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Abstract: There has been an increase interest in the study of animal locomotion. 
Many models for the generation of locomotion patterns of different animals, such 
as centipedes, millipedes, quadrupeds, hexapods, bipeds, have been proposed. 
The main goal is the understanding of the neural bases that are behind animal 
locomotion. In vertebrates, goal-directed locomotion is a complex task, involving 
the central pattern generators located somewhere in the spinal cord, the brainstem 
command systems for locomotion, the control systems for steering and control of 
body orientation, and the neural structures responsible for the selection of motor 
primitives.
In this paper, we focus in the neural networks that send signals to the muscle 
groups in each joint, the so-called central pattern generators (CPGs). We consider 
a fractional version of a CPG model for locomotion in bipeds. A fractional 
derivative )(xfD� , with �  non-integer, is a generalization of the concept of an 
integer derivative, where .1��  The integer CPG model has been proposed by 
Golubitsky, Stewart, Buono and Collins, and studied later by Pinto and 
Golubitsky. It is a four cells model, where each cell is modelled by a system of 
ordinary differential equations. The coupling between the cells allows two 
independent permutations, and, as so, the system has symmetry. We consider 

2
D

10 �� �  and we compute, for each value of ,�  the amplitude and the period 
of the periodic solutions identified with two legs' patterns in bipeds. We find that 
the amplitude and the period increase as �  varies from zero up to one. 

1. Introduction 

Animal locomotion is a complex mechanism that involves not only the neural networks located in the 

spinal cord (CPGs), that are capable of producing the rhythms associated to different animal gaits, but 

but also the brainstem command systems, the steering and posture control systems, and in a top layer, 

the structures that decide which motor pattern is to be activated at each moment of time (Grillner et

al, 2008). 



In this study, we focus mainly on the rhythmic generators – the CPGs. Mathematically, CPGs 

consist of networks of identical systems of ordinary differential equations, where the individual 

systems model (collections of) neurons (or cells) (Collins & Stewart, 1993a; Collins & Stewart, 

1993b; Collins & Stewart, 1994; Kopell & Ermentrout, 1988; Golubitsky et al, 1998; Golubitsky et al, 

1999). In the field of robotics, there has been an increase use of systems of coupled oscillators, 

inspired in animal CPGs, to control locomotion in robots (Taga et al, 1991; Liu et al, 2008; Baydin, 

2008; Righetti & Ijspeert, 2008).. The interesting properties of these dynamical systems, such as limit 

cycle behaviour, phase locking modes, robustness against small perturbations, smooth online 

modulation of trajectories, by changes in parameter values of the equations, and, most important, their 

ability to produce sustained rhythmic activation patterns even when isolated from external stimuli, 

make them an attractive option to model the control of legged robot locomotion for bipedal, 

quadrupedal and other designs. ((Marder & Bucher, 2001; Matos et al, 2009, Righetti et al, 2006).  

Golubitsky, Stewart, Buono and Collins (Golubitsky et al, 1998; Golubitsky et al, 1999) propose 

models for locomotion CPGs for -legged animals, for all values of n2 .��n  These networks consist 

of  coupled identical cells, arranged in two cycles of  cells, that generate the rhythms seen in 

the animal gaits. These phase relations are explained by the bilateral symmetry of animals and the 

cyclic translational symmetry presented in the model. Similar network architectures also generate 

locomotion patterns of legless animals, such as worms, snakes and lampreys, where the term “leg” 

should be interpreted as “muscular unit”. These new structures for CPG models are derived assuming 

that each joint receives signals from two neurons. This reasoning draws an analogy with muscular 

action in real joints, since two muscle groups, flexors and extensors, control most joints. Thus, 

abstractly, CPG models control muscle groups rather than legs and minimal CPG networks should 

have two cells per leg. 

n4 n2

The network architecture LEG for the central pattern generator for bipedal legs rhythms studied 

here is shown in Fig.1. 
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Fig. 1. CPG network LEG for the control of biped legs. Cells 1 and 3 send signals to the left leg, cells 
2 and 4 send signals to the right leg. 

 



The CPG network LEG consists of four coupled identical systems of ordinary differential 

equations. Each system models a cell (neuron). In the graph of Fig. 1, the nodes represent the cells 

and the arrows represent the couplings. The existence of three different arrows means three distinct 

coupling strengths. This network is capable of producing periodic solution types identified with biped 

locomotion rhythms, namely, walk, run, two-legged jump, two-legged hop, hesitation-walk, 

asymmetric hop, skip, gallop, and one-legged hop (Pinto et al, 2006). 

In this paper we consider a fractional version of the CPG LEG represented in Fig.1. We vary the 

order of � and we analyze the amplitude and period changes of two periodic solutions produced by 

the four-cell CPG model and identified with legs’ rhythms in bipeds in the run and in the two-legged 

jump. 

 

2. Fractional calculus - summary 

Fractional calculus (FC) is a generalization of the ordinary integer differentiation and integration to an 

arbitrary order (Oldham & Spanier, 1974; Samko et al, 1993, Miller & Ross, 1993). The subject was 

initiated in 1695 by Leibniz that sent a letter to L’Hospital with the question: “Can the meaning of 

derivatives with integer order be generalized to derivatives with non-integer orders?”. In the last two 

decades we witnessed an increasing interest in the FC and relevant applications emerged in the areas 

of physics and engineering (Outstaloup, 1991; Mainardi, 1996, Machado , 1997; Nigmatullin, 2006; 

Podlubny, 1999; Tenreiro Machado, 2001; Chen & Moore, 2002; Baleanu, 2009; Tenreiro Machado, 

2009). 

There are several definitions of fractional derivatives, being three of the most important the 

Riemann - Liouville, the Grunwald - Letnikov, and the Caputo given by: 
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where  is the Euler’s gamma function, � 	 � �x  means the integer part of x, and h is the step time 

increment. 

It is also possible to generalize several results based on transforms, yielding expressions such as 

the Laplace expression:  
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where s and L represent the Laplace variable and operator, respectively. 

These definitions demonstrate that fractional derivatives capture the history of the variable, or, 

by other words, have memory, contrary to integer derivatives, that are local operators. 

The Grunwald - Letnikov formulation inspires the numerical calculation of the fractional 

derivative based on the approximation of the time increment h through the sampling period T and the 

series truncation at the rth term. This method is often denoted as Power Series Expansion (PSE) 

yielding the equation in the z – domain: 
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where � 	 � 	� txZzX �   and z and Z represent the z-transform variable and operator, respectively. 

In fact, expression (2) represents the Euler (or first backward difference) approximation in the 

zs �  discretization scheme, being the Tustin approximation another possibility. The Euler and 

Tustin rational expressions, � 	 � 	1111
0
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zH  respectively, are often 

called generating approximants of zero and first order, respectively. Therefore, the generalization of 

these conversion methods leads to the non-integer order results: 
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We can obtain a family of fractional differentiators generated by � 	1
0


zH �  and � 	1
1


zH �  

weighted by the factors p and , yielding: p
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In order to get a rational expression, the final approximation corresponds to a PSE or a rational 

fraction expansion. This approach is often denoted by Continued Fraction Expansion (CFE) of order 

, based on a Padé expansion in the neighborhood of ��k 01 �
z , yielding: 



 � 	
� �



� �



�


k
i

izib

k
i

izia
zkH

0

01 , "�ibia ,  (8) 

Since one parameter is linearly dependent, usually it is established that  10 �b . 

3. CPG model for bipeds - review 

In this chapter we review the work of Pinto and Golubitsky (Pinto & Golubitsky, 2006) for the CPG 

model for legs rhythms in bipeds. We state the general class of differential equations corresponding to 

LEG and we review the so-called  theory (Golubitsky & Stewart, 2002) that helps to identify 

periodic solutions produced by CPG LEG with known biped locomotion patterns. 

KH /

3.1 .CPG LEG – equations and symmetries 

The class of ordinary differential equations (ODEs) governing the CPG model in Fig.1 is the 

following:  
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where is the cell  variables, k
ix "� 4,3,2,1�i ��k is the dimension of the cells’ internal dynamics, 

and is an arbitrary mapping. � 	k �"
4

: kF " F  is the same for all cells, since all cells are assumed to 

be identical. 

The coupled cell system in (1) allows two independent transpositions, namely, )34)(12(�# , 

that switches muscle groups between legs, and )24)(13(�� , that switches muscle groups in each 

leg. These two independent permutations generate the symmetry group of order 4, denoted as  

and given by: 

2D

 )(2)(22 �# ZZD $�  (10) 

This CPG model LEG is capable of producing eight periodic solutions corresponding to the 

bipedal gaits of two-legged hop, two-legged jump, walk, run, one-legged hop, hesitation walk, gallop, 

skip, and asymmetric hop. See Pinto and Golubitsky (Pinto & Golubitsky, 2006), for the reasoning of 

this identification.  

 

 



3.2 . The  theory KH /

The identification of the periodic solutions of the network model LEG with biped leg rhythms is done 

using symmetry arguments. The  theorem (Golubitsky & Stewart, 2002) uses the symmetry 

group of a network to enumerate those pairs of spatiotemporal symmetry subgroups 

KH /

H  and K  that 

can correspond to periodic solutions of differential equations associated to the network. These 

solutions are then identified with known biped locomotion patterns. 

Let  be a periodic solution of a coupled cell system with symmetry group  Define 

 as the subgroup of all spatial symmetries and 

)(tx .

%K %H  as the subgroup of all spatiotemporal 

symmetries. Mathematically, we have: 
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In what follows, we discuss how symmetries of periodic solutions ( H  and K ), in the CPG 

model LEG, can correspond to the biped gaits of run. A similar reasoning applies to the other bipedal 

gaits. 

Run is a gait in which the two legs move half period out-of-phase. Moreover, muscle groups in 

each joint move in unison (Mann, 1982; Mann et al, 1986). This can be explained by the run 

symmetry group pair � 	  The permutation ).,2(, �DKH � �  is a spatial symmetry for the run. This 

implies that muscles inside each leg receive the same signal, that is, cells 1 and 3 receive the same 

signal, and analogously for cells 2 and 4. As  is a spatiotemporal symmetry for the run, this forces 

the two distinct signals to be phase shifted by one half period. Thus, cells in the left leg joints and 

cells in the right leg joint receive the same signal but with a phase shift of one half period. 

2D

For H  and K  to correspond to symmetries of periodic solutions of CPG LEG, there are some 

algebraic properties to be satisfied, that simplify for this system,  namely, must be a cyclic 

group (Pinto & Golubitsky, 2006, and references therein). 

KH /

To conclude, we note that the  theory may be used to infer the CPG structure, for 

locomotion of -legged animals, from the desired types of periodic solutions. Moreover, Buono & 

Golubitsky (Buono & Golubitsky, 2001) have used this mathematical tool to prove that there is only 

one CPG model with eight cells capable of producing periodic solution types identified with the 

quadruped walk, trot and pace.  

KH /

n2

 

3.3. Results and discussion 

We simulate the fractional version of the coupled cell system (9), given by:  
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where �D , with �  non-integer, is a generalization of the concept of an integer derivative, where 

.1��  

We consider the Morris-Lecar equations (Morris & Lecar, 1981) as internal cell dynamics. The 

coupling is linearly diffusive. The nondimensionalized Morris-Lecar equations (Rinzel & Ermentrout, 

1989) are a system of two ordinary differential equations given by: 
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We adopt the PSE method for the approximation of the fractional derivative in the discrete time 

numerical integration. However, several experiments demonstrated that it was required a slight 

adaption to the standard approach based on a simple truncation of the series. In fact, since our 

objective is to generate limit cycles, the truncation corresponds to a diminishing of the gain (Tenreiro 

Machado, 2009) and, consequently, leads to difficulties in the promotion of periodic orbits. Therefore, 

in order to overcome this limitation, we decided to include a gain adjustment factor corresponding to 

the sum of the truncated series coefficients. In this line of thought, since the sum of the coefficients 

from  up to  must be 1.0 (Tenreiro Machado, 2009), the fractional derivative 

approximation adopted in the sequel is: 

1�k )�k

 � 	�  � 	 � 	
� 	

� 	 � 	
� 	 � 	zX

r

k
kz

kk

k

T
r

k kk

k
txDZ

�
�
�

�

�
�
�

�
�
�



�

�





�
�

�

�

�
�

�

�
�
� �


�

!

0 1!
111

1

1 1!
11

�
�

��
��  (15) 

The dynamics governing the fractional CPG model LEG is given by:  
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where  are the coupling constants and "�ijk t* is the time increment. 

The parameter values of the Morris-Lecar equations, in the numerical simulations, are chosen to 

be  ,,2.0,3.0,4.0,1.0 4321 ���� vvvv 8.1,6.0 �� kl gg  8.0,8.1 �
� kl vv  and   .1�i

 

Table 1. Initial conditions for the bipedal gaits of  two-legged jump,  and run, where 
represents the initial condition of cell  at sample  

� 	 � 	� 	kykx ii ,
i .k

Gait Initial conditions 

two-legged jump 

;.=;y.=;y.=;y.=;y.=y
;.=;x.=;x.=;x.=;x.=x

;.=;y.=;y.=;y.=;y.=y
;.=;x.=;x.=;x.=;x.=x
;.=;y.=;y.=;y.=;y.=y

;.=;x.=;x.=;x.=;x.=x
;.=;y.=;y.=;y.=;y.=y

;.=;x.=;x.=;x.=;x.=x

14400)5(14530)4(14680)3(14820)2(14970)1(
05020)5(04930)4(04840)3(04770)2(04700)1(

14400)5(14530)4(14680)3(14820)2(14970)1(
05020)5(04930)4(04840)3(04770)2(04700)1(
43400)5(43370)4(43320)3(43260)2(43190)1(

28100)5(28350)4(28610)3(28860)2(29110)1(
43400)5(43370)4(43320)3(43260)2(43190)1(

28100)5(28350)4(28610)3(28860)2(29110)1(

44444

44444

33333

33333

22222

22222

11111

11111

 

Run

;.=;y.=;y.=;y.=;y.=y
;.=;x.=;x.=;x.=;x.=x
;.=;y.=;y.=;y.=;y.=y

;.=;x.=;x.=;x.=;x.=x
;.=;y.=;y.=;y.=;y.=y
;.=;x.=;x.=;x.=;x.=x

;.=;y.=;y.=;y.=;y.=y
;.=;x.=;x.=;x.=;x.=x

14400)5(14530)4(14680)3(14820)2(14970)1(
05020)5(04930)4(04840)3(04770)2(04700)1(
43400)5(43370)4(43320)3(43260)2(43190)1(

28100)5(28350)4(28610)3(28860)2(29110)1(
14400)5(14530)4(14680)3(14820)2(14970)1(
05020)5(04930)4(04840)3(04770)2(04700)1(

43400)5(43370)4(43320)3(43260)2(43190)1(
28100)5(28350)4(28610)3(28860)2(29110)1(

44444

44444

33333

33333

22222

22222

11111

11111

 

 

In Tables 1 and 2, we show initial conditions and parameter values for the periodic orbits, 

identified with the biped gaits of two-legged jump (Figure 2), and run (Figure 3). Each simulation was 

executed until a stable periodic solution was found. Moreover, it was considered ]1,0]��  and, during 



the numerical experiments, were evaluated cases in steps of .01.0�*�  We computed the amplitude 

A and the period T of the solutions of system (16), for each value leading to Figures 4-5. We find that, 

both for two-legged jump (in red) and the run (in blue), the amplitude and period increase as �  goes 

from near 0 to values close to 1. For A we observe a maximum at 95.0��  while for T we have a 

monotonous variation with � . A remark is that there is a slight increase in the values of the 

amplitude and the period for 1�� . This is a numerical effect due to the series truncation in the 

approximation of the fractional derivative. 

Table 2. Parameter values for the bipedal gaits of  two-legged jump and run, where  is the time 
increment, and are the coupling constants. For more information, see text. 

t*
ijk

Gait t*  (  Cag  11k  12k  21k  22k  31k  32k  

two-legged jump 0005.0  01  81  1. . .0  1.0  50.
  5.0
  8 8.0
  .0
  

Run 0005.0  01  81  1 0  00  7 7. . .0  1.0  0. . .0
  .0
  
 

 

Fig. 2. Periodic solution of the CPG network LEG identified with the two-legged jump, for .90.0��  

 

Fig. 3. Periodic solution of the CPG network LEG identified with the run, for .90.0��  



 
Fig. 4. Amplitude (A) of the periodic solutions produced by the CPG network LEG identified with the 

biped gaits of two-legged jump (red) and  run (blue), for different values of � . 

 
Fig. 5. Period (T) of the  periodic solutions produced by the CPG network LEG identified with the 

biped gaits of two-legged jump (red) and run (blue), for different values of � .

 

As we can observe from Figures 2-5, �  behaves like a bifurcation parameter, that is, as we vary 

�  the dynamical behaviour of the system changes. This parameter, in particular, simplifies the work 

of the researcher. In fact, we do not need to know deeply the parameters of the equations, that model 

the dynamics of each cell, in order to increase the frequency or the amplitude of a given periodic 

solution, we just have to vary the value of .�  

 



4 Conclusions and future work 

We studied a fractional version of a CPG network model for legs rhythms in bipeds. We analysed the 

amplitude and the period values of two periodic solutions, identified with two biped locomotion 

patterns (two-legged jump and run), for different values of .�  We found that the amplitude and the 

period values increase as � goes from values near zero up to values close to one. In future work, we 

intend to use a Continued Fraction Expansion, based on a Padé expansion, to approximate the 

fractional derivative values and we intend to study more periodic solutions identified with other biped 

locomotion patterns. 
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