30,654 research outputs found

    A complementary systems account of word learning: neural and behavioural evidence

    Get PDF
    In this paper we present a novel theory of the cognitive and neural processes by which adults learn new spoken words. This proposal builds on neurocomputational accounts of lexical processing and spoken word recognition and complementary learning systems (CLS) models of memory. We review evidence from behavioural studies of word learning that, consistent with the CLS account, show two stages of lexical acquisition: rapid initial familiarization followed by slow lexical consolidation. These stages map broadly onto two systems involved in different aspects of word learning: (i) rapid, initial acquisition supported by medial temporal and hippocampal learning, (ii) slower neocortical learning achieved by offline consolidation of previously acquired information. We review behavioural and neuroscientific evidence consistent with this account, including a meta-analysis of PET and functional Magnetic Resonance Imaging (fMRI) studies that contrast responses to spoken words and pseudowords. From this meta-analysis we derive predictions for the location and direction of cortical response changes following familiarization with pseudowords. This allows us to assess evidence for learning-induced changes that convert pseudoword responses into real word responses. Results provide unique support for the CLS account since hippocampal responses change during initial learning, whereas cortical responses to pseudowords only become word-like if overnight consolidation follows initial learning

    Growing up with interfering neighbours : the influence of time of learning and vocabulary knowledge on written word learning in children

    Get PDF
    Evidence suggests that new vocabulary undergoes a period of strengthening and integration offline, particularly during sleep. Practical questions remain, however, including whether learning closer to bedtime can optimize consolidation, and whether such an effect varies with vocabulary ability. To examine this, children aged 8-12-years-old (n 59) were trained on written novel forms (e.g. BANARA) in either the morning (long delay) or the evening (short delay). Immediately after training and the next day, lexical competition (a marker of integration) was assessed via speeded semantic decisions to neighbouring existing words (e.g. BANANA); explicit memory was measured via recognition and recall tasks. There were no main effects indicating performance changes across sleep for any task, counter to studies of spoken word learning. However, a significant interaction was found, such that children with poorer vocabulary showed stronger lexical competition on the day after learning if there was a short delay between learning and sleep. Furthermore, while poorer vocabulary was associated with slower novel word recognition speed before and after sleep for the long delay group, this association was only present before sleep for the short delay group. Thus, weak vocabulary knowledge compromises novel word acquisition, and when there is a longer period of post-learning wake, this disadvantage remains after a consolidation opportunity. However, when sleep occurs soon after learning, consolidation processes can compensate for weaker encoding and permit lexical integration. These data provide preliminary suggestion that children with poorer vocabulary may benefit from learning new words closer to bedtime

    Modality effects in vocabulary acquisition

    No full text
    It is unknown whether modality affects the efficiency with which humans learn novel word forms and their meanings, with previous studies reporting both written and auditory advantages. The current study implements controls whose absence in previous work likely offers explanation for such contradictory findings. In two novel word learning experiments, participants were trained and tested on pseudoword - novel object pairs, with controls on: modality of test, modality of meaning, duration of exposure and transparency of word form. In both experiments word forms were presented in either their written or spoken form, each paired with a pictorial meaning (novel object). Following a 20-minute filler task, participants were tested on their ability to identify the picture-word form pairs on which they were trained. A between subjects design generated four participant groups per experiment 1) written training, written test; 2) written training, spoken test; 3) spoken training, written test; 4) spoken training, spoken test. In Experiment 1 the written stimulus was presented for a time period equal to the duration of the spoken form. Results showed that when the duration of exposure was equal, participants displayed a written training benefit. Given words can be read faster than the time taken for the spoken form to unfold, in Experiment 2 the written form was presented for 300 ms, sufficient time to read the word yet 65% shorter than the duration of the spoken form. No modality effect was observed under these conditions, when exposure to the word form was equivalent. These results demonstrate, at least for proficient readers, that when exposure to the word form is controlled across modalities the efficiency with which word form-meaning associations are learnt does not differ. Our results therefore suggest that, although we typically begin as aural-only word learners, we ultimately converge on developing learning mechanisms that learn equally efficiently from both written and spoken materials

    Mechanisms of memory retrieval in slow-wave sleep : memory retrieval in slow-wave sleep

    Get PDF
    Study Objectives: Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. Methods: In Experiment 1, participants associated words with verbal and non-verbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. Results: In Experiment 1, forgetting of cued (vs. non-cued) associations was reduced by TMR with verbal and non-verbal cues to similar extents. In Experiment 2, TMR with identical non-verbal cues reduced forgetting of cued (vs. non-cued) associations, replicating Experiment 1. However, TMR with non-identical verbal cues reduced forgetting of both cued and non-cued associations. Conclusions: These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with non-identical verbal cues may utilise linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories

    Markers of automaticity in sleep-associated consolidation of novel words

    Get PDF
    Two experiments investigated effects of sleep on consolidation and integration of novel form-meaning mappings using size congruity and semantic distance paradigms. Both paradigms have been used in previous studies to measure automatic access to word meanings. When participants compare semantic or physical font size of written word-pairs (e.g. BEE–COW), judgments are typically faster if relative sizes are congruent across both dimensions. Semantic distance effects are also found for wellestablished words, with semantic size judgements faster for pairs that differ substantially on this dimension. English-speaking participants learned novel form-meaning mappings with Mandarin (Experiment 1) or Malay (Experiment 2) words and were tested following overnight sleep or a similar duration awake. Judgements on English words controlled for circadian effects. The sleep group demonstrated selective stronger size congruity and semantic distance effects for novel word-pairs. This benefit occurred in Experiment 1 for semantic size comparisons of novel words, and in Experiment 2 on comparisons where novel pairs had large distances and font differences (for congruity effects) or in congruent trials (for semantic distance effects). Conversely, these effects were equivalent across sleep and wake for English words. Experiment 2 included polysomnography data and revealed that changes in the strength of semantic distance and congruity effects were positively correlated with slow-wave sleep and sleep spindles respectively. These findings support systems consolidation accounts of declarative learning and suggest that sleep plays an active role in integrating new words with existing knowledge, resulting in increased automatic access of the acquired knowledge

    The different time course of phonotactic constraint learning in children and adults : evidence from speech errors

    Get PDF
    Speech errors typically respect the speaker’s implicit knowledge of language-wide phonotactics (e.g., /ŋ/ cannot be a syllable onset in the English language). Previous work demonstrated that adults can learn novel experimentally-induced phonotactic constraints by producing syllable strings in which the allowable position of a phoneme depends on another phoneme within the sequence (e.g., /t/ can only be an onset if the medial vowel is /i/), but not earlier than the second day of training. Thus far, no work has been done with children. In the current 4-day experiment, a group of Dutch-speaking adults and nine-year-old children were asked to rapidly recite sequences of novel word-forms (e.g., kieng nief siet hiem) that were consistent with phonotactics of the spoken Dutch language. Within the procedure of the experiment, some consonants (i.e., /t/ and /k/) were restricted to onset or coda position depending on the medial vowel (i.e., /i/ or “ie” versus /øː/ or “eu”). Speech errors in adults revealed a learning effect for the novel constraints on the second day of learning, consistent with earlier findings. A post-hoc analysis at trial-level showed that learning was statistically reliable after an exposure of 120 sequence-trials (including a consolidation period). In contrast, cChildren, however, started learning the constraints already on the first day. More precisely, the effect appeared significantly after an exposure of 24 sequences. These findings indicate that children are rapid implicit learners of novel phonotactics, which bears important implications for theorizing about developmental sensitivities in language learning

    From creation to consolidation: a novel framework for memory processing

    Get PDF
    Long after playing squash, your brain continues to process the events that occurred during the game, thereby improving your game, and more generally, enhancing adaptive behavior. Understanding these mysterious processes may require novel theories

    Literacy improves short-term serial recall of spoken verbal but not visuospatial items - Evidence from illiterate and literate adults

    Get PDF
    © 2019 Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/It is widely accepted that specific memory processes, such as serial-order memory, are involved in written language development and predictive of reading and spelling abilities. The reverse question, namely whether orthographic abilities also affect serial-order memory, has hardly been investigated. In the current study, we compared 20 illiterate people with a group of 20 literate matched controls on a verbal and a visuospatial version of the Hebb paradigm, measuring both short- and long-term serial-order memory abilities. We observed better short-term serial-recall performance for the literate compared with the illiterate people. This effect was stronger in the verbal than in the visuospatial modality, suggesting that the improved capacity of the literate group is a consequence of learning orthographic skills. The long-term consolidation of ordered information was comparable across groups, for both stimulus modalities. The implications of these findings for current views regarding the bi-directional interactions between memory and written language development are discussed.Peer reviewe

    Modality-Independent Effects of Phonological Neighborhood Structure on Initial L2 Sign Language Learning

    Get PDF
    The goal of the present study was to characterize how neighborhood structure in sign language influences lexical sign acquisition in order to extend our understanding of how the lexicon influences lexical acquisition in both sign and spoken languages. A referent-matching lexical sign learning paradigm was administered to a group of 29 hearing sign language learners in order to create a sign lexicon. The lexicon was constructed based on exposures to signs that resided in either sparse or dense handshape and location neighborhoods. The results of the current study indicated that during the creation of the lexicon signs that resided in sparse neighborhoods were learned better than signs that resided in dense neighborhoods. This pattern of results is similar to what is seen in child first language acquisition of spoken language. Therefore, despite differences in child first language and adult second language acquisition, these results contribute to a growing body of literature that implicates the phonological features that structure of the lexicon is influential in initial stages of lexical acquisition for both spoken and sign languages. This is the first study that uses an innovated lexicon-construction methodology to explore interactions between phonology and the lexicon in L2 acquisition of sign language

    Sleep preserves original and distorted memory traces

    Get PDF
    Retrieval facilitates the long-term retention of memories, but may also enable stored representations to be updated with new information that is available at the time of retrieval. However, if information integrated during retrieval is erroneous, future recall can be impaired: a phenomenon known as retrieval-induced distortion (RID). Whether RID causes an “overwriting” of existing memory traces or leads to the co-existence of original and distorted memory traces is unknown. Because sleep enhances memory consolidation, the effects of sleep after RID can provide novel insights into the structure of updated memories. As such, we investigated the effects of sleep on memory consolidation following RID. Participants encoded word locations and were then tested before (T1) and after (T2) an interval of sleep or wakefulness. At T2, the majority of words were placed closer to the locations retrieved at T1 than to the studied locations, consistent with RID. After sleep compared with after wake, the T2-retrieved locations were closer to both the studied locations and the T1-retrieved locations. These findings suggest that RID leads to the formation of an additional memory trace that corresponds to a distorted variant of the same encoding event, which is strengthened alongside the original trace during sleep. More broadly, these data provide evidence for the importance of sleep in the preservation and adaptive updating of memories
    corecore