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Abstract

Object recognition and pose estimation is a fundamental problem in computer vision

and of utmost importance in robotic applications. Object recognition refers to the

problem of recognizing certain object instances, or categorizing objects into specific

classes. Pose estimation deals with estimating the exact position of the object in

3D space, usually expressed in Euler angles[1]. There are generally two types of

objects that require special care when designing solutions to the aforementioned

problems: rigid and deformable. Dealing with deformable objects has been a much

harder problem, and usually solutions that apply to rigid objects, fail when used for

deformable objects due to the inherent assumptions made during the design.

In this thesis we deal with object categorization, instance recognition and pose

estimation of both rigid and deformable objects. In particular, we are interested in a

special type of deformable objects, clothes. We tackle the problem of autonomously

recognizing and unfolding articles of clothing using a dual manipulator[2]. This

problem consists of grasping an article from a random point, recognizing it and then

bringing it into an unfolded state by a dual arm robot. We propose a data-driven

method for clothes recognition from depth images using Random Decision Forests.

We also propose a method for unfolding an article of clothing after estimating and

grasping two key-points, using Hough Forests. Both methods are implemented into

a POMDP framework allowing the robot to interact optimally with the garments,

taking into account uncertainty in the recognition and point estimation process. This

active recognition and unfolding makes our system very robust to noisy observations.

Our methods were tested on regular-sized clothes using a dual-arm manipulator.

Our systems perform better in both accuracy and speed compared to state-of-the-

art approaches.

In order to take advantage of the robotic manipulator and increase the accuracy of

our system, we developed a novel approach to address generic active vision problems,

called Active Random Forests [3]. While state of the art focuses on best viewing pa-

rameters selection based on single view classifiers, we propose a multi-view classifier

where the decision mechanism of optimally changing viewing parameters is inherent

to the classification process. This has many advantages: a) the classifier exploits
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the entire set of captured images and does not simply aggregate probabilistically

per view hypotheses; b) actions are based on learnt disambiguating features from

all views and are optimally selected using the powerful voting scheme of Random

Forests and c) the classifier can take into account the costs of actions. The proposed

framework was applied to the same task of autonomously unfolding clothes by a

robot, addressing the problem of best viewpoint selection in classification, grasp

point and pose estimation of garments. We show great performance improvement

compared to state of the art methods and our previous POMDP formulation.

Moving from deformable to rigid objects while keeping our interest to domestic

robotic applications, we focus on object instance recognition and 3D pose estimation

of household objects. We are particularly interested in realistic scenes that are very

crowded and objects can be perceived under severe occlusions. Single shot-based 6D

pose estimators with manually designed features are still unable to tackle such diffi-

cult scenarios for a variety of objects, motivating the research towards unsupervised

feature learning and next-best-view estimation. We present a complete framework[4]

for both single shot-based 6D object pose estimation and next-best-view prediction

based on Hough Forests, the state of the art object pose estimator that performs

classification and regression jointly. Rather than using manually designed features

we propose an unsupervised feature learnt from depth-invariant patches using a

Sparse Autoencoder. Furthermore, taking advantage of the clustering performed in

the leaf nodes of Hough Forests, we learn to estimate the reduction of uncertainty

in other views, formulating the problem of selecting the next-best-view. To further

improve 6D object pose estimation, we propose an improved joint registration and

hypotheses verification module as a final refinement step to reject false detections.

We provide two additional challenging datasets inspired from realistic scenarios to

extensively evaluate the state of the art and our framework. One is related to do-

mestic environments and the other depicts a bin-picking scenario mostly found in

industrial settings. We show that our framework significantly outperforms state of

the art both on public and on our datasets.

Unsupervised feature learning, although efficient, might produce sub-optimal fea-

tures for our particular tast. Therefore in our last work, we leverage the power of
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Convolutional Neural Networks to tackled the problem of estimating the pose of

rigid objects by an end-to-end deep regression network. To improve the moderate

performance of the standard regression objective function, we introduce the Siamese

Regression Network. For a given image pair, we enforce a similarity measure be-

tween the representation of the sample images in the feature and pose space respec-

tively, that is shown to boost regression performance. Furthermore, we argue that

our pose-guided feature learning using our Siamese Regression Network generates

more discriminative features that outperform the state of the art. Last, our fea-

ture learning formulation provides the ability of learning features that can perform

under severe occlusions, demonstrating high performance on our novel hand-object

dataset.

Concluding, this work is a research on the area of object detection and pose esti-

mation in 3D space, on a variety of object types. Furthermore we investigate how

accuracy can be further improved by applying active vision techniques to optimally

move the camera view to minimize the detection error.
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Chapter 1

Introduction

1.1 Object Detection in Robotics

The term object detection refers to various problems in vision, all of which are

related to automatically detecting and understanding objects in scenes captured

using various types of sensors. The most widely used sensor is the RGB camera,

which can capture and represent a scene by 3 basic colors (channels): red, green

and blue. In recent years there was a significant improvement of such systems,

which sometimes could be compared with human level accuracy[7]. In the field

of robotics however, the ultimate goal for a robot is to interact with the objects,

such as grasp them, manipulate, or avoid them. Such tasks require, apart from the

object type, richer information about the objects such as its accurate position in

space. Dealing with 3D space had been a challenging problem for the years with

expensive laser scanners being the only option for 3D sensing. Recently, 3D data

can be much easier acquired after the appearance of low cost commodity depth

cameras such as Microsoft Kinect[8]. Such depth cameras operating in real-time

gave robotics a significant boost in accomplishing perception tasks. The robots

can now have one more and very important channel in the images that acquire,

that represents the distance of each pixel from the camera. Although such 3D

2
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information is very important, methods developed for RGB cameras only are not

directly applicable to 3D data. Therefore, new methods need to be developed in

order to take full advantage of the 3D information available. They also need to

be robust to 3D camera artifacts since data from a depth camera are sometimes

inaccurate or even missing. This is a compromise of such cameras between low

cost and real-time performance versus data accuracy and availability. Nevertheless,

real-time availability of 3D information gives robots a great ability to interact with

objects and their environment.

On the other hand, the ability of robots to move creates another possibility for object

detection methods. Being able to look an object from a different perspective can be

used to improve object detection systems. That is, when there is uncertainty about

what is being perceived from the current point of view, the robot may decide to look

from another side to disambiguate its outcomes. Such behavior is very common to

humans who explore objects from various viewpoints when they do not understand

what an object is. However, although humans naturally decide how to further

investigate an object in order to identify it, for robots this is an open problem: how

to decide which viewpoint a robot should look an object from in order to maximize

the probability to identify it correctly. This research topic is called Active Vision

and in this thesis we have developed various methods in order to solve the so called

next best view prediction problem.

1.2 Challenges in Rigid and Deformable Object

Detection

The robotic problems this thesis tackles are related to objects that a robot needs to

manipulate, which means their size is comparable to the robot’s size. Such objects

fall into two main categories: rigid and deformable. Regarding deformable, we are

interested in a specific type of objects: clothes. We want to solve the laundry prob-
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lem by using autonomous robots and our focus is on the part of folding clothes, after

grasping them from a table. Clothes are one of the most deformable types of objects

that also have an unusual property: they can appear in any color or texture with

almost no limitations. Therefore, one should solely rely on the shape information

of a garment. That being said, the problem becomes even harder since the shape of

garment lies in an almost infinite configuration space. However, although garments

can be greatly deformed, they can maintain some structure when being properly

manipulated by a robot. All these make clothes recognition and pose estimation a

very difficult problem.

Regarding rigid objects, we investigate the problem of localizing and estimating the

3D pose of objects found in domestic and industrial environments. Such problem is

also challenging and arises in many robotic applications that require object manip-

ulation. Low-cost availability of depth data facilitates pose estimation significantly,

but still one has to cope with many challenges such as viewpoint variability, scene

clutter and occlusions caused by nearby objects. These challenges are so common

in real-life problems that in order to describe them shortly we introduced the term

“object detection and pose estimation in the crowd”. Rigid objects are categorized

according to their appearance into two general types: textured and texture-less. This

categorization is mainly technical because techniques in literature are mostly able to

deal with only one type of objects, and not both by using the same method. That is

because in textured objects, it is easy to detect several key-points and match them

with key-points of objects in the training database. However, texture-less objects

do not have this property and therefore key-point matching techniques are not ap-

plicable to this type of objects. On the other hand, methods that tackle texture-less

object usually rely on holistic-shape template techniques or shape-aware key-points,

which when applied to textured object do not take advantage of the texture. In

the following sections, we describe our object detection method which is one of the

earliest works to tackle both types of objects in the same framework.
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1.3 Thesis Work Overview and Contributions

In this thesis we present contributions and novel methods regarding both deformable

and rigid object detection, which are enhanced by novel active vision techniques.

Below we describe our work and contributions for each of the sub-problems that

we tackled. The first two subsections (1.3.1,1.3.2) refer to the autonomous recogni-

tion, pose estimation and unfolding of clothes using a dual-arm manipulator (1.3.1),

and how our methods can be further improved using our novel active vision frame-

work called Active Random Forests (1.3.2). The next two subsections (1.3.3,1.3.4)

describe our rigid object detection and 3D pose estimation methods in cluttered

environments and under severe occlusions. Our first approach (1.3.3) uses patches

and unsupervised feature learning trained using Hough Forests. We also leverage

the clustering property of the forest to build a novel next-best-view prediction tech-

nique. Our second method (1.3.4) uses a Siamese Regression Network to propose a

complete end-to-end regression network for object pose estimation which also pro-

duces efficient feature embeddings. Below we present an overview of our work and

contributions in more detail.

1.3.1 Active Recognition and Unfolding of Clothes

The focus of this work is to solve the task of folding clothes using a robot, and

particularly the first part of the procedure, which is the unfolding of an article

of clothing. Starting from a crumbled initial configuration, we want to recognize

the article and then bring it into an unfolded state so that it is ready for folding.

One of the key challenges in clothes perception and manipulation is handling the

variabilities in geometry and appearance. These variabilities are due to the large

number of different configurations of a garment, self-occlusions and the wide range

of cloth textures and colors.

Research on clothes perception and manipulation started in the middle 90s [9], pre-
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(a) (b) (c) (d)

Figure 1.1: Robot autonomously unfolding a shirt. a) Grasping lowest point. b) grasping 1st grasp
point. c) grasping 2nd grasp point. d) final unfolded configuration

senting some first clothes recognition techniques with the help of a dual manipulator.

Later, research has been made in garment modelling and feature extraction [10] [11],

while only recently scientists were able to completely fold an article of clothing start-

ing from a crumpled initial configuration [12] [13] [10]. The main limitations in the

state-of-the-art are the slow performance and the difficulty to generalize to a variety

of shapes and materials. This stems mainly from the model-driven approaches used

and associated simplifying assumptions made.

To address these limitations we propose a data-driven approach for clothes recogni-

tion and unfolding. We first recognize the type of the article from raw depth data

using Random Forests. Based on the recognition result, a pair of key-points are

identified such that the article will naturally unfold when held by these two points.

Point estimation is based on Hough Forests, a random forest framework with Hough

voting. An active manipulation (perception-action) approach based on POMDPs

is also proposed that accounts for uncertainty in the vision tasks and thus leads to

superior performance. In summary, our main contributions are:

• A fast method for unfolding an unknown item of clothing by means of gravity

(previous approaches have to go through a flattening phase using a table):A

robot can detect and grasp two key-points on the garment so that it become

flattened while hanging in the air.

• Fast data-driven machine learning algorithms for robust scale-invariant classi-

fication of the garment type and key-points estimation from noisy depth data.
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These are based on Random Forests and Hough forests respectively.

• A probabilistic perception-action framework based on POMDPs for optimal

action policy of the robot. The robot is able to rotate the garment, moving

each time to the next viewpoint until it reaches a certain confidence level, in

order to better estimate the garment type and the grasp points. This way it

accounts for uncertainty in each individual viewpoint.

Compared to the state of the art, our system requires less movements and there-

fore can operate faster. Furthermore, to our knowledge, this is the first work that

autonomously unfolds regular-sized clothes. While most researchers work on small

or baby clothes for easier manipulation, regular-sized clothes allow higher degree of

deformation and pose more challenges to the recognition and unfolding task.

A demonstration of the unfolding steps using our dual arm robot is shown in Fig.

1.1.

1.3.2 Active Random Forests

As we observed with clothes recognition, single-view methods are often unable to

distinguish objects which depict similar appearance when observed from certain

viewpoints. An autonomous system can overcome this limitation by actively col-

lecting relevant information about the object, that is, changing viewpoints, zooming

to a particular area or even interacting with the object itself. This procedure is

called active vision and the key problem is how to optimally plan the next actions

of the system (usually a robot) in order to disambiguate any conflicting evidence

about the object of interest.

The majority of state of the art techniques in active vision [14, 15, 16] including our

POMDP formulation discussed in the previous subsection (1.3.1) share the following

idea: one single-view classifier is trained to recognize the type and pose of target
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objects, whereas a subsequent step uses the inference probabilities to plan the next

actions so that conflicting hypotheses are disambiguated. Although intuitive, this

approach makes the combination of features from multiple views difficult whereas

hypotheses from different views can only be exploited a posteriori (i.e. Bayesian

formulations). In addition, their performance heavily relies on the performance of

the single-view classifier. However, designing a classifier that can generalize across

views is particularly challenging especially when illumination variations or deforma-

tions are considered. Another problem in active vision which hasn’t been addressed

by many state of the art techniques [15, 16], is defining the cost associated with each

action.

To cope with the above challenges, we propose Active Random Forests [3] which can

be considered as an “active classifier”. The framework is based on standard Ran-

dom Forests [17] having also the ability to control viewing parameters during on-line

classification and regression. The key difference is that the classifier itself decides

which actions are required in order to collect information which will disambiguate

current hypotheses. As we will demonstrate, this combination of classification and

viewpoint selection outperforms solutions which employ these two components in

isolation [14, 15, 16]. Furthermore, inference is made using the entire set of cap-

tured images, taking advantage of the various feature associations between different

viewpoints. The on-line inference and action planning become extremely fast by

the use of Random Forests, making the framework very suitable for real-time ap-

plications such as robotics. In summary, the main contributions of our framework

are:

• A multi-view active classifier which combines features from multiple views

and is able to make decisions about further actions in order to accomplish

classification and regression tasks.

• A decision selection method during classification and regression using the

powerful voting scheme inherent to Random Forests.
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• A method for taking into account the possible costs of actions.

Letting the classifier decide the next disambiguating actions introduces much dis-

criminative power to the framework.

We demonstrate our proposed framework in our the challenging problem of recog-

nizing and unfolding clothes autonomously using a bimanual robot (introduced in

Sec. 1.3.1), focusing on the problem of best viewpoint selection for classification,

grasp point and pose estimation of garments.

1.3.3 Rigid Object Detection, 3D Pose Estimation and Next-

Best-View Prediction

Moving from deformable to rigid objects, detection and pose estimation of such ob-

jects is a challenging problem arising in many practical applications, like robotic

manipulation, tracking and augmented reality. Low-cost availability of depth data

facilitates pose estimation significantly, but still one has to cope with many chal-

lenges such as viewpoint variability, clutter and occlusions. When objects have suf-

ficient texture, techniques based on key-point matching [18, 19] demonstrate good

results, yet when there is a lot of clutter in the scene they depict many false positive

matches which degrades their performance. Also, holistic template-based techniques

provide superior performance when dealing with texture-less objects [20], but suffer

in cases of occlusions and changes in lighting conditions, while the performance also

degrades when objects have not significant geometric details. In order to cope with

the above issues, a few approaches use patches [6] or simpler pixel based features [5]

along with a Random Forest classifier. Although promising, these techniques rely on

manually designed features which are difficult to make discriminative for the large

range of everyday objects.

Last, even when the above difficulties are partly solved, multiple objects present in

the scene, occlusions and distructors can make the detection very challenging from a
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(a) (b) (c) (d)

Figure 1.2: Overview of our datasets and example results. a) Example scene of our dataset, b) our
framework result on (a), c) Example scene of the bin picking scenario, d) results of our framework
on (c).

single viewpoint, resulting in many ambiguous hypotheses. When the setup permits,

moving the camera to another viewpoint can be proved very beneficial for accuracy

increase. However the problem is how to select the next best viewpoint, which is

crucial for fast scene understanding.

The above observations motivated us to introduce a complete framework for both

single shot-based 6D object pose estimation and next-best-view prediction based

on Hough Forests, a variant of Random Forest that performs classification and

regression jointly [6]. We adopted a patch-based approach but contrary to [20, 6, 5]

we learn features in an unsupervised way using deep Sparse Autoencoders. The

learnt features are fed to a Hough Forest [21] to determine object classes and poses

using 6D Hough voting. To estimate the next-best-view, we exploit the capability

of Hough Forests to calculate the hypotheses entropy, i.e. uncertainty, at leaf nodes.

Using this property we can predict the next-best-viewpoint based on current view

hypotheses through an object-pose-to-leaf mapping. We are also taking into account

the various occlusions that may appear from the other views during the next-best-

view estimation. Last, for further false positives reduction, we introduce an improved

joint optimization step inspired by [22]. To the best of our knowledge, there is

no other framework jointly tackling feature learning, classification, regression and

clustering (for next-best-view) in a patch-based inference strategy, and doing all by

an end-to-end deep network is not trivial.

In order to evaluate our framework, we do an extensive evaluation for single shot de-

tection of various state of the art features and detection methods, showing that the
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proposed approach demonstrates a significant improvement compared to the state

of the art techniques, on many challenging publicly available datasets. We also

evaluate our next-best-view selection to various baselines and show its improved

performance, especially in cases of occlusions. To demonstrate more explicitly the

advantages of our framework, we provide an additional dataset consisting of two

realistic, everyday scenarios, shown in Fig. 1.2. Our dataset also reveals the weak-

nesses of the state of the art techniques to generalize to realistic scenes. In summary,

our main contributions are:

• A complete framework for 6 DoF object detection that comprises of a) an

architecture based on Sparse Autoencoders for unsupervised feature learning,

b) a 6D Hough voting scheme for pose estimation and c) a novel active vision

technique based on Hough Forests for estimating the next-best-view.

• Extensive evaluation of features and detection methods on several public datasets.

• A new dataset of RGB-D images reflecting two usage scenarios, one repre-

senting domestic environments and the other a bin-picking scenario found in

industrial settings. We provide 3D models of the objects and, to the best of

our knowledge, the first fully annotated bin-picking dataset.

1.3.4 Siamese Regression Networks

The learned unsupervised features using sparse auto-encoders described in the pre-

vious subsection are very efficient in handling different types of objects, but are

sub-optimal for the task of object pose estimation, since they are learned without

using an objective. Leveraging the discriminative power of convolution neural net-

works, we are interested in learning end-to-end regression networks, which are able

to learn efficient mid-level feature embeddings. The lack of research on Deep Net-

works for angle regression prove that directly regressing object poses in angle space



12 Chapter 1. Introduction

(a) (b) (c) (d)

Figure 1.3: Hand-object dataset overview. a) real RGBD image of hand-object. b) synthetic
groundtruth from tracker. c) object pose groundtruth, d) our Siamese Regression Network result
on (a).

is not trivial, with the objective function appearing to have many local minima. Al-

beit the recent advances in classification tasks using CNNs, a framework that is able

to perform direct regression in angles, while jointly learning discriminative features

has yet to be built.

Recent works [23, 24] demonstrated successful results by using siamese networks,

which can improve the network learning capabilities by exploiting additional infor-

mation about the relationship between the training samples. Inspired by this, we

present the Siamese Regression Network that enforces a relationship between feature

and pose space by applying a novel loss function, which can boost the performance

of a regression network layer. Thus, this network is able to perform single-shot end-

to-end regression for object pose estimation, without requiring pairs of inputs at

testing time. Apart from that, we experimentally evaluate the effect of some other

factors that play an important role in successful regression such as feature normal-

ization and batch formation. Our Siamese Regression Network, on the other hand,

was shown to learn more discriminative features optimized for our particular prob-

lem, as compared to a state of the art feature learning technique using CNNs [25].

Finally, we are interested in handling severe occlusions in the object pose estimation

task, a particularly interesting problem constantly arising in real-life applications.

However, estimating accurate pose when a significant portion of the object is miss-

ing is a very challenging task which drastically degrade the performance of previous

arts [25, 26, 5, 27, 28, 29]. We show how our loss function can be easily modified to
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handle cases of severe occlusions. To evaluate our regressor on such cases, we built

our own challenging dataset which demonstrates an object being manipulated by a

human hand (Fig. 1.3). Results show that our method can very well handle severe

occlusion, reaching accuracy levels of non-occluded objects.

In summary our work offers the following contributions:

• We present Siamese Regression Network which, to the best of our knowledge,

is the first CNN-based framework for regressing object poses in angle space.

• We boost the performance of our system by introducing a novel loss function

for feature-guided pose regression.

• In turn, we show that pose-guided feature learning results in more discrimina-

tive features than the ones of [25] and are optimized for the particular task of

3D object pose estimation.

• We show how our loss function can be adapted to deal with severe occlusions

and evaluate our system on a new challenging dataset containing an object

captured under severe occlusions. Furthermore, experimental evaluation on

a benchmark dataset [26] provides evidence of our system outperforming the

state of the art.

1.4 Publications

This PhD work has produced the following publications:

• Autonomous Active Recognition and Unfolding of Clothes using

Random Decision Forests and Probabilistic Planning

Andreas Doumanoglou, Andreas Kargakos, Tae-Kyun Kim, Sotiris Malassiotis

Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), Hong Kong,

China, 2014 (Best service robotics paper award, sponsored by KUKA)
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• Active Random Forests: An application to Autonomous Unfolding

of Clothes

Andreas Doumanoglou, Tae-Kyun Kim, Xiaowei Zhao, Sotiris Malassiotis

Proc. of European Conference on Computer Vision (ECCV), Zurich, Switzer-

land, 2014.

• Folding Clothes Autonomously: A Complete Pipeline

Andreas Doumanoglou, Jan Stria, Ioannis Mariolis, Andreas Kargakos, Vladimı́r Petŕık,

Libor Wagner, Tae-Kyun Kim, Václav Hlaváč, Sotiris Malassiotis

IEEE Transactions on Robotics, accepted to appear in 2016.

• Recovering 6D Object Pose and Predicting Next-Best-View in the

Crowd

Andreas Doumanoglou, Rigas Kouskouridas, Sotiris Malassiotis, Tae-Kyun

Kim

Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, USA, 2016.

• Siamese Regression Networks with Efficient mid-level Feature Ex-

traction for 3D Object Pose Estimation

Andreas Doumanoglou, Vassileios Balntas, Rigas Kouskouridas, Tae-Kyun

Kim

arXiv:1607.02257

The first three correspond to the work on clothes, with the third one describing the

complete pipeline of autonomously folding garments. Our unfolding procedure has

been combined with other collaborator’s work resulting in an end-to-end autonomous

folding procedure. The last two publications correspond to rigid object detection

and pose estimation.
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1.5 Thesis structure

Thesis starts with an overview of the most significant related work in Chapter 2,

including an overview of the Random Forest and Hough Forest framework that

would be helpful for the reader to understand our methods in depth. After that,

Chapter 2.4 presents the datasets that we built during the thesis in order to train

and test our methods. Following, the next chapters correspond to the work related

to clothes recognition, pose estimation and active manipulation of garments for

the specific task of autonomously unfolding clothes and covers our contributions

described in Sec. 1.3.1 and Sec. 1.3.2. Chapter 3 describes our first work on clothes

recognition and grasp point detection using Random Forests and Hough Forests.

Chapter 4 presents our novel framework Active Random Forests applied to active

manipulation of clothes in order to enhance type, pose and grasp point detection

performance. Finally, in the Appendix A we provide an overview of our collaborative

work for project CloPeMa about the full pipeline for autonomously folding a garment

starting from a random initial state.

After that, we present our work on rigid object detection, 3D pose estimation and

next-best-view prediction mentioned in Sec. 1.3.3 and Sec. 1.3.4. Chapter 5 presents

our patch-based unsupervised feature learning technique based on Hough Forests

along with our novel next-best-view prediction framework built upon our trained

Hough Forest. Finally, Chapter 6 introduces our Siamese Regression Network and its

efficient feature embeddings for 3D object pose estimation. These works are included

in our last two publications mentioned above. Last, for clarity, each chapter contains

the related work and all experiments that are related to the methods described.



Chapter 2

Related Work, Backgrounds &

Datasets

2.1 Representative & Most Relevant Literature

Work

Regarding clothes unfolding, the state of the art is the work of Cusumano-Towner

et al. [12]. They use a sequence of moves to bring a garment in a predefined state,

they estimate the state of the garment using a simulator in an HMM framework.

The unfolding is completed on a table, where they plan a sequence of grasps in order

to bring it to the desired unfolded configuration. Fig. 2.1(a) and 2.1(b) shows the

contour estimation of the method and a shorts that were unfolding using the PR2

robot. The results were promising when this method had been applied to small-

sized or baby clothes. Another work from the same group (Maitin-Shepard et al.

[13]) was the first to accomplish the complete task of folding towels autonomously.

The method was based on corner detection and grasping with proper manipulations,

however it required about 20 minutes in order to fold one towel. Fig. 2.1(c) and

2.1(d) show the initial and the final configuration of the towels after folding.

16
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(a) (b) (c) (d)

Figure 2.1: a-b) Contour estimation and Shorts unfolded as presented in [12]. c-d) Pile of towels
and a folded towel as presented in [13]

About object detection and 3D pose estimation there are few recent, well known

and representative techniques. One of them is LINEMOD [20], a template matching

technique that introduces an object representation for fast detection that is prune to

clutter. LINEMOD also provided a dataset that has been widely used by researchers

to test their method against clutter. Tejani et al. [6] used the LINEMOD repre-

sentation to train a Hough Forest which proved to be more efficient. Hough Forests

have been also used by Brachmann et al. [5] for estimating 3D object coordinate and

class labeling, making use of the simple pixel test as split function in the tree nodes.

All these methods however, are not able to tackle occlusions efficiently as we will see

later, compared to our methods. Apart from these standard techniques, few tried

to use Deep Learning to solve the 6DoF problem. Wu et al. [30] presented a deep

belief network that used 3D convolutions to train a neural network. Wohlhart et al.

[25] tried to learn discriminative feature descriptors by training a CNN over pairs

and triplets of training samples and used Nearest Neighbor method to determine

the object label and pose from templates. On the other hand, our work on Deep

Networks tackles the problem of regressing the object pose directly, which is more

efficient for real time applications.

2.2 Random Forests & Hough Forests

Many algorithms developed during this thesis used Random Forests [31] as their ma-

jor classifier. Although they have been introduced in 2001 [31], they have recently

proved to be a powerful and versatile tool for many computer vision tasks. Partic-
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Hough Voting
Image

Point 
Prediction

/

Figure 2.2: Hough Forest example demonstration on clothes training. On left there is the ensemble
of trees that store the class distribution along with the voting vectors. On the right there is the
Hough voting space and the corresponding estimation, that is the position of the estimated grasp
point.

ularly, two works have successfully used them and inspired a research direction for

others as well. The first is the work of Shotton et al. [32] who used random forests

for human pose estimation from single depth images. The other work is published

by Gall et al. [33] who successfully used Hough Forests for pedestrian detection, a

Random Forest framework with the hough voting property. In this paper we demon-

strate that the above machine learning techniques can produce robust results with

challenging data such as various highly deformable clothes. Below we will describe

the theory behind both frameworks so that the reader can gain a wide understanding

of them, which is essential in order to continue reading the rest of the thesis.

Random Forest is a collection of Random Decision Trees of which the outcome is

averaged to produce a better result. This idea is based on the observation that many

week classifiers (Random Decision Trees), if combined, can produce a more accurate

result. Thus, a Random Decision Tree can be regarded as a week classifier which is

generally trained independently from the other trees. Each decision tree is able to

perform classification or regression. Assume that each tree is trained over a subset

V of the training samples, and each sample is represented by C feature channels.
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Initially the tree contains only the root node which receives the full set V . The root

node and each subsequent node of the tree is trained in the same way: we need to

find the best split function f(V,C) that produce the best split over the data which

maximizes an objective function. The data is always split into two subnodes, the

left and the right. The intuition behind this split is that we want to separate our

training set in such a way, so that the leaf nodes (the last nodes of each path in the

tree) contain samples only from one class in case of classification, or samples close

to the same mode in the space of desired outcome in case of regression. When this

is achieved, then a test sample can follow the proper path in the tree and end up to

a leaf with other similar samples from training so that we can easily classify it or

estimate a regression result.

A split over subset V is performed using a split function f over some values of feature

channels C. For a particular sample v, if f(v, C) < t where t a threshold, then the

sample goes to the left child node, otherwise to the right. In order to evaluate how

good a split is, the most common objective is the entropy of the two children nodes.

When the entropy is low, it means that the produced nodes are more pure and less

uncertain (i.e. more confident) about their prediction. In case of classification the

entropy is defined as:

H =
�

c∈Classes

p(c)logp(c) (2.1)

In case of regression the entropy can be defined over a continues Gaussian distribu-

tion estimated from the samples. For more details you can refer to Sec. 4.3. The

best split function is selected over a random set of different split functions, as the

one that minimized the entropy of the children nodes. One of the main contribu-

tions of [32] is that very simple split functions, such as pixel value subtraction of

2 different pixel locations in an image, can perform significantly well when there is

sufficient training data.

A node does not split further when there are not sufficient training data left, or

a maximum tree depth has reached. In this case the node becomes a leaf node.
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When there is no node that can be further split, the training terminates. The

leaf node can store information about the training samples that arrived in it. For

classification, they can simply store the class distribution P (c) of the classes and for

regression, they usually store one or two the modes of the regression space. Such

information can be aggregated from all trees in order to estimate the final result.

As was described earlier, during testing, a test sample can traverse down the tree,

evaluating each split function of nodes in its path, and end up to a leaf node which

is used to estimate the final result. Fig. 2.2 demonstrates the idea, using clothes as

training and testing data.

It should be mentioned that randomness plays a major role in the performance of

the Random Forests. In order for the week classifiers to perform well when averaged,

they need to be as uncorrelated as possible. Such reduction in correlation is achieved

by randomly selecting a subset of training samples to train each tree (usually by

using bootstrap), and randomly selecting split functions to evaluate in each node.

Hough Forests are a simple yet powerful extension of the standard Random Forests.

Early works, for example Mikolajczyk et al. [34], used a tree as a hierarchical

codebook to cluster features, while [33] used binary trees for clustering and Hough

Voting for localizing the center of the objects. The idea is that the training samples

stored in the leaf nodes can vote in a Hough Space for some desired variable, given

that such information is provided from the training set. For example, in [33] samples

voted for the position of the center of each pedestrian, while in our problem of

unfolding clothes, samples voted for the location of the desired grasp points as

shown in Fig. 2.2. In the figure, the information of the location of the desired

point of each training sample is stored in vector L. After voting, the Hough space

usually contains some modes that can be extracted using non-maximum suppression

and can be regarded as the hypotheses of the true value of the variable we want to

estimate. Last, the dimensionality of the Hough space can take any value depending

on the problem. In the examples that we mentioned earlier the dimensionality was

2, but in the problem of object detection and pose estimation, we used a Hough
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space of 6 dimensions (Chapter 5).

2.3 Defining the Object Pose in 3D Space

One of the main problems that this thesis tries to solve is the pose estimation of

objects. Therefore it would be helpful for the reader to define what is object pose

for both rigid and deformable objects.

In order to define a position of an object in 3D space we need to define at least 6

variables. The first 3 variables, usually referred to as x, y, z, define the object loca-

tion in 3D space. However this is not enough, since the object might be arbitrarily

rotated. Therefore we need another 3 variables to measure the relative rotation with

regard to the three principal axes. In Euler angles, the rotation around the x axis is

called roll, around the y axis is called pitch and around the z axis is called yaw. The

pose of a rigid object is defined as the position of this object in 3D space, relative

to a predefined position of the same object. In our case, this predefined position

corresponds to the position of the object as appears in its CAD model that is used

as ground truth. This ground truth pose can be set arbitrarily from the designer of

the object or the method used to capture such model.

For deformable objects however the above definition cannot apply. Therefore, the

way we define the pose of a garment applies only to our problem and it cannot be

generalised in any way to other deformable objects, or even to clothes if the problem

is different. Our problem is how to drive the robot gripper to grasp our desired grasp

point on a garment. Ideally, there should be a 3D vector that has its origin on the

grasp point, and its direction corresponds to the direction that the gripper should

approach it in order to grasp it correctly. In Fig. 2.3 the location of the grasping

point is the end-point of vector g, and the grasping direction is represented by vector

p (in fact the gripper should approach in the opposite direction of p). If we can

detect, along with the location of the grasp point the direction of this vector, we
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Figure 2.3: Pose estimation as defined on clothes. Vector g represents the location of the grasp
point and vector p the grasping direction of the gripper.

can plan the motion of the gripper accordingly. Our final estimation should contain

again 6 variables, 3 for the location of the grasp point, and 3 for the direction of

the vector in 3D space. As we see, there is an implicit analogy in representation

between the rigid object pose and the pose of the grasp point of a garment, thus

we defined it as garment pose. However, as mentioned above, this definition cannot

apply to other general deformable objects.

Furthermore, it should be now clear why the problem of object pose estimation is

sometimes referred to as object 6D pose estimation or 6 degrees of freedom (6DoF)

estimation. There are 6 variables (degrees of freedom), or a 6 dimensional vector

that needs to be determined in order to define an object pose in 3D space.

2.4 Datasets

2.4.1 Introduction

During this thesis, in order to train and evaluate our methods it was necessary to

create our own datasets. This was due to the fact that either no such dataset existed

in the literature, or the existing ones didn’t cover the whole range of challenges that

are inherent to the problem of interest. In this chapter we present three different

datasets that were created specifically for each of the problems we tackled: one
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dataset about clothes unfolding, one dataset about rigid object localization and

pose estimation, and a hand-object interaction dataset. In the next sections we

describe each dataset in detail and show example images from each one.

2.4.2 Clothes Unfolding Dataset

(a) (b)

(c) (d)

Figure 2.4: Clothes Unfolding Dataset Examples. a) Shirt hanging from 1st grasp point, b) shirt
hanging from 2nd grasp point, c) shorts hanging from 1st grasp point, d) shorts hanging from 2nd

grasp point. For each case we show 6 of the 40 different viewpoints.

The purpose of this dataset was to train our robot to recognize various types of

garments as well as detect certain grasp points on them in order to unfold them. The

main challenge of this task is to build such a dataset to generalize to various clothes

and sizes, which exhibit very high inter- and intra-class variations. Our dataset

comprises a training and testing set. The training dataset contains 24 regular-sized

clothes of various sizes and fabric types, 6 of each category. As we will see in Chapter

3, in order to reduce the configuration space of clothes hanging freely in the air, we

prefer to grasp the lowest points first, which was also adopted in [9]. Therefore, each

garment was grasped 20 times from each lowest point and 40 images were captured

while the garment was rotating covering the viewpoints of all 360 degrees. The final

database contains 28,800 depth images (since we are not interested in color which

has much more variation, we do not keep the RGB images). Image labelling was
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done manually using fiducial markers over key points to facilitate the task. The

labeling includes the garment type, the grasp point coordinates (x, y) in the image,

and the grasp direction vector, as described in Chapter 4. Testing was based on

a dataset containing only novel items (not in the training dataset). The clothes

used for testing were 3 per category (12 total). Example images of the training and

testing set are shown in Fig. 2.4. Since the images of the dataset are cropped to the

bounding box of the garment, please check Fig. 3.10 for a correspondence to real

unfolding images with the robot.

2.4.3 Object Pose Estimation Dataset Description

Our proposed dataset consists of two usage scenarios. One is related to domestic

environments, where everyday objects are placed on a kitchen table. The second

depicts a bin-picking scenario mainly found in industrial settings where a robot

should pick objects successively from a bin, which contains many stacked objects of

the same or different categories. In the following subsections we describe each usage

scenario.

Usage Scenario 1

a) amita b) colgate c) lipton d) elite e) oreo f) softkings

Figure 2.5: Dataset Objects. Images show renderings of the 3D models of the objects used in
training.

The objects of this scenario are shown in Fig. 2.5. We collected six objects usually

bought from a supermarket, and captured their 3D models using 123D Catch from

Autodesk [35] (with the Android application on a smartphone). Fig. 2.5 shows real
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(a) (b) (c) (d)

Figure 2.6: Examples of test images

(a) (b) (c) (d)

Figure 2.7: Examples of test images for evaluating active vision methods

renderings of the 3D models used for training. We can see that the quality of the

models created by this Structure From Motion solution is much better compared

to Kinect Fusion [36] (Fig. 2.8(d),2.8(e)) for textured, non-glossy objects. Further-

mode, these models capture the complete object including the bottom part so that

they can be used to detect objects lying on the table in any possible orientation.

Fig. 2.6 shows examples of the test images of our dataset. We created a variety

of different scenes, with and without a table top, including sometimes objects not

present in the training set. We capture RGB-D images covering 360 degrees around

the table from two different heights for various object arrangements. These simple

arrangements often create occlusions, which combined with the table top and the

out-of-training objects make 6 DoF methods produce many false positives. In addi-

tion, we provide full annotation of the test images for the objects in the training set

manually annotating the objects in the scene and estimating the camera movement

(using our own tools), to avoid placing markers that makes the scenes look artificial.

This scenario contains 6 different scenes with 170 test images in total.

For evaluating active vision methods, we created some additional scenes shown in

Fig. 2.7. We added objects that differ with the existing ones only in some parts
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(a) (b) (c)

(d) (e)

Figure 2.8: a) test image with a bin of coffee cups, b) test image with a bin of juices, c) test image
with both objects, d) coffeecup 3D model, e) juice 3D model

of the object (for example, oreo with white and dark chocolate). Thus, the next-

best-view of the camera should ideally focus on these distinctive parts and one can

qualitatively evaluate an active vision method. Also, we have arranged the objects

in such a way so that objects are occluded in viewpoints where the distinctive parts

should have been observed (Fig. 2.7(d)). Such situations can be resolved by the

refinement step of our active method described in Chapter 5. We created 6 additional

scenes with a total of 181 test images.

Usage Scenario 2

The second scenario in our dataset, named as bin-picking scenario, is shown in

Fig. 2.8. We used two objects, a coffee cup and a juice, and created three different

scenes, two containing each object separately (Fig. 2.8(a)-2.8(b)) and one containing

both objects (2.8(c)). This is a very challenging scenario with much occlusion, while

stacking similar objects makes it hard to combine features extracted from different

locations and estimate an object pose. To compare with the state of the art in this

challenging problem, we chose the objects of [6] that showed the best performance on

their dataset and also used the same 3D model given by the authors captured with
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Kinect Fusion [36] (Fig. 2.8(d)-2.8(e)). We provide full annotation of the objects

that are visible in each scene. The three bin-picking scenes contain 183 test images

in total.

Our datasets can be found on our laboratory’s website in the corresponding section.

http://www.iis.ee.ic.ac.uk/ComputerVision/

Dataset Structure

For all the objects in the dataset we provide 3D CADmodels in the form of plain-text

ply files. Each test scene is contained in a different folder. The images of each scene

have the form rgbXX.png and depthXX.png that contain the rgb and depth image

respectively. Also there are annotation txt files of the form object name XX.txt

which contain the ground truth pose of each object present in the image. These

txt files contain the homogeneous 4x4 rotation matrix of the object pose in right-

handed system, with the z axis being negative as we move from the camera to the

objects. The x and y axis are parallel to the image axes (going to the right and

up respectively) and the centre of the coordinate system is at the centre of the

image with z = 0. When an object appears more than once in an image, then the

annotation file starts with a number N corresponding to how many objects of this

type appear in the image. Then N rotation matrices follow, 4 lines per matrix.



Chapter 3

Autonomous Recognition and

Unfolding of Clothes

3.1 Overview

Our work is about solving the problem of doing the laundry autonomously and in

this part we are working on folding clothes. Our interest is focused particularly

in the first part of the procedure, which is the unfolding of an article of clothing.

Starting from a crumbled initial configuration, we want to recognize the article and

then bring it into an unfolded state so that it is ready for folding. Fig. 3.1 shows an

example of our unfolding procedure. One of the key challenges in clothes perception

and manipulation is handling the variabilities in geometry and appearance. These

variabilities are due to the large number of different configurations of a garment,

self-occlusions and the wide range of cloth textures and colors.

As we will see in the next section (Sec. 3.3) researchers mainly resorted to model-

driven approaches in order to recognize and manipulate garments [10, 11], while only

recently scientists were able to completely fold an article of clothing starting from a

crumpled initial configuration [12, 13, 10]. Such approaches, however, exhibit slow

performance and difficulty in generalizing on a variety of shapes and materials.

28
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(a) (b) (c) (d)

Figure 3.1: Robot autonomously unfolding a shirt. a) Grasping lowest point. b) grasping 1st grasp
point. c) grasping 2nd grasp point. d) final unfolded configuration

On the other hand, we propose a data-driven approach for clothes recognition and

unfolding. We are able to recognize the type of a garment only from raw depth

data, using Random Forests and very simple features. We then detect a pair of key-

points such that the garment will naturally unfold when held by these two points

(Fig. 3.1). Point estimation is based on Hough Forests (for more details, refer to

Sec. 2.2). On top of that, we propose an active manipulation (perception-action)

approach based on POMDP that accounts for uncertainty of the forests output,

further increasing the accuracy. Our system favorably compares to the state of

the art: it requires almost half the movements, operates faster (about 40% relative

reduction in execution time) and, to our knowledge, it is the first to autonomously

unfold regular-sized clothes.

In the following sections we first present the related work, and then we analyze the

garment recognition method, the grasp points detection and the active planning.

Last, we experimentally evaluate our methods using a dual-arm robot.

3.2 Assumption and Constraints

Our solution on garment unfolding was indented to be applied and evaluated on a

real robot. Before we started solving the problem, the robot for the evaluation and

the cameras were already provided, enforcing us to make some assumptions about

how the problem can be solved according to the capabilities of our robot. We found
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out that the working space of the robot, i.e. the maximum area in which the robot

is able to manipulate objects (clothes in particular) is larger if we manipulate the

garments in the air than on a table. Therefore our solution was designed in this

direction. It turned out that this had also the advantage of unfolding garments

faster since they can be easier flattened while hanging in the air. On the other

hand, due to the same constraint we could not work with very long garments or

sheets. Apart from that, there were some other factors that constraint the choice

of the garments we dealt with. We chose only the main types of garments (shorts,

shirts, trousers, T-shirts, towels) whose shape is somewhat well defined, as opposed

to various other clothes such as skirts of different shapes, jackets that can be opened

or closed or garments of very thin materials such as sink. The first reason was that

we preferred to use cheap depth cameras (Asus Xtion) that can very quickly provide

3D data at the expense of low quality and resolution. This means that we could not

work easily with thin materials or with garments having many wrinkles and high

degree of deformation since we would not have the expected resolution in depth.

Apart from that, for such garments it is also very hard for the gripper we had on

our robot to grasp points correctly, for example grasping a point on the front piece

of cloth without grasping the back one, in case they are touching each other. Last,

in order to generalise well among various types of garments, one needs to collect a

large dataset (hundreds or even thousands of garments) covering as many different

shapes as possible, something which was out of the scope of our research. Last, a

final assumption that we made in order our unfolding procedure to work is that a

garment has a clear lowest point when hang arbitrarily in the air. However this

assumption almost always hold even for garments that are not in our dataset due to

the fact that they are designed for humans and should contain certain corner points.
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3.3 Related work

The first attempts in clothes manipulation have been made by Hamajima et al. [37]

who tried to detect and grasp hemlines aiming to unfold clothes and Kaneko et

al. [38] who used basic 2D shape analysis to recognize different types of clothing.

Osawa et al. [9] dealt with the recognition task and were the first to introduce

iterative grasping of the lowest point of a garment, converging to a finite set of

possible configurations, an idea adapted to our work. The classification was based

on template matching of the final state of the garment after re-grasping the lowest

point several times. While they also unfolded the garment using the same procedure,

it can be mostly considered as flattening rather than unfolding.

Later, researchers focused on clothes features and characteristics. Triantafyllou

et al. [39] used 2D images to identify different types of corners inside a piece of

fabric lying on a table, aiming to unfold it by a robotic arm. Willimon et al. [40]

proposed an unfolding method based on clothes features for estimating and moving

certain grasping points to gradually flatten a piece of clothing placed on a table.

This method required a large number of movements to fully unfold a towel while

performance on other types of clothes was not mentioned. The same authors [41]

proposed a recognition method using features from two binary silhouettes taken from

two vertical viewpoints and re-grasping the garment 10 times to improve accuracy.

However the overall procedure became very time consuming. In the final work of

the same authors [42], a multi-layer classifier was developed with features extracted

from depth images. Results were not very accurate except for the case of considering

only shirts, socks and dresses.

Closer to our approach is the work of Kita et al. [43] [44]. It is based on fitting a

deformable model to the current pose of a shirt hanging from a random point. Using

the model, they are subsequently able to estimate the next grasping point (e.g. the

shoulders of a shirt) in order to unfold it. The authors show promising results, that

are however limited to a single shirt.
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Recently, Maitin-Shepard et al. [13] was the first to complete the whole task of

folding a towel using the PR2 robot. The algorithm was based on a corner detec-

tor for appropriately grasping the towel, however the amount of time required for

completing the task makes the approach intractable in a practical scenario. Bersch

et al. [45] also used the PR2 robot to autonomously fold a T-Shirt with fiducial

markers, again performing in a prohibited running time. The state of the art in

unfolding articles of clothing is the work of Cusumano-Towner et al. [12]. Adopt-

ing the technique of sequentially grasping the lowest point they can estimate the

resulting state of the garment using a cloth simulator in an HMM framework. After

putting the garment on a table, they plan a sequence of grasps in order to bring it

to the desired unfolded configuration. The method was applied on small or baby

clothes and results were promising. However, applying this method to regular-sized

clothes requires large working space (table) and long manipulators attached on a

moving base for better results. In contrary, our approach does not require a table for

unfolding and no movement of the base of the manipulators is necessary. Also, we

have further reduced the number of moves a robot should make in order to unfold

an article of clothing.

3.4 Clothes Recognition

The recognition is based on Random Forests, first introduced by Breiman et al.

[46] as a method of classification and regression. They achieve state of the art

performance compared to other classifiers like SVM [32] [33] [47] while they provide

very fast inference appropriate for real-time applications.

To define our problem, we first assume that an article of clothing has already been

isolated from a pile of clothes and the robot grasps it from a random point. The space

of possible configurations of a garment hanging randomly is very large, therefore we

reduce it by grasping the lowest point [9]. Fig. 3.2 shows the possible lowest points
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Figure 3.2: Possible lowest points. Gray squares are the symmetric points of the red ones. Arrows
show the desired grasping points for unfolding.

of four types of clothes considered in this paper: shirts, trousers, shorts and T-shirts.

There is only one possible lowest point for shirts and trousers and two possible lowest

points for shorts and T-shirts without counting the symmetric ones. Our classifier is

able to distinguish between both garment types and hanging points. Thus, there are

six classes defined as {Shirt, T rousers, Shorts1, Shorts2, T shirt1, T shirt2} where

subscripts 1, 2 indicate the different lowest points.

A set of trees is trained over a database of depth images captured from clothes of all

the six classes. Each training sample is a pair (I, c) where I is a vector containing

the depth image and c is the class of the garment labelled manually. Each tree is

trained over a randomly chosen subset of the initial training set. At each node, a set

of tests are randomly generated with each test containing the following parameters:

• Ci, i ∈ {1, 2}: the channel used.

• V: a set of random vectors indicating random positions in the image.

• f(V, Ci) > t: a binary test over the set V and channel Ci using threshold t

We have used two different channels. Channel C1 corresponds to the depth values

as captured from the sensor filtered by a bilateral filter and channel C2 is the mean

curvature H calculated from the depth data filtered by an average filter. The mean

curvature at a point on a surface is defined as:

C2 =
EN +GL− 2FM

2(EG− F 2)
(3.1)
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Figure 3.3: Binary tests: a) 2 pixel test in depth channel, b) 3 pixel test in depth channel, c) 1
pixel test in curvature channel.

where E,F,G and L,M,N are the First and Second Order Fundamental Coefficients

respectively evaluated on the point [48]. Vectors in V are normalized to the width

and height of the bounding box of the garment for scale invariance so that vx, vy ∈

[0, 1],v ∈ V.

Three different types of binary tests were used:

• Two pixel test in the depth channel: V = {u,v}, f(V, C1) = du − dv, where

dx is the depth value at position x.

• Three pixel test in the depth channel: V = {u,v,w}, with w being a random

point on the line between u and v, f(V, C1) = (du − dw)− (dw − dv).

• One pixel test in the curvature channel: V = {u}, f(V, C2) = |cu| where |cu|

is the absolute value of the curvature at position u.

Tests are illustrated in Fig. 3.3. Those simple features are extremely fast to compute

and their combination along the path of the trees delivers high discriminative power.

Furthermore, we have experimented with other types of features as well, such as

HOG or gradient feature channel, but none gave any boost in performance, while

at the same time being slower to compute. Pixel tests are not restricted inside a

patch as in [33] and reveal global surface characteristics. At each node a random set

of tests is generated and the best is chosen as the one that minimizes the Shannon

Entropy of the samples at each child node, which is defined as:

Hentropy =
Nc�

i=1

−Ni

N
ln(

Ni

N
) (3.2)
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Nc is the number of classes, Ni is the number of samples of class i and N is the

total number of samples reached a child node. We declare a node as leaf and stop

splitting it further when a minimum number of samples reached the node or the tree

has grown to a maximum allowed depth.

Inference about a previously unseen item of clothing is made by traversing its depth

image towards the leafs in every tree in the forest, going left or right according to the

binary test f assigned to each node. The class of the sample will be the dominant

class of the average class distribution of the leaf nodes reached. We should mention

that the inference time of a tree in the forest is O(logD) where D is the depth of

the tree and therefore is very fast in real-time recognition.

3.5 Grasp Point Estimation

Having recognized the garment, the objective is now to grasp it from two certain key-

points in order to unfold it. Figure 3.2 shows the desired grasping points (arrows)

for the four types of clothes we used. Our grasp point estimation is based on Hough

Forests[33]. The idea is similar to random forests but with an additional property.

Each training sample, apart from the label, contains some extra information which

is in our case a vector containing the position of one of our desired grasping points.

Thus, a training sample is now a triplet (I, c,p) where p = [px, py] is the position

of the grasping point on the image I. Coordinates px and py are normalized to the

width and height of the bounding box of the garment for scale invariance so that

px, py ∈ [0, 1]. When the grasping point is not visible, p is undefined and not used.

A separate Hough Forest is created for each type of garment, so the classes now

become two: cg = 0 represents images where the grasping point is not visible and

cg = 1 represents images where the grasping point is visible.

The binary tests used are the same as in clothes recognition with the difference that

two objective functions should now be minimized for test selection: minimizing the
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uncertainty about the classes and minimizing the uncertainty about the location of

the grasping point of the samples in each node. The uncertainty of the classes is

again measured using the Shannon Entropy:

Hentropy =
�

cg∈{0,1}
−Nc

N
ln

Nc

N
(3.3)

where Nc is the number of samples of class c and N is the number of samples reached

the node. To measure the uncertainty of the location, the following quantity was

used:

D =
�

samples

d(ps,pM) (3.4)

where d is the Euclidean distance, ps is the vector of a sample and pM is the average

vector of all samples of a node.

While training, leaf nodes store the distribution P (c) of the classes along with a

list Lp of all the location vectors of the samples reached them. When a previously

unseen image traverses the Hough forest, the location vectors stored in the leaf

nodes will vote for the grasping point location. These votes are accumulated into a

Hough image and the grasping point location is estimated as the point where the

concentration of votes is high (Fig. 3.4). We estimate this point by picking the

maximum of the Hough image after Gaussian filtering. This can also be done using

the MeanShift algorithm. The localization of the grasping point only occurs when

the class recognized is 1, i.e. the grasping point is visible. After a grasp point is

detected, the surface orientation in its vicinity is estimated by locally fitting a plane.

This is used to create a valid grasp by moving the gripper perpendicularly to the

estimated direction.

Each Hough Forest is trained for a certain garment type in order to localize only

one grasping point at a time. When this point is grasped, another Hough forests

is used to estimate the second one and complete the unfolding. Therefore, we have

trained several Hough Forests for every occasion, i.e. for clothes hanging from the
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Figure 3.4: Hough forest and grasp point estimation from Hough Image
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Figure 3.5: Block diagram of the unfolding procedure

lowest or from one desired grasping point. The decision about which Hough forest

should be used, is based on the recognition result.

3.6 Probabilistic Action Planning

Although the one-frame recognition accuracy of our Random Forests classifier is sta-

tistically high, as we will see in Experiments Section 3.7, there are some viewpoints

of clothes where their type is hardly discernible. In order to eliminate the possibility

of erroneous classification, we introduce an active recognition scheme. Furthermore,

we want to make our system insensitive to noisy point estimations mainly caused by

the noisy depth input, introducing an active point estimation scheme as well. The

idea is that the robot will rotate the garment around the gravity axis until the uncer-

tainty about recognition or point estimation is minimized. Instead of exhaustively

searching over all viewpoints we employ a probabilistic framework that will select

the best action policy jointly minimizing the uncertainty and cost of manipulation.

A widely used probabilistic framework is the Partially Observable Markov Decision
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Processes (MDP) which are capable of modelling the uncertainty about the current

state and can find an optimal policy over the so called belief state. While other

probabilistic planning approaches have been proposed [49] [50], we have adopted

the POMDP framework because having only few states, our problem can be effi-

ciently solved in reasonable time [51] while we take advantage of the representation

power and ease of use of the framework. POMDPs have been also used in clothes

manipulation by Monso et al. [52] who tried to isolate articles of clothing from a

pile.

Fig. 3.5 shows the block diagram of the complete unfolding process. We have

developed two different kinds of POMDPs, one for recognition and one for grasp

point estimation described below. If one of those sub-tasks cannot be accomplished,

the robot returns to its initial configuration by grasping the lowest point of the

garment and thus enters a loop until it becomes unfolded.

3.6.1 Active Recognition

Our proposed POMDP is a tuple (S,A,O,T,P,R, γ,b0) where

• S is the set of states.

• A is the set of actions.

• O is the set of observations.

• T is the conditional transition probabilities.

• P is the conditional observation probabilities.

• R is the reward function over the actions and states.

• γ is the discount factor of rewards over time.

• b0 is the initial belief state.
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The states S in the recognition phase are six and correspond to the six classes used in

the classification S = {S1, S2.., S6}. The set of actions isA = {Arotate, A1, A2, ..., A6}

where Arotate means that the robotic gripper rotates the hanging garment by a de-

grees to take another observation, while A1...A6 is the final recognition decision

being at state S1...S6 accordingly. The observations are collected from the Random

Forests classifier and contain the inferred class cin of the garment along with the

probability P (cin) from the averaged distribution of the leaf nodes. P (cin) takes val-

ues in the interval [0, 1] but we quantise it into five equally spaced bars for reducing

the observation dimensionality. Thus, there are 30 observations, five probability bars

for each of the six classes (O = {OS1,P1 ...OS1,P5 , OS2,P1 ...OS2,P5 , ..., OS6,P1 ...OS6,P5}).

The transition probabilities taking action Arotate are:

T (Si|Arotate, Sj) =





1, if i = j

0, if i �= j

i, j ∈ {1, .., 6} (3.5)

All other actions finalize the recognition process and reset the state to its initial

configuration:

T (Si|Aj, Sk) = b0(Si) i, j, k ∈ {1..6} (3.6)

Observation probabilities P (O|Si) are only dependent on the current state and are

measured experimentally from previously unseen images. Rewards are assigned in

the following way: a positive reward is given to the robot when being at state Si takes

action Ai and a very negative reward when being at state Si takes action Aj �=i. A

small negative reward is given to the action Arotate in order to avoid infinite rotation.

Regarding the initial probabilities, each type of garment has equal probability to

be selected by the robot, however shorts and T-shirts have two possible lowest

point. Thus, the initial belief state is b0 = (0.25, 0.25, 0.125, 0.125, 0.125, 0.125)

corresponding to states S1...S6 accordingly. The discount factor γ is set to 0.99.

Our objective is to increase the belief about a state before taking a final decision,

taking into account the uncertainty about the result of the Random Forest classifier
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(P (O|Si)).

At the time period tn, the robot is in state s ∈ S and decides to take action a ∈ A.

The next state of the robot will now be s� with probability T (s�|a, s) and will receive

the reward γnR(s�, a). After each action of the robot, the belief about each state

has to be updated. Let b(s) be the probability of the robot being at state s and o

the observation of the robot after taking action a. The belief state will be updated

according to the following equation:

b�(s�) =

P (o|s�, a) �
s∈S

T (s�|s, a)b(s)
�
s�∈S

P (o|s�, a) �
s∈S

T (s�|s, a)b(s) (3.7)

where s� is the next state of the robot, b�(s�) is the new belief state over the states s�

and P (o|s�, a) is the probability of receiving observation o after taking action a and

arriving at state s�. The denominator is a normalization factor.

Solving the above POMDP generates an optimal action policy for the robot. The

belief state is updated after each observation of the classifier using (3.7) and the robot

decides according to the policy whether to further rotate the garment to collect more

observations or take a final decision and continue the unfolding process. In case the

garment is rotated more than 360 degrees, the process is restarted by re-grasping

the lowest point. As we will see (Table 3.1), this active recognition dramatically

increases the recognition accuracy with the cost of only a few rotations.

3.6.2 Active Grasp Point Estimation

The same idea is applied to the grasp point estimation procedure. The states now

correspond to the different grasp point locations with an extra state indicating

the invisible grasp point. Again, we quantize the image space to lower the prob-

lem dimensionality applying a 8x8 grid on the bounding box of the garment (Fig.

3.5). Thus, the set of states is S = {S0, S1, ..., S64} where S0 is the invisible-
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Figure 3.6: a) The average recognition rate as the number of trees increases, b) Recognition rate of
each class for passive and active method, c) Grasp point estimation rate of each possible occasion.
gp2 means the estimation of the 2nd grasping point while the garment is hanging from the 1st one.

grasp point state and S1 - S64 correspond to the location of the grasp point on

the 8x8 grid. The set of actions is similarly defined as A = {Arotate, A1, A2..., A64}

where Arotate should be taken when grasp point is invisible and Ai is the action

of grasping the estimated point located on the ith grid square (state Si). The

observations come from the Hough Forest and contain the location of the esti-

mated point along with the probability of the class cg = 1, i.e. the probability

of the point being visible. Quantising this probability into 5 equally spaced bars we

get 320 different observations, 5 probability bars for each of the 64 grid locations

(O = {OS1,P1 ...OS1,P5 , OS2,P1 ...OS2,P5 , ..., OS64,P1 ...OS64,P5}). All the other variables

(T,P,b0) are calculated experimentally from previously unseen images. A positive

reward is given if the robot grasps the correct location, a smaller reward if it grasps

a neighbour location and a very negative reward if it grasps any other location. In

addition, if the robot decides to rotate the garment, a positive reward is given if the

grasp point was invisible and a small negative reward is given if the grasp point was

visible.

The solution of the unfolding POMDP gives the optimal action policy for estimating

a desired point. The robot rotates the garment until a certain confidence about

the location of the point is reached and then decides to grasp it. If the rotation

exceeds 360 degrees the process is restarted by picking again the lowest point. This

probabilistic planning makes point estimation very robust and insensitive to noisy

estimations.
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Figure 3.7: Examples of successful grasp point detection

3.7 Experiments

Robot Setup. We have tested our methods using a dual manipulator by YASKAWA1.

We capture depth images from an Xtion depth sensor placed between the arms at

a fixed height while grasping is based on custom “claw like” grippers [53]. More

details can be found in Sec. A.5.1.

Training Set. Our training dataset was created using 24 regular-sized clothes

of various sizes and fabric types, 6 of each category. In order to cover a variety

of possible clothes configurations, each garment was grasped 20 times from each

lowest point and 40 images were captured while the garment was rotating, covering

the viewpoints of all 360 degrees. The final database contains 28,800 depth images.

Image labelling was done manually using fiducial markers over key points to facilitate

the task.

Testing Set. Testing was based on a dataset containing only novel items (not in

the training dataset). The clothes used for testing were 3 per category (12 total).

For measuring accuracy, we used 240 depth images for each category (1440 in total)

while the same clothes were used for evaluating the whole unfolding procedure.

Random Forest configuration. For training Random Forest trees we used 5000

random candidate tests, 70 candidate thresholds per test and 4 minimum samples

per node, while no restriction on the maximum depth of trees was imposed. Figure

3.6(a) shows the average recognition rate in relation with the number of trees in

the forest. We see that above 60 trees recognition rate remains the same, therefore

1Two M1400 Yaskawa arms mounted on a rotating base
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(a) (b) (c) (d)

Figure 3.8: a) Failure examples of grasp point estimation (in green is the ground truth, when
missing point is invisible), b) The opening of the gripper is not adjustable causing the grasp of two
points, c) Inaccurate grasping because of noisy point cloud, c) Gripper cannot grasp some kinds
of surfaces easily

this is the number of trees used in our forests. We used the same configuration for

both random and Hough forests. Training a tree for recognition takes about half an

hour while a tree for point estimation takes about 10 minutes on an Intel i7 CPU.

Inference of one frame takes less than 40ms.

POMDPs. For solving our POMDPs we used the point-based SARSOP algorithm

[51]. All transition and observation probabilities needed were calculated experimen-

tally from the training set of clothes from images not used for training the forests.

The rotation angle a used is 10 degrees. Moreover, reward values affect the level

of confidence required for the robot in order to take a decision about an action.

Having a confidence level above 0.9999 we were able to achieve 100% active recog-

nition accuracy requiring only few rotations (Table 3.1), while also improving point

estimation results (Fig. 3.6(c)).

Recognition Results. It is difficult to compare clothes recognition results with

other approaches as each author makes different assumptions. Fig. 3.6(b) compares

results of our passive and active recognition. Active recognition achieved 100%

accuracy while the one-frame (passive) recognition had 90% success rate in average.

Grasp point estimation results. Fig. 3.6(c) shows the point estimation results,

while there is no other similar work to compare with. Again, an improvement of

active over passive estimation is observed. Some success and failure examples of

point estimations are shown in Figures 3.7 and 3.8(a).
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Although 100% recognition rate gives the impression that it is a solved problem, we

should mention that for research purposes, we collected a dataset of clothes that are

relatively simple. The reason for this is to make the point estimation problem, which

is a much harder problem, more tractable. Under this assumption the recognition

task looks easy, but it shouldn’t be underestimated in more general scenarios.

End-to-end unfolding results. We have conducted 120 full end-to-end unfolding

experiments, using each test garment 10 times. Fig. 3.9 shows the four stages

of completely unfolding a garment2 and more qualitative results are shown in Fig.

3.10. We consider the unfolding successful when the grasped points are 10cm close

to the desired points. We also implemented a shape matching algorithm [54] in order

to automatically asses the final unfolded state by matching the unfolded garment

to predefined unfolded templates. If the matching score is below a threshold, the

process is restarted. The process is also restarted in case the garment is rotated more

than 360 degrees and no recognition or point estimation occurs. If robot restarted

the process more than once it was assumed as failure. 112 out of 120 experiments

the unfolding was successful. Recognition achieved 100% accuracy requiring 2.4

rotations average. We encountered three types of errors caused by the gripper: a)

the robot grasped two points on the garment because its opening is not adjustable,

b) inaccurate alignment of the robot gripper because the plane fitting around the

estimated point was affected by noisy depth sensor data, c) gripper couldn’t grasp a

surface because of its local shape. These errors are illustrated in Fig. 3.8(b) - 3.8(d).

15 out of 22 total errors (68%) were caused by the gripper while only 7 (32%) were

caused by incorrect point estimations. However, in 14 erroneous situations, errors

were perceived by the robot which restarted the process and successfully unfolded the

garment. In the remaining 8 erroneous cases, robot required more than one restart

and thus we considered them as failures. In no experiment the grasped point was

more than 10cm away from the ground truth. Finally, the average unfolding time is

2min 23.5sec with the robot set in its safety speed mode. Results are summarized in

2Supplementary video: http://clopema.iti.gr/ICRA_2014/
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(a) (b) (c) (d)

Figure 3.9: Robot unfolding a shirt: a) grasping lowest point, b) grasping 1st grasp point, c)
grasping 2nd grasp point, d) spreading the unfolded garment.

Table 3.1: Unfolding Results

Shirts Trousers Shorts T-shirts Total %

Experiments 30 30 30 30 120 -

Successful
Unfoldings

27 30 30 25 112 93.3%

Successful
Recognitions

30 30 30 30 120 100%

Avg Rotations
for Recognition

0,8 1,1 2,7 5 2,4 (avg) -

Estimation
Errors

2 0 0 5 7 -

Gripper Errors 4 3 2 6 15 -

Average Time
(sec)

150 136 127 161 143.5 (avg) -

table 3.1. In the state of the art work [12], their videos show a good case scenario of

unfolding shorts in about 3:20 and a more complex scenario of unfolding a T-shirt

in about 4:30, which is slower than our average time in every category. Although

robot parameters like motion planning affects the execution time, making it a not

very reliable metric, our approach have reduced the unfolding movements to three

grasps and few rotations. Such actions are generally executed faster compared to

lying the garment on a table and re-grasping it quite a few times.
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(a)

(b)

(c)

(d)

Figure 3.10: Robot unfolding different types of clothes: T-shirt, trousers and shorts. a) grasping
lowest point, b) grasping 1st grasp point, c) grasping 2nd grasp point, d) final unfolding.



Chapter 4

Active Random Forests

4.1 Overview

Our Active Random Forest framework is based on standard Random Forest classi-

fier [17]. In order to train one tree, all training samples start at the root node and

keep splitting recursively into two child nodes, left and right. Splitting of samples

depends on the objective function, which tries to cluster the samples, switching be-

tween a classification or regression objective. The most common metric to evaluate

a split is the entropy. In order to find the best split that minimizes the objective

function, there is a split function with random parameters, which is used to produce

many different splits to evaluate. When samples cannot further split (due to certain

criteria), the node becomes a leaf and stores a histogram of the classes of the sam-

ples arrived and / or a distribution of some continuous variables. This way many

trees can be trained, all with different random parameters. During inference, a test

sample passes down the tree, evaluating the split functions and branching left or

right, until it reaches a leaf node. The inference outcome is the average distribution

of the leaf nodes of all the trees.

Based on this formulation, we introduce another property of the trees, that is to

be able to investigate another viewpoint of an object. The best way would be to

47
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investigate other viewpoints, when the current one stops being informative according

to the training samples. To this end, we introduce another type of node, called

action-selection node. This node is created when such behavior is recognized (details

are included in the next subsection). In this node, the tree decides to include another

viewpoint to the process of samples splitting. In order to observe another viewpoint

of a garment, the gripper holding the garment can be rotated and another image

can be captured from the camera that is located at the robot’s base.

Active Random Forests are based on the method proposed in chapter 3. In that

method however, viewpoint selection was made sequentially by taking nearby view-

points, which is a sub-optimal solution whilst in some cases slows down the entire

process. This work makes active vision faster and more efficient by the use of Active

Random Forests (ARFs). With ARFs we can estimate and visit directly the desired

viewpoint without passing through all the intermediate viewpoints. Furthermore,

POMDPs where built upon the classifier outcome, whereas in ARFs, the classifier is

designed in such a way that can take advantage all the information gathered at once

before taking the final decision. This greatly improves performance. In addition,

we estimate the pose of the garment in order to guide the robot’s gripper to grasp

a desired point, which reduced grasping errors compared to the local plane fitting

techniques employed in [2]. Most importantly, our framework can be easily extended

to other active vision problems.

The following subsections describe in detail both training and testing of our new

trees, which include the action-selection nodes, and how the trees learn to select the

next best view.

4.2 Related Work

Active vision has been studied very early in the literature. Bajcsy et al. [55] pre-

sented a nice study about the ingredients that an artificial or biological organism
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should have in order to act autonomously, among which are active sensory and ex-

ploratory capabilities. Tsotsos et al. [56] formulated the active vision problem as

an attention problem, and described an objective function of maximizing the prob-

ability that an objects appears in a certain 3D cuboid in space. Another interesting

early work was presented by Jean-Yves Herve and Yiannis Aloimonos [57] where

they tackled the problem of shape from shading, when the camera is able to move.

They formulated their active vision problem as trying to move to the next best

viewpoint that optimizes the stability of equations to be solved for the shape from

shading problem. One of the first attempts to use entropy for next best view esti-

mation for object recognition was the work of Borotschnig et al. [58]. They used an

appearance-based object representation, the parametric eigenspace, and augmented

it with probability distributions in order to be able to calculate the uncertainly, i.e.

the entropy, in each viewpoint making it the objective for selecting the next best

viewpoint.

Active vision literature focuses mainly on finding efficient methods for selecting

observations optimally while little attention is paid to the classifier which is kept

simple. The majority of works adopted an off-line approach which consists of pre-

computing disambiguating features from training data. Schiele et al. [59] introduced

“transinformation”, the transmission of information based on statistical represen-

tations, which can be used in order to assess the ambiguity of their classifier and

consequently find the next best views. Arbel et al. [60] developed a navigation

system based on entropy maps, a representation of prior knowledge about the dis-

criminative power of each viewpoint of the objects. In a subsequent study, they

presented a sequential recognition strategy using Bayesian chaining [61]. Further-

more, Callari et al. [62] proposed a model-based active recognition system, using

Bayesian probabilities learned by a neural network and Shannon entropy to drive

the system to the next best viewpoints. Also, Sipe and Casasent [63] introduced

the probabilistic feature space trajectory (FST) which can make estimation about

the class and pose of objects along with the confidence of the measurements and
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the location of the most discriminative view. Such methods are computationally

efficient both in training and testing. On the other hand, they rely mainly on their

best hypotheses based on prior knowledge which can in fact have low probabilities

on a test object while features from the visited viewpoints are assumed independent

in order to make the final inference.

One of the most representative works in the same direction was made by Denzler

et al. [14] who tried to optimally plan the next viewpoints by using mutual in-

formation as the criterion of the sequential decision process. They also presented a

Monte-Carlo approach for efficiently calculating this metric. Later, Sommerlade and

Reid [64] extended this idea in tracking of multiple targets on a surveillance system.

One drawback of this approach was that the accumulated evidence about the visited

viewpoints did not affect the viewpoint selection strategy which was based on pre-

computed leant actions. An improvement over this idea was made by Laporte and

Arbel [15] who introduced an on-line and more efficient way of computing dissim-

ilarity of viewpoints by using the Jeffrey Divergence weighted by the probabilistic

belief of the state of the system at each time step. This work however, combines

viewpoint evidence probabilistically using Bayesian update which relies on the con-

sistent performance of the features or the single-view classifier used (in at least some

viewpoints), which is generally challenging in high dimensional feature spaces like

the problem of pose estimation of deformable objects. A recent work on active vision

was made by Jia et al. [16] who used a similarity measure based on the Implicit

Shape Model and other prior knowledge combined in a boosting algorithm in order

to plan the next actions. However the employed similarity measure is not suitable

for highly deformable objects such as garments, whereas the boosting strategy based

on certain priors makes a minor improvement over [14] and [15]. Finally, there are

some active vision applications to robotic systems in real scenarios [65, 66, 67, 68]

mainly based on the previously described works, showing promising results.
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4.3 Active Random Forests training

The training samples for Active Random Forests consist of tuples (I(v), c,g(v),p(v)),

v ∈ V , where I is the depth image of the garment, c is the garment type (class),

g is the 3D position of the desired grasp point in the current camera frame, p is a

3D vector of the garment pose and V is the set of all possible viewpoints v of the

garment (Fig. 4.1(a)). Viewpoints are discrete and equally distributed around the

vertical axis, which coincides with the gripper holding the garment. If the desired

point is not visible from viewpoint v then g(v) is undefined.

Each split node of the decision tree (Fig. 4.1(b)) stores a set Vseen of the already seen

viewpoints and passes it to its children. At the beginning, only one viewpoint has

been visited and therefore this set in the root node is Vseen = {v0}. In each node,

we evaluate a random set of split functions in the form f(v, I, Icurv,utripl) > tsplit

where tsplit is a threshold. The first parameter v is a viewpoint selected randomly

(uniform distribution) from the set of already visited viewpoints. The second and

third parameters denote a feature channel for which the test should be performed.

That is the original depth image I and mean curvature of the surface Icurv estimated

from the depth image, similar to Sec. 3.4. The forth parameter utripl is a triplet

from a set of random position triples U = {(u1
1,u

1
2,u

1
3), (u

2
1,u

2
2,u

2
3), . . .} determining

positions in the image (Fig. 3.3). The used binary tests are the same described

in Section 3.4 which proved to be fast and efficient for our problem. They are

summarized below:

• Two pixel test f1 ≡ I(u1)− I(u2), where I(u) is the depth value at position u.

• Three pixel test f2 ≡ (I(u1)− I(u3))− (I(u3)− I(u2)).

• One pixel test f3 ≡ |Icurv(u)|, where Icurv(u) is the curvature at position u.

We want our new decision trees to jointly perform classification, grasp point detec-

tion and pose estimation. Therefore, we apply a different quality function form for
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Figure 4.1: a) Visualization of grasp point vector g and pose vector p. b) Active Random Forests
training procedure. Split, action-selection and leaf nodes are shown in the tree. In each action-
selection node, all viewpoints are evaluated according to P (v).

each objective in the split nodes in a hierarchical coarse to fine manner [69]. That

is, classification is performed in the upper part of the trees, and when the classes

have been discriminated, the lower part performs regression of grasp points or pose

vectors for each class separately. The general form of the quality function can be

written as:

Q =





Qclass, if maxP (c) ≤ tc

Qreg, if maxP (c) > tc

(4.1)

Here Qclass is the quality function term for classification and Qreg the quality func-

tion term for regression. Specifically, Qclass is the information gain using Shannon

Entropy and Qreg is the information gain for continuous Gaussian distributions [70]

weighted by the population of the nodes that a split function produces. They have

the general form:

Qclass = −
�

child∈
{left,right}

|Schild|
|S|

Nclasses�

c=1

Pchild(c) log2 Pchild(c) (4.2)

Qreg = −
�

child∈
{left,right}

|Schild|
|S| ln |Λq(Schild)| (4.3)
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Here S denotes the set of samples in a node and Λq is the covariance matrix of

the continuous variable q being optimized (more details on this can be found in

[70]). The form of the quality function depends on P (c), which is the probability

distribution of the classes of the training samples in the node, and on the predefined

threshold tc, which is typically set to 0.9. This means that when samples in a node

are correctly classified, then the tree switches to regression optimization. In each

node, we evaluate random split tests using (4.1) and we keep the one that maximizes

Q.

Apart from the standard objectives of classification and regression, we want to in-

tegrate the next best view selection into the decision trees, since this problem is

closely related to the aforementioned objectives. In our problem, selecting a next

viewpoint improves our system in two ways: a) it improves classification and regres-

sion accuracy, b) it optimally detects a grasp point when it is hidden in the current

view. Furthermore, our approach takes into account the cost of the actions, which

is currently related to minimizing the execution time of the selected movements.

The split function used until now considers only the set of visited viewpoints Vseen.

However, below a certain tree depth, this set is uninformative and if the tree con-

tinues to split the samples further, it starts to overfit. In this case, a new viewpoint

should be acquired to resolve the ambiguity. The problem now is to determine in

advance when the current set of viewpoints is not informative. For this, we introduce

a validation set, which is being split in parallel with the training set. The divergence

of the posterior distributions between the two sets is measured in each split node.

Specifically, the initial training set S is split into two equal-sized random subsets:

ST is the training set and SD the validation set. Split functions are evaluated using

only the training set and when the best split function found, both sets are split

using this best split function.

For measuring the divergence of two sets, we have experimented with two alternative

metrics which were tested and compared in the experiments (Section 4.5). The first
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is the Hellinger distance[71], a statistical measure defined over sets Sj
T and Sj

D as:

HL(Sj
T�Sj

D) =
1√
2

����
C�

c=1

��
PSj

T
(c)−

�
PSj

D
(c)

�2

(4.4)

when comparing the class distributions of the training set Sj
T and validation set

Sj
D having C classes. PS(c) is the class probability distribution of the set S. The

Hellinger distance satisfies the property 0 ≤ HL ≤ 1 and it takes its lowest value 0

when training and validation set distributions are identical and its maximum value

1 when one distribution is 0 when the other is positive. Similarly, assuming that

grasp point and vectors at node j are normally distributed variables, the averaged

squared Hellinger distance over the possible viewpoints is:

HL2(Sj
T�Sj

D;q) =
1

V

�

v∈V
1−

�
|Λq(v)(S

j
T )||Λq(v)(S

j
D)|

� 1
4

|A| 12
exp{−1

8
uTA−1u} (4.5)

where

u = µq(v)(S
j
T )− µq(v)(S

j
D) (4.6)

µq(v)() is the mean value of vectors q (= g(v) or p(v)) in viewpoint v and A the

average covariance matrix of Sj
T and Sj

D.

The other metric is the so called Jensen–Shannon divergence which measures the

information divergence of two probability distributions and is actually a symmetric

version of the Kullback–Leibler divergence. Measuring the class distribution diver-

gence of training and validation sets, Jensen–Shannon divergence is defined as:

JS(Sj
T�Sj

D) =
1

C

C�

c=1

PSj
T
(c) log

PSj
T
(c)

Pm(c)
+ PSj

D
(c) log

PSj
D
(c)

Pm(c)
(4.7)

where Pm is the average class distribution of ST and SD. Again, JS satisfies the

property 0 ≤ JS ≤ 1, where 0 indicates identical distributions while 1 indicates

maximum divergence. For measuring the information divergence of our continuous

variables over two sets, we substitute (4.7) with multi-variate Gaussian distributions
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and compute the average over viewpoints V, which results in:

JS(Sj
T�Sj

D;q) =
1

2V

�

v∈V

�
uT

�
Λq(v)(S

j
T )

−1 + Λq(v)(S
j
D)

−1
�
u

+ tr
�
Λq(v)(S

j
T )

−1Λq(v)(S
j
D) + Λq(v)(S

j
D)

−1Λq(v)(S
j
T )− 2I

��
(4.8)

where u is defined in Eq. (4.6). More details about (4.8) can be found in [71].

If the divergence Δ between the training and validation set is above a threshold tΔ,

the node is considered as an action-selection node, where an action (that is moving

the holding gripper to see another view) should be taken to avoid overfitting. In

this case, the split functions consider the whole set of possible viewpoints V of a

garment (which are available during training) and not only Vseen.

To account for the execution cost of the selected actions, we assign them a cost

relative to the distance from the current viewpoint (i.e. how much the gripper should

be rotated), while images from the intermediate viewpoints are also captured without

any additional cost. Specifically, the distance is measured as the degrees of rotation

of the gripper needed to change the viewpoint. In order to weight the viewpoints

according to their distance, we change the distribution from which the viewpoints v

are randomly selected. The distribution of V in an action-selection node is shown in

Fig. 4.2(a). The already visited viewpoints {1 . . . vmax} have a uniform distribution

to be selected with probability ρ, since they are not assigned any additional cost.

Viewpoint vmax is the furthest viewpoint seen so far in training. The next viewpoints

are assigned an exponentially decreasing probability, proportional to their distance

from the current view. The resulting distribution W is defined as:

W (v) =





ρ, if v ∈ {1 . . . vmax}

ρ exp
�
−v−vmax

NV

�
, if v > vmax

(4.9)

where NV is the total number of quantized viewpoints.

On the other hand, the desired grasp point on the garment may be invisible in
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Figure 4.2: Probability distributions of viewpoint used for random test selection.

the already visited viewpoints. Therefore the next viewpoint should also make the

desired point visible, apart from disambiguating the current hypotheses about the

garment category or pose. The probability of the grasp point being visible can be

calculated from the vectors g(v) in a node. The prior visibility probability B(v) for

each viewpoint v in node j containing samples Sj is defined as follows (Fig. 4.2(b)

shows an example):

B(v) =

�
s∈Sj b(s, v)�

v�∈V
�

s∈Sj b(s, v�)
(4.10)

b(s, v) =





1, if gs(v) exists

0, if gs(v) is not defined

(4.11)

The distribution for selecting the next possible viewpoint is given by P (v) = W (v)B(v).

Thus, such viewpoints, which are closer to the current one and where the grasp point

is more probable to be visible, are more likely to be selected. Fig. 4.2(c) shows an

example of such distribution.

The next best viewpoint vbest in an action-selection node can now be found by

randomly selecting viewpoints from the distribution P (v). This time, the whole set

of samples Sj = Sj
T ∪ Sj

D in the node j is used to evaluate the randomly generated

tests in order to reduce the divergence between the previous training and validation

set. However, in the child nodes of the action-selection nodes, the samples are again

randomly split into training and validation sets and the process is repeated. This
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Figure 4.3: Active Random Forests inference procedure. At each action-selection node, one more
viewpoint is selected to be seen, guiding the robot to rotate the garment. Best next viewpoint at
the certain node has been found during training.

time, the nodes contain one more visited viewpoint, that is: Vseen = V parent
seen ∪{vbest}.

Finally, a leaf node is created when a minimum number of samples reaches the node.

In the leaf nodes, we store the class distribution P (c) and the first two modes of

g(v) and p(v) per class (as in [72]), weighted by the class probability, for memory

efficiency.

4.4 Active Random Forests inference

Inference using Active Random Forests begins with the current view of the garment

hanging from its lowest point. This image starts traversing the trees, evaluating the

split functions selected during training. A leaf node may be reached in some trees,

however, in other trees, the image ends up in an action-selection node. An another

viewpoint is therefore required to continue traversing down such tree (Fig. 4.3).

Each action-selection node from any tree votes for the next best viewpoint in a

similar way, how a leaf node votes in the classical Random Forests. The most voted

viewpoint is then visited and another image is captured. The trees that voted for

the selected viewpoint can be further traversed using the acquired viewpoint, while

the remaining trees keep their votes for the next action voting.
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Algorithm 1 Active Random Forests inference
Input: Set of pretrained trees ARF

Current arbitrary viewpoint vcurrent
Output: Garment class c

Grasp point location g
Pose p

Initialize set of seen viewpoints Vseen = {vcurrent}
Initialize set of reached leaf nodes Leafs = ∅
while true do

Initialize DecisionVotes array to 0
for all trees T in ARF do

node ← traverse tree T from node Vseen

if node is leaf node then
Leafs ← Leafs ∪ {node}
ARF ← ARF \ T

else if node is action-selection node then
d ← viewpoint decision stored in node
Increase DecisionVotes[d]

if |Leafs | > Nleafs then break

Execute action for decision d∗ = argmaxd DecisionVotes[d]
Update current view vcurrent
Vseen ← Vseen ∪ vcurrent

return average class c, Hough votes for g(v), p(v) from Leafs

This process stops when Nleafs leaf nodes have been reached. The final class is

estimated by averaging the class distributions stored in the reached leaf nodes. Grasp

point detection and pose estimation are made using Hough voting of the vectors g

and p stored in the leafs that we reached from all the visited viewpoints. The

complete inference procedure is shown in Algorithm 1. The framework is illustrated

in Fig. 4.3. Parameter Nleafs is experimentally evaluated in Sec. 4.5.

4.5 Experimental results

4.5.1 Experimental Setup

To evaluate the ARF framework, we used our database which consists of 24 clothes,

6 of each type. Each garment was grasped by the robot gripper from each lowest

point(s) 20 times to capture the random cloth configurations, collecting 40 depth

images while it was rotating 360 degrees around its vertical axis. The total num-

ber of images collected is 57,600 taking into account the symmetric images as well.
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Another 480 unseen images for each category were used as our test samples. The

training samples consist of sets of images I(v) containing images of a certain gar-

ment from every viewpoint v and having every arbitrary view as the first view. The

steps involved in the unfolding process using the robot are: grasp the lowest point,

recognize the garment and detect the 1st desired grasp point and pose, grasp desired

point, search for the 2nd desired grasp point and pose (no classification needed),

grasp final point and unfold. In the experiments bellow, classes c1 – c6 correspond

to: shirts, trousers, shorts grasped from 1st lowest point (leg), shorts grasped from the

2nd lowest point (waist), T-shirts grasped from the 1st lowest point (waist), T-shirts

grasped from the 2nd lowest point (sleeve). We train an ARF using these classes so

that the robot can recognize the cloth and grasp the first desired point, based on its

pose. Furthermore, we train another ARF which is used to detect the 2nd desired

point and pose. The second ARF does not perform classification as it is already

addressed. The second ARF is trained using images from clothes hanging from their

first grasp point. Thus, we define as ci-2 the class ci when hanging from the 1st

grasp point and no classification is calculated for it. Last, We have discretized the

possible viewpoints into 40 equal bins of 9 degrees each, which provides enough

accuracy keeping training time reasonable(few hours). We assume a correct grasp

point estimation if it is at most 10cm close to ground truth, whereas 18 degrees

divergence is allowed for a correct pose estimation.

4.5.2 Parameter Analysis

An important issue in the experiments was setting up the parameters correctly. The

first parameter which needs to be defined is tΔ, the threshold of the divergence of

the training and validation sets of a node, above which a new decision should be

made. Fig. 4.4(a) shows the average performance of classification, grasp point and

pose estimation of an ARF containing a large number of trees (discussed below)
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with tΔ varying from 0 to 1 for both metrics HL and JS. When tΔ is 0, every

node in the forest becomes an action-selection node and the forest tends to overuse

the possible viewpoints available for inference increasing the total number of actions

required. On the other hand, when tΔ is 1, there is no action-selection node and the

forest behaves as a single-view classifier. Fig. 4.4(a) shows that when HL is used,

performance starts decreasing for tΔ > 0.2 while the same happens when JS is used

for tΔ > 0.1. These are the limit values for tΔ, above which the classifier tends to

behave as a single-view classifier and below which it starts using redundant actions.

Having tΔ defined for both of our metrics, the next parameters that should be de-

fined are the total number of trees and the minimum number of leaf nodes NL needed

by an ARF in order to make an inference. Because ARFs have a decision voting

scheme along with the leaf-node aggregation, we make the following observation:

Assuming that Nx leaf nodes are sufficient to make an inference and an ARF has

reached Nx − 1 leafs, it would be desired to have another Nx trees to vote for the

next decision. Therefore, NL is set to NT/2, which is half the number of trees in

the forest. Fig. 4.4(b) shows the average accuracy of our ARF, making use of the

previous observation. Both metrics reach the same level of accuracy with JS re-

quiring more trees. However, Fig. 4.4(c) shows that by using JS the forest requires

significantly less movements than HL to achieve the same results. Therefore, JS

was used for all the subsequent experiments.

4.5.3 Performance and Comparisons

Fig. 4.4(d) shows the performance of ARF in all possible situations, with pose

estimation being the most challenging objective. This figure was created without

considering the weights of the actions. In the opposite case however results were very

similar, thus Fig. 4.4(d) represents both scenarios. These two cases are compared

in Fig. 4.4(e) which shows that weighting actions slightly increases the required
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Figure 4.4: Plots from experimental results showing: a) the divergence threshold tΔ, b) Number
of trees, c) average number of movements, d) ARF success rates, e) Number of movements for
weighted and non-weighted actions policy f) average cost of actions of the two policies, g-h-i)
Classification-Grasp Point-Pose estimation
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viewpoints needed for inference. On the other hand, in Fig. 4.4(f), the required

actions in the case of considering their weights have significantly lower cost than

the actions in the first case, without sacrificing accuracy. The cost of an action was

considered to be the degrees of rotation the gripper required in order to reach the

desired viewpoint. Fig. 4.4(f) shows the sum of the costs of all the actions needed

for inference. In order to compare the ARF results, we have used two kinds of base-

line methods: 1)single-view classification methods without incorporating actions;

2) active viewpoint selection methods based on a single-view method and utilizing

information from entire history of selected viewpoints by updating the probability

of the current state after each action. The first single-view classifier is our method

described in Chapter 3 based on Random Forests, modified to perform pose estima-

tion. The second such classifier is based on multi-class and regression SVM[73, 74].

The features used were the raw depth image of a garment and the HOG features[75]

applied on the depth image. The first active vision technique used is our previous

technique based on POMDP (Chapter 3), the second uses the viewpoint selection

criterion proposed in [14] based on mutual information (displayed as MI ) and the

third uses Jeffrey Divergence metric as proposed in [15](displayed as JD). In all

cases, we executed a random viewpoint selection for comparison. Finally, for a fair

comparison we did not take into account the costs of actions and the visibility map

(Eq. 4.10). Table 4.1 shows the results for classification, grasp point detection and

pose estimation respectively. In all cases, methods based on the SVM classifier had

the worst performance. In classification and point detection, the single-view clas-

sifiers have consistent good performance and therefore the active vision approaches

had a positive impact on the inference. In both cases, ARF achieves equal accuracy

with the best active vision technique in each case. The power of ARFs however

is revealed in the pose estimation task, where they outperform previous works by

almost 20%. The reason is that when dealing with such a challenging problem, the

single-view inference has low accuracy producing many equally probable hypotheses.

This makes classical active vision approaches perform similar to a random viewpoint
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Single POMDP MI JD Random
ARF

SVM RF SVM RF SVM RF SVM RF SVM RF

Class. 0.72 0.90 0.91 0.97 0.84 0.94 0.93 0.97 0.88 0.92 0.98

Grasp 0.53 0.95 0.68 0.97 0.63 0.94 0.72 0.94 0.57 0.93 0.94

Pose 0.21 0.49 0.24 0.53 0.26 0.55 0.27 0.55 0.24 0.52 0.71

Table 4.1: Comparison of Active Random Forests with three state of the art methods (POMPD,
MI, JD) and two baseline methods (single and random view), all of them using two different
classifiers (SVM and Random Forests). Accuracies (in percents) of all compared methods were
evaluated in three tasks: classification, grasp point detection and pose estimation.

Figure 4.5: Success and failure cases (the last two) of some clothes. The arrow under each cloth
indicates its pose. The first error is in grasp point detection, the second in pose estimation.

selection strategy. In contrast, ARF combines features from the most discriminant

views learned in training, and thus is not so affected from single-view uncertainty.

Last, for achieving all the three objectives all active vision techniques were allowed

to execute at most 20 actions, above which no further improvement was noticed,

even when all viewpoints were seen. In contrast, as shown in Fig. 4.4(c), ARF

shows high accuracy with an average of 3.5 moves, which is significantly lower. Fig.

4.5 shows some success and failure cases using some test clothes. The failures on

the right are due to wrong grasp point detection and wrong pose estimation respec-

tively. Also our supplementary video1 shows the whole unfolding procedure using

a dual arm robot, along with comparisons of ARF with the state of the art in real

scenarios.

1Supplementary material can be found at: http://clopema.iti.gr/ECCV-2014/



Chapter 5

3D Object Detection &

Next-Best-View Prediction

5.1 Overview

Our object detection and pose estimation framework consists of two main parts: a)

single shot-based 6D object detection and b) next-best-view estimation. In the first

part, we render the training objects and extract depth-invariant RGB-D patches.

The latter are given as input to a Sparse Autoencoder which learns a feature vector

in an unsupervised manner. Learning unsupervised features with autoencoders, has

the important advantage of being able to learn to discriminate both textured and

texture-less object patches. In this way you dont have to hand-craft features for

each such case (rgb features, depth-curvature features) as already happens in the

literature, but the same pipeline can perform well with all types of objects. Using

this feature representation, we train a Hough Forest to recognize object patches in

terms of class and 6D pose (translation and rotation). Given a test image, patches

from the scene pass through the Autoencoder followed by the Hough forest, where

the leaf nodes cast a vote in a 6D Hough space indicating the existence of an object.

The modes of this space represent our best object hypotheses. The second part, next-

64
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Figure 5.1: Framework Overview. After patch extraction, RGBD channels are given as input to
the Sparse Autoencoder. The annotation along with the produced features of the middle layer are
given to a Hough Forest, and the final hypotheses are generated as the modes of the Hough voting
space. After refining the hypotheses using joint registration, we estimate the next-best-view using
a pose-to-lead mapping learnt from the trained Hough Forest.

best-view estimation, is based on the previously trained forest. Using the training

sample distribution in the leaf nodes, we are able to determine the uncertainty, i.e.

the entropy, of our current hypotheses, and further estimate the reduction in entropy

when moving the camera to another viewpoint using a pose-to-leaf mapping. Fig.

A.6 shows an overview of the framework. In the following subsections, we discuss

about the related work in the field, and then we describe each part in detail.

5.2 Related Work

Unsupervised feature learning has recently received the attention of the computer

vision community. Hinton et al. [76] used a deep network consisting of Restricted

Boltzmann Machines (RBMs) for dimensionality reduction and showed that deep

networks can converge to a better solution by greedy layer-wise pre-training than

without pre-training at all. Jarrett et al. [77] showed the merits of multi-layer

feature extraction with pooling and local contrast normalization over single-layer

architectures, while Le et al. [78] used a 9-layer Sparse Autoencoder to learn a

face detector only from unsupervised data. Feature learning has also been used for

classification[79] using RNNs, and detection[80] using sparse coding, trained with

holistic object images and patches, respectively. Coates et al. [81] investigated
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different single-layer unsupervised architectures such as k-means, Gaussian mixture

modes, and Sparse Autoencoders achieving state of the art results when parameters

were fine-tuned. Here, we use the Sparse Autoencoders of [81] but in a deeper

network architecture, extracting features from raw RGB-D data. In turn, in [82]

and [83] it was shown how CNNs could be trained for supervised feature learning,

while in [84] and [85] CNNs were trained to perform classification and regression

jointly for 2D object detection and head pose estimation, respectively.

Object detection and 6 DoF pose estimation is also frequently addressed in the lit-

erature. Before low-cost depth cameras were available, an important method for

object detection was introduced by Leibe et al. [86]. It is widely known as Implicit

Shape Model, and the idea was to implicitly learn the corresponding position of

the learned feature representations on the object, which makes the method learn

from fewer training images. Most representative are techniques based on template

matching, like LINEMOD [20], its extension [87] and the Distance Transform ap-

proaches [88]. Point-to-Point methods [89, 90] form another representative category

where emphasis is given on building point pair features to construct object models

based on point clouds. Tejani et al. [6] combined Hough Forest with [20] using a

template matching split function to provide 6 DoF pose estimation in cluttered envi-

ronments. They provided evidence that, using patches instead of the holistic image

of the object, can boost the performance of the pose estimator in cases of severe oc-

clusions and clutter. Brachmann et al. [5] introduced a new representation in form

of a joint 3D object coordinate and class labelling, which, however suffers in cases

of occlusions. Additionally, Song et al. [91] proposed a computationally expensive

approach to the 6 DoF pose estimation problem that slides exemplar SVMs in the

3D space, while in [92] shape priors are learned by soft labelling Random Forest

for 3D object classification and pose estimation. Lim et al. [27] achieved fine pose

estimation by representing geometric and appearance information as a collection of

3D shared parts and objectness, respectively. Wu et al. [30] designed a model that

learns the joint distribution of voxel data and category labels using a Convolutional
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Deep Belief Network, while the posterior distribution for classification is approxi-

mated by Gibbs sampling. The authors in [25] tackle the 3D object pose estimation

problem by learning discriminative feature descriptors via a CNN and then passing

them to a scalable Nearest Neighbor method to efficiently handle a large number of

objects under a large range of poses. However, compared to our work, this method

is based on holistic images of the objects, which is prone to occlusions [6] and only

evaluated on a public dataset that contains no foreground occlusions.

Hypotheses verification is employed as a final refinement step to reject false detec-

tions. Aldoma et al. [22] proposed a cost function-based optimization to increase

true positive detections. Fioraio et al. [93] showed how single-view hypotheses ver-

ification can be extended to multi-view ones in order to facilitate SLAM through a

novel Bundle adjustment framework. Buch et al. [94] presented a two-stage voting

procedure for estimating the likelihood of correspondences, within a set of initial

hypotheses, between two 3D models corrupted by false positive matches.

Regarding active vision, a recent work presented by Jia et al. [16] makes use of the

Implicit Shape Model combined in a boosting algorithm to plan the next-best-view

for 2D object recognition, while Atanasov et al. [95] proposed a non-myopic strategy

using POMDPs for 3D object detection. Wu et al. [30] used their generative model

based on the convolutional network to plan for the next-best-view but is limited in

the sense that the holistic image of the object is needed as input. Since previous

works are largely dependent on the employed classifier, more related to our work is

our Active Random Forests framework (Chapter 4) which, however (similar to [96])

requires the holistic image of an object to make a decision, making it not appropriate

for our patch-based method.
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5.3 Single Shot-based 6D Object Detection

5.3.1 State of the art Hough Forests Features

In the literature some of the most recent 6D object detection methods use Hough

Forests as their underlying classifier. In [5] simple two pixel comparison tests were

used to split the data in the tree nodes, while the location of the pixels could be

anywhere inside the whole object area. In our experiments, we also added the case

where the pixel tests are restricted inside the area of an image patch. A more

sophisticated feature for splitting the samples was proposed by Tejani et al. [6]

who used a variant of the template based LineMOD feature [20]. In comparison

with the above custom-designed features, we use Sparse Autoencoders to learn an

unsupervised feature representation of varying length and layers. Furthermore, we

learn features over depth-invariant RGB-D patches extracted from the objects, as

described below.

5.3.2 Patch Extraction

Our approach relies on 3D models of the objects of interest1. We render synthetic

training images by placing a virtual camera on discrete points on a sphere surround-

ing the object. In traditional patch-based techniques [21], the patch size is expressed

directly in image pixels. In contrast, we want to extract depth invariant, or size-

normalized 2.5D patches that cover the same area of the object regardless of the

object distance from the camera, similar to [97]. First, a sequence of patch centers

ci, i = 1..N is defined on a regular grid on the image plane. Using the depth value of

the underlying pixels these are back-projected to the 3D world coordinate frame, i.e.

ci = (x, y, z). For each such 3D point ci we define a planar patch perpendicular to

the camera, centered at ci and with dimensions dp × dp, measured in meters, which

is subdivided into V × V cells. Then, we back-project the center of each cell to the

1We obtained the 3D models of our objects using 123DCatch [35]



5.3. Single Shot-based 6D Object Detection 69

corresponding point on the image plane, to compute its RGB and depth values via

linear interpolation2. Depth values are expressed with respect to the frame centered

at the center of the patch (Fig. A.6). Also, we truncate depth values to a certain

range to avoid points not belonging to the object. Depth-invariance is achieved by

expressing the patch size in metric units in 3D space. From each training image we

extract a collection of patches P and normalize their values to the range [0, 1]. The

elements corresponding to the four channels of the patch are then concatenated into

a vector of size V × V × 4 (RGBD channels) and are given as input to the Sparse

Autoencoder for feature extraction.

5.3.3 Unsupervised Feature Learning

We learn unsupervised features using a network consisting of stacked, fully connected

Sparse Autoencoders, in a symmetric encoder-decoder scheme. An autoencoder is a

fully connected, symmetric neural network, that learns to reconstruct its input. If

the number of hidden units are limited or a small number of active units is allowed

(sparsity), it can learn meaningful representations of the data. In the simplest case

of one hidden layer with F units, one input (x) and one output (y) layer of size N ,

the Autoencoder finds a mapping f : RN → RF of the input vectors x ∈ RN as:

f = sigm(Wx+ b) (5.1)

The weights W ∈ RF×N and the biases b ∈ RF are optimized by back-propagating

the reconstruction error ||y − x||2. The average activation of each hidden unit is

enforced to be equal to ρ, a sparsity parameter with a value close to zero. The

mapping f represents the features given as input to the classifier in the next stage.

We can extract “deeper” features by stacking several layers together, to form an

encoder-decoder symmetric network as shown in Fig. A.6. In this case, the features

2The cell values calculation can be done efficiently and in parallel using texture mapping in
gpu.
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are extracted from the last layer of the encoder (i.e. middle layer). In experiments,

we use one to three layers in the encoder part, and analyse the effect of several

parameters of the architecture on the pose estimation performance, such as the

number of layers, the number of features and layer-wise pre-training [76].

5.3.4 Pose Estimation

During training, we extract patches from training images of objects and use the

trained network to extract features from object patches, that form a feature vector

f = {f1, f2, ..., fF}. These vectors are annotated using a vector d that contains the

object class, the pose of the object in the training image and the coordinates of the

patch center expressed in the object’s frame, i.e. d = {class, yaw, pitch, roll, x, y, z}.

The feature vectors along with their annotation are given as input to the Hough

Forest. We propose three different objective functions: entropy minimization of

the class distribution of the samples, entropy minimization of the {yaw, pitch, roll}

variables, and entropy minimization of the {x, y, z} variables. Reducing the entropy

towards the leaves, has the effect of clustering the training samples that belong to

the same class and having similar position and pose on the object. More details

on the computation of these entropies can be found in [70] and in Sec. 4.3. The

objective function used is randomly selected in each internal node and samples are

split using axis aligned random tests. The leaf nodes store a histogram of the

observed classes of the samples that arrived, and a list of the annotation vectors d.

During testing we extract patches from the test image with a stride s and pass them

through the forest, to reach the corresponding leaf. We create a separate Hough

voting space (6D space) for each object class, where we accumulate the votes of

the leaf nodes. Each vector d stored in the leafs, casts a vote for the object pose

and its center to the corresponding Hough space. The votes are weighted according

to the probability of the associated class stored in the leaf. Object hypotheses are

subsequently obtained by estimating the modes of each Hough space. Each mode
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can be found using non-maxima suppression and is assigned a score equal to the

voting weight of the mode.

Each object has its own Hough space for voting. The dimension of the Hough space

is 6, 3 for object location and 3 for pose. Extracting the modes in such a high

dimensional space is not efficient due to the high sparsity of the data and the com-

putational complexity. We have experimented with three different implementations

of the voting space: a) direct 6D voting, b) 3D voting in {x, y, z}, with each ex-

tracted mode subsequently voting in the 3D space {yaw, pitch, roll}, and c) voting

in 2D space {x, y} with the extracted modes subsequently voting in {z}, and the

same process repeated in {yaw, pitch} and then in {roll}. The most efficient in

terms of time complexity and accuracy was the latter, which was used in our exper-

iments. The main reason is that when computing the voting in x − y space only,

you can immediately localise the objects in the scene, and any false positives that

may occur due to leaving out z, can be discarded in the second pass on z alone

(the modes in 6D space, are also modes in any 2D or 1D projected space). After

localising the objects, it is faster to vote in angle space only. The same logic applies

to the angle space as well. The order of voting (i.e. x− y first) in localization was

chosen because the x − y plane of the depth camera gives more information than

any other axis-aligned plane. The order of 2D projection for the pose estimation

(i.e. first voting in {yaw, pitch} and then in {roll}) was proven experimentally that

does not affect the results. Finally, the quantization of the Hough sapce is 5mm for

X, Y and Z, and 1 degree for yaw, pitch and roll.

5.4 Next-Best-View Prediction

When detecting static objects, next-best-view selection is often achieved by find-

ing the viewpoint that minimizes the expected entropy, i.e the uncertainty of the

detection in the new viewpoint. There have been various methods proposed for com-
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Figure 5.2: a) Offline construction of the pose-to-leaf mapping, b) Online occlusion refinement of
the mapping, c) example of the effect of occlusion refinement in entropy estimation.

puting the entropy reduction [95, 96] including our Active Random Forest framework

(Chapter 4). Hough Forests can facilitate the process since they store adequate in-

formation in the leaf nodes that can be used for predicting such reduction. The

entropy of a hypothesis in the current view can be computed as the entropy of the

samples stored in the leaf nodes that voted for this hypothesis. That is:

H(h) =
�

lh

H(Slh) (5.2)

where lh is a leaf voted for hypothesis h, and Slh the set of samples in these leaves.

If the camera moves to viewpoint v, the reduction in entropy we gain is:

r(v) = H(h)−H(hv) =
�

lh

H(Slh)−
�

lhv

H(Slhv
) (5.3)

where hv is the hypotheses h as would be seen from viewpoint v. In order to measure

the reduction in entropy, we need to calculate the second term of the right side of

equation (5.3), which requires to find the leaf nodes that should be reached from the

viewpoint v. Since we want to compute the reduction before actually moving the

camera, we can simulate hv by rendering the object placing a virtual camera at v,

give the image as input to the forest and collect the resulting leaves. However this

can be done more efficiently avoiding the rendering phase (contrary to [96]): we save

offline a mapping from object poses (discrete camera views) to leaf nodes using the

training data as shown in Fig. 5.2a. Given a 6 DoF hypothesis and this mapping,

we can predict which leaf nodes of the forest are going to be reached if we move the
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camera to viewpoint v. Because of the discretization of poses in the map index, we

choose the view in the mapping that is closer to the camera viewpoint we want to

examine. Thus, the next-best-view vbest is calculated as:

vbest = argmax
v

r(v) = argmin
v

H(hv) (5.4)

In case of two or more uncertain hypotheses, the reduction in entropy is averaged

in the new viewpoint. Also, to account for the cost of the movement, the reduction

can be normalized by the respective cost.

In the general case of multiple objects present in the scene with cluttered back-

ground, we can further refine the entropy prediction to account for occlusions. In

our previous formulations, we made the assumption that, from a view v the object

is clearly visible. However, due to other objects present in the scene, some part or

the whole object we are interested in, may be occluded (Fig. 5.2b). In this case

our estimated entropy reduction is not correct. What we need to do is to exclude

from the entropy calculation the samples in the leaves that are going to be occluded.

More formally:

H(hv) =
�

lhv

H(Slhv
\ Socc

lhv
) (5.5)

where Socc
lhv

are the samples that would be occluded in viewpoint v. In order to

determine this set, first, we incrementally update the 3D point cloud of the scene

when the camera moves. Then, we project the {x, y, z} coordinates of an annotated

sample of a leaf onto the acquired scene as shown from view v, and estimate if

it is going to be occluded or not. Figure 5.2c shows an example of our dataset,

where there are two similar objects oreo we want to disambiguate. From the view

-90 degrees to 0 it is difficult to understand the difference, while from 45 degrees

onwards the difference becomes clearer. However, from the view of 90 degrees the

objects of interest become occluded. Calculating the entropy as described above, we

get the true reduction in entropy which is lower than in the 45 degree case.



74 Chapter 5. 3D Object Detection & Next-Best-View Prediction

b)a) d)c) e)

Figure 5.3: Example of hypotheses verification and active camera movement. a) Input test image,
b) complete set of hypotheses overlaid on the image, c) hypotheses verification refinement, d) active
camera movement, e) re-estimating hypotheses.

Another example of the complete pipeline is shown in Fig. 5.3. Given an image (Fig.

5.3a) we extract the hypotheses from the Hough voting space (Fig. 5.3b). Using

the optimization described in next section 5.5 we refine this by selecting the best

subset (Fig. 5.3c). The best solution does not include the objects shown in red box.

However, a solution containing these hypotheses, but not well aligned with the scene

due to occlusion, has a similar low cost with the best one. Being able to move the

camera, we find the next-best-view as described above according to the uncertain

hypotheses and change the viewpoint of the camera (Fig. 5.3d). We can re-estimate

a new set of hypotheses (Fig. 5.3e) with some hypotheses still being uncertain (but

keeping good ones above a threshold) and the same process is repeated.

5.5 Hypotheses verification and joint registration

Given the assumption that only one object instance exists in the scene, like in [20, 5],

the pose estimation described in 5.3.4 can directly provide a solution to the problem,

by considering only the Hough voting space of the object of interest and extract the

most voted modes. In the general case of multiple object instances of multiple classes

present in the scene, however, there may be a set of hypotheses, from which some are

conflicting and some explain the scene better than others. Thus, the objective is to

select the subset of all possible hypotheses produced by the pose estimator, that best

explains the scene. We adopt the global optimization approach of [22], which we

improve mainly by modifying the cost terms and improving the objective function

and its optimization. Given a set of hypotheses H and a vector X = {x1, x2, ..., xN}
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of boolean variables, which indicate that hypotheses hi is valid or not, the objective

is to find X that minimizes a cost function C(X). Below we formulate the various

terms of this objective function.

For each hypothesis, we render the 3D model of the object in the scene and exclude

the parts that are occluded (i.e. that lay behind any scene surface) as they cannot

provide any information about the scene fitting. For the remaining points p of each

model, we find their nearest neighbour q in the scene and assign a fitting score,

according to the following four cues:

a) local fitting: For each pair p and q there are three terms measuring their

similarity: a) C11 is the normalized distance ||p−q||
pe

, but when exceeds 1, the fitting

score is not taken into account and the point is considered an outlier, b) C12 measures

the similarity, i.e. the dot product of the normals of the points, truncated to [0, 1],

c) we add an extra term not in [22] defined as:

C13 = max(
|Rp −Rq|

255
,
|Gp −Gq|

255
,
|Bp − Bq|

255
) (5.6)

that measures the similarity of p and q in color channels, with the max function

used because the color significantly changes even when one of the channel changes.

Finally, we set C1 = (C11 + C12 + C13)/3.

b) inliers: Inliers are the points for which ||p − q|| ≤ pe and are measured as a

fraction over the total visible points: C2 = pin/ptot

c) conflicting inliers: Inliers from different hypotheses may share the same nearest

neighbour in the scene. This indicates a conflict among the hypotheses that needs

to be penalized. This cue C3 is measured as a fraction of conflicting inliers over the

total inliers of the involved objects.

d) clutter term: As explained in [22], we segment the scene into smooth regions

and penalize the points of a region that do not belong to the same hypothesis with

the other points of that region (or do not belong to any hypotheses at all). Cue C4

is also measured as a fraction of penalized points over total points in a region.
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Contrary to [22], we defined every term in the range [0, 1]. The final cost function

C(X) is defined as:

C(X) = (a1C1 + a2C2)− (a3C3 + a4C4) (5.7)

with each cue calculated only for the hypotheses that xi = 1. We found that

although each term has the same range, each one has a different relative importance

and common range of values. Therefore, unlike [22], we put a different regularizer

in each term, which is found using cross-validation. Furthermore, the solution space

of the optimization can be further reduced. We observe that apart from C3, all

other cues can be computed for each object independently. If we split the set of

hypotheses H into non-intersecting subsets Hi, then each subset can be optimized

independently as well, decomposing the optimization problem into smaller ones and

therefore reducing the time and complexity of the solution. Each smaller subset is

subsequently optimised as in [22].

5.6 Experiments

The experiments regarding the patch size and feature evaluation were performed on

a validation set of our own dataset. Object detection accuracy is measured using

the F1-score and is averaged over the whole set of objects. When comparing with

the state of the art methods, we use the public datasets and the evaluation metrics

provided by the corresponding authors. When evaluating on our own dataset, we

exclude the aforementioned evaluation set.

5.6.1 Patch Size Evaluation

A patch in our framework is defined over 2 parameters: dp is the actual size mea-

sured in meters, and V × V is the number of cells a patch contains, which can be



5.6. Experiments 77

(a) Patch-grid size (b) stride

(c) feature evaluation (d) 1st layer filters

Figure 5.4: Patch extraction parameters

considered as the patch resolution. We used six different configurations shown in

Fig. 5.4(a). The maximum patch size used was limited to the 2/3 of the smallest

object dimensions. The network architecture used for patch-size experiments is 2

layers (the encoder part) of 1000 and 400 hidden units respectively. Fig. 5.4(a)

shows that an increase in the patch size significantly increases the accuracy, while

on the other hand, an increase of the resolution offers a slight improvement, and

that comes at the expense of additional computational cost. Another important

factor is the stride s during patch extraction. Fig. 5.4(b) shows that the smaller

the stride the more accurate the detection becomes.

5.6.2 Feature Evaluation using Hough Forests

In order to evaluate our unsupervised feature we created 9 different network config-

urations to test the effect of both the number of features and the number of layers

on the accuracy. We used 1-3 layers as the encoder of the network with the last

layer of the encoder forming the feature vector used in the Hough Forest. We varied
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the length of this feature vector to be 100, 400 and 800. When we use 2 layers,

the first has 1000 hidden units, while when we use 3 layers, the first two have 1500

and 1000 hidden units respectively. The patch size used for these experiments is

dp = 48mm with V = 16, creating an input vector of 1024 dimensions. Using the

same Hough Forest configuration, we evaluate three state of the art features: a)

the feature of [6], a variant of LineMOD[20] designed for Hough Forests, along with

its split function, b) the widely used pixel-tests [5] and c) K-means clustering, the

unsupervised single-layer method that performed best in [81]3 with 100, 400 and 800

clusters. Pixel-tests have been conducted inside the area of a patch for comparison

purposes, however in the next subsection we compare the complete framework of

[5] with ours. Results are shown in Fig. 5.4(c). The 3-layer Sparse Autoencoder

shown the best performance. Regarding the Autoencoder, we notice that the accu-

racy increases if more features are used, but when the network becomes deeper, the

difference diminishes. However, it can be seen that deeper features significantly out-

perform shallower ones. K-means performed slightly better than single-layer SAE,

while pixel-tests had worse performance. The feature of [6] had on average worse

performance than Autoencoders and K-means, which is due to low performance on

specific objects of the datasets. We further provide a visualization of the filters of

the first layer learned by a network with a 3-layer encoder (Fig. 5.4(d)). The first

two rows are filters in the RGB channel, where it can be seen a bias towards the

objects used for the evaluation. Filters in the depth channel resemble simple 3D

edge and corner detectors. Last, we have tried to pre-train each layer as in [76],

without significantly influencing the results.

5.6.3 State of the Art Evaluation

In the experiments described in this subsection, we used an encoder of 3 layers

with 1500, 1000 and 800 hidden units, respectively. The patch used has V = 8

3We used the K-means (triangle) as described in [81]
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(a) Colgate (b) Oreo (c) Softkings (d) Coffecup (e) Juice (f) Camera (g) Joystick

Figure 5.5: Qualitative results of our framework. Image 5.5(g) is the next best view of image
5.5(f).

and dp = 48mm, which was found suitable for a variety of object dimensions. The

forests contain four trees limiting only the number of samples per leaf to 30. For

a fair comparison, we do not make use of joint registration or active vision except

when specifically mentioned.

We tested our solution on the dataset of [5], which contains 20 objects and a set

of images regarded as background. The test scenes contain only one object per

image, there is no occlusion or clutter, and are captured with different illumination

from the training set, so one can check the generalization of a 6 DoF algorithm

to different lighting conditions. To evaluate our framework we extracted the first

K = 5 hypotheses from the Hough voting space and chose the one with the best local

fitting score. The results are shown in Table 5.1 where for simplicity we show only

6 objects and the average over the complete dataset. Authors provided comparison

with [20] only with one object, because they could not get meaningful results using

their method. This dataset was generally difficult to evaluate, mainly because some

pose annotations were not very accurate, resulting in having some better estimations

from the ground truth exceeding the metric threshold of acceptance. Our method

showed that it can generalize well on different lighting conditions, even without the

need of modifying the training set with Gaussian noise as suggested in [5].

We have also tested our method on the dataset presented in [6], which contains

multiple objects of one category per test image, with much clutter and some cases

of occlusion. Authors adopted one-class training, thus, avoiding background class

images during training. For comparison, we followed the same strategy. Since

there are multiple objects in the scene, we extract the top K = 10 modes of the
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Table 5.1: Results on the dataset of [5]

Object [20] (%) [5] (%) Our (%)
Audiobox 75.4 71.5
Carry Case 95.9 90.7
Dish Soap 100 100
Helmet 77.6 74.5
Hole Puncher 98.1 94.3
Pump 69.3 67.4
Toolbox 99.5 100
Toy (Battle Cat) 70.2 91.8 92.4
Toy (Panthor) 96.9 94.2
Toy (Stridor) 94 94.3
Stuffed Cat 98.3 94
Duck 81.6 87.7
Dwarf 67.6 65.6
Mouse 89.1 90.1
Owl 60.5 90.27
Elephant 94.7 96.13
Samurai 98.5 99.6
Sculpture 1 82.7 89.5
Sculpture 2 100 100
Avg. 88.2 89.1
Med. 93.0 92.4

{x, y, z} Hough space, and for each mode, we extract the H = 5 modes of the

{yaw, pitch, roll} Hough space and put a threshold on the local fitting of the final

hypotheses to produce the PR curves. Table 5.2 shows the results in the form of

F1-score (metric authors used) for each of the 6 objects. The results of methods

[20, 89] are taken from [6].

In this dataset we see that our method significantly outperforms the state of arts,

especially regarding the Camera which is small and looks similar with the back-

Table 5.2: Results on the dataset of [6]

Object [20] [89] [6] Our
F1 score

Coffee Cup 0.819 0.867 0.877 0.932
Shampoo 0.625 0.651 0.759 0.735
Joystick 0.454 0.277 0.534 0.924
Camera 0.422 0.407 0.372 0.903
Juice Carton 0.494 0.604 0.870 0.819
Milk 0.176 0.259 0.385 0.51
Average 0.498 0.511 0.633 0.803
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(a) (b)

Figure 5.6: a) Results on active vision on our crowded dataset scenes, b) Results on active vision
on scenes with objects arranged.

ground objects, and the Joystick, which has a thin and a thick part. Our features

showed better performance on Milk that contains other distracting objects on it. It

is evident that our learnt features are able to handle a variety of object appearances

with stable performance and at the same time being robust to destructors and oc-

cluders. Note that without explicitly training a background class, all the patches

in the image are classified as belonging to one of our objects. While [6] designed

a specific technique to tackle this issue, our features seem informative enough to

produce good modes in the Hough spaces.

We have also tested [6] and [5] on our own dataset. We also tried [20], but although

we could produce the reported results on their dataset, we were not able to get

meaningful results on our dataset and so we do not report them. This is mainly

because this method is not intended to be used in textured objects with simple

geometry. We provide results both with and without using joint object optimization.

Our dataset contains 3D models of six training objects, while the test images may

contain other objects as well. More on our dataset and evaluation can be found in

the supplementary material. Table 5.3 shows the results on our database. The work

of [5] is designed to work only with one object per image and it is not evaluated

on the bin-picking dataset. Our method outperforms all others even without joint

optimization, but we can clearly see the advantages of such optimization on the final

performance.
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Table 5.3: Results on our dataset

Object [6] [5] Our
Our

joint optim.

scenario 1 (supermarket objects)
amita 26.9 60.8 64.3 71.2
colgate 22.8 11.1 26.1 28.6
elite 10.1 71.9 74.9 77.6
lipton 10.5 26.9 56.4 59.2
oreo 26.9 44.4 58.5 59.3
softkings 26.3 26.9 75.5 75.9

scenario 2 (bin picking)
coffeecup 31.4 - 33.5 36.1
juice 24.8 - 25.1 29

5.6.4 Active Vision Evaluation

We tested our active vision method on our dataset, using two different types of

scenes. One is the crowded scenario used for single-shot evaluation, and the other

depicts a special arrangement of objects, one behind the other in rows, that is

commonly seen in a warehouse (Fig. 5.2). All results take into account all the object

hypotheses during the next-best-view estimation. We compare our next-best-view

prediction with and without occlusion refinement with three other baselines [96]: a)

maximum visibility (selecting a view that maximizes the visible area of the objects),

b) furthest away (move the camera to the furthest point from all previous camera

positions), c) move the camera randomly.

In the crowded scenario, we move the camera 10 times, measuring in each view the

average pose estimation accuracy of the objects present in the scene (Fig. 5.6(a)).

We see that our method without occlusion refinement slightly outperforms the max-

imum visibility baseline because usually the maximum reduction in entropy occurs

when there is maximum visibility. Using occlusion refinement, however, we get a

much better estimation of the entropy that is depicted in the performance.

When the objects are specially arranged, we were interested in measuring the in-

crease in accuracy only in the single next-best-view, i.e. we allow the camera to
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move only once for speed reasons. This experiment (Fig. 5.6(b)) makes very clear

the importance of tackling occlusion when estimating the expected entropy. Our

method with occlusion refinement was consistently finding the most appropriate

view, whereas without this step, the next-best-view was usually the front view, with

the objects behind being occluded.

Regarding the computational complexity of our single shot approach, training 3

layers of 800 features with 104 patches for 100 epochs takes about 10mins on GPU.

Our forest was trained with a larger set of 5 · 106 patches. Thanks to our parallel

implementation, we train a tree on an i7 CPU in 90 mins, while [6] and [5] require

about 3 and 1 days, respectively. During testing, the main bottleneck is the Hough

voting and mode extraction that takes about 4-7secs to execute, with an additional

2secs if joint optimization is used for 6 objects. Other methods need about 1sec.

5.6.5 More Qualitative Results

In this subsection we provide some qualitative results of our method. Fig. 5.7(a) -

5.7(f) show results of single object detection in scenario 1. Fig. 5.7(g) and 5.7(h)

show examples of joint object registration using global optimization. Results on

scenario 2 are shown in Fig. 5.7(i)-5.7(k) where again joint registration is used. Fig.

5.8 shows the detection results of two state of the art detectors ([6, 5]) on single view

single object detection. Two objects are shown, amita and softkings. Finally, in Fig.

5.10 there are two examples of next-best-view estimation results. These scenes help

in qualitatively evaluating a next-best-view strategy. However, the results of the

paper regarding active vision were measured using all images in both scenarios in

our dataset. More results and comparisons side-by-side with state of the art methods

can be found on the video attached to the supplementary material.
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(a) Amita (b) Colgate (c) Elite (d) Lipton

(e) Oreo (f) Softkings (g) Joint Registration (h) Joint Registration

(i) Coffee cups (j) Juice (k) Both objects

Figure 5.7: Qualitative results on our dataset. a-h) Scenario 1, i-k) Scenario 2 (bin picking)
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(a) Amita Detection

(b) Softkings Detection

Figure 5.8: Comparisons with state of the art on single object single view detection. First column
is the results of [6], the second column is the results of [5] and the third column is the results of our
method. When no detection is shown, the corresponding method did not produce any detection
result.
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Figure 5.9: State of the art comparison in bin picking multi-instance detection. First column shows
results of [6], second column shows the results of our method without using joint registration, and
the third column shows the results of our method using joint registration.
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(a) Classes cannot be disambiguated from this
viewpoint

(b) Next best view of (a)

(c) Hypotheses of hidden objects have low score (d) Next best view of (c)

Figure 5.10: Active Next Best View estimation using occlusion refinement in order to disambiguate
the four objects.



Chapter 6

Siamese Regression Networks

6.1 Overview

In this chapter we present our Siamese Regression Network, a network that is able

to efficiently support regression over angle space for 3D object pose estimation.

Regressing directly the object pose has the advantage of fast inference during test-

ing time, avoiding the hough voting and mode estimation of our previous method

(Chapter 5). However, our network works on holistic images rather than patches,

which were proved to be robust to occlusions. For this reason, we introduced an-

other objective function term to explicitly tackle occlusions, given proper training

data. In the following sections, we first give an overview of related work, and then

we describe our Siamese Regression Network and the contributions led to successful

object pose regression.

6.2 Related work

Recognizing and detecting objects along with estimating their 3D pose has received

a lot of attention in the literature. Early works made use of pointclouds to facilitate

88
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Point-to-Point matching [89, 90], while the advent of low-cost depth sensors [26,

98] provided additional data in favor of textureless objects. As mentioned earlier

in Section 5.2 Hinterstoisser et al. designed a holistic template matching method

(LINEMOD) based on RGB-D data, Tejani et al. [6] integrated LINEMOD into

Hough Forests to tackle the problem of occlusions and clutter, and Brachmann et

al. [5, 99] employ a new representation framework that jointly maps 3D object

coordinates and class labels. Hodan et al. [100] presented a method that tackles

the complexity of sliding window approaches via a fast-filtering technique followed

by a voting procedure for hypotheses generation, while fine 3D pose estimation is

performed via a stochastic, population-based optimization scheme. In turn, in [91]

exemplar SVMs are slided in the 3D space to perform object pose classification

based on depth images.

Deep learning has only recently found application to the 3D object pose estimation

problem. Our work described in Chapter 5 suggested using a network of stacked

sparse autoencoders to automatically learn features in an unsupervised manner that

are fed to Hough Forests for 6D object pose recovery and next-best-view estimation.

In [101] Johns et al. employed a CNN-based end-to-end learning framework for

classification of object poses in the 3D space and next-best-view prediction. In

turn, in [102] a CNN was used to learn projections of 3D control points for accurate

3D object tracking, while in [103] a CNN is utilized in a probabilistic framework to

perform analysis-by-synthesis as a final refinement step for object pose estimation.

In [25] 3D pose estimation is performed by a scalable Nearest Neighbor method on

discriminative feature descriptors learned by a CNN.

To the best of our knowledge, this work presents the first CNN-based framework

for regressing object poses in the continuous 3D space. The work of Kendall et al.

[104] regresses camera poses in the continuous 3D space1 but does not offer any end-

to-end learning since it makes use of the pretrained GoogLeNet[7]. The method of

Sun et al. [23] offers a learning framework that learns a new face representation by

1camera pose estimation is the inverse of object pose estimation
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joint identification-verification. The work of Dosovitskiy et al. [105] try to estimate

the optical flow using CNNs and a new layer that correlates feature vectors at

different image locations to help regression. However the optical flow is determined

by comparing two image frames that are captured sequentially, and therefore have

similar appearance making the flow estimation a slightly easier regression task for

NNs. As far as feature learning for 3D object pose estimation is concerned, our

work shares similar ideas with the method of Wohlhart et al. [25] that learns feature

descriptors with pairs and triplets. However, we argue that our learned features are

pose-guided and as experiments prove, more discriminative, which in fact suggests

that they are optimized for the particular task of 3D object pose estimation.

6.3 Siamese Regression Network

6.3.1 Object Pose Estimation Using Regression CNN

We first formulate the problem of object pose estimation as a regression problem. Let

x ∈ RW×H×4 be an RGBD (4 channels) image depicting a centered object having

width W and height H. Pose estimation is the problem of learning a regressor

g : RW×H×4 → RM , where M is the dimensionality of the pose representation

used. For example, Euler angles require 3 angles to be defined (M = 3) whereas

quaternions suggest M = 4. Regressing euler angles directly can be problematic due

to multiple problems such as periodicity [106], and the non-continuous nature of the

euler angle space [104]. For example, poses that are very similar visually might be far

away in euler angle space, making regression harder. Therefore, similar to previous

work [104] on regressing camera pose, we also use the quaternion representation,

which does not suffer from the same problems.

For the task of estimating the regression function g we train a convolutional neural

network (CNN). We use the simple architecture similar to [25] that consists of 2
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convolutional layers, and 2 fully connected layers (we have removed the max-pooling

layers as we saw that they slightly degraded the performance). On top of that, we

added another fully connected layer that outputs M units to estimate the object

pose. If we consider the layer just before the last regression layer as the features

learned by the network, we can describe the output of the our network as:

p = g(f(x)) (6.1)

where f(x) is the output of the feature layer, g the regression layer function and p

is a pose vector returned by the network for the input image x. Given a training

set that contains combinations of training samples of the form {xi, yi}, the most

commonly used method of training a regression network is by minimizing the Mean

Square Error (MSE) between the estimation g(f(xi)) and the ground truth yi and

back-propagating the error. If we split the training set into mini batches of K

samples each, the regression loss can be written as:

�R =
K�

n=1

||g(f(xn))− yn||22 (6.2)

6.3.2 Siamese Regression Objective

Previous work has shown that the feature layer f is able to learn representations that

can be successfully applied in nearest neighbour matching [25] or face identification

- verification [23]. However, end-to-end regression learning with CNN in angle space

proved to be a very challenging task, with researchers resorting to indirect solutions,

such as Nearest Neighbor template matching [25] or ad-hoc angle estimation methods

like arctan [106]. Therefore, inspired by [23], we want to enhance the feature learning

process by using additional information available during training, in order help the

end-to-end regressor converge to a better minimum. Thus, our goal is to enforce
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Figure 6.1: (left) Our training and testing architectures. We enforce a siamese architecture for
regressing relative distance between feature and pose spaces. During testing, we extract a branch of
the network, and use it for regression. (right) Illustration of our feature-guided pose regression loss.
The loss seeks to associate distances in the L2 normalised feature space with the L2 normalised
pose space.

a loss function in the feature layer f , in a way that the learned features are more

appropriate and useful for the regression task in the last layer g.

In order to enforce a second loss function in this layer, we utilize the siamese ar-

chitecture that has been very successful for learning non-linear feature embeddings

with convolutional neural networks [107]. The siamese architecture consists of two

(or more) branches of the same CNN that share weights and encode two inputs

processed in parallel. Subsequently, a loss function can be introduced based on both

outputs, which makes it possible to compare different samples of our training data

passing through our network in a meaningful way.

Our study on the regression problem concluded that there is a relation between

the feature and the angle space which helps a regression network layer perform

much better. The relationship is the following: the euclidean distance between two

sample images represented in feature space, should be maintained the same with the

distance between the same samples as represented in angle space, during training.

Fig. 6.1 shows an illustration of our idea. In order to enforce such relation we

use a siamese network to pass through the network pairs of samples and apply an

objective term on them. The pairs have the form: {x1, y1, x2, y2} where x represent
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the raw input, and y the pose vector ground truth. We enforce the following loss

function for feature guided regression

�F =
K�

n=1

��||f(xn,1)− f(xn,2)||22 − ||yn,1 − yn,2||22
�� (6.3)

Intuitively, minimizing this loss enforces the L2 distance between the features in the

sample pair, to be close to the L2 distance between the ground truth of their poses.

In order to avoid weighting any of the above parts of the objective loss term, we

normalize the output of the feature layer as well as the output of the pose layer to

have unit norm (if using quaternions as pose representation, they already have unit

norm). In fact, as we will show in experiments, this normalization has a positive

effect in training angle regression even without using our extra feature term.

It should be mentioned that the siamese network is only used during training to help

the regression task. During testing, only a single image produces a pose estimation

without the need of providing a pair for the image.

6.3.3 Feature Guided Pose Regression

Combining the regression loss with the feature loss, we get

L = �R + �F + λ · ||w||22 (6.4)

where λ · ||w||22 is a term to regularise the weights of the convolutional neural net-

work. By enforcing this loss in the proposed siamese regression network, we are

able to simultaneously focus on both features that are able to work well in a nearest

neighbour framework, and on the fully connected last layer that regresses the poses

directly. Indeed, in our experiments we show that enforcing the feature term in the

loss leads to better pose estimation in the final layer.
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In Table 6.1, we describe the relationship between the two loss functions �R and �F ,

and the parts of the CNN weights that are updated. We note that the weights related

to the feature learning, are updated using information from both losses, while the

weights related with the pose regression, are only updated based on the �R loss.

6.3.4 Pose Guided Feature Learning

Despite the fact that the loss function of from Eq. 6.4 mainly aims to learn a better

regressor for the pose in the final layer p = g(f(x)) of the convolutional network,

it can be argued that the features that are learned in the f(x) layer of the network

can be more discriminative.

Previous work on 3D feature learning with siamese networks has focused on opti-

mising the feature embeddings using triplets. Triplet training samples contain an

anchor, a positive sample and a negative sample. The authors from [25] form the

triplet by using two close views of the object as anchor and positive samples, and

a view with significantly different pose as the negative. What they try to optimize

is the anchor and the positive sample to be closer in feature space than the anchor

and the negative one. They also use pairs of images of similar pose but different

appearance and try to minimize their distance in feature space in order to learn

features immune to different lightning conditions and noise.

On the other hand, our loss focuses on forcing the feature distance between a pair

to be equivalent to the pose distance. Thus, it is more appropriate for a nearest

neighbour framework, since the features are optimized to be relative to the pose

distance. Indeed, in our experiments show that enforcing our loss from Eq. 6.4

results in features that are more suited for nearest neighbour matching.

We should note that using the objective function of [25] (eq. 6.5, xi is similar to

xj and disimilar to xk) instead of �F in order to help regression didn’t work, with

the network showing similar convergence behavior of the regression without using
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Table 6.1: Our learning algorithm.

input: training set X , CNN feature parameters wF , CNN pose
parameters wR, learning rate η

for epoch e=1:N do
sample M mini-batches from X using pairs with both similar and

different poses
for mini-batch b=1:M do

∇wF = ∂�F
∂wF

+ ∂�R
∂wF

∇wR = ∂�R
∂wR

update wR = wR − η(e) · wR

update wF = wF − η(e) · wF

end
end
output wR, wF

the extra term. This is a clue that our objective does indeed help regression, while

at the same time regression helps building more discriminative features appropriate

for pose estimation.

L = max(0, 1− ||f(xi)− f(xk)||2
||f(xi)− f(xj)||2 +m

) (6.5)

6.3.5 Siamese Pair Sampling

Considering a dataset of M training samples of the form {xi,yi}, there exist
�
M
2

�

possible pairs to be used in the siamese training process described above. Since the

number of pairs can become very large, several authors explored different techniques

of sampling or mining hard negative pairs [108, 109].

Although we do not explicitly have positive and negative pairs since the training

process is done in the same object, we approximate such pairs by spliting a batch

of size K between pairs that are both close in the pose space, or have very large

pose differences. We examined that random choice of pairs in terms of their pose
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difference perform inferior to our formation. Interestingly, forming batches using

both similar and different pose pairs, is a factor that improves regression on its

own, even without enforcing any constraints on such pairs. In the experiments we

will show the relative performance gain of using well formed batches compared to

regression with random batches and enforcing our sample pair objective.

6.3.6 Handling occlusions

Tackling occlusions, that is estimating the object pose when a major part of the

object is missing or occluded, requires features that are robust in such conditions and

one should explicitly enforce this property. We note that the form of Eq. 6.4 makes

it convenient to support building such features: if we generate training samples with

the object occluded, and using its annotation render a clean object having the same

pose, we can enforce a similar term between the occluded and the clean images:

�oc =
��||f(xoccluded)− f(xclean)||22 − ||yoccluded − yclean||22

�� (6.6)

where xoccluded and xclean are images depicting occluded and clean objects respec-

tively. Fig. 6.3 in the experiments section shows examples of such images. This

term can be added to the L loss in order to tackle the severe occlusion problem.

It should be noted that eq. 6.6 is not a new equation, but rather the equation 6.4

with additional pairs as inputs.

6.4 Experiments

Our convolutional regressor is a simple convolutional neural network with sim-

ilar architecture to [25] that has the following architecture: {Input(4,W,H) −

Conv(16, 8, 8)−Conv(7, 5, 5)−FC(256)−FC(D)−FC(4)} where Conv(N,K,K)
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Figure 6.2: a) End-to-end regression evaluation as compared to our learned features using nearest
neighbor on various network configurations: S is simple regression i.e. without any extra objective
terms and using random batches, B is again simple regression with properly formed batch, N means
that the network contains normalization layer after the feature and final layer, and F means that
the network is trained using our new feature-guided pose regression objective. b) Evaluation of
different number of pairs compared inside a mini-batch. c) Evaluation of the length of the feature
layer.

represents a convolutional layer with N filters of size K × K, and FC(D) a fully

connected layer with D outputs. Note that the feature layer FC(D) is of vari-

able length, something that allows a trade-off between feature extraction size and

performance. We use ReLU as the non-linearity in all our convolutional and fully

connected layers apart from the last layer that produces the pose estimation where

we used tanh. For training the network we use the stochastic gradient method [110],

with 0.9 momentum and initial learning rate of 0.01. We also decay the learning

rate in each epoch, to avoid oscillations around local minima.

In order to evaluate our method we used two datasets. The first one, which is also

used for our parameter analysis, is the one of LINEMOD [26]. More specifically,

we worked with a variant of the RGBD images as used by [25] where the objects

are centered in the image so that no localization is required. This dataset contains

about 3000 training images and 1000 test images per object.

The second dataset is constructed by us and depicts a small object (a car belt) being

manipulated by a human hand as seen in Fig. 6.3. The focus of such dataset is to

introduce realistic occlusions that are severe and have stronger effect on the learning

process than using different object instances or types. In order to construct such

dataset, we recorded an RGBD video, using Asus Xtion, of a human manipulating
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the object, and used a particle swarm optimization tracker [111, 112] to track both

the hand pose as well as the object pose. Having such information we can easily

generate our needed pairs for our occlusion term (eq. 6.6). To create training and

testing sets, we first subsampled the video to 3fps, and then divided the video in

continuous segments, from which the 70% where used for training and the 30%

for testing. Such scenario appears in autonomous learning of object manipulation

by robots, where the task is being demonstrated by a human. This dataset is

very challenging since human hand introduces high level of occlusion which can

significantly degrade the accuracy of pose estimation. Moreover, our dataset is

larger, with about 21000 training and 5000 testing images.

Regarding the evaluation metric, we use the average Euler angle error, which is the

average of the absolute difference in angle (in degrees) between the estimated pose

and the ground truth, measured regarding the three principal axes. Such metric is

more appropriate for our regression task and matches the one used in [25] . Since

we are using quaternions, we transform them in Euler angles after the estimation in

order to perform the comparisons.

In the following subsections, we first evaluate different parameters of our network

showing the relevant importance of each of our contributions. We also compare our

siamese regression network with some base-line and state of the art methods showing

the superiority of our method.

6.4.1 Parameter Evaluation

Fig. 6.2(a) shows the evaluation of the different parts of our network, starting from

a simple regression network and gradually adding elements of our siamese regression

network. We show both the performance of our end-to-end pose estimation and the

performance of our produced features using nearest neighbor template matching.

The regression network performs worse, and the performance gradually increases

by just using a better formed batch, then the normalization layers and the best
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performance is achieved when adding our feature learning term in the objective

function. Interestingly, we notice that the our features using nearest neighbor exhibit

similar behavior, but the increase in performance is more significant. When using

our feature learning term, it slightly outperforms the end-to-end regression. As

we will see in the next subsection, the regression is more affected by overfitting

regarding the small size of the linemod dataset we used for the analysis.

We also experiment with the amount of pairs required for our feature term. Fig.

6.2(b) shows the regression performance for different values of the amount of pairs

used. Using a batch that contains 300 training images we see that the more pairs

we use, the better the performance. However above 1000 pairs between the training

images we did not get any further significant improvement.

Last, we evaluated our network on different feature sizes, shown in Fig. 6.2(c). Again

we see that the more features used the better the performance achieved. Above the

size of 32 however, there is not significant improvement, which is in par with what

was reported in [25] .

6.4.2 State Of The Art Comparisons

Last, we performed a final evaluation of our siamese regression network compared

with the method of [25] , which is the most relevant work to ours and directly

comparable. This work uses triplets and pairs formed by the training samples and

learn to minimize an objective function using a convolutional neural network. This

objective only tries to increase the euclidean distance in feature space of dissimilar

samples, while enforcing similar samples to be close. The idea behind this is to build

a mapping appropriate for nearest neighbor matching with some templates.

Results are shown in Table 6.2. For comparisons we used two datasets, one as pro-

vided by [25] and on the dataset of [6] cropping only the regions with the objects

centered. We see that both the end-to-end regression and our learned features out-
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perform the previous work. One reason for this is that the objective used by [25]

does not take into account the actual task objective which is the pose estimation.

Our method has as ultimate goal to learn the object pose directly, and therefore

constructing more appropriate features for this task. On the other hand, we see

that on the small dataset of [26], nearest neighbor performs slightly better than the

end-to-end regression, which is prone to overfitting regarding the dataset size. When

experimenting on our larger occlusion dataset, we see that the end-to-end regression

is able to converge to a better minimum. It is clear that both our features and regres-

sion significantly outperform [25]. Furthermore, our formulation gives us another

opportunity to further improve the performance when we can generate synthetically

the occluded and the clean image of an object. We see that by using equation 6.6

pose error decreases even further, reaching accuracy levels of the linemod dataset

which does not contain occlusions. We note that method of [25] was also trained

with both clean and occluded images.

Fig. 6.3 illustrates images and results of our novel hand-object occlusion dataset.

From left to right columns represent: a real RGBD image; a synthetic one rendered

using our tracker result; the rendered not occluded object that corresponds to the

exact pose of the respective occluded real RGBD image; and our network final

estimation.

Regarding our implementation, it was written in Theano. Training one epoch using

Nvidia Titan X takes about 15mins for our dataset and about 20 seconds on linemod.

One image of our dataset is 96 × 96 and takes 4ms for regression and 6ms for NN.

Linemod dataset contains images of 64×64 and evaluation of an images takes about

2ms for regression and 4ms for NN.

As we have mentioned, this method is only about angle regression without local-

ization, assuming the object is centered in the image. This assumption however

makes is method unable to compare with our 6D solution presented in chapter 5.

One possible extension of this method to perform localization would be a scanning
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Object
Nearest
Neighbor

[25]

Siamese
Regression
Network

(End-to-End)

Siamese
Regression
Features
+ NN

Siamese
Regression

+
Occlusion

Term
ape 15 12.3 11.8 -

benchviseblue 15.5 15.6 13.2 -
camera 12 10.9 10.1 -
can 15.5 14.5 12.3 -
cat 14 12.1 10.4 -

driller 17.8 16.7 13.2 -
duck 13.9 13.1 10.9 -

holepuncher 13.2 12.9 11.4 -
iron 11.4 11.6 10.2 -
lamp 13.3 12.6 11.1 -
phone 18.2 12.9 11.7 -
average 14.5 13.2 11.4 -
Camera 4.7 7.1 5.7 -

Coffee cup 11.2 10.9 9.5 -
Joystick 7 11.9 6.7 -

Juice Carton 8.2 9.5 7 -
Milk 10.4 13.9 11.6 -

Shampoo 7.7 8.4 6.9 -
average 8.2 10.3 7.9 -
belt

(occlusion
dataset)

25.2 13.2 14.3 11.8

Table 6.2: State of the art and self comparisons of our method against the one of Wohlhart et al.
[25] in the dataset of LINEMOD [26] (first 11 objects), the dataset of [6] (next 6 objects) and our
novel hand-object dataset (last object - belt).
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Figure 6.3: Our occlusion dataset. First column shows a real RGBD image, second column shows
the synthetic image rendered using the tracking ground truth annotation, the third column shows
the rendered not occluded object corresponding to the occluded image, and the forth column shows
our network final estimation.

window throughout the image keeping the top hypotheses as the ones that their

feature representation is closest to the template representations. However, this idea

proved intractable in practice since there were many false positives, and in order

to obtain meaningful results one had to keep about 100 top hypotheses (that are

closest to template representations) and then run a verification step similar to our

previous method. This would be intractable in terms of execution time, compared

to our patch-based method which produced very accurate results when keeping only

5-10 top hypotheses. For these reasons, the combination of localization and pose

estimation using a single network is left as future work.



Chapter 7

Thesis Conclusion and Future

Work

In the first part of the thesis we have proposed a complete solution to the problem of

autonomously unfolding an article of clothing. We used random forests for clothes

classification and Hough forests for grasp point estimation in order to completely

unfold four categories of clothes. Both were implemented into a POMDP frame-

work for planning a dual manipulator optimally, enhancing the recognition and the

unfolding procedure. We achieved very high recognition and unfolding success rate

while our methods operate faster compared to the state of the art. The majority of

our errors were caused by unsuccessful grasping of an estimated point. One reason is

the noise of the Xtion depth sensor which causes inaccurate motion planning of the

manipulators. The other reason is the lack of dexterity of the gripper, making the

grasping of very thin or flat surfaces very difficult. The solution to the first problem

would be a stereo camera with high resolution, which is planned to be used in the

near future. On the other hand, a more humanoid gripper seems a more appropriate

solution for clothes manipulation.

Moreover, we presented Active Random Forests, a framework for addressing active

vision problems, and applied it to the task of autonomously unfolding clothes. We

103
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have focused on best viewpoint selection in classification, key point detection and

pose estimation of 4 types of garments. The idea of incorporating the decision

process of executing disambiguating actions inside Random Forests and combining

features from multiple views outperformed classical active vision techniques, espe-

cially in the challenging problem of pose estimation of clothes. Furthermore, the

required number actions is significantly reduced. This framework is also open to

other actions which can be integrated like zooming to a particular region or any

kind of interaction with the object. This direction is left as future work.

Last, with the contributions of our collaborators we built a complete robotic setup

that was able to fold clothes that are randomly placed on a table (see Appendix

A). This pipeline consisted of grasping a garment from a pile of clothes, unfolding

it, spreading it on a table and then folding it. Our work is the first attempt to

combine all sub-problems together in a unified framework that was integrated in a

robot that was able to fold a variety of different types of clothes. This framework

advanced the state of the art in both accuracy and speed and opens the road to-

wards domestic robotic solutions that one day will help people with their housework

activities. However, our solution is just the beginning and not a complete applica-

ble solution. Our future work should focus mainly in three aspects: a) accuracy, b)

speed and c) robot size. Even if we achieved state of the art performance in terms

of both accuracy and speed, both of them need to be substantially improved for an

industrial solution. Current speed is about 8 mins for folding a piece of clothing,

which is not comparable with human performance of a few seconds. Furthermore,

our current robot used was specifically designed for our particular project. Even if

its size is very large exceeding humans, it is still not flexible enough to manipulate

garments, especially on the table. This suggests that the robotic hardware needs

to evolve further as well, in order to make the solution applicable to our everyday

lives.

We have also presented solutions of rigid object detection and pose estimation, which

can successfully tackle the most difficult scenarios of realistic scenes, such as heavy
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occlusions and background clutter. Our first approach is based on 2.5D patches

and unsupervised feature learning, making use of Hough Forests for the final pose

estimation. We further proposed an active vision method that utilizes the already

trained forest in order to infer the next best view in case of hypotheses ambiguity.

Such technique is extremely important for robots navigating a place and gives them

the ability to further improve their object detection capabilities. We conducted

extensive evaluation on challenging public datasets, including a new one depicting

realistic scenarios, using various state of the art methods. Our framework showed

superior results, being able to generalize well to a variety of objects and scenes. As

a future work, we want to investigate how different patch sizes can be combined,

and explore how convolutional networks can help in this direction.

Furthermore, we presented Siamese Regression Networks that are able to directly

perform regression using holistic images avoid the hough voting and mode estimation

steps. Particulartly, it is a convolutional network that is able to perform object pose

regression in angle space directly, by enforcing distance similarity in feature and pose

space among the training samples. Such network is able to learn more discriminative

features that are optimal for the pose regression task, which outperform state of the

art. Last, our feature-guided pose estimation can be easily modified to learn features

that are robust to occlusions. In order to demonstrate the complete capacity of

our algorithms and the problems that are able to tackle, with introduced 2 new

datasets. One depicts everyday objects with severe occlusions and a bin-picking

scenario with many objects stacked together in a bin. The other presents a hand-

object manipulation scenario where is human hand is the main occluder. Those

datasets are inspired by realistic problems of robotic applications (see Appendix B).

As a future work, we would like to investigate how this network can be extended in

order to simultaneously tackle object localization, as well as object classification.

Regarding performance, we believe that our patch based approach has achieved

great accuracy that can be used to real robotic solutions. However, each of the part

consisting the complete framework requires time making the end-to-end detection
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slow. Although detection time per object is about 1-3sec, it makes the robot not

fluent enough when searching for multiple objects. Our Siamese Regression Network

was developed to overcome this issue, by directly regressing in pose space. However,

neural networks require a lot of data in order to be trained efficiently, while it is

crucial to include real images in the training set of images. This makes training less

flexible and time consuming, since our patch-based approach could be trained by

using only a CAD model of an object. For this reason, another direction for future

work would be to combine the positives of both frameworks in a unified solution.



Appendix A

End-to-end Garment Folding

A.1 Folding Pipeline Overview

In this chapter we will present a complete pipeline for folding a pile of clothes using

a dual-arm robot. The presented pipeline comprises of the following parts: isolating

and picking up a single garment from a pile of crumpled garments, recognizing its

category, unfolding the garment using a series of manipulations performed in the air

as described in the previous chapters, placing the garment roughly flat on a work

table, spreading it, and finally folding it in several steps. The pile is segmented into

separate garments using color and texture information and the ideal grasping point

is selected based on the features computed from a depth map. The recognition and

unfolding of the hanging garment is performed in an active manner, utilizing our

framework of Active Random Forests to detect grasp points, while optimizing the

robot actions. Spreading action estimation is based on the detection of deformations

of the garment contour. The perception for folding is based on fitting polygonal

models to the contour of the observed garment, both spread and already partially

folded. We have conducted several experiments on the complete pipeline producing

very promising results. To our knowledge, this is the first work addressing the

complete unfolding and folding pipeline on a variety of garments, including T-shirts,
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(a) Input RGB image (b) Segmented point cloud

Figure A.1: a) The original RGB image and b) the point cloud with the individual segmented
regions shown in various colors.

towels, and shorts.

The work of grasping, spreading and folding garments has been made by other re-

searchers we have collaborated with and is not a direct output of the work conducted

in this thesis. However our work solved a major part of the pipeline, the garment

unfolding. Thus, we won’t describe in detail those techniques, but rather give an

overview of this novel pipeline along with the experimental results on a variety of

clothes. More information can be found on our journal publication [113].

A.2 Grasping from Table

The first step of the pipeline is picking up a garment from the pile of crumpled

garments. We propose a generic, robust and fast technique for grasping and picking

up a single item of clothing from a pile containing multiple clothes. Fig. A.1(a) shows

an example of such pile. We use depth image to detect 3D folds on the surface of

the garment, which are the most suitable grasping points even for humans. Ramisa

et al. [11] also use 3D local features, but their wrinkling filter may also detect

false points such as concave regions. We also propose measures for assessing the

graspability of the features, which consider the gripper geometry. On the contrary,

the existing approaches usually apply only blind grasping.

Our aim is to detect candidate grasp points located along the folds of the gar-

ment. The method employs a rectified depth image I. The rectification is based on
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RANSAC detection of the dominant plane corresponding to the table surface. The

depth image containing the distance of 3D points to the estimated plane is com-

puted and used as our input. Starting from the point with the strongest response,

we delete points in its vicinity which have similar scale and orientation. Since folds

may be considered as ridges on the 3D surface of the garment, differential geometry

techniques based on surface curvature could be used to detect them. However, we

have found in practice that the input images are too noisy for robust estimation

of surface normals and / or second order derivatives needed by this approach. Fil-

tering and approximation techniques may also be computationally expensive. The

proposed technique is based on the detection of curvilinear structures in grayscale

images, originally proposed in [114]. Indeed, folds may be seen as 2D lines on the

image plane with a bell-shaped profile. We use the multiscale filtering technique

proposed in [114] for the detection of such ridge points. Briefly, this consists in

filtering the depth image I with the following non-linear filter:

Iσ(u) = min {Pos ((El ∗ I)(u)) ,Pos ((Er ∗ I)(u))} (A.1)

We define Pos(x) = x for x > 0 and Pos(x) = 0 for x ≤ 0. The operator ∗ denotes

convolution. The filters El, Er are separable and steerable 2D filters consisting of

a derivative of Gaussian filter (DoG) applied perpendicularly to the line direction

and shifted by σ, followed by a Gaussian filter applied along the line direction.

In practice, for efficiency reasons, instead of DoG filtering, we first filter the images

with Gaussian kernels and then compute Sobel responses for the horizontal and

vertical direction. For a given scale σ, the line orientation is computed locally as

the eigenvector of the Harris operator. In order to determine the scale (and thus a

measure of the width of the fold), we compute Iσ over a sequence of scales, selecting

the scale with the highest response for each pixel. We refer the reader to [114]

for a justification and rational behind this approach. Non-maxima suppression of

responses across the estimated line directions is applied to obtain thin skeletal lines
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of detect ridges. A further pruning procedure is applied to the resulting set of points

to obtain a sparse set of candidate ridge points.

In order to grasp only one garment from a pile, a segmentation algorithm that takes

account of color and texture information is necessary. To perform segmentation, we

first extract Gabor features by convolving the RGB image with Gabor filter banks,

created using multiple frequencies and orientations. The magnitude of the features is

then used as a dissimilarity measure in a graph-based segmentation algorithm [115].

A sample of the segmentation output and the corresponding point cloud is shown in

Fig. A.1(b). The segmentation output is subsequently combined with the results of

the previous step to determine the best grasping point. In particular, we reject any

regions that do not contain any candidate point. We also reject the candidate points

that are too close to region boundaries. For the remaining regions and points, we

sort them according to the highest (the closest one to the camera) grasp candidate

point contained within their boundary. The final list of grasp candidates will contain

points from the top (highest) region sorted by graspability, points from the second

highest region etc. Obviously, using texture information to segment different items

has the limitations of oversegmenation (i.e. garments mixing several textures) or er-

roneously merging items with similar texture. Nevertheless, the proposed approach

reduces significantly the probability of grasping two items at the same item.

A.3 Garment Spreading on Table

Once the unfolded garment is placed on the work table (Fig. A.2(a)), it is examined

in order to decide whether it is adequately spread-out for folding. This is extremely

unlikely for most garments, since when unfolded they are grasped by only two points,

resulting to deformations due to gravity. While experimenting with various garment

types, only in case of simple geometries such as towels or shorts grasped by their

waist, the robot was able to place them flat on the table.
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(a) Deformed T-shirt (b) Deformed contour (c) Fully-spread (d) Contour spread

Figure A.2: Spreading algorithm applied on a T-shirt: a) the unfolded T-shirt having its right
sleeve slightly deformed, b) resulting configuration after spreading. c) The deformed contour (red)
is matched to the garment template (blue). The spreading actions are planned based on the
detected deformations. d) No deformation is detected after spreading and therefore the T-shirt
can be folded.

Figure A.3: Brush tool is attached to the gripper and moved in the direction shown by the arrow.
The other arm is holding the T-shirt to prevent it from sliding.

Thus, a novel method is proposed for bringing the unfolded garment into a spread-

out configuration, in case it is still deformed when it is placed on the work table.

This method is used to bridge the gap between unfolding and folding, which is of

significant importance when the complete pipeline is executed. Our approach is

based on the measurement of the deformation between the outer contour of the

examined garment and the template garment corresponding to the type recognized

by the unfolding module (e.g. T-shirt, towel, shorts). Then, in case a deformation

is detected, a spreading action is executed by the robot (Fig. A.2(b)). The spread-

ing action consists of one arm pressing the garment towards the table in order to

prevent sliding, while the other hand is swiping with a small brush in a suitable

direction (Fig. A.3). After spreading, the resulting configuration is checked again

for deformations and the procedure is repeated if necessary.
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(a) (b) (c) (d)

Figure A.4: Pixels of the a) input image are used to initialize b) trimap for GrabCut algorithm.
The trimap consists of foreground (plotted in cyan), background (yellow) and unknown (magenta)
pixels. c) The garment contour (green) is extracted from the binary segmentation mask. d)
Incremental creation of folded models for a short-sleeved T-shirt. The original vertices are being
replaced by new vertices denoting endpoints of the individual folds (plotted in various colors)

A.4 Garment Folding

The final step of the pipeline is folding of the garment that has been unfolded and

spread on the table. Since the garment category is already known, only its pose

needs to be estimated. We propose a robust method for visual detection of the

garment pose from a single image. The method is not using any prior information

from the previous unfolding stage except the known garment category. It can thus

be used separately and independently upon the pipeline, as described in [116, 117].

Once the garment pose is recognized, a single folding move is planned and executed.

The vision procedure is then repeated to check the garment pose before performing

the next fold.

The perception procedure can be split into several steps. It starts with a single image

of the spread garment. The garment location in the image is determined by color

segmentation. The garment contour is extracted from the segmentation mask. The

contour is simplified by approximating it with a polygon. The simplified polygonal

contour is matched to a polygonal model for the particular category of clothes.

Vertices of the matched model determine locations of the important landmark points

found on the garment contour, e.g. corners, shoulders, armpits or crotch. The

identified landmarks are then utilized for planning of the folding moves.
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(a) (b)

Figure A.5: a) Detail of the robot arm equipped with custom jaw gripper and combined color and
range sensor used for active vision. b) complete view of the robot

A.5 Experiments

A.5.1 Testbed description

The methods described in this chapter were implemented and tested on two identical

dual-arm robot testbeds located in CTU Prague and CERTH Thessaloniki. The

robot is composed mainly from standard industrial components. Its body consists of

two Motoman MA1400 robotic arms mounted to R750 turn-table. The components

are controlled by two DX100 controllers working as master and slave. The arms

are attached jaw-like grippers developed by the CloPeMa consortium [53]. Fig. A.5

shows a detailed view of the robot.

The robot is equipped with several sensors. There are three combined RGB and

depth cameras ASUS Xtion PRO attached on the robot, two on the wrists and one on

the base. They are the only sensors used for our current task. Furthermore, a head

comprising of two Nikon D5100 cameras for stereo vision [118] and corresponding

pan/tilt units is mounted on the robot base. The grippers are equipped with tactile

sensors and photometric stereo intended mainly for material sensing. The wrists

comprehend force and torque sensors.

The robot control system is built on ROS (Robot Operating System) [119] in the Hy-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.6: The complete folding pipeline of a T-shirt. a) The optimal grasping point is selected
and the T-shirt is lifted from the table. b) Its lowest point is regrasped to reduce number of
possible configurations. c) The first desired point is grasped with the free arm, the lowest point
is released and d) the second desired point is grasped. e) The T-shirt is unfolded by stretching
the grasped points. f) The unfolded T-shirt is layed on the empty table. g) Both left and h) right
sleeve are spread using the brush tool if necessary. i) The folding procedure comprehends folding
right and j) left side of the T-shirt before k) performing the final fold. l) The result is the fully
folded T-shirt.

dro version. The basic functionality of moving the arms and reading positions from

their joints is provided by MotoROS package, which is delivered by the manufacturer.

We also utilize MoveIt package and OMPL (Open Motion Planning Library) [120]

for motion planning.

A.5.2 Performance

The performance of the complete pipeline was evaluated on various garments, in-

cluding those used for testing of the spreading module. One example is shown in

Fig. A.6. However, we have not used long-sleeved shirts and trousers, as in spread-

ing, because of the limited workspace of the robot that does not allow the folding of

such long garments. We conducted 8 trials for each of 4 garments of each category
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(T-shirts, shorts, towels), yielding a total of 96 trials. The complete pipeline was

successful in 72 trials, yielding a success rate of 79 %. This overall rate is lower than

performance of each individual stage, because failures can occur in different stages

of the pipeline and affect the complete process. More specifically, 7 times the towel

was classified as T-shirt, 2 wrong grasp points were detected and grasped for shorts

and 11 unsuccessful foldings occurred for T-shirts, from which 2 occurred because

the garment was not well spread on table after unfolding. The results are summa-

rized in Table A.1. The most challenging garment type is a T-shirt, which presents

the poorest success rate of 66 %, despite the corrections applied by the spreading

module. The stages of the complete unfolding process are depicted in Fig. A.6. Our

video1 shows the complete folding of one garment per category.

The execution of the whole pipeline takes approximately 8 minutes on average, with

the robot operating in a moderate speed for safety reasons. This can be compared

to [13] where a complete pipeline for folding towels took approximately 20 minutes

per towel on average. Most time is spent by the actual movement, not by perception

or reasoning. Picking up a garment from a pile takes about 1 second to calculate

the correct grasp point, whereas the robot completes the grasp in about 20 seconds.

For garment unfolding, every image captured from Xtion takes about 30-40ms to be

analyzed. On average, 5 images from different viewpoints are required to classify a

garment and estimate the grasp point and pose. The whole process of finding and

picking two grasp points per garment takes about 130secs for the robot to execute.

Regarding spreading of the garment, point estimations requires about 10 seconds,

whereas each spreading step is executed in about 50 seconds by the robot. The

spreading process is executed at most 3 times. Pose estimation of the garment being

folded, which is performed prior to folding and then repeated after each fold, takes

2–5 seconds, depending on the garment type. The segmentation takes 0.8 seconds

on average, contour extraction and simplification 0.5–3.5 seconds, and model fitting

0.1 seconds on average. One fold is performed in approximately 30 seconds.

1https://www.youtube.com/watch?v=8TsLkpPsdKo
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Shorts T-shirts Towels Total

Successful / all trials count 30 / 32 21 / 32 25 / 32 76 / 96

Success ratio [%] 94 66 78 79

Table A.1: Overall results of experiments testing the complete pipeline including grasping, category
recognition, unfolding, spreading and folding.

As discussed in section 3.2, we should also mention here that our robot has a lim-

ited working space when folding on table, therefore it is currently impossible to

work with larger garments. Also, generalizing to many different types of garments

needs collecting a large dataset of clothes and capturing many training images from

each garment in order to train our models. This is however a tedious work and one

cannot always guarantee that every possible garment shape appears in the dataset.

Therefore as a future work it would be ideal if we can learn our models from simu-

lation data using a graphics library, which can also make the process of adding new

garments much easier.



Appendix B

Practical Applications of our

Object Detector

Our solution for object detection and pose estimation has been implemented and

used by 2 Horizon 2020 European projects, RAMCIP and SARAFun. RAMCIP

stands for Robotic Assistant for MCI Patients at home and the project is devel-

oping a robotic solution for the elderly and those suffering from Mild Cognitive

Impairments and dementia at home. Our object detector is used for their object

detection needs at home, mainly for food boxes or medicine. Fig. B.1(a) shows a

prototype of the robot that will be used looking at a table with various objects, and

Fig. B.1(b) shows our detection result (we can notice the performance under severe

occlusion). SARAFun means Smart Assembly Robots with Advanced Functionality

and the project is related to robotic assembly of the parts of various objects such

as mobile phones, while the robot will be able to learn from a human, by teaching

by demonstration. This project inspired our hand-object dataset that can be seen

in Fig. 6.3.

117
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(a) RAMCIP robot (b) object detection result

Figure B.1: RAMCIP robot and object detection demonstration
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