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Abstract

There is a huge amount of text information in the world, written in natural languages. Most of
the text information is hard to access compared with other well-structured information sources
such as relational databases. This is because reading and understanding text requires the ability
to disambiguate text fragments at severa levels, syntactically and semantically, abstracting awvay
details and using background knowledge in a variety of ways. One possible solution to these
problems s to implement a framework of concept-based text understanding and mining, that is, a
mechanism of analyzing and integrating segregated information, and a framework of organizing,
indexing, accessing textual information centered around real-world concepts.

A fundamental difficulty toward this goal is caused by the concept ambiguity of natural lan-
guage. In text, the real-world entities are referred using their names. The variability in writing a
given concept, along with the fact that different concepts/enities may have very similar writings,
poses a significant challenge to progress in text understanding and mining. Supporting concept-
based natural language understanding requires resolving conceptual ambiguity, and in particular,
identifying whether different mentionsof real world entities, within and across documents, actually
represent the same concept.

This thesis systematically studies this fundamental problem. We study and propose different
machine learning techniques to address different aspects of this problem and show that as more
information can be exploited, the learning techniques devel oped accordingly, can continuously im-
prove the identification accuracy. In addition, we extend our global probabilistic model to address

a significant application — semantic integration between text and databases.
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Chapter 1

| ntroduction

There is a huge amount of text information in the world. According to Google's statistics, there
have been more than 8 billion web pages on the Internet by 2005. Every year, the United States
publishes more than 150, 000 new books 1. The DBLP database itself — a famous research paper
collection, have collected more than 600, 000 research papers that are published in the area of
computer science between 1980-2005. Moreover, millions of news articles about politics, sports,
and business, come out every day.

Most of the above information is written in natural languages, which is hard to access com-
pared with other well-structured information sources such as relational databases. Thisis because
reading and understanding text requires the ability to disambiguate text fragments at severa lev-
els, syntactically and semantically, abstracting away details and using background knowledgein a
variety of ways. Therefore, how to efficiently access alarge collection of text information, that is,
how accurately and automatically pinpoint relevant information for auser and help him understand
it, isavery challenging problem.

Onerelatively successful technology to facilitate intelligent access to textual information isthe
search engine techniques (van Rijsbergen, 1979; Salton & McGill, 1983; Fuhr, 1992; Fuhr, 2001;
Lafferty & Zhai, 2001; Lafferty & Zhai, 2002). Given a user query —typically a set of key words
providing a description of the target information, a search engine searches the Internet or other text

collection and identifies the most relevant documentsrelated to the query. In thefollowing example

Istatistics in 2002, cited from “ Self-publishing will spur book industry to modernize” by Laura Vanderkam.



(see Figure 1.1), when a user looks for George Bush's foreign policy, the process of identifying
relevant web pages in a search engine is conducted on the basis of key-word matching — pages
containing the same set of key words as in the query are assumed to be relevant.

Onecritical problem with this process (which we call string or mention-level processing) isthat
of ignoring semantic understanding and matching of text. One consequence in the above example
isthat semantically equivalent concepts could not be located in text when ambiguous mentions of
them are used. Suppose there isaweb page containing only the name “Bush”, rather than “ George
Bush'. Evenif it refers to the same person conceptually in the above example, it will not be treated

as relevant, only because a different name from that in the query is used in the page.

IGeorge Bush fareign palicy m|ﬁ

Web Results

1-10 of 354 724 containing George Bush foreign policy ©.11 seconds)

Plagiarism and Fraud in George W. Bush's Foreign Policy
Plagiarism and Fraud in George V. Bush's Foreigh Policy Rebecca Moore Howard Syracuse University  The United
States is a nation obsessed with facts. We are daily barraged with random facts that we

wit-howard. syr edu/Papers/MoboreBush bt Cached page

CNM.com - Former officials to condemn Bush foreign policy - Jun 13 ...

... signed a statement condemning the Bush administration's fereign policy, saying that it has harmed national ... to
Israel by former President George Bush in 19221, Military commanders who signed the ...

wearvy. cin. corm20047ALLPOLITICS06/1 3/ bush criticismiindex. html Cached page 3/3/2005

CNN.com - Former officials to condemn Bush foreign policy - Jun 13 ...

... signed a statement condemning the Bush administration's fereign policy, saying that it has harmed national ..
to Israel by former President Geeorge Bush in 1291, Military commanders who signed the ...

weer. . comy2004/4LLPOLITICS06/1 3/bush.criticism  Cached page  3/3/2005

@ Show more results from "wwe chn com”

An Annotated Overview of the Foreign Policy Segments of President ...

... January 29, 2003 by CommonDreams.org An Annotated Overview of the Fereign Pelicy Segments of President
George Y. Bush's State of the Union Address by Stephen Zunes  "This threat is new, America's duty .
commondreams. orgfviews03/0128-09 bt Cached page  3/4/2005

Right Web | Analysis | Natan Sharansky and George W. Bush: The Foreign ...

... Natan Sharansky and George ¥W. Bush The Foreign Policy Diaspora—From Jerusalem to WWashington By Tom Barry
| February 8, 2005 The State of the Union Address and Bush's second ..

tightweb.irc-online. orgfanalysis/2005/0502sharansky php  Cached page

National Security Strategy: the George W. Bush Foreign Policy Doctrine ...

Mational Security Strategy: the Geerge W. Bush Foreign Policy Doctrine - YWar with Iraq - Yiewpoints - A collection of
articles on the serious issues surrounding possible war with Irag, especially ..
warw [jshooks netfiragfarchives/000496 htrl Cached page

Figure 1.1: An example of searching information.

Other commonly studied text understanding and mining tasks related to intelligent access to

text information, are summarized in Figure 1.2%. For example, information extraction (Califf &

2modified based on an poster by NEC.



Text mining
Machine translation,
T Summary making
nalysis ~ Question Answerin
i and MO 9
(7| Presentation

Information extraction |Knowledge
and
Auto classification

. ,..”... | ( E&
p-a

Information supplier

® Information
user

Text search,
Multi-language search

Figure 1.2: Text under standing and mining.

Mooney, 1999; Chieu & Ng, 2002; Freitag, 2000; Lafferty, McCallum, & Pereira, 2001; Roth &
Yih, 2001) aim at extracting text segments that are related to a specific topic, such as the position
and the company name of ajob opening, the starting time or the speaker of a seminar. Compared
with search engines, aquestion answering system (Light, Mann, Riloff, & Breck, 2001; Moldovan,
Harabagiu, Girju, Morarescu, Lacatusu, Novischi, Badulescu, & Bolohan, 2002; Moldovan, Pasca,
Harabagiu, & Surdeanu, 2002; Roth, Cumby, Li, Morie, Nagargjan, Rizzolo, Small, & Yih, 2002;
Voorhees, 2002) attempts to support higher-precision information access, pinpointing the exact
answer from a large collection of text for a user’s question — asked in standard English or other
natural languages. Most of these current techniques applied to these tasks still rely on string or
mention-level processing. We will further analyze the problems with them and introduce later
concept-based text understanding and mining, an idea of semantically processing real-world con-
cepts and entities, rather than ambiguous mentions of them in text.

Machine Learning techniques (Charniak, 1993; Roth, 1999) such as rule-learning, decision
trees, Neural Networks, Support Vector Machines, Graph-based Models, discriminative and gen-
erative models, have been widely applied to text understanding and mining tasks these days, to
achieve different levels of analysis and understanding of text. Most of these text-related problems

aretypically formalized as different classification problems, such asbinary classification (Khardon,



Roth, & Valiant, 1999), multi-class classification (Hindle, 1990; Even-Zohar & Roth, 2001; Li &
Roth, 2002; Sang & Meulder, 2003) and structure-based classification and inference (Munoz, Pun-
yakanok, Roth, & Zimak, 1999; Punyakanok & Roth, 2001), which aim at mapping language
components into discrete classes or structures reflecting different syntactic and semantic abstrac-
tion and understanding of them. The text categorization (Dagan, Karov, & Roth, 1997; Zhang
& Oles, 2001) which classifies text articles into a number of topics, such as politics, sports and
education, a type of semantic understanding of articles, is modeled as a multi-class classification
task. Examples of sequential and structure-based classification tasks include part-of speech tag-
ging (Kupiec, 1992; Brill, 1995; Brill, 1997) which categorizes aword into a noun, verb, adjective
and other classes, and parsing (Collins, 1997; Collins, 1999; Charniak, 2000; Collins & Duffy,
2002) which recognizes syntactic structures of sentences.

Intherest of thischapter, wewill further discussthe motivation and ideas behind concept-based
text understanding and mining in Section 1.1, introduce the common machine learning techniques
that will be applied to achieving this goal in Section 1.2, and then summarize our contributionsin
these areas in Section 1.3. Finally in Section 1.4, we will briefly introduce the organization of this

thesis.

1.1 Toward Concept-Based Text Understanding and Mining

1.1.1 An Overview of Current Text-Related Techniques

Most of the work in the direction of understanding and accessing text in the past two decades
has concentrated on syntactic analysis — the study of the underlying mechanisms, structures and
principles of how a natural language sentence is composed and generated from syntactic compo-
nents (Charniak, 1997; Collins, 1997; Li & Roth, 2001; Punyakanok & Roth, 2001). Less attention
has been paid to semantic analysis of text — analysis that focuses on mapping syntactic compo-

nents to their corresponding real-world concepts, as well as on their properties and the relations



between them; that is, the meaning of sentences. In addition to information extraction and ques-
tion answering, other applications on thislist include named entity recognition (Collins & Singer,
1999; Sang & Meulder, 2003), text categorization (Yang, 1999; Zhang & Oles, 2001), reading
comprehension (Hirschman, Light, Breck, & Burger, 1999) and so on.

While syntactic analysis tasks can achieve quite accurate performance by exploiting the local
context of language fragments where a set of formalized machine learning techniques can be ap-
plied directly, most semantically related information is separated and distributed in amuch broader
range of texts. Therefore, we call the tasks that work on words and syntactic fragments, string-
based text processing. One of the bottlenecks of these semantic tasks is the lack of an integrated
analysis of these fragments and their connections to real-world concepts.

Figure 1.3 illustrates what is missing in current semantic understanding tasks of text, com-
pared with the understanding by a human being. Given the sentence “Mary gave John an apple”
the current natural language processing such as parsing can identify the syntactic fragments and

the relation between them. Based on this understanding, higher-level processing can further un-

derstand the sen
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Mary gave John an apple.
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String-based
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John ate the apple.

Figure 1.3: Differencein text under standing by a computer and a human being

One critical module is missing in these tasks which, however, lays the ground for the un-
derstanding by a human being is the automatic mapping from syntactic fragments to real-world

concepts. That is, even if he does not know the specific persons “Mary” and “John”, he may till



understand that there must exist some personsreferred inthetext, and “Mary” and “ John” are refer-
ences to them. When a new sentence “ John ate the apple” comesin, he would be able to recognize
that the second sentences mentions one same person, and thus integrate it with the information he
has already known about this person. Based on this automatic entity identification and mapping,
information is organized and integrated around real-world concepts in a his mind. Moreover, his
further understanding can take these concepts as a basic unit, not being influenced by variations of
the lower-level text fragments. The necessity of moving to concept-based text processing can be

further illustrated in a question answering task.

Question: When were William Shakespeare’s twins born?

Answer: 1585

Text having the answer: They are the evidence for Shakespeare's marriage by special
licence at 18, to Anne Hathaway, of nearby Shottery, aged 26. Anne gave birth to a child,
Susanna, after six months of wedlock. Two years later came the birth of the Shakespeare
twins Judith and Hamnet, girl and boy, baptized in 1585. Hamnet died aged 11 in 1596.

Figure 1.4: An example of the question answering task.

In the open-domain question answering task (an example is shown in Figure 1.1.1) (Light,
Mann, Riloff, & Breck, 2001; Moldovan, Harabagiu, Girju, Morarescu, Lacatusu, Novischi, Bad-
ulescu, & Bolohan, 2002; Moldovan, Pasca, Harabagiu, & Surdeanu, 2002; Roth, Cumby, Li,
Morie, Nagaragjan, Rizzolo, Small, & Yih, 2002; Voorhees, 2002), given afactual question® written
in standard English or other languages, a question-answering system isrequired to be able to locate
and extract the exact answer to it from alarge collection of textual resources (for example, news
article or web pages). To accurately answer a question related to areal-world entity or concept, as

in the example, several critical problems need to be solved:

1. Can a question answering system precisely identify the entity from its references in both
the question and the text ? In the previous example, the system needs to know that “ Shake-

speare’ in the text refers to the same person as “William Shakespeare” in the question. A

3We do not address questions like “Do you have alight?’, which calls for an action, but rather only factual Wh-
questions.



more difficult example is “What is Bush’s foreign policy after 9-117". There are multiple
prominent “Bush’s’ in the real world, a human can easily figure out that the question refers
to “George W. Bush” with a great probability given some background knowledge while a

computer system can not.

2. Can a system automatically locate all the occurrences of this entity in the textual collec-
tion or knowledge base ? Most current information retrieval techniques (Baeza-Yates &
Ribeiro-Neto, 1999; Kobayashi & Takeda, 2000) still work on term-based search and index-
ing, lacking the capacity of identify occurrences of an entity from those of other entitieswith

similar writings.

3. Can asystem automatically extract facts about this entity — its properties, the relations with
other entities and what happened to it, after identifying the entity in the text collection ? The
facts about an entity may be distributed in different places of the text. Current information
extraction techniques (Chieu & Ng, 2002; Lafferty, McCallum, & Pereira, 2001; Roth &
Yih, 2001) can only exploit the local context of a mention of an entity and do not provide
an effective mechanism to integrate the segregated pieces of information and to make global

inference using them.

The above problems are indispensable to many other semantic analysis tasks as well, but they
have not been solved effectively so far. One possible solution to these problems and aso the
hope of these semantic tasksisto implement aframework of concept-based text understanding and
mining, that is, amechanism of analyzing and integrating segregated information, and aframework
of organizing, indexing, accessing textual information centered around real-world concepts. This
descriptionisin contrast to the string or mention-level text understanding and mining which works
directly over tokens or string without treat different occurrences of the same real-world entity asa

whole, and without integrating scattered information about it together.



1.1.2 Implementing Concept-Based Text Understanding and Mining

One of the fundamental difficulties toward concept-based natural language processing is caused
by the concept ambiguity of natural language. By concepts and entities, we refer to the real-world
objects like people, companies, products, locations, and other abstract objects like events. We
distinguish between the name of a real-world entity and the entity itself. For example, the name
“George W. Bush” is only a string representation of a real person — the incumbent president of
the United States, while “White House” is the name of alocation. In text, the real-world entities
are referred using their names. The variability in writing a given concept, along with the fact that
different concepts/enities may have very similar writings, poses a significant challenge to progress
in natural language processing.

The goal in thisthesisisto describe our effort to move the level of understanding and mining
from syntactic fragments representing concepts in text (“mentions’ of concepts) to the real-world
concepts represented by the fragments. Several tasksthat are tightly related to the implementation
of thisidea, include: (1) named entity recognition, (2) entity disambiguation and Identification; (3)
indexing and semantic integration of textual information based on real-world entities. The task of
Named Entity Recognition is to recognize possible names of entities in text and categorize them
into different semantic types, such as personal names, company names and names of locations. An
exampleis of atagged sentence from MUC 7 named entity recognition task (MUC-7, 1999) is as

follows:

Example 1.1.1 (Named Entity Recognition) [LOCATION Italy] ’s business world was rocked by
the announcement [DATE last Thursday] that Mr. [PERSON Verdi] would leave his job as vice-
president of [ORGANIZATION Music Masters of Milan, Inc] to become operations director of
[ORGANIZATION Arthur Andersen].

Although the learning techniques for this task have gained significant improvement over a
limited set of entity types recently (Zhang & Johnson, 2003; Sang & Meulder, 2003; Sarawagi

& Cohen, 2004), how to accurately identify names of a broad of entity types such as professions,
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colors and so on, is till a challenging problem. Since this task is not the focus of this thesis, we
assume that the names and their types have been recognized and are given as input to the next
stage.

Our major focus in this thesis is on entity disambiguation and identification, that of reading
concepts from the named referencesin the context of text, and mapping them to their corresponding
real world entities, that is, solving the Name Ambiguity in natural languages. Unfortunately, due
to the difficulty caused by language ambiguity, most current techniques still directly deal with
syntactic fragments and individual mentions of concepts, without considering the information of a
concept as awhole.

After al the occurrence of areal-world entity has been identified, information about this entity
which previously scattersin different texts or different context of the same text can be indexed and
integrated based on it. Consequently, alot of text understanding and mining tasks, such as Infor-
mation Retrieval, Information Extraction Question Answering, Text Summarization and Reading
Comprehension, can directly work on the concept-level rather than being bothered by ambiguous
names of them.

Figure 1.5 presents the underlying mechanism supporting concept-based text understanding
and mining and an example. All the occurrences of the same entity (in this case, George W. Bush)
are identified and indexed together in text. When a user wants to find out “President Bush's for-
eign policy”, even if the text does not contain the exact mention of “President Bush”, the correct
information can still be located with the help of this entity disambiguation and identification mech-

anism.

1.1.3 Entity Identification in Text

A description of the name ambiguity in text is. most names of people, locations, organizations
and other concepts or entities, have multiple writings that are being used freely within and across
documents (Li, Morie, & Roth, 2004a; Li, Morie, & Roth, 2004b).

Consider, for example, an open domain question answering system (Voorhees, 2002) that at-
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What is President Bush's foreign
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Entity Identification
and Indexing

Text Collection 7 Bush's current foreign policy is...

Figure 1.5: An example of concept-based infor mation access.

tempts, given a question like: “When was President Kennedy born?’, to search a large collection
of articles in order to pinpoint the concise answer: “on May 29, 1917 The sentence, and even
the document that contains the answer, may not contain the name “President Kennedy”; it may
refer to this entity as “Kennedy”, “JFK” or “John Fitzgerald Kennedy”. Other documents may
state that “ John F. Kennedy, Jr. was born on November 25, 1960, but this fact refers to our target
entity’s son. Other mentions, such as “ Senator Kennedy” or “Mrs. Kennedy” are even “closer”
to the writing of the target entity, but clearly refer to different entities. Even the statement “ John
Kennedy, born 5-29-1941” turns out to refer to a different entity, as one can tell observing that the
document discusses Kennedy’s batting statistics. A similar problem exists for other entity types,
such as locations and organizations. A further example is shown in Figure 1.6 which lists three
passages containing mentions of two different Kennedy’s.

Solving this fundamenta problem — the cross-document entity identification problem — can
aready help to address several fundamental aspects of concept-based natural language processing,
presented here from the perspective of the question answering task:

(1) Entity Identity - do mentions A and B (typically, occurring in different documents, or in a
guestion and a document processed in search of an answer) refer to the same entity? This problem
requires both identifying when different writings refer to the same entity, and when very similar or

identical writingsrefer to different entities.
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(2) Name Expansion - given aname of an entity (say, in aquestion), find other likely names of
the same entity.

(3) Prominence - given a question “What is Bush’'s foreign policy?’, and given that any large
collection of documents may contain several Bush's, there is a need to identify the most promi-
nent, or relevant “Bush”, perhaps taking into account also some contextual information. Ad hoc

solutions to this problem, as we show, fail to provide areliable and accurate solution.

Document 1: The Justice Department has officially ended itsinquiry into the assassinations
of John F. Kennedy and Martin Luther King Jr., finding “no persuasive evidence” to sup-
port conspiracy theories, according to department documents. The House Assassinations
Committee concluded in 1978 that Kennedy was “praobably” assassinated as the result of g
conspiracy involving a second gunman, afinding that broke from the Warren Commission’s
belief that Lee Harvey Oswald acted alone in Dallas on Nov. 22, 1963.

Document 2: In 1953, Massachusetts Sen. John F. Kennedy married Jacqueline Lee Bou-
vier in Newport, R.I. In 1960, Democratic presidential candidate John F. Kennedy con-
fronted the issue of his Roman Catholic faith by telling a Protestant group in Houston, “I do
not speak for my church on public matters, and the church does not speak for me.”
Document 3: David Kennedy was born in Leicester, England in 1959. --- Kennedy co-
edited The New Poetry (Bloodaxe Books 1993), and is the author of New Relations. The|
Refashioning Of British Poetry 1980-1994 (Seren 1996).

Figure 1.6: An example of the name ambiguity. There are many “Kennedy’s’ (in italic font) in
the three documents.

Thereislittle previouswork we know of that directly addresses the problem of cross-document
entity identification from their proper namesin a principled way, but some problemsrelated to the
general entity disambiguation and identification problem have been studied.

From the natural language perspective, there has been alot of work on the related problem of
co-reference resolution (Soon, Ng, & Lim, 2001; Ng & Cardie, 2003; Kehler, 2002). The goal is
to link occurrences of noun phrases and pronouns, typically occurring in a close proximity within
a few sentences or a paragraph, based on their appearance and local context. Machine learning
approaches to this problem first convert the local information into a set of features and then make
use of a supervised |earning approach to determine whether a given pronoun correspondsto agiven
noun phrase. Approaches differ in the algorithm used and features extracted.

In the context of databases (Cohen & Richman, 2002b; Hernandez & Stolfo, 1995a; Bilenko
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& Mooney, 2003; Doan, Lu, Lee, & Han, 2003) severa works have looked at the problem of
record linkage - recognizing duplicate records in a database. (Pasula, Marthi, Milch, Russell, &
Shpitser, 2002) considers the problem of identity uncertainty in the context of citation matching
and suggests arelational probabilistic model. Other machine learning techniques(Cohen & Rich-
man, 2002b; Bilenko & Mooney, 2003; Doan, Lu, Lee, & Han, 2003) to this problem are similar
to the approaches used for co-reference resolution. They usually consider a pair of records and
extract from the pair features that capture their similarity. The classifier is thus a parameterized
similarity function that is trained given a set of annotated examples. That is, the pairs are labelled
as matching or non-matching tags, and training serves to choose the parameters that optimize some
loss function. Learning-based similarity metrics vary in their selection of features, hypotheses and
learning a gorithms.

A few works address some aspects of the cross-document entity identification problem with
text data and study it in a across-document setting (Mann & Yarowsky, 2003; Bagga & Baldwin,
1998; McCallum & Wellner, 2003; Gooi & Allan, 2004). (Mann & Yarowsky, 2003) considers
one aspect of the problem — distinguishing occurrences of identical namesin different documents,
and only for one type of entity — people. That is, they consider the question of whether occur-
rences of “Jim Clark” in different documents refer to the same person. Their method makes use
of “people-specific’ information and may not be applied easily to other types of entities and other
aspects of the cross-document entity identification problem. (Bagga & Baldwin, 1998) builds a
cross-document system based on an existing co-reference resolution tool, Camp. It extracts al
the sentences containing an entity as a representation of the entity, and then applies a vector space
model to compute the similarity between two such representations. Clustering isused subsequently
to group entities in different documents into global co-reference chains. (McCallum & Wellner,
2003) uses a conditional model to address the problem of co-reference across documents. This
work takes a more global view in that it defines a conditional probability distribution over par-
titions of mentions, give all observed mentions. The derived pairwise classification function that

decides whether two names match islearned in a supervised manner, based on a maximum entropy
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model. However, this model does not incorporate contextual information and cannot resolve the

ambiguity at the level we expect to.

1.1.4 Semantic Integration Across Text and Databases

In addition to entity identification in text, we also study a more complex problem: semantic in-
tegration across unstructured text and structured databases. The goal of thistask is to implement
intelligent accessto textual information from adifferent perspective, by combining efficient access
mechanism in relational databases with a greater amount of textual information. Moreover, many
real-world applications increasingly involve both structured data and text. A given real-world en-
tity is often referred to in different ways, such as “Helen Hunt”, and “Mrs. H. E. Hunt”, both
within and across the structured data and the text. Due to this semantic heterogeneity, it remains
extremely difficult to glue together information about real-world entities from the available data
sources and effectively utilize both types of information.

Resolving semantic heterogeneity across text and databases brings several significant benefits:

e Entity Consolidation: Many applications significantly benefit from being able to retrieve all
information related to a given real-world entity, be it from text or structured data. Solving the
above problem would immediately provide a solution: retrieve all mentions that belong to the
given entity.

e Improve Record Linkage: Record linkage typically treats each relational tuple as a description
of aprimary entity, then triesto link tuples that describe the same entity within asingle table, or
across different tables. For example, given table Actor in Figure 5.1, it may attempt to decide if
the first and second records refer to the same actress, and so on. Thus, conceptually it matches
mentions that occur only in certain attributes (e.g., name of Actor). Even when an applica-
tion deals only with databases, it can still leverage text in the same domain to improve record

matching, if it can link mentions across databases and text.

e Improve Text Related Tasks: Conversely, problemson the text side, such asinformation extrac-
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tion, question answering, and cross-document entity identification (Li, Morie, & Roth, 2004b),
rely strongly on the ability to accurately match mentionsin text. This, in turn can benefit from

any available structured data.

e Mining across Text and Databases. The ability to link mentions can be leveraged to enable
discovering groups of related entities, retrieving all entities that satisfy certain conditions and
finding rel ationships among entities. So far, these have been limited to either on text or structured

data.

Matching mentions can also enable new types of queries over the linked mentions graph, or im-

proved information retrieval on both text and databases.

1.2 Supervised and Unsupervised L earning

A very genera definition of a learning problem given by Tom Mitchell (Mitchell, 1997) is as

follows:

Definition 1.2.1 A computer program is said to learn from experience E with respect to some
class of tasks 7" and performance measure P, if its performance at tasks in 7', as measured by P,

improves with experience E.

Usually, the choosing of the representation of the possible target (hypotheses, e.g. linear func-
tions, DNF rules or others), the format of the experience (training examples), the performance
measure and the learning algorithm, decides the learning process. Therefore, many learning prob-
lemsfall into this general definition, but differ in different targets, different experiences, different
performance measures and algorithms.

The advantage of machine learning techniques in most of these task, is that a system can auto-
matically learn rules or discriminative and probabilistic models, with the help of limited training
examplesin the domain, that can accurately formalizes a problem and can be used for future pre-

diction. Intext categorization (Zhang & Oles, 2001), as an instance, a classifier (usually afunction
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defined over some informative features of an article) that can precisely categorize a set of training
articles, is chosen for classifying new articles. In addition, machine learning techniques are very
flexible in the sense that for a new problem, a new classifier for a new problem can be trained
in a data-driven way, without the cost of rebuilding everything as manually-designed heuristic
approaches.

True class labels of training examples are usually annotated or provided by domain experts
according to their understanding of the problem, and serve as supervision in training. Depending
on whether the training examples are labeled (the class label of each example in known) or un-
labeled, machine learning techniques are categorized into the classes of supervised learning and
unsupervised learning. However this process of acquiring supervision is typically unrealistic or
very time-consuming in some problems. In the above example of text categorization, thousands
of articles are required to be first annotated as related to different topics and then are used to train
some accurate classifiersfor new articles. Therefore, when the classlabels of training examplesare
hard to acquire, clustering approaches (Brown, deSouza R. Mercer, Pietra, & Lai, 1992; Dagan,
Lee, & Pereira, 1999; Kamvar, Klein, & Manning, 2002) are usually exploited as an unsupervised
approach — an optimization procedure that classify a set of elements to optimize some criteria
designed on the basis of the commonality and difference between language components, without
exploiting the true labels of these elements. Clustering approaches have been widely applied in
natural language processing and it has been shown repeatedly that its success depend on defining
agood (similarity) distance metric to measure the commonality of language components, one that
is appropriate for the task and the clustering al gorithm used.

In thisthesis, we study the problem of how to apply learning techniquesto entity identification.
As we will show, a set of commonly used learning techniques such as classification, clustering
and generative probabilistic models can achieve decent performance in this domain. Moreover,
we develop some new approaches based on the existing learning techniques that can significantly

improve the performance.
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1.2.1 Classification

One of the approach to perform syntactic and semantic abstraction of text fragments is classifi-
cation: Given a set of labeled training examples S, the goal is to seek a hypothesis (classifier)
h:X —C=1{1,2,---, K} inahypothesis space H that can map each examplez € X toaclass
index h(z) € C. When K = 2, it becomes a binary classification task (C' = {0, 1} in this case),
compared with the multi-class classification task when K > 2. Each element z € X isrepresented
as afeature vector r =< vy, vq,--- ,v,, >. Features are a set of attributes that are chosen to de-
scribe a data element. For example, color can be used to describe clothes, while temperature and
precipitation can be used to describe weather. Features are usually converted into numeric values
in ahypothesis.

A hypothesis is typically parameterized as a function over a set of features. For example, a
linear threshold hypothesis is defined as h(z) = I(>, w; - v;) > T where T is a real-valued
threshold, where I(true) = 1 and I( false) = 0 is an indicator. How to get informative features
that can accurately reflect some property of an object is one of the most critical problems in a
text-related learning tasks.

A target function p gives the true labeling of each data element « € X, where p(z) isthe true
label of z. p may or may not belong to the hypothesis space. In this sense, the learning procedure
in classification is to find a hypothesis i in H to approximate p. The part-of-speech tagging,
named entity recognition, text categorization and question classification can all be formalized asa
multi-class classification task.

After the hypothesis space H (afamily of candidate learning targets) is decided, each hypoth-
esish in H istypically represented as a parameterized function over the feature vector. The most
commonly-used performance measure is the (empirical) classification accuracy: given a set of
labeled elements S = {x;, p(z;)}7, the accuracy accs(h,p) = + 3, o I(h(x) = p(x)). Ina
supervised setting, supervision (e.g. the true class labels) is exploited in measuring this accuracy,

and thus incorporated into the training process. The goal of training in classification is to seek the
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best parameters for the function that can maximize the classification accuracy on the training set
S.

One example of text-related classification tasks is that of learning a question classifier (Li &
Roth, 2002). Recent works (Hovy, Gerber, Hermjakob, Lin, & Ravichandran, 2001; Moldovan,
Pasca, Harabagiu, & Surdeanu, 2002) in open-domain question answering have shown that lo-
cating an accurate answer hinges on first filtering out a wide range of candidates based on some
categorization of answer types given a question. For example, we hope to know that the question
Q: What Canadian city has the largest population?, asksfor acity; and Q: What is a prism?, asks
for a definition of a “prism”. This kind of semantic understanding and abstraction is performed
by classifying a question into more than 50 semantic categories. (Li & Roth, 2002) attempts to
learn alinear classifier with about 5, 500 manually labeled questions based on the SNoW learning
algorithm. It exploits different types of syntactic features such as words and phrases, and semantic

features such as named entities in a question.

Spar se Network of Winnows (SNoW)

SNoW # (Sparse Network of Winnows)(Roth, 1998; Carlson, Cumby, Rosen, & Roth, 1999) is a
multi-class learning architecture that is specifically tailored for large scale learning tasks and will
be applied to the entity identification task later in our approaches. It learns a two-layer sparse
network of linear functions, where nodes in the first layer (feature nodes) represent the input fea-
tures, and the nodes in the second layer (target nodes) represent the target classes, which are linear
functions over acommon feature space. The weights of the linear functions are stored on the links
between the target nodes and feature nodes. The network is sparse in that alink only appear when
the corresponding feature is active often enough given the target class in training examples.
SNoW is built on a feature efficient learning algorithm, Winnow (Littlestone, 1989) that is
suitable for learning in NL P-like domains, where the number of potential featuresisvery large, but

only afew of them are active in each example, and only asmall fraction of them are relevant to the

4available at http://12r.cs.uiuc.edu/~cogcomp/
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target concept.

While SNoW is usually used as a classifier and predicts using a winner-take-all mechanism
over the activation values of the target classes, the activation values can also help in estimating
the posteriors of each class given the features. The raw activation value SNoOW outputs is the
weighted linear sum of the features. It can be verified that the resulting values are monotonic with
the confidence in the prediction. Moreover, when it istrained to classify whether a pair namesrefer
to the same entity, the activation can be converted into a similarity metric between the two names
too.

SNoW has already been used successfully for avariety of tasksin natural language and visual
processing (Golding & Roth, 1999; Roth, Yang, & Ahuja, 2000; Roth, Yang, & Ahuja, 2002).

1.2.2 Clustering

While classification is usually used as a supervised learning task — examples of all the classes
and labels should occur in the training set to get a reasonable classification accuracy, clustering
is always viewed as an unsupervised learning approach. Clustering is the task of partitioning a
set of elements into a disjoint decomposition (partition) >. When supervision (e.g. class index of
elements) isunavailable, the quality of apartition function, is measured with respect to the distance
metric defined over the data space.

Clustering approaches have been widely applied to natural language processing (NLP) prob-
lems. Typically, natural language elements (words, phrases, sentences, etc.) are partitioned into
non-overlapping classes, based on some distance (or similarity) metric defined between them, in
order to provide some level of syntactic or semantic abstraction. A key exampleis that of class-
based language models (Brown, deSouza R. Mercer, Pietra, & Lai, 1992; Dagan, Lee, & Pereira,
1999) where clustering approaches are used in order to partition words, determined to be similar,
into sets. This enables estimating more robust statistics since these are computed over collections

of “similar” words. A large number of different metrics and algorithms have been experimented

5Overlapping partitions will not be discussed here.
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on these problems (Lee, 1999; Lee, 1997; Weeds, Weir, & McCarthy, 2004). Similarity between
words was also used as a metric in (Pantel & Lin, 2002), which used it in a distributional clus-
tering algorithm and to show that functionally similar words and can be grouped together and
even separated to smaller groups based on their senses. At a higher level, (Mann & Yarowsky,
2003) disambiguated personal names by clustering people’s home pages using a TFIDF similarity,
and several other researchers have applied clustering at the same level in the context of the en-
tity identification problem (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003; McCallum &
Wellner, 2003; Li, Morie, & Roth, 2004a). Similarly, approachesto coreference resolution (Cardie
& Wagstaff, 1999) use clustering to identify groups of references to the same entity.

Clustering methods for the most part occur as an optimization procedure that takes as input
(1) a collection of domain elements along with (2) a distance metric between them and (3) an
algorithm selected to partition the data elements, with the goal of optimizing some form of clus-
tering quality with respect to the given distance metric. For example, the K-Means clustering
approach (J. Hartigan, 1979) seeks to maximize the well-defined tightness of the resulting clusters
based on the Euclidean distance. It istypically called an unsupervised method, since data elements
are used without labels during the clustering process and label s are not used to provide feedback to
the optimization process. E.g., labels are not taken into account when measuring the quality of the
partition. However, in many cases, supervision isused at the application level when determining an
appropriate distance metric (e.g., (Lee, 1999; Weeds, Weir, & McCarthy, 2004; Bilenko, Mooney,

Cohen, Ravikumar, & Fienberg, 2003) and more).

1.2.3 Probabilistic Model Estimation

In addition to discriminative approaches such aslearning afeature-based function for classification
and distance-based clustering algorithms, another major category of learning approaches for text
understanding and mining tasks are estimation and inference with probabilistic models. Some
characteristics of probabilistic modeling and inference are: (1) prior knowledge about the specific

problem can be expressed as the prior probabilistic correlation between different events, or as
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structures between a collective of related variables; (2) global inference can be made over this set
of related variables or based on the structure underlying these variables; and (3) decisions made
over classification and clustering generate some probabilistic semantic interpretation.

To introduce generative models and probabilistic model estimation, we assume some standard
definitions from probability theory (Bickel & Doksum, 1977) and (Collins, 1999). If theset ( isa
discrete event space, and P isaprobability distribution over this space, then (1) 0 < P(A) < 1 for
al A€ (;(2) >4 P(A) = 1. In most examples the probability measure will be parameterized:
i.e., P will also be afunction of some parameters ¢. Then the probability of event A given some
parameter setting 6 as P(Af). The parameter space 2 isthen the space {6| P(A|6) isaprobability
measure over (}. Asan example, take the case of flipping a coin that can appear as either heads
(H) or tails (T'), where the probability of it producing as headsis p. In the case:

e Theevent space( istheset {H,T'}.

e The set of parameters ¢ has asingle element, p.

e The probability measure P(A|f) isdefinedaspif A=H,1—-pif A="T.

e The parameter space (2 is the set [0, 1] (p must take some real value between 0 and 1 for

P(A|0) to be aprobability measure).

Generative M odels

A more example is the case of flipping multiple coins, corresponding to a generative mixture
model.

Suppose we use two different coins to generate a flip. The probability of getting a head using
coinl isp, whilethat using the coin Il isq. For the flip, wefirst choose a coin with probability » to
becoinl and 1 — r to be coin 11, then we flip the chosen coin to produce a head or tail. In this case:

e Theevent space ( isstill theset { H,T'}.

e The set of parameters # now have three elements. p, ¢ and r — the prior probability of
choosing coin 1.

e The parameter space (2 isthe set [0, 1] (p,¢ and r must take some real value between 0 and
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1 for P(A|0) to be a probability measure).

e The probability measure P(A|#) ismuch morecomplex. P(A|f) isrp+ (1 —r)qif A= H,
r(l—p)+(1—-r)(1—¢q)ifA=T.

The distribution over A is a probabilistic mixture model since we use two individual models
(two coins), with different head-generating probabilities p and ¢, to generate the outcome. The
mixture parameters for the two models are » and 1 — . When the probability of choosing each
model isequally likely, that is, P(choosingModeli) = 1/K (1 < i < K) for K models, thewhole
model becomes a uniform mixture model. Given the model —model parameters are known, we can
make inference over complex events, e.g., what is the most likely outcome when generating four
flips by repeating the above process.

In addition to inference, a more difficult problem is how to estimate model parameters 6
given observations. Assuming we observe a sequence of n events S =< xy,29,- -+ , 1, >,
drawn from . For example, suppose somebody flips the one coin with an unknown probabil-
ity p = P(H|thiscoin) four times, and get A = HTTT. Can we estimate p according to this
observation ? One commonly used solution to model parameter estimation is maximum likelihood

estimation.

Maximum Likelihood Estimation

The maximum likelihood estimation (Dempster, Laird, & Rubin, 1977; Collins, 1999) seeks the
parameter Q/M\L that can generate the observation with the highest probability. Assuming that the

individual events are independent of each other, the likelihood function, L, is defined as

L(S|0) = [] Pail0). (1.1)
i=1-n
The maximum likelihood estimate GM/\L is the parameters in Q) that maximizes this likelihood
function:

—

Onrr, = argmazgeqL(S]0). (1.2

21



In the coin example, the likelihood of the sample S =< HTTT > is
L(S10) = p(1 - p)*

and the maximum likelihood estimate of p is

~ 1
p = argmazyciop(l — p)° = 1

Maximum likelihood estimation can be easily computed in many cases when the class labels
(the index to the individual model used to generate an event) of data elements are observed and
given. |.e., itisknown that which coin has been used to generate aflip. For complex mixture mod-
els, where the model sthat generating the a sequence of observations are unknown, the Expectation-

Maximization (EM) algorithm is generally used to perform maximum likelihood estimation.

EM algorithm

The EM algorithmistypically viewed as an approach for learning a probabilistic mixture model in
an unsupervised setting (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997; Fried-
man, 1998). The core ideaisto iteratively seek model parameters that achieve a local optimum
of the expected log-likelihood of a set of observed elements when the data is incomplete or has
missing values.

Suppose a probabilistic mixture model (e.g., Gaussian mixture model), parameterized with 6 €
(2, definesaprobability distribution P over X xC' = {1,2,---, K}. Thatis, the probability of each
dataelement = € X belongsto aclassp(z) € C isassociated with a probability P(z, p(z) = i|6).
The complete log-likelihood of generating any set of labeled elements (S, P(S)) = {x;, p(z;)}}
from X x C (i.i.d. sampled), is defined as:

LL(S, P(5)|0) = log[Ilyes P|x;, p(x:)|0]] (1.3)
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where p(S) isapartition of S and p(z;) € C isthe corresponding classindex of z;. Suppose S is
observed but the true labeling p(.S) is unknown, the standard EM attempts to estimate §* in which

the expected log-likelihood is optimized:

0" = argmax E[LL(S,p(S)|0)] (1.4)

e

Instead of the expected log-likelihood directly, the practical EM algorithm chooses to itera-
tively update model parameters, to optimize an intermediate function. A Q function is defined to
relate 60~ — the current parameters estimates, and # — the new parameters to be optimized to
increase (:

Q(#,0""V) = EllogPr(S, P(S)|0)|S, 00V (1.5)

After randomly initializing the model parameters to be #°, the practical EM agorithm iterates
over the following two steps: the E-step (Expectation) which evaluates (Q(6, 6 1)); and the

M-step (Maximization) which seeks the new parameters that can maximize the expectation, st.,

%) = argmazgeqQ(6; 00V) (1.6)

Each iteration is guaranteed to increase the expected log-likelihood, and thus the algorithm will

converge to alocal maximum of the likelihood function.

1.3 ThesisContribution

Thisthesis systematically studies the fundamental problem toward concept-based text understand-
ing and mining — identifying whether ambiguous names in text, within and across documents,
refer to the same real-world concept. We study and propose different machine learning techniques
to address different aspects of this problem and show that as moreinformation can be exploited, the

learning techniques devel oped accordingly, can continuously improve the identification accuracy.
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Our first model is a discriminative approach that models the problem as deciding whether any
two names mentioned in a collection of documents represent the same entity. This straightforward
modelling of the problem resultsin a classification problem — as has been done by several other au-
thors (Bilenko & Mooney, 2003; Cohen, Ravikumar, & Fienberg, 2003a) — allowing usto compare
our results with these. This is a standard pairwise classification task, under a supervised learn-
ing protocol; our main contribution in this part is to show how relational — string and token-level
features — and structural features, representing transformations between names, can significantly
improve the performance of this classifier. A similarity metric between different types of names
can be directly induced from the pairwise classification and being applied to global identification
over a set of names.

Several attempts have been made in the literature to improve the results by performing some
global optimization (i.e. clustering), with the above mentioned pairwise classifier as the similarity
metric. The result of these attempts were not conclusive and we provide some explanation for
why that is. We prove that, assuming optimal clustering, clustering reduces the error of a pairwise
classifier in the case of two classes (corresponding to two entities); however, in the more general
case, when the number of entities (classes) isgreater than 2, global optimization mechanisms could
be worse than pairwise classification. Our experiments concur with this proof.

We further analyze the setbacks of these clustering approaches, and propose our second ap-
proach — a new clustering framework, to resolve them. Clustering is an optimization procedure
that partitions a set of elements to optimize some criteria, based on a fixed distance metric defined
between the elements. It has been shown repeatedly that its success depends on defining a good
distance metric — one that is appropriate for the task and the clustering algorithm used. Many
recent works have made contributions in the direction of automatically learning a metric with su-
pervision, but suffer some limitations. In order to resolve them, in this work we develop a unified
framework for clustering, guided by supervision. The proposed supervised discriminative cluster-
ing framework (SDC) targets learning a partition function, parameterized by any chosen clustering

algorithm, to minimize the clustering distortion from given supervision. A general learning al-
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gorithm is also developed under this framework, that can be used to learn an expressive distance
function over a feature space. Moreover, a theoretical and empirical study compares SDC with
multiple variants of EM and existing metric learning approaches. Our experiments on entity iden-
tification task show that SDC which trains asimilar metric for a chosen clustering can significantly
outperforms existing clustering approaches, and other metric learning approaches where clustering
isdigoint from the metric learning procedure.

This observation motivates our third approach. We develop aglobal probabilistic model for En-
tity Identification, at the heart of which isaview on how documents are generated and how names
(of different entity types) are “sprinkled” into them. Inits most general form, our model assumes:
(1) ajoint distribution over entities, so that adocument that mentions “ President Kennedy” ismore
likely to mention “Oswald” or * White House” than “Roger Clemens’; (2) an “author” model, that
makes sure that at least one mention of a name in adocument is easily identifiable (after all, that’'s
the author’s goal), and then generates other mentions via (3) an appearance model, governing how
mentions are transformed from the “ representative” mention. Thiswork presents the first study of
our proposed model and several relaxations of it. Our goal isto learn the model from alarge corpus
and use it to support Entity Identification in Text. Given a collection of documents we learn the
model in an unsupervised way; that is, the system is not told during training whether two mentions
represent the same entity.

In our experimental study we evaluate different models on the problem of the cross-document
identification for three entity types. People (Peop), Locations (Loc) and Organizations (Org). Our
experimental results are somewhat surprising; we show that the unsupervised approach can solve
the problem accurately, giving accuracies (F;) around 90%, and better than our discriminative
classifier (obviously, with alot more data).

In addition, we extend our global probabilistic model to address a significant application — se-
mantic integration between text and databases. Many real-world applications increasingly involve
a large amount of both structured data and text. The reason is two-folded. First, certain kinds

of information are best captured in structured data, and other kinds in text. Second, the informa-
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tion required for the application may need to be assembled from many sources, some of which
contribute to structured data, and others to text. Examples of such applications arise in numer-
ous domains, including enterprizes, government agencies, civil engineering, bioinformatics, health
care, personal information management, and the World-Wide Web. However, effectively utilizing
both structured data and text in the above applications remains extremely difficult. A major reason
is semantic heterogeneity, which refers to the variability in writing real-world entities in text and
in structured data sources, or to using the same mention to refer to different entities.

Thispaper describesthe MEDIATE system which automatically matches entity mentionswithin
and across both text and databases. The system can handle multiple types of entities (e.g., people,
movies, locations), is easily extensible to new entity types, and operates with no need for anno-
tated training data. Given arelational database and a set of text documents, MEDIATE learns from
the data a generative model that provides a probabilistic view on how a data creator might have
generated mentions, then appliesit to matching the mentions. The model exploitsthe similarity of
mention names, common transformations across mentions, and context information such as age,
gender, and entity co-occurrence.

Based on the work of globally identifying real-world entities from a large collection of doc-
uments (for example, everyday news articles or the whole set of online web pages), our ultimate
goadl isto design and implement a unified framework for intelligent access of textual information.
For this purpose, we perform a case of applying concept-level information in search engines and

show promising perspective of concept-based text understanding and mining.

1.4 Outlineof thisThess

The rest of thisthesisis organized as follows:
Chapter 2 gives a detailed introduction to the problem of learning a metric to capture the simi-
larity between names of different types of entities and describes our approach in doing that which

is based on pairwise classification with local features of names, both relational and structural fea-
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tures. It also studies some natural clustering approaches that are built on the similarity metric
learned in this setting.

Chapter 3 introduces our new, supervised discriminative clustering framework, as well as a
genera learning agorithm to train a metric for any chosen clustering algorithm (i.e. K-means,
single-linkage and so on), guided by supervision given in the context of a given task. We study
this framework theoretically by comparing with the EM algorithm, and empirically by comparing
it with existing approaches both on some generated data, and on the real corpus of entity identifi-
cation.

In Chapter 4, we design a generative probabilistic model for the same problem and show how
to learn the three models, which are different relaxations to the basic model, in a completely
unsupervised setting. 1n addition, we compare the pairwise classification and clustering approaches
with the generative models, and further analyze the difference between them.

Chapter 5 studies an important application of our generative approach to the problem of se-
mantic integration across text and databases.

In the end, Chapter 6 presents our thoughts about what concept-based text understand and
mining would look like and performs a case study of exploiting concept-level information to help
search engines. It also introduces the future steps beyond resolving the name ambiguity and sum-

marize thisthesis.
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Chapter 2

L earning to Measure Name Similarity

Entity identification in text is the task of identifying whether names, within and across documents,
refer to the same real-world concept. One type of information that is very critical to this problem
is the appearance similarity between names, that is, whether two names themselves are similar or
not without considering other information. Although sometimes the same name, like “Kennedy”,
could refer to different entities in different contexts of the text, the general intuition is still that
similar names tend to refer to the same entity, while different names tend to refer to different
entities. For this reason, we study in this chapter the influence of appearance similarity over entity
identification.

Most prior work (Durban, Eddy, Krogh, & Mitchison, 1998; Monge & Elkan, 1996a; Jaro,
1995; Jaro, 1989; Winkler, 1999) in this direction focus on manually designing “good” string-
or token-based metrics for measuring the appearance similarity between names, such as edit dis-
tance. (Cohen, Ravikumar, & Fienberg, 2003a) compared experimentally a variety of string sim-
ilarity metrics on the task of matching entity names and found that, overall, the best-performing
method is a hybrid scheme (SoftTFIDF) combining a TFIDF weighting scheme of tokenswith the
Jaro-Winkler string-distance scheme. Although this is a fixed scheme, the threshold used by the
Soft TFIDF classifier istrained. Machine learning techniques (Bilenko & Mooney, 2003; Bilenko,
Mooney, Cohen, Ravikumar, & Fienberg, 2003; Ristad & Yianilos, 1998) have been recently ap-
plied to automatically learning a metric based on a set of features extracted from the names, that

are informative in measuring the similarity or difference. In most cases, a parameterized simi-
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larity function is trained given annotated examples (i.e., pairs of names labelled as matching or
non-matching entities). However, different learning-based similarity metrics may vary in their se-
lection of features, parameterizations and learning algorithms. A pairwise classifier that can tell
whether any two names refer to the same entity can be constructed naturally by thresholding the
similarity between them.

Our first approach (Li, Morie, & Roth, 2004b) for entity identification is a discriminative ap-
proach following this general direction, that models the problem as that of deciding whether any
two names mentioned in a collection of documents represent the same entity, based on the appear-
ance similarity between the two names. This straightforward modelling of the problem resultsin
a classification problem — as has been done by several other authors (Cohen, Ravikumar, & Fien-
berg, 2003a; Bilenko & Mooney, 2003) — allowing us to compare our results with these. Thisisa
standard pairwise classification task, and a classifier for it can be trained in a supervised manner;
our main contribution in this part is to show how relational (string and token-level) features and
structural features, representing transformations between names, can improve the performance of
this classifier. A similarity function between names can be naturally induced from the confidence
of the prediction of the pairwise classifier.

Several attempts have been made in the literature to improve the results of a pairwise classifier
of thissort by performing some global clustering, with the pairwise classifier asasimilarity metric.
The results of these attempts were not conclusive and we provide some explanation for it. First,
we show that, in general, a clustering algorithm used in this situation may in fact hurt the results
achieved by the pairwise classifier. Then, we argue that attempting to use alocally trained pairwise
classifier as a similarity metric might be the wrong choice for this problem. Our experiments
concur with this. However, as we show, splitting data in some coherent way — e.g., to groups of
documents originated at about the same time period — prevents some of these problems and aids
clustering significantly.

In Section 2.1, we further discuss and summarize variousfixed metrics for measuring string and

name similarity. In Section 2.2, we describe one |earning technique that can be applied to acquiring
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adaptive similarity metrics for each particular task, which is based on pairwise classification of
names. The learned similarity metric is then applied to a clustering task in Section 2.3, that can
perform some global optimization over entity identification — partitioning a set of names altogether,

according to the entities.

2.1 Measuring Name Similarity

Each entity name can be viewed as a string or a token vector. Due to this difference in repre-
sentation, the similar metrics between names can be categorized into three types. (1) string-based
similarity metrics; (2) token-based similarity metrics; and (3) hybrid metrics of strings and tokens.

One of the most common string-level similarity metrics (Cohen, Ravikumar, & Fienberg,

2003a) is edit distance:

Definition 2.1.1 Consider any two names z, x5 as sequences of characters < c¢;¢y - - - ¢, > and
< cicy---e >. A few transformation operations from one name to another as follows: delete
— delete a character from x; insert — insert a character to some position in z; and substitute
— change a letter to a different one. Any string can be transformed to another string through a
sequence of these operations Q(x;) =< opy,0ps, -+ - ,0p; > and @ is not unique for most pairs
of strings. The cost of () is typically defined as || = ¢, where ¢ is the number of operations

performed. The edit distance dist.q(x1,x2) between z; and x5 is defined as:
disteq(x1,22) = minQ(x1) = xs. (2.1)

The standard edit distance— Levenstein distance, assignsaunit cost to all edit operationsand is
symmetric between two strings. That is, disteq(x1, ) = disteq(x2, x1) fOr any zy, xo. Thereisan

efficient recursive procedure to compute dist .4(x1, z2). Let D(zq, x2, 1, j) denote the edit distance
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between thefirst i lettersin x, and thefirst j lettersin z,. Then we have,

D(xlax% 070) = 07 (22)
and
.
D(xy, 29,0 — 1,7 —1) if ¢; = ¢; and you copy c; to ¢'y;
D(zy, 39,1 — 1,5 — 1)+ 1 if letter ¢; is substituted for s;;
D(x17x27i7j) - (23)
D(xy,z9,1,5 — 1) if letter ¢; isinserted;
D(.Z’l,x'z,i— ]_,]) if letter s; isdeleted.

\

Some variations of edit distance metrics are Smith-Waterman (Durban, Eddy, Krogh, & Mitchi-
son, 1998) distance and Monger-Elkan distance (Monge & Elkan, 1996a), which adopt particular
but non-uniform cost parameters for different editing operations. In the record-linkage domain, a
broadly used similar metric is the Jaro metric (Jaro, 1995; Jaro, 1989), which is not based on an
edit distance model. Instead, it is defined over the number and order of the common characters
between two strings. A variant of Jaro metric was proposed by Winkler in (Winkler, 1999).

There is another set of distance metrics which treat each name as a sequence of tokens. For
example, the name*“ John F. Kennedy” isrepresented as <’ John',' F.",) Kennedy' >. Thedistance
metrics are defined based on the common tokens inside two names, and the tokens are weighted
differently according to some statistical models like TFIDF (Salton, 1988). Some other metrics
like Jensen-Shannon distance (Borovkov, 1984) assume that there are some underlying probability
distribution over tokens and measure the probability of two names matching based on it.

The third category of distance metrics are hybrids of the previous methods. Unlike the token-
level metrics, which ignore different but similar tokens in two names, they count on these tokens
in the measurement. For example, athough “University of Illinois’” and “University of 1ll.” have

different tokens, the hybrid metrics still consider these two words as matching, dueto the similarity
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between “Illinois’ and “111.”. The state-of-art distance metric evaluated in (Cohen, Ravikumar, &
Fienberg, 2003a) isa hybrid scheme (SoftTFIDF) combining a TFIDF weighting scheme of tokens

with the Jaro-Winkler string-distance scheme.

2.2 AdaptiveDistance Metrics

A good distance (similarity ) metric between names is one in which close proximity correlates
well with the likelihood of being in the same class when applied in the entity identification task.
A lot of recent works (Winkler, 1999; Cohen & Richman, 2002b; Cohen, Ravikumar, & Fienberg,
2003b; Cohen, Ravikumar, & Fienberg, 2003a) formalize the entity identification as a pairwise

classification as follows:

Definition 2.2.1 The goal of entity identification is to seek a pairwise function f : X x X — {0, 1}
which classifies two strings (representing entity writings) in the name space X, as to whether they

represent the same entity (1) or not (0).

A direct solution to this problem is to build a pairwise classifier through thresholding the name

similarity between two names:
f(Z‘l,.Z'Q) =1 <— d(l‘l,l'g) <T (24)

where T isathreshold and 7" > 0.

The classification accuracy for a classifier can be computed over al pairs of names in a test
set and is used to evaluate the “goodness’ of a similarity metric. Many experiments (Cohen,
Ravikumar, & Fienberg, 2003b; Cohen, Ravikumar, & Fienberg, 2003a; Ristad & Yianilos, 1998)
have shown the distance metrics suitable for matching names in different domains could be very
different from each other. Even the distance metric performsthe best in one data set could perform
much worse in another data set of a similar but different domain. Thisis because the writing style

of names tend to follow different rules in various domains and situations. For example, person
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names in the news articles of different news agencies might have different forms.

Machine learning techniques (Bilenko & Mooney, 2003; Bilenko, Mooney, Cohen, Ravikumar,
& Fienberg, 2003; Ristad & Yianilos, 1998) have been recently applied to automatically learning a
metric in the context of a specific domain. These works have shown that the learned distance met-
rics in a specific domain tend to outperform the fixed metrics. For example, (Ristad & Yianilos,
1998) provides a stochastic model for the string edit distance. Each editing operation is associ-
ated a probability obtained from a learning process. A global model defines the probability of a
string being transformed from ancther. In the application of learning the pronunciation of words
in conversational speech, the learned edit distance has only about one fifth the error rate of the
fixed Levenstein distance. (Bilenko & Mooney, 2003) proposed alearning framework (Marlin) for
improving entity matching using trainable measures of textual similarity. They compared alearned
edit distance measure and a learned vector space based measure that employs a classifier (SVM)
against fixed distance measures (but not the one mentioned above) and showed someimprovements
in performance.

We propose a learning approach, LMR 1, that focuses on representing a given pair of names
using acollection of relational (string and token-level) and structural features. Over these we learn
a linear classifier for each entity type using the SNoW (Sparse Network of Winnows (Carlson,
Cumby, Rosen, & Roth, 1999) as described in Section 1.2.1) learning architecture. A feature
extractor? automatically extractsfeatures in a data-driven way for each pair of names. Our decision

isthus of the form:

f(-'L’l,l'Q) arg max f (-T1,1'2 = ag max sz cfz (25)

ce{0,1} ce{0, 1}

where w; . isthe weight of feature f;(1 < ¢ < m) inthefunction f¢(xy, x2).

INamed after theinitials of the designers’ last names.
2We use FEX, afeature extractor tool available from http://L 2R.cs.uiuc.edu/~cogcomp/cc-software.html.
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Figure 2.1: An example of feature extraction. There are two possible features (Equality and Ini-
tial) for token one in the smaller partition but only the higher priority Equality feature is activated.

2.2.1 Feature Extraction

An example is generated by extracting features from a pair of names. Two types of features are
used: relationa features representing mappings between tokens in the two names, and structural
features, representing the structural transformations of tokensin one name into tokens of the other.
Each name is modelled as a partition in a bipartite graph, with each token in that name as a
vertex (see Figure 2.1) and there is a solid directed edge between two tokens (from the vertex in
the smaller partition to the vertex in the larger one) which activates a token-based feature for the
two names. At most one token-based relational feature is extracted for each edge in the graph,
by traversing a prioritized list of feature types until afeature is activated; if no active features are
found, it goes to the next pair of tokens. This scheme guarantees that only the most important
(expressive) feature is activated for each pair of tokens. An additional constraint isthat each token
in the smaller partition can only activate one feature. If aparticular token in the smaller bipartition
did not activate any features, then a “null” feature is activated for that token. We define thirteen
types of token-based features, shown in the priority order as described above. See Figure 2.1.
Relational features are not sufficient, since a non-matching pair of names could activate exactly
the same set of features as a matching pair. Consider, for example, two names that are all the same
except that one has an additional token. Our structural features were designed to distinguish be-

tween these cases. These features encode information in the relative order of tokens between the



Honorific Equal active if both tokens are honorifics and identical.
Honorific Equivalence active if both tokens are honorifics, not identical, but equivalent.
Honorific Mismatch active for different honorifics.
Equality active if both tokens are identical.
Case-Insensitive Equal active if the tokens are case-insensitive equal.
Nickname active if tokens have a“nickname” relation.

Prefix Equality active if the prefixes of both tokens are equal.
Substring active if one of the tokens is a substring of the other.
Abbreviation active if one of the tokens is an abbreviation of the other.
Prefix Edit Distance active if the prefixes of both tokens have an edit-distance of 1.

Edit Distance active if the tokens have an edit-distance of 1.
Initial active if one of the tokensis an initial of another.
Symbol Map active if one token isa symbolic representative of the other.
Structural recording the location of the tokens that generate other features in two names.

Table 2.1: Featuresemployed by LMR and SDC.

two names, by recording the location of the participating tokens in the partition. Thisresultsin a
more expressive feature set, because the same feature activated by two sets of tokenswith different
relative positions can be distinguished from each other. E.g., for the pairs (* John Kennedy” " John
Kennedy”) and (“John Kennedy”, “John Kennedy Davis’), the active relational features are iden-
tical; but, the first pair activates the structural features “(1,2)” and “(1, 2)”, while the second pair

activates“(1,3)” and “(1,2,0)".

2.2.2 Experiments

In our experimental study we evaluated different models on the problem of Entity Identification
for three entity types — People (Peop), Locations (Loc) and Organizations (Org). The document
segments shown in Figure 2.2 exemplify the preprocessed data given as input to the evaluation.
The learning approaches were evaluated on their ability to determine whether a pair of entities
(within or across documents) actually correspond to the same real-world entity.

We collected 8, 000 names from 300 randomly sampled 1998-2000 New York Timesarticlesin
the TREC corpus (Voorhees, 2002). These include about 4, 000 personal names?, 2, 000 locations

3Honorifics and suffixeslike “Jr.” are considered part of a personal name.
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and 2, 000 organizations. The documents were annotated by a named entity tagger . The anno-
tation was verified and manually corrected if needed and each name mention was labelled with
its corresponding entity by two annotators. The distribution of mentions and entities in the above
corpus as to the number of mentions refer to each entity is given by Figure 2.3. Tests were done
by averaging over five pairs of sets, each containing 600 names, that were randomly chosen from

the 8, 000 names.

Document 1. The Justice Department has officially ended its inquiry into
the assassinations of President John F. Kennedy and Martin Luther King
Jr., finding ““no persuasive evidence” to support conspiracy theories, ac-
cording to department documents. The House Assassinations Committee
concluded in 1978 that Kennedy was ““probably” assassinated as the re-
sult of a conspiracy involving a second gunman, a finding that broke from
the Warren Commission’s belief that Lee Harvey Oswald acted alone in
Dallas on Nov. 22, 1963.

Document 2: David Kennedy was born in Leicester, England in 1959.?
--- Kennedy co-edited The New Poetry (Bloodaxe Books 1993), and is the
author of New Relations: The Refashioning Of British Poetry 1980-1994
(Seren 1996).?

Figure 2.2: Segments from two documents preprocessed by our named entity tagger. Differ-
ent types of entities are annotated with different grey scales. As shown, similar mentions within
and across documents may sometimes correspond to the same entities and sometimes to different
entities.

Given atraining set of 600 names (each of the five test sets corresponds to a different training
set), we generated positive training examples using all co-referring pairs of names, and negative
examples by randomly selecting pairs of names that do not refer to the same entity. Since most
pairs of names do not co-refer, to avoid excessive negative examples in training sets, we adopt a
ratio of 10 : 1 between negative examples and positive examples.

The results in al the experiments in this chapter are evaluated using the same test sets, ex-
cept when comparing the clustering schemes. For a comparative evaluation, the outcomes of each

approach on atest set of names are converted to a classification over all possible pairs of names(in-

4The named entity tagger was developed by the Cognitive Computation Group at UIUC. A demo of this tool is
available at http://L 2R.cs.uiuc.edu/~cogcomp/eoh/ne.html.
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Percentage of entities(%)
percentage of mentions (%)
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Number of mentions for each entity Number of mentions for each entity

Figure 2.3: Distribution of mentions and entities in different groups. This data set has about
8, 000 mentions corresponding to 2, 000 entities. Mentions and Entities are partitioned into groups

according to the number of mentions referring to an entity. The X-axis shows how many mentions
of an entity in each group.

cluding non-matching pairs). Since most pairs are trivial negative examples, and the classification
accuracy can always reach nearly 100%, the evaluation is done as follows. Only examplesin the
set M, those that are predicated to belong to the same entity (positive predictions) are used in the
evaluation, and are compared with the set M, of examples annotated as positive. The performance

of an approach isthen evaluated by Precision and Recall, defined respectively as:

| M| | M|
and summarized by
_2P-R
T PR

Only F} values are shown and compared in this paper.
Figure 2.4 presentsthe average F; for three different pairwise classifiers on thefive test sets de-

scribed in Section 2.2.2. The LMR classifier outperforms the SoftTFIDF classifier and the Marlin

classifier when trained and tested on the same data sets.

Figure 2.5 shows the contribution of different feature types to the performance of the LMR
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Performance of our pairwise classifier (LMR)

Hl Marlin
[ SoftTFIDF
Bl LVMR

100,

95

901

FL )

80r

751

70 — o~ —
People Location Org
Different Entity Types

Figure 2.4: Performance of different pairwise classifiers. Results are evaluated using the F}
value and are averaged over five test sets of 600 names each, for each entity type. The learned
classifiersare trained using corresponding training sets with 600 names. The baseline performance
in the experiment is 70.7% given by a classifier that predicts only identical names as positive
examples, and it is averaged over the three entity types.

classifier. The Baseline classifier in this experiment only makes use of string-edit-distance features
and “Equality” features. The Token-Based classifier uses all relational token-based features while
the Structural classifier uses, in addition, the structural features. Adding relational and structural
features types is very significant, and more so to People due to a larger amount of overlapping

tokens between entities.

2.3 ClusteringUsing Similarity Metrics

Clustering methods are used for the most part as an optimization procedure in many areas, such as
language processing (Pantel & Lin, 2002; Weeds, Weir, & McCarthy, 2004), computer vision (Jain,
Murty, & Flynn, 1999; Shi & Malik, 2000) and data mining (Bradley, Fayyad, & Reina, 1998),
and have been widely studied in the Al community (Kamvar, Klein, & Manning, 2002; Vilalta &
Rish, 2003). Clustering takes asinput (1) a collection of domain elementsalong with (2) adistance
metric between them and (3) an algorithm selected to partition the data elements, with the goal of

optimizing some form of clustering quality with respect to the given distance metric. For example,
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Figure 2.5: Contribution of different feature sets. The LMR classifier is trained with different
feature sets using the five training sets. Results are evaluated using the F; value and are averaged
over the five test sets for each entity type with 600 names in each of them. The Baseline classifier
only uses string-edit-distance features and “ Equality” features. The Token-Based classifier uses all
relational token-based features while the Structural classifier uses, in addition, structural features.
seeks to maximize awell defined notion of the tightness of the resulting clusters, defined based on
the Euclidean distance.

Thereisalong-held intuition that the performance of apairwise classifier can be improved if it
isused as asimilarity metric and aglobal clustering is performed on top of it. Several works (Co-
hen, Ravikumar, & Fienberg, 2003a; Cohen & Richman, 2002b; McCallum & Wellner, 2003) have
thus applied clustering in similar tasks, using their pairwise classifiers as the metric. However, we
show here that this may not be the case; we provide theoretical arguments as well as experimental
evidencethat show that global clustering applied on the pairwise classifier might in fact degradeits
performance. Specifically, we show that while optimal clustering always helps to reduce the error

of a pairwise classifier when there are two clusters (corresponding to two entities), in general, for

K > 2 classes, thisis not the case.
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2.3.1 Déefinitions of Clustering

Clustering is the task of partitioning a set of elements S C X into a digoint decomposition (par-
tition)® p(S) = {51, Sy, -+, Sk} of S. We associate with it a partition function p = pg : X —
C ={1,2,...K} that mapseach = € S toaclassindex ps(z) = k iff x € Sx. We will omit the
subscript S in ps and ps () when clear from the context. Notice that, unlike a classifier, the image
x € S under a partition function dependson S.

A typical clustering agorithm views data points z € X to be clustered as feature vectors z =
(1,29, ...,xy) in@am-dimensional feature space. From a generative perspective, the observed
datapoints S = {< z;,p(z;) >} aresampledi.i.d. from ajoint probability distribution P defined
over X x C' (P isamixture of K models). This distribution gives the sampling probability of a
data point (z, p(x)) — P(z,p(z) = i)(1 < i < K). A distance (equivaently, a similarity) metric
d is commonly used in clustering to measure the proximity between two elements is a pairwise

function X x X — R*.

2.3.2 |IsClustering Always Better Than Pairwise Classification ?

We now compare clustering with pairwise classification theoretically in the case of Gaussian mix-
ture models. In the following definitions we assume that (z, p(x1)), (z2,p(z2)) € X x C are

sampled i.i.d according to it, with z;, 2, observed and p(z4 ), p(x2) hidden.

Definition 2.3.1 The problem of Entity Identification is that of finding a function f : X x X —
{0, 1} which satisfies:

f(z1,22) =1 iff p(z1) = p(z2) (2.6)

Definition 2.3.2 Letd : X x X — R' be a distance metric, and 7" > 0 is a constant threshold.

The pairwise classification function f, in this setting is defined by:

folzr,20) =1 iff d(zy,25) <T. (2.7)

SOverlapping partitions will not be discussed here.
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The clustering based decision f. is defined by:

fe(x1,z0) =1 iff argmax; P{x|p(z1) =i} = argmaz; P{xs|p(xs) = i}. (2.8)

Definition 2.3.3 Define I(xy, z5) to be 1 when p(z;) = p(z2) and 0 otherwise. The error rate of

the function f : X x X — {0, 1} is defined as:

err(f) = E(P{f(z1,22) # I(x1,72)}) (2.9)

where the expectation is taken over independent samples, according to Py, of pairs of points

{(21,p(21)), (w2, p(72)) }-

The possible error cases of pairwise classification and clustering in a simple setting are shown in

Figure 2.6.

Theorem 2.3.1 Assume data is generated according to a uniform mixture of K Gaussians G =
{91, 92, - - -, gk } With the same covariance matrix. Namely, a data point is generated by first choos-
ing one of K models with probability p x = 1/ K, and then sampling according to the i-th Gaussian
chosen. Suppose further that the clustering algorithms yields the correct K Gaussian distributions;

then, V threshold 7" > 0, if K = 2 then

err(f.) < err(f,). (2.10)

However, this doesn’t hold in general for K > 2.

Proof 2.3.1 (sketch):® It is easy to see that the probability density over tuples in X x C' is
f(z,p(x) = i) = « * gi(x). The error rates err(f.) and err(f,) can be computed using the

density function. Thus, for K = 2, we get err(f,) = & — 3 A% where A = [ [g2(z) — g1(2)]dx,

1
2

6The assumption of Gaussian distributions can be relaxed.
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Error Case 1 for Pairwise Classificatiox: Two data points Error Case 2 for Pairwise Classificatiox: Two data points
(xl,p(xl)) and (x2,p(x2)). p(xl)zp(xz) but fp(xl,xz)zl. (xl,p(xl)) and (xz,p(xz)). p(xl);t p(xz) but fp(xl,xz):o.
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Figure 2.6: Error casesof pairwise classification and clustering (for a uniform mixture of two
Gaussian generative models). X isaone-dimensional dataspace. (x1,p(z;)) and (xo, p(z5)) are
two data points with their class labels. We have two classes in this case, their density functions
over the data space satisfy Gaussian models with the same variance and correspond to ¢g; and gs.
T isthe threshold used by the pairwise classifier. f, and f, are the decision functions of pairwise
classification and clustering respectively.

and R is the area in the feature space that satisfies g»(x) > ¢:(z) (x € X). R is a half space here.

We also have:

err(fp) = 5 = 3 Jrlo2(@1) — g1 (21)]dwy x

fM(ml,T) [92(x2) — g1(22)]dx2 > err(fe)

where M (zq,T) is the sphere area in the data space X whose element x satisfies d(z,z) < T.

This is so since fM(ZEl,T) [gg(l'g) — gl(flﬁ'z)]dfl?z < fR[gg(l'Q) — 01 (Z‘Q)]d.’l?'z
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For K > 2, we can compute err(f.) and err(f,) in a similar way and compare them. We
found that in this case, each can be smaller than the other in different cases, depending on the
configuration of the K" Gaussians, for example, the distances between the centers of these Gaus-

sians. Specifically, when Zfil gi(x) > 2. g;(z) forall j and z € X, and T — 0, we have

err(fe) > err(f,). B

2.3.3 Entity ldentification with Clustering

To study this issue experimentally, we designed and compared several clustering schemes for the
Entity Identification task. These clustering approaches are designed based on the learned pairwise
classifier LMR. Given the activation values of the classifier — the values output by the linear
functions for the classes, we define a similarity metric (instead of a distance metric) as follows:

Let p, n bethe activation valuesfor class 1 and class 0, respectively, for two names z; and z»; then,

eP
eP4en”

sim(xy, xe) =
In our direct clustering approach, we cluster names from a collection of documentswith regard
to the entities they refer to. That is, entities are viewed as the hidden classes that generate the
observed named entitiesin text. We have experimented with several clustering algorithmsand show
here the best performing one, a standard agglomerative clustering algorithm based on complete-
link. The basic idea of thisalgorithmis asfollows: it first constructs a cluster for each namein the
initial step. In the following iterations, these small clusters are merged together step by step until
some condition is satisfied (for example, if there are only k clusters left). The two clusters with
the maximum average similarity between their elements are merged in each step. The evaluation,
presented in Figure 2.7, shows a degradation in the results relative to pairwise classification.
Although, as we show, clustering does not help when applied directly, we attempted to see
if clustering can be helped by exploiting some structural properties of the domain. We split the
set of documents into three groups, each containing documents from the same time period. After
that, we first cluster names belonging to each group, then choose a representative for the namesin

each cluster and, hierarchically, cluster these representatives across groups into final clusters. The
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Comparision of Pairwise Classification and Clustering
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Figure 2.7. Best performance of different clustering approaches (Various parameter settings,
including different numbers of clusters were experimented with in direct clustering and the hierar-
chical clustering.) ‘LMR’ representsour pairwise classifier. Itiscompared with different clustering
schemes, based on it as asimilairty metric. Results are evaluated using F'; values. The test set has
900 names for each entity type.

complete-link algorithm is applied again in each of the clustering stages. In this case (Hier (Date)
— Hierarchically clustering according to Dates), the results are better than in direct clustering.
We also performed a control experiment (Hier (Random)), in which we split the document set
randomly into three sets of the same size; the deterioration in the results in this case indicates that
the gain was due to exploiting the structure. The data set used here was dightly different from the
one used in other experiments. It was created by randomly selecting names from documents of
the years 1998 — 2000, 600 names from each year and for each entity type. The 1, 800 names for
each entity type were randomly split into equal training and test set. We trained the LMR pairwise
classifier for each entity type using the corresponding labeled training set and clustered the test set

with LMR asasimilarity metric.

2.3.4 Discussion

One reason for the lack of gain from clustering is the fact that the pairwise classification function
learned here is local —without using any information except for the names themselves — and thus

suffers from noise. This is because, in training, each pair of names is annotated with regard to
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the entities they refer to rather than their similarity in writing. Specifically, identical names might
be labeled as negative examples, since they correspond to different entities, and vice versa. Our
conclusion, reinforced by the dlight improvement we got when we started to exploit structure in
the hierarchical clustering experiment, is that the Entity Identification problem necessitates better
exploitation of supervision in training a local similarity metric, and better exploitation of global
and structural aspects of data. Our supervised clustering framework in Chapter 3 was designed
to address the former issue of applying supervision to clustering, while the generative model in

Chapter 4 was developed to exploit structural information of documents.
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Chapter 3

Supervised Discriminative Clustering

Clustering istypically called an unsupervised method, since data elements are used without |abels
during the clustering process, or labels are not taken into account when measuring the quality of
the partition in the optimization process. What’'s more, when clustering with a given algorithm and
afixed metric, one makes some implicit assumptions, perhaps unintended, on the data and the task
(e.g., (Kamvar, Klein, & Manning, 2002) and more on that below), which may not hold in reality?.
This scenario, however, has severe drawbacks, such as potential disparity from one’sintention, and
alack of flexibility due to afixed distance metric and algorithm.

Several works (Cohen, Ravikumar, & Fienberg, 2003a; Cohen & Richman, 2002b) have at-
tempted to remedy these problems by learning a domain-specific metric. Other works (Bach &
Jordan, 2003; Bar-Hillel, Hertz, Shental, & Weinshall, 2003; Schultz & Joachims, 2004; Xing, Ng,
Jordan, & Russell, 2002; Mochihashi, Kikui, & Kita, 2004; Bilenko, Basu, & Mooney, 2004) have
also pursued this general direction, and some have tried to learn a metric with alimited amount of
supervision, no supervision, or by incorporating other information sources such as constraints on
the class memberships of data elements. They have shown significant performance improvement
over traditional clustering in various tasks. Most of these approaches, though, suffer a variety of
limitations (compared and analyzed later). For example, (Bach & Jordan, 2003; Bilenko, Basu,

& Mooney, 2004) can only learn a metric for one specific clustering algorithm, such as spectral

1For example, the optimal conditions under which K-Meansworks occur when the datais generated from auniform
mixture of Gaussian models in the assumed metric space.
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clustering or K-Means respectively.

In this thesis we develop a unified framework for clustering that is guided by supervision. Our
framework provides away to exploit supervision in the metric learning problem and do it in away
that is parameterized by any chosen clustering algorithm. The proposed framework, Supervised
Discriminative Clustering (SDC), provides a unified perspective to address an important problem,
several aspects of which have been addressed previously. In particular, this view alows us to
develop some theoretical understanding of the problem, relate supervised clustering to existing
algorithms and suggest variations of them.

In SDC, clustering isexplicitly defined as alearning problem in the context of agiventask. The
training stage is formalized as an optimization problem in which a partition functionislearned ina
way that minimizes a clustering error. The clustering error is well-defined and driven by feedback
from labeled data. Training a distance metric with respect to any given clustering algorithm seeks
to minimize the clustering error on training data that, under standard learning theory assumptions,
can be shown to imply small clustering error also in the application stage. One distinctive property
of this framework is that the metric is learned in an algorithm-specific way and any clustering
algorithms (e.g. K-Means, agglomerative clustering, and spectral clustering), that rely on distance
between data elements, can be applied. A general learning algorithm is a'so developed under this
framework, that can be used to learn an expressive distance function over a feature space (e.g., it
can make use of kernels). While this approach makes explicit use of labeled data, we argue that,
in fact, many clustering applications also make use of this information off-line, when exploring
which metrics are appropriate for the task. Our framework makes better use of this resource by
incorporating it directly into the metric training process, training is driven by true clustering error,
computed via the specific algorithm chosen to partition the data.

Motivated by the sameidea, we a so consider integrating metric learning into the traditional EM
framework (McLachlan & Krishnan, 1997) for probabilistic models, but with two extensions. (1)
rather than learning probabilistic models, we directly learn a partition function, parameterized by a

metric and a chosen clustering algorithm; and (2) we exploit labeled datain parameter estimation.
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A Supervised EM* algorithm is then developed to learn a distance function in an iterative way,
guided by supervision.

Further analysis shows that SDC and Supervised EM* are not only discriminative and prob-
abilistic approaches respectively, motivated by the same idea, but also equivalent in some case —
that of learning a metric for a data space satisfying a uniform mixture of Gaussian models. In our
empirical study, SDC exhibits significant improvement (over 20% error reduction) over traditional
clustering, on both an artificial data set and areal task of matching names.

The rest of this chapter first discusses the problem of metric learning in clustering and sum-
marizes related works in Section 3.1, and then introduces the supervised discriminative clustering
framework in Section 3.2 and some variants of the EM algorithm that handle metric learning and
supervision 3.3. This section also involves a comparison between them through both theoretical
analysisand empirical simulation in the case of Gaussian mixture models. Finally, we apply the su-
pervised discriminative approach to the entity identification problem in Section 3.4 and summarize

this chapter in Section 3.5.

3.1 MetricLearningin Clustering

As we mentioned before, clustering is the task of partitioning a set of elements S C X into a
disjoint decomposition (partition)? p(S) = {Si, Sy, - - - , Sk} of S. We associate with it apartition
functionp = ps : X — C = {1,2,... K} that mapseach z € S toaclassindex ps(z) = k iff
x € Si. In practice, we use a clustering agorithm A, (e.g. K-Means), and a distance metric d,
(e.0., Euclidean distance) to generate a function h to approximate the true partition function p.
Denote h(S) = A4(S), the partition of S by h.

A distance (equivalently, a similarity) metric d that measures the proximity between two el-
ements is a pairwise function X x X — R™, which can be parameterized to represent a fam-

ily of functions. For example, given any two element z; =< xﬁl), e ,xﬁm) > and zy =<

2Qverlapping partitions will not be discussed here.
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:rgl), e ,xgm> > in an m-dimensional space, the family of weighted Euclidean distances with

parameters 0 = {w;}" is defined as:

do(x1,22) = J Zwl . |x§l) - xg)|2 (3.1
I=1

When supervision (e.g. classindex of elements) is unavailable, the quality of a partition func-
tion h operating on S C X, is measured with respect to the distance metric defined over X.

Suppose & partitions S into { S}, }1°, atypical quality function (used in K-Means) is defined as:

gs(h) ==Y Y d(x, )", (32)
k z€S)
where 1, isthe mean of elementsin S;.. We note that the rational for using this quality functionis
that when the data is sampled from a mixture of Gaussians { N (1, 0%) }¢ with equal covariance,
qs(h) measures the likelihood of the data. However, this measure can be computed (and is being
used in practice) irrespective of that and the algorithm used.

In many cases, supervisionisused at the application level when determining an appropriate dis-
tance metric (Lee, 1999; Weeds, Weir, & McCarthy, 2004; Bilenko, Mooney, Cohen, Ravikumar,
& Fienberg, 2003). When applying clustering to a given task, one typically decides on the cluster-
ing quality measure one wants to optimize, and then chooses a specific clustering algorithm and a
distance metric. The “goodness’ of a metric is empirically measured when combined with differ-
ent clustering algorithms on different problems. Without any supervision, the resulting partition
function is not guaranteed to agree with the target function (or the user’s original intention).

Moreover, it is not clear whether there exists any ‘universal’ metric that is good for different
problems (or even different data sets for similar problems) and is appropriate for any cluster-
ing algorithm. We illustrate this critical point in Figure 3.1. The 12 points are clustered into 2
groups, represented by solid and hollow points respectively. Data elements are positioned in a

two-dimensional space < X™® X > (a) and (b) show that even for the same data collection,
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(a) Single-Linkagewith  (b) K-Meanswith (c) K-Meanswith a
Euclidean Euclidean Linear Metric

Figure 3.1: Different combinations of clustering algorithmswith distance metrics.

different clustering algorithms with the same metric could generate different outcomes. (b) and
(c) show that with the same clustering algorithm, different metrics could also produce different
outcomes. Therefore, a good distance metric should be both domain-specific and associated with
a specific clustering algorithm.

Several recent works have pursued the general direction of exploiting supervision or learning
to improve clustering performance, but the idea of learning an algorithm-specific metric has not
been fully considered for the general case. For example, (Cohen & Richman, 2002b; Cohen,
Ravikumar, & Fienberg, 2003g; Li, Morie, & Roth, 2004a) make use of supervision in a pairwise
classification task and learn a metric, but do it independent of the clustering algorithm they use.
(Xing, Ng, Jordan, & Russell, 2002; Bar-Hillel, Hertz, Shental, & Weinshall, 2003; Schultz &
Joachims, 2004; Mochihashi, Kikui, & Kita, 2004) formalize the problem of metric learning as an
optimization problem, without exploiting a clustering algorithm or only implicitly exploiting one
(e.g. K-Means) by optimizing the same objective function. That is, the clustering algorithm is not
explicitly taken into account in the learning procedure.

Several works (Bach & Jordan, 2003; Bilenko, Basu, & Mooney, 2004) suggest to learn a
distance function directly and develop their ideas for a specific clustering algorithm. The former
learns a metric for spectral clustering, and optimizes a quality measure of the partition, but with-
out exploiting feedback from supervision. The latter actually learns a metric for K-Means with

feedback from supervision, but the learning procedure is specific to this clustering algorithm.
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EM can be used, in some cases (Frey & Jojic, 2003; Tsuda, Akaho, & Asai, 2003) as a stan-
dalone partition function in clustering, and could even be used to learn a metric directly by ex-
tending the parameter space of a generative model to include the metric parameters. However,
this approach is only effective when the clustering algorithm used in evaluation is itself an EM
algorithm defined over the same generative model used in training.

The Supervised Discriminative Clustering framework that we describe below proposes a way
to resolve these limitations. Namely, it allows learning a distance function for any given clustering

algorithm in the context of a given task, exploiting supervision.

3.2 Supervised Discriminative Clustering Framewor k

When supervision is available, we design a general discriminative clustering approach, the Su-
pervised Discriminative Clustering framework (SDC), to exploit it in clustering (as shown in Fig-

ure 3.2).

""""""" Training Stage:
| Alabeled dataset S | Goal: h*=argmin

1 / errg(h,p)

A Supervised A Sartition funat
Learner partition function
1 1

A distance ™ 4 (* @ clustering Application

| metric d algorithm A : Stage: h(S')
A unlabeled A partition /
data set S’ h(S’)

Figure 3.2: Supervised Discriminative Clustering

In this framework, a clustering task is split into training and application stages, and the chosen
clustering algorithm is explicitly involved in both stages. In the training stage, supervision is

directly integrated into the error function errs(h,p), and the goal is to find a partition function
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h € H (H isthe chosen hypothesis space), parameterized by aclustering algorithm .4 and ametric
d to approximate the true function p, by minimizing the error . Consequently, given new data S’
in the application stage, under some standard learning theory assumptions, the learned partition

function is expected to generalize well and achieve small error.

3.2.1 Error Functions

Let p be the target partition function over X, and let h € H be a partition hypothesis, and 1 (S) =
{S;}E. Inprinciple, given dataset S C X, if the true partition p(S) = {S,} of S isavailable,
one can measure the deviation of h fromp over S, usingan error function errg(h,p) — R™. Please
note that we distinguish an error function from a quality function ¢ (e.g. asin Equation (3.2)) in
this paper: an error function measures the disagreement between clustering and one’s intention
when supervision is given, while a quality is defined without any supervision.

For clustering, there generally is no direct way to compare the true class index p(z) of each
element with that given by a hypothesis (h(x)), so we measure the disagreement between p and h
over pairs of elements. Figure (3.3) below provides examples for error functions that can be used
for that purpose. There are two types of error over a pair of elements z;,z; € S: misclassified
apart or together, represented by A;; = I[p(x;) = p(z;) & h(z;) # h(z;)] and By = I[p(z;) #

p(x;) & h(x;) = h(z;)], respectively. I[true] = 1 isan indicator function.

1 *
errg(h,p) = G Z [d(i,x5)? - Aij + (d? — d(wi,25)?) - Bij]
zi,Lj €S
1 K K
errg(h,p) = i SO dla,m)? =0 > dlw, up)’
k=1 :EES;f k=1z€Sy
1 K K
eTTS(hap) = W Z Z d(xlaxj) - Z d((L‘Z,iﬁ])
k=1 :c“x]ES;f k=1 z;,x;ESy

Figure 3.3: Examples of error functions.
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errt isdefined asthe sum, over al pairsin S, of the two types of pairwise errors, weighted by
the squared distance between each pair. Weintegrate the metric d into the error, in order to penalize
large distances between pairs misclassified apart and small distances between pairs misclassified
together. d* = max;; d(z;, ;) isthe maximum distance between any two elementsin .S, which is
used to avoid negative error. The error isnormalized by |S| —thesize of S. Error function err? and
errs do not directly measure the pairwise errors. Instead, err? measures the difference between
the quality (e.g. asin Equation (3.2)) of the partition by h and that of the true partition. It can
be used in the case that the quality is more pursued in application, when considering the tradeoff
between accurate partition and better quality. In err%, u), and y) are the mean of elementsin the

cluster S, € h(S) andthemeanin S € p(S), respectively. err? isapairwise version of err.

3.2.2 Supervised and Unsupervised Training

In the training stage, the goal is to learn a good partition function given a set of observed data.
Depending on whether the datais labeled or unlabeled, we can further define supervised and un-

supervised training.

Definition 3.2.1 Supervised Training: Given a labeled data set S and p(.S), a family of partition
functions H, and the error function errg(h, p)(h € H), the problem is to find an optimal function

h* s.t.

h* = argminyey errs(h, p).

Definition 3.2.2 Unsupervised Training: Given an unlabeled data set S (p(S) is unknown), a
family of partition functions H, and a quality function ¢s(h)(h € H), the problem is to find an

optimal partition function A * s.t.

h* = argmazpen qs(h).

53



By fixing the clustering algorithm, we can further define supervised metric learning, a special

case of supervised training.

Definition 3.2.3 Supervised Metric Learning: Given a labeled data set S and p(S) and a family
of partition functions H = {h} that are parameterized by a chosen clustering algorithm .4 and a
family of distance metrics dy (6 € €2), the problem is to seek an optimal metric dy- with respect to
A, s.t. for h(S) = A 4,(S)

0" = argming errs(h, p). (3.3)

Learning the distance metric parameters requires parameterizing h as a function of d,, where the

algorithm A is chosen and fixed in h. One example of this task is that of learning weighted

Euclidean distances: dy (1, x2) = \/Z;’il wy - |x§” - xgl) |2 for the K-Means agorithmin our later
experiments. Note that in this case one needs to enforce some constraints, such as a normalization
>, Jw| = 1 sothat the error will not be scale-dependent (e.g., metrics giving smaller distance

are always better).

3.2.3 A General Learner for SDC

In addition to the theoretical SDC framework, we also develop a learning algorithm based on
gradient descent that can train a distance function for the setting of supervised metric learning
(in Figure 3.4). The training procedure incorporates the clustering algorithm (step 2.a) so that
the metric is trained with respect to the specific algorithm that will be applied in evaluation. The
convergence of this general training procedure depends on the convexity of the error as afunction
of #. For example, since the error function we use is linear in ¢, the algorithm is guaranteed to
converge to a global minimum. In this case, for rate of convergence, one can appeal to general
results that typically imply, when there exists a parameter vector with zero error, that convergence
rate depends on the ‘separation” of the training data, which roughly means the minimal error
archived with this parameter vector. Results such as (Freund & Schapire, 1998) can be used to

extend the rate of convergence result a bit beyond the separable case, when a small number of the
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pairs are not separable.

Algorithm: SDC-L earner

Input: S and p: the labeled data set. .A: the clustering algorithm. errs(h, p):
the clustering error function. « > 0 : thelearning rate. T (typicaly T islarge)
: the number of iterations allowed.

Output: 6* : the parameters in the distance function d.

=

. Intheinitial (1-) step, we randomly choose ¢° for d. After this step we have
theinitial d° and R°.

PO

. Thenweiterateover ¢ (t = 1,2,---),

(@) Partition Susing '~ 1(S) = A s-1(5);
(b) Compute errs(h!~!, p) and update 6 using the formula: ¢ = 9! —
derrs(ht=1 p)
T oo
(c) Normalization: 6 = % - 6", where Z = ||6/||.

B. Stopping Criterion: If ¢ > T, the algorithm exits.

Figure 3.4: A general training algorithm for SDC

3.3 Metric Learningwith the EM Algorithm

The EM algorithm is typically viewed as an approach for learning a probabilistic mixture model
in an unsupervised setting (McLachlan & Krishnan, 1997; Friedman, 1998). The core ideaisto
iteratively seek model parameters that achieve alocal optimum of the expected log-likelihood of
a set of observed elements with hidden class labels. In this paper, the EM approach is extended
within the SDC framework, yielding some variants of EM that can be used to learn a metric for a
given clustering algorithm. Please note that in these approaches, the clustering algorithm that will
be used in actual application always explicitly participates in the training process, following our
previous claim that a good metric should be algorithm-specific.

Suppose a probabilistic mixture model (e.g., Gaussian mixture model), parameterized with

0" € 0, defines a probability distribution P over X x C. Thelog-likelihood of generating any set
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of labeled elements (S, p(S)) = {z;, p(z;)}7 from X x C (i.i.d. sampled), is defined as:

LL(S:Z?(S)W) = lOQ[HzeSPT[SUi,p(fUz‘)WH (3.4)

where p(S) is a partition of .S and p(z;) € C' isthe corresponding class index of z;. Suppose S
is observed but p(.S) is unknown, the standard EM attempts to estimate 0 in which the expected

log-likelihood is optimized:

0" = argmax Eps)[LL(S, p(S5)]6')] (3.5

0 e

EM can be used to learn a metric directly by training metric parameters the same way as model
parameters. However, as previously noted, this approach is only effective when the clustering
algorithm used in evaluation is itself an EM algorithm. Thus, it is restricted to a specific class of
clustering algorithms. In order to overcome this restriction, we develop a variant of EM — EM* to
learn a distance metric for any clustering algorithm in the setting of probabilistic mixture models.
Given a set of unlabeled elements S, a family of distance metrics d, (parameterized by 6 € (),

and a clustering algorithm A, the goal of EM* isto seek an optimal metric dy- st.,

0" = argmax LL(S, Ay, (S)[0) (3.6)

e

where A,, (S) isthe partition of .S by the chosen clustering algorithm .4 with the distance function
dy. For example, asin our experiments, we learn weighted Euclidean distances for K-Means for a
mixture of Gaussian models with EM*.

There are several issues in the framework. One is how to compute LL(S, A4, (S)|#), when 6
is the parameters of the distance metric rather than those of the underlying probabilistic model 6’.
In general, log-likelihood of a sampled data set can be computed independent of a metric, since
it just relies on a distribution over a data space. Sometimes, though, it is natural to make some

assumptions and link these two notions:. that is, to define a metric as a function of an assumption
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on the generative process of the distribution, or vice versa. In principle, we can define

LL(S, Aq, (S)|0) = mazy LL(S, Ag, (S)0') (3.7)

where LL(S, Ay, (S)]0") can be computed in the same way as in Equation (3.4). For a Gaussian
mixture model {N (ux, 02)}H and Ay, (S) = {Sk}, when the distance metric d, is a weighted

Euclidean distance, the optimal 6" in Equation (3.7) is

1 Z 1 Z
= — _= —_— d 2_

TESE TESE

Another issue is that, in order to make it sound to compare log-likelihoods of clusterings un-
der different distance functions, which can also be scale-dependent, some constraints should be
enforced, (e.g. Y ", |w;| = 1 for weighted Euclidean distances).

The practical EM* agorithm finds a locally optimal #* by iterating the following two steps
t=0,1,2,---):

E—step:  h'(S) = Aqg,(9)

M — step: 0"t = argmax LL(S, h'(9)|0)
0

After randomly initializing the metric dyo, in each E-step, we run the clustering algorithm .4 with
the distance function dy, to partition the data set S. In each M-step, we re-estimate 6*** based on
agradient descent approach. Some normalization is performed to satisfy the enforced constraint.
A further extension of EM* with |abeled data generates a Supervised EM* agorithm. Given a
set of labeled elements.S and p(S), the Supervised EM* algorithm seeks ametric d,- that achieves
the minimum difference between the likelihood of the partition by A with dy(6 € Q)and that of

the true partition p(.S), under constraintssuch as | ||| = 1.

0" = argmin |LL(S, Aq, (5)]0) — LL(S,p(S)|0)] (3.8)

0eQ
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3.3.1 Relationsbetween SDC and Supervised EM*

SDC and Supervised EM* are discriminative and generative approaches based on the same idea—
learning distance functionsto minimize disagreement between clustering and the true partition, and
can be applied to discriminative clustering and model-based clustering respectively. In a specific
case, they are equivalent.

Suppose that we are learning a distance function d, in which a distribution over the data space

X x C satisfies a uniform mixture of K Gaussian models {gr ~ N(ug,c?)}¥ with the same

covariance. That is, any (z,p(z)) € X x C satisfies Pr(z, p(z) = k) = 5- exp(— %‘;”2) In

this case, we have the following theorem 3:

Theorem 3.3.1 Given a set of labeled elements S C X and p(.S), the Supervised EM* algorithm,
and SDC with error function err? (in Figure 3.3) have equivalent objectives in learning a distance

metric dj for the K-Means algorithm A (let ~(S) = A4, (S)). That is,

argmin |LL(S, h(S)|0) — LL(S,p(S)|0)| = argmin errz(h, p)
0 9

The complete proof is omitted here. One critical property used: when p(S) = {S;}F and
h(S) = {5}
LL(S, h(S |9—aZZdexuk (3.9)

k=1 zes],
where a,b are two constantsin ¢, and 1}, isthe mean of elementsin S;.. Similarly, LL(S, p(S)|0) =

a S, > wes, do(z, p1f)? + b, where 1) is the mean of elementsin S.

3.3.2 Simulation with Gaussian Mixture M odels

As an empirical study, we create an artificial data set generated from a uniform mixture of Gaus-
sians from a linear weighted Euclidean metric space (as defined in Equation (3.1)). Specificaly,

we use a mixture of 3 Gaussians of variance 4, with means placed opposite each other on an 18-

3Proof is omitted here, but available on request.

58



20 40 60 80 100 120 140 160 180 200

85 85

—— SDC EM

80 80

-ox - EMx

75 75

i SDC KMeans

70 70

F1

—— Xing et al
65 65
-— EM
60 60
—— K-Means

55 -~ 155

50 4150
20 40 60 80 100 120 140 160 180 200
Training Size

Figure 3.5: Performance of different clustering approaches. Different algorithms are evaluated
on data generated from a Gaussian mixture model in a weighted Euclidean metric space. The plot
shows number of elementsin the training set versus F';-Measure.

dimensional sphere of radius 4 in the metric space defined by a weight vector selected uniformly
from [0, 1]'®. The approaches are evaluated by their accuracy in partitioning aset of unlabeled ele-
mentsinto 3 clusters, reported in ', measure of classifying pairs of elements as “together” or “not
together” inatest set. F| = % where M, and M, arethe set of pairs of elements predicted
to be “together”, and the set of pairs annotated as “together”, respectively. We display results for
two comparisons, obtained by repeated runs with varying generating metrics, and evaluated on

1,000 test elements.

Comparison of Different Approaches. The first comparison (in Figure 3.5) is among different
approaches we have discussed. The approaches include EM over a Gaussian mixture model and
K-Means, both of which assume a standard Euclidean metric, as well as EM* (see Equation 3.6)
and SDC with err?% (see Equation 3.3) , both of which learn over linear weighted Euclidean metrics
with additional training sets of elements (Iabeled elementsfor SDC). For SDC, we show resultsfor
using both a K-Means clustering algorithm and EM as a standal one clustering algorithm, whereas
for EM* we show only the results for using EM. We also compare with a method proposed by
(Xing, Ng, Jordan, & Russell, 2002), which optimizes a linear weighted squared Euclidean dis-
tance by a constrained Newton-Raphson method separate from the clustering algorithm; we use

this as an example of an algorithm that learns a metric without reference to the particular cluster-
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Figure 3.6: Different error functionsfor SDC. These error functions are described in Figure 3.3.
The plot shows number of elementsin the training set versus F';-Measure.
ing agorithm that will eventually be used, in this case EM over a Gaussian mixture model.

As the figure shows, metric learning provides clear advantages over standard clustering (over
20% in F}), and the addition of supervision provides an extra boost in performance (2% — 5%).
These results make good sense, since data in an appropriate metric space will fit the model in
a much better way and thus improve clustering. The figure also demonstrates the advantage of
learning a metric with respect to the specific clustering algorithm that will be used.

One interesting point to note is that, although SDC with an EM clustering algorithm outper-
forms EM*, this is not the case for SDC with K-Means. One possible explanation is that while
EM* performsthe full gradient descent procedurein its M-step, SDC alternates between iterations
of gradient descent and clustering, which may introduce randomness and prevent it from fully

converging. This problem suggests a possible improvement for SDC.

Comparison of Different Error Functions: As asecondary comparison, we display the results
of the SDC approach for different error functions (in Figure 3.6). Specifically, SDC is evaluated on
the simulated data and employs the EM agorithm for a Gaussian mixture model as its clustering

algorithm. The results for this data appear to strongly support err , and err?.
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3.4 Application to Entity I dentification

Several approaches as below are compared in this task. Some of them (for example, those based
on SoftTFIDF similarity) do not use any domain knowledge, while others do exploit supervision,
such as LMR and SDC. Other works (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003)

also exploited supervision in this problem but were shown to be inferior.

. SOftTFIDF Classifier — a pairwise classifier deciding whether any two names refer to the same
entity, implemented by thresholding a state-of-art SoftTFIDF similarity metric for string com-
parison (Cohen, Ravikumar, & Fienberg, 2003a). Different thresholds have been experimented

but only the best results are reported.

. LMR Classifier (P|W) —a SNoW-based pairwise classifier (Li, Morie, & Roth, 2004a) (described
in Section 2.2) that learns alinear function for each class over a collection of relational features
between two names: including string and token-level features and structural features (listed in

Table 2.1). We train the classifier with both Perceptron (P) and Winnow (W) agorithms.
. Clustering over SoftTFIDF —a clustering approach based on the Soft TFIDF similarity metric.

Clustering over LMR (P|W) — a clustering approach (Li, Morie, & Roth, 2004a) by converting

the LMR classifier into asimilarity metric (see Section 2.3.3).

. SDC — our new supervised discriminative clustering approach. In the following experiments,
the error function errl (as defined in Table 3.3) is applied to training a weighted Euclidean
distance function under the SDC framework. Given binary pairwise features are extracted for
any elements xy, 5 € X, (x1,22) =< ¢1, 02, -, dm > (¢; € {0,1}), the distance function,

parameterized by (6 = {w,}7"), is

$1,$2 JZ wy - ¢z 5U1,332 JZ wp - ¢z $1,$2
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Figure 3.7: Performance of different approaches. Theresults are reported for SDC with alearn-
ing rate o = 100.0. The Single-Linkage algorithm is applied whenever clustering is performed.
Results are reported in F; and averaged over the three data sets for each entity type and 10 runs of
two-fold cross-validation. Each training set typically contains 300 annotated names.

The above approaches (2), (4) and (5) learn a classifier or a distance metric using the same
feature set as in Table 2.1. Different clustering algorithms, such as Single-Linkage, Complete-
Linkage, Graph clustering (seeking a minimum cut of a nearest neighbor graph), Repeated Bi-
sections (George, 2003) and K-medoids (Chu, Roddick, & Pan, 2001) are experimented in (3),
(4) and (5). We use the clustering package Cluster by Michael Eisen at Stanford University for
K-mediois clustering and CLUTO by (George, 2003) for the other algorithms®. The number of
classes (entities) that a data set has is known for them.

Our experimental study focuses on (1) evaluating the supervised discriminative clustering ap-
proach on entity identification; (2) comparing it with existing pairwise classification and clustering
approaches widely used in similar tasks; and (3) further analyzing the characteristics of this new
framework.

We use the TREC corpus to evaluate different approachesin identifying three types of entities:
People, Locations and Organization. For each type, we generate three data sets, each containing
about 600 names. We note that the three entity types yield very different data sets, exhibited by

some statistical properties®. Results on each entity type will be averaged over the three sets and ten

4The weighted version of Single- and Complete-Linkage algorithms in the package are actually used in experi-
ments.

5The average SoftTFIDF similarity between names of the same entity is 0.81, 0.89 and 0.95 for people, locations
and organizations respectively.
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Figure 3.8: Performance for different training sizes. Five learning-based approaches are com-
pared. Single-Linkage is applied whenever clustering is performed. X-axis denotes different per-
centages of 300 names used in training. Results are reported in F; and averaged over the three data
sets for each entity type.

runs of two-fold cross-validation for each of them. For SDC, given atraining set with annotated
name pairs, a distance function is first trained using the algorithm in Figure 3.4 (in 20 iterations)

with respect to a clustering algorithm and then be used to partition the corresponding test set with

the same algorithm.

3.4.1 Comparison of Different Approaches

Figure 3.7 presents the performance of different approaches (described in Section 3.4) on iden-
tifying the three entity types. We experimented with different clustering algorithms but only the
results by Single-Linkage are reported for Cluster over LMR (P|W) and SDC, since they are the
best.

SDC works well for all three entity typesin spite of their different characteristics. The best F;
values of SDC are 92.7%, 92.4% and 95.7% for people, locations and organizations respectively,
about 20% — 30% error reduction compared with the best performance of the other approaches.
Thisis an indication that this new approach which integrates metric learning and supervisionin a

unified framework, has significant advantages °.

5We note that in this experiment, the relative comparison between the pairwise classifiers and the clustering ap-
proaches over them is not consistent for all entity types. This can be partially explained by the theoretic analysisin
(Li, Morie, & Roth, 2004a) and the difference between entity types.
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Figure 3.9: Different clustering algorithms. Five clustering algorithms are compared in SDC
(o = 100.0). Results are averaged over the three data sets for each entity type and 10 runs of
two-fold cross-validations.

3.4.2 Further Analysisof SDC

In the next experiments, we will further analyze the characteristics of SDC by evaluating it in

different settings.

Different Training Sizes Figure 3.8 reports the relationship between the performance of SDC
and different training sizes. The learning curves for other learning-based approaches are also
shown. We find that SDC exhibits good learning ability with limited supervision. When training
examples are very limited, for example, only 10% of al 300 names, pairwise classifiers based
on Perceptron and Winnow exhibit advantages over SDC. However, when supervision become

reasonable (30%-+ examples), SDC starts to outperform all other approaches.

Different Clustering Algorithms Figure 3.9 shows the performance of applying different clus-
tering algorithms in the SDC approach. Single-Linkage and Complete-Linkage outperform all
other algorithms. One possible reason is that this task has a great number of classes (100 — 200
entities) for 300 namesin each single data set. The resultsindicate that the metric learning process
relies on properties of the data set, as well as the clustering algorithm. Even if a good distance
metric could be learned in SDC, choosing an appropriate algorithm for the specific task is still

important.
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Figure 3.10: Performance for different learning rates. SDC with different learning rates (o =
1.0, 10.0, 100.0, 1000.0) compared in this setting. Single-Linkage clustering algorithm is applied.

Different Learning Rates We also experimented with different learning rates in the SDC ap-
proach as shown in Figure 3.10. It seemsthat SDC is not very sensitive to different learning rates

aslong asit isin areasonable range.

3.4.3 Discussion

The reason that SDC can outperform existing clustering approaches can be explained by the ad-
vantages of SDC — training the distance function with respect to the chosen clustering algorithm,
guided by supervision. However, it is not so obvious why it can aso outperform the pairwise
classifiers. The following analysis could give some intuitive explanation.

Supervision in the entity identification task or similar tasks is typically given on whether two
names (elements) correspond to the same entity — entity-level annotation. Therefore it does not
necessarily mean whether they are similar in appearance. For example, “Brian” and “Wilson”
could both be names for a person “Brian Wilson™ in different context, and thus this name pair is
a positive example in training a pairwise classifier. However, with features that only capture the
appearance similarity between names, such apparently different namesbecometraining noise. This
iswhat exactly happened when we train the LMR classifier with such name pairs. SDC, however,
can employ this entity-level annotation and avoid the problem through transitivity in clustering. In

the above example, if there is “Brian Wilson™ in the data set, then “Brian” and “Wilson” can be
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both clustered into the same group with “Brian Wilson”. Such cases do not frequently occur for

locations and organization but still exist .

3.5 Conclusion

This chapter presents a unified framework for clustering that is guided by supervision. In this
framework, we explicitly formalize clustering as alearning task, and propose two new approaches
for training an algorithm-specific distance metric. Our experiments exhibit their advantages over
existing clustering approaches in the case of Gaussian mixture models and real problems. The
view provided in this work allows us to develop some theoretical understanding to the problem,
relate supervised clustering to existing algorithms and suggest variations of them.

The supervised clustering framework can be viewed as an analog to multi-class classification,
but can handle amore general learning scenario. A classifier trained with labeled data can only be
used to classify new data which is sampled from the same classes asin training. Clustering, how-
ever, can be used to partition examples from new classes, as long as the learned metric works for
the whole data space. One example is the entity identification problem where there exist millions
of entities (classes) in the world and only few are seen in training. In this sense, SDC cannot be
replaced by multi-class classification. One can Combine a clustering algorithm with a metric to
create a partition function, (in some sense more expressive than a classifier). The idea of super-
vised clustering is significant in that few people have considered transplanting the general ideas of
classification into clustering, although it seems so natural and intriguing.

In addition to further theoretical analysis of the convergence of the SDC approach and devel-
oping more efficient learning algorithms, we also hope to extend it to train kernel-based metrics
for more complex feature spaces. Further research in this direction will focus on (1) applying it
to more NLP tasks, such as coreference resolution and word sense discovery; (2) anayzing the
related theoretic issues, for example, the convergence of the algorithm; and (3) extending it to train

kernel-based metrics for more complex feature spaces.
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Chapter 4

Generative Modelsfor Entity | dentification

All of the discriminative approaches described in the prior chapters, such as pairwise classification
and different clustering approaches, only take input the local information existing in the namesin
order to identify entities. Thisis clearly not enough since different names can refer to the same
entity in different contexts of text, while similar names may refer to different entities. An example
we have given is “Kennedy”, there are more than tens of thousands of people share this name.
Examples of names of other types that could refer to different entities are “World Trade Center”
in different cities, and “Department of Justice” in different countries . The specific context that
aname occurs in the text is critical to disambiguate these cases and identify entities in a context-
sensitive setting.

In this chapter, we focus on the following three types of contextual information: (1) The notion
of ‘Document’. If two names are within the same document and are similar in writing, they are
very likely refer to the same entity, while the chance for two similar names in different documents
is much lower. Separating the within-document entity identification problem from the across-
document problem, and apply different approaches to them, seems a better choice than treating
them the same way. (2) Entity co-occurring dependency, e.g., adocument that mentions “ President
Kennedy” is more likely to mention “Oswald” or “ White House” than “Roger Clemens’. (3) The
notion of “Representative” of an entity in a document. Typically, the name of an entity occurring
thefirst in atext isthe longest name of it. For example, an author tends to write the full name of a

person at the beginning of an article, and then write only thelast or first names|later. Other mentions
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of the same entity in the same text, can be viewed as being transformed from the representative by
string operations.

Motivated by the above observation, we describe next a generative model for cross-document
entity identification that is designed to exploit the structure of the documents and assumptions on
how they are generated. At the heart of this model is aview on how documents are generated and
how names (of different entity types) are“sprinkled” into them. Initsmost general form, our model
assumes: (1) ajoint distribution over entities, (2) an “author” model, that assumesthat at least one
mention of an entity in adocument is easily identifiable, and then generates other mentionsvia (3)
an appearance model, governing how mentions are transformed from the “ representative” mention.
Several relaxations of this model are also described and compared in the experiments. We show
that this approach performs very accurately, in the range of 90% — 95% F; measure for different
entity types, even better than the discriminative approaches trained in a supervised setting. Given
a collection of documents we learn the models in an unsupervised way; that is, the system is not
told during training whether two mentions represent the same entity. We only assume the ability
to recognize names, using a named entity recognizer run as a preprocessor.

Therest of thischapter isorganized asfollows: Wefirst define the components of the generative
probabilistic model in Section 4.1. Section 4.2 then describes a generative view of documents
creation, three practical probabilistic models designed based on it, and discusses how to make
inference with these models. After that, Weillustrate how to learn these modelsin an unsupervised
setting in Section 4.3, and describesthe experimental study of thismodel in Section 4.4. 1t will then
be compared with our previously developed discriminative approaches along several dimensions

in Section 4.5. Finally, Section 4.6 will conclude this chapter.

4.1 Basic Definitions

We consider reading a large number of documents D = {d;,ds,...,d,,}, each of which may

contain mentions (i.e. real occurrences) of |T'| types of entities. In the current evaluation we
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consider T' = { Person, Location, Organization}.

Anentity refersto the“real” concept behind the mention and can be viewed as a unique identi-
fier to an object in the real world. Examples might be the person “ John F. Kennedy” who became
a president, “White House” — the residence of the US presidents, etc. E denotes the collection
of all possible entitiesin the world and £¢ = {¢?}!" isthe set of entities mentioned in document
d. M denotes the collection of all possible mentions and M ¢ = {m?}7" is the set of mentions
in document d. MZ(1 < i < I9) isthe set of mentions that refer to entity e € E?. For exam-
ple, for entity “John F. Kennedy”, the corresponding set of mentions in a document may contain
“Kennedy”, “J. F. Kennedy” and “President Kennedy”. Among all mentions of an entity e¢ in doc-
ument d we distinguish the one occurring first, r¢ € M¢, asthe representative of e¢. In practice,
the representative is usualy the longest mention of an entity in the document as well, and other
mentions are variations of it. Representatives can be viewed as atypical representation of an entity
mentioned in a specific time and place. For example, “President J.F.Kennedy” and “ Congressman
John Kennedy” may be representatives of “John F. Kennedy” in different documents. R denotes
the collection of all possible representativesand R? = {r?}\" C M isthe set of representativesin
document d. Thisway, each document isrepresented as the collection of itsentities, representatives
and mentionsd = {E¢, R, M?}.

Elements in the name space W = F U R U M each have an identifying writing (denoted as
wrt(n) for n € W) and an ordered list of attributes, A = {ay, ..., a,}, which depends on the
entity type. Attributes used in the current evaluation include both internal attributes, such as, for
People, {title, firstname, middlename, lastname, gender} as well as contextual attributes such as
{time, location, proper-names}. Proper-names refer to a list of proper names that occur around
the mention in the document. All attributes are of string value and can be empty when the values
are missing or unknown?,

The fundamental problem we address in cross-document entity identification is to decide what

1The observed writing of amentionisitsidentifyingwriting, i.e., “ President Kennedy” . For entities, it isastandard
representation of them, i.e. the full name of a person.
2Contextual attributes are not part of the current evaluation, and will be evaluated in the next step of this work.
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entities are mentioned in a given document (given the observed set M/ ¢) and what the most likely

assignment of entity to each mentionis.

4.2 A Model of Document Generation

We define a probability distribution over documentsd = {E?, R¢, M}, by describing how docu-
ments are being generated. In its most general form the model has the following three components:

(1) A joint probability distribution P(E?) that governs how entities (of different types) are
distributed into a document and reflects their co-occurrence dependencies.

(2) The number of entitiesin adocument, size( E?), and the number of mentions of each entity
in B4, size(M¢), need to be decided. The current evaluation makes the simplifying assumption
that these numbers are determined uniformly over asmall plausible range.

(3) The appearance probability of a name generated (transformed) from its representative is
modelled as a product distribution over relational transformations of attribute values. This model
captures the similarity between appearances of two names. In the current evaluation the same
appearance model is used to calculate both the probability P(r|e) that generates a representative
r given an entity e and the probability P(m|r) that generates a mention m given a representative
r. Attribute transformations are relational, in the sense that the distribution is over transformation
types and independent of the specific names.

Given these, a document d is assumed to be generated as follows (see Figure 4.1): A set
of size(E?) entities EY C F is selected to appear in a document d, according to P(E<). For
each entity e € FE?, arepresentative r! € R is chosen according to P(rf|e?), generating R
Then mentions M? of an entity are generated from each representative r¢ € R? — each mention
m¢ € M isindependently transformed from ¢ according to the appearance probability P(m{|r{),

after size( M) isdetermined. Assuming conditional independency between M ¢ and E? given R?,
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Figure 4.1: Generating a document. A document is generated in three steps according to under-
lying probability distribution.

the probability distribution over documentsistherefore
P(d) = P(E", R',M") = P(E")P(R'|E")P(M"|R"),
and the probability of the document collection D is:
d
P(D) =[] P(d).
eD

Givenamentionm inadocument d (/¢ isthe set of observed mentionsin d), the key inference

problemisto determinethe most likely entity e, that correspondstoit. Thisisdone by computing:
E* = argmazpcpP(EY RYM?,0) = argmazpcpP(EY, RY, M?|9), 4.1

where § is the learned model’s parameters. This gives the assignment of the most likely entity e,

for m.
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4.2.1 Relaxationsof the Moded

In order to simplify model estimation and to evaluate some assumptions, several relaxations are

made to form three simpler probabilistic models.

4.2.2 Modd | (thesimplest model)

The key relaxation here isin losing the notion of an “author” — rather than first choosing a repre-
sentative for each document, mentions are generated independently and directly given an entity.

That is, an entity e; is selected from E according to the prior probability P(e;); then its actua
mention m; is selected according to P (m;le;). Also, an entity is selected into adocument indepen-
dently of other entities. In thisway, the probability of the whole document set can be written in a
simpler way:

n

P(D) = P({(es, mi)}iy) = [ [ P(en) P(mifes),

i=1

and the inference problem for the most likely entity given m is:

e* = argmazecpP(elm, ) = argmaz.cpP(e) P(me). (4.2)

4.2.3 Modd 11

The major relaxation made here is in assuming a ssimple model of choosing entities to appear in
documents. Thus, in order to generate adocument d, after wedecide size( E?) and {size(M{, size(M3), ...}
according to uniform distributions, each entity e¢ is selected into d independently of others accord-
ingto P(e?). Next, the representative r? for each entity ¢ is selected according to P(r¢|e?) and for
each representative the actual mentions are selected independently according to P(m;‘|r;i). Here,

we have individual documents along with representatives, and the distribution over documentsis:
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P(d) = P(EY RY, M") = P(EY)P(RY|E")P(M"|R")
2]
= [P(size(EY) [ [ P(ef)] x [P(size(M), size(M), ...)

=1

||
< [[Perleh) < T Pmilr))
=1 d d
? (r]- ,mj)
2

Q

[Py P(riled)] H P(m4|rd)

=1 ( J)

after we ignore the size components. The inference problem here is the same asin Equation 4.1.

424 Modd Il (Least Restrictions)

This model performs the least relaxation. After deciding size(E¢) according to a uniform dis-
tribution, instead of assuming independency among entities which does not hold in reality (For
example, “Gore” and “George. W. Bush” occur together frequently, but “ Gore” and “ Steve. Bush”
do not), we select entities using a graph based agorithm: entitiesin E are viewed as nodesin a
weighted directed graph with edges (i, j) labelled P(e;|e;) representing the probability that entity
e; ischosen into adocument that contains entity e;. We distribute entities to E?viaarandom walk
on this graph starting from e¢ with a prior probability P(e¢). Representatives and mentions are
generated in the same way as in Model Il. Therefore, a more general model for the distribution
over documentsis:

B

P(d) = P(ef) P(rle}) | [IP(eflef ) P(r{lef)] H P(mj|r5).

=2 (rdmd)

The inference problem is the same asin Equation 4.1.
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425 Inference

The fundamental problem in cross-document entity identification can be solved as inference with
the models. given a mention m, seek the most probable entity e € E for m according to Equa-
tion 4.2 for Model | or Equation 4.1 for Model 11 and Ill. The inference algorithm for Model |
(with time complexity O(|E|)) is simple and direct: just compute P(e, m) for each candidate en-
tity e € E and then choose the one with the highest value. Due to exponential number of possible
assignments of £¢, R? to M? in Model Il and Ill, precise inference is infeasible. Approximate
algorithms are therefore designed:

In Model 11, we adopt a two-step algorithm: First, we seek the representatives R? for the
mentions M ¢ in document d by sequentially clustering the mentions according to the appearance
model. The first mention in each group is treated as the representative. Specifically, when consid-
ering amention m € M¢<, P(m|r) is computed for each representative r that have already been
created and afixed threshold is then used to decide whether to create a new group for m or to add it
to one of the existing group with the highest P(m|r) value. In the second step, each representative
rd € R isassigned to its most likely entity according to e* = argmaz.cpP(e) * P(r|e) 3. This
algorithm has atotal time complexity of O(|M4|? + |E| * |RY|).

Model 111 has a similar two-step agorithm as Model |1. The only difference is that we need
to consider the global dependency between entities. Thus in the second step, instead of seeking
an entity e for each representative » separately, we determine a set of entities £ for R? in a
Hidden Markov Model with entities in £ as hidden states and R¢ as observations. The prior
probabilities, the transitive probabilities and the observation probabilities for this HMM are given
by P(e), P(e;|e;) and P(r|e) respectively. In this step we seek the most likely sequence of entities
given these representatives in their appearing order using the Viterbi algorithm. The total time
complexity isO(|M?|? + |E|? = | R4|). However, it can be reduced by filtering out most irrelevant

entities of a mention beforehand using some simple heuristics.

3F is known after learning the model in a closed document collection that d belongs to.
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4.2.6 Discussion

Besides different assumptions of the models, there are some fundamental differences in inference
with the models as well. In Model 1, the entity of a mention is determined completely inde-
pendently of other mentions, while in Model 11 the way of figuring out the entity relies on local
similarity among mentionsin the same document. In Model 111, it is not only related to other men-
tions but to a global dependency over entities. The following conceptual example illustrates these
differencesasin Figure 4.2.

EntitiesE

el=Michael Jordan e2=Michadl |.Jordan e3=Steve Jordan
a»

dl d2

Figure 4.2: A conceptual example showing the differences of Model I,I1,I11. There are five
mentions {m; }; observed in two documents {d;, d»} and three entities {¢; }}. The arrowsrepresent
correct assignment of entitiesto mentions. r, r, are representatives.

Example4.2.1 Given E = {George Bush, George W. Bush, Steve Bush}, documents d;, d, and
five mentions in them, and suppose the prior probability of entity “George W. Bush” is higher than
those of the other two entities, the probable assignment of entities to mentions in the three models
could be as follows:

For Model I, mentions(e;) = ¢, mentions(es) = {my, ma, ms} and mentions(ez) = {m4}.
The result is caused by the fact that a mention tends to be assigned to the entity with higher prior

probability when the appearance similarity is not distinctive.
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For Model Il, mentions(ey) = ¢, mentions(ez) = {my, my} and mentions(ez) = {my, ms}.
Local dependency (appearance similarity) among mentions inside each document enforces con-
straints that they should refer to the same entity, like ““Steve Bush’ and ““Bush” in d.

For Model Il mentions(e;) = {mq, mo}, mentions(ey) = ¢, mentions(ez) = {my, ms}.
With the help of global dependency among entities, for example, “George Bush™ and ““J. Quayle”,

an entity can be distinguished from another entity with a similar writing.

4.3 Learningthe Models

Confined by the labor of annotating data, we learn the probabilistic modelsin an unsupervised way
given acollection of documents; that is, the system isnot told during training whether two mentions
represent the same entity. A search algorithm modified after the standard EM algorithm (McLach-
lan & Krishnan, 1997) (We call it Truncated EM algorithm) is adopted here to avoid complex
computation.

Given aset of documents D to be studied and the observed mentions A/ ¢ in each document, this
algorithm iteratively updates the model parameter # (several underlying probabilistic distributions
described before) and the structure (that is, £¢ and R?) of each document d. Different from the
standard EM algorithm, in the E-step, it seeks the most likely £? and R¢ for each document rather

than the expected assignment.

4.3.1 Truncated EM Algorithm

The basic framework of the Truncated EM algorithm to learn Model Il and 111 is asfollows:
Thealgorithm for Model | issimilar to the above algorithm but much simpler inthe sensethat it
does not have the notions of documents and representatives. So in the E-step we only need to seek
the most possible entity e for each mention m € D and this smplifies the parameter estimation
in the M-step accordingly. It usualy takes 3 — 10 iterations before the algorithm stops for all the

modelsin our experiments.
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1. In the initia (I-) step, an initial £ and R¢ is assigned to each document d using
an initialization agorithm. After this step, we can assume that we have labelled
documents D° = {(E¢, R¢, M9)}.

o

In the M-step, we seek the model parameter ¢! that maximizes P(D!|6). Given
the “labels’ supplied by the model in the previous |- or E-step, this amounts to the
maximum likelihood estimation as described in Section 4.3.3.

3. In the E-step, we seek (EY,,,R{,,) for each document d that maximizes
P(D'1 gty where DU = {(EZ,,, RY,,, M?)}. Itisthe same inference prob-
lem in Section 4.2.5.

4. Stoping Criterion: If no increase is achieved over P(D'|#"), the algorithm exits.
Otherwise the algorithm will iterate over the M-step and E-step.

Figure4.3: The Truncated EM algorithm

Theorem 4.3.1 Convergence of TEM: The Truncated EM algorithm converges to a local maxima

of P(DJ).

Proof: The proof is somewhat trivial. During each iteration¢ = 1,2, 3,---, in the M-step, we
recompute the model parameter 6 to maximize P(D|#!), so P(D]0**') > P(D|6"); in the E-step,
we re-annotate D(E?, RY) to maximize P(D'+1|9'+1), so P(D!1|9!*1) > P(D!|¢'*1). P(D!|0")
is non-decreasing in each iteration and it has an upper bound 1, so TEM converges to a local
maximaof P(D|6).l

However, due to computational complexity, we design approximate algorithms in M- and E-

step, and therefore convergence is not guaranteed in this case®.

4.3.2 Initialization

The purpose of theinitial step isto acquire an initial guess of document structures and to seek the
set of entities £ in aclosed collection of documents D. The hopeisto find al entities without loss

even if repeated entities might be created. For al the models, we apply the same algorithm:

4K-means is a Truncated EM algorithm rather than a standard EM.
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First, alocal clustering is performed to group all mentions inside each document. A set of
simple heuristics of matching attributes is applied to calculating the similarity between mentions
and pairs of mentions with similarity above athreshold are clustered together. Thefirst mentionin
each group is chosen as the representative (only in Model 11 and I11) and an entity having the same
writing with the representative is created for each cluster®.

For al the models, the set of entities created in different documents becomes the global entity

set ' inthe following M- and E-steps.

4.3.3 Mode Parameter Estimation

In the learning process, assuming we have obtained labelled documents D = {(e,r,m)}} from
previous |- or E-step, several probability distributions underlying the relaxed models are estimated
according to maximum likelihood estimation in each M-step. The model parameters include a
prior distribution over entities Py, a transitive probability distribution over pairs of entities Pr
(only in Model I11) and the appearance probability Py, of a name in the name space W being
transformed from another name.

e The prior distribution P is modelled as a multi-nomial distribution. Given a set of labelled

entity-mention pairs { (e;, m;) }?,

_ freq(e)

Ple) = 1

where freq(e) denotes the number of pairs containing entity e.
e Given all the entities appearing in D , The transitive probability between entities P(e|e) is
estimated by

doc? (wrt(ey), wrt(e))

P(esler) ~ P(wrt(es)|wrt(e;)) = doc# (wrt(ey))

Here, the conditional probability between two real entities P(es|e;) is backed off to the con-

ditional probability between the identifying writings of the two entities P(wrt(ey)|wrt(e)) inthe

SNote that the performance of the initialization algorithm is 97.3% precision and 10.1% recall.
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document set D to avoid sparsity problem. Given D = {d,,ds, ...,d,,}. And doc” (wy, ws, ...)
denotes the number of documents having the co-occurrence of writings w, w, ....

e Appearance Probability, the probability of one name being transformed from another, de-
noted as P(ns|ny) (n1,ny € W), ismodelled as a product of the transformation probabilities over
attribute values. The transformation probability for each attribute in A is further modelled as a
multi-nomial distribution over a set of predetermined “typical” transformation types that depend
on the entity types. 71" = {copy, missing, typical, non — typical }°.

Supposen; = (a1 = v1, a3 = vy, ..., a, = v,) ANy = (a1 = v}, a9 = vy, ..., a, = v,) AEIWO
names belonging to the same entity type, the transformation probabilities Py, Prr and Py,

are al modelled as a product distribution (naive Bayes) over attributes:

P(na|ny) = TI;_, P (v |vg,).

We manually collected typical and non-typical transformations for attributes such astitles, first
names, last names, organizations and locations from multiple sources such as U.S. government
census and online dictionaries. For other attributes like gender, only copy transformation is al-
lowed. Assuming multi-nomial distribution for each attribute, the maximum likelihood estimation
of the transformation probability P(t, k) (t € TT,a, € A) from labelled representative-mention
pars{(r,m)}}is:

_ freq(r,m) cvp = v

P(t, k) = (4.3)

n

vy, — v denotes the transformation from attribute ay, of = to that of m is of type ¢. Simple

smoothing is performed here for unseen transformations.

Scopy denotes v}, is exactly the same as vy,; missing denotes “missing value® for v},; typical denotes vj, is a
typical variation of vy, for example, “Prof.” for “Professor”, “Andy” for “Andrew” ; non-typical denotes a non-typical
transformation.
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4.4 Experimental Study

Our experimental study here focuses on (1) evaluating the three models on identifying three entity
types (People, Locations, Organization); (2) evaluating the contribution of the global nature of our
model, and finally, (3) evaluating our models on hame expansion and prominence ranking.

The document segments shown in Figure 2.2 exemplify the preprocessed data given as input
to the evaluation. The learning approaches were evaluated on their ability to determine whether a
pair of entities (within or across documents) actually correspond to the same real-world entity.

We still make use of the New York Times articles in the experiments as in Section 4.4. The
training process getsto see al of the 300 documents and extracts attribute values for each mention,
but no supervision is supplied. These records are used to learn the probabilistic models. In testing,
all of the 130, 000 pairs of mentions that correspond to the same entity in the 300 documents are
generated, and are used to evaluate the models performance. Since the probabilistic models are
learned in an unsupervised setting, testing can be viewed simply as the evaluation of the learned
model, and is thus done on the same data. The same setting was used for all models and all
comparison performed (see below). To evaluate the performance, we pair two mentions if and
only if the learned model determined that they correspond to the same entity. The list of predicted
pairs is then compared with the annotated pairs. Precision, Recall and F; are computed the same
way asin Section 2.2.2.

The generative models are compared with two straightforward discriminatory models. The
first one is a simple baseline algorithm according to which two names are co-referred if and only
if they have identical writings. The second is a pairwise classifier based on a state-of-art similarity
measure for entity names (SoftTFIDF with Jaro-Winkler distance and § = 0.9) as described in
Section 2.1; it was ranked the best measure in a recent study (Cohen, Ravikumar, & Fienberg,

2003a).
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4.4.1 Comparison of Different Models

Table 4.1 presents a detailed evaluation of the different approaches on the entity identity task.
All the three probabilistic models outperform the discriminative approaches in this experiment, an

indication of the effectiveness of the generative model.

Entity | Mod | InDoc | InterDoc All
Type Fi(%) | Fi(%) | R(%) | P(%) | Fi(%)
All B 86.0 68.8 585 | 855 70.7
D 86.5 78.9 66.4 | 95.8 79.8
I 96.3 85.0 79.0 | 941 86.2
I 96.5 88.1 859 | 92.2 89.0
Il 96.5 87.9 844 | 93.6 | 889
P B 824 59.0 485 | 86.3 64.7
D 824 67.1 545 | 915 70.6
I 96.2 84.8 80.6 | 94.8 874
I 96.4 91.7 940 | 915 92.7
Il 96.4 88.9 898 | 91.3 | 905
L B 88.8 63.0 548 | 75.0 | 64.1
D 914 76.0 61.3 | 959 76.7
I 92.9 78.9 709 | 89.1 79.5
I 93.8 814 76.2 | 88.1 819
Il 93.8 82.8 76.0 | 91.2 83.3
@) B 95.3 82.8 726 | 964 | 837
D 95.8 90.7 839 | 98.9 91.1
I 98.8 91.8 86.5 | 98.5 92.3
I 98.5 92.5 886 | 975 | 929
Il 98.8 93.0 885 | 98.6 93.4
Table 4.1: Performance of different approaches over all test examples. B, D, I, Il and IlI

denote the baseline model, the SoftTFIDF similarity model with clustering, and the three prob-
abilistic models. All,P,L,O denote all entities, People, Locations and Organizations respectively.
We di stinguish between pairs of mentionsthat are inside the same document (InDoc, 10.5% of the
pairs) or not (InterDoc).

We note that although Model 111 is more expressive and reasonable than model 11, it does not
always perform better. Indeed, the global dependency among entitiesin Model [11 achieves two-

folded outcomes: it achieves better precision but, may degrade the recall. The following example,

taken from the corpus, illustrates the advantage of this model.

Example4.4.1 “Sherman Williams” is mentioned along with the baseball team “Dallas Cow-

boys™ in eight out of 300 documents, while ““Jeff Williams™ is mentioned along with “LA Dodgers™
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in two documents.

In all the models except Model 111, ““Jeff Williams™ is judged to correspond to the same entity
as ““Sherman Williams™” since they are quite similar and the prior probability of the latter is higher
than the former. Only in Model I11, due to the dependency between ““Jeff Williams™ and “Dodgers”,

the system identifies it as corresponding to a different entity than “Sherman Williams™.

While this exhibits the better precision achieved by Model 111, the recall may go down. The
reason isthat the global dependency among entitiesin Model I11 enforces restrictions over possible
grouping of similar mentions; in addition, with a limited document set, estimating this global
dependency cannot be done accurately, especially in the setting that entities themselves need to be
found when learning the model. We expect that Model 111 will dominate Model 11 when we have

enough data to estimate a more accurate global dependencies.

4.4.2 Further Analysis

To analyze the experimental results further, we evaluated separately two types of harder cases of
the entity identity task: (1) mentions with different writings that refer to the same entity; and (2)
mentions with similar writings that refer to different entities. Model 11 and I11 outperform other
models in these two cases as well.

Figure 4.4 presents F}; performance of different approachesin thefirst case. The best F; value
isonly 73.1%, indicating that appearance similarity and global dependency are not sufficient to
solve this problem when the writings are very different.  Figure 4.5 shows the performance of
different approaches for disambiguating similar writings that correspond to different entities.

Both these cases exhibit the difficulty of the problem, and that our approach provides a signifi-
cant improvement over the state-of-the-art similarity measure. It also showsthat it is necessary to

use contextual attributes of the names, which are not yet included in this evaluation.
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Identifying different writings of the same entity
T T T

Performance F1 (%)
a
o

. | | |
Baseline SoftTFIDF Model | Model Il Model IlI

Figure 4.4: |dentifying different writings of the same entity (F7). We filter out identical writ-
ings and report only on cases of different writings of the same entity. The test set contains 46, 376
matching pairs (but in different writings) in the whole data set. The F; values of the Baseline algo-
rithm are all zero in this experiment. Baseline, Soft TFIDF, Moddl I, Il and 111 denote the baseline
model, the SoftTFIDF similarity model with clustering, and the three probabilistic models, respec-
tively. The results for each individual entity type and for all entity types are shown in different
grey scales.

4.5 Comparison between the Discriminative and Gener ative
Approaches

To further analyze the working mechanisms of the generative and discriminative models, in this
section, we compare and evaluate them using the same data sets. Although the models can be
trained according to different strategies as described later in detail, they are evaluated using the
five standard test sets we constructed in the previous experiments in evaluating the discriminative
models (see Section 4.4). The experiments focus on: (1) comparing the generative model with the
pairwise classification model in various settings, and (2) combining the unsupervised and super-
vised models. Here we only test Model |1 of the three initializations of the generative model since
it performs the best in the previous experiments.

We trained the generative model in an unsupervised way with all 8,000 names. The some-
what surprising results are shownin Table 4.2. The generative model outperformed the supervised

classifier for People and Organizations. That is, by incorporating alot of unannotated data, the un-
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Identifying similar writings of different entities
T T T
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Figure 4.5: Identifying similar writings of different entities (). The test set contains 39, 837
pairs of mentions that associated with different entities in the 300 documents and have at least
one token in common. Baseline, SoftTFIDF, Model 1, 11 and 111 denote the baseline model, the
SoftTFIDF similarity model with clustering, and the three probabilistic models, respectively. The
results for each individual entity type and for all entity types are shown in different grey scales.

Fi1(%) | Marlin | SoftTFIDF | LMR | Generative
Peop 88.3 89.0 90.5 95.1
Loc 77.3 90.5 92.5 87.8
Org 78.1 87.7 93.0 96.7

Table 4.2: Discriminative and generative models. Results are evaluated by the average F; val-
ues over the five test sets for each entity type. “Marlin”, “SoftTFIDF” and “LMR” are the three
pairwise classifiers; “ Generative” isthe generative model.
supervised learning could do better. Please note that the performance of the generative model over
these smaller test sets are better than that over the test using all 8, 000 names (shown in Table 4.1).
Thisis due to different ratios of within-document examples and across-document examplesin the
test sets and performance over across-document examples is usually lower’. Table 4.3 shows the
number of these examplesin different test sets.

To understand the reasons behind the performance differences between the discriminative and
generative approaches, and to compare them further, we addressed the following three issues:

Data: Our first intuition is that the outcome is caused by the fact that the discriminative ap-

"The number of across-document examplesis O(m ?) wherem isthe number of documentsin the collection, while
the number of within-document examplesisonly O(m).



# of positive examples | 600-name test sets | 8,000-name test set
within-document 9517 13866
across-document 43346 116948

Table 4.3: The distribution of within-document and across-document positive examples in
different test sets. Only numbers of positive examples are shown here. The number of positive
examplesin the 600-name test sets are the sum over 15 sets (five for each entity type).

proach has an inherent limitation. So we increase our training data to a comparable size to that
of the generative model: We apply about 6, 400 annotated names for training. The results of the
LMR classifier are improved somewhat after this (see Figure 4.6), but still incomparable with the

generative model.

Different Training Sizes
T

©
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LMR (600) LMR (6,400) Generative (8,600)

Figure 4.6: More training data for the discriminative classifier. Results are evaluated by the
average F values over the five test sets for each entity type. “LMR (600)” isthe LMR classifier
trained only on 600 annotated names and “LMR (6, 400)” is the one trained on 6,400 names.
Results are averaged over thefive test sets.

Learning protocol: A supervised learning approach is trained on a training corpus, and tested
on a different one, necessarily, resulting in some degradation in performance. On the contrary,
an unsupervised method learns directly on the target corpus. This difference, as we show, can be
significant to performance. In a second experiment, in which we do not train the generative model
on names it will see in the test set, results clearly degrade (Figure 4.7). Since we use maximum
likelihood estimation of model parameters in the Truncated EM algorithm, the results indicate

signs of overfitting in the generative model.
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Learning Protocol
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Figure 4.7: Results of different learning protocols for the generative model. The table shows
the results of our supervised classifier (LMR) trained with 600 names, Generative (all) — the gen-
erative model trained with all the 8,000 names and Generative (unseen) — the generative model
trained with the part of 8,000 names not used in the corresponding test set. Results are evaluated
and averaged over five test sets for each entity type.
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Figure 4.8: Performance of simple initialization. “Generative” — the generative model learned
in anormal way. “Initia” — the parameters of the generative model initialized using some simple
heuristics and used to cluster names. Results are evaluated by the average F; values over the five
test sets for each entity type.
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Structural assumptions: Our generative models benefit from the structural assumptions made
in designing the model. We exhibit this by evaluating a fairly weak initialization of the model,
and showing that, nevertheless, this results in a cross-document entity identification model with
respectable results. Figure 4.8 shows that after initializing the model parameters with the heuris-
tics used in the EM-like algorithm, and without further training (but with the inference of the
probabilistic models), the generative model can perform reasonably well.

All of the above factors have influenced the resultsin Table 4.2 more or less, athough they do
not seem to be dominant factors that cause the performance difference between the discriminative
and generative approaches. In the next section, we will further analyze some inherent problems
in learning the LMR classifier, which explains why more training data can not make the LMR
classifier comparable to the generative model, and show that the generative models indeed have

inherent advantages coming together with their structural assumptions.

451 A Further Explanation

Consider the following examples < Kennnedy, Kennedy > and < John, Kennedy >. Suppose
the two Kennedy’s occur in different documents and they refer to different persons in different,
we then have h*(Kennedy, Kennedy) = 0. However, the two names have exactly the same
appearance features and there is not way to get aclassifier that can tell usthey are different by only
using these features. On the contrary, suppose “ John” and “Kennedy” occur in different documents
and they both refer to the person “John F. Kennedy”, that is, h*(John, Kennedy) = 1, because
their appearance features are completely different, it ishard to train a pairwise classifier to tell that
they actually co-refer. When we only want to train alocal similarity function for clustering, these
examples will be noisein training.

One advantage of the generative model is that it incorporates the information of document
structures into the model. The approach, therefore, can distinguish between two levels of name
ambiguity: the ambiguity within document and across document. Inside each document, most

names belong to the same entity are similar to each other. On the cross-document level, only
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representatives which are typically full names of entities are compared and clustered, where most
of the cases of “John” and “Kennedy” as above can be avoided. Thusin inference, it will seldom
meet the above hard cases. This advantage provides an explanation why the generative models

perform better than the LMR classifier learned with supervision.

4.6 Conclusion

This chapter presents an unsupervised learning approach to several aspects of the cross-document
entity identification problem. We developed a model that describes the natural generation pro-
cess of a document and the process of how names are “sprinkled” into them, taking into account
dependencies between entities across types and an “author” model.

Several relaxations of this model were developed and studied experimentally, and compared
with the previously-devel oped discriminative model that does not take a global view. The experi-
ments exhibit encouraging results and the advantages of our model.

There are severd critical issues that our model can support, but were not included in this pre-
l[iminary evaluation. Some of the issues that will be included in future steps are: (1) integration
with more contextual information (like time and place) related to the target entities, both to support
a better model and to allow temporal tracing of entities; (2) the scalability issues in applying the
system to large corpora, and the development of an incremental approach of training the model;
that is, when anew document is observed, coming, how to update existing model parameters ? and
(3) integration of this work with other aspects of general coreference resolution (e.g., other terms

like pronouns that refer to an entity) and named entity recognition (which we now take as given).
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Chapter 5

Semantic I ntegration across Text and
Databases

Many real-world applicationsincreasingly involve alarge amount of both structured data and text.
The reason is two-folded: First, certain kinds of information are best captured in structured data,
and other kinds in text. Second, the information required for the application may need to be
assembled from many sources, some of which contribute structured data, and otherstext. Examples
of such applications arise in numerous domains, including enterprizes, government agencies, civil
engineering, bioinformatics, health care, personal information management, and the World-Wide
Web.

However, effectively utilizing both structured data and text in the above applications remains
extremely difficult. A major reason is till the semantic heterogeneity over concepts, which refers
to the variability in writing real-world entities in text and in structured data sources, or to using the
same mention to refer to different entities.

Text documents naturally contain much ambiguity as we have shown before. On the database
side, different relational records often refer to the same person, but use different mentions, such as
(Helen Hunt, Beverly Hills) and (H. E. Hunt, 145 Main St. Beverly Hills). Conversely, different
records may use the same mention to refer to different real-world entities. For example, in the
Internet Movie Database (imdb.com) the mention “Helen Hunt” refers to three different people:

two actresses and a make-up artist. This problem is especially common when data is integrated
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from multiple databases, but arises often al so in stand-al one databases, due to the nature of the data,
misspelling, and errors in data entry (Rahm & Do, 2000; Hernandez & Stolfo, 1995b; Sarawagi
& Bhamidipaty, 2002; Cohen, Ravikumar, & Fienberg, 2003a). Finally, semantic heterogeneity is
also pervasive across text and databases. For example, “Helen Hunt” in a relational record may
refer to the same person as “Mrs. H. E. Hunt” in atext document, but not “Professor Hunt”.

This chapter considers the problem of resolving the above types of semantic heterogeneity,
by matching mentions that refer to the same real-world entities, both within and across text and
databases. This problem is more general than record linkage (a.k.a. record matching), the well-
known problem of deciding if two given relational records refer to the same real-world entity (e.g.,
(Hernandez & Stolfo, 1995b; Sarawagi & Bhamidipaty, 2002; Cohen, Ravikumar, & Fienberg,
20034)). It is also more general than mention matching in text, as Section 5.2 will discuss.

Despite significant potential benefits, as far as we know, no work has directly addressed men-
tion matching in the context of integrating text and databases, and current solutions to related
problems are not directly applicable. Solutions for record linkage are not well designed to handle
the unstructured nature of mentionsin text, and solutionsfor matching text mentions are not suited
for exploiting the structured nature of databases.

In this thesis we build on recent advances in both areas, and propose MEDIATE?, a unifying
solution that automatically matches mentions across text and databases. The key idea underlying
MEDIATE is a generative model that extends the one in Chapter 4 to exploit characteristics of
structured database records. It specifies how entity mentions are generated both within a database
record or atext document.

Specifically, we make the following contributions:

e An architecture for mentions matching in data sets that involve both text and structured data. The
generative model provides a principled solution which can handle multiple types of entities, is
highly extensible to new entity types, and operates without the need for expensive hand-crafted

training data.

IMatching Entities in Data I nstances And TExt
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(a) Text Collection

Figure 5.1: A simplified data set for a movie application, which contains both text and struc-
tured data. The arrows denote semantic matches that we want to establish among mentions of

actors and movies.

e An extension to the generative model that exploits context information in the neighborhood of

the mentions as well as the co-occurrence of rea-world entities, to make accurate matching

decisions.

(b) Relational Database

e A mechanism to transfer knowledge across contexts, to maximize matching accuracy.

e The MEDIATE system that embodies the above innovations, and a set of experiments on real-
world data that illustrates the system’s effectiveness. Our experiments show that MEDIATE
achieves high overall matching accuracy of 77.2 - 81.7% F-1 across text and databases, that
it significantly outperforms record linkage techniques on the database side, and achieves even
higher accuracy with the use of text. The experiments further show that MEDIATE can exploit

structured data when available to improve text mentions matching, and that it is robust to varying

degrees of semantic heterogeneity.

The chapter is organized as follows. The next section defines the mention matching problem.

Section 5.2 reviews related work. Section 5.3-5.5 describe the MEDIATE system. Section 5.6

presents experiments and Section 5.7 concludes.
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5.1 Problem Definition

We now describe the specific mention matching problem across text and databases, and reuse some

of the concepts as we have defined for the related problem in text.

Data Sets, Entities, and Mentions. We assume that an application deals with a data set that
consists of relational tables and text documents (but the ideas here can be generalized to other data
representations). Figure 5.1 shows a simplified movie data set, with two tables Actor and Movie,
and three news articles.

Given such adata set, we define a set of real-world entity types that the application isinterested
in. For example, the above movie application may be interested in people and movies, whereas a
bibliography application such as Citeseer may be interested in authors, papers, and publication
venues. Next, we assume that instances of real-world entities of the above types are referred
to using mentions of their names in the data set. In Figure 5.1, examples of such mentions are
underlined: “Helen Hunt”, “T. Hanks”, “R. Remeckis’, “Forrest Gump”, etc. Note that a record
may contain multiple mentions of the same entity (e.g., “Helent Hunt” and “Hunt” in the first
record of Actor.

Mention discovery in text has received much attention and success in the database, Al, KDD,
and WWW communities, within the context of named entity recognition, information extraction,
and text segmentation (e.g., (Agichtein & Ganti, 2004; Borkar, Deshmukh, & Sarawagi, 2001;
Freitag, 1998)). The developed techniques also often benefit from learning methods. Mentionsin
relational records are often marked up by the record boundaries (e.g., “Helen Hunt”, “Helen E.
Hunt”, etc. in Figure 5.1). For those which are not (e.g., mentions in the text field comment of
Table Actor), we can apply the above techniques for mention discovery in text. For these reasons,
we assume that mentions are aready marked up in the data set, and focus on the problem of

matching them.
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Figure 5.2: An example of the running process. The generative model is constructed iteratively
by assigning mentions to entities, re-learning model parameters, then re-assigning the mentions.

The Mention Matching Problem: This problem is similar to entity identification problem in
text. Given the marked up mentionsin a set of relational tables and text documents, our goal isto
link all pairs of mentions that refer to the same real-world entities. Figure 5.1 shows the links that

we want to establish in the above movie data set.

5.2 Background & Related Work

We consider related work from several perspectives.

Problem Definition: As described, the mention matching problem is more general than both
record linkage and entity identification in text. Record linkage typically treats each relational tuple
as adescription of a primary entity, then tries to link tuples that describe the same entity within a
singletable, or across different tables. For example, given table Actor in Figure 5.1, it may attempt
to decide if thefirst and second records refer to the same actress, and so on. Thus, conceptually it
matches mentionsthat occur only in certain attributes (e.g., name of Actor). In contrast, we match
all mentions that occur in the database. For example, in Table ACTOR we also match mentions
such as “Hunt” and “Spielberg” in attribute biography of the first and second records with all
other mentions in the database. Our problem therefore subsumes record linkage. We demonstrate
empirically in Section 5.6 that solving mention matching also improves record linkage accuracy.

Schema Matching: It isalso important to emphasi ze that we do not consider semantic heterogene-

ity at the database schema level, arelated and important problem that has received much attention
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(Rahm & Bernstein, 2001). Instead, we consider semantic heterogeneity at the data level, in the

context of integrating structured data and text.

Techniques: A wealth of techniques have been developed to match mentions, with respect to
both record linkage and text contexts (e.g., (Tgjada, Knoblock, & Minton, 2002; Cohen, 1998;
McCallum, Nigam, & Ungar, 2000; Yih & Roth, 2002; Bilenko & Mooney, 2002; Ananthakr-
ishna, Chaudhuri, & Ganti, 2002; Sarawagi & Bhamidipaty, 2002; Gravano, Ipeirotis, Koudas, &
Srivastava, 2003; Hernandez & Stolfo, 1995b; Galhardas, Florescu, Shasha, & Simon, 2000; Ra-
man & Hellerstein, 2001; Dasu & Johnson, 2003; Rahm & Do, 2000)). For record linkage, early
solutions employ manually specified rules (Hernandez & Stolfo, 1995b), while subsequent works
focus on learning matching rules from training data (Tejada, Knoblock, & Minton, 2002; Bilenko
& Mooney, 2002; Sarawagi & Bhamidipaty, 2002), efficient techniquesto match strings (Monge &
Elkan, 1996b; Gravano, Ipeirotis, Koudas, & Srivastava, 2003), powerful methods to match entity
names (Cohen, 1998; Gravano, Ipeirotis, Koudas, & Srivastava, 2003; Cohen, Ravikumar, & Fien-
berg, 20034), scaling up to large number of tuples (Koudas, Marathe, & Srivastava, 2004; Ganti,
Chaudhuri, & Motwani, 2005; Jin, Li, & Mehrotra, 2003; McCallum, Nigam, & Ungar, 2000;
Cohen & Richman, 2002a), matching in online contexts (Chaudhuri, Ganjam, Ganti, & Motwani,
2003), personal information management (Dong, Halevy, Madhavan, & Nemes, 2005), matching
XML data (Weis & Naumann, 2005), and exploiting links (Bhattacharya & Getoor, 2004).

Several recent works have also developed generative models to match mentions. The work
(Pasula, Marthi, Milch, Russell, & Shpitser, 2003) addresses citation matching in structured con-
texts, amuch narrower problem. It proposes afull-blown probabilistic relational model (Friedman,
Getoor, Koller, & Pfeffer, 1999), and as such is harder to understand, requires alot of data (to learn
the model parameters), and has a very high runtime complexity. The model proposed in (Raviku-
mar & Cohen, 2004) for matching tuples is much more efficient, but does not capture and exploit
the notion of real-world entities, as we do here.

Several recent works have employed another probabilistic framework called conditional ran-
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dom fields (CRF) to match mentions (Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay,
2004). In particular, (Wellner, McCallum, Peng, & Hay, 2004) attempts to solve both mention dis-
covery and matching at the sametime. However, the probabilistic model of CRFsisless expressive
than ours and may not be sufficient for the problem we consider here, and yet, are well known to

have very high runtime complexity and are thus not scalable to realistic database domains.

Exploiting Context: Severa recent works have aso exploited context in mention matching (Pa-
sula, Marthi, Milch, Russdll, & Shpitser, 2003; Ananthakrishna, Chaudhuri, & Ganti, 2002; Bhat-
tacharya & Getoor, 2004; Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay, 2004).
(Ananthakrishna, Chaudhuri, & Ganti, 2002) was among the first to articulate the idea, but ex-
ploits context only at asyntactic level. For example, if “X” and “Y” are linked to two occurrences
of “Helen Hunt”, respectively, then it may decide that “X” and “Y” are related. In contrast, we
will first find out if the two occurrence of Helen Hunt refer to the same person. The works (Bhat-
tacharya & Getoor, 2004; Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay, 2004)
exploit context at a higher semantic level (as we do here) but not within the context of generative

models, and do not combine text and databases.

5.3 TheMEDIATE Approach

We developed three generative models, where each builds on the previous one and exploits ad-
ditional types of knowledge in the data set to improve matching accuracy. In what follows we
illustrates the working of the models and the types of knowledge exploited during the matching
process. Here we adopt the same set of notations we have used for entity identification in text in

Section 4.1.

Entities, Mentions, & Representatives. We consider matching mentions in a data set D =
{di,ds,...,dny}. Eachd; isarelational record or atext document, and henceforth will be referred

to as a “document”. We assume D contains mentions (i.e. real occurrences) of |7'| types of real-
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Figure 5.3: Generating database records and text documents.

world entities (e.g., person, movie, etc.). For each document d, we use E,; = {e,;} to denote the
set of entities mentioned in d, and M, = {my;} to denote the set of mentions. For example, for
entity “Tom Hanks’, the corresponding set of mentions in a document may contain “Hanks’, “T.

Hanks’ and “Actor Tom Hanks’.

5.3.1 Constructingthe ME Generative Model

Example 5.3.1 Figure 5.3.a shows the document generation process, while Figures 5.3.b-c show
specific examples of generating a text document and a relational record. For instance, Figure 5.3.b
shows how the basketball player Michael Jordan generates the representative “Michael Jordan”

which in turn generates mentions ““Michael Jordan’ and “Mike” in the text document.C

Assuming conditional independence between M, and E; given R, and ignoring the size com-

ponents due to assumptions of uniform distributions, using the above model we can compute

P(d) = P(E4 Ri, Mq) = P(Eq)P(Rq|Eq)P(My|Ra)
|Edl=lq
I Plea)Plrailea)] T P(malra). (5.1)

i=1 (aj ma;)

Q

Since the ME model is not much different from the generative model we used in entity identi-

fication in text, we learn the model in the same way asin Section 4.3. That is, if we have a set of
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annotated training documents D;, where for each document d € D, we aready manually assign
each mention to the correct entity, then 6 can be estimated by the common method of maximum

likelihood estimation: 6* = argmaxyP(D;|0).

5.3.2 An Example

In the first model ME we learn to match mentions using their names. Consider a smple data set
of three text documents and one relational record, in the (fictional) area of “basketball research”.
Thismodel isvery similar to the model | developed in Section 4.2.3 for text Figures 5.2.a-d show
the data set (only the relevant mentions are shown in text documents, to avoid clutter). To match
the mentionsm; — mg, we proceed in iterations.

e Firstiteration: We cluster mentions within each document and record, using atext similar-
ity measure. Next, we create an entity for each cluster, and assign all mentionsin the cluster to the
entity. Figure 5.2 shows the created entities e; — e5 and the assignment of mentions. Notice that
in document (a) the two mentions* Prof. Jordam” (where *Jordan” is misspelled as “Jordam™) and
“M. Jordan” have not been clustered together and assigned to the same entity because they are not
sufficiently similar.

Next, we learn the characteristics, that is, the “profile” of each entity, based on the assigned
mentions. For example, consider entity e;. From mentions ms and m;, we know that the person
(corresponding to) e3 has the first name “Michael”, middle name initia “I”, last name “Jordan”,
and that his last name could be misspelled as “ Jordam”.

e Second iteration: Now given the entity profiles (i.e., the model learned in previous itera-
tion), we reassign each mention m; to to the best matching entity.

In our example, we end up assigning mg = “Prof. M. I. Jordan” (in the record) to entity e3
because mg aso hasthe middleinitial “I” and share the first initial with e5. We also assign m., to
es, because m, =" Jordan” shares the same last namewith e3. Figure 5.2.e showsthe reassignment.
Note that entities e; and e; become empty and hence are dropped.

Now we relearn all entity profiles. Consider again person e;. From the mentions assigned to
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Figure 5.4. Examples of exploiting external attributes (e.g., phone, location), co-occurrence
of entities, and transferring knowledge across matches.

this entity, we know that, among others, his last name can be misspelled as “ Jordam” and that he
can have thetitle “Prof.” (dueto my).

e Third iteration: Leveraging the above profile of e;, we can reassign m, = “Prof. Jordam”
to e3. Figure 5.2.f shows the reassignment, which also happens to be the final reassignment, as
subsequent iterations do not change it.

ME then uses the above assignment to predict that mentions m; — ms and mg match, and
mg, my Match.

The above exampleillustrates the iterative nature of learning our models directly from the data
set. It also highlights the global nature of our methods, in which knowledge is transferred across
matches to accumulate in entity “profiles’, thus enabling more accurate matching. In contrast, a
method that matches a mention pair by examining their names in isolation is local by nature, and
will incorrectly match my, ms, and m; in the above example, because their names (“Jordan” or

“Jordam”) are similar.

54 MEC: Learning from Context

The model ME exploits only characteristics of mention names, such astitle, middle initial, etc. To

improve matching accuracy, our second model MEC exploits context in the following two ways.

Exploiting External Attributes: Consider a dightly different data set, also in the area of “bas-

ketball research”, as shown in Figure 5.4.
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To match mentions in this data set, we begin by defining a set of external attributes for each
person entity, such as phone, location, and affiliation in this case. Next, we apply the ME algorithm
as described earlier, with some modification. In each iteration, when merging mentionsto compute
the profile for each entity, ME computes the values for internal attributes, such astitle, first name,
middle name, etc. Now, we also compute the values for external attributes. Then when reassigning
mentions, we compute the probabilities P(m|e) using all attributes, internal and external .

Toillustrate, suppose using ME we have assigned all mentionsin documents (a) and (b) aswell
asmention “Prof. M. I. Jordan” intuple (1) to an entity e3 (see Figure 5.4). After computing values
for externa attributes, we know that e; has phone = (205) 414 611 and location = CA (from tuple
(1)). Then in the next iteration, we can assign mention “Mr. Jordan” in tuple (4) to e3, because the
external attributes phone and location of this mention and of e; share similar values. Notice that
without using the external attributes, we would have incorrectly matched mention “Mr. Jordan” in

tuple (4) with the first mention “Mr. Jordan” in document (c), as they share the same name.

Exploiting Entity Co-occurrence: Consider “Mr. Jordan” and “Air Jordan” in documents (C)
and (d). ME would not match them, because the names are not sufficiently similar. However,
consider the two associated mentions: “ Scott Pippen” and “S. Pippen”. If we aready know that
they refer to the same person, then “Mr. Jordan” and “Air. Jordan” co-occur with the same entity,
and intuitively that would increase their chance to match. In MEC we develop a method to exploit

such entity co-occurrence to further improve matching accuracy.

Interplay between Text & Databases The example in Figure 5.4 also shows that text can help
record linkage, and vice versa. Given only the database, record linkage would have difficulty
matching tuples (1) and (2), since they do not share much context. Now consider the text docu-
ments (8)-(d), and assume that our method has matched mention m = “Prof. M. |. Jordan” in tuple
(1) with al person mentions in documents (a) and (b). Then we can infer that m has first name

“Michael” (from document (b)) and is also associated with location Berkeley (from document (a)).

99



This information would enable matching the two tuples (1) and (2). Similarly, we have shown
before that matching mentions in documents (a) and (b) is difficult unless we can bridge them via
mention “Prof. M. |. Jordan” in tuple (1). This demonstrates that databases can help mention

matching in text.

5.4.1 Exploiting External Attributes

We associate with each mention a set of external attributes, defined based on the attributes of the
database as well as the types of mentions we can automatically discover from the text. Recall
(model ME Section 5.3) that after selecting a set of entities F; for d, we generate a representative
r for each entity e € FEy, then generate mention m from representative r, by transforming the
internal attributes of r.

In the current model MEC, we generate mention m from representative r by transforming both
internal and external attributes of r. We compute thistransformation probability asfollows. Given
any two elementsn, n, € W (e.g., n; isamention m and n, isarepresentative r), assuming inde-
pendence among all attributes (both internal and external), we can compute probability P(ns|n;)
as a product distribution over attributes. The independence assumption clearly does not hold, but
it reduces runtime complexity, and is shown empirically to work well (Section 5.6).

Let the set of internal and external attributesbeay, . .., a,. Letn, = (a1 = vy, a2 = vy, ..., a, =
vp) and ny = (ay = v}, ay = vy, ...,a, = v,)). Since the external attributes could be of binary,
numeric and textual value, we adopt a more general model to compute P (vy.|v,)(k = 1,---,p)
for each pair of attribute values. (1) We first measure the distance between the corresponding
attribute values dy, (v}, vy) = dj using an attribute-specific distance metric. As default metrics, for
textual attributes, we convert the SoftTFIDF (Cohen, Ravikumar, & Fienberg, 2003a) similarity
between them into adistance; for numeric attributes, such as user rating, we measure the Manhattan
distance. Thisapproachisgeneral in that any state-of-art distance metric can be integrated into the

model, as it becomes available. (2) We then compute P (v} |v) as a variation of the Gaussian
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distribution (because dy. is always non-negative):

fr(vglve) = -exp (—dj/o}) (5.2)

Currently we assign a constant density to missing values, and found that it empirically works well,
though more sophisticated methods are clearly possible.

Given a set of annotated entity-representative pairs { (e, ) } 7, we learn the standard variance oy,
by computing the maximum likelihood estimation of o, for each attribute a;, as: o}, = [M]U 2

where dj. (v, v},) is the distance between corresponding attribute valuesin e and .

5.4.2 Exploiting Entity Co-occurrence

Exploiting entity co-occurrence further improves matching accuracy We currently exploit by: (1)
modeling entity co-occurrence as conditional probability between entities P(es|e;); and (2) inte-

grating it as an externa attribute.

Modeling as Conditional Probabilities: In the document generation process (Section 5.3.1),
instead of assuming independence among entities, we select entities sequentially according a con-
ditional probability P(e;|E, !): each entity e; is selected into a document d according to the set
of entities £~ selected before it. This gives P(Ey) = [[\2/[P(eqs|EL")], where EY = § and
P(eq|EY) = P(eg). Thuswe have

|Eql
P(d) ~ [ [IP(eal By Y P(ralea)) x  [] Plmglrg)- (5.3)
=1 (de md])

Computing P(eq| B ') raisesthe challenge of ranking entitiesin adocument in asequential order,
and aso the sparsity problem when learning the model in an unsupervised setting. To address
these, we approximate P(eq;| B} ") 88 mae, cp, iz P(eqileq). Next, we approximate P(eq;|eq;)

as P(eq;), if eq; and eq; never co-occur, and as 1 otherwise. We now can apply these formulas

101



directly in the Truncated EM algorithm (see Section 4.3.1), to compute P (e | ES™").

Integrating as an External Attribute: We also integrate entity co-occurrence as an additional
externa attribute to each representative/entity. That is, we expand the representation of a repre-
sentative/entity with an external attribute con. This set-valued attribute contains all other repre-
sentative names in the same document. For example, for an author in a citation, its con attribute
contains al other coauthor names. The con attribute of an entity is the combination of the con
attributes of al its representativesin different documents.

Let the con attribute of a representative » and an entity e be con(r) = {n;,n,...} and
con(e) = {n},n),...}. Tomeasuretheir distance, we first apply the SoftTF-IDF (Cohen, Raviku-
mar, & Fienberg, 2003a) string metric to computethesimilarity s(n;, n}) € [0, 1] (n; € con(e), n} €

con(e)), then compute the distance as

dcon (Ta 6) = H [1 - mal‘n} Econ(e)s(nia n;)] (54)

niccon(r)

The probability of the context of a representative being transformed from that of an entity is
still computed by Equation 5.2. Note that we do not expand the representation of a mention since

this co-occurring information does not benefit the mention level.

5.5 Knowledge Transfer via Contexts

Consider matching “Mr. Jordan” in document (c) with “Mike Jordan” in tuple (3). Our second
model MEC would declare a no-match, because their names are not sufficiently similar, and they
share no context information. However, suppose we know that “Scott Pippen” in document (c)
matches “ Scott Pippen” in tuple (5). Then since “ Scott Pippen” in tuple (5) haslocation = Chicago
and affiliation = NBA, it follows that “ Scott Pippen” in document (c) also has the same location
and affiliation. Since mention “Mr. Jordan” occurs close to “ Scott Pippen” in document (c), it can

“borrow” the context information about location and affiliation from * Scott Pippen”. Armed with
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this, it can now match the mention “Mike Jordan” in tuple (3), since that mention also has the same
location and affiliation. In MEC?, our third and last model, we develop a method to enable such
context transfer. The key challenge thereisto transfer the right amount of context, with little noise.

As we have motivated above, often an entity can “borrow” some context from its neighboring
entities, and leverage the augmented context to increase matching accuracy. Hence, in the final
extension, MEC?, we enable such “borrowing”.

Similar to model MEC, in MEC? we add to each representative/entity a context attribute con.
However, unlike MEC, this attribute now not only contains the co-occurring names in the same
document, but also the names of “distant”: co-occurring entities (e.g., co-occurring entities of
Co-occurring entities).

However, exploiting more distant entity dependency can hurt matching accuracy, if it links
irrelevant entities together. The problem is then how far we should follow context of entities.
Currently we adopt the following mechanism. Let ¢;(e) be the [-th context of e, namely, the set
of entities that have a recursive co-occurring relation of distance no larger than [ from entity
e. We then consider the con attribute of an entity e to be the set {c;(e),...,cx(e)}, for a pre-
specified k& (currently set at three in our experiments). The distance between the contexts of a
representative and an entity is then a weighted sum of the distance over each level of context:
deon(r,€) = Y, wy - de, (1, €), where d, (1, e) is defined as a distance between two sets of names,
measured in the sameway asin Equation 5.4. We currently apply areciprocal weighting: w;, = 1/,

to reflect the intuition that more distant contexts contribute less to the matching process.

5.6 Empirical Evaluation

We now present experimental results that demonstrate the utility of MEDIATE. We show that
MEDIATE significantly increases accuracy over current baseline matching methods, and that it

can utilize text to improve accuracy for record matching, and vice versa.
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5.6.1 Experimental Settings

Data Sets: We evaluated MEDIATE on two data sets obtained from the Internet Movie Database
IMDB at imdb.com and the CS Bibliography DBLP at dblp.uni — trier.de. From IMDB, we
downloaded all news articles in 2003-2004 (to be treated as text documents in our experiments),
then retrieved the IMDB home pages of people (such as actors, directors) and moviesmentionedin
the news articles. Next, we converted each home page into a structured record, thereby obtaining
two tables: PEOPLE and MOVIES, whose schemas are shown in Figure 5.5.

From DBLP, we downloaded 472 home pages of authors, focusing on home pages with high
degree of ambiguity. For each paper X in the downloaded home pages, we followed URL links
to retrieve home pages of the conference that X was published in, as well as the HTML abstract
(wherever available) that isatext blurb listing the conference name, author affiliation, and the paper
abstract. The conference home pages and HTML abstracts are treated as the text documentsin our
experiments. Finaly, we converted each paper citation to a structured record, thereby obtaining a
table: CITATIONS, whose schemais shown in Figure 5.5.

We then marked up the mentions (people names, movietitles, and author names), exploiting the
already existing HTML markups and employing an automatic tagger method whenever necessary.
Next, we manually found all pairs of matching mentions, to be used in evaluating experimental
results.

In the next step, following common research practice in record linkage (Hernandez & Stolfo,
1995b; Ananthakrishna, Chaudhuri, & Ganti, 2002), we perturbed the tables of the data sets, to
generate varying degrees of semantic ambiguity for experimental purposes. For the IMDB tables,
we randomly selected records with a probability p, then perturbed each selected record in severa
ways, e.g., randomly adding titles and misspelling, and abbreviating the first names. For movie
titles we randomly removed articles (a, an, the) and sequel numbers (e.g., Star War Il — Star
War), and added misspelling. We also randomly split records, by keeping certain mentions (e.g.,
certain actor names in attribute actors of table MOVIES in Figure 5.5), and dropping others. We

also perturbed the DBL P table by randomly removing middlie names, and abbreviating first names.
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IMDB: Two tables: people and movies; with 2,043 records and 868 text documents;
People: <name, gender, brithdate, birthplace, deathdate, deathplace, movies>
Movies: <title,year,genre,runtime,language,country,director,color,rating,actors>
Contains 9,725 mentions of 1,687 entities, and 55,147 correct matching pairs.
People have 1,231 records 4,227 mentions.

Movies have 812 records 5,498 mentions.

DBLP: One table of citations with 944 records and 721 text documents;

Citations: <title, authors, coference/journal, pages, year>.

Contains 7,356 mentions of 1672 authors, and 55,186 correct matching pairs.

Figure 5.5: Characteristics of the data sets.

Figure 5.5 describes adata set where al IMDB records were perturbed (i.e., p = 1). Our godl is
to match the mentions of three types of entities: people, movies, and authors, in these data sets. We
use this data set for experiments in Sections 5.6.2- 5.6.4. In Section 5.6.5, we present sensitivity

analysis with data sets perturbed using varying p values.

Baseline Matching Methods: We compare MEDIATE with three methods commonly used in
record linkage and matching mentionsin text.

e Pairwise matching of names: This method declares two mentions matched if the similarity
of their names exceeds a threshold. For computing similarities, we use SoftTF-IDF, a measure
described in (Cohen, Ravikumar, & Fienberg, 2003a) and shown empirically to be the best among
several.

e Clustering: Many different clustering algorithms have been developed for record linkage
(e.g., (McCallum, Nigam, & Ungar, 2000; Cohen & Richman, 2002a)), as well as mention match-
ing in text (Li, Morie, & Roth, 2004a). We implemented a variation of these algorithms, using
the SoftTF-IDF measure (Cohen, Ravikumar, & Fienberg, 2003a) to compute similarities between
mention names.

e Pairwise LW (linear weight) record linkage: When examining MEDIATE’s performance
on the task of record linkage, we also want to compare it to state-of-the-art record linkage meth-

ods. Numerous such methods have been developed in the past few years (see Section 5.2), but
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no comprehensive study is available yet to evaluate them. For our experiments, we implemented
the pairwise attribute-based method, which has been applied successfully in many database and
Al works (Hernandez & Stolfo, 1995b; Sarawagi & Bhamidipaty, 2002; Cohen, Ravikumar, &
Fienberg, 2003a). Given two records, this method computes a similarity score between each pair
of corresponding attributes (using attribute-specific similarity measures), then combines the scores
and deciding the match using linear weighted sum, or learning methods such as decision tree,
SVM, etc. (Sarawagi & Bhamidipaty, 2002). We experimented with a small set-aside devel oping

set and found linear weighted sum work best.

PerformanceMeasures. We convert the outcome of each matching method into a set of mention
pairs that are predicted to match. Since we want to retrieve all and only matching pairs, we use

precision, recall, and F; to measure the method’s performance as we did in Section 2.2.2.

5.6.2 Overall Matching Accuracy

Table 5.1: Matching accuracy over both databases & text.

F1(R/P) IMDB DBLP
Entity Type Person (4227) Movie (5498) Author (6356)
Pairwise 60.5 (65.7/56.0) | 75.0 (84.4/67.4) | 67.4 (66.0/68.9)
Clustering | 54.2 (74.7/42.5) | 76.7 (77.3/76.1) | 61.9 (68.1/56.9)
Model ME | 74.1(63.6/88.8) | 77.5(75.7/79.3) | 77.7 (86.3/70.6)
Model MEC | 74.7 (63.3/91.0) | 80.7 (76.7/85.1) | 78.5(86.3/72.0)
Model MEC? | 77.2 (67.3/90.5) | 81.7 (78.1/85.6) | 81.6 (85.9/77.8)

Table 5.1 shows the accuracy of different methods for mention matching over both databases
and text. The rows show the F-1 values (with R and P in parentheses) for pairwise matching,
clustering, ME, MEC, and MEC? (i.e., the complete MEDIATE system). Note that the LW record
linkage method is not applicable because it cannot extract attribute values for mentionsin the text
documents.

The results show that MEC? achieves high accuracy across the entity typesin both IMDB and
DBLP, ranging from 77.2 to 81.7% F-1. In contrast, the best baseline methods (pairwise for actors
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and authors, and clustering for movies) obtain only 60.5 - 76.7% F-1.

Compared to the best baseline, applying ME significantly improves accuracy by 10.3 - 13.6%
(except 0.8% for movies). Exploiting context and entity co-occurrence in MEC further improves
accuracy by 0.6 - 3.2%. Exploiting recursive context in MEC? adds 1 - 3.1%. In all our experi-
ments, subsequent versions of MEDIATE outperform previous ones, confirming that our generative
model is able to exploit immediate context, entity co-occurrence, and recursive context.

An analysis of the results shows that the accuracy gains depend on the nature of transforma-
tions for mentions, as well as the discriminative power of the context. For instance, movie titles
usually are not transformed as frequently or significantly as person names. This explains why
the basic MEDIATE which relies only on movie titles to match movies obtained only a minimal
improvement over pairwise and clustering.

Finally, Table 5.2 showsthe number of real-world entitiesthat MEC? estimated in each iteration
of the Truncated EM algorithm. The final estimated numbers of entities, and the correct number

of entities arein the last second lines, respectively.

Table5.2: Number of entities, asestimated in each iteration.

Person | Movie | Author
Initialization 2111 | 2611 | 4124
1st Iteration 1423 | 1559 | 2145
Last Iter. (between 5-8) | 963 927 1382
Annotated 890 797 1672

Accuracy over Databases, Text, and Cross-Linking: To further understand the above results,
we break the accuracy down into “within database”, “within text”, and “ across database and text”,
respectively. The results (not shown on figures) demonstrates that MEC? (i.e., the complete ME-
DIATE) outperforms the baselines across all three entity types, and achieves accuracy of 70 - 91%
F-1, while the best baseline method achieves 51.8 - 84.8% F-1. This suggests that MEDIATE can

link mentions within databases, text, and across them with high accuracy.
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Figure 5.6: achieves significantly higher accuracy than LW record linkage when applied to
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Figure 5.7: can exploit databases to improve accuracy over text.

5.6.3 Exploit Text to Improve Record Linkage

Figure 5.6 shows the accuracy of MEDIATE in matching records on the database side. For each

of the three entity types people, movies, and authors, the first four bars show the F-1 accuracy of

the pairwise matching method, clustering, LW record matching, and MEC?, when they are given

only the databases (with no associated text). The last bar shows the accuracy of MEC? when it is

also given text documents (as described in Figure 5.5) and can exploit them for record matching

purposes. The results show that, first of all, record matching beats baseline methods, which exploit

only names, to reach accuracy of 75.6-82.5% F-1. Second, MEC? even without the help of text

beats record matching significantly, improving accuracy by 6 - 8.6% F-1, to reach 81.6 - 90%.

Finally, when text is available, MEC? can exploit it to improve accuracy across al three entity

types, by 0.9 - 3.9%.
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Figure 5.8: The MEDIATE system isrobust across a broad range of degrees of semantic am-
biguity.

5.6.4 Exploit DBsto Match Text Mentions

Figure 5.7 shows the accuracy of MEDIATE in matching mentionsin text. Again, for each entity
type, the first three bars show the accuracy of pairwise matching, clustering, and MEC? when they
are not given any associated database. The fourth bar showsthe accuracy of MEC? whenitisgiven
adatabase to aid in matching mentionsin text. The fifth bar describes a situation similar to that of
the fourth bar, but here MEC? is also told that the database contains all entities whose mentions
appear in text (a situation that commonly arises in practice).

The results show that, on text side alone, best baseline (pairwise or clustering) achieves 66.4 -
84.2%, whereas MEC? achieves 72.2 - 90%, resulting in again of 5.7 - 12.4%. It also shows that
MEC? can exploit the given databases to improve accuracy by 1.8 - 4.6%, to reach 76.8 - 91.7%.

5.6.5 Senditivity Analysis

Figure 5.8 shows the accuracy of the matching methods over different degrees of semantic ambi-
guity. The data points at, say, value 60 on the X axis, represent the F-1 accuracies when run on a
data set that was created by perturbing the original IMDB and DBLP data sets with p = 0.6. The
results show that MEDIATE isrobust to varying degrees of semantic ambiguity.
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5.7 Conclusion

This chapter describes the MEDIATE system which automatically matches entity mentions within
and across both text and databases. The system can handle multiple types of entities (e.g., people,
movies, locations), is easily extensibleto new entity types, and operates with no need for annotated
training data. MEDIATEis created based on the generative models described in Chapter 4, but
allow severa extensions of it in the context of a structured database. The model exploits the
similarity of mention names, common transformations across mentions, and context information
such as age, gender, and entity co-occurrence. To maximize matching accuracy, MEDIATE aso
propagates information across contexts. Experiments on real-world data show that MEDIATE
significantly outperforms existing methods that address aspects of this problem, and that it can

exploit text to improve record linkage, and vice versa.
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Chapter 6

M ore about Concept-Based Text
Under standing and Mining

Entity disambiguation and identificationisacritical step towards implementing concept-based text
understanding mining. Based on the work of globally identifying real-world entities from a large
collection of text, we aim at building a unified framework to support intelligent access to textual
information, as shown in Figure 6.1. The hope is to provide a variety of inference and access
functionalities for users and other text-related tasks such as information retrieval, information ex-
traction and question answering.

In this framework, after entities and concepts are recognized from a large collection of text
(e.g. the collection of al the online the web pages), indexing is created to link each of them to
al of its occurrences in text. Thisis similar to the indexing mechanism implemented in most
search engines, but indexing here takes entities as the basic unit rather than tokens. Moreover
all the variations of the entity name have been identified from text, and are indexed together. In
addition to indexing, meta-information about each entity, such as their occurrence frequency in al
the text, other entities that are closely related to them, and other facts and events about them that
can be extracted from the text, are put into the knowledge base. Users, including those end users
who want to search for knowledge about entities as those of search engines, and the higher-level
text understanding and mining systems, can access the indexed and integrated information in this

knowledge base through multiple access functions. These functions involve direct concept query,
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Figure 6.1: A knowledge base for intelligent accessto text

as well as some inference modules based on some probabilistic model learned from the text in a
way as described in Chapter 4, and updated when new text comein, e.g. daily news articles.

In this chapter, we first discuss in Section 6.1, using search engines as an example, what the
potential functionalities this framework can support, and how text-related tasks can move from
string- and mention-level processing to processing real-world concepts directly and benefit from
it, without being bothered by the name ambiguity. After that in Section 6.2, we will discuss
some future work in implementing thisframework to support concept-based text understanding and
mining , involving both scalability issues and afurther task of coreference resolution —identifying
entities from other types of references like pronouns. In the end, we will conclude this thesisin

Section 6.3.
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6.1 A Case Study with Search Engines

We use search engines, as an example of concept-based text understanding and mining tasks, to
show how text-related tasks can benefit from entity identification and disambiguation. Let’s first
take alook at an example in Figure 6.2, to see what are the setbacks of the current search engine
techniques.

Suppose a user islooking for information about the senior president George Bush and query a
search engine with hisname. A standard search engine that is based on keyword-matching, outputs
a collection of “relevant” web pages to the user. All of the output pages contain both the query
terms* George” and “Bush”, but some of them are actually related to the son of the senior president,
George W. Bush, which is not the one the user is looking for. That is, name ambiguity can bring
noise to the search engines. More interestingly, since his son is the incumbent President, whose

names are supposed to occur frequently in recent web pages, more pages about him are output. A
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more significant setback of this keyword-matching scheme, isthat when aweb page only contains
the name “Bush”, even if it refers to the same person the user islooking for, the search engine will
not treat it as arelevant page. Moreover, different web pages about the same person are scattered
in the result, and it is up to the user to further identify the truly “relevant” information.

Assume entity identification and indexing have been implemented as a component of a search
engine. After all the occurrences of entities, such as people, locations, and companies, are iden-
tified and disambiguated in the web pages, a search engine could benefit from it in at least five
aspects: (1) expanding queries of names; (2) ranking prominence; (3) creating more accurate rele-
vance ranking; (4) clustering relevant documents based on entities; and (5) providing more context
to guide iterative search.

They are further discussed in the rest of this section, and some of them formalized as inference
tasks based on the generative model described in Chapter 4. In the preliminary experiments, we
evaluate our generative model on these tasks related to the cross-document entity identification

problem, but present results only for Model 11 as described in Section 4.2.3.

6.1.1 Name Expansion

The problem of Name Expansion in a search engine is that, given a name of an entity (say, in a
guestion), find other likely names of the same entity. An inference task can be defined to address
it, based on the probabilistic model as described in Chapter 4. That is, given a mention m, in a

query ¢, decide whether mention 1 in the document collection D isa‘legal’ expansion of m;:

mg — miff e;, = argmazeepP(Ey, Ry, My) & m € mentions(e”)

We assume here that we already know the possible mentions of e* after learning the modelsin D.
In the following preliminary experiments, given amention m in aquery (for example, in an q),
we find the most likely entity e € E for m using our inference algorithm. All unique mentions of

the entity in the documents are output as the expansions of m. The accuracy of Name Expansion
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for one mention in aquery is defined as the percentage of correct expansionsamong all expansions

output for a query. The average accuracy of Name Expansion of Model |1 is shown in Table 6.1

(averaged over 30 queriesfor each of the three entity types). Here is an example of aquery:
Query: WhoisGore ?

Expansions:. Vice President Al Gore, Al Gore, Gore.

Entity Type | People | Location | Organization
Accuracy(%) | 90.6 100 100

Table 6.1: Accuracy of name expansion. The accuracy of Name Expansion for one mentionin a
query is defined as the percentage of correct expansions among all expansions output for a query.
Accuracy is averaged over 30 randomly chosen queries for each entity type.

6.1.2 Prominence

The problem Prominence isthat: given aquestion“What isBush’sforeign policy?’, and given that
any large collection of documents may contain several Bush's, there is a need to identify the most
prominent, or relevant “Bush”, based on a ranking of the prominence of entities, perhaps taking
into account also some contextual information. The inference task for this problem, based on the
probabilistic model as described in Chapter 4, can be formalized as. given anamen € W, the

most prominent entity for n is given by:

e* = argmaz.cpP(e)P(nle).

P(e) isgiven by the prior distribution P and P(nle) is given by the appearance model.

We refer to Example 4.2.1 and use it to exemplify qualitively how our system supports promi-
nence ranking. The following examples show the ranking of entities with regard to the value of
P(e) - P(mle) using Model 11, given aquery name m.

Input: George Bush

1. George Bush 2. George W. Bush

Input: Bush
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1. George W. Bush 2. George Bush 3. Steve Bush

6.1.3 Other Applications

Creating more accur ate relevance ranking. One of the most important statistics used in rank-
ing web pages is term frequency — counting how many times a query term occurring in aweb page
to be ranked. Since names are also split into individual query terms in the current search engine
techniques, and names of the same entity could be very ambiguousin text as we have claimed, the
statistics is not very accurate, with regard to the importance of a name in ranking the page. This
problem has two-folded influence in reality. On one hand, if a web page only contains the term
“Bush” rather than “George”, the term frequency for “George” will be zero, resulting in a very
low relevance for this page. On the other hand, when multiple entities share the same name, term
frequency over each token of the name will mistakenly accumulate over all these different entities.

One solution to these setbacks is to take entity-based frequency statistics, rather than token-
base frequency statistics. For user queries with a name, the real-world entity behind this name is
first identified, given the other context of the query. The frequency statistics is taken based on the
identified entity according to how many times this entity is mentioned in it, no matter which name
of itisused. The frequency of an entity in a collection of pagesis computed correspondingly, as

how many times its names occur in all these pages.

Clustering relevant documents based on entities. The layout of the search results could also
be reorganized, base on identified entities. When there are multiple possible entities for a query,
(e.g. searching for “Bush™). A search engine could first returns alist of candidate Bush's (such as
“George Bush”, “David Bush”) as the first-tier outcome. A short biography is provided for each
person and can be used to help the user decide the one he is looking for. Moreover, web pages
about the different persons can be split apart into different groups. The user can choose a entity
here, and then go to its relevant pages for more relevant information. Some further categorization

and summarization of the web pages about the same entity, can be performed to avoid redundant
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output.

Providing more context to guide iterative search. After entities are identified in text, further
knowledge can be extracted for each entity based on straightforward statistics over the entities. One
type of the most important knowledge for an entity is the other “related” entities, that frequently
occur with one entity in different texts. “ George W. Bush”, as an instance, can be easily identified
relating to the following entities, such as “White House”, “Dick Cheney”, “Iraq’. The related
entities can provide a user some context of the target entity that he is searching for. He may then
follow the relation to find information about other entities, and get the ultimate information he is

interested with, in an iterative setting.

6.2 FutureWork

For implementing the framework to support intelligent access to textual information as in Fig-

ure 6.1, there are still many issuesto be addressed in the future.

6.2.1 the Scalability Problem

The practical system of concept disambiguation and tracing of ambiguous names, that can work
in the domain of news articles and web pages, should be capable of efficiently processing of a
great number of documents, even millions of documents, with reasonable computing resources.
However, the current implementation of the discriminative and generative approaches as described
in Chapter 2 — Chapter 4, have about Q(N?) time complexity and (V) space complexity, where
N is the number of documents. In the 300 documents that we have experimented with, there are
8, 000 nameswhich correspond to 2, 000 entities. It takes about hoursto train the pairwise classifier
and one or two hoursto train our generative model (mode I1). Thereforeit isimpossible form them
to handle a much larger document collection.

There are two possible solutions to this problem: (1) hierarchically clustering documents; and
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(2) incrementally training the generative models and building the knowledge base.

Our current generative models are hierarchical modelsin some sense. When training the model
parameters, the observed mentions are clustered into groups within each document, and a repre-
sentative is selected for each group. Only representatives participate in the global clustering on
the cross-document level. This scheme avoids direct clustering of all mentions and computing
pairwise similarities for all pairs of mentions. The same idea can be extended further to include
more levelsin the training and inference process of the generative models because documents are
naturally clustered corresponding to different dates, sources and so on, mentions can be clustered
step by step according to the common properties they or the documents have.

The second solution is to train the generative models and to build the knowledge base incre-
mentally. The parameters of the generative models and the content in the knowledge depend on a
set of statistics over entities, entities dependencies and features in the appearance models, which
could be updated in an incremental way. For example, if the frequency of each entity occurring in
processed documents has been maintained, when new documents come in, entities are identified
using the inference algorithm with the existing model parameters. If necessary, new entities will
be created. Then the frequency can be easily updated then by incorporating statistics over the new
documents. After sometime, all the parametersin the generative models can be re-estimated based
on the new statistics.

An ideal implementation of the system should integrate both of the above strategiesin a rea-

sonable way.

6.2.2 Coreference Resolution

In addition to proper names, coreference resolution cares about other types of reference ambiguity
to real-world concepts as well, such asnominal and pronominal references. Consider the following
simplestory (See Figure 6.3) and somerelated comprehension questions (Hirschman, Light, Breck,
& Burger, 1999):

What isinvolved in being able to understand this story and to answer the following questions ?
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(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He
is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived
in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote
a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then
wrote a book. He made up a fairy tale land where Chris lived. His friends were animals.
There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a
piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to
life with hiswords. The places in the story were all near Cotchfield Farm. Winnie the Pooh
was written in 1925. Children still love to read about Christopher Robin and his animal
friends. Most people don’t know heis a real person who is grown now. He has written two
books of hisown. They tell what it is like to be famous.

Question:

1. Who is Christopher Robin?

2. When was Winnie the Pooh written?

3. What did Mr. Robin do when Chris was three years old?
4. Where did young Chrislive?

5. Why did Chris write two books of his own?

Figure6.3: An example of coreference ambiguity in text. Noun phrasesthat refer to “ Christopher
Robin” or hisfather are in bold.

Clearly, there are many small local decisionsneed to make. We need to recognize that there are two
Chris's here. Mentions of “Christopher Robin” and his father interweave in the above story and
occur in different forms. “Christopher Robin” isreferred as { C' hristopher Robin, he, his, Chris}
while his father is referred as { Mr.Robin, he, his father, his}. Coreference resolution is crucial
here to automatically identify all types of occurrences of concepts, not just proper names, and
relations between them.

In solving the coreference ambiguity of proper names, we have concentrated more on the ap-
pearance similarity of different names and the co-occurring dependency among entities. In coref-
erence resolution, however, the usage of the nominal and pronominal references depend more on
the lexical semantics of noun phrases, syntactic structures of a sentence and contextual informa-
tion around areference. For this reason, modelling the problem and seeking neat solution is much
harder. An example of the more complex coreference ambiguity in the above article is the use of
pronouns: “he” and “His’ are used many timesin the story and they can both refer to either of two

Chris'sin different contexts.
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Most works in this area only focus on noun phrase coreference within documents. Many ma-
chine learning approaches (Carbonell & Brown, 1988; Dagan & Itai, 1990; Aone & Bennett,
1995; McCarthy & Lehnert, 1995; Ge, Hale, & Charniak, 1998; Cardie & Wagstaff, 1999; Flo-
rian, Hassan, Ittycheriah, Jing, Kambhatla, Luo, Nicolov, & Roukos, 2004) have been applied in
determining whether a pair of NPs refers to the same entity based on local context of them in a
document. The contextual information of a noun phrase is converted into a set of features. For
example, (Soon, Ng, & Lim, 2001) applies decision tree induction based on 12 features types to
two standard coreference data sets (MUC-6, 1995; MUC-7, 1999).

The influence of these works is two-folded. On one hand, their results have shown the impor-
tance of features in this task. By using an exhaustive set of lexical, grammatical, semantic and
positional features, their system can achieve 70.4% and 63.4% F-measure on MUC-6 and MUC-7
corpus respectively, which is a significant progress from the 64.3% and 61.2% reported in (Soon,
Ng, & Lim, 2001). On the other hand, the result is also an indication of the hardness of this prob-
lem. By applying most of currently known features — many of which are even hand-selected, the
performanceis still far from satisfactory. This hardness motivates us to turn to better modelling of

the problem in the future, instead of focusing on feature engineering.

6.3 Conclusionsof the Thesis

Our mgjor conclusion in this thesis is that: semantic understanding of text and intelligent access
to textual information require concept-based text understanding and mining, that is, a framework
of organizing, indexing, accessing textual information centered around real-world concepts, and
a mechanism of analyzing and integrating segregated information. This framework consists of
several steps. (1) recognizing occurrences of real-world concepts and entities from text; (2) identi-
fying real-world concepts from their ambiguous occurrences in text; (3) integrating and organizing
textual information based on concepts; and (4) extract their properties, relations and other facts or

knowledge based on this integrated organization.
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After all the occurrence of a real-world entity has been identified, information related to this
entity which are previously scattered in different texts and different context of the same text, can be
indexed and integrated together. A lot of text-related applications such as Information Retrieval,
Information Extraction Question Answering, Text Summarization and Reading Comprehension,
can be improved by directly working on the concept-level, rather than being bothered by ambigu-
ous names and different occurrences of the same entity.

In this thesis, we describe our effort in one of the above fundamental steps — disambiguation
and identification of entities (people, locations, organizations and so on) from their ambiguous
writings of names, in the across-document setting of text. While semantic integration of structured
information has been widely studied, little attention has been paid to a similar problem in unstruc-
tured and semi-structured data. This paper also describes one of the first efforts towards sematic
integration in unstructured textual data, providing a promising perspective on the integration of
structured databases with unstructured or semi-structured information. We propose multiple ma-
chine learning techniques to address the entity identification and semantic integration problem.
It has been shown that as more information can be exploited, the learning techniques devel oped
accordingly, can continuously improve the identification accuracy.

Our first solution (described in Chapter 2) is a discriminative approach for studying the influ-
ence of appearance similarity between names in entity identification. This approach models the
problem as deciding whether any two names mentioned in a collection of documents represent the
same entity. Thisis a standard pairwise classification task, under a supervised learning protocol;
our main contribution in this part isto show how relational — string and token-level features — and
structural features, representing transformations between names, can significantly improve the per-
formance of this classifier. We al so show that the appearance similarity between names are critical
information in entity identification, and the classifier based on it, without any help from contextual
information, can aready achieve decent performance.

Our second approach in Chapter 3, is a new clustering framework, that can make global opti-

mization by making decisions over a set of names together in entity identification. The proposed
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supervised discriminative clustering framework (SDC) targets learning a partition function, pa-
rameterized by any chosen clustering algorithm, to minimize the clustering distortion from given
supervision. Our experiments on entity identification task show that SDC which trains a similar
metric for a chosen clustering can significantly outperforms the pairwise classification approach,
and existing clustering approaches, and other metric learning approaches where clustering is dis-
joint from the metric learning procedure. This new clustering framework is very promising to be
applied abroad of problemsin natural language processing, and data mining domains.

In Chapter 4, we develop a global probabilistic model to exploit more contextual information
for Entity Identification, at the heart of which is a view on how documents are generated and
how names (of different entity types) are “sprinkled” into them. This unsupervised approach can
outperform the supervised pairwise classifier in the experiments, an indication of the advantages of
more contextual information in this task, such as concurring entities, and the notion of documents.

In addition to developing more advanced learning techniques that can effectively exploiting
more information, we also extend our global probabilistic model to address another related prob-
lem — semantic integration between text and databases in Chapter 5. This is a very significant
problem since there are many important applications require integration of structured databases
with a greater amount of unstructured text, which can provide both efficient access to textual in-
formation, and expansion to databases with more related and integrated textual information.

Based on the work of globally identifying real-world entities from a large collection of docu-
ments (for example, everyday newsarticles or the whole set of online web pages), our ultimate goal
is to design and implement a unified framework for intelligent access of textual information. For
this purpose, in Chapter 6 we study severa applications of entity identification in a text-mining
task like search engine, and show how text-related tasks can benefit significantly from concept-

level understanding and mining.
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