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Abstract

We present a robot vision approach to deformable object classification, with direct application to autonomous service

robots. Our approach is based on the assumption that continuous perception provides robots with greater visual

competence for deformable objects interpretation and classification. Our approach thus classifies the category of

clothing items by continuously perceiving the dynamic interactions of the garment’s material and shape as it is being

picked up. Our proposed solution consists of extracting continuously visual features of a RGB-D video sequence and

fusing features by means of the Locality Constrained Group Sparse Representation (LGSR) algorithm. To evaluate

the performance of our approach, we created a fully annotated database featuring 150 garment videos in random

configurations. Experiments demonstrate that by continuously observing an object deform, our approach achieves a

classification score of 66.7%, outperforming state-of-the-art approaches by a ∼ 27.3% increase.

Keywords: Deformable Object Classification, Continuous Perception, Robot Vision

1. Introduction

Autonomous recognition and handling of deformable

objects is an essential and challenging task for au-

tonomous service robots. In this paper, we state that a

continuous perception approach equips a robot to recog-

nize deformable objects from a random configuration as

the robot picks them up from a flat surface. Deformable

objects comprise clothing, linens and produce, to name

a few; and, we focus on clothing in this paper since it

can take practically an infinite range of possible con-

figurations, ranging from a relatively smooth state to a

crumpled state.

Perceiving actions and states of objects in the en-

vironment should become a standard requirement for

robots to be deployed in domestic environments and

service scenarios such as hotels and hospitals to miti-

gate failures and accidents. We, humans, have excep-

tional capabilities to manipulate and interact with de-

formable objects. The reason is that our vision sys-

tem senses the environment continuously, accumulates

predictions and creates relations over time about the
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state of objects, people and the environment, includ-

ing highly-deformable objects. Hence, the key is to

observe the state of the object continuously but current

approaches for deformable object visual perception fo-

cuses on recognizing or classifying the state of an object

from one frame, then plan the most optimal action, and,

finally, execute the action. State-of-the-art approaches

have indeed solved complex tasks such as pick-and-

place tasks [1] and clothing perception and manipula-

tion [2][3][4] but none have investigated if continuous

perception increases classification and recognition rates

of deformable objects.

Hence, we describe an approach for deformable ob-

ject classification based on continuously perceiving the

object’s state from the moment it is picked up from a

working table. The target robotic tasks are pick-and-

place, garment sorting and folding and unfolding sce-

narios, to name a few. The underlying idea is to ex-

tract visual features from 2.5D images in consecutive

frames to learn a temporal-consistent representation of

the clothing’s dynamic attributes. For this, a deformable

object is placed in a random-configuration on a flat sur-

face where the robot grasps it and starts observing the

object’s physical deformation. To pick up the objects,

we employ a basic, yet powerful heuristic grounded on

the highest observable point using depth information.

Once the robot grasps the object, the robot goes to a pre-
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Figure 1: First and final RGB images of the video sequences from our

continuous perception database from the top and side views.

defined position above the table while capturing frames

from a top and side views, i.e., egocentric and exocen-

tric views. The initial and final images of a typical im-

age sequence can be observed in Figure 1.

The key contributions of this paper are:

1. We present and demonstrate a continuous visual

perception approach for deformable object classi-

fication while a robot picks and observes how a de-

formable object changes over time.

2. We have conducted an extensive ablation study to

investigate how visual features approaches con-

tribute and perform to the classification of de-

formable objects under continuous perception.

3. We describe a database of different clothing items

as they are being picked up by a robot, which

we use to validate our continuous perception

approach alongside with state-of-the-art clothing

databases[5].

The visual feature framework approach we adopted

is inspired by, and builds on [6] and [3]. In this pa-

per, we expand this framework by integrating continu-

ous visual knowledge as being extracted from a video

sequence; demonstrating, for the first time, a functional

continuous visual perception approach to deformable

objects understanding. Similarly, Our database is the

first fully annotated collection of video sequences in

the literature and can be used for further compari-

son and benchmarking for continuous and single-frame

classification and recognition [7]. Our database can

be downloaded from http://dx.doi.org/10.5525/

gla.researchdata.669.

This paper is organized as follows: Section 2 presents

background research in robot vision for classifying and

recognizing deformable objects. Section 3 describes

the continuous perception approach to deformable ob-

ject understanding while Section 4, our finding. Finally,

discussion and conclusions are given in Section 5.

2. Related Work

Current approaches for deformable object recogni-

tion and classification can be divided into two cate-

gories; those that recognize a deformable object when

it is on a table [8] [9] [6], and those that recognize de-

formable objects when they are hanging from a robot’s

gripper [10] [11]. In this paper, we merge both cate-

gories by using the sequence that starts in the first cate-

gory and ends in the second.

When deformable object are on a table, approaches

consists of classifying them from only one image

(single-shot perception [6]) or that change the their con-

figuration to increase the prediction reliability, relying

on the randomness of the deformable object after inter-

action (interactive perception [3]). That is, Li et al. [6]

showed that it is possible to classify deformable ob-

jects in unconstrained and random configurations from

single image frames. They proposed to extract visual

features to represent material physical attributes of gar-

ments from depth images. In their later work [3], the

authors extended their system to interactively perceive

clothing items by capturing image frames after the robot

interacted with a garment to change its physical config-

uration. The latter approach demonstrated substantial

improvement over single-frame approaches, which im-

proved the classification confidence by increasing the

number of observations after interaction. In this pa-

per, we build on both approaches by allowing the robot

to observe and understand how an object deforms as

being picked up from a table. By employing a Loca-

lity Constrained Group Sparse Representation (LGSR)

technique, our continuous perception approach encodes

and creates temporal concepts of the object’s physical

dynamics for its classification. When the object hangs

from a robot’s gripper, it is common to take advan-

tage of the classification for pose recognition and de-

tect the optimal grasping points, which the robot can

then plan subsequent actions such as unfolding for gar-

ments. These systems are devised as a two-stage pro-

cess [12] [13]; where classification informs and reduces
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the search space for 3D pose estimation for grasp plan-

ning.

Early research in deformable object recognition com-

prised extracting visual features using silhouette fea-

tures [14] [15] [16]. Then, with the arrival of low-cost

RGB-D cameras, approaches exploiting depth informa-

tion were used. Most of these approaches match patches

based on 3D local features such as Geodesic-Depth His-

tograms (GDH) [8], Fast Point Feature Histograms (F-

PFH) [9] [17], Heat Kernel Signatures (HKS) [18] and

Fast Integral Normal 3D (FINDDD) [19]. Other ap-

proaches integrate a full 3D model from depth images

to extract 3D volumetric features [20]. The common

ground in previous research is that the most distinctive

visual features are wrinkles, which indeed provide rele-

vant information of the type of material as demonstrated

in [8] [6] [3] with direct robotic applications to dual-

arm flattening [21] [22], and ironing [23]. Moreover,

the “wrinkledness” measure has been widely used in

state-of-the-art algorithms. This measure uses entropy

to analyze how much of the surrounding area of a point

has normals aligned in the same orientation, i.e., a flat

surface or a combination of few flat surfaces [24]. Ad-

vanced analysis of wrinkles has also been carried out,

aiming to identify their shape and topology using a size

based classification procedure, which requires detecting

the length, width, and height of each wrinkle [22]. In

this work, we adopt different visual features to investi-

gate how they contribute to the performance of classify-

ing deformable objects using continuous perception.

Recently, approaches based on Deep Neural Net-

works (DNNs) [25] [26] [27] have been used for de-

formable object recognition and classification. Al-

though most of the systems use real images for training,

others use simulated models to increase the amount of

training data [12] [25] [26] [27]. However, deformable

objects in a random configuration are highly challeng-

ing to simulate, and investigating continuous perception

approaches for clothing classification is intractable at

the moment. Moreover, the DNNs can achieve compet-

itive classification performance through an end-to-end

traning but lack of an interpretable analysis. In this

paper, we leverage Locallity-constrained Linear Cod-

ing (LLC) [40, 6] and Gaussian Process Latent Vari-

able Model (GPLVM) [41] for the model selection of

the high-dimensional feature representation.

3. The Continuous Perception Approach

We claim that continuous perception equips au-

tonomous systems with needed visual capabilities to

classify and recognize the type of deformable object

based on their physical attributes and distinctive visual

characteristics. For this, we therefore investigated and

selected the optimal combination of visual feature tech-

niques to support continuous robotic perception. We

also investigated how distinctive visual features of the

objects contribute to the visual classification task at

hand.

3.1. Experimental Techniques and Methods

The experimental setup consists of capturing multi-

ple depth images from two different camera positions,

namely, egocentric and exocentric views, while a robot

arm grasps a garment from a flat surface. Depth images

from both cameras are then passed to the continuous

perception framework shown in Figure 2. This frame-

work, inspired by [6], consists of 3 modules: (1) visual

feature extraction and coding of local features, (3) in-

tegration of the features, and (4) temporal, continuous,

classification.

In Figure 2, local visual features characterize unique

information about the dynamics of deformable materi-

als, while global features capture the overall shape of

the object as it is manipulated. To maintain the focus

on the ability of the robot to perceive and classify de-

formable objects continuously, we assume that objects

are easily segmented from the working table. That is,

we segmented items based on a simple height thresh-

old algorithm with respect to the table, and this has

been recorded in our experimental dataset [7]. For ad-

vanced segmentation algorithms, we refer the reader to

[28] [29] [30].

In the first module of the continuous perception ex-

perimental setup, we selected local and global features

that are the de-facto visual features to deformable object

classification and, consequently, have shown good per-

formance in state-of-the-art approaches for single frame

classification [18, 24, 6, 3]. Local visual features are en-

coded and then concatenated to global features to create

a condensed visual description for a given frame. We

called this the Composite Feature Vector (CFV), Fig-

ure 3.4.1. CFV thus captures both the dynamic interac-

tions plus the global shape of the object, which is then

put into a temporal representation of the depth video

sequence using the Locality-Constrained Group Sparse

representation (LGRS) algorithm [31]. For complete-

ness, we describe briefly the techniques and methods

we adopted and implemented in the following sections

to support continuous perception for deformable object

understanding.
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Figure 2: Continuous perception: Local and global features are concatenated into a single feature vector before passing it to the LGSR classification

step.
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3.2. Visual Features

Local features contribute to describing wrinkles in-

formation, a characteristic that possesses only de-

formable objects and it is a distinctive feature to de-

scribe fabric materials as pointed out by [6]. Global fea-

tures contribute to shape information and are employed

to describe shapes while observing how deformable ob-

jects change over time. In this work, we found that wrin-

kles are indeed key to capture the dynamic interaction

of the object’s particles and to create relationships be-

tween particle’s locations frame-by-frame, see Section

4.2 – similar observations have already been made in

[6] for single-frame recognition and classification. We

carry out a comprehensive study on the contributions of

each local and global features in Section 4.3, demon-

strating its contribution to the continuous visual classi-

fication task.

We have thus used the B-Spline Patch (BSP), His-

togram of Topology Spatial Distances (TSD), Shape In-

dex (SI) and Histogram of Local Binary Patterns (LBP)

as the visual features for local and global feature rep-

resentations. We refer the reader to [6, 3] for more

details about these techniques. Similarly, we describe

briefly below the Fast Integral Normal 3D descrip-

tor (FINDDD), Shape Context (SC) and Grey Level

Co-occurrence Matrix (GLCM) feature extraction tech-

niques for completeness in our experimental setup.

FINDDD [19] represents the distribution of orienta-

tions of the 3D normals in a region around a point of

interest in a structured point cloud. The computation of

the FINDDD descriptor is based on computing the nor-

mal vector for every point in the cloud, using integral

images to accelerate the process. Then, the point cloud

is divided into sub-regions, and for each sub-region, a

descriptor is computed by constructing normal orienta-

tion histograms. Instead of using bins defined as an-

gles in spherical coordinates, FINDDD features are dis-

tributed regularly across the entire semi-sphere in Carte-

sian coordinates. The latter avoids concentration around

the north pole (maximum elevation), and the uneven

area assigned to each bin caused by the angular repre-

sentation. In this paper, we use the Point Cloud Library

[32] implementation to estimate the normals of every

point of a structured point-cloud as the basis to compute

FINDDD descriptors.

SC1 [33] describes the relationship between one point

with respect to the other points on the shape. This de-

1We use the author’s Shape Context implementation which can

be found here: https://www2.eecs.berkeley.edu/Research/

Projects/CS/vision/code/sc_demo/

scriptor determines the relationship using a logarithmic-

polar distance and classifies these values into a his-

togram of 12 × 5 bins. The Shape Context descrip-

tor gives a discriminative global characterization of the

shape into a local descriptor since the distances are cal-

culated with respect to other points in the shape. SC,

therefore, describes structures in terms of a translation

invariant descriptor.

The GLCM [34, 35] technique determines the pixel

relationship with other pixels in terms of distance and

angle. GLCM calculates the co-occurrence matrix

by calculating how often a pixel with a gray-level

(grayscale intensity) value occurs in any of the eight de-

fined directions (0, 45, 90, and 135 degrees). Although

their analysis methods, the GLCM algorithm is one of

the commonly adopted techniques for finding texture in-

formation in images of natural scenes and performs well

in object recognition [36]. We used Matlab’s functions2

in our experiments. The SVD (singular value decompo-

sition) is calculated from the co-occurrence matrix gen-

erating three matrices (U, S and V). U and V represent

the left and right singular vectors of the image matrix,

and S is a diagonal matrix with singular values. Then

L1 normalization is applied in the diagonal matrix, using

this value as the descriptor value.

3.2.1. Distinctive Features

In our experimental design, we also evaluated the in-

tegration of distinctive features, such as the collar of

jeans, the eyes of a teddy bear, to name a few. Our

implementation is based in the Viewpoint Feature His-

togram (VFH) descriptors [37] in a selected region per-

forming matching with the k-nearest neighborhood as

demonstrated in [38] for grasp point detection in cloth-

ing. The VFH descriptor represents four different an-

gular distributions of surface normals in a compound

histogram. We use PCL’s implementation, where each

of these four histograms has 45 bins, and the viewpoint-

dependent component has 128 bins, totaling 308 bins.

To determine distinctive features, we marked the region

where distinctive features appeared in our database and

train a naive K-Nearest Neighbour with VFH descrip-

tors. We then search these features over the input image

for classification and detection.

For the training phase, we computed the local max-

imums of an entropy filter over the input depth image

to extract potential contours on the deformable object.

We used active contour models [39] to select a contour

2https://www.mathworks.com/help/images/ref/

graycomatrix.html
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and describe the part to be detected. The active con-

tours method consists of curves defined within an im-

age domain that can move under the influence of inter-

nal forces coming from within the curve itself and, also

external forces computed from the image data. The in-

ternal and external forces are defined so that the snake

will conform to an object boundary or other desired fea-

tures within an image. Hence, we annotate a distinctive

feature as the active curve that describes a specific part

of the deformable objects in order to compute VFH de-

scriptors on the selected contour in the depth image. For

the classification phase, we follow the same methodol-

ogy, but we find the ten closest VFH descriptors with

respect to the input VFH descriptors. In the case where

two or more classes have the same voting, the distances

of the neighbors belonging to those classes are added,

and we select the shortest distance.

3.3. Visual Feature Coding Techniques

We use the Locality-constrained Linear Coding

(LLC) [40, 6] because it has shown to perform more ef-

fectively in object and clothing recognition benchmarks.

In this paper, we apply this coding technique for each of

the local features (BSP, FINDDD, SC, and GLCM) as it

can be seen in Figure 2.

We also adopted the Gaussian Process Latent Vari-

able Model (GPLVM) [41] to compress information

provided by the local features. That is, GPLVM is

non-linear dimensionality reduction technique that gen-

eralizes principal component analysis, and it provides

a nonlinear mapping to reproduce transformed samples

from a latent variable space to an observation space by

imposing a Gaussian process prior over the mapping

function. This coding technique is used in the local fea-

tures: SC and GLCM, after the LLC coding technique.

The latter can be seen in Figures 2.

3.4. Classification

3.4.1. Feature integration

In this paper, feature integration combines multiple

observations of a sequence for recognition and classifi-

cation. First, for each depth image, we generate a Com-

posite Feature Vector (CFV, see Figure 3) by concate-

nating each visual feature extracted from the depth im-

age. Then, all feature vectors in the sequence are inte-

grated to create a representation matrix of n × F, where

n is the number of views in a sequence and F, the size

of the composite features vector v (see Figure 2).

3.4.2. Locality constrained group sparse representation

The Locality Constrained Group Sparse Representa-

tion (LGSR) [31] is a classification method commonly

used for human gait recognition, where it is needed to

classify each input sequence with the information of

multiple frames. This method imposes the weighted

mixed-norm penalty on the reconstruction coefficients

in order to enforce both group sparsity and local smooth

sparsity constraints. Thus, LGSR utilizes the intrin-

sic group information effectively from multiple images

within each sequence, treating each test/training se-

quence as a group of features that combines specific fea-

tures in an image for classification. In this paper, LGSR

provides us with the ability to combine and fuse visual

information about the deformable object as it changes

over time.

Let V = [V1,V2, ...,V M] and V i = [vc
1
, vc

2
, ..., vc

n]

where Vc is the cth sequence in the training set and

vc
i
= [LBS P, LFINDDD,ZGLCM ,ZS C , S , LBP,TS D] is the

composite features of the ith view in the cth sequence;

n and M are the total numbers of views and sequences

in the training set, respectively. We also define the test

sequence Y = [y1, y2, ...., yn], where

yi = [LBS P, LFINDDD,ZS C ,ZGLCM , S I, LBP,TS D] is the

composite features of the ith view in the input sequence.

Let us now represent the reconstruction coefficient as

S = [(S 1)T , (S 2)T , ..., (S M)T ], where S c is the recon-

struction coefficient for the input sequence with respect

to the cth sequence. LGSR thus allows us to enforce

group sparsity and local smooth sparsity constraints by

minimizing the weighted l1,2 mixed-norm-regularized

reconstruction error as follows:

S * = argminS G(S )

= argminS
1
2
||Y − VS ||2

F
+ λ

M︁

c=1

||Dc ⊙ S c||F
(1)

where R(S ) = 1
2
||Y − VS ||2

F
represents the reconstruc-

tion error of the input sequence Y with respect to all

the training set V . The second term is the weighted l1,2
mixed-norm-based regularizer of the reconstruction co-

efficient S , and λ > 0 is the regularization parameter to

balance these two terms.

Dc ∈ Rnc×np is the distance matrix between the views

of the cth gallery sequence and the views in the input

sequence. To calculate Dc, we compute the distance

dc between the input sequence and the cth gallery se-

quence using the single-level Earth mover’s distance-

based temporal matching method [42], and dmin with the

minimum distance of dc|
M
c=1

.

For the ith composite features from the cth sequence

in the training set, we define Dc
i j
= exp[(dc−dmin)/σ]ei j,
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Figure 3: Composition of the final Composite Feature Vector (vc
i
). This vector encodes local and global features to characterize dynamic interactions

of deformable objects in a sequence.

where ei j is the Euclidean distance between vc
i

and y j,

and σ is the bandwidth parameter (σ = 1/40, 1/8, 1/4,

1/2) – we found that the convergence time decreases

with a lower value.

Di j = exp[(dc − dmin)/σ]ei j (2)

We use the active set-based sub-gradient descent al-

gorithm to solve equation (1), as in [43]. The values

of S c are updated at iteration t + 1 by equation (3). As

follows:

S c
t+1 = S c

t − βt

∂G(S )

∂S c

⃒

⃒

⃒

⃒

⃒

S=S t

(3)

where ∂G(S )/∂S c is the updating direction and βt is the

step size determined by a standard line search method.

By taking the sub-gradient of G(S c) with respect to S c,

the updating direction is defined as:

∂G(S )

∂S c
=
∂R(S )

∂S c
+ λ
∂||Dc ⊙ S c||F

∂S c
(4)

where,

∂R(S )

∂S c
= (Vc)T (VS − Y) (5)

∂||Dc ⊙ S c||F

∂S c
=

︃

Dc⊙Dc⊙S c

||Dc⊙S c ||
if S c

, 0

Zc otherwise
(6)

The particular optimization algorithm is summarized

in Algorithm 16. We initialize S as a matrix with all its

elements as zero such that all the sequences are added

into the active set in order to update the corresponding

reconstruction coefficients. After obtaining the optimal

reconstruction coefficient S *, we use the Minimum Re-

construction Error (minRE) criterion to classify the in-

put sequence. We compute the reconstruction error for

each class as follows:

Rc((S c)*) =
1

2
||Y − Vc(S c)*||F (7)

where the reconstruction coefficient (S c)* is from S *

that corresponds to the cth gallery sequence. Then, we

classify the input sequence to c* = argmincRc((S c)*).

4. Experiments

Our working hypothesis is that continuous percep-

tion provides robots with greater visual competences for

deformable objects. To demonstrate this, we devised

a continuous perception approach that used the infor-

mation obtained from observing the dynamic interac-

tions of different fabrics of garments while a robot picks

them up. Therefore, our experimental design consists

of performing clothes classification with two different

databases.

With these databases, we can evaluate and compare

the performance of techniques for deformable objects

classification with other approaches from the literature.

Figure ?? depicts our proposed continuous perception

7



Algorithm 1: Optimization Algorithm of LGSR

Input : Y: input sequence, V: training set

1 Initialize t = 1, S t = 0 ∈ Rn×np , A = {}

2 Compute Dc between the cth sequence in the

training set and the input sequence,

∀c ∈ {1, ...,M}.

3 while t < TMax do

4 Compute

Lc = ||∂R(S )/∂S c||F |S=S t
∀c ∈ {c|S c

t = 0}

5 Find c* = argmaxcLc. If Lc* > λmin(Dc)

then A = c* ∪ A

6 for each c in A do

7 Update S c
t+1

by using eq. (3) with line

search.

8 if S c
t+1
= 0 then

9 remove c from A

10 end

11 end

12 if ||S t+1 − S t ||F < ǫ(ǫ = 0.001) then

13 exit WHILE

14 end

15 t = t+1

16 end

Output: S

pipeline within a robotics sorting task. We also per-

form an ablation study to examine the effectiveness and

contributions of different visual features (Sections 3.2),

and coding (Section 3.3) and classification (Section 3.4)

techniques used in our approach.

4.1. Materials: Clothing Databases

For clothing classification, we have collected a large

database of RGB-D video sequences of clothing items

using two Asus Xtion Pro Live sensors located in the

wrists of a dual-arm industrial robot. Then, an existing

database was used for making single-shot classifications

with different resolutions, to compare the performance

between using a high-resolution stereo device and an

Asus Xtion Pro Live device (Section 4.5).

First, for continuous perception experiments, we have

collected a database of RGB-D video sequences [7]3.

This database features a collection of ‘rosbags’4 con-

taining color and depth images, point clouds, camera

information, and all the robot kinematic transformations

during the video sequence. Specifically, the database

3Available at http://dx.doi.org/10.5525/gla.

researchdata.669
4http://wiki.ros.org/rosbag

consists of 15 clothing items of 5 categories: t-shirts,

shirts, sweaters, jeans, and towels. Each item of clo-

thing is captured from 10 different random configura-

tions, totalling 150 garment videos in random config-

urations and as being manipulated by our robot. Each

sensing device saved RGB-D video streams at 30 Hz.

This dataset allows comparisons to be made from dif-

ferent visual views, e.g., at the table, hanging or contin-

uous movement from the side of the robotic action and

top-down view.

Second, for single shot experiments, we use the free-

configuration clothing database [5]. This database com-

prises 50 clothing items of 5 categories: t-shirts, shirts,

sweaters, jeans, and towels of clothing are captured

in 21 different random configurations high-resolution

stereo robot head system and an Asus Xtion Pro Live.

In total, the database has 1,050 garment images in ran-

dom configurations for each sensing device; providing

for each clothing item an RGB image, depth image, and

segmented mask. Furthermore, each of the images has

a 16 MegaPixels (4928 × 3264) image resolution from

a stereo robot head [6] and a VGA (640 × 480) image

resolution from an Asus Xtion Pro Live.

4.2. Continuous Perception Experiments

We evaluated our approach on the RGB-D video se-

quences from our continuous clothing database with

two methods of the state-of-the-art: interactive percep-

tion [3] and single-shot perception [6]. Since these two

methods only evaluate images, three representative ima-

ges were selected: the first image (when the object is on

the table), the last image (when the object is hanging

from a gripper) and the image with the best result. For

the third case, the methods evaluated each image of the

sequence and the result with the best performance was

selected. Table 4 shows the comparison between our

approach and these two methods using the three repre-

sentative images.

Classification accuracy results can be depicted in Ta-

ble 4 and Figure 4. Overall, the proposed approach ob-

serves a mean classification accuracy of 66.7%, with

specific-class accuracy of 58.0%, 41.6%, 83.8%, 67.0%

and 83.8% for the t-shirt, shirt, sweater, jeans and towel

classes, respectively. From the results, we noticed that

the sweater and towel classes represent the best classi-

fication scores due to the inter-class dissimilarities in

shape and surface typologies. Although the sweater

class gets the best classification scores, this class has

higher false positives, resulting in a lower score for the

shirt class. This reduction in performance is because

deformations in a sweater and shirt classes are similar

since both classes have the same fabric material, i.e.,
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Table 1: Performance comparison between our proposed method with

two methods of the state-of-the-art. First, the interactive perception

method[3], with the features LBP, SI and TSD (L-S-T) using Gaus-

sian Processes (GP). Second, the single-shot perception[6], with the

features LBP, SI, TSD and BSP (L-S-T-B) using support vector ma-

chine (SVM).

Algorithm accuracy

L-S-T with GP (first image) 35.6%

L-S-T with GP (last image) 37.47%

L-S-T with GP (best image) 35.00%

L-S-T-B with SVM (first image) 38.93%

L-S-T-B with SVM (last image) 37.67%

L-S-T-B with SVM (best image) 39.40%

Our Method 66.7%

Figure 4: Confusion matrix of our method using our continuous cloth-

ing database.

cotton based fabric. For the interactive perception ap-

proach using our continuous database, the best average

accuracy score is 37.47%, with 41.7%, 17.3%, 31.7%,

32.0%, 51.3% for the classes t-shirt, shirt, sweater,

jeans, and towel respectively. Similarly, the best aver-

age accuracy with the single-shot perception approach

is 39.4%, with 48.0%, 16.3%, 25.0%, 55.0% and 52.7%

for the classes t-shirt, shirt, sweater, jeans, and towel,

respectively.

By considering the average accuracy and individual

accuracy of each class, we can confirm that our con-

tinuous perception approach outperforms the interac-

tive perception approach by 31.9%, and 29.23% for the

single-shot perception. We can thus conclude that our

approach improves the capabilities of a robotic garment

sorting task, specifically those tasks that consist of ma-

nipulating highly deformable objects since the object

space is no longer described based on the 3D structure

of its visible surface but by observing how the garment’s

fabric changes over time.

4.3. Ablation study.

To investigate how different visual features ap-

proaches contribute and perform in our continuous per-

ception approach, we carried out ablation experiments

as listed in Tables 2 and 3. The experiments in Ta-

ble 2 are about evaluating the effectiveness of local and

global features for the continuous perception clothing

classification task over different configurations. That

is, we deactivated different features and divided these

experiments as follows: proposed method (ID 1.1), lo-

cal features (IDs 1.2-1.5), global features (IDs 1.6-1.8),

only global features (ID 1.9) and only local features

(ID 1.10). In ID 1.2 - 1.8, we deactivated the contri-

bution of one visual feature, while leaving the rest un-

changed. Similarly, Table 3 shows the experiments that

evaluate the impact of the coding algorithms LLC and

GPLVM for the classification task. These coding algo-

rithms are applied only on local features. The experi-

ments are distributed in the following way: the proposed

method (ID 2.1), only coding using LLC (IDs 2.2-2.5)

and only coding using GPLVM (IDs 2.6-2.7).

Figure 5 depicts the results of the experiments des-

cribed in Table 2. As observed in Figure 5, local features

(ID 1.2 - 1.5) capture more distinctively the dynamic in-

teractions of clothing particles. This is because classi-

fication scores are close to or below 50% classification

score, lower than when one global feature is not consid-

ered. The latter is further supported by the classification

scores obtained in Figure 6. Notably, the contributions

of BSP and SC local features have a considerable im-

pact in the classification scores, since when either of

them are not considered, classification scores are below

30% but, when fused without FINDDD, the classifica-

tion score is close to 60% (see ID 2.3 in Figure 6).

We also discovered that the GPLVM coding tech-

nique (ID 2.6 and 2.7) does not contribute conside-

rably to the continuous classification task with respect

to LLC, so it is considered an optional technique to de-

crease the computational load. We, therefore, deduce

that LLC captures the most distinctive features. Global

features observe minimal contributions, e.g., classifica-

tion scores for ID 1.9 and 1.10. Even though the com-

bination of local and global features represents the best

classification score, global features only contribute to

approximately 3% of the total score. That is, local vi-

sual features characterize unique information about the
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Table 2: Experiments for ablation studies of the features of the proposed solution. Where ‘yes’ indicates that the feature is activated and ‘no’ when

it is disabled.

ID BSP FINDDD SC GLCM SI LBP TSD

1.1 yes yes yes yes yes yes yes

1.2 no yes yes yes yes yes yes

1.3 yes no yes yes yes yes yes

1.4 yes yes no yes yes yes yes

1.5 yes yes yes no yes yes yes

1.6 yes yes yes yes no yes yes

1.7 yes yes yes yes yes no yes

1.8 yes yes yes yes yes yes no

1.9 no no no no yes yes yes

1.10 yes yes yes yes no no no

Table 3: Experiments for ablation studies of the coding algorithms of the proposed approach. Where ‘yes’ indicates that the feature is activated and

‘no’ when it is disabled.

ID LLC GPLVM

BSP FINDDD SC GLCM SC GLCM

2.1 yes yes yes yes yes yes

2.2 no yes yes yes yes yes

2.3 yes no yes yes yes yes

2.4 yes yes no yes yes yes

2.5 yes yes yes no yes yes

2.6 yes yes yes yes no yes

2.7 yes yes yes yes yes no

2.8 yes yes yes yes no no

dynamics of the fabrics while global feature captures the

overall shape of clothing as it is being pulled.

4.4. Continuous Perception Strategy

To evaluate how many images should be consid-

ered for each sensor, we determine the number of im-

ages needed to be passed to our approach to achieving

the classification scores described in previous sections.

These results can be observed in Table 4. Sensor 1 cor-

responds to the RGBD camera on the arm that manip-

ulates the garment and captures the first images of the

garment on the table, i.e., an egocentric view. Sensor 2

is the RGBD camera that captures images from a dis-

tance while the other arm picks up the garment from the

table, i.e., exocentric view.

Table 4 shows that it is better to use 1 or 2 images of

sensor 1 that has a view from above of the garment on

Figure 5: Ablation study results of the experiments shown in the Table

2.
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Figure 6: Ablation study results of the experiments shown in the Table

3.

Table 4: Sensor RGBD 2 and Sensor RGBD 1

Sen. 2 ∖ Sen. 1 1 2 3 4

5 55.0% 55.0% 55.0% 50.0%

15 66.7% 66.7% 63.3% 53.3%

25 58.3% 61.7% 61.7% 51.7%

the table. Also, we found that our approach achieves a

better performance while using the last fifteen images

of the sensor 2 – this corresponds to when the garment

is almost hanging from the robot’s gripper, and it is not

crumpled.

4.5. Single-Shot Experiments

In order to compare the performance of the fea-

tures and the coding techniques used in our proposed

approach with the state-of-the-art approaches, we va-

lidated our approach using the free-configuration clo-

thing database. This database is about evaluating single-

shot classification and does not feature video sequences

to explore our continuous approach fully. For this, we

replace the LGSR classification method (Section 3.4.2)

with an SVM classifier but using the same local features

(BSP, FINDDD, SC, and GLCM) and global features

(SI, LBP, and TSD). In order to increase the accuracy of

our approach, we also evaluated the integration of dis-

tinctive features, specifically the collar and waist infor-

mation in the shirt and jeans classes respectively as in

Martinez et al. [38]. The collar and waist information is

based in VFH descriptors [37], a compound histogram

with four angular distributions of surface normals in the

selected region.

For these experiments, we only used the images with

high resolution (4928×3264), and we obtain an average

classification score of 84.8% (see Table 5) using our ap-

proach without LGSR. As shown in the confusion ma-

trix of the Figure 7(a), the classification score for each

class is: 91%, 67.1%, 83.8%, 90.9% and 91.1% for the

t-shirt, shirt, sweater, jeans and towel classes, respec-

tively. These values can be compared with the best re-

sult of the state-of-the-art [6] in this database, with an

average classification score of 83.2% (see Table 5) and

with individual scores of: 89.2%, 70.0%, 80.8%, 87.0%

and 88.8% (c.f. Figure 6(f) in [6]) for the t-shirt, shirt,

sweater, jeans and towel classes, respectively. We must

note that the improvement is only marginal but allow us

to confirm that our vision approach is comparable with

current approaches to clothing classification while per-

forming single-shot recognition.

For the experiments where we included the collar and

waist features, our approach observed an improved av-

erage classification score of 87.7% (see Table 5), Fi-

gure 7(b) and that class-specific classification scores

are: 88.3%, 79%, 87.4%, 93.1% and 90.5% for t-shirt,

shirt, sweater, jeans and towel, respectively. By inte-

grating more distinctive visual features descriptions wi-

thin our approach, we can observe an increase in per-

formance in the classification scores (approx. 3%). We

can thus speculate that visual features such as buttons,

collars, waists, and so forth, on garments would lead to

less inter-class similarities and, consequently, increase

class-specific classification scores.

Table 5 also shows a comparison between image reso-

lutions. This allowed us to evaluate if our approach ob-

serves a decrease in performance while using different

sensing capabilities. These experiments are motivated

by the fact that the above classification scores impro-

ve while using high-resolution images. Hence, we can

observe in Table 5 an increase of 1.1% and 9.4% in low

resolution and an increase of 1.6% and 4.5% while us-

ing high-resolution images. The latter demonstrates that

our approach outperforms results from the state-of-the-

art [6] in this database. The increase in performance

while using the distinctive features is because the collar

of the shirt and waist of the jeans improve the accuracy

in these classes and decrease the false positives with re-

spect to other classes.

We must note that these distinctive features resulted

in an increase in performance for single-shot recogni-

tion/classification tasks. The reason for this is that while

perceiving continuously clothing items as our robot pi-

cks them up, distinctive clothing features disappear and

appear randomly between frames; thus making LGSR

to lose accuracy since it usually stayed in a local mini-

mum. Thus, we did not include these distinctive fea-

tures in the continuous perception experiments in Sec-

tions 4.2 and 4.3.
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Figure 7: Confusion matrix of the proposed method in the high-resolution Clothing Dataset. a) results of the proposed method and b) results of the

proposed method with distinctive features.

Table 5: Performance comparison between our approach with and

without distinctive features against two methods of the state-of-the-

art. First, the interactive perception method [3], with the features

LBP, SI and TSD (L-S-T) using Gaussian process (GP). Second, the

single-shot perception [6], with the features LBP, SI, TSD and BSP

(L-S-T-B) using support vector machine (SVM).

Algorithm Low High

resolution resolution

L-S-T with GP[3] 58.5% 70.8%

L-S-T-B with SVM[6] 64.2% 83.2%

Our Method 65.3% 84.8%

Our Method + Dist. Feat. 73.6% 87.7%

5. Conclusions

In this paper, we have presented a continuous per-

ception approach to classifying clothing categories from

video sequences. For this, we have used image se-

quences from multiple RGB-D sensors from highly

wrinkled garment configurations. By adopting the

LGSR method, a standard algorithm in human gait ac-

tion recognition, we have demonstrated that continu-

ous perception can potentially allow a robot to dynami-

cally survey the action and provide us with information

to successfully classify clothing categories as the robot

carries out a garment sorting task. The latter represents

a step forward in traditional sense-plan-act approaches

that lead to improvements in automating laundry tasks.

For our approach, we have compiled the first fully-

annotated database of RGB-D video scans of clothing

items. Video sequences start with the clothing item la-

ying on a flat surface and finalize until the garment is

hanging from the gripper of the robot. All videos co-

llected comprise the video streams of two Asus Xtion

Pro sensors positioned on the wrists of a dual-arm robot.

Likewise, we have also collected the kinematic transfor-

mations of the robot while manipulating the garments.

This database also can be used for evaluating and va-

lidating approaches to clothing recognition in the state

of the art while garments are on a flat surface, hang-

ing from a gripper and being picked up by a robot (i.e.,

continuous perception). To the best of our knowledge,

this is the first database of this kind, and we hope it en-

courages progress in perception methods for highly de-

formable objects.

Our continuous perception approach has been eva-

luated using two clothing databases. In all the expe-

riments, we can state that our approach performs well

for highly deformed garments. That is, our approach

has achieved an average accuracy of 66.7% among 5

categories on our continuous perception database. The

latter represents an increase of 39.4% of classification

score with respect to current approaches to clothing

classification and recognition [6, 6]. We also compared

the classification performance of our approach with the

free-configuration clothing database. Similarly, our pro-

posed approach advances the state of the art with res-

pect to previous garment databases [5]. Results de-

monstrated that the rigorous fusion of local and global

visual features with appropriate coding techniques (in-
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formed by the ablation study in Section 4.3) observed

increases in classification scores from 64.2% [6] to

73.6% while using low resolution images, and from

83.2% [6] to 87.7% while using high resolution images.

For future work, we propose to incorporate a com-

plex segmentation algorithm to increase the ability of

the robot to analyze garments starting from a pile. Also,

considering the improvement of integrating distinctive

features, it would be possible to improve the classifica-

tion performance for a robot sorting task, and garment

classification.

Our continous perception dataset will allow us to ex-

plore deep learning approaches to deformable object

recognition and classification to overcome current en-

gineered approaches.
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