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Accurate road extraction and recognition of roadside fruit in complex orchard

environments are essential prerequisites for robotic fruit picking and walking

behavioral decisions. In this study, a novel algorithm was proposed for

unstructured road extraction and roadside fruit synchronous recognition, with

wine grapes and nonstructural orchards as research objects. Initially, a

preprocessing method tailored to field orchards was proposed to reduce the

interference of adverse factors in the operating environment. The preprocessing

method contained 4 parts: interception of regions of interest, bilateral filter,

logarithmic space transformation and image enhancement based on the MSRCR

algorithm. Subsequently, the analysis of the enhanced image enabled the

optimization of the gray factor, and a road region extraction method based on

dual-space fusion was proposed by color channel enhancement and gray factor

optimization. Furthermore, the YOLOmodel suitable for grape cluster recognition in

the wild environment was selected, and its parameters were optimized to enhance

the recognition performance of themodel for randomly distributed grapes. Finally, a

fusion recognition framework was innovatively established, wherein the road

extraction result was taken as input, and the optimized parameter YOLO model

was utilized to identify roadside fruits, thus realizing synchronous road extraction and

roadside fruit detection. Experimental results demonstrated that the proposed

method based on the pretreatment could reduce the impact of interfering factors

in complex orchard environments and enhance the quality of road extraction. Using

the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside

fruit cluster detectionwere 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which

were higher than those of the YOLOv5 model and were more suitable for roadside

grape recognition. Compared to the identification results obtained by the grape

detection algorithm alone, the proposed synchronous algorithm increased the

number of fruit identifications by 23.84% and the detection speed by 14.33%. This

research enhanced the perception ability of robots and provided a solid support for

behavioral decision systems.

KEYWORDS

non-structural environment, machine vision, fruit harvesting robot, deep learning,
roadside fruits detection
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1 Introduction

Around the world, fruit plays an increasingly vital role in

agriculture and economy. According to Food and Agriculture

Organization of the United Nations (FAO), the total value of grape

production has increased steadily since 1991, to more than $80 billion

by 2020. Fruit harvesting is characterized by having limited work

cycles and being labor intensive and time-consuming. With aging of

the population and lack of rural labor force, labor costs have

increased year by year (Wu et al., 2021; Li Y. J. et al., 2022). Under

the influence of the COVID-19 pandemic and related policies (Aamir

et al., 2021; Nawaz et al., 2021; Bhatti et al., 2022a; Bhatti et al.,

2022b), the contradiction between labor demand and labor costs has

become more prominent (Liang et al., 2021; Lin et al., 2022). This has

had a negative impact on traditional hand-picking operations. With

the deterioration of environmental issues (Bhatti et al., 2022; Galvan

et al., 2022; Tang et al., 2023a), all the above factors pose a great

challenge to China’s fruit industry. With the rapid development of

modern information technology and artificial intelligence technology,

fruit harvesting robots and their related technologies have attracted

extensive attention (Chen M. et al., 2020; Fu L. H. et al., 2020; Fu L.

et al., 2020; Rysz and Mehta, 2021; Yang, 2021; Kang et al., 2022;

Wang X. et al., 2022; Wu Z. et al., 2022).

As the basis of autonomous navigation, road detection is crucial

to the precise operation of fruit harvesting robots and has become

the focus of research in recent years (Ma et al., 2021; Sun et al.,

2022). The main objective of road extraction is to extract the road

regions from the background in a complex scene to lay the

foundation for determining the navigation path. According to the

characteristics of roads, they can be divided into two categories:

structured roads and unstructured roads. Structured roads are

standardized roads similar to urban roads and expressways, with

clear lane markings, regular road edges, and distinct geometric

features. Unstructured roads are those with irregular road edges,

unclear road boundaries, no lane lines, and similar to orchards and

rural areas. Compared to structured roads, unstructured roads have

a more complex environmental background. For the most part, the

surface of the unstructured road is mostly uneven, with a few

random weeds. In contrast, the problem of unstructured road

extraction is more complicated.

Research of road detection is usually divided into machine

learning segmentation methods and traditional algorithms based on

image features.

Road segmentation methods of machine learning are mainly

divided into clustering (Zhang Z. Q. et al., 2022b), seed support

vector machine (SVM; Liu et al., 2018), deep learning (Li et al.,

2020), and other methods. Yang Z. et al. (2022) have proposed a

visual navigation path extraction method based on neural network

and pixel scanning. They introduced Segnet and Unet networks to

improve the segmentation effect of orchard road condition

information and background environment and adopted sliding

filtering algorithm, a scanning method, and a weighted average

method to fit the final navigation path. Lei et al. (2021) have

combined improved SVM and two-dimensional lidar point cloud

data to detect and identify unstructured roads. Wang E. et al. (2019)

have realized road extraction of complex scenes by combining
Frontiers in Plant Science 02
illumination invariant images and analyzing probability map and

gradient information. Kim et al. (2020) have implemented

automatic path detection in semi-structured orchards based on

patch and CNN neural network methods. Alam et al. (2021) have

implemented road extraction in structured and unstructured

environments by combining multi-nearest neighbor classification

and soft voting aggregation. Some scholars have also studied

methods for road extraction in remote sensing based on machine

learning methods (Xin et al., 2019; Chen et al., 2022; Guan et al.,

2022; Yang M. et al., 2022). However, relevant research has been

more on the basis of urban development analysis or traffic network

monitoring and other fields, which are not applicable to picking

robots. Machine learning usually does not require manual feature

selection. However, this method requires specific network training

and a large number of training sets and has certain limitations.

In the method based on image-feature analysis, some scholars

use color, texture and other features to distinguish road and

nonroad areas by establishing models and other methods. Zhou

et al. (2021) have used the H component to extract the target path

for the sky region. Chen J et al. (2020; 2021) have used an improved

gray scale factor and the maximum interclass variance method

(Otsu) method to extract gray scale images of soil and plants and

realized segmentation of soil and plants in the greenhouse

environment. Qi et al. (2019) have segmented the road region

based on a graph-based manifold ranking approach and used

binomial functions to fit the road region model, thus realizing

road recognition in rural environment. Some scholars have also

considered the vanishing point and other spatial structure features

in the process of road extraction. Su et al. (2019) have adopted the

Dijkstra method combined with single-line lidar to realize road

extraction on the basis of the constraints of pre-vanishing points of

illumination-invariant images. Phung et al. (2016) have realized

pedestrian lane detection based on an improved vanishing point

estimation method combined with geometry and color features.

However, the detection of vanishing points is time-consuming and

mostly applied to structured road detection (Xu et al., 2018), which

is not suitable for dealing with unstructured roads.

To realize autonomous walking and precise operation of fruit

harvesting robots in orchard environments and aiming at the

uncertainty of random distribution of roadside fruit and road

complexity, it is necessary to deeply study the problem of

synchronous road extraction and fruit identification. This study

enables robot perception of barrier-free road areas and roadside fruit

distribution in the current environment and can provide an inferential

basis for robot global operational behavior decisions in complex

orchard environments. Moreover, this study can lay the foundation

for the joint control and operation of navigation and picking based on

visual guidance in the panoramic environment of wild orchards.

However, current approaches have only focused on road extraction,

without considering the roadside fruit detection. In this case, the

autonomous decision-making function of the robot cannot perform

reasonable picking responses and navigation path planning based on

the random distribution of fruits along the road, which is detrimental to

the intelligent global continuous operation of the robot.

In terms of object detection, neural networks have been widely

used in the field of smart agriculture (Khaki and Wang, 2019; Tang
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https://doi.org/10.3389/fpls.2023.1103276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1103276
et al., 2020; Feng et al., 2022; Fu et al., 2022), and You Only Look

Once (YOLO), as one of the fastest target detection models at

present, has also been rapidly developed (Ye et al., 2020; Ning et al.,

2022; Wang X. Y. et al., 2022). For example, due to the excellent

performance of the YOLOv5 model in terms of accuracy and

running time, it has been greatly valued by scholars in the

research of crop growth-morphology recognition (Lv et al., 2022;

Rong et al., 2022; Wu F. et al., 2022), detection and positioning

(Fang et al., 2022; Jintasuttisak et al., 2022; Li G. et al., 2022; Wang

H. et al., 2022), tracking counting (Lyu et al., 2022; She et al., 2022;

Zang et al., 2022), and pest recognition (Li S. et al., 2022; Qi et al.,

2022; Zhang et al., 2022).

Given the importance of detecting and locating fruit for picking

robots, researchers have explored various fruit detection and

location methods based on neural networks (Wang C. et al., 2019;

Ge et al., 2022; Jia et al., 2022; Zhou et al., 2022; Tang et al., 2023c).

To improve the operational efficiency and success rate of picking

robots, researchers have gradually shifted their focus to picking-

path planning algorithms and picking decision systems based on

fruit detection (Lin et al., 2021; Wang Y. et al., 2022). For example,

Xu et al. (2022) have proposed an efficient combined multipoint

picking scheme for tea buds through a greedy algorithm and ant

colony algorithm, which improved picking efficiency and overall

picking success rate. Ning et al. (2022) proposed a method for

recognition and planning robotic picking sequences for sweet

peppers based on an improved YOLOV4 model and a principle

of anticollision picking within picking clusters. The method can

accurately detects sweet peppers, reduces collision damage, and

improves picking efficiency in high-density orchard environments.

Rong et al. (2022) have proposed an obstacle avoidance method that

combines end-effector grasping-pose adjustment and harvesting

sequence planning based on a custom manipulator. Experiments

show that the method significantly reduced the impact of collision

on the picking and improved the success rate of tomato picking.

Although some progress has been made in the study of local target

detection and picking planning, there have been few reports on the

synchronization information perception needs of picking robots to

autonomously pick and walk.

To implement the behavioral decision-making function of the

picker robot to walk autonomously and pick accurately throughout

the entire process in a large-area orchard environment, road

extraction and roadside fruit identification should first be

implemented in the current working scenario. Currently, many

algorithms only focus on road extraction and ignore the fruit

distribution along the road, which leads to the serious problem

that picking robots are not robust enough to adapt to the changing

orchard environments. Therefore, a road extraction and roadside

fruit synchronous recognition algorithm based on unstructured

road was proposed in this study. The main contributions of this

study were as follows:
Fron
(1) Currently, numerous studies have focused on extracting

unstructured roads without considering the synchronous

recognition of roadside fruits, which is detrimental to

improving the ability of picking robots to obtain

environmental information. Motivated by the need for
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cooperative behavioral decision-making in fruit picking

robots, this study proposed a framework for unstructured

road extraction and synchronous recognition of roadside

fruit. This framework can effectively improve the ability of

fruit-picking robots to extract crucial information from the

picking environment and lay a foundation for multitask

parallel processing, thereby enabling cooperative behavioral

decision-making among fruit-picking robots.

(2) Due to the randomness and complexity of orchard

environments, the results of road extraction directly

from raw images were not very accurate and contained a

large number of misidentified regions. An image

preprocessing method based on image enhancement and

filtering preprocessing was designed here which reduced

the influence of interference existing in the complex

orchard environment. Simultaneously, this approach

enhanced the precision of road extraction results and was

of great importance for improving the quality of road

extraction.

(3) The irregular road edges of unstructured roads and various

interference factors in orchards considerably impacted the

stability of the road extraction results. To address this issue,

analyses of orchard images were conducted to optimize the

gray factor and enhance its adaptability to field orchards. A

two-space fusion unstructured road extraction algorithm

was proposed, which used color channel enhancement and

gray factor optimization and demonstrated great

adaptability to interference factors, such as shadow,

uneven lighting, grapevine on the side of the road, and

strong contrast between light and shade in the field complex

environment.

(4) A fusion algorithm based on the road extraction algorithm

and roadside fruit detection algorithm was constructed.

Based on the detection requirements for roadside grapes in

wide-field environments, YOLO models were compared,

selected, and optimized for their parameters. Subsequently,

the three functions of image preprocessing, road extraction,

and roadside grape recognition were integrated to construct

a synchronous recognition algorithm, allowing for the

simultaneous extraction of road and other key

information during the fruit-picking process. The

proposed algorithm provided information for decision-

making and reasoning of collaborative behavior of key

parts of the robot, so as to improve robot adaptability to

randomly distributed fruit.
This study will lay a foundation for the construction of robot

behavior decision control system, and it is of great significance for

improving the intelligence, accuracy, and stability of robot field

autonomous work.

The rest of this report is organized as follows. Section 2

introduced the materials and data. Section 3 explained the

structure and implementation of the algorithm. Section 4

presented the experimental results and comparative discussion.

Finally, Section 5 summarized the study and plans for future work.
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2 Materials and data acquisition

2.1 Experimental platform for wine grape
picking and moving

This study was based on the wine grape visual mobile picking

robot that was independently designed and developed. The overall

layout of the test platform is shown in Figure 1A. The test platform

was battery powered to operate in the orchard. The length and

width of the platform were 1.065 and 0.7 m, respectively, and the

maximum climbing capacity was 30°. Two cameras were installed

on the end-effector of the platform as picking camera and

navigation camera, separately.

The control process of the experimental platform was divided

into three main parts (Figure 1B). The first part of the control

system was to construct algorithms for unstructured road

extraction and roadside fruit synchronization recognition based

on the collected datasets A and B. Then, the industrial personal

computer (IPC) implemented the algorithm-based key

information acquisition, recognition, and behavioral decisions.

The second part of the control system was to use the IPC to

control the navigation camera for orchard road extraction and

roadside fruit recognition. By recognizing the distinction between

unstructured roads and chaotic backgrounds, as well as the

classification and recognition of roadside grapes and grapevines,

it provided a judgment basis for the IPC to distinguish the

presence of roadside fruit and lay the foundation for behavioral

decisions. Based on the above information, the third part of the

control system extracted the navigation path of the orchard and

judged the presence of fruit in the current roadside area. If there

were fruit on the roadside, the controller controlled the tracked

vehicle to approach the fruit area of the roadside fruit tree and
Frontiers in Plant Science 04
fed the information to the robotic arm and another set of stereo

camera for precise positioning (the picking camera for short) for

picking operations. Using the picking camera, fruit could be re-

identified and accurately positioned to achieve fruit picking in

complex environments. The work of this study mainly

implemented the first part of the control system.
2.2 Experimental subjects

Wine grapes and non-structural orchards were taken as

experiment subjects in this research. Wine grape fruit are

clustered in shape and usually purple at maturity, with a clear

color difference from leaves. The planting mode is usually in rows

with a certain row spacing. As the fruit distribution and planting

patterns of wine grapes are similar to other row-grown crops, such

as tomato and dragon fruit, the results of this study are expected to

be extendable to other types of fruit.
2.3 Image acquisition

In August 2022, experimental images were obtained from Xinyu

Winehouse (Bohu County, Bazhou, Xinjiang). The device used for

dataset sampling was an OPPO R11 mobile phone with a 20-

megapixel rear camera. All images were taken under natural

daylight conditions without artificial light sources and saved in

Joint Photographic Expert Group (jpg) format with image size

4608×2128 pixels.

The collected images were divided into datasets A and B. The

original images of vineyards in dataset A included roads and vines.

As the algorithm proposed in this study was intended to provide a
BA

FIGURE 1

Overall layout and control flow of test platform. (A) Overall layout of test platform. Mechanical arm (AUBO-i5, AUBO), 1; Battery, 2; Controller, 3;
Camera for picking (HBV-1714, Huiber Vision Technology Co., Ltd), 4; Camera for navigation (ZED 2, Stereolabs), 5; End-effector, 6; Human Machine
Interaction, 7; Industrial Personal Computer (IPC), 8; and Track car, 9. (B) Control flow of the test platform.
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basis for behavioral decisions of grape-picking robots, the focus was

on the region of unstructured road and distribution of fruit in a

unilateral grape row. Therefore, during the collection process of

dataset A, the camera observation direction was biased to the right

of the road center line (Figure 2A). A total of 337 typical orchard

images were selected, in which the roads in the grape orchard

environment had features of shadow and irregular road edges

(Figure 2B). Dataset B was composed of 1081 valid images

showing wine grape clusters, including grape samples in

numerous cases, with images of grapes in front and backlight

(Figures 2C, D).
2.4 Image datasets

To simulate the vision system of the picking robot, valid grape

and orchard image samples were collected under different

conditions of illumination, weather, sampling distance, and

differing severity of fruit adhesion and occlusion, forming datasets

A and B.

Dataset A consisted mainly of orchard images with uneven

lighting, with multiple weeds, with large shadows, in different

weather conditions, and with different light and shade

contrasts (Figure 3A).

The natural images of grapes (dataset B) mainly included

images of single cluster grape, multiple clusters grape, slightly-

adhered grape, severely-adhered grapes, front and back

illumination, small string grapes, large cluster grapes, and grapes

on a sunny day, on a cloudy day, and in shadow as well as grapes at
Frontiers in Plant Science 05
different sampling distances. Their representative images are shown

in Figure 3B.

Datasets A and B were challenging considering the effects of

complex background, light levels, shadows, randomly distributed

fruits, weeds, and different levels of fruit occlusion. Images of grapes

and vineyards in a typical complex environment were contained in

dataset A and B (Figure 3).

Dataset A was only employed for testing the performance of

unstructured road extraction and the overall algorithm, with 100

images in this dataset randomly selected as the test set for

algorithms in this study. To improve algorithm efficiency, the

processing image size of the algorithm was set to 1024×473 pixels.

Dataset B was used for training and validation of the fruit model

on the YOLOv7 roadside. Under LabelImg (https://github.com/

tzutalin/labelImg), grapes in images were manually annotated as

rectangles with the label “fruit,” which then saved annotation files in

“txt” format. Among them, the whole image set was randomly

divided into training and validation sets with a ratio of 9 to 1.
3 Methodology and algorithm
description

In this study, the algorithm content was mainly divided into two

parts: First, the road in the unstructured orchard environment was

extracted. Second, taking the road extraction results as input,

roadside fruit were identified through YOLOv7 to realize the

synchronous information extraction of the road extraction and

roadside fruit detection. The algorithm process of this study is

shown in Figure 4.
B

C

D

A

FIGURE 2

Schematic diagram of the acquisition process of test images. (A) The camera observation direction. (B) Example image of the wine vineyard.
(C) Examples of frontlight images. (D) Examples of backlight images.
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3.1 Image preprocessing

During image acquisition in the orchard, it was inevitable to be

disturbed by external environmental noise, such as uneven light and

dust, which made the image details unclear and led to road

extraction errors. Therefore, this study preprocessed the images in

dataset A, which was of great significance for improving the quality

of road segmentation (Wang et al., 2018; Zhang P. et al., 2022). The

image preprocessing method proposed in this study consisted offive

steps, with the processing procedure and image quality

enhancement results illustrated in Figure 5. Further details can be

found in Sections 3.3.1 - 3.1.5.

3.1.1 Interception of regions of interest
The images in dataset A were composed of sky, road, grapes,

and messy background, among which the sky and messy

background were mainly distributed at the top of an image. In

the image processing process, if the entire image captured by the

camera was merely taken as the research object, a substantial

amount of computation would be required and a significant

amount of interference inevitably occurs, which will reduce road

extraction accuracy. To this end, only the regions of interest (ROI)

of the image was extracted for subsequent processing. After a

number of experiments, it was found that the appropriate ROI

was at the lower 5/6 position of the image (Figure 5B). This ROI

selection not only significantly reduced the calculation volume, but

also ensured the accuracy and reliability of unstructured

road extraction.
Frontiers in Plant Science 06
3.1.2 Bilateral filter
A bilateral filter can smooth the image while maintaining edge

details (Routray et al., 2020). To enhance and improve contrast

between the foreground and background of the road to facilitate

subsequent segmentation, a bilateral filter was used to process the

present images. To reduce the influence of minor areas, such as

vines, fruits, vine gaps, and cavities in subsequent segmentation, the

key parameters of the bilateral filter (Liu et al., 2017) in this study

were set to: diameter d of the pixel domain was 60, standard

deviation of spatial domain 120, and standard deviation of

intensity domain 60 (Figure 5C).

3.1.3 Logarithmic space transformation
To enhance the details in the shadowed regions and provide

images with enhanced details and uniform brightness for

subsequent MSRCR processing, a logarithmic transformation of

the V-component in hue, saturation, and value (HSV) space was

used here to expand the low gray values and compress high gray

values in this channel (Figure 5D). The standard form was

S = c ∗ log (1 + L) (1)

where S is the correction image, L the source image, and c the

gain adjustment parameter, which was set to 1.

3.1.4 Image enhancement based on the MSRCR
algorithm

After the above processing and observing the image under RGB

color space, the altering influence of illumination was found not to
B

A

FIGURE 3

Natural images of vineyards and wine grape clusters. (A) Natural images of vineyards. (B) Natural images of wine grape clusters.
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be entirely eliminated. Therefore, the MSRCR algorithm was

selected for image correction and enhancement here to obtain

realistic images with reduced illumination effects. The resulting

Equations 2–4 were expressed as:

RMSRCR(x, y) = Ci(x, y)RMSR(x, y) (2)

RMSR(x, y) =o
N

1
jn log Ii(x, y) −o

N

1
log F(x, y) ∗ Ii(x, y)½ �

� �
(3)

Ci(x, y) = b log aIi(x, y)½ � − log o
N

1
(Ii(x, y))

� �� �
(4)

The optimal functional form of MSRCR is shown in Equation 5,

expressed as:

RMSRCR(x, y) = G Ci(x, y) log Ii(x, y) −o
N

1
log (Ii(x, y) ∗ F(x, y)

" #
+ b

( )

(5)

where Ii(x, y) is the color component image corresponding to

each color channel, F(x, y) the Gaussian filter function, and Ci(x, y)

the color restoration factor of the ith color channel, jn the weight,

and N the number of spectral channel, where o
N

1
jn = 1, b a gain
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constant, and a the strength of nonlinearity, G and b the final gain

and offset values, respectively. The parameters of MSRCR in this

study were configured according to the reference (Jobson

et al., 1997).

3.1.5 S-component enhancement
To enrich color information, this study adjusted the saturation

channel S to enhance image quality, with the formulas described by

Equations 6–7 (Huang et al., 2022), expressed as:

Sopt = as ∗T ∗ Sori (6)

T =
mean(R,G,B) +Max(R,G,B) +Min(R,G,B)

mean(R,G,B)
(7)

where Sopt represents the enhanced saturation channel, Sori the

original saturation channel of S, mean(R,G,B), Max(R,G, B), and

Min(R,G,B) the average, maximum, and minimum values of pixels

corresponding to R, G, and B color channels, respectively, and as

and T the gain coefficients of the saturation channel, which control

the enhancement degree of S channel image.

Qualitative and quantitative evaluation is significant for the

evaluation of image quality. In the qualitative evaluation, the quality
FIGURE 4

Flow chart of the entire algorithm.
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of the enhanced image was evaluated in color, contrast, and detail.

By comparing the gain effect at different values, it was observed that,

if the value of as was too high or low, the image contrast was

reduced or saturation too strong, which affected the visual effect of

the image. When as = 0.2, the contrast of the image was low,

resulting in poor overall visual effect. When as was greater than 0.5,

there was significant color distortion despite the high contrast of

images, resulting in partial loss of detail in the image. When as =

0.3, although the tone of the image was better maintained, the

enhancement effect was not obvious compared with the image

without S-component enhancement. When as = 0.4, the contrast

of the image was improved significantly without obvious color

distortion and the visual effect was the best.

In the quantitative evaluation, this paper evaluated the

performance the processing results by three metrics Peak signal-to-
Frontiers in Plant Science 08
noise ratio (PSNR, He et al., 2015), information entropy value (IE,

Wang et al., 2021) and average gradient (AG, Zhang X. et al., 2022).

PSNR has been widely used for measuring attributes like texture

details enhancement, details preservation and contrast enhancement.

A higher PSNR generally indicates that the processed image is of

higher quality (Gupta and Tiwari, 2019). IE is mainly an objective

evaluation index that measures how much information an image

contains. The enormous IE value indicates that the enhancement

image contains more image information. AG represents the degree of

change in the gray value of the image, and is one of the criteria for

judging the processing of image details and clarity. The large AG value

indicates that the enhancement image contains more gradient

information and detailed texture. The image enhancement quality

evaluation parameters under different values of as were shown in

Figure 5F, where the optimal parameter values were marked in red
B

C

D

E

F

G
A

FIGURE 5

Process and results of image preprocessing algorithm. (A) Original image. (B) Region of interest. (C) Bilateral filtering result. (D) Log space transformation.
(E) Image enhancement based on the MSRCR algorithm. (F) S-component enhancement. (G) Results of image preprocessing algorithm.
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and the second highest parameter values were highlighted in blue.

Figure illustrated that the value of AG increased as the value of as

increased, indicating that the sharpness of the image was also

enhanced progressively. However, color distortion occurred when

as was set to 0.5 or 0.6. Therefore, this paper eliminated the enhanced

images with these two parameters and only discussed the image

enhancement results with low as value(as< 0.5). Moreover, the

highest value and the second highest value of PSNR and IE were

mainly concentrated in the results of as =0.3 and as =0.4, which

indicates that under the above two parameter settings, the images had

a good performance in terms of image information, contrast

enhancement and detail preservation. Furthermore, for as=0.4, both

the IE and AG values were higher than those for as=0.3, while the

PSNR was slightly lower than the latter. Therefore, based on the

qualitative evaluation results and the requirements of enhanced

images in terms of clarity, information content, picture details and

contrast, as was finally set at 0.4 in this study.
3.2 Unstructured road extraction

In this section, unstructured road extraction was achieved by

fusing two parts, including the segmented road region after
Frontiers in Plant Science 09
removing green regions from the HSV space and road region

based on improved gray factor.

3.2.1 Road extraction based on color enhancement
and HSV color space

HSV color space is composed of hue (H), saturation (S) and

luminance (V) channels. As HSV color space is more consistent

with human color perception, it has been widely used in multifield

research based on machine vision, such as medicine (Singh, 2020),

agriculture (Liao et al., 2022), and chemical industries (Safarik et al.,

2019). Therefore, the HSV color space was used here to extract

road regions.

First, the enhanced and optimized RGB image was converted

into an HSV image and the threshold range (Hmin, Hmax), (Smin,

Smax), and (Vmin, Vmax) of each channel set to binarize the image.

This completed the constraint and extraction of the green area, so as

to distinguish the road area from the plant area (vines, weeds, and

background trees). Based on Exploratory data analysis (EDA) and

empirical values (Guo et al., 2013; Peng et al., 2013; Camizuli and

Carranza, 2018), the HSV ranges were set at (35,77),(43,255),and

(46,255), respectively (Figure 6A). As can be seen from the image,

although the road extraction was relatively complete, the main
B C
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I

FIGURE 6

Process and results of road extraction. (A) Road extraction results in HSV space. (B) Road extraction results based on ExG Gray factor. (C) Road
segmentation effect under different TB. (D) Road extraction results based on optimized grayscale factor. (E) Fused binary image. (F) Morphological
processing result. (G) Final extraction result. (H) Manual image segmentation. (I) Results of comparison between proposed algorithm and real situation.
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constraint in the HSV space was the green region, such that there

were still interference regions due to grapes and their vines, leaf

gaps, and other factors in extraction results.
3.2.2 Road extraction based on gray factor
optimization

Taking advantage of the significant color difference between

different objects in the image, numerous researchers have realized

object segmentation by examining different gray weights, such as

excessive red plant index (ExR, Meyer et al., 1999), excessive green

index (ExG, Woebbecke et al., 1995), and normalized difference

index (NDI, Woebbecke et al., 1993). The preprocessed image

mainly contained four areas: grape vines regions, soil areas,

background, and shadow areas. Therefore, through manual

segmentation of the above regions and obtaining the average

values of R, G, and B in different regions, the gray factor was

improved by a heuristic method based on the excessive green index

(ExG). The optimized gray factor and its binarized image

acquisition formula were expressed in Equations 8 and 9 as

gray(x, y) = 1:84G(x, y) − B(x, y) − R(x, y) (8)

f (x, y) =
0⋯⋯⋯ 1:84G(x, y) − B(x, y) − R(x, y) ≤ TB

255⋯⋯⋯ 1:84G(x, y) − B(x, y) − R(x, y) > TB

(
(9)

where gray(x,y) is the optimized gray level factor, f(x,y) the

binarized image, and G(x,y), B(x,y), and R(x,y) as the green, blue,

and red components of the color range, respectively. And TB is the

binarization threshold.

Based on the optimized grayscale factor, the grayscale image

and the grayscale histogram of the enhanced image after the S-

component were plotted in Figure 6C. As can be seen from the gray

histogram, most pixels in the image had a gray value of 0,

corresponding to the majority of black road areas in the gray

map. However, as shown by the red area in the grayscale image, a

few pixels in the road area had gray values that were not zero.

Therefore, the rationality of the binarization threshold TB directly

affected the integrity of the road segmentation. To determine the

optimal binarization threshold, a comparative experiment was

conducted in this paper, using the threshold value TB as the

independent variable and the road segmentation result as the

dependent variable. The initial value of the binarization threshold

was set to 0, and different binarization thresholds were used to

segment the road. The threshold of binarization was increased by 10

for each group until the segmentation result incorrectly included

the vine area on the side of the road.

When TB= 0, the segmentation result indicated a significantly

smaller road area than the actual road. With TB set at 10, the vast

majority of road area was accurately extracted from the

segmentation results. However, when TB was increased to 20,

while the extracted road area was more comprehensive, there

were numerous incorrectly extracted sections. Consequently, for

this article, TB was established at 10, the road extraction results were

shown in Figure 6D.

The extraction method of unoptimized gray factor based on

ExG was found to be affected by shadows and weeds, resulting in a
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large number of noise points and holes in the treatment results, and

only extracted a small number of road regions (Figure 6B). Thus,

the extracted area was significantly smaller than the real value. On

the other hand, the improved gray factor method exhibited superior

segmentation results for the grapevine area on the road and its

surroundings, showing great advantages in the accuracy and

integrity of road segmentation (as depicted in Figure 6D). The

above results indicated that compared with the unimproved gray

factor, the improved gray factor method was more adaptable to

unfavorable environmental conditions such as shadows and lighting

in the field.

3.2.3 Binary images fusion and morphological
processing

By fusing the above two binarized images in Figures 6A, D, most

of the disturbances (Figure 6E) were eliminated and road edges

constrained. The fused results were more consistent with the

real situation.

However, there were various tiny noises and irregularly-shaped

edges in the fused binary image. Therefore, morphological

processing was performed on fused binary images to remove non-

correlated structures (Figures 6F, G).

The road edge extracted by this algorithm was found to be in

line with the trend of the real road and fundamentally eliminated

the vine area on the side of the road (Figure 6I). This reduced

the interference of light, shadow, weeds, and dead branches

to road extraction, with high extraction integrity and good

comprehensive performance.

3.2.4 Performance evaluation indexes
In this study, the number of ROI image pixels (NRP) and the

ratio between the wrongly extracted pixels and the number of ROI

image pixels (RBP) were used as evaluation indices for verifying the

performance of the road extraction algorithm. And the calculation

equations of this evaluation index expressed in Equation 10 as

RBP =
NWP
NRP

� 100% (10)

where NWP is the number of wrongly extracted pixels by

the algorithm.
3.3 Roadside fruit detection based on
YOLOv7

3.3.1 Characteristics of the YOLOv7 network
structure

As the latest version of the YOLO series (Wang C. et al., 2022),

YOLOv7 has improved the existing model in many ways. First, it

offers extended efficient layer aggregation networks (E-ELAN)

based on ELAN structure, which can guide different computing

blocks to learn more different features and enhance the learning

ability of the model on the basis of maintaining the original gradient

path. Then, a compound model scaling method based on the

cascade model has been proposed to ensure the initial

characteristics and optimal structure of the model, which
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efficiently utilizes parameters and computation. Meanwhile, several

trainable bag-of-freebies methods have been designed for real-time

object detection, which significantly improves detection accuracy

without increasing inference cost. Based on the above

improvements, YOLOv7 shows great advantages in terms of

speed and accuracy over other detection algorithms. Its network

architecture is shown in Figure 7.

Based on the performance advantages of the YOLOv7 and

YOLOv5 models, both models were adopted in this research to

detect roadside fruits. The results were compared to identify the

roadside grape detection model that is better suited for large-field

environments. The selected model’s feasibility and detection

performance were then further verified for roadside

fruit recognition.

3.3.2 Network training and parameter
optimization

The experiment was conducted on a Windows 10 operating

system, with the Python framework, YOLOv7, and YOLOv5

environments built in the Anaconda environment. The program

was written in Python 3.9 and CUDA Ver. 11.7. In terms of

hardware, the processor is an Intel (R) Core (R) i5-1240F CPU@
Frontiers in Plant Science 11
2.5 GHz, the dominant frequency is 2.5 GHz, internal storage 32.0

GB, and graphics card an NVIDIA GeForce RTX 3060.

Due to the complex orchard environment, directly applying

the default parameters of YOLO model to the roadside fruit

recognition model results in poor detection results. To adapt to

fruit recognition in complex field scenarios, the learning rate

parameter of the YOLO model was chosen as described in this

study. The initial value of the learning rate was set to 0.01 and the

model was trained with different learning rates. The learning rate

of each group was reduced by 0.002, respectively, until the optimal

parameters were detected and chosen. By comparison, it was

found that when the learning rate was larger than 0.002, the

loss curves for object detection in the results suffered from severe

oscillations, poor convergence or nonconvergence. Thus, the

learning rate of the wine grape orchard recognition model was

set to 0.002.

The training and verification sets were input into the network for

training, with a batch size of 16 and 150 epochs, respectively (Table 1).

3.3.3 Model evaluation
In this study, precision (P), recall (R), F1-score, and mAP were

used as the evaluation indices of roadside fruit detection
FIGURE 7

Network structure of YOLOv7.
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performance and the calculation equations of each evaluation index

expressed in Equations 11–14 as:

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

F1� score =
2� P � R
(P + R)

(13)

mAP = o
c
1AP(c)

c
(14)

where TP, FP, and FN correspond to true positives (there is a grape

bunch in the image and the algorithmpredicts it correctly), false positives

(there are no grapes in the image, but the algorithm detects it), and false

negatives (the algorithm failed to detect a bunch of grapes which are

actually in the image), respectively, and C the number of detection

classes. As only one kind of fruit was identified in this study, C = 1.

4 Experiments and discussion

By achieving synchronous recognition of road extraction and

roadside fruit, this algorithm can considerably improve the ability of

robots to perceive critical information in the orchard environments

and lay the foundation for autonomous walking and picking

decisions based on machine vision. Therefore, the performance of

this algorithm was extremely critical for the robot’s picking rate,

navigation path extraction accuracy, and reliability of the decision

system in subsequent researches. At the same time, this study served

as a reference for other research in the same field.

In this section, the performance of image enhancement, road

extraction, roadside fruit recognition, and overall fusion algorithm

were verified and discussed.
4.1 Road extraction effects and ablation
tests

4.1.1 Road extraction results and analysis
To validate the image segmentation effect of the proposed road

extraction algorithm, the results obtained by fused segmentation
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were compared with those obtained by the conventional color

image method. This study adopted two traditional algorithms: a

method based on S component and Otsu and another based on the

Excess Green index (ExG) and Otsu. At the same time, 25 images

with pavement shadows, strong illumination variations, and

grapevines with different degrees of color were selected as test

samples to verify the adaptability of the above algorithms to

complex environments.

The results of multiple sample images were compared, in which

samples were original color images and other images obtained by

segmentation methods. The comparative findings for partial sample

images were illustrated in Figures 8A–F, while the comparative

results for additional images could be found in the Supplementary

Material. Figures 1–3 depict the image samples with the lowest

NWP value in the outcomes of Methods C, D, and E, while

Figures 4–6 depict the image samples with the highest NWP

value in the outcomes of Methods C, D, and E, respectively.

For simplicity, the proposed algorithm was abbreviated as

“Method C”, the method based on S component and Otsu was

abbreviated as “Method D”, and the method based on EXG and

Otsu was abbreviated as “Method E”.

In the qualitative evaluation, the quality of different

segmentation methods was assessed based on the completeness of

road segmentation and the distribution of error areas. Due to the

complexity of the field orchard, the primary environmental factors

that influence the precision of road segmentation outcomes include

the grapevine area, shadowed road area (Li et al., 2018), roadside

unevenly colored area, and high contrast between light and dark

areas (Tang et al., 2023b). As depicted in Figure 8A, strong lighting

caused the grapevine areas on the roadside to exhibit characteristics

such as uneven light and shade and varying color tones. This led to a

significant contrast between light and shade in the grapevine areas

on both sides of the road. Additionally, different lighting angles

resulted in distinct areas of shadow on the road surface, thereby

increasing the complexity involved in segmenting orchard roads.

Observationally, it was found that the extraction results of

methods D and E (Figures 8D, E) suffered from problems, such

as the large area errors in identification. Although the extraction

results were of great completeness, the results also contained a large

number of incorrect regions (Figure 8F). By comprehensive

comparison, the road obtained by the Method C was found to be

the closest to the real situation and had the best segmentation effect

among all considered methods.

To further analyze the adaptability of the above method to

complex vineyard scenarios, the extraction results of the proposed

algorithm were compared with real roads (Figures 8F, G). Based on

Figure 8F, it can be observed that the error areas of methods D and

E were primarily concentrated in the grapevine area on the side of

the road.

Method D was found to be sensitive to changes in brightness,

shade, and color uniformity of the grapevine region in the image,

which resulted in changes in the error area of the segmentation

result (Figure 8D). Due to the unpredictable and random nature of

illumination in field environments, it was difficult to guarantee the

accuracy and stability of the segmentation results achieved through

method D.
TABLE 1 YOLO basic parameters.

Parameters of model Value

Input image resolution 640×640

Learning rate 0.002

Momentum 0.937

Optimizer weight decay 0.0005

Warmup momentum 0.8

Batch size 16

Training epochs 150
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The primary error source of method E was the grapevine area

with strong contrast between light and shade, with the dark part of

it being incorrectly identified as the road area. This greatly reduced

the accuracy of the segmentation result. When the area of the dark

region of the grapevine on the side of the road was small, the error

rate of this algorithm decreased significantly. However, when faced

with areas that had uneven colors on the side of the road, the error

area of the segmentation result achieved through this method was

significantly smaller than that of method D.

Conversely, Method C adapted to the aforementioned

unfavorable factors, resulting in a smaller error in the segmented
Frontiers in Plant Science 13
area, more stable road extraction performance, and the most

reliable segmentation results among the three methods.

Combined with the above analysis, the influence degree of

unfavorable factors on the accuracy and reliability of the results

obtained through different methods was comprehensively

evaluated, as presented in Table 2.

To quantitatively evaluate the extraction performance of the

above methods, NWP and RBP were taken as indices to achieve a

road extraction performance evaluation of different algorithms,

where NRP = 402,668 (Table 2; Figures 8H, I). To determine the

differences in road extraction performance among the three
B C DA E
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FIGURE 8

Results and analysis of different segmentation methods. (A) Original images. (B) Manual image segmentation. (C) Proposed algorithm. (D) Method
based on S component and Otsu. (E) Method based on EXG and Otsu. (F) Error area results extracted by different methods. (G) RBP values of partial
images obtained by different methods. (H) Descriptive Statistics for NWP and RBP. (I) NWP values of 25 images obtained by different methods.
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methods, the non-parametric Kruskal-Wallis test was conducted

across the three groups using SPSS software version 27 (IBM

Corporation). The significance level was set at 0.05. The null

hypothesis in this test is that there is no difference between the

three methods in terms of the distribution of NWP and RBP. In fact,

for this test, the Sig values less than 0.05 indicate a significant

difference between the groups.

According to the descriptive statistical table of NWP, Method C

exhibited a generally low overall level of NWP value (Figure 8H).

Comparing the mean value of NWP across the three methods, it

was found that the mean value of NWP for Method C accounted for

only 14.3% and 20.67% of the mean value of NWP for Methods D

and E, respectively. Furthermore, the maximum and minimum

values of NWP for Method C were one order of magnitude smaller

than those of Methods D and E. Additionally, the standard

deviation of NWP value for Method C was significantly lower

than that of Methods D and E, indicating that the road extraction

performance of Method C was more stable in the face of variable

field interference factors. This observation was also validated in

Figure 8I, which illustrates that the NWP of Method C exhibits a

relatively mild fluctuation in comparison to the other two methods.

Moreover, the Kruskal-Wallis test results showed that the NWP
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values of Methods C and D (Sig<0.01), Methods C and E (Sig<0.01)

and Methods D and E (Sig = 0.008)were statistically significant

difference. Furthermore, it was confirmed that there were

substantial differences in the accuracy of road extraction among

the three methods.

Similar results were obtained from the descriptive statistical

table of RBP. Method C demonstrated favorable outcomes in

terms of the maximum, minimum, mean, and standard deviation

of RBP. Thereinto, Method C had an RBP of no more than 9.15%,

whereas Method D had an RBP of no more than 48.37%, and

Method E had a notably high RBP of 53.30%. The above data

suggested that the wrongly identified pixels in the road extraction

results of Method C only constituted a small portion of the

current image. Compared to the other two methods, Method C

was found to deliver better segmentation results for road

recognition in the field environment and exhibited greater

adaptability to the complex environmental interference factors

in the field orchard.

4.1.2 Ablation test
To verify the improvement of the image enhancement algorithm

on the overall performance of the road extraction algorithm, an
TABLE 2 Analysis of the influence degree of adverse factors on algorithms and extraction results.

Degree of influence of adverse factors on algorithm accuracy

Adverse environmental factors
Impact degree

Method C Method D Method E

Grapevine area Minor Severity Severity

Shadowed road area Minor Minor Minor

Roadside unevenly colored area Minor Severity Medium

Strong contrast between light & dark Minor Severity Severity

Methods
Descriptive Statistics for NWP

Minimum Maximum Mean Std. Deviation

Method C 8506 36831 19967.040 8425.727

Method D 73428 194780 139663.16 33567.358

Method E 41264 214634 96580.960 36276.122

Pairwise Comparisons of Methods (NWP)

Sig
Method C vs Method D Method C vs Method E Method D vs Method E

<0.001 <0.001 0.008

Methods
Descriptive Statistics for RBP/%

Minimum Maximum Mean Std. Deviation

Method C 2.11 9.15 4.959 2.092

Method D 18.24 48.37 34.684 8.336

Method E 10.25 53.30 23.9847 9.009

Pairwise Comparisons of Methods (RBP)

Sig
Method C vs Method D Method C vs Method E Method D vs Method E

<0.001 <0.001 0.008
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ablation experiment was conducted. The comparative findings for a

selection of sample images were illustrated in Figure 9, while the

comparative results for additional images could be found in the

Supplementary Material. For simplicity, the proposed algorithm

without preprocessing was abbreviated as “Method F”.

Ablation experiments were conducted on the proposed

preprocessing method. The extraction results after pretreatment were

shown in Figure 9B and the algorithm results without pretreatment

were shown in Figure 9C. By comparing the two extraction results, the

latter extraction results were found to contain a large number of error

regions, such as dark grape vines area, grapes, and other objects on the

roadside (Figure 9E). This phenomenon was confirmed by NWP

descriptive statistics (Figure 9F).

Based on Figures 9F, G, it can be observed that the majority of

segmentation results obtained using Method F had a higher NWP

value compared to those obtained using Method C. However, a few

image processing results showed an opposite result. The reason for

this phenomenon can be attributed to the fact that after image

preprocessing, the segmentation result of Method C had more

stringent restrictions on green areas, resulting in the removal of a
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large area of weeds from the road in the segmentation results,

thereby increasing the NWP value (4th row of Figure 9C).

After image preprocessing, the accuracy of the algorithm was

significantly improved at the cost of a small amount of

completeness, which reduced the impact of interference regions,

such as road shadows, dark fruits, branches, leaves, and gaps in

segmentation accuracy. Meanwhile, the Method C also suppressed

the interference of noncurrent road areas on the extracted results

and significantly reduced the number of misdetected pixels (3th row

of Figures 9C, D).

Differences in road extraction performance between the above

methods were determined using the non-parametric Mann-Whitney

U test. The significance level was set at 0.05. The null hypothesis in

this test is that there is no difference between the methods in terms of

the distribution of NWP. And the Sig values less than 0.05 mean a

significant difference between the groups. The Mann-Whitney U test

result showed that the NWP values of Methods C and F (Sig= 0.03)

were statistically significant difference (Figure 9F).

In conclusion, image preprocessing played a crucial role in

enhancing the accuracy and reliability of road segmentation results.
B C D EA

F G

FIGURE 9

Ablation test results from the proposed preprocessing method. (A) Original images. (B) Proposed algorithm. (C) Proposed algorithm without
preprocessing. (D) Error area results extracted by proposed algorithm. (E) Error area results extracted by proposed algorithm without preprocessing.
(F) Descriptive Statistics and significance analysis result. (G) NWP values of 25 images obtained by methods C and F.
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4.2 Comparison between YOLOv5 and
YOLOv7

Target location is an important task in target detection and is

normally represented by the coordinate position of the bounding box.

The models in this paper used CIoU (Lv et al., 2022) loss to calculate

the boundary frame position loss, which was calculated as follows:

Lbox = 1 − IOU +
r2(A, B)

c2d
+ aυ (15)

υ =
4
p2 arctan

wg

hg
− arctan

wp

hp

� �2

(16)

a =
υ

(1 + IOU) + υ
(17)

Where r2(A,B) is the Euclidean distance of the center points

between predicted box and ground truth box, cd is the diagonal

distance of the smallest rectangle containing predicted box and

ground truth box, a is the weight function, and υ is the function that

measures the consistency of the aspect ratio. wg and hg are the width

and height of the ground truth box, while wp and hp are the width

and height of the prediction box.

The confidence loss function is used to measure the difference

between the confidence score predicted by the model and the actual

label. In this paper, the confidence loss function was calculated

using a binary cross-entropy loss function (BCELoss, Zhao et al.,

2023), and its formula was as follows:

Lconf = −
1
No

N
n=1½yn � log xn + (1 − yn)� log (1 − xn)� (18)
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Where yn denotes the true category, which generally takes the

value of 0 or 1, xn denotes the prediction confidence or target

probability obtained by the Sigmoid function, and N is the number

of positive and negative samples.

After training, the loss function value curves for the training and

validation sets of the two YOLOmodels were obtained, including the

loss values of the detection box and detection object (Figures 10A, B).

In Figure 10A, “BOX” and “Val BOX” represented the box loss of the

training set and validation set, respectively. In Figure 10B,

“Objectness” and “Val Objectness” represented the confidence loss

of the training set and validation set, respectively. As shown in

Figure 10A, B, it can be observed that the change trend of the loss

curves for both models was similar. In particular, it was observed that

the values of box and object detection losses for the two YOLO

models decreased sharply during training batches 0 to 20, after which

the rate of decline slowed down. The sample distribution ratio of

model training set and verification set is shown in Figure 10D. In

addition, the box and the object detection loss values of the YOLOv7

algorithm on the training set were smaller than that of the YOLOv5

algorithm after 150 training epochs. The box detection loss value of

YOLOv7 finally stabilized around 0.029 and object detection loss

value eventually stabilized around 0.012.

In addition, although the loss value of box detection in the

validation set was slightly higher than that of YOLOv5, the loss

value of object detection in the validation set of YOLOv5 showed a

trend of fluctuation and rise after 50 training batches. Meanwhile,

the loss value of YOLOv7 algorithm decreased steadily and finally

the loss value tended to stabilize around 0.0025.

Under the same dataset B, the performance indices of YOLOv7

were better than those of YOLOv5 (Figure 10C). The P, R, mAP,

and F1-scores of YOLOv7 were 88.9, 89.7, 93.4, and 89.3%,
B

C D

A

FIGURE 10

Loss curves and detection results of the two YOLO models. (A) Box loss value curve of YOLOv5 and YOLOv7 model. (B) Confidence loss function
value curve of YOLOv7 model. (C) Detection results of YOLOv5 and YOLOv 7 on dataset B. (D) Training set and verification set introduction.
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respectively, which were 3.1, 2.9, 2.7, and 3% higher than

from YOLOv5.

Although the number of YOLOv7 targets detected in some

images was less than that of YOLOv5, the overall accuracy of the

former was higher than that of the latter (Figures 11A–C).

Moreover, in global images, YOLOv5 showed the phenomenon of

grape cluster misidentification (Figure 11, last row). Algorithm

detection confidence was the main evaluation metric in this

study. In summary, YOLOv7 was able to better perform the task

of detecting clusters of grapes in orchards and, hence,YOLOv7 was

used to identify grapes on the roadside.

The confidence level of grape clusters recognition results tested

by YOLOv7 on dataset B was mostly above 0.8, while it was mostly

above 0.5 on dataset A. There were two reasons for this

phenomenon. The first was that the grape clusters were smaller

on dataset A than those in the training set and the second that

dataset A contained a large number of backgrounds, such as sky,

trees, and roads, and the overall complexity of the image far greater

than that of the training set.
4.3 Recognition effects of the synchronous
detection algorithm

Furthermore, in order to evaluate the overall detection

performance of the synchronous detection algorithm proposed in
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this paper (Figure 4), simultaneous recognition of the road and

roadside fruit was conducted (Figure 12A).

The results demonstrate that the algorithm was able to

effectively segment the road area despite the complex outdoor

environment, and accurately recognize the grapes on the side of

the road. This provides valuable information for the intelligent

decision-making and control of the robot during subsequent

walking and fruit picking operations, and enhances the robot’s

ability to identify crucial targets within a complex environment.

Furthermore, the synchronous recognition algorithm demonstrated

better effectiveness in roadside grape recognition. To validate the

positive impact of image preprocessing and road segmentation in the

synchronous recognition algorithm on the recognition performance of

road test grapes, the images with and without above aforementioned

steps were identified using yolov7 model (Figure 12B). The results

revealed that, under identical circumstances, the former approach

detected more clusters of grapes on the road side.

To further demonstrate the superiority of the proposed

synchronous recognition algorithm in roadside grape detection,

66 images from dataset B were used to detect grape clusters. The

number of recognized fruits, recognition time and the promotion

ratio (Pr) were taken as evaluation parameters. The Pr was

calculated by the following formula.

Pr =
Vw − Vn

Vn
(19)
A B C

FIGURE 11

Comparison of partial detection results. (A) Original images. (B) Identification results of YOLOv5 model. (C) Identification results of YOLOv7 model.
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Here, Vw represents the evaluation parameters obtained

through image calculation based on image preprocessing and

road segmentation, while Vn represents the evaluation parameters

obtained without image preprocessing and road segmentation.

The number of recognized grape clusters in the former was 41

more than that in the latter, representing a 23.84% increase.

Additionally, the recognition speed of the former was 0.267

seconds faster than that of the latter, resulting in a speed increase

of 14.33%. The results indicated that the images with pre-processing

and road segmentation were able to identify more grape clusters

and at a faster detection speed compared to the images without pre-

processing and road segmentation (refer to Figure 12C). This

finding provided evidence that the synchronous recognition

algorithm proposed in this paper outperforms using YOLOv7

alone for identifying roadside grapes under the same scenario.

The reasons for the above phenomena were as follows: First, due

to the extraction and preprocessing of the ROI in the overall
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algorithm, a large number of backgrounds, such as sky and trees,

were eliminated, which improved the proportion of grape cluster

pixels in the whole image. In addition, after extracting the road in

the image, the interference of the road area on fruit cluster

recognition was reduced and grape features more pronounced,

which was beneficial for detecting fruit clusters on the roadside.
4.4 Discussion

Although the unstructured road extraction and roadside fruit

synchronous recognition algorithm proposed in this study had good

performance, it also had some limitations (Figures 13A–C). First, it was

difficult to distinguish the adhesive road areas between different rows

during road extraction. For example, when the death of grape plants

leads to a large area of vacancy on the road side, the road regions of

images consisted of two parts: the road part of the robot’s current row
B C

A

FIGURE 12

Recognition results of overall algorithm and comparison results between proposed algorithm and single YOLOv7 model. (A) The overall synchronous
detection algorithm recognition results. (B) Comparison results of roadside grape clusters identification results between proposed synchronous
detection algorithm and single YOLOv7 model. (C) Performance comparison between overall synchronous detection algorithm and the single
YOLOv7 model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1103276
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1103276
and road part of the non-current row (Figure 13C). In this case, it was

difficult for the proposed algorithm to distinguish the correct region

from the wrong one. At the same time, when there were a large area of

weeds near the end of the road with a width of more than 1/2 of the

width of the road, the completeness of the extracted results was

reduced. Future research will consider optimization algorithms and

add constraints to improve result accuracy.

In addition, in the process of roadside fruit string identification,

there was still a situation of missing grape-cluster detection. Future

research will further optimize and improve the network structure

for the problems of missing fruit string detection and low

confidence of some detection target results.
5 Conclusions

In this study, an algorithm for unstructured road extraction and

roadside fruit synchronous recognition in a complex orchard

environment was developed to address the above issues. The

main conclusions could be obtained as follows:
Fron
(1) An unstructured road extraction and roadside fruit

synchronous recognition framework was constructed for

achieving simultaneous road extraction and roadside fruit

detection, which effectively improved the ability of fruit

picking robots to extract key information from the picking

environment. The algorithm also provided information for

decision-making and reasoning of collaborative behavior of

key parts of the robot, which improved the adaptability of

the robot to randomly distributed fruit.

(2) Based on the analysis of the orchard images, an image

enhancement preprocessing method was proposed to

reduce the interference of road shadows, dark fruits,

branches, and leaves as well as gaps in segmentation

results. The method also suppressed the influence of

noncurrent road areas on extraction results to a certain

extent, which improved result accuracy and reliability.

(3) By enhancing the color channel and optimizing the grayscale

factor, the dual spatial fusion road extraction was achieved.

Experimental results showed that, compared with the

extraction method based on S component and Otsu and

extraction method based on EXG and Otsu, the proposed

algorithm showed greater adaptability to adverse conditions,
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such as uneven illumination and road shadows under the

background of complex orchards. The proposed road

extraction algorithm also largely avoided the problems of

missing extraction of real road areas and identification of

large area errors, which had the best segmentation effect.

(4) The YOLOv7 and YOLOv5 algorithms, optimized with

grape cluster target data, were used to identify roadside

grape clusters. The optimized YOLOv7 model achieved a

precision of 88.9%, recall of 89.7%, mAP of 93.4%, and F1-

score of 89.3%, all of which were higher than those obtained

from the YOLOv5 model. Based on this comparison, the

YOLOv7 with optimized parameters was found to be more

suitable for roadside grape recognition in wide-field views.

(5) The proposed fusion algorithm took the road extraction

results as input and then identified fruit strings on the road

side. The performance of the proposed fusion algorithm

was superior to only using the YOLOv7 model. Compared

with the single YOLOv7 model, the number of grape string

detections and detection speed of the fusion algorithm were

increased by 23.84% and 14.33%.
Although the new algorithm has achieved satisfactory results,

there remains some room for progress. First, due to the similarity

between different lines of the roads, the algorithm in this case had

difficulty in segmenting the cohesive road area between different

lines. At the same time, the completeness of the extraction results

was reduced when there were a large area of weeds with a width

ratio of 1/2 near the end of the road.

Future work will focus on network structure optimization to

improve the accuracy and speed of road extraction and roadside

fruit detection algorithms. Constraints between road zones will also

been studied to enable the identification and segmentation of road

zones between different lines. Furthermore, environment-aware

robot behavioral decision control systems will be developed to

enable collaborative decision planning and response control of

picking and walking operations in complex orchard environments.
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