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Abstract Locomotion has been a major research is- 

sue in the last few years. Many models for the loco- 

motion rhythms of quadrupeds, hexapods, bipeds and 

other animals have been proposed. This study has also 

been extended to the control of rhythmic movements 

of adaptive legged robots. 

In this paper, we consider a fractional version   of 

a central pattern generator (CPG) model for locomo- 

tion in bipeds. A fractional derivative Dαf (x), with α 

non-integer, is a generalization of the concept of an in- 

teger derivative, where α = 1. The integer CPG model 

has been proposed by Golubitsky, Stewart, Buono and 

Collins, and studied later by Pinto and Golubitsky. It is 

a network of four coupled identical oscillators which 

has dihedral symmetry. We study parameter regions 

where periodic solutions, identified with legs’ rhythms 

in bipeds, occur, for 0 <α ≤ 1. We find that the ampli- 

tude and the period of the periodic solutions, identified 
 

 
 

with biped rhythms, increase as α varies from near 0 

to values close to unity. 
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1 Introduction 

 
A CPG is a network of neurons located somewhere in 

the nervous system, capable of producing the rhythms 

associated with different animal gaits [13]. 

Mathematically, CPGs are modelled as networks of 

identical systems of differential equations, where the 

individual systems model (collections of) neurons (or 

cells) [5–7, 11, 12, 14]. 

These CPG models have been studied in animal lo- 

comotion and, more recently, in the field of robotics. 

Golubitsky, Stewart, Buono and Collins [11, 12] 

proposed models for locomotor CPGs for 2n-legged 

animals, for all values of n ∈ ℵ. These networks con- 
sist of 4n coupled identical cells, arranged in two  cy- 

cles of 2n cells, that are able to generate the phase 

relations seen in the animal gaits. These phase rela- 

tions are a result of the symmetry of the model. The 

model presents the bilateral symmetry of animals and 

a cyclic translational symmetry, from back to front, 

that is, cell 4n is coupled to cell 2, and the same applies 

for cells 4n − 1 and 1. Similar network  architectures 

also generate locomotor patterns of legless     animals 
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such as worms, snakes and lampreys. In those loco- 

motor networks, the term “leg” should be interpreted 

as “muscular unit”. Unwanted conjugacies presented 

in previous CPG models for animal gaits, such as the 

one between trot and pace in the four-cell CPG mod- 

els for quadrupeds [6], are prevented by this new net- 

work architecture. These new structures for CPG mod- 

els are derived assuming that each joint receives sig- 

nals from two neurons. This reasoning draws an anal- 

ogy with muscular action in real joints, since two mus- 

cle groups, flexors and extensors, control most joints. 

Thus, abstractly, CPG models control muscle groups 

rather than legs, and minimal CPG networks should 

have two cells per leg. 

In the field of robotics, most models for CPG loco- 

motor patterns of robots have one oscillator per joint, 

and consequently, each joint is driven by two neurons 

[2, 16, 35]. There are a few authors though who, simi- 

larly to Collins and Stewart [6], assume that locomotor 

CPGs have only one cell per limb [31, 32]. The main 

disadvantage, as explained previously for the four-cell 

CPG networks of Collins and Stewart, is that it is nec- 

essary to change the architecture of the network in or- 

der to observe all of the animal movements in the ro- 

bot. The advantage of this approach is that only half 

of the oscillators are needed to control the motor pat- 

terns, compared with the CPG networks proposed by 

Golubitsky et al. [11, 12], and, therefore, less parame- 

ter values need to be re-computed in gait transition. 

CPG-like coupled cell systems are able to pro- 

duce sustained rhythmic activation patterns even when 

isolated from external stimuli. CPGs have other nice 

properties, such as limit cycle behavior, phase-locking 

modes, robustness against small perturbations and 

smooth online modulation of trajectories. All these 

characteristics can be achieved through changes in pa- 

rameter values of the equations [21, 22, 31]. These 

features make CPGs an attractive  option  to model 

the control of legged robot locomotion for bipedal, 

quadrupedal and other designs [21, 22, 31, 32]. In 

Matos et al. [21], a bio-inspired robotic controller is 

proposed that is capable to generate locomotion and 

to easily switch between different types of gaits. The 

duty factor and inter-limb phase values are adjusted 

according to the velocities. This improves stability and 

response of the robot during locomotion. Degallier et 

al. [8] use a dynamical systems’ approach yielding the 

online generation trajectory in a robot performing a 

drumming task. These trajectories have both rhythmic 

and discrete parts. Righetti and Ijspeert [32] designed a 

Fig. 1   CPG network LEG    

for the control of biped 

legs. Cells 1 and 3 send 

signals to the left leg, cells 

2 and 4 send signals to the 

right leg (Fig. 2 in [28]) 

 

 
 

 
 

CPG architecture based on coupled dynamical systems 

where gait transition is achieved by parameter change 

and where sensory feedback is included. Righetti and 

Ijspeert [30] used symmetric coupled systems theory 

[10] to design a generic coupling architecture for a 

CPG and showed how it could be applied to the con- 

trol of a crawling humanoid robot. 

To conclude, it is also demonstrated that CPG-like 

controllers can be successfully implemented as ana- 

logue electronic circuits [15, 36]. 

The network architecture LEG for the central pat- 

tern generator for bipedal legs’ rhythms studied here 

is shown in Fig. 1. 

The CPG network LEG consists of four coupled 

identical cells. In the graph of Fig. 1, the nodes rep- 

resent the cells and the arrows represent the couplings. 

Different arrows mean different coupling strengths. 

This network is capable of producing periodic solu- 

tion types identified with biped locomotion rhythms, 

namely, walk, run, two-legged jump, two-legged hop, 

hesitation-walk, asymmetric hop, skip, gallop, and 

one-legged hop. 

In this paper we consider a fractional version of the 

CPG LEG represented in Fig. 1. We vary the order of 

α and we analyse the amplitude and period  changes 

of periodic solutions produced by the four-cell CPG 

model and identified with legs’ rhythms in bipeds. 

 

 

2 Fractional calculus—summary 

 

Fractional calculus (FC) is a generalization of the or- 

dinary integer differentiation and integration to an ar- 

bitrary order [23, 26, 34]. The subject was initiated in 

1695 by Leibniz who sent a letter to L’Hospital with 

the question: “Can the meaning of derivatives with 

integer order be generalized to derivatives with non- 

integer orders?” In the last two decades we witnessed 

an increasing interest in the FC and relevant applica- 

tions emerging in the areas of physics and engineering 

[1, 4, 17, 18, 25, 27, 29, 37, 38]. 
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There are several definitions of fractional deriva- 

tives, three of the most important of which are the 

Riemann–Liouville, the Grunwald–Letnikov, and the 

discretization scheme, the Tustin approximation be- 

ing another possibility. The Euler and Tustin rational 

expressions,  H0(z−1) =  1 (1 − z−1)  and  H1(z−1) = 
Caputo’s, given by: 

  
      

 
 

1 

T 1+z−1 respectively, are often called generating ap- 

proximants of zero and first order, respectively. There- 
 fore, the generalization of these conversion methods 

leads to the non-integer order results: 

 
 
 
 
 

  

 

We can obtain a family of fractional differentiators

 

where r( ) is the Euler’s gamma function, [x] means 

generated by  Hα (z−1
 ) and Hα (z−1

 ) weighted by the 

the integer part of x, and h is the step time increment. 

It  is  also  possible  to  generalize  several   results 
factors p and 1 − p, yielding: 

based on transforms, yielding expressions such as the 

Laplace expression: 

     

 

In order to get a rational expression, the final   ap- 
   proximation corresponds to a PSE or a rational   frac- 

tion expansion. This approach is often denoted by 

Continued Fraction Expansion (CFE) of order k ∈ ℵ, 

where s and L represent the Laplace variable and op- 

erator, respectively. 

These definitions demonstrate that fractional deriv- 

based on a Padé expansion in the neighborhood of 

z−1 = 0, yielding: 

atives capture the history of the variable, or, in other 

words, they have memory, contrary to integer deriva- 
 

  
   

tives, that are local operators. 

The Grunwald–Letnikov formulation inspires the 

numerical calculation of the fractional derivative based 

on the approximation of the time increment h through 

the sampling period T and  the  series  truncation at 

the r th term. This method is often denoted as Power 

Series Expansion (PSE) yielding the equation in the 

z-domain: 

 

Since one parameter is linearly dependent, usually it is 

established that b0 = 1. 

 

 
 

3 CPG model for bipeds—review 

 
 
 
 

 

 
 

 
 

  

 

 
 

 
 

In this chapter, we review the work of Pinto and Gol- 

ubitsky [28] for the CPG model for legs’ rhythms in 

bipeds. We state the general class of differential equa- 

where X(z) = Z{x(t)} and z and Z represent the z- 

transform variable and operator, respectively. 

In fact, expression (2) represents the  Euler  (or 

first backward difference) approximation in the s → z 

tions corresponding to LEG and we review the so- 

called H /K theory [9] that helps to identify periodic 

solutions produced by CPG LEG with known biped 

locomotion patterns. 



 

 

∈ m  

k 

3.1 CPG LEG—equations and symmetries 

 
The class of ordinary differential equations (ODEs) 

governing the CPG model in Fig. 1 is the following: 

Let x(t) be a periodic solution of system (11), with 

period normalized to 1, and let γ ∈ r. By symmetry, 

we know that γ x(t) is also a solution to (11). We con- 

sider two cases: either both solutions intersect (thus, 

are identical) or the two trajectories do not intersect. If 

both solutions are identical, then by uniqueness of so- 

lutions there is θ ∈ S1  such that γ x(t) = x(t − θ), or 
 γ x(t θ) x(t), and we say that x(t) has spatiotem- 

+ = poral γ r, where θ is the temporal phase 
symmetry ∈ 

where xi 
k are the cell i = 1, 2, 3, 4 variables, k ∈ 

ℵ is the dimension of the cells’ internal dynamics, and 

shift that corresponds to γ . If θ = 0 then γ  is a spatial 
symmetry. 

Define K as the subgroup of all spatial symmetries 

and H  as the subgroup of all spatiotemporal  symme- 

F : (mk)4 →m  is an arbitrary mapping. As all  cells tries. Mathematically, we have: 
are assumed to be identical, F 

cells. 

must be the same for all  
 

 

The coupled cell system in (9) has   D2-symmetry. 
Consider the transposition that switches muscle groups 

between legs; we define it as ρ = (12)(34). The other 
permutation that the coupled system (9) allows is  the 

switch between muscle groups in each leg. Define the 

latter as τ = (13)(24). These two independent permu- 

tations generate the symmetry group of order 4,    de- 

noted as D2  and given by: 

  

This CPG model LEG is capable of producing eight 

periodic solutions corresponding to the bipedal gaits 

of two-legged hop, two-legged jump, walk, run, one- 

legged hop, hesitation-walk, gallop, skip, and asym- 

metric hop. See Pinto and Golubitsky [28] for the rea- 

soning of this identification. 

 
3.2 The H /K theory 

 
The identification of the periodic solutions of the net- 

work model LEG with biped legs’ rhythms is done us- 

ing symmetry arguments. The H /K theorem [9] uses 

the symmetry group of a network to enumerate those 

pairs of spatiotemporal symmetry subgroups H and K 

that can correspond to periodic solutions of differential 

equations associated with the network. These solutions 

are then identified with known biped locomotion pat- 

terns. 

Let r be a finite group of symmetries of the follow- 

ing systems of ODEs: 
 

  

 
 

In what follows, we discuss how symmetries of peri- 

odic solutions (H and K ), in the CPG model LEG, can 

correspond to the biped gaits of walk and run.A simi- 

lar reasoning applies to the other bipedal gaits. 

Walk and run are gaits in which the two legs move 

half-period out of phase. Nevertheless, these are differ- 

ent gaits. In the walk, muscle groups in each leg move 

like a pendulum and in the run, these muscles move in 

unison [19, 20]. These differences can be explained by 

their symmetry group pairs (H, K). Let τ be the per- 

mutation that switches muscle groups between legs in 

bipeds. Applying τ to the run does not change that gait 

since muscles inside each leg receive the same signal. 

Applying τ to the walk does change the gait, in the 

sense that the muscle groups inside each leg receive 

signals that are now half-period out of phase from the 

signals they received before. The latter implies that the 

two legs are also half-period out of phase from where 

they were before applying τ . The permutation τ is 

called a spatial symmetry for the run (the phase shift 

is zero) and is called a spatiotemporal symmetry for 

the walk (the phase shift is 1/2). More precisely, ap- 

plying τ to a walk and then performing a half-period 

phase shift does not change the walk gait. Consider 

now the permutation ρτ . Applying ρτ to a walk does 

not change the gait, since pairs of diagonal muscles re- 

ceive the same signal and the two pairs of signals are 

still half-period out of phase. Whereas applying sym- 

metry ρτ to a run results in the same gait but shifted 

by one half-period. Thus, ρτ is a spatial symmetry of 

the walk and a spatiotemporal symmetry of the run. 



 

 

For H and K to correspond to symmetries of pe- 

riodic solutions of CPG LEG, there are some alge- 

braic properties to be satisfied, namely, H /K must be 

a cyclic group ([28], and references therein). 

To conclude, we note that the H /K  theory  may 

be used to infer the CPG structure for locomotion of 

2n-legged animals, from the desired types of periodic 

solutions. Moreover, Buono and Golubitsky [3]  have 

in the promotion of periodic orbits. Therefore, in or- 

der to overcome this limitation, we decided to include 

a gain-adjustment factor corresponding to the sum of 

the truncated series coefficients. In this line of thought, 

since the sum of the coefficients from k = 1 up to 

k =∞ must be 1.0 [38], the fractional derivative ap- 

proximation adopted in the sequel is: 
 

used this mathematical tool to prove that there is only 

one CPG model with eight cells capable of producing 

periodic solution types identified with the  quadruped 

  

walk, trot and pace. 

 
3.3 Results and discussion 

 

We simulate the fractional version of the coupled cell 

system (9), given by: 

 

The dynamics governing the fractional CPG model 

LEG is given by: 
 x (k  1) H 

 
 

 

 
 
 

 

 

where Dα , with α non-integer, is a generalization of 

the concept of an integer derivative, where α = 1. 

 
 

We  consider  the  Morris–Lecar  equations  [24] as 

internal cell dynamics. The coupling is linearly    dif- 

 
 

fusive. The non-dimensionalized Morris–Lecar equa- 

tions [33] comprise a system of two ordinary differen- 

tial equations given by: 

 
 

 

 

  

 
 
 
where  m(v) =  1 (1 + tanh( 

v−v1 )),  n(v) =  1 (1 + 

 

2 v2 2  

tanh( 
v−v3 )), τ (v) = cosh( 

v−v3 ). Each term gCam(v) ·  
v4 2v4 

(v − 1), gl (v − vl) and −gkw(v − vk) models an ionic  
channel that regulates the voltage v  along the   mem- 

brane of the axon. Parameter i is the current stimulus. 

We adopt the PSE method for the approximation of 

the fractional derivative in the discrete-time numeri- 

cal integration. However, several experiments demon- 

strated that a slight adaption was required to the stan- 

dard approach based on a simple truncation of the se- 

ries. In fact, since our objective is to generate limit 

cycles, the truncation corresponds to a diminishing of 

the gain [38] and, consequently, leads to   difficulties 

 
 

 

where kij ∈m are the coupling constants and �t is the 

time increment. 

The parameter values of the Morris–Lecar equa- 

tions, in the numerical simulations, are chosen to   be 



 

 

Table 1 Initial conditions for the bipedal gaits of walk, two-legged jump, and run, where (xi (k), yi (k)) represents the initial condition 

of cell i in sample k 
 

 

Gait Initial conditions 
 

 

walk x1(1) = 0.17403; x1(2) = 0.17399; x1(3) = 0.17394; x1(4) = 0.17389; x1(5) = 0.17385; 

y1(1) = 0.23989; y1(2) = 0.23987; y1(3) = 0.23986; y1(4) = 0.23984; y1(5) = 0.23982; 

x2(1) = 0.18709; x2(2) = 0.18715; x2(3) = 0.18719; x2(4) = 0.18725; x2(5) = 0.18729; 

y2(1) = 0.22566; y2(2) = 0.22568; y2(3) = 0.22569; y2(4) = 0.22572; y2(5) = 0.22573; 

x3(1) = 0.18709; x3(2) = 0.18715; x3(3) = 0.18719; x3(4) = 0.18725; x3(5) = 0.18729; 

y3(1) = 0.22566; y3(2) = 0.22568; y3(3) = 0.22569; y3(4) = 0.22572; y3(5) = 0.22573; 

x4(1) = 0.17403; x4(2) = 0.17399; x4(3) = 0.17394; x4(4) = 0.17389; x4(5) = 0.17385; 

y4(1) = 0.23989; y4(2) = 0.23987; y4(3) = 0.23986; y4(4) = 0.23984; y4(5) = 0.23982 

two-legged jump x1(1) = 0.2911; x1(2) = 0.2886; x1(3) = 0.2861; x1(4) = 0.2835; x1(5) = 0.2810; y1(1) = 0.4319; 

y1(2) = 0.4326; y1(3) = 0.4332; y1(4) = 0.4337; y1(5) = 0.4340; x2(1) = 0.2911; x2(2) = 0.2886; 

x2(3) = 0.2861; x2(4) = 0.2835; x2(5) = 0.2810; y2(1) = 0.4319; y2(2) = 0.4326; y2(3) = 0.4332; 

y2(4) = 0.4337; y2(5) = 0.4340; x3(1) = 0.0470; x3(2) = 0.0477; x3(3) = 0.0484; x3(4) = 0.0493; 

x3(5) = 0.0502; y3(1) = 0.1497; y3(2) = 0.1482; y3(3) = 0.1468; y3(4) = 0.1453; y3(5) = 0.1440; 

x4(1) = 0.0470; x4(2) = 0.0477; x4(3) = 0.0484; x4(4) = 0.0493; x4(5) = 0.0502; y4(1) = 0.1497; 

y4(2) = 0.1482; y4(3) = 0.1468; y4(4) = 0.1453; y4(5) = 0.1440 

run x1(1) = 0.2911; x1(2) = 0.2886; x1(3) = 0.2861; x1(4) = 0.2835; x1(5) = 0.2810; y1(1) = 0.4319; 

y1(2) = 0.4326; y1(3) = 0.4332; y1(4) = 0.4337; y1(5) = 0.4340; x2(1) = 0.0470; x2(2) = 0.0477; 

x2(3) = 0.0484; x2(4) = 0.0493; x2(5) = 0.0502; y2(1) = 0.1497; y2(2) = 0.1482; y2(3) = 0.1468; 

y2(4) = 0.1453; y2(5) = 0.1440; x3(1) = 0.2911; x3(2) = 0.2886; x3(3) = 0.2861; x3(4) = 0.2835; 

x3(5) = 0.2810; y3(1) = 0.4319; y3(2) = 0.4326; y3(3) = 0.4332; y3(4) = 0.4337; y3(5) = 0.4340; 

x4(1) = 0.0470; x4(2) = 0.0477; x4(3) = 0.0484; x4(4) = 0.0493; x4(5) = 0.0502; y4(1) = 0.1497; 

  y4 (2) = 0.1482; y4 (3) = 0.1468; y4 (4) = 0.1453; y4 (5) = 0.1440   

 
Table 2 Parameter values for the bipedal gaits of walk, two-legged jump, and run, where �t is the time increment, and kij are the 

coupling constants. For more information, see text 
 

 

Gait �t φ gCa k11 k12 k21 k22 k31 k32 
 

walk 0.0005 0.2 1.5 0.1 0.1 −0.3 −0.3 0.2 0.2 

two-legged jump 0.0005 1.0 1.8 0.1 0.1 −0.5 −0.5 −0.8 −0.8 

run 0.0005 1.0 1.8 0.1 0.1 0.0 0.0 −0.7 −0.7 

 
 

v1  = 0.1,  v2  = 0.4,  v3  = 0.3,  v4  = 0.2,  gl  =  0.6, 

gk = 1.8, vl  = −1.8, vk = 0.8 and i = 1. 

In Tables 1 and 2, we show initial conditions and 

parameter values for the periodic orbits, identified 

with the biped gaits of walk (Figs. 2, 3 and 4), two- 

legged jump (Figs. 5, 6 and 7), and run (Figs. 8, 9 

and 10). Each simulation was executed until a stable 

periodic solution was reached. Moreover, it was con- 

sidered α ∈ ]0, 1] and, during the numerical experi- 

ments, the cases were evaluated in steps of �α = 0.01. 
In Figs. 11, 12, 13, 14, 15 and 16 we present the com- 

puted amplitude and period solutions of system (16) 

for different values of α. We find that, for all gaits, 

both amplitude and period values increase as α goes 

from near 0 to values close to 1. We also observe that, 

in the case of the periodic solution identified with the 

 

 

 
Fig. 2 Periodic solution of the CPG network LEG identified 

with the walk, for α = 0.95 



 

 

 

 

 

 

Fig. 3 Periodic solution of the CPG network LEG identified 

with the walk, for α = 0.9 

 

 

 
Fig. 4 Periodic solution of the CPG network LEG identified 

with the walk, for α = 0.82 

Fig. 5 Periodic solution of the CPG network LEG identified 

with the two-legged jump, for α = 0.98 
 

 

 
Fig. 6 Periodic solution of the CPG network LEG identified 

with the two-legged jump, for α = 0.95 

 

 

 

Fig. 7  Periodic solution of the CPG network LEG identified with the two-legged jump, for α = 0.9 



 

 

 

 

 

 
Fig. 8 Periodic solution of the CPG network LEG identified 

with the run, for α = 0.98 

 
 

 

 
Fig. 9 Periodic solution of the CPG network LEG identified 

with the run, for α = 0.95 

 
 

 

 
Fig. 10 Periodic solution of the CPG network LEG identified 

with the run, for α = 0.9 

Fig. 11 Amplitude of the periodic solution produced by the 

CPG network LEG identified with the walk, for different values 

of α 

 

 

 

Fig. 12 Period of the periodic solution produced by the CPG 

network LEG identified with the walk, for different values of α 

(log scale in the vertical axis) 

 

 

 

Fig. 13 Amplitude of the periodic solution produced by the 

CPG network LEG identified with the two-legged jump, for dif- 

ferent values of α 



 

 

 

 

 

 

Fig. 14 Period of the periodic solution produced by the CPG 

network LEG identified with the two-legged jump, for different 

values of α (log scale in the vertical axis) 

Fig. 16 Period of the periodic solution produced by the CPG 

network LEG identified with the run, for different values of α 

(log scale in the vertical axis) 

 

 
 

 

 

 

 
 

Fig. 15 Amplitude of the periodic solution produced by the 

CPG network LEG identified with the run, for different values 

of α 

 

 
walk, the interval where the amplitude is greater than 

zero is larger than the interval for the other two gaits. 

This is a result of the initial condition used to simulate 

the corresponding periodic solution. We simulate an- 

other periodic solution identified with the walk, for an 

initial condition of the same order as those used here 

for the run and for the two-legged jump (Table 1). We 

find that the new interval, for amplitude values greater 

than zero, coincides with the one for the other two 

gaits. Another remark is that there is a slight increase 

in the values of the amplitude and the period as α ap- 

proaches 1. This is a numerical effect due to the series 

Fig. 17 3D plot of x1 and its derivative for 80 000 samples, for 

the periodic solution presented in Fig. 7 (two-legged jump) 
 

 

 
truncation in the approximation of the fractional deriv- 

ative. 

As we can observe from Figs. 11–16, α behaves 

like a bifurcation parameter; that is, as we vary α, the 

dynamical behavior of the system changes. This pa- 

rameter, in particular, simplifies the work of the re- 

searcher. In fact, we do not need to know the parame- 

ters of the equations that model the dynamics of each 

cell: in order to increase the frequency or the ampli- 

tude of a given periodic solution, we just have to vary 

the value of α. 

In Fig. 17, we depict the 3D plot of the first vari- 

able of cell 1 dynamics and its derivative, for 80 000 

samples of the periodic solution presented in Fig. 7. 



 

 

4 Conclusions and future work 

 
We studied a fractional version of a CPG network 

model for legs’ rhythms in bipeds. We analysed the 

amplitude and the period values of periodic solutions, 

identified with three biped locomotion patterns (walk, 

two-legged jump, and run), for different values of α. 

We found that the amplitude and the period values in- 

crease as αgoes from values near 0 up to values close 

to 1. In future work, we intend to study thoroughly the 

behavior of the solutions for 0 <α < 0.1. 
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