124 research outputs found

    Toward Concept-Based Text Understanding and Mining

    Get PDF
    There is a huge amount of text information in the world, written in natural languages. Most of the text information is hard to access compared with other well-structured information sources such as relational databases. This is because reading and understanding text requires the ability to disambiguate text fragments at several levels, syntactically and semantically, abstracting away details and using background knowledge in a variety of ways. One possible solution to these problems is to implement a framework of concept-based text understanding and mining, that is, a mechanism of analyzing and integrating segregated information, and a framework of organizing, indexing, accessing textual information centered around real-world concepts. A fundamental difficulty toward this goal is caused by the concept ambiguity of natural language. In text, the real-world entities are referred using their names. The variability in writing a given concept, along with the fact that different concepts/enities may have very similar writings, poses a significant challenge to progress in text understanding and mining. Supporting concept-based natural language understanding requires resolving conceptual ambiguity, and in particular, identifying whether different mentions of real world entities, within and across documents, actually represent the same concept. This thesis systematically studies this fundamental problem. We study and propose different machine learning techniques to address different aspects of this problem and show that as more information can be exploited, the learning techniques developed accordingly, can continuously improve the identification accuracy. In addition, we extend our global probabilistic model to address a significant application -- semantic integration between text and databases

    A multi-fidelity framework for physics based rotor blade simulation and optimization

    Get PDF
    New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. This problem is multidisciplinary, requiring knowledge of structural dynamics, aerodynamics, and aeroacoustics. Rotor optimization requires achieving multiple, often conflicting objectives. There is no longer a single optimum but rather an optimal trade-off space, the Pareto Frontier. Rotor Designers in industry need methods that allow the most accurate simulation tools available to search for Pareto designs. Computer simulation and optimization of rotors have been advanced by the development of "comprehensive" rotorcraft analysis tools. These tools perform aeroelastic analysis using Computational Structural Dynamics (CSD). Though useful in optimization, these tools lack built-in high fidelity aerodynamic models. The most accurate rotor simulations utilize Computational Fluid Dynamics (CFD) coupled to the CSD of a comprehensive code, but are generally considered too time consuming where numerous simulations are required like rotor optimization. An approach is needed where high fidelity CFD/CSD simulation can be routinely used in design optimization. This thesis documents the development of physics based rotor simulation frameworks. A low fidelity model uses a comprehensive code with simplified aerodynamics. A high fidelity model uses a parallel processor capable CFD/CSD methodology. Both frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test this process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist. Approximation models are built for high fidelity metrics related to rotor efficiency and vibration. Optimization using the approximation models found the designs having maximum rotor efficiency and minimum vibration. Various Pareto generation methods are used to find frontier designs between these two anchor designs. The Pareto anchors are tested in the high fidelity simulation and shown to be good designs, providing evidence that the process has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors.Ph.D.Committee Co-Chair: Dr. Dimitri Mavris; Committee Co-Chair: Dr. Lakshmi N. Sankar; Committee Member: Dr. Daniel P. Schrage; Committee Member: Dr. Kenneth S. Brentner; Committee Member: Dr. Mark Costell

    Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Get PDF
    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added significant fidelity to the design of the configuration in this phase by performing a low speed wind tunnel test at our LTWT facility in Palmdale, by more complete modelling of propulsion effects in our sonic boom analysis, and by refining our configuration packaging and performance assessments. Working with General Electric, LM performed an assessment of the impact of inlet and nozzle effects on the sonic boom signature of the LM N+2 configurations. Our results indicate that inlet/exhaust streamtube boundary conditions are adequate for conceptual design studies, but realistic propulsion modeling at similar stream-tube conditions does have a small but measurable impact on the sonic boom signature. Previous supersonic transport studies have identified aeroelastic effects as one of the major challenges associated with the long, slender vehicles particularly common with shaped boom aircraft (Ref. 3). Under the Phase 2 effort, we have developed a detailed structural analysis model to evaluate the impact of flexibility and structural considerations on the feasibility of future quiet supersonic transports. We looked in particular at dynamic structural modes and flutter as a failure that must be avoided. We found that for our N+2 design in particular, adequate flutter margin existed. Our flutter margin is large enough to cover uncertainties like large increases in engine weight and the margin is relatively easy to increase with additional stiffening mass. The lack of major aeroelastic problems probably derives somewhat from an early design bias. While shaped boom aircraft require long length, they are not required to be thin. We intentionally developed our structural depths to avoid major flexibility problems. So at the end of Phase 2, we have validated that aeroelastic problems are not necessarily endemic to shaped boom designs. Experimental validation of sonic boom design and analysis techniques was the primary objective of the N+2 Supersonic Validations contract; and in this Phase, LM participated in four high speed wind tunnel tests. The first so-called Parametric Test in the Ames 9x7 tunnel did an exhaustive look at variation effects of the parameters: humidity, total pressure, sample time, spatial averaging distance and number of measurement locations, and more. From the results we learned to obtain data faster and more accurately, and made test condition tolerances easy to meet (eliminating earlier 60 percent wasted time when condition tolerances could not be held). The next two tests used different tunnels. The Ames 11 ft tunnel was used to test lower Mach numbers of 1.2 and 1.4. There were several difficulties using this tunnel for the first time for sonic boom including having to shift the measurement Mach numbers to 1.15 and 1.3 to avoid flow problems. It is believed that the 11 ft could be used successfully to measure sonic boom but there are likely to be a number of test condition restrictions. The Glenn 8x6 ft tunnel was used next and the tunnel has a number of desirable features for sonic boom measurement. While the Ames 9x7 can only test Mach 1.55 to 2.55 and the 11 ft can only test Mach 1.3 and lower, the Glenn 8x6 can test continuously from Mach 0.3 to 2.0. Unfortunately test measurement accuracy was compromised by a reference pressure drift. Post-test analysis revealed that the drift occurred when Mach number drifted slightly. Test measurements indicated that if Mach number drift is eliminated, results from the 8x6 would be more accurate, especially at longer distances, than results from the 9x7. The fourth test in the 9x7, called LM4, used everything we learned to comprehensively and accurately measure our new 1044-02 configuration with a full-carpet shaped signature design. Productivity was 8 times greater than our Phase 1 LM3 test. Measurement accuracy and repeatability was excellent out to 42 in. However, measurements at greater distances require the rail in the aft position and become substantially less accurate. Further signature processing or measurement improvements are needed for beyond near-field signature validation

    Beurteilung der Resttragfähigkeit von Bauwerken mit Hilfe der Fuzzy-Logik und Entscheidungstheorie

    Get PDF
    Whereas the design of new structures is almost completely regulated by codes, there are no objective ways for the evaluation of existing facilities. Experts often are not familiar with the new tasks in system identification and try to retrieve at least some information from available documents. They therefore make compromises which, for many stakeholders, are not satisfying. Consequently, this publication presents a more objective and more realistic method for condition assessment. Necessary basics for this task are fracture mechanics combined with computational analysis, methods and techniques for geometry recording and material investigation, ductility and energy dissipation, risk analysis and uncertainty consideration. Present tools for evaluation perform research on how to analytically conceptualize a structure directly from given loads and measured response. Since defects are not necessarily visible or in a direct way detectable, several damage indices are combined and integrated in a model of the real system. Fuzzy-sets are ideally suited to illustrate parametric/data uncertainty and system- or model uncertainty. Trapezoidal membership functions may very well represent the condition state of structural components as function of damage extent or performance. Tthe residual load-bearing capacity can be determined by successively performing analyses in three steps. The "Screening assessment" shall eliminate a large majority of structures from detailed consideration and advise on immediate precautions to save lives and high economic values. Here, the defects have to be explicitly defined and located. If this is impossible, an "approximate evaluation" should follow describing system geometry, material properties and failure modes in detail. Here, a fault-tree helps investigate defaults in a systematic way avoiding random search or negligence of important features or damage indices. In order to inform about the structural system it is deemed essential not only due to its conceptual clarity, but also due to its applicational simplicity. It therefore represents an important prerequisite in condition assessment though special circumstances might require "fur-ther investigations" to consider the actual material parameters and unaccounted reserves due to spatial or other secondary contributions. Here, uncertainties with respect to geometry, material, loading or modeling should in no case be neglected, but explicitly quantified. Postulating a limited set of expected failure modes is not always sufficient, since detectable signature changes are seldom directly attributable and every defect might -together with other unforeseen situations- become decisive. So, a determination of all possible scenarios to consider every imaginable influence would be required. Risk is produced by a combination of various and ill-defined failure modes. Due to the interaction of many variables there is no simple and reliable way to predict which failure mode is dominant. Risk evaluation therefore comprises the estimation of the prognostic factor with respect to undesir-able events, component importance and the expected damage extent.Während die Bemessung von Tragwerken im allgemeinen durch Vorschriften geregelt ist, gibt es für die Zustandsbewertung bestehender Bauwerken noch keine objektiven Richtlinien. Viele Experten sind mit der neuen Problematik (Systemidentifikation anhand von Belastung und daraus entstehender Strukturantwort) noch nicht vertraut und begnügen sich daher mit Kompromißlösungen. Für viele Bauherren ist dies unbefriedigend, weshalb hier eine objektivere und wirklichkeitsnähere Zustandsbewertung vorgestellt wird. Wichtig hierfür sind theoretische Grundlagen der Schadensanalyse, Methoden und Techniken zur Geometrie- und Materialerkundung, Duktilität und Energieabsorption, Risikoanalyse und Beschreibung von Unsicherheiten. Da nicht alle Schäden offensichtlich sind, kombiniert man zur Zeit mehrere Zustandsindikatoren, bereitet die registrierten Daten gezielt auf, und integriert sie vor einer endgültigen Bewertung in ein validiertes Modell. Werden deterministische Nachweismethoden mit probabilstischen kombiniert, lassen sich nur zufällige Fehler problemlos minimieren. Systematische Fehler durch ungenaue Modellierung oder vagem Wissen bleiben jedoch bestehen. Daß Entscheidungsträger mit unsicheren, oft sogar widersprüchlichen Angaben subjektiv urteilen, ist also nicht zu vermeiden. In dieser Arbeit wird gezeigt, wie mit Hilfe eines dreistufigen Bewertungsverfahrens Tragglieder in Qualitätsklassen eingestuft werden können. Abhängig von ihrem mittleren Schadensausmaß, ihrer Strukturbedeutung I (wiederum von ihrem Stellenwert bzw. den Konsequenzen ihrer Schädigung abhängig) und ihrem Prognosefaktor L ergibt sich ihr Versagensrisiko mit. Das Risiko für eine Versagen der Gesamtstruktur wird aus der Topologie ermittelt. Wenn das mittlere Schadensausmaß nicht eindeutig festgelegt werden kann, oder wenn die Material-, Geometrie- oder Lastangaben vage sind, wird im Rahmen "Weitergehender Untersuchungen" ein mathematisches Verfahren basierend auf der Fuzzy-Logik vorgeschlagen. Es filtert auch bei komplexen Ursache-Wirkungsbeziehungen die dominierende Schadensursache heraus und vermeidet, daß mit Unsicherheiten behaftete Parameter für zuverlässige Absolutwerte gehalten werden. Um den mittleren Schadensindex und daraus das Risiko zu berechnen, werden die einzelnen Schadensindizes (je nach Fehlermodus) abhängig von ihrer Bedeutung mit Wichtungsfaktoren belegt,und zusätzlich je nach Art, Bedeutung und Zuverlässigkeit der erhaltenen Information durch Gamma dividiert. Hiermit wurde ein neues Verfahren zur Analyse komplexer Versagensmechanismen vorgestellt, welches nachvollziehbare Schlußfolgerungen ermöglicht

    Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm

    Get PDF
    Accurate road extraction and recognition of roadside fruit in complex orchard environments are essential prerequisites for robotic fruit picking and walking behavioral decisions. In this study, a novel algorithm was proposed for unstructured road extraction and roadside fruit synchronous recognition, with wine grapes and nonstructural orchards as research objects. Initially, a preprocessing method tailored to field orchards was proposed to reduce the interference of adverse factors in the operating environment. The preprocessing method contained 4 parts: interception of regions of interest, bilateral filter, logarithmic space transformation and image enhancement based on the MSRCR algorithm. Subsequently, the analysis of the enhanced image enabled the optimization of the gray factor, and a road region extraction method based on dual-space fusion was proposed by color channel enhancement and gray factor optimization. Furthermore, the YOLO model suitable for grape cluster recognition in the wild environment was selected, and its parameters were optimized to enhance the recognition performance of the model for randomly distributed grapes. Finally, a fusion recognition framework was innovatively established, wherein the road extraction result was taken as input, and the optimized parameter YOLO model was utilized to identify roadside fruits, thus realizing synchronous road extraction and roadside fruit detection. Experimental results demonstrated that the proposed method based on the pretreatment could reduce the impact of interfering factors in complex orchard environments and enhance the quality of road extraction. Using the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside fruit cluster detection were 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which were higher than those of the YOLOv5 model and were more suitable for roadside grape recognition. Compared to the identification results obtained by the grape detection algorithm alone, the proposed synchronous algorithm increased the number of fruit identifications by 23.84% and the detection speed by 14.33%. This research enhanced the perception ability of robots and provided a solid support for behavioral decision systems

    Automating Bridge Inspection Procedures: Real-Time UAS-Based Detection and Tracking of Concrete Bridge Element

    Get PDF
    Bridge inspections are necessary to maintain the safety, health, and welfare of the public. All bridges in the United States are federally mandated to undergo routine evaluations to confirm their structural integrity throughout their lifetime. The traditional process implements a bridge inspection team to conduct the inspection, heavily relying on visual measurements and subjective estimates of the existing state of the structure. Conducting unmanned automated bridge inspections would allow for a more efficient, accurate, and safer alternative to traditional bridge inspection procedures. Optimizing bridge inspections in this manner would enable frequent inspections in order to comprehensively monitor the health of bridges and quickly recognize minor problems which could be easily corrected before turning into more critical issues. In order to create an unmanned data acquisition procedure, unmanned aerial vehicles with high-resolution cameras will be employed to collect videos of the bridge under inspection. To automate a bridge inspection procedure employing machine learning methods, such as neural networks, and machine vision methods, such as Hough transform and Canny edge detection, will assist in identifying the entire beam. These methods along with future work in damage detection and assessment will be the main steps to create an unmanned automated bridge inspection

    Full Issue - Volume 9, Issue 1

    Get PDF
    non

    Model Uncertainty and Test of a Segmented Mirror Telescope

    Get PDF
    The future of large aperture telescopes relies heavily on the development of segmented array designs. Today\u27s monolithic mirror technology has reached a barrier, particularly for space-based telescopes. These large diameter, dense mirrors allow stable high-resolution imaging but are incompatible with optimized space launch. Segmented mirror telescopes are designed to balance lightweight with compact stowage. The structure necessary to support the flexible mirror array often combines isogrid geometry and complex actuation hardware. High-fidelity finite element models are commonly used to economically predict how the optics will perform under different environmental conditions. The research detailed herein integrates superelement partitioning and complexity simplifying techniques, resulting in a 92% size reduction of a nodally dense (1x106 degrees of freedom) model to allow efficient tuning and validation. Measured vibration data of a segmented mirror telescope was collected to allow system characterization and preliminary tuning. A single frequency comparison tuning iteration decreased the model\u27s error in predicting system dynamics, up to 500 Hz, by 4% on average. Results demonstrate it is possible to drastically reduce a model size while preserving analytical accuracy. The methodologies presented, applied to similar models with complex isogrid structures, would allow efficient model validation using standard equipped US Air Force desktop computers

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship

    Solar power satellite: Analysis of alternatives for transporting material to geosynchronous orbit

    Get PDF
    A systems design study of the alternative methods and relative merits of various approaches to transporting and assembling a solar power satellite in geosynchronous orbit was conducted. State of the art alternatives for chemical and electrical interorbital propulsion were studied, and several possible scenarios for construction were proposed
    corecore