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Recognizing the Clothing Categories from Free-Configuration using
Gaussian-Process-Based Interactive Perception

Li Sun1, Simon Rogers1, Gerardo Aragon-Camarasa1, J. Paul Siebert1

Abstract— In this paper, we propose a Gaussian Process-
based interactive perception approach for recognising highly-
wrinkled clothes. We have integrated this recognition method
within a clothes sorting pipeline for the pre-washing stage
of an autonomous laundering process. Our approach differs
from reported clothing manipulation approaches by allowing
the robot to update its perception confidence via numerous
interactions with the garments. The classifiers predominantly
reported in clothing perception (e.g. SVM, Random Forest)
studies do not provide true classification probabilities, due to
their inherent structure. In contrast, probabilistic classifiers
(of which the Gaussian Process is a popular example) are
able to provide predictive probabilities. In our approach, we
employ a multi-class Gaussian Process classification using the
Laplace approximation for posterior inference and optimising
hyper-parameters via marginal likelihood maximisation. Our
experimental results show that our approach is able to recognize
unknown garments in difficult configurations using limited
visual perception and demonstrates a substantial improvement
over non-interactive perception approaches.

I. INTRODUCTION

In this paper, we propose a novel interactive perception
approach for the recognition of categories of clothing in
free configurations (highly-wrinkled and placed on the ta-
ble). This is a challenging task and one of great potential
for large scale autonomous laundering (e.g. fast prior-wash
sorting). Compared to recognising the clothing categories
from hanging configurations [1]–[5], recognition from free-
configuration is still at an early stage [3], [6] with limited per-
formance. There are three reasons for limited performance:
firstly, the configuration space is much larger than that
for the hanging situation; secondly, visual perceptions are
limited due to occlusions and distortions; thirdly, the physical
interaction between table and clothing is very complicated.
From our investigation on the state-of-the-art approaches in
clothes perception and manipulation and also our on-going
research, we believe that there exist two potential solutions
for difficult recognition problems in the perception of de-
formable clothes: one is through rich visual representation
with non-linear fusion of robust surface features and the other
is through interactive perception with cheap but effective
features. In this paper, we will focus on the latter. During our
proposed interactive perception approach, the complexity of
configurations is reduced, and the confidence in predictions
is increased.
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Existing interactive perception approaches [7]–[12] have
various limitations (discussed further in Section II). For
example, non-linear registration is unlikely to be able to
match highly wrinkled configurations and heuristic-based
interactive perception is devised for visually-guided manip-
ulation tasks but not recognition tasks. In addition, previous
approaches have used non-probabilistic classifiers. We will
show that the confidence provided through the conditional
probabilities in a probabilistic classifier allows us to define
sensible halting criteria for interactive perception.

The key contributions of this paper are: 1) it is the first
piece of work to adapt non-parametric multi-class proba-
bilistic classification (via Gaussian Processes) to the clothing
recognition problem. 2) we applied the proposed GP-based
interactive-perception approach to an autonomous sorting
task and demonstrated substantially improved performance
over non-interactive alternatives.

II. RELATED WORK

Maitin et al. [13] developed one of the first successful
autonomous laundering pipeline to grasp, unfold, and fold
towels. Subsequently, research in perception and manipu-
lation has developed rapidly and researchers are working
on each subtask of an autonomous laundering pipeline:
grasping clothes from a pile [14], recognising the clothing
categories [1]–[5], [9], [15] , unfolding the garments [7], [8],
[10], [16], pose estimation [1], [2], [4], [5], [17] and finaly
garment folding [13], [18]–[20].

Interactive perception is of critical importance in visually-
guided clothing manipulation. Through interactive percep-
tion, the robot is able to avoid getting stuck in an un-
recognisable state and perception confidence can be updated.
There exists some interactive-perception-based work that has
successfully solved some clothing manipulation problems
[7]–[12]. Specifically, Willimon, et al. [3] first proposed to
recognise the clothing’s category from hanging configura-
tions. In his approach, the hanging garment is interactively
observed as it is rotated. In Cusumano, et al.’s work [7], in
order to bring the garment into an unfolded configuration,
the hanging garment is slid along the table edges iteratively
until the robot can recognize its configuration. Subsequently,
in Doumanoglou, et al.’s unfolding work [10], an active forest
is employed to rotate the hanging garment to a recognisable
field of view. Li, et al. [11] proposed a more straight-
forward unfolding approach based on their pose estimation
[4], [5] through interactively moving the grasping point to-
wards the target positions (e.g. elbows). Moreover, interactive
perception has been used in heuristic-based generic clothing



manipulation. In [8] and our previous work [12], [21], a
perception-manipulation cycle is adapted to track the state
of the garment and heuristic manipulation strategies are used
to unfold and flatten the garment on the table.

Researchers have proposed various feature representations
for clothing visual perception problems. However, few infer-
ence (classification) methods have been investigated. Most
of them use Support Vector Machines (SVM) and Random
Forests as the classifier [4], [5], [9]–[11], [14]–[16], and
in some earlier work, K-nearest neighbours (kNN) is used
[3]). Classifiers in the SVM family classifiers do not provide
confidence in their predictions, but instead provide a hard
decision. Forest-like classifiers [9], [10] can generate the
confidence from voting, but the reliability of such estimates is
limited by the number of trees and has no formal probabilis-
tic basis. Besides the classification-based approaches, non-
linear registrations are also widely used to match the visual
perception with known templates [1], [2], [7], [11], [17].
Registration-based methods are capable of matching hanging
or sliding-table-edge configurations and the matching errors
can be adapted as the measurement of confidence. However,
the performance of registration is more sensitive to the
complexity of the garment configurations, which means they
are unlikely to be able to match the configurations when
subject to high occlusion e.g. on-table configurations.

III. PERCEPTION MODEL

In this section, we will introduce the limited visual per-
ception model for clothing category recognition for highly
wrinkled configurations. By limited perception, we mean
inexpensive and fast global features extracted from a low-
resolution (VGA) depth map. Our visual features are ex-
tracted from 2.5D depth map produced by our stereo head
and we need to emphasis that no RGB information is used in
our visual representation. The reason for using depth-based
representation is: depth is more robust information w.r.t.
clothing categories, as clothes are of variety of colors and
textures. As a result, compared to RGB-based representation,
the required amount of required training examples are much
smaller. Theoretically, one garment can duplicate infinite
items of clothing with the same material and types. In
practice, the intra-class dissimilarity w.r.t. depth data still
exists, but it is much smaller than RGB-based data.

A. Feature Extraction

As we mentioned in the introduction, we found two
potential ways to improve the performance of depth-based
clothing categories recognition from free-configurations. We
demonstrated that non-linear combination of local and global
features extracted in high-resolution depth map is able to
achieve a reasonable performance with single-shot percep-
tion. In this paper, we mainly focus on inference (classi-
fication) and interactive perception instead of visual repre-
sentation. Our goal is to advance the performance through
interactive perception with fast and cheap visual features.

In our approach, global features are extracted on depth
map of VGA resolution and finally combined these together

as our visual representations. More specifically, Shape Index
histogram (SI), Topology Spatial Distance (TSD) and Multi-
Scale Local Binary Patterns (LBP) are adapted. Shape and
topology are the generic attributes of a 2.5D clothing con-
figuration, and LBP describes the fabric patterns. We choose
these as our visual representation because these are robust
to the clothing’s variant configurations.

Shape index is adapted as one of the global features, in
which the shape index values are quantified into 9 bins cor-
responding to 9 different types of surface. We also proposed
a global topology descriptor (TSD) in which the distances
between each ridge point and its nearest wrinkle’s contour
point are calculated in x-y direction and depth direction,
respectively. And then the Euclidean distances are quantified
into a bi-dimensional histogram. In our implementation, the
10 bins ranging from 5 to 50 (pixels in x-y direction and
millimetres in depth direction) with uniform interval are
used, and the dimension of final TSD descriptor is 100. The
details of shape and topology analysis can be found in our
previous work [12]. In order to describe the 3D fabric texture,
we extract LBP densely on multi-scale from the raw depth
surface. In our implementation, vlfeat’s [22] selected 58
patterns are used, and we extract the global LBP histograms
in 3 scales of Gaussian pyramids (174 dimension in total).
All the global features are applied L2 normalisation before
constituting the final representation. We combine these three
descriptors and get our final representation.

B. The Gaussian Process Model

Instead of using non-probabilistic classifiers such as the
SVM or Random Forest, we adopt a fully probabilistic
approach to obtain predictive probabilities over clothing cate-
gories. In our approach, we use multi-class Gaussian Process
classification, with the Laplace approximation to the pos-
terior and covariance hyper-parameters optimized by max-
imising the log marginal likelihood. Our approach closely
follows that described in [23] (Chapter 3 and 5) where
we extend the hyper-parameter optimization to the multi-
class case. Unfortunately, in GPML’s toolbox, only binary
classification is provided. Although multi-class classification
can be solved by One-vs-all or One-vs-One voting using
binary classifiers, the class-conditional distributions within
multi-classification problem are unlikely to be well modelled.
Therefore, we implemented our own toolbox for multi-class
GP classification with hyper-parameter optimization 1.

In the binary case, the Gaussian Process (GP) classifier
fits a real-valued latent variable to each observation. Jointly,
the set of latent variables are given a Gaussian Process
prior (which typically enforces a degree of smoothness for
the latent function over the input space). The classification
probabilities are obtained by pushing the real values through
a squashing function (e.g. the sigmoid function, soft-max
function). The training phase consists of obtaining a posterior
density over the latent function. Prediction consists of using
this posterior to perform a regression to give the latent

1https://kevinlisun@bitbucket.org/kevinlisun/multi-class-gpc.git



(a) The graph model of basic GP. (b) The graph model of GP regression and binary classification.

Fig. 1. The difference between basic GP model and the multi-class classification model. In this figures, x refers to examples, y is label and f refers to
latent variables. In Fig 1(b), fij refers to fj

i which is the jthe latent variable of ith example.

values at testing points, which are then squashed to provide
predictive probabilities. To extend the GP to multi-class
classification, one latent function is fitted for each of the
C classes. The classification probabilities are obtained by
pushing the C function values for each observation through
a soft-max function. To make predictions for a test point,
C regressions are performed (one with each of the latent
functions) and the resulting probabilities are pushed through
the soft-max.

In particular, we have N training examples (with
{n1, n2, ..., nc} examples in each class,

∑
i ni = N ), X =

{x11, ..., x1n1
, x21, ..., x

2
n2
, ..., xC1 , ..., x

C
nc}, and corresponding

labels, denoted Y = {y11 , ..., y1N , y21 , ..., y2N , ..., yC1 , ..., yCN}
where yci = 1 if the ith example belongs to the cth class. This
vector is therefore of length Cn = C×N . In our description,
following [23] we concatenate the C sets of latent variables
(each of length N ) into one Cn-length vector, f .

Ultimately, we need to predict the class of an unknown
instance x∗. This is given by (see [23]):

P (yc∗ = 1|x∗, X, Y ) =∫
P (yc∗ = 1|f∗)p(f∗|f, x∗, X)p(f |X,Y ) df∗ df.

(1)

We now look at each of the terms in the right hand side
in turn. The first term is the standard soft-max function:

P (yc∗ = 1|f∗) =
exp(f c∗)∑
j exp(f j∗ )

, (2)

where f∗ is used to denote the C latent variables for the
unknown instance. The second term on Eq. 1 is a standard
noise-free GP regression. Defining our GP prior with a zero
mean function and kernel matrix K: f |X ∼ N (0,KXX),
and defining kx∗X as the 1×N vector of the kernel function
evaluated between the test point and all of the training points,
and kx∗x∗ as the kernel scalar evaluated at the test point, this
is:

f∗|x∗, X, f ∼ N (kx∗XK
−1
XXf, Kx∗x∗−kx∗XK−1XXkXx∗).

(3)
In multi-class classification of GP, the covariance matrix

KXX is a Cn × Cn diagonal matrix consisting of C of
n×n covariance matrices {k1XX , · · · , kCXX} on the diagonal
corresponding to C classes. Similarly, Kx∗X and KXx∗ are

also diagonal matrices. The final term on the Eq. 1 is the
posterior density over the latent function for the training
examples. In classification problems, this isn’t available in
closed form and we resort to the popular Laplace approxi-
mation [24]. This approximates the posterior with a multi-
variate Gaussian (in this case, a Cn dimensional Gaussian)
centred at the maximum of the posterior and with covariance
equal to the negative inverse of the Hessian matrix at the
maximum.

p(f |X, y) ≈ q(f |X, y) = N (f̂ ,−(55log p(f |X, y)|f=f̂ )−1),
(4)

where f̂ is the value of f that maximises the posterior
and 5 5 log p(f |X, y)|f=f̂ is the Hessian of the log pos-
terior distribution evaluated at the maximum. The details of
Laplace Approximation is shown in Appendix VIII.

Given the three terms on the Eq. 1, it is possible to evaluate
the integrals to obtain the required predictive probabilities.
The conditional probability of f∗ given X, y, x∗ is:

p(f∗|X, y, x∗) =

∫
p(f∗|X,x∗, f)q(f |X, y)df, (5)

where q(f |X, y) is the Laplace approximation. As both
p(f∗|X,x∗, f) and q(f |X, y) are Gaussian distribution (Eq. 3
and Eq. 4), it is possible to analytically evaluate this integral.
The mean of the resulting Gaussian µ = {µ1, · · · , µC} in
which each µc can be calculated by:

µc = (kcx∗X)TK−1c f̂ c = (kcx∗X)T (yc − π̂c) (6)

Then, the covariance matrix of the resulting Gaussian is:

Σ = diag(kx∗x∗)−QT
∗ (K +W−1)−1Q∗, (7)

where W is the matrix containing second order partial
derivatives of log p(yci |fi) calculated by Eq. 17. Similar to
KXX , Q is the diagonal matrix diag{k1x∗X , ..., k

C
x∗X
}, and

kcx∗X is the vector of covariance between the testing example
and training examples w.r.t the cth category.

Because of the form of the softmax function, evaluating
the integral over f∗ is not analytically tractable but is easily
approximated via sampling from the predictive distribution
over f∗. In particular, if we draw S samples of the C latent
variables, and denote the sth sample as f cs∗ we compute:

P (yc∗ = 1|X,x∗, f) ≈ 1

S

∑
s=1...S

exp(f cs∗ )∑
j exp(f js∗ )

. (8)



C. Hyper-parameters optimization

In our approach, we use the square exponential kernel
function (SEiso):

kSEiso(x1, x2) = α2 exp
− 1

2 (x1−x2)
T diag( 1

β2
,..., 1

β2
)(x1−x2),

(9)
in which α, β are hyper-parameters of the kernel func-
tion. Sensible choice the hyper-parameters is crucial to
getting good performance. We follow [23] and optimise the
kernel parameters via maximising the Laplace approxima-
tion to the marginal likelihood (we could have also used
a cross-validation procedure). Broyden-Fletcher-Goldfarb-
Shanno [25] algorithm (BFGS) is employed for the optimiza-
tion. Details of the computation of the marginal likelihood
and the derivatives required to compute it can be found in
Appendix IX. It is worth noting that the inference of the log
likelihood derivatives shown in [23] is valid only for binary
classification, for multi-class classification the appropriate
inference equations are given in Appendix IX. Examples
of hyper-parameter optimization and predictive probabilities
can be seen in Figure 4(a) and 4(b).

IV. MANIPULATION MODEL

For recognizing the clothing categories from highly-
wrinkled configurations, the manipulation objective is to
change the configuration of garment and reduce the complex-
ity of the configuration. In order to achieve this, we simplify
the possible actions into two discrete actions: grasp-shake
and grasp-flip, which are also likely to be the most significant
manipulations with respect to humans’ behaviours.

A. Action 1: Grasp-Shake

Grasp-Shake reduces the complexity of the garment con-
figuration especially for inside folds, and, from the practical
experience, we can observe that, with the effects of gravity
and air-friction, the garments are likely to spread out during
the free-fall motion.

Graspable candidates will then be found on the selected
item of clothing. We adapt a heuristic clothing grasping
approach by detecting and ranking graspable positions on the
detected wrinkles. More details of detecting wrinkles can be
found in our previous work [12]. During grasping, a success
or failure feedback signal is given from the tactile sensor

Fig. 2. A classification example. On the figures, each row refers to an
example and the 5 columns correspond to the 5 categories. In the left
sub-figure, the mean of the latent variables for the training examples (f )
estimated by the Laplace Approximation are shown. The middle sub-figure
shows the values of the predictive probabilities for a set of test examples
(f∗). The right sub-figure presents the final predicted labels, selected by
assigning test points to the category for which they have the highest
probability. The correct testing labels should be a block diagonal matrix.

on the tip of gripper. In the case of failure, other graspable
locations are sequentially attempted until the clothing has
been grasped successfully.

B. Action 2: Grasp-Flip

As described in last section, the occlusions of clothing
landmarks is one of the most important difficulties to over-
come through interactive perception. In order to observe the
hidden interesting regions, we proposed Grasp-Flip as our
second action, which will grasp the garment’s edges using
single-arms and perform a ‘flip’ movement to change to field
of view of the garment. Similar with the ‘Grasp-Shake’, with
the feedback of textile sensor, the robot will attempt to grasp
the garment edges in different positions and directions till the
grasping is completed. More details of grasping the clothes
edges can be found in our previous work [12].

V. INTERACTIVE PERCEPTION

From the perception model and manipulation model de-
scribed in previous sections, the robot is able to perceive the
topological shape features, predict the category labels with
predictive probabilities and change garment to a different
configuration. We explain how to control this perception-
manipulation cycle in our interactive sorting task.

A. The Halting Criterion

The halting criteria, determining when to terminate the
interactive perception procedure, is of critical importance in
the proposed task. In our approach, the best perception with
the most confident prediction is usually adapted as the global
confidence and a threshold δ is used as the halting criteria.
Given Pn perceptions:

confidenceG = maxC(maxPn(π1, · · · , πi, · · · , πPn))
(10)

where πi are the predictive probabilities of length C obtained
by the ith perception. If the confidenceG is larger than δ, the
perception is treated as reliable perception. In our implemen-
tation, δ is set as 0.5, which depends on practical experience
as a trade-off between accuracy and time-consumption.

B. The Interactive Perception and Manipulation Strategy

As shown in Fig. 5(a), our working space includes: two
working tables (the clothes pile is on table 1 at the initial
stage, table 2 is for interactive perception), and five buckets
for sorting clothes into. The autonomous sorting flowchart is
shown in Fig. 3, the robot starts by capturing and generating
RGB-D data. Table 2 has the priority of detecting the gar-
ment: if table 2 is empty, robot turns to find the garments on
table 1. If table 2 is not empty, the robot attempts to diagnose
the garment. Otherwise, the robot segments the clothes pile
on table 1 into instances and attempt to diagnose the garment
on top of the clothes pile. After feature extraction, the
features go through GP to get the predictive probabilities
(confidences), and after updating the global confidence, the
decision is made whether to sort or keep on perceiving
interactively. Meanwhile, the grasping positions are detected
for the two proposed manipulations, one of which is chosen



Fig. 3. The flowchart of our proposed interactive-perception-based sorting
system.

depending on the flatness of the chosen garment. Following
this strategy, the garment on the clothes pile is interactively
perceived on table 2 until the prediction is confident, and the
entire sorting task is completed when all the garments of the
pile are sorted.

For the two types of manipulation, in our implementation,
the ‘Grasp-Shake’ is available if the height of the garment
exceeds 5cm (avoid collision), and ‘ Grasp-Flip’ is available
provided that the thickness of the garment edges is smaller
than 5cm (the maximum opening pose of our gripper). When
both of the manipulations are available, the robot makes
arbitrary decision.

VI. EXPERIMENTS

Our experiments include three parts: firstly, in section
VI-A, we verify that using probabilistic GP classification,
the predictions of high confidence are likely to be more
reliable; secondly, the proposed visual perception and GP
inference pipeline is evaluated in our clothing classification
dataset (as shown in section VI-B); finally, we compared the
performance of our proposed interactive perception method
with non-interactive perception method in robot sorting task
(section VI-C). In order to evaluate our proposed recognition
pipeline, we captured a stereo-head RGBD dataset2 of a
various collection of clothes. Since the focus of this paper
is inference (classification), 2-fold Cross Validation is used
to evaluate the classification performance. It is worth noting
that, in the cross validation, all clothes of our dataset are
divided randomly into 2 sets, one for testing and other for
training. Therefore, the depth maps captured from the same
item of clothing would not appear in both training and testing
set. In other words, the testing examples are absolutely
unknown clothes for the classifier.

2The dataset website: https://sites.google.com/site/clopemaclothesdataset/

TABLE I
TABLE . COMPARISON BETWEEN CLASSIFICATION ALGORITHMS.

Features\ Classifiers Random
Guess

SVM-
linear

SVM-
rbf

GP-
linear

GP-
rbf

proposed feature 20 68.7 70.8 66.4 69.8
FINDDD+BoF 20 41.4 42.6 41.4 41.7
Volumetric Descriptor 20 33.9 36.1 36.8 38.4

A. Validation of Hypothesis

In this paper, we show that GP is able to model the condi-
tional probabilities in predicting clothing categories, where
the conditional probability of testing example given training
examples can be treated as the confidence of prediction. And,
the predictions with higher confidences should be of higher
possibilities of being classified correctly. In order to verify
this claim, we analyse the classification performance with
different confidence intervals and the statistical results are
shown in Fig. 4(c). From the blue curve shown in Fig. 4(c),
we can observe that the classification accuracy experiences a
substantial increase when the threshold of confidence internal
is increasing. As shown in the red curve, the confidence
coordinate is divided into even intervals with the length of
0.1. The accuracy in confidence interval [0.2, 0.3] is only
approximate 0.46, however, it increases dynamically to 1 in
interval [0.9, 1.0]. The experimental result proves that within
the conditional distribution modelled by GP, the predictions
of higher confidence are more likely to be correct.

B. Clothes Dataset Experiments

In this part, we evaluated our proposed recognition
pipeline on our clothes dataset. We firstly evaluated the
standalone performance of our proposed visual representa-
tion and GP of multi-class classification, and the confusion
matrix is presented in Fig. 4(d). In this experiment, Gaussian
Process with rbf kernel is used where the hyper-parameters
are optimized, and also finally integrated into the robot
sorting pipeline. As it is shown in the figure, our proposed
perception model is able to achieve nearly 70% classification
accuracy for 5 categories. The accuracies among 5 categories
are relatively balanced, ranging from 60% to 79%.

In the second part of this classification evaluation ex-
periment, the performance with different classification al-
gorithms and features are compared. More specifically, two
state-of-the-art depth-based visual representations for cloth-
ing recognition - FINDDD and Volumetric Descriptor, are
compared with our visual representation. As shown in Ta-
ble. I, Volumetric Descriptor achieves 38.4% classification
accuracy for 5 categories, and the performance of FINDDD
is slightly better than the Volumetric descriptor approaching
42.6%. The performance of these two descriptors are lim-
ited because these are devised for clothes recognition from
lightly wrinkled and hanging configurations. Our proposed
visual representation outperforms the former two descriptors,
achieving 70.8% (SVM with rbf kernel) and 69.8% (GP
with rbf-kernel), considering highly wrinkled configurations,
shape, topology and fabric patterns, which are more robust
characters of garments. Moreover, we compared the widely



(a) The Maximization of log Marginal
Likelihood using BFGS.

(b) The Confidence of Predictions. (c) The classification performance un-
der different confidences.

(d) The confusion matrix of clothes
classification for 5 categories

Fig. 4. As shown in 4(a), the log marginal likelihood is maximized by BFGS. In our approach, multiple initial searching points are adapted in order
to avoid suffering from local maximums (shown in different colors). In 4(b), the confidence of the prediction is shown, in which each swimming lane is
corresponding to a clothing category and the correct prediction should be ‘red’, ‘blue’, ‘black’, ‘green’, ‘yellow’, respectively. Different color marks refer to
incorrect predictions. In 4(c), the red curve indicates the classification accuracies within the confidence interval [x−0.05, x+0.05], x ∈ {0.25, · · · , 0.95}.
The blue curve shows the accuracies provided that the confidence of prediction is larger than the corresponding x axis value.

TABLE II
TABLE . PERFORMANCE OF AUTONOMOUS ROBOTIC SORTING.

Methods\ Categories T-shirt Shirt Sweater Jeans Towel Overall Success Rate
Single-Shot Perception 4/10 4/10 4/10 7/10 7/10 26/50 52%
Interactive-Perception 8/10 6/10 7/10 10/10 8/10 39/50 78%

used SVM with Gaussian Process multi-class classification.
The results are presented in Table I. From the table, we
can deduce that the performances of GP are almost as
good as SVM, and for both GP and SVM, rbf kernel
slightly outperforms the linear kernel. In this experiment, the
parameters of FINDDD and Volumetric Descriptor are set to
default of their implementation, the parameters of SVM is
chosen to the best depending on the practical experiences,
the hyper-parameters of GP is optimized by maximizing the
log marginal likelihood.

C. Evaluation Interactive Perception in Sorting Task

Finally, we evaluate our proposed interactive-perception
approach on our robot testbed for autonomous sorting task.
As a comparison, we use the proposed visual representation
and SVM with rbf kernel as the baseline method, where the
robot sorts the clothes using the single-shot perception. In
our experiment, 50 items of clothing are divided into into
10 different sorting experiments clothing items are only
used once for each sorting experiment. Similarly, for each
experiment, those selected clothing items for sorting are not
used for training. As shown in Table II, our proposed interac-
tive perception approach improves the sorting success rate of
baseline method by 26%. More specifically, the SVM-based
single-shot perception only achieves 52% sorting success
rate, which is lower than the classification performance in
our dataset (70.8%). The reason can be attributed to the
segmentation faults (clothing instances are not separated),
grasping faults(more than one clothes is grasped) and occlu-
sions. In contrast, our proposed GP-based interactive percep-
tion approach outperforms the dataset classification (69.8%),
achieving 78% success rate. From observation, we can find
that our proposed interactive perception approach is likely to
be able to eliminate segmentation faults and grasping faults.

More importantly, through interactive perception, the robot
is able to change the clothing to recognizable configurations
during manipulations and gain the predictive confidence
during perceptions.

VII. CONCLUSIONS

In this paper, we present a Gaussian-Process-based inter-
active perception approach to recognising clothing categories
from highly wrinkled configurations using limited visual
perception. By adopting multi-class GP classification with
an optimised kernel adapted to model the distribution of
predictive probabilities, we are able to measure the percep-
tion confidence for each observation our robot makes of the
clothing under classification. Therefore, the GP classification
probabilities serve to inform an interaction heuristic as to
when sufficient observations of the clothing in new configu-
rations have been accumulated.

Our experimental evaluation of the proposed method in-
corporated within an robot autonomous sorting task demon-
strates that interactive perception can not only mitigate the
segmentation faults and grasping faults prevalent in single-
shot perception/manipulation, but can also improve percep-
tion performance by reconfiguring the clothing under manip-
ulation to recognisable configurations, thereby facilitating the
sorting decision. In order to improve the overall performance
of our interactive clothing recognition system, we propose
to investigate refining the robot’s manipulation skills by
including different types of manipulation, e.g. two handed
flattening or turning the garment inside-out. We also intend
to include other types of learning, such as active learning and
on-line learning into our interactive perception pipeline.



APPENDIX

VIII. LAPLACE APPROXIMATION

Following Eq. 4, from Bayes’s rule, the posterior over
latent variables can be inferred by:

p(f |X, y) = p(y|f)p(f |X)/p(y|X)

∝ p(y|f)p(f |X)
(11)

Writing into log format, we can obtain the log posterior:

Ψ(f) = log p(f |X, y) ∝ log p(f |X) + log p(y|f) (12)

, where the prior of latent variable is a Gaussian
f |X ∼ N (0,K):

log p(f |X) = −1

2
fTK−1f − 1

2
log |K| − Cn

2
log 2π (13)

, and p(y|f) is modelled by the soft-max function:

p(yci |fi) = πc
i = exp(f ci )/

C∑
c′=1

exp(f c
′

i ). (14)

In Laplace approximation, we compute the first order
differential of log posterior p(f |X, y):

∇ log p(f |X, y) , ∇ log p(f |X) +∇ log p(y|f)

= −K−1f + y − π
(15)

where, ∇ log p(f |X) = −K−1f and ∇ log p(y|f) = y − π.
π is the vector with the length of Cn, containing soft-max
probabilities of every latent variable πc

i . Then, the second
order differential can be obtained by:

∇∇ log p(f |X, y) = −K−1 −W, (16)

where W is a Cn × Cn matrix containing the
∂2

∂fc
′
j ∂fc

′′
k

log p(yci |fi), which can be calculated by:

∂2

∂fc
′

j ∂f
c′′
k

log p(yc
′

j |fj) =


πc′

j − πc′

j π
c′′

k , if j = k, c′ = c′′

−πc′

j π
c′′

k , if j = k, c′ 6= c′′

0, otherwise ,
(17)

In the implementation, W can be obtained by calculating
diag(π)−ΠΠT , in which Π is obtained by vertically stacking
diagonal matrices of diag(πc), and πc is a sub-vector of π
w.r.t category c. After the first and second order differentials
are computed, the Newtown’s method is applied to find the
maximum of latent variable:

fnew = (K−1 +W )−1(Wf + y − π). (18)

IX. HYPER-PARAMETERS OPTIMIZATION

From Laplace Approximation, the second order Taylor
expansion of the posterior p(f |X, y) is:

Ψ(f) ≈ Ψ(f̂)+
1

2
(f−f̂)T∇Ψ(f̂)+

1

2
(f−f̂)T∇∇Ψ(f̂)(f−f̂)

(19)
, where ∇Ψ(f̂ ) is zero. Then, substituting approximated
∇∇Ψ(f̂) (calculated by Eq.16) into the marginal likelihood,

we can obtain the Laplace approximation of marginal likeli-
hood:

p(y|X, θ) =

∫
p(y|f)p(f |X, θ)df =

∫
exp(Ψ(f))df

= exp(Ψ(f̂))

∫
exp(−1

2
(f − f̂)T (K−1 +W )(f − f̂))df

(20)

The Gaussian integral can be solved analytically, then the
log marginal likelihood can be conducted as [23]:

log q(y|X, θ) ' −1

2
f̂TK−1f̂ + yT f̂ −

n∑
i=1

log(

C∑
c=1

expf̂ ci )

−1

2
log |ICn +W

1
2KW

1
2 |

(21)

In Eq. 21, since f̂ and W has implicit relationship with
hyper-parameters θ, we can compute the partial derivative of
log q(y|X, θ) w.r.t. θ into explicit and implicit parts.

∂ log q(y|X, θ)
∂θj

' ∂ log q(y|X, θ)
∂θj

|explict+
Cn∑
i=1

∂ log q(y|X, θ)
∂f̂ ci

∂f̂

∂θj
(22)

Then the explicit part can be solve by:

∂ log q(y|X, θ)
∂θj

|explict =
1

2
f̂TK−1

∂K

∂θj
K−1f̂

−1

2
tr((W−1 +K)−1

∂K

∂θj
)

(23)

For the second term of Eq. 22, has:

∂ log q(y|X, θ)
∂f̂ ci

= −Kf̂ ci +
∂ log p(y|f̂)

∂f̂ ci
− 1

2

∂ log |B|
∂f̂ ci

(24)
We can utilize ∂q(f |X,y)

∂f = 0 when f = f̂ , hence −Kf̂ ci +

∇ log p(y|f̂ ci ) = 0, yielding:

∂ log q(y|X, θ)
∂f̂ ci

= −1

2

∂ log |B|
f̂ ci

= −1

2
tr((W−1 +K)−1

∂W

∂f̂ ci
)

(25)

, in which W is the Cn × Cn matrix calculated by Eq.17.
Then we differentiate each element of Wj,k (in jth row and
kth column) w.r.t. a specific scalar f ci . The elements of ∂Wj,k

∂f̂ci
if j = k = i can be calculated as follows:



(1− 2πc′

j )(πc′

j − πc′

j π
c′′

k ), if c′ = c′′ = c

(1− 2πc′

j )(−πc′

j π
c
i ), if(c′ = c′′) 6= c

−((πc′

j − (πc′

j )2)πc′′

k + πc′

j (−πc′′

k πc
i ), if , c′ 6= c′′, c = c′

−((−πc′

j π
c
i )πkc

′′
+ πc′

j (πc′′

k − πc′′

k πc
i ), if c′ 6= c′′, c = c′′

−((−πc′

j π
c
i )πkc

′′
+ πc′

j (−πc′′

k πc
i ), if c′ 6= c′′, c′′ 6= c

,

(26)
and the rest are zeros.



(a) Initial stage. (b) Grasp and shake. (c) Grasp the clothes edges. (d) Flip and drop. (e) Sort it into bucket.

Fig. 5. An example of interactive perception is shown. The left table is Table 1 and right is Table 2. Due to the constraints of the position of our stereo
head and occlusion of arms, all perceptions need to be performed when the garments are static on the table.

In Eq. 15, ∇ log p(f |X, y) should be 0 when f is at
the maximum point. As a result, we can get, −K−1f̂ +
∇ log p(y|f) = 0, therefore, yielding f̂ = K(∇ log p(y|f)).

∂f̂

∂θj
=
∂K

∂θj
∇logp(y|f) +K

∇ logp(y|f)

∂f̂

∂f̂

∂θj
(27)

Substituting: ∇ log p(y|f)
∂f̂

= ∇∇ log p(y|f) = W ,
∇ log p(y|f) = y − π, and solving Eq. 27, we can get:

∂f̂

∂θj
= (I +KW )−1

∂K

∂θj
(y − π) (28)

After obtaining ∂ log q(y|X, θ)/∂f̂ ci and ∂f̂/∂θj by Eq.
24 and substituting them into Eq. 22, the derivative of
Laplace approximated distribution can be obtained.
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