are currently used by many organisations with a wide range of interests and specialisations in many domains. These include, but not limited to, office automation, finance and banking sector, health-care, art, telecommunications, manufacturing and education. We take the view that a workflow is a set of "activities”, each performs a piece of functionality within a given "context” and may be constrained by some security requirements. These activities are coordinated to collectively achieve a required business objective. The specification of such coordination is presented as a set of "execution constraints” which include parallelisation (concurrency/distribution), serialisation, restriction, alternation, compensation and so on. Activities within workflows could be carried out by humans, various software based application programs, or processing entities according to the organisational rules, such as meeting deadlines or performance improvement. Workflow execution can involve a large number of different participants, services and devices which may cross the boundaries of various organisations and accessing variety of data. This raises the importance of _ context variations and context-awareness and _ security (e.g. access control and privacy). The specification of precise rules, which prevent unauthorised participants from executing sensitive tasks and also to prevent tasks from accessing unauthorised services or (commercially) sensitive information, are crucially important. For example, medical scenarios will require that: _ only authorised doctors are permitted to perform certain tasks, _ a patient medical records are not allowed to be accessed by anyone without the patient consent and _ that only specific machines are used to perform given tasks at a given time. If a workflow execution cannot guarantee these requirements, then the flow will be rejected. Furthermore, features/characteristics of security requirement are both temporal- and/or event-related. However, most of the existing models are of a static nature – for example, it is hard, if not impossible, to express security requirements which are: _ time-dependent (e.g. A customer is allowed to be overdrawn by 100 pounds only up-to the first week of every month. _ event-dependent (e.g. A bank account can only be manipulated by its owner unless there is a change in the law or after six months of his/her death). Currently, there is no commonly accepted model for secure and context-aware workflows or even a common agreement on which features a workflow security model should support. We have developed a novel approach to design, analyse and validate workflows. The approach has the following components: = A modelling/design language (known as CS-Flow). The language has the following features: – support concurrency; – context and context awareness are first-class citizens; – supports mobility as activities can move from one context to another; – has the ability to express timing constrains: delay, deadlines, priority and schedulability; – allows the expressibility of security policies (e.g. access control and privacy) without the need for extra linguistic complexities; and – enjoy sound formal semantics that allows us to animate designs and compare various designs. = An approach known as communication-closed layer is developed, that allows us to serialise a highly distributed workflow to produce a semantically equivalent quasi-sequential flow which is easier to understand and analyse. Such re-structuring, gives us a mechanism to design fault-tolerant workflows as layers are atomic activities and various existing forward and backward error recovery techniques can be deployed. = Provide a reduction semantics to CS-Flow that allows us to build a tool support to animate a specifications and designs. This has been evaluated on a Health care scenario, namely the Context Aware Ward (CAW) system. Health care provides huge amounts of business workflows, which will benefit from workflow adaptation and support through pervasive computing systems. The evaluation takes two complementary strands: – provide CS-Flow’s models and specifications and – formal verification of time-critical component of a workflow

    The BioLighthouse: Reusable Software Design for Bioinformatics

    Get PDF
    Advances in next-generation sequencing have accelerated the field of microbiology by making accessible a wealth of information about microbiomes. Unfortunately, microbiome experiments are among the least reproducible in terms of bioinformatics. Software tools are often poorly documented, under-maintained, and commonly have arcane dependencies requiring significant time investment to configure them correctly. Microbiome studies are multidisciplinary efforts but communication and knowledge discrepancies make accessibility, reproducibility, and transparency of computational workflows difficult. The BioLighthouse uses Ansible roles, playbooks, and modules to automate configuration and execution of bioinformatics workflows. The roles and playbooks act as virtual laboratory notebooks by documenting the provenance of a bioinformatics workflow. The BioLighthouse was tested for platform dependence and data-scale dependence with a microbial profiling pipeline. The microbial profiling pipeline consisted of Cutadapt, FLASH2, and DADA2. The pipeline was tested on 3 canola root and soil microbiome datasets with differing orders of magnitude of data: 1 sample, 10 samples, and 100 samples. Each dataset was processed by The BioLighthouse with 10 unique parameter sets and outputs were compared across 8 computing environments for a total of 240 pipeline runs. Outputs after each step in the pipeline were tested for identity using the Linux diff command to ensure reproducible results. Testing of The BioLighthouse suggested no platform or data-scale dependence. To provide an easy way of maintaining environment reproducibility in user-space, Conda and the channel Bioconda were used for virtual environments and software dependencies for configuring bioinformatics tools. The BioLighthouse provides a framework for developers to make their tools accessible to the research community, for bioinformaticians to build bioinformatics workflows, and for the broader research community to consume these tools at a high level while knowing the tools will execute as intended

    Scientific Workflows: Past, Present and Future

    Get PDF
    International audienceThis special issue and our editorial celebrate 10 years of progress with data-intensive or scientific workflows. There have been very substantial advances in the representation of workflows and in the engineering of workflow management systems (WMS). The creation and refinement stages are now well supported, with a significant improvement in usability. Improved abstraction supports cross-fertilisation between different workflow communities and consistent interpretation as WMS evolve. Through such re-engineering the WMS deliver much improved performance, significantly increased scale and sophisticated reliability mechanisms. Further improvement is anticipated from substantial advances in optimisation. We invited papers from those who have delivered these advances and selected 14 to represent today's achievements and representative plans for future progress. This editorial introduces those contributions with an overview and categorisation of the papers. Furthermore, it elucidates responses from a survey of major workflow systems, which provides evidence of substantial progress and a structured index of related papers. We conclude with suggestions on areas where further research and development is needed and offer a vision of future research directions
    • 

    corecore