45 research outputs found

    Modelling and Motion Analysis of a Pill-Sized Hybrid Capsule Robot

    Get PDF
    This paper presents a miniature hybrid capsule robot for minimally invasive in-vivo interventions such as capsule endoscopy within the GI (gastrointestinal) tract. It proposes new modes of operation for the hybrid robot namely hybrid mode and anchoring mode. The hybrid mode assists the robot to open an occlusion or to widen a narrowing. The anchoring mode enables the robot to stay in a specific place overcoming external disturbances (e.g. peristalsis) for a better and prolonged observation. The modelling of the legged, hybrid and anchoring modes are presented and analysed. Simulation results show robot propulsions in various modes. The hybrid capsule robot consisting four operating modes is more effective for the locomotion and observation within GI tract when compared to the locomotion consisting a single mean of locomotion as the hybrid robot can switch among the operating modes to suit the situation/task

    Biologically Inspired Robots

    Get PDF

    Dynamic Legged Mobility---an Overview

    Get PDF
    Ability to translate to a goal position under the constrains imposed by complex environmental conditions is a key capability for biological and artificial systems alike. Over billions of years evolutionary processes have developed a wide range of solutions to address mobility needs in air, in water and on land. The efficacy of such biological locomotors is beyond the capabilities of engineering solutions that has been produced to this date. Nature has been and will surely remain to be a source of inspiration for engineers in their quest to bring real mobility to their creations. In recent years a new class of dynamic legged terrestrial robotic systems \cite{Autumn-Buehler-Cutkosky.SPIE2005,Raibert.Book1986,Raibert-Blankesport-Nelson.IFAC2008,Saranli-Buehler-Koditschek.IJRR2001} have been developed inspired by, but without mimicking, the examples from the Nature. The experimental work with these platforms over the past decade has led to an improved appreciation of legged locomotion. This paper is an overview of fundamental advantages dynamic legged locomotion offers over the classical wheeled and tracked approaches

    Bipedal Locomotion: A Fractional CPG for Generating Patterns

    Get PDF
    Proceedings of the 10th Conference on Dynamical Systems Theory and ApplicationsThere has been an increase interest in the study of animal locomotion. Many models for the generation of locomotion patterns of different animals, such as centipedes, millipedes, quadrupeds, hexapods, bipeds, have been proposed. The main goal is the understanding of the neural bases that are behind animal locomotion. In vertebrates, goal-directed locomotion is a complex task, involving the central pattern generators located somewhere in the spinal cord, the brainstem command systems for locomotion, the control systems for steering and control of body orientation, and the neural structures responsible for the selection of motor primitives. In this paper, we focus in the neural networks that send signals to the muscle groups in each joint, the so-called central pattern generators (CPGs). We consider a fractional version of a CPG model for locomotion in bipeds. A fractional derivative) Dα f (x), with α non-integer, is a generalization of the concept of an integer derivative, where α = 1 The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a four cells model, where each cell is modelled by a system of ordinary differential equations. The coupling between the cells allows two independent permutations, and, as so, the system has D2 symmetry. We consider 0 < α ≤ 1 and we compute, for each value of α, the amplitude and the period of the periodic solutions identified with two legs' patterns in bipeds. We find the amplitude and the period increase as α varies from zero up to one

    Fractional central pattern generators for bipedal locomotion

    Get PDF
    Locomotion has been a major research issue in the last few years. Many models for the locomotion rhythms of quadrupeds, hexapods, bipeds and other animals have been proposed. This study has also been extended to the control of rhythmic movements of adaptive legged robots. In this paper, we consider a fractional version of a central pattern generator (CPG) model for locomotion in bipeds. A fractional derivative D α f(x), with α non-integer, is a generalization of the concept of an integer derivative, where α=1. The integer CPG model has been proposed by Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and Golubitsky. It is a network of four coupled identical oscillators which has dihedral symmetry. We study parameter regions where periodic solutions, identified with legs’ rhythms in bipeds, occur, for 0<α≤1. We find that the amplitude and the period of the periodic solutions, identified with biped rhythms, increase as α varies from near 0 to values close to unity

    Design of Soft, Modular Appendages for a Bio-inspired Multi-Legged Terrestrial Robot

    Full text link
    Soft robots have the ability to adapt to their environment, which makes them suitable for use in disaster areas and agricultural fields, where their mobility is constrained by complex terrain. One of the main challenges in developing soft terrestrial robots is that the robot must be soft enough to adapt to its environment, but also rigid enough to exert the required force on the ground to locomote. In this paper, we report a pneumatically driven, soft modular appendage made of silicone for a terrestrial robot capable of generating specific mechanical movement to locomote and transport loads in the desired direction. This two-segmented soft appendage uses actuation in between the joint and the lower segment of the appendage to ensure adequate rigidity to exert the required force to locomote. A prototype of a soft-rigid-bodied tethered physical robot was developed and two sets of experiments were carried out in both air and underwater environments to assess its performance. The experimental results address the effectiveness of the soft appendage to generate adequate force to navigate through various environments and our design method offers a simple, low-cost, and efficient way to develop terradynamically capable soft appendages that can be used in a variety of locomotion applications
    corecore