58 research outputs found

    Learning RGB-D descriptors of garment parts for informed robot grasping

    Get PDF
    Robotic handling of textile objects in household environments is an emerging application that has recently received considerable attention thanks to the development of domestic robots. Most current approaches follow a multiple re-grasp strategy for this purpose, in which clothes are sequentially grasped from different points until one of them yields a desired configuration. In this work we propose a vision-based method, built on the Bag of Visual Words approach, that combines appearance and 3D information to detect parts suitable for grasping in clothes, even when they are highly wrinkled. We also contribute a new, annotated, garment part dataset that can be used for benchmarking classification, part detection, and segmentation algorithms. The dataset is used to evaluate our approach and several state-of-the-art 3D descriptors for the task of garment part detection. Results indicate that appearance is a reliable source of information, but that augmenting it with 3D information can help the method perform better with new clothing items.This research is partially funded by the Spanish Ministry of Science and Innovation under Project PAU+ DPI2011-2751, the EU Project IntellAct FP7-ICT2009-6-269959 and the ERA-Net Chistera Project ViSen PCIN-2013-047. A. Ramisa worked under the JAE-Doc grant from CSIC and FSE.Peer Reviewe

    A 3D descriptor to detect task-oriented grasping points in clothing

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Manipulating textile objects with a robot is a challenging task, especially because the garment perception is difficult due to the endless configurations it can adopt, coupled with a large variety of colors and designs. Most current approaches follow a multiple re-grasp strategy, in which clothes are sequentially grasped from different points until one of them yields a recognizable configuration. In this work we propose a method that combines 3D and appearance information to directly select a suitable grasping point for the task at hand, which in our case consists of hanging a shirt or a polo shirt from a hook. Our method follows a coarse-to-fine approach in which, first, the collar of the garment is detected and, next, a grasping point on the lapel is chosen using a novel 3D descriptor. In contrast to current 3D descriptors, ours can run in real time, even when it needs to be densely computed over the input image. Our central idea is to take advantage of the structured nature of range images that most depth sensors provide and, by exploiting integral imaging, achieve speed-ups of two orders of magnitude with respect to competing approaches, while maintaining performance. This makes it especially adequate for robotic applications as we thoroughly demonstrate in the experimental section.Peer ReviewedPostprint (author's final draft

    Recognising the Clothing Categories from Free-Configuration Using Gaussian-Process-Based Interactive Perception

    Get PDF
    In this paper, we propose a Gaussian Process- based interactive perception approach for recognising highly- wrinkled clothes. We have integrated this recognition method within a clothes sorting pipeline for the pre-washing stage of an autonomous laundering process. Our approach differs from reported clothing manipulation approaches by allowing the robot to update its perception confidence via numerous interactions with the garments. The classifiers predominantly reported in clothing perception (e.g. SVM, Random Forest) studies do not provide true classification probabilities, due to their inherent structure. In contrast, probabilistic classifiers (of which the Gaussian Process is a popular example) are able to provide predictive probabilities. In our approach, we employ a multi-class Gaussian Process classification using the Laplace approximation for posterior inference and optimising hyper-parameters via marginal likelihood maximisation. Our experimental results show that our approach is able to recognise unknown garments from highly-occluded and wrinkled con- figurations and demonstrates a substantial improvement over non-interactive perception approaches

    Clothes Grasping and Unfolding Based on RGB-D Semantic Segmentation

    Get PDF

    Continuous perception for deformable objects understanding

    Get PDF
    We present a robot vision approach to deformable object classification, with direct application to autonomous service robots. Our approach is based on the assumption that continuous perception provides robots with greater visual competence for deformable objects interpretation and classification. Our approach thus classifies the category of clothing items by continuously perceiving the dynamic interactions of the garment’s material and shape as it is being picked up. Our proposed solution consists of extracting continuously visual features of a RGB-D video sequence and fusing features by means of the Locality Constrained Group Sparse Representation (LGSR) algorithm. To evaluate the performance of our approach, we created a fully annotated database featuring 150 garment videos in random configurations. Experiments demonstrate that by continuously observing an object deform, our approach achieves a classification score of 66.7%, outperforming state-of-the-art approaches by a ∼ 27.3% increase

    Visual Perception of Garments for their Robotic Manipulation

    Get PDF
    Tématem předložené práce je strojové vnímání textilií založené na obrazové informaci a využité pro jejich robotickou manipulaci. Práce studuje několik reprezentativních textilií v běžných kognitivně-manipulačních úlohách, jako je například třídění neznámých oděvů podle typu nebo jejich skládání. Některé z těchto činností by v budoucnu mohly být vykonávány domácími robotickými pomocníky. Strojová manipulace s textiliemi je poptávaná také v průmyslu. Hlavní výzvou řešeného problému je měkkost a s tím související vysoká deformovatelnost textilií, které se tak mohou nacházet v bezpočtu vizuálně velmi odlišných stavů.The presented work addresses the visual perception of garments applied for their robotic manipulation. Various types of garments are considered in the typical perception and manipulation tasks, including their classification, folding or unfolding. Our work is motivated by the possibility of having humanoid household robots performing these tasks for us in the future, as well as by the industrial applications. The main challenge is the high deformability of garments, which can be posed in infinitely many configurations with a significantly varying appearance

    Active recognition and pose estimation of rigid and deformable objects in 3D space

    Get PDF
    Object recognition and pose estimation is a fundamental problem in computer vision and of utmost importance in robotic applications. Object recognition refers to the problem of recognizing certain object instances, or categorizing objects into specific classes. Pose estimation deals with estimating the exact position of the object in 3D space, usually expressed in Euler angles. There are generally two types of objects that require special care when designing solutions to the aforementioned problems: rigid and deformable. Dealing with deformable objects has been a much harder problem, and usually solutions that apply to rigid objects, fail when used for deformable objects due to the inherent assumptions made during the design. In this thesis we deal with object categorization, instance recognition and pose estimation of both rigid and deformable objects. In particular, we are interested in a special type of deformable objects, clothes. We tackle the problem of autonomously recognizing and unfolding articles of clothing using a dual manipulator. This problem consists of grasping an article from a random point, recognizing it and then bringing it into an unfolded state by a dual arm robot. We propose a data-driven method for clothes recognition from depth images using Random Decision Forests. We also propose a method for unfolding an article of clothing after estimating and grasping two key-points, using Hough Forests. Both methods are implemented into a POMDP framework allowing the robot to interact optimally with the garments, taking into account uncertainty in the recognition and point estimation process. This active recognition and unfolding makes our system very robust to noisy observations. Our methods were tested on regular-sized clothes using a dual-arm manipulator. Our systems perform better in both accuracy and speed compared to state-of-the-art approaches. In order to take advantage of the robotic manipulator and increase the accuracy of our system, we developed a novel approach to address generic active vision problems, called Active Random Forests. While state of the art focuses on best viewing parameters selection based on single view classifiers, we propose a multi-view classifier where the decision mechanism of optimally changing viewing parameters is inherent to the classification process. This has many advantages: a) the classifier exploits the entire set of captured images and does not simply aggregate probabilistically per view hypotheses; b) actions are based on learnt disambiguating features from all views and are optimally selected using the powerful voting scheme of Random Forests and c) the classifier can take into account the costs of actions. The proposed framework was applied to the same task of autonomously unfolding clothes by a robot, addressing the problem of best viewpoint selection in classification, grasp point and pose estimation of garments. We show great performance improvement compared to state of the art methods and our previous POMDP formulation. Moving from deformable to rigid objects while keeping our interest to domestic robotic applications, we focus on object instance recognition and 3D pose estimation of household objects. We are particularly interested in realistic scenes that are very crowded and objects can be perceived under severe occlusions. Single shot-based 6D pose estimators with manually designed features are still unable to tackle such difficult scenarios for a variety of objects, motivating the research towards unsupervised feature learning and next-best-view estimation. We present a complete framework for both single shot-based 6D object pose estimation and next-best-view prediction based on Hough Forests, the state of the art object pose estimator that performs classification and regression jointly. Rather than using manually designed features we propose an unsupervised feature learnt from depth-invariant patches using a Sparse Autoencoder. Furthermore, taking advantage of the clustering performed in the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty in other views, formulating the problem of selecting the next-best-view. To further improve 6D object pose estimation, we propose an improved joint registration and hypotheses verification module as a final refinement step to reject false detections. We provide two additional challenging datasets inspired from realistic scenarios to extensively evaluate the state of the art and our framework. One is related to domestic environments and the other depicts a bin-picking scenario mostly found in industrial settings. We show that our framework significantly outperforms state of the art both on public and on our datasets. Unsupervised feature learning, although efficient, might produce sub-optimal features for our particular tast. Therefore in our last work, we leverage the power of Convolutional Neural Networks to tackled the problem of estimating the pose of rigid objects by an end-to-end deep regression network. To improve the moderate performance of the standard regression objective function, we introduce the Siamese Regression Network. For a given image pair, we enforce a similarity measure between the representation of the sample images in the feature and pose space respectively, that is shown to boost regression performance. Furthermore, we argue that our pose-guided feature learning using our Siamese Regression Network generates more discriminative features that outperform the state of the art. Last, our feature learning formulation provides the ability of learning features that can perform under severe occlusions, demonstrating high performance on our novel hand-object dataset. Concluding, this work is a research on the area of object detection and pose estimation in 3D space, on a variety of object types. Furthermore we investigate how accuracy can be further improved by applying active vision techniques to optimally move the camera view to minimize the detection error.Open Acces

    Visual grasp point localization, classification and state recognition in robotic manipulation of cloth: an overview

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Cloth manipulation by robots is gaining popularity among researchers because of its relevance, mainly (but not only) in domestic and assistive robotics. The required science and technologies begin to be ripe for the challenges posed by the manipulation of soft materials, and many contributions have appeared in the last years. This survey provides a systematic review of existing techniques for the basic perceptual tasks of grasp point localization, state estimation and classification of cloth items, from the perspective of their manipulation by robots. This choice is grounded on the fact that any manipulative action requires to instruct the robot where to grasp, and most garment handling activities depend on the correct recognition of the type to which the particular cloth item belongs and its state. The high inter- and intraclass variability of garments, the continuous nature of the possible deformations of cloth and the evident difficulties in predicting their localization and extension on the garment piece are challenges that have encouraged the researchers to provide a plethora of methods to confront such problems, with some promising results. The present review constitutes for the first time an effort in furnishing a structured framework of these works, with the aim of helping future contributors to gain both insight and perspective on the subjectPeer ReviewedPostprint (author's final draft

    A virtual reality framework for fast dataset creation applied to cloth manipulation with automatic semantic labelling

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Teaching complex manipulation skills, such as folding garments, to a bi-manual robot is a very challenging task, which is often tackled through learning from demonstration. The few datasets of garment-folding demonstrations available nowadays to the robotics research community have been either gathered from human demonstrations or generated through simulation. The former have the great difficulty of perceiving both cloth state and human action as well as transferring them to the dynamic control of the robot, while the latter require coding human motion into the simulator in open loop, i.e., without incorporating the visual feedback naturally used by people, resulting in far-from-realistic movements. In this article, we present an accurate dataset of human cloth folding demonstrations. The dataset is collected through our novel virtual reality (VR) framework, based on Unity’s 3D platform and the use of an HTC Vive Pro system. The framework is capable of simulating realistic garments while allowing users to interact with them in real time through handheld controllers. By doing so, and thanks to the immersive experience, our framework permits exploiting human visual feedback in the demonstrations while at the same time getting rid of the difficulties of capturing the state of cloth, thus simplifying data acquisition and resulting in more realistic demonstrations. We create and make public a dataset of cloth manipulation sequences, whose cloth states are semantically labeled in an automatic way by using a novel low-dimensional cloth representation that yields a very good separation between different cloth configurations.The research leading to these results receives funding from the European Research Council (ERC) from the European Union Horizon 2020 Programme under grant agreement no. 741930 (CLOTHILDE: CLOTH manIpulation Learning from DEmonstrations) and project SoftEnable (HORIZONCL4-2021-DIGITAL-EMERGING-01-101070600). Authors also received funding from project CHLOE-GRAPH (PID2020-118649RB-I00) funded by MCIN/ AEI /10.13039/501100011033 and COHERENT (PCI2020-120718-2) funded by MCIN/ AEI /10.13039/501100011033 and cofunded by the ”European Union NextGenerationEU/PRTR”.Peer ReviewedPostprint (author's final draft

    Integrated visual perception architecture for robotic clothes perception and manipulation

    Get PDF
    This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation
    corecore