
c� 2005 by Xin Li. All rights reserved



TOWARD CONCEPT-BASED TEXT UNDERSTANDING AND MINING

BY

XIN LI

M.S., Peking University, 2000
B.S., Wuhan University, 1997

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois



Abstract

There is a huge amount of text information in the world, written in natural languages. Most of

the text information is hard to access compared with other well-structured information sources

such as relational databases. This is because reading and understanding text requires the ability

to disambiguate text fragments at several levels, syntactically and semantically, abstracting away

details and using background knowledge in a variety of ways. One possible solution to these

problems is to implement a framework of concept-based text understanding and mining, that is, a

mechanism of analyzing and integrating segregated information, and a framework of organizing,

indexing, accessing textual information centered around real-world concepts.

A fundamental difficulty toward this goal is caused by the concept ambiguity of natural lan-

guage. In text, the real-world entities are referred using their names. The variability in writing a

given concept, along with the fact that different concepts/enities may have very similar writings,

poses a significant challenge to progress in text understanding and mining. Supporting concept-

based natural language understanding requires resolving conceptual ambiguity, and in particular,

identifying whether different mentions of real world entities, within and across documents, actually

represent the same concept.

This thesis systematically studies this fundamental problem. We study and propose different

machine learning techniques to address different aspects of this problem and show that as more

information can be exploited, the learning techniques developed accordingly, can continuously im-

prove the identification accuracy. In addition, we extend our global probabilistic model to address

a significant application – semantic integration between text and databases.

iii



Acknowledgments

A lot of people have supported me in this challenging, hard-working but also entertaining course of

PH.D. study – a continuous process of discovering new problems and pursuing answers to unsolved

questions. First, I am deeply grateful for my adviser, Dan Roth, for all of his teaching and guidance

throughout my time as a doctorate student. Working with him makes me always able to notice the

places that I can improve over myself, both in research and in personality. This pleasant learning

process provides me great excitement when I look back at every step I have taken. I would also

like to thank the other members of my committee, which include Jiawei Han, Gerald Dejong and

Anhai Doan, for their valuable suggestions and comments on this thesis work.

Next, I would like to thank all the people in the cognitive computation group. Thanks for

the many productive discussions at the lab, a lot of warm-hearted comments for improving my

presentation skills and writing skills as a non-native speaker of English, and also numerous creative

jokes to make this PH.D. life so entertaining. Particularly, I would like to thank Wen-tau Yih, Vasin

Punyakanok, Dav Zimak, Paul Morie, Yuancheng Tu, Steve Hanneke and Kevin Small who have

directly collaborated with me on many research projects.

I owe my great thinks to my family. My parents Zihua Li and Ronghua Zhang, and my little

sister Yan Li, who have always been encouraging and supporting to myself. It is their every regard

through the phone line across the Pacific Ocean that supports me in my deep heart in this process.

I also thank all the friends I have made here and thank Urbana-Champaign, this beautiful land

and the first station when I am in the United States.

This research is also supported by NSF grants IIS-9801638, ITR IIS-0085836 and EIA-0224453,

an ONR MURI Award and an equipment donation from AMD.

iv



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Toward Concept-Based Text Understanding and Mining . . . . . . . . . . . . . . . 4

1.1.1 An Overview of Current Text-Related Techniques . . . . . . . . . . . . . . 4
1.1.2 Implementing Concept-Based Text Understanding and Mining . . . . . . . 8
1.1.3 Entity Identification in Text . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Semantic Integration Across Text and Databases . . . . . . . . . . . . . . 13

1.2 Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Probabilistic Model Estimation . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 2 Learning to Measure Name Similarity . . . . . . . . . . . . . . . . . . . . . 28
2.1 Measuring Name Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Adaptive Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Clustering Using Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Definitions of Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Is Clustering Always Better Than Pairwise Classification ? . . . . . . . . . 40
2.3.3 Entity Identification with Clustering . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 3 Supervised Discriminative Clustering . . . . . . . . . . . . . . . . . . . . . 46
3.1 Metric Learning in Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Supervised Discriminative Clustering Framework . . . . . . . . . . . . . . . . . . 51

3.2.1 Error Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Supervised and Unsupervised Training . . . . . . . . . . . . . . . . . . . 53

v



3.2.3 A General Learner for SDC . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Metric Learning with the EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Relations between SDC and Supervised EM* . . . . . . . . . . . . . . . . 58
3.3.2 Simulation with Gaussian Mixture Models . . . . . . . . . . . . . . . . . 58

3.4 Application to Entity Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.1 Comparison of Different Approaches . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Further Analysis of SDC . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 Generative Models for Entity Identification . . . . . . . . . . . . . . . . . . 67
4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 A Model of Document Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Relaxations of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Model I (the simplest model) . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 Model III (Least Restrictions) . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Learning the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Truncated EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Model Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Comparison of Different Models . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.2 Further Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Comparison between the Discriminative and Generative Approaches . . . . . . . . 83
4.5.1 A Further Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5 Semantic Integration across Text and Databases . . . . . . . . . . . . . . . 89
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 The MEDIATE Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Constructing the ME Generative Model . . . . . . . . . . . . . . . . . . . 96
5.3.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 MEC: Learning from Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Exploiting External Attributes . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Exploiting Entity Co-occurrence . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Knowledge Transfer via Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.2 Overall Matching Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.3 Exploit Text to Improve Record Linkage . . . . . . . . . . . . . . . . . . . 108

vi



5.6.4 Exploit DBs to Match Text Mentions . . . . . . . . . . . . . . . . . . . . 109
5.6.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 6 More about Concept-Based Text Understanding and Mining . . . . . . . . 111
6.1 A Case Study with Search Engines . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Name Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.2 Prominence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.1 the Scalability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2.2 Coreference Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Conclusions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Publishing Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Author’s Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vii



List of Tables

2.1 Features employed by LMR and SDC. . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Performance of different approaches over all test examples. B, D, I, II and
III denote the baseline model, the SoftTFIDF similarity model with clustering,
and the three probabilistic models. All,P,L,O denote all entities, People, Locations
and Organizations respectively. We distinguish between pairs of mentions that are
inside the same document (InDoc, ����� of the pairs) or not (InterDoc). . . . . . 81

4.2 Discriminative and generative models. Results are evaluated by the average ��

values over the five test sets for each entity type. “Marlin”, “SoftTFIDF” and
“LMR” are the three pairwise classifiers; “Generative” is the generative model. . . 84

4.3 The distribution of within-document and across-document positive examples
in different test sets. Only numbers of positive examples are shown here. The
number of positive examples in the 600-name test sets are the sum over �� sets
(five for each entity type). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Matching accuracy over both databases & text. . . . . . . . . . . . . . . . . . . 106
5.2 Number of entities, as estimated in each iteration. . . . . . . . . . . . . . . . . 107

6.1 Accuracy of name expansion. The accuracy of Name Expansion for one mention
in a query is defined as the percentage of correct expansions among all expansions
output for a query. Accuracy is averaged over �� randomly chosen queries for each
entity type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



List of Figures

1.1 An example of searching information. . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Text understanding and mining. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Difference in text understanding by a computer and a human being . . . . . . 5
1.4 An example of the question answering task. . . . . . . . . . . . . . . . . . . . . 6
1.5 An example of concept-based information access. . . . . . . . . . . . . . . . . 10
1.6 An example of the name ambiguity. There are many “Kennedy’s” (in italic font)

in the three documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 An example of feature extraction. There are two possible features (Equality and
Initial) for token one in the smaller partition but only the higher priority Equality
feature is activated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Segments from two documents preprocessed by our named entity tagger. Dif-
ferent types of entities are annotated with different grey scales. As shown, similar
mentions within and across documents may sometimes correspond to the same
entities and sometimes to different entities. . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Distribution of mentions and entities in different groups. This data set has
about �� ��� mentions corresponding to �� ��� entities. Mentions and Entities are
partitioned into groups according to the number of mentions referring to an entity.
The X-axis shows how many mentions of an entity in each group. . . . . . . . . . 37

2.4 Performance of different pairwise classifiers. Results are evaluated using the
�� value and are averaged over five test sets of ��� names each, for each entity
type. The learned classifiers are trained using corresponding training sets with ���
names. The baseline performance in the experiment is ����� given by a classifier
that predicts only identical names as positive examples, and it is averaged over the
three entity types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Contribution of different feature sets. The LMR classifier is trained with dif-
ferent feature sets using the five training sets. Results are evaluated using the ��

value and are averaged over the five test sets for each entity type with ��� names
in each of them. The Baseline classifier only uses string-edit-distance features
and “Equality” features. The Token-Based classifier uses all relational token-based
features while the Structural classifier uses, in addition, structural features. . . . . 39

ix



2.6 Error cases of pairwise classification and clustering (for a uniform mixture of
two Gaussian generative models). � is a one-dimensional data space. 	��� �	��


and 	��� �	��

 are two data points with their class labels. We have two classes in
this case, their density functions over the data space satisfy Gaussian models with
the same variance and correspond to �� and ��. � is the threshold used by the
pairwise classifier. �� and �� are the decision functions of pairwise classification
and clustering respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Best performance of different clustering approaches (Various parameter set-
tings, including different numbers of clusters were experimented with in direct
clustering and the hierarchical clustering.) ‘LMR’ represents our pairwise classi-
fier. It is compared with different clustering schemes, based on it as a similairty
metric. Results are evaluated using �� values. The test set has ��� names for each
entity type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Different combinations of clustering algorithms with distance metrics. . . . . 50
3.2 Supervised Discriminative Clustering . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Examples of error functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 A general training algorithm for SDC . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Performance of different clustering approaches. Different algorithms are eval-

uated on data generated from a Gaussian mixture model in a weighted Euclidean
metric space. The plot shows number of elements in the training set versus ��-
Measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Different error functions for SDC. These error functions are described in Fig-
ure 3.3. The plot shows number of elements in the training set versus ��-Measure. 60

3.7 Performance of different approaches. The results are reported for SDC with
a learning rate 	 � �����. The Single-Linkage algorithm is applied whenever
clustering is performed. Results are reported in �� and averaged over the three data
sets for each entity type and �� runs of two-fold cross-validation. Each training set
typically contains ��� annotated names. . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Performance for different training sizes. Five learning-based approaches are
compared. Single-Linkage is applied whenever clustering is performed. X-axis
denotes different percentages of ��� names used in training. Results are reported
in �� and averaged over the three data sets for each entity type. . . . . . . . . . . 63

3.9 Different clustering algorithms. Five clustering algorithms are compared in SDC
(	 � �����). Results are averaged over the three data sets for each entity type and
�� runs of two-fold cross-validations. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Performance for different learning rates. SDC with different learning rates
(	 � ���� ����� ������ ������) compared in this setting. Single-Linkage cluster-
ing algorithm is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Generating a document. A document is generated in three steps according to
underlying probability distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 71

x



4.2 A conceptual example showing the differences of Model I,II,III. There are five
mentions �
���� observed in two documents ���� ��� and three entities ������. The
arrows represent correct assignment of entities to mentions. �� � are representa-
tives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 The Truncated EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Identifying different writings of the same entity 	��
. We filter out identical

writings and report only on cases of different writings of the same entity. The test
set contains �� ��� matching pairs (but in different writings) in the whole data set.
The �� values of the Baseline algorithm are all zero in this experiment. Baseline,
SoftTFIDF, Model I, II and III denote the baseline model, the SoftTFIDF similarity
model with clustering, and the three probabilistic models, respectively. The results
for each individual entity type and for all entity types are shown in different grey
scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Identifying similar writings of different entities (��). The test set contains
��� ��� pairs of mentions that associated with different entities in the ��� docu-
ments and have at least one token in common. Baseline, SoftTFIDF, Model I, II
and III denote the baseline model, the SoftTFIDF similarity model with clustering,
and the three probabilistic models, respectively. The results for each individual
entity type and for all entity types are shown in different grey scales. . . . . . . . . 84

4.6 More training data for the discriminative classifier. Results are evaluated by
the average �� values over the five test sets for each entity type. “LMR (���)” is
the LMR classifier trained only on ��� annotated names and “LMR (�� ��)” is the
one trained on �� �� names. Results are averaged over the five test sets. . . . . . . 85

4.7 Results of different learning protocols for the generative model. The table
shows the results of our supervised classifier (LMR) trained with ��� names, Gen-
erative (all) – the generative model trained with all the �� ��� names and Generative
(unseen) – the generative model trained with the part of �� ��� names not used in
the corresponding test set. Results are evaluated and averaged over five test sets
for each entity type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Performance of simple initialization. “Generative” – the generative model learned
in a normal way. “Initial” – the parameters of the generative model initialized us-
ing some simple heuristics and used to cluster names. Results are evaluated by the
average �� values over the five test sets for each entity type. . . . . . . . . . . . . 86

5.1 A simplified data set for a movie application, which contains both text and
structured data. The arrows denote semantic matches that we want to establish
among mentions of actors and movies. . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 An example of the running process. The generative model is constructed iter-
atively by assigning mentions to entities, re-learning model parameters, then re-
assigning the mentions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Generating database records and text documents. . . . . . . . . . . . . . . . . 96
5.4 Examples of exploiting external attributes (e.g., phone, location), co-occurrence

of entities, and transferring knowledge across matches. . . . . . . . . . . . . . 98
5.5 Characteristics of the data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xi



5.6 achieves significantly higher accuracy than LW record linkage when applied
to databases, and obtains even higher accuracy when exploiting text. . . . . . . 108

5.7 can exploit databases to improve accuracy over text. . . . . . . . . . . . . . . . 108
5.8 The MEDIATE system is robust across a broad range of degrees of semantic

ambiguity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 A knowledge base for intelligent access to text . . . . . . . . . . . . . . . . . . 112
6.2 Search by concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 An example of coreference ambiguity in text. Noun phrases that refer to “Christo-

pher Robin” or his father are in bold. . . . . . . . . . . . . . . . . . . . . . . . . . 119

xii



List of Abbreviations

AI Artificial Intelligence.

BLOG Bayesian LOGic.

CRF Conditional Random Fields

DB Database.

EM Expectation-Maximization.

IE Information Extraction.

IR Information Retrieval

LMR The pairwise classifier named after Li, Morie and Roth.

ME Matching Entities.

MEC Matching Entities with Context.

MEC� Matching Entities with More Context.

MEDIATE Matching Entities in Data Instances And TExt.

MLE Maximum Likelihood Estimation.

NLP Natural Language Processing.

POS Part-of-speech.

xiii



QA Question Answering.

SDC Supervised Discriminative Clustering.

SNoW Sparse Network of Winnow.

xiv



———————————————————–

xv



Chapter 1

Introduction

There is a huge amount of text information in the world. According to Google’s statistics, there

have been more than � billion web pages on the Internet by 2005. Every year, the United States

publishes more than ���� ��� new books 1. The DBLP database itself – a famous research paper

collection, have collected more than ���� ��� research papers that are published in the area of

computer science between 1980-2005. Moreover, millions of news articles about politics, sports,

and business, come out every day.

Most of the above information is written in natural languages, which is hard to access com-

pared with other well-structured information sources such as relational databases. This is because

reading and understanding text requires the ability to disambiguate text fragments at several lev-

els, syntactically and semantically, abstracting away details and using background knowledge in a

variety of ways. Therefore, how to efficiently access a large collection of text information, that is,

how accurately and automatically pinpoint relevant information for a user and help him understand

it, is a very challenging problem.

One relatively successful technology to facilitate intelligent access to textual information is the

search engine techniques (van Rijsbergen, 1979; Salton & McGill, 1983; Fuhr, 1992; Fuhr, 2001;

Lafferty & Zhai, 2001; Lafferty & Zhai, 2002). Given a user query – typically a set of key words

providing a description of the target information, a search engine searches the Internet or other text

collection and identifies the most relevant documents related to the query. In the following example

1statistics in 2002, cited from “Self-publishing will spur book industry to modernize” by Laura Vanderkam.

1



(see Figure 1.1), when a user looks for George Bush’s foreign policy, the process of identifying

relevant web pages in a search engine is conducted on the basis of key-word matching – pages

containing the same set of key words as in the query are assumed to be relevant.

One critical problem with this process (which we call string or mention-level processing) is that

of ignoring semantic understanding and matching of text. One consequence in the above example

is that semantically equivalent concepts could not be located in text when ambiguous mentions of

them are used. Suppose there is a web page containing only the name “Bush”, rather than “George

Bush’. Even if it refers to the same person conceptually in the above example, it will not be treated

as relevant, only because a different name from that in the query is used in the page.

Figure 1.1: An example of searching information.

Other commonly studied text understanding and mining tasks related to intelligent access to

text information, are summarized in Figure 1.22. For example, information extraction (Califf &

2modified based on an poster by NEC.

2



Q
uestion A

nsw
ering

Figure
1.2:

T
ext

understanding
and

m
ining.

M
ooney,1999;

C
hieu

&
N

g,2002;
Freitag,

2000;
L

afferty,M
cC

allum
,&

Pereira,
2001;

R
oth

&

Y
ih,2001)

aim
atextracting

textsegm
ents

thatare
related

to
a

specific
topic,such

as
the

position

and
the

com
pany

nam
e

of
a

job
opening,the

starting
tim

e
or

the
speaker

of
a

sem
inar.

C
om

pared

w
ith

search
engines,a

question
answ

ering
system

(L
ight,M

ann,R
iloff,&

B
reck,2001;M

oldovan,

H
arabagiu,G

irju,M
orarescu,L

acatusu,N
ovischi,B

adulescu,&
B

olohan,2002;M
oldovan,Pasca,

H
arabagiu,&

Surdeanu,2002;R
oth,C

um
by,L

i,M
orie,N

agarajan,R
izzolo,Sm

all,&
Y

ih,2002;

V
oorhees,

2002)
attem

pts
to

support
higher-precision

inform
ation

access,
pinpointing

the
exact

answ
er

from
a

large
collection

of
text

for
a

user’s
question

–
asked

in
standard

E
nglish

or
other

natural
languages.

M
ost

of
these

current
techniques

applied
to

these
tasks

still
rely

on
string

or

m
ention-level

processing.
W

e
w

ill
further

analyze
the

problem
s

w
ith

them
and

introduce
later

concept-based
textunderstanding

and
m

ining,an
idea

of
sem

antically
processing

real-w
orld

con-

cepts
and

entities,rather
than

am
biguous

m
entions

of
them

in
text.

M
achine

L
earning

techniques
(C

harniak,
1993;

R
oth,

1999)
such

as
rule-learning,

decision

trees,N
eural

N
etw

orks,Support
V

ector
M

achines,G
raph-based

M
odels,discrim

inative
and

gen-

erative
m

odels,
have

been
w

idely
applied

to
text

understanding
and

m
ining

tasks
these

days,
to

achieve
differentlevels

of
analysis

and
understanding

of
text.

M
ostof

these
text-related

problem
s

are
typically

form
alized

as
differentclassification

problem
s,such

as
binary

classification
(K

hardon,

3



Roth, & Valiant, 1999), multi-class classification (Hindle, 1990; Even-Zohar & Roth, 2001; Li &

Roth, 2002; Sang & Meulder, 2003) and structure-based classification and inference (Munoz, Pun-

yakanok, Roth, & Zimak, 1999; Punyakanok & Roth, 2001), which aim at mapping language

components into discrete classes or structures reflecting different syntactic and semantic abstrac-

tion and understanding of them. The text categorization (Dagan, Karov, & Roth, 1997; Zhang

& Oles, 2001) which classifies text articles into a number of topics, such as politics, sports and

education, a type of semantic understanding of articles, is modeled as a multi-class classification

task. Examples of sequential and structure-based classification tasks include part-of speech tag-

ging (Kupiec, 1992; Brill, 1995; Brill, 1997) which categorizes a word into a noun, verb, adjective

and other classes, and parsing (Collins, 1997; Collins, 1999; Charniak, 2000; Collins & Duffy,

2002) which recognizes syntactic structures of sentences.

In the rest of this chapter, we will further discuss the motivation and ideas behind concept-based

text understanding and mining in Section 1.1, introduce the common machine learning techniques

that will be applied to achieving this goal in Section 1.2, and then summarize our contributions in

these areas in Section 1.3. Finally in Section 1.4, we will briefly introduce the organization of this

thesis.

1.1 Toward Concept-Based Text Understanding and Mining

1.1.1 An Overview of Current Text-Related Techniques

Most of the work in the direction of understanding and accessing text in the past two decades

has concentrated on syntactic analysis — the study of the underlying mechanisms, structures and

principles of how a natural language sentence is composed and generated from syntactic compo-

nents (Charniak, 1997; Collins, 1997; Li & Roth, 2001; Punyakanok & Roth, 2001). Less attention

has been paid to semantic analysis of text — analysis that focuses on mapping syntactic compo-

nents to their corresponding real-world concepts, as well as on their properties and the relations

4



between them; that is, the meaning of sentences. In addition to information extraction and ques-

tion answering, other applications on this list include named entity recognition (Collins & Singer,

1999; Sang & Meulder, 2003), text categorization (Yang, 1999; Zhang & Oles, 2001), reading

comprehension (Hirschman, Light, Breck, & Burger, 1999) and so on.

While syntactic analysis tasks can achieve quite accurate performance by exploiting the local

context of language fragments where a set of formalized machine learning techniques can be ap-

plied directly, most semantically related information is separated and distributed in a much broader

range of texts. Therefore, we call the tasks that work on words and syntactic fragments, string-

based text processing. One of the bottlenecks of these semantic tasks is the lack of an integrated

analysis of these fragments and their connections to real-world concepts.

Figure 1.3 illustrates what is missing in current semantic understanding tasks of text, com-

pared with the understanding by a human being. Given the sentence “Mary gave John an apple”,

the current natural language processing such as parsing can identify the syntactic fragments and

the relation between them. Based on this understanding, higher-level processing can further un-

derstand the sentence by performing various semantic abstraction over the syntactic fragments.

give

Mary
apple

John

recipient

giver

object

Mary gave John an apple.

String-based

Concept-based

John ate the apple.

Figure 1.3: Difference in text understanding by a computer and a human being

One critical module is missing in these tasks which, however, lays the ground for the un-

derstanding by a human being is the automatic mapping from syntactic fragments to real-world

concepts. That is, even if he does not know the specific persons “Mary” and “John”, he may still

5



understand that there must exist some persons referred in the text, and “Mary” and “John” are refer-

ences to them. When a new sentence “John ate the apple” comes in, he would be able to recognize

that the second sentences mentions one same person, and thus integrate it with the information he

has already known about this person. Based on this automatic entity identification and mapping,

information is organized and integrated around real-world concepts in a his mind. Moreover, his

further understanding can take these concepts as a basic unit, not being influenced by variations of

the lower-level text fragments. The necessity of moving to concept-based text processing can be

further illustrated in a question answering task.

Question: When were William Shakespeare’s twins born?
Answer: 1585
Text having the answer: They are the evidence for Shakespeare’s marriage by special
licence at 18, to Anne Hathaway, of nearby Shottery, aged 26. Anne gave birth to a child,
Susanna, after six months of wedlock. Two years later came the birth of the Shakespeare
twins Judith and Hamnet, girl and boy, baptized in 1585. Hamnet died aged 11 in 1596.

Figure 1.4: An example of the question answering task.

In the open-domain question answering task (an example is shown in Figure 1.1.1) (Light,

Mann, Riloff, & Breck, 2001; Moldovan, Harabagiu, Girju, Morarescu, Lacatusu, Novischi, Bad-

ulescu, & Bolohan, 2002; Moldovan, Pasca, Harabagiu, & Surdeanu, 2002; Roth, Cumby, Li,

Morie, Nagarajan, Rizzolo, Small, & Yih, 2002; Voorhees, 2002), given a factual question3 written

in standard English or other languages, a question-answering system is required to be able to locate

and extract the exact answer to it from a large collection of textual resources (for example, news

article or web pages). To accurately answer a question related to a real-world entity or concept, as

in the example, several critical problems need to be solved:

1. Can a question answering system precisely identify the entity from its references in both

the question and the text ? In the previous example, the system needs to know that “Shake-

speare” in the text refers to the same person as “William Shakespeare” in the question. A

3We do not address questions like “Do you have a light?”, which calls for an action, but rather only factual Wh-
questions.

6



more difficult example is “What is Bush’s foreign policy after 9-11?”. There are multiple

prominent “Bush’s” in the real world, a human can easily figure out that the question refers

to “George W. Bush” with a great probability given some background knowledge while a

computer system can not.

2. Can a system automatically locate all the occurrences of this entity in the textual collec-

tion or knowledge base ? Most current information retrieval techniques (Baeza-Yates &

Ribeiro-Neto, 1999; Kobayashi & Takeda, 2000) still work on term-based search and index-

ing, lacking the capacity of identify occurrences of an entity from those of other entities with

similar writings.

3. Can a system automatically extract facts about this entity — its properties, the relations with

other entities and what happened to it, after identifying the entity in the text collection ? The

facts about an entity may be distributed in different places of the text. Current information

extraction techniques (Chieu & Ng, 2002; Lafferty, McCallum, & Pereira, 2001; Roth &

Yih, 2001) can only exploit the local context of a mention of an entity and do not provide

an effective mechanism to integrate the segregated pieces of information and to make global

inference using them.

The above problems are indispensable to many other semantic analysis tasks as well, but they

have not been solved effectively so far. One possible solution to these problems and also the

hope of these semantic tasks is to implement a framework of concept-based text understanding and

mining, that is, a mechanism of analyzing and integrating segregated information, and a framework

of organizing, indexing, accessing textual information centered around real-world concepts. This

description is in contrast to the string or mention-level text understanding and mining which works

directly over tokens or string without treat different occurrences of the same real-world entity as a

whole, and without integrating scattered information about it together.

7



1.1.2 Implementing Concept-Based Text Understanding and Mining

One of the fundamental difficulties toward concept-based natural language processing is caused

by the concept ambiguity of natural language. By concepts and entities, we refer to the real-world

objects like people, companies, products, locations, and other abstract objects like events. We

distinguish between the name of a real-world entity and the entity itself. For example, the name

“George W. Bush” is only a string representation of a real person – the incumbent president of

the United States, while “White House” is the name of a location. In text, the real-world entities

are referred using their names. The variability in writing a given concept, along with the fact that

different concepts/enities may have very similar writings, poses a significant challenge to progress

in natural language processing.

The goal in this thesis is to describe our effort to move the level of understanding and mining

from syntactic fragments representing concepts in text (“mentions” of concepts) to the real-world

concepts represented by the fragments. Several tasks that are tightly related to the implementation

of this idea, include: (1) named entity recognition, (2) entity disambiguation and Identification; (3)

indexing and semantic integration of textual information based on real-world entities. The task of

Named Entity Recognition is to recognize possible names of entities in text and categorize them

into different semantic types, such as personal names, company names and names of locations. An

example is of a tagged sentence from MUC 7 named entity recognition task (MUC-7, 1999) is as

follows:

Example 1.1.1 (Named Entity Recognition) [LOCATION Italy] ’s business world was rocked by

the announcement [DATE last Thursday] that Mr. [PERSON Verdi] would leave his job as vice-

president of [ORGANIZATION Music Masters of Milan, Inc] to become operations director of

[ORGANIZATION Arthur Andersen].

Although the learning techniques for this task have gained significant improvement over a

limited set of entity types recently (Zhang & Johnson, 2003; Sang & Meulder, 2003; Sarawagi

& Cohen, 2004), how to accurately identify names of a broad of entity types such as professions,

8



colors and so on, is still a challenging problem. Since this task is not the focus of this thesis, we

assume that the names and their types have been recognized and are given as input to the next

stage.

Our major focus in this thesis is on entity disambiguation and identification, that of reading

concepts from the named references in the context of text, and mapping them to their corresponding

real world entities, that is, solving the Name Ambiguity in natural languages. Unfortunately, due

to the difficulty caused by language ambiguity, most current techniques still directly deal with

syntactic fragments and individual mentions of concepts, without considering the information of a

concept as a whole.

After all the occurrence of a real-world entity has been identified, information about this entity

which previously scatters in different texts or different context of the same text can be indexed and

integrated based on it. Consequently, a lot of text understanding and mining tasks, such as Infor-

mation Retrieval, Information Extraction Question Answering, Text Summarization and Reading

Comprehension, can directly work on the concept-level rather than being bothered by ambiguous

names of them.

Figure 1.5 presents the underlying mechanism supporting concept-based text understanding

and mining and an example. All the occurrences of the same entity (in this case, George W. Bush)

are identified and indexed together in text. When a user wants to find out “President Bush’s for-

eign policy”, even if the text does not contain the exact mention of “President Bush”, the correct

information can still be located with the help of this entity disambiguation and identification mech-

anism.

1.1.3 Entity Identification in Text

A description of the name ambiguity in text is: most names of people, locations, organizations

and other concepts or entities, have multiple writings that are being used freely within and across

documents (Li, Morie, & Roth, 2004a; Li, Morie, & Roth, 2004b).

Consider, for example, an open domain question answering system (Voorhees, 2002) that at-

9



Text Collection

W
hat is President

Bush’s foreign 
policy?

Q
uery

Bush’s current foreign policy is…

Entity Identification 
and Indexing

Figure
1.5:

A
n

exam
ple

of
concept-based

inform
ation

access.

tem
pts,given

a
question

like:
“W

hen
w

as
President

K
ennedy

born?”,to
search

a
large

collection

of
articles

in
order

to
pinpoint

the
concise

answ
er:

“on
M

ay
29,

1917.”
T

he
sentence,

and
even

the
docum

ent
that

contains
the

answ
er,

m
ay

not
contain

the
nam

e
“President

K
ennedy”;

it
m

ay

refer
to

this
entity

as
“K

ennedy”,
“JFK

”
or

“John
Fitzgerald

K
ennedy”.

O
ther

docum
ents

m
ay

state
that“John

F.K
ennedy,Jr.

w
as

born
on

N
ovem

ber
25,1960”,butthis

factrefers
to

our
target

entity’s
son.

O
ther

m
entions,

such
as

“Senator
K

ennedy”
or

“M
rs.

K
ennedy”

are
even

“closer”

to
the

w
riting

of
the

target
entity,but

clearly
refer

to
different

entities.
E

ven
the

statem
ent

“John

K
ennedy,born

5-29-1941”
turns

outto
refer

to
a

differententity,as
one

can
tellobserving

thatthe

docum
ent

discusses
K

ennedy’s
batting

statistics.
A

sim
ilar

problem
exists

for
other

entity
types,

such
as

locations
and

organizations.
A

further
exam

ple
is

show
n

in
Figure

1.6
w

hich
lists

three

passages
containing

m
entions

of
tw

o
differentK

ennedy’s.

Solving
this

fundam
ental

problem
–

the
cross-docum

ent
entity

identification
problem

–
can

already
help

to
address

severalfundam
entalaspects

of
concept-based

naturallanguage
processing,

presented
here

from
the

perspective
of

the
question

answ
ering

task:

(1)
E

ntity
Identity

-
do

m
entions

�
and

�
(typically,occurring

in
differentdocum

ents,or
in

a

question
and

a
docum

entprocessed
in

search
of

an
answ

er)
refer

to
the

sam
e

entity?
T

his
problem

requires
both

identifying
w

hen
differentw

ritings
refer

to
the

sam
e

entity,and
w

hen
very

sim
ilaror

identicalw
ritings

refer
to

differententities.

10



(2) Name Expansion - given a name of an entity (say, in a question), find other likely names of

the same entity.

(3) Prominence - given a question “What is Bush’s foreign policy?”, and given that any large

collection of documents may contain several Bush’s, there is a need to identify the most promi-

nent, or relevant “Bush”, perhaps taking into account also some contextual information. Ad hoc

solutions to this problem, as we show, fail to provide a reliable and accurate solution.

Document 1: The Justice Department has officially ended its inquiry into the assassinations
of John F. Kennedy and Martin Luther King Jr., finding “no persuasive evidence” to sup-
port conspiracy theories, according to department documents. The House Assassinations
Committee concluded in 1978 that Kennedy was “probably” assassinated as the result of a
conspiracy involving a second gunman, a finding that broke from the Warren Commission’s
belief that Lee Harvey Oswald acted alone in Dallas on Nov. 22, 1963.
Document 2: In 1953, Massachusetts Sen. John F. Kennedy married Jacqueline Lee Bou-
vier in Newport, R.I. In 1960, Democratic presidential candidate John F. Kennedy con-
fronted the issue of his Roman Catholic faith by telling a Protestant group in Houston, “I do
not speak for my church on public matters, and the church does not speak for me.”
Document 3: David Kennedy was born in Leicester, England in 1959. � � � Kennedy co-
edited The New Poetry (Bloodaxe Books 1993), and is the author of New Relations: The
Refashioning Of British Poetry 1980-1994 (Seren 1996).

Figure 1.6: An example of the name ambiguity. There are many “Kennedy’s” (in italic font) in
the three documents.

There is little previous work we know of that directly addresses the problem of cross-document

entity identification from their proper names in a principled way, but some problems related to the

general entity disambiguation and identification problem have been studied.

From the natural language perspective, there has been a lot of work on the related problem of

co-reference resolution (Soon, Ng, & Lim, 2001; Ng & Cardie, 2003; Kehler, 2002). The goal is

to link occurrences of noun phrases and pronouns, typically occurring in a close proximity within

a few sentences or a paragraph, based on their appearance and local context. Machine learning

approaches to this problem first convert the local information into a set of features and then make

use of a supervised learning approach to determine whether a given pronoun corresponds to a given

noun phrase. Approaches differ in the algorithm used and features extracted.

In the context of databases (Cohen & Richman, 2002b; Hernandez & Stolfo, 1995a; Bilenko

11



& Mooney, 2003; Doan, Lu, Lee, & Han, 2003) several works have looked at the problem of

record linkage - recognizing duplicate records in a database. (Pasula, Marthi, Milch, Russell, &

Shpitser, 2002) considers the problem of identity uncertainty in the context of citation matching

and suggests a relational probabilistic model. Other machine learning techniques(Cohen & Rich-

man, 2002b; Bilenko & Mooney, 2003; Doan, Lu, Lee, & Han, 2003) to this problem are similar

to the approaches used for co-reference resolution. They usually consider a pair of records and

extract from the pair features that capture their similarity. The classifier is thus a parameterized

similarity function that is trained given a set of annotated examples. That is, the pairs are labelled

as matching or non-matching tags, and training serves to choose the parameters that optimize some

loss function. Learning-based similarity metrics vary in their selection of features, hypotheses and

learning algorithms.

A few works address some aspects of the cross-document entity identification problem with

text data and study it in a across-document setting (Mann & Yarowsky, 2003; Bagga & Baldwin,

1998; McCallum & Wellner, 2003; Gooi & Allan, 2004). (Mann & Yarowsky, 2003) considers

one aspect of the problem – distinguishing occurrences of identical names in different documents,

and only for one type of entity – people. That is, they consider the question of whether occur-

rences of “Jim Clark” in different documents refer to the same person. Their method makes use

of “people-specific” information and may not be applied easily to other types of entities and other

aspects of the cross-document entity identification problem. (Bagga & Baldwin, 1998) builds a

cross-document system based on an existing co-reference resolution tool, Camp. It extracts all

the sentences containing an entity as a representation of the entity, and then applies a vector space

model to compute the similarity between two such representations. Clustering is used subsequently

to group entities in different documents into global co-reference chains. (McCallum & Wellner,

2003) uses a conditional model to address the problem of co-reference across documents. This

work takes a more global view in that it defines a conditional probability distribution over par-

titions of mentions, give all observed mentions. The derived pairwise classification function that

decides whether two names match is learned in a supervised manner, based on a maximum entropy

12



model. However, this model does not incorporate contextual information and cannot resolve the

ambiguity at the level we expect to.

1.1.4 Semantic Integration Across Text and Databases

In addition to entity identification in text, we also study a more complex problem: semantic in-

tegration across unstructured text and structured databases. The goal of this task is to implement

intelligent access to textual information from a different perspective, by combining efficient access

mechanism in relational databases with a greater amount of textual information. Moreover, many

real-world applications increasingly involve both structured data and text. A given real-world en-

tity is often referred to in different ways, such as “Helen Hunt”, and “Mrs. H. E. Hunt”, both

within and across the structured data and the text. Due to this semantic heterogeneity, it remains

extremely difficult to glue together information about real-world entities from the available data

sources and effectively utilize both types of information.

Resolving semantic heterogeneity across text and databases brings several significant benefits:

� Entity Consolidation: Many applications significantly benefit from being able to retrieve all

information related to a given real-world entity, be it from text or structured data. Solving the

above problem would immediately provide a solution: retrieve all mentions that belong to the

given entity.

� Improve Record Linkage: Record linkage typically treats each relational tuple as a description

of a primary entity, then tries to link tuples that describe the same entity within a single table, or

across different tables. For example, given table Actor in Figure 5.1, it may attempt to decide if

the first and second records refer to the same actress, and so on. Thus, conceptually it matches

mentions that occur only in certain attributes (e.g., name of Actor). Even when an applica-

tion deals only with databases, it can still leverage text in the same domain to improve record

matching, if it can link mentions across databases and text.

� Improve Text Related Tasks: Conversely, problems on the text side, such as information extrac-

13



tion, question answering, and cross-document entity identification (Li, Morie, & Roth, 2004b),

rely strongly on the ability to accurately match mentions in text. This, in turn can benefit from

any available structured data.

� Mining across Text and Databases: The ability to link mentions can be leveraged to enable

discovering groups of related entities, retrieving all entities that satisfy certain conditions and

finding relationships among entities. So far, these have been limited to either on text or structured

data.

Matching mentions can also enable new types of queries over the linked mentions graph, or im-

proved information retrieval on both text and databases.

1.2 Supervised and Unsupervised Learning

A very general definition of a learning problem given by Tom Mitchell (Mitchell, 1997) is as

follows:

Definition 1.2.1 A computer program is said to learn from experience � with respect to some

class of tasks � and performance measure � , if its performance at tasks in � , as measured by � ,

improves with experience �.

Usually, the choosing of the representation of the possible target (hypotheses, e.g. linear func-

tions, DNF rules or others), the format of the experience (training examples), the performance

measure and the learning algorithm, decides the learning process. Therefore, many learning prob-

lems fall into this general definition, but differ in different targets, different experiences, different

performance measures and algorithms.

The advantage of machine learning techniques in most of these task, is that a system can auto-

matically learn rules or discriminative and probabilistic models, with the help of limited training

examples in the domain, that can accurately formalizes a problem and can be used for future pre-

diction. In text categorization (Zhang & Oles, 2001), as an instance, a classifier (usually a function

14



defined over some informative features of an article) that can precisely categorize a set of training

articles, is chosen for classifying new articles. In addition, machine learning techniques are very

flexible in the sense that for a new problem, a new classifier for a new problem can be trained

in a data-driven way, without the cost of rebuilding everything as manually-designed heuristic

approaches.

True class labels of training examples are usually annotated or provided by domain experts

according to their understanding of the problem, and serve as supervision in training. Depending

on whether the training examples are labeled (the class label of each example in known) or un-

labeled, machine learning techniques are categorized into the classes of supervised learning and

unsupervised learning. However this process of acquiring supervision is typically unrealistic or

very time-consuming in some problems. In the above example of text categorization, thousands

of articles are required to be first annotated as related to different topics and then are used to train

some accurate classifiers for new articles. Therefore, when the class labels of training examples are

hard to acquire, clustering approaches (Brown, deSouza R. Mercer, Pietra, & Lai, 1992; Dagan,

Lee, & Pereira, 1999; Kamvar, Klein, & Manning, 2002) are usually exploited as an unsupervised

approach – an optimization procedure that classify a set of elements to optimize some criteria

designed on the basis of the commonality and difference between language components, without

exploiting the true labels of these elements. Clustering approaches have been widely applied in

natural language processing and it has been shown repeatedly that its success depend on defining

a good (similarity) distance metric to measure the commonality of language components, one that

is appropriate for the task and the clustering algorithm used.

In this thesis, we study the problem of how to apply learning techniques to entity identification.

As we will show, a set of commonly used learning techniques such as classification, clustering

and generative probabilistic models can achieve decent performance in this domain. Moreover,

we develop some new approaches based on the existing learning techniques that can significantly

improve the performance.

15



1.2.1 Classification

One of the approach to perform syntactic and semantic abstraction of text fragments is classifi-

cation: Given a set of labeled training examples �, the goal is to seek a hypothesis (classifier)

� � � � � � ��� �� � � � � �� in a hypothesis space � that can map each example � � � to a class

index �	�
 � �. When � � �, it becomes a binary classification task (� � ��� �� in this case),

compared with the multi-class classification task when � � �. Each element � � � is represented

as a feature vector � �� ��� ��� � � � � �� �. Features are a set of attributes that are chosen to de-

scribe a data element. For example, color can be used to describe clothes, while temperature and

precipitation can be used to describe weather. Features are usually converted into numeric values

in a hypothesis.

A hypothesis is typically parameterized as a function over a set of features. For example, a

linear threshold hypothesis is defined as �	�
 � �	
�

��� � ��
 � � where � is a real-valued

threshold, where �	���
 � � and �	��� �
 � � is an indicator. How to get informative features

that can accurately reflect some property of an object is one of the most critical problems in a

text-related learning tasks.

A target function � gives the true labeling of each data element � � � , where �	�
 is the true

label of �. � may or may not belong to the hypothesis space. In this sense, the learning procedure

in classification is to find a hypothesis � in � to approximate �. The part-of-speech tagging,

named entity recognition, text categorization and question classification can all be formalized as a

multi-class classification task.

After the hypothesis space � (a family of candidate learning targets) is decided, each hypoth-

esis � in � is typically represented as a parameterized function over the feature vector. The most

commonly-used performance measure is the (empirical) classification accuracy: given a set of

labeled elements � � ���� �	��
��� , the accuracy �!!�	�� �
 � �
�

�
����

�	�	�
 � �	�

. In a

supervised setting, supervision (e.g. the true class labels) is exploited in measuring this accuracy,

and thus incorporated into the training process. The goal of training in classification is to seek the

16



best parameters for the function that can maximize the classification accuracy on the training set

�.

One example of text-related classification tasks is that of learning a question classifier (Li &

Roth, 2002). Recent works (Hovy, Gerber, Hermjakob, Lin, & Ravichandran, 2001; Moldovan,

Pasca, Harabagiu, & Surdeanu, 2002) in open-domain question answering have shown that lo-

cating an accurate answer hinges on first filtering out a wide range of candidates based on some

categorization of answer types given a question. For example, we hope to know that the question

Q: What Canadian city has the largest population?, asks for a city; and Q: What is a prism?, asks

for a definition of a “prism”. This kind of semantic understanding and abstraction is performed

by classifying a question into more than �� semantic categories. (Li & Roth, 2002) attempts to

learn a linear classifier with about �� ��� manually labeled questions based on the SNoW learning

algorithm. It exploits different types of syntactic features such as words and phrases, and semantic

features such as named entities in a question.

Sparse Network of Winnows (SNoW)

SNoW 4 (Sparse Network of Winnows)(Roth, 1998; Carlson, Cumby, Rosen, & Roth, 1999) is a

multi-class learning architecture that is specifically tailored for large scale learning tasks and will

be applied to the entity identification task later in our approaches. It learns a two-layer sparse

network of linear functions, where nodes in the first layer (feature nodes) represent the input fea-

tures, and the nodes in the second layer (target nodes) represent the target classes, which are linear

functions over a common feature space. The weights of the linear functions are stored on the links

between the target nodes and feature nodes. The network is sparse in that a link only appear when

the corresponding feature is active often enough given the target class in training examples.

SNoW is built on a feature efficient learning algorithm, Winnow (Littlestone, 1989) that is

suitable for learning in NLP-like domains, where the number of potential features is very large, but

only a few of them are active in each example, and only a small fraction of them are relevant to the

4available at http://l2r.cs.uiuc.edu/�cogcomp/

17



target concept.

While SNoW is usually used as a classifier and predicts using a winner-take-all mechanism

over the activation values of the target classes, the activation values can also help in estimating

the posteriors of each class given the features. The raw activation value SNoW outputs is the

weighted linear sum of the features. It can be verified that the resulting values are monotonic with

the confidence in the prediction. Moreover, when it is trained to classify whether a pair names refer

to the same entity, the activation can be converted into a similarity metric between the two names

too.

SNoW has already been used successfully for a variety of tasks in natural language and visual

processing (Golding & Roth, 1999; Roth, Yang, & Ahuja, 2000; Roth, Yang, & Ahuja, 2002).

1.2.2 Clustering

While classification is usually used as a supervised learning task – examples of all the classes

and labels should occur in the training set to get a reasonable classification accuracy, clustering

is always viewed as an unsupervised learning approach. Clustering is the task of partitioning a

set of elements into a disjoint decomposition (partition) 5. When supervision (e.g. class index of

elements) is unavailable, the quality of a partition function, is measured with respect to the distance

metric defined over the data space.

Clustering approaches have been widely applied to natural language processing (NLP) prob-

lems. Typically, natural language elements (words, phrases, sentences, etc.) are partitioned into

non-overlapping classes, based on some distance (or similarity) metric defined between them, in

order to provide some level of syntactic or semantic abstraction. A key example is that of class-

based language models (Brown, deSouza R. Mercer, Pietra, & Lai, 1992; Dagan, Lee, & Pereira,

1999) where clustering approaches are used in order to partition words, determined to be similar,

into sets. This enables estimating more robust statistics since these are computed over collections

of “similar” words. A large number of different metrics and algorithms have been experimented

5Overlapping partitions will not be discussed here.

18



on these problems (Lee, 1999; Lee, 1997; Weeds, Weir, & McCarthy, 2004). Similarity between

words was also used as a metric in (Pantel & Lin, 2002), which used it in a distributional clus-

tering algorithm and to show that functionally similar words and can be grouped together and

even separated to smaller groups based on their senses. At a higher level, (Mann & Yarowsky,

2003) disambiguated personal names by clustering people’s home pages using a TFIDF similarity,

and several other researchers have applied clustering at the same level in the context of the en-

tity identification problem (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003; McCallum &

Wellner, 2003; Li, Morie, & Roth, 2004a). Similarly, approaches to coreference resolution (Cardie

& Wagstaff, 1999) use clustering to identify groups of references to the same entity.

Clustering methods for the most part occur as an optimization procedure that takes as input

(1) a collection of domain elements along with (2) a distance metric between them and (3) an

algorithm selected to partition the data elements, with the goal of optimizing some form of clus-

tering quality with respect to the given distance metric. For example, the K-Means clustering

approach (J. Hartigan, 1979) seeks to maximize the well-defined tightness of the resulting clusters

based on the Euclidean distance. It is typically called an unsupervised method, since data elements

are used without labels during the clustering process and labels are not used to provide feedback to

the optimization process. E.g., labels are not taken into account when measuring the quality of the

partition. However, in many cases, supervision is used at the application level when determining an

appropriate distance metric (e.g., (Lee, 1999; Weeds, Weir, & McCarthy, 2004; Bilenko, Mooney,

Cohen, Ravikumar, & Fienberg, 2003) and more).

1.2.3 Probabilistic Model Estimation

In addition to discriminative approaches such as learning a feature-based function for classification

and distance-based clustering algorithms, another major category of learning approaches for text

understanding and mining tasks are estimation and inference with probabilistic models. Some

characteristics of probabilistic modeling and inference are: (1) prior knowledge about the specific

problem can be expressed as the prior probabilistic correlation between different events, or as

19



structures between a collective of related variables; (2) global inference can be made over this set

of related variables or based on the structure underlying these variables; and (3) decisions made

over classification and clustering generate some probabilistic semantic interpretation.

To introduce generative models and probabilistic model estimation, we assume some standard

definitions from probability theory (Bickel & Doksum, 1977) and (Collins, 1999). If the set " is a

discrete event space, and � is a probability distribution over this space, then (1) � � � 	�
 � � for

all � � "; (2)
�

��	 � 	�
 � �. In most examples the probability measure will be parameterized:

i.e., � will also be a function of some parameters #. Then the probability of event � given some

parameter setting # as � 	�#
. The parameter space � is then the space �#	� 	�	#
 is a probability

measure over "�. As an example, take the case of flipping a coin that can appear as either heads

(�) or tails (� ), where the probability of it producing as heads is �. In the case:

� The event space " is the set ��� ��.

� The set of parameters # has a single element, �.

� The probability measure � 	�	#
 is defined as � if � � � , �
 � if � � � .

� The parameter space � is the set ��� �� (� must take some real value between � and � for

� 	�	#
 to be a probability measure).

Generative Models

A more example is the case of flipping multiple coins, corresponding to a generative mixture

model.

Suppose we use two different coins to generate a flip. The probability of getting a head using

coin I is �, while that using the coin II is $. For the flip, we first choose a coin with probability  to

be coin I and �
  to be coin II, then we flip the chosen coin to produce a head or tail. In this case:

� The event space " is still the set ��� ��.

� The set of parameters # now have three elements: �, $ and  – the prior probability of

choosing coin I.

� The parameter space � is the set ��� �� (�,$ and  must take some real value between � and

20



� for � 	�	#
 to be a probability measure).

� The probability measure � 	�	#
 is much more complex. � 	�	#
 is ��	�
 
$ if � � � ,

	�
 �
 � 	�
 
	�
 $
 if � � � .

The distribution over � is a probabilistic mixture model since we use two individual models

(two coins), with different head-generating probabilities � and $, to generate the outcome. The

mixture parameters for the two models are  and � 
 . When the probability of choosing each

model is equally likely, that is, � 	!�%% &'�(%���&
 � �)�	� � & � �
 for � models, the whole

model becomes a uniform mixture model. Given the model – model parameters are known, we can

make inference over complex events, e.g., what is the most likely outcome when generating four

flips by repeating the above process.

In addition to inference, a more difficult problem is how to estimate model parameters #

given observations. Assuming we observe a sequence of ' events � �� ��� ��� � � � � �� �,

drawn from #. For example, suppose somebody flips the one coin with an unknown probabil-

ity � � � 	�	��& !%&'
 four times, and get � � ���� . Can we estimate � according to this

observation ? One commonly used solution to model parameter estimation is maximum likelihood

estimation.

Maximum Likelihood Estimation

The maximum likelihood estimation (Dempster, Laird, & Rubin, 1977; Collins, 1999) seeks the

parameter �#
� that can generate the observation with the highest probability. Assuming that the

individual events are independent of each other, the likelihood function, *, is defined as

*	�	#
 �
�

�������

� 	��	#
� (1.1)

The maximum likelihood estimate �#
� is the parameters in � that maximizes this likelihood

function: �#
� � ��
�����*	�	#
� (1.2)

21



In the coin example, the likelihood of the sample � �� ���� � is

*	�	#
 � �	�
 �
�

and the maximum likelihood estimate of � is

�� � ��
���������	�
 �
� �
�



Maximum likelihood estimation can be easily computed in many cases when the class labels

(the index to the individual model used to generate an event) of data elements are observed and

given. I.e., it is known that which coin has been used to generate a flip. For complex mixture mod-

els, where the models that generating the a sequence of observations are unknown, the Expectation-

Maximization (EM) algorithm is generally used to perform maximum likelihood estimation.

EM algorithm

The EM algorithm is typically viewed as an approach for learning a probabilistic mixture model in

an unsupervised setting (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997; Fried-

man, 1998). The core idea is to iteratively seek model parameters that achieve a local optimum

of the expected log-likelihood of a set of observed elements when the data is incomplete or has

missing values.

Suppose a probabilistic mixture model (e.g., Gaussian mixture model), parameterized with # �

�, defines a probability distribution� over ��� � ��� �� � � � � ��. That is, the probability of each

data element � � � belongs to a class �	�
 � � is associated with a probability � 	�� �	�
 � &	#
.

The complete log-likelihood of generating any set of labeled elements 	�� � 	�

 � ���� �	��
���

from � � � (i.i.d. sampled), is defined as:

**	�� � 	�
	#
 � �%������� ���� �	��
	#�� (1.3)

22



where �	�
 is a partition of � and �	��
 � � is the corresponding class index of ��. Suppose � is

observed but the true labeling �	�
 is unknown, the standard EM attempts to estimate # � in which

the expected log-likelihood is optimized:

#� � ������
���

��**	�� �	�
	#
� (1.4)

Instead of the expected log-likelihood directly, the practical EM algorithm chooses to itera-

tively update model parameters, to optimize an intermediate function. A + function is defined to

relate #	���
 – the current parameters estimates, and # – the new parameters to be optimized to

increase +:

+	#� #	���

 � ���%��	�� � 	�
	#
	�� #	���
� (1.5)

After randomly initializing the model parameters to be #�, the practical EM algorithm iterates

over the following two steps: the E-step (Expectation) which evaluates (+	#� # 	���

); and the

M-step (Maximization) which seeks the new parameters that can maximize the expectation, s.t.,

#	�
 � ��
�����+	#� #	���

 (1.6)

Each iteration is guaranteed to increase the expected log-likelihood, and thus the algorithm will

converge to a local maximum of the likelihood function.

1.3 Thesis Contribution

This thesis systematically studies the fundamental problem toward concept-based text understand-

ing and mining — identifying whether ambiguous names in text, within and across documents,

refer to the same real-world concept. We study and propose different machine learning techniques

to address different aspects of this problem and show that as more information can be exploited, the

learning techniques developed accordingly, can continuously improve the identification accuracy.

23



Our first model is a discriminative approach that models the problem as deciding whether any

two names mentioned in a collection of documents represent the same entity. This straightforward

modelling of the problem results in a classification problem – as has been done by several other au-

thors (Bilenko & Mooney, 2003; Cohen, Ravikumar, & Fienberg, 2003a) – allowing us to compare

our results with these. This is a standard pairwise classification task, under a supervised learn-

ing protocol; our main contribution in this part is to show how relational – string and token-level

features – and structural features, representing transformations between names, can significantly

improve the performance of this classifier. A similarity metric between different types of names

can be directly induced from the pairwise classification and being applied to global identification

over a set of names.

Several attempts have been made in the literature to improve the results by performing some

global optimization (i.e. clustering), with the above mentioned pairwise classifier as the similarity

metric. The result of these attempts were not conclusive and we provide some explanation for

why that is. We prove that, assuming optimal clustering, clustering reduces the error of a pairwise

classifier in the case of two classes (corresponding to two entities); however, in the more general

case, when the number of entities (classes) is greater than �, global optimization mechanisms could

be worse than pairwise classification. Our experiments concur with this proof.

We further analyze the setbacks of these clustering approaches, and propose our second ap-

proach – a new clustering framework, to resolve them. Clustering is an optimization procedure

that partitions a set of elements to optimize some criteria, based on a fixed distance metric defined

between the elements. It has been shown repeatedly that its success depends on defining a good

distance metric – one that is appropriate for the task and the clustering algorithm used. Many

recent works have made contributions in the direction of automatically learning a metric with su-

pervision, but suffer some limitations. In order to resolve them, in this work we develop a unified

framework for clustering, guided by supervision. The proposed supervised discriminative cluster-

ing framework (SDC) targets learning a partition function, parameterized by any chosen clustering

algorithm, to minimize the clustering distortion from given supervision. A general learning al-

24



gorithm is also developed under this framework, that can be used to learn an expressive distance

function over a feature space. Moreover, a theoretical and empirical study compares SDC with

multiple variants of EM and existing metric learning approaches. Our experiments on entity iden-

tification task show that SDC which trains a similar metric for a chosen clustering can significantly

outperforms existing clustering approaches, and other metric learning approaches where clustering

is disjoint from the metric learning procedure.

This observation motivates our third approach. We develop a global probabilistic model for En-

tity Identification, at the heart of which is a view on how documents are generated and how names

(of different entity types) are “sprinkled” into them. In its most general form, our model assumes:

(1) a joint distribution over entities, so that a document that mentions “President Kennedy” is more

likely to mention “Oswald” or “ White House” than “Roger Clemens”; (2) an “author” model, that

makes sure that at least one mention of a name in a document is easily identifiable (after all, that’s

the author’s goal), and then generates other mentions via (3) an appearance model, governing how

mentions are transformed from the “representative” mention. This work presents the first study of

our proposed model and several relaxations of it. Our goal is to learn the model from a large corpus

and use it to support Entity Identification in Text. Given a collection of documents we learn the

model in an unsupervised way; that is, the system is not told during training whether two mentions

represent the same entity.

In our experimental study we evaluate different models on the problem of the cross-document

identification for three entity types: People (Peop), Locations (Loc) and Organizations (Org). Our

experimental results are somewhat surprising; we show that the unsupervised approach can solve

the problem accurately, giving accuracies (��) around ���, and better than our discriminative

classifier (obviously, with a lot more data).

In addition, we extend our global probabilistic model to address a significant application – se-

mantic integration between text and databases. Many real-world applications increasingly involve

a large amount of both structured data and text. The reason is two-folded. First, certain kinds

of information are best captured in structured data, and other kinds in text. Second, the informa-

25



tion required for the application may need to be assembled from many sources, some of which

contribute to structured data, and others to text. Examples of such applications arise in numer-

ous domains, including enterprizes, government agencies, civil engineering, bioinformatics, health

care, personal information management, and the World-Wide Web. However, effectively utilizing

both structured data and text in the above applications remains extremely difficult. A major reason

is semantic heterogeneity, which refers to the variability in writing real-world entities in text and

in structured data sources, or to using the same mention to refer to different entities.

This paper describes the MEDIATE system which automatically matches entity mentions within

and across both text and databases. The system can handle multiple types of entities (e.g., people,

movies, locations), is easily extensible to new entity types, and operates with no need for anno-

tated training data. Given a relational database and a set of text documents, MEDIATE learns from

the data a generative model that provides a probabilistic view on how a data creator might have

generated mentions, then applies it to matching the mentions. The model exploits the similarity of

mention names, common transformations across mentions, and context information such as age,

gender, and entity co-occurrence.

Based on the work of globally identifying real-world entities from a large collection of doc-

uments (for example, everyday news articles or the whole set of online web pages), our ultimate

goal is to design and implement a unified framework for intelligent access of textual information.

For this purpose, we perform a case of applying concept-level information in search engines and

show promising perspective of concept-based text understanding and mining.

1.4 Outline of this Thesis

The rest of this thesis is organized as follows:

Chapter 2 gives a detailed introduction to the problem of learning a metric to capture the simi-

larity between names of different types of entities and describes our approach in doing that which

is based on pairwise classification with local features of names, both relational and structural fea-

26



tures. It also studies some natural clustering approaches that are built on the similarity metric

learned in this setting.

Chapter 3 introduces our new, supervised discriminative clustering framework, as well as a

general learning algorithm to train a metric for any chosen clustering algorithm (i.e. K-means,

single-linkage and so on), guided by supervision given in the context of a given task. We study

this framework theoretically by comparing with the EM algorithm, and empirically by comparing

it with existing approaches both on some generated data, and on the real corpus of entity identifi-

cation.

In Chapter 4, we design a generative probabilistic model for the same problem and show how

to learn the three models, which are different relaxations to the basic model, in a completely

unsupervised setting. In addition, we compare the pairwise classification and clustering approaches

with the generative models, and further analyze the difference between them.

Chapter 5 studies an important application of our generative approach to the problem of se-

mantic integration across text and databases.

In the end, Chapter 6 presents our thoughts about what concept-based text understand and

mining would look like and performs a case study of exploiting concept-level information to help

search engines. It also introduces the future steps beyond resolving the name ambiguity and sum-

marize this thesis.

27



Chapter 2

Learning to Measure Name Similarity

Entity identification in text is the task of identifying whether names, within and across documents,

refer to the same real-world concept. One type of information that is very critical to this problem

is the appearance similarity between names, that is, whether two names themselves are similar or

not without considering other information. Although sometimes the same name, like “Kennedy”,

could refer to different entities in different contexts of the text, the general intuition is still that

similar names tend to refer to the same entity, while different names tend to refer to different

entities. For this reason, we study in this chapter the influence of appearance similarity over entity

identification.

Most prior work (Durban, Eddy, Krogh, & Mitchison, 1998; Monge & Elkan, 1996a; Jaro,

1995; Jaro, 1989; Winkler, 1999) in this direction focus on manually designing “good” string-

or token-based metrics for measuring the appearance similarity between names, such as edit dis-

tance. (Cohen, Ravikumar, & Fienberg, 2003a) compared experimentally a variety of string sim-

ilarity metrics on the task of matching entity names and found that, overall, the best-performing

method is a hybrid scheme (SoftTFIDF) combining a TFIDF weighting scheme of tokens with the

Jaro-Winkler string-distance scheme. Although this is a fixed scheme, the threshold used by the

SoftTFIDF classifier is trained. Machine learning techniques (Bilenko & Mooney, 2003; Bilenko,

Mooney, Cohen, Ravikumar, & Fienberg, 2003; Ristad & Yianilos, 1998) have been recently ap-

plied to automatically learning a metric based on a set of features extracted from the names, that

are informative in measuring the similarity or difference. In most cases, a parameterized simi-

28



larity function is trained given annotated examples (i.e., pairs of names labelled as matching or

non-matching entities). However, different learning-based similarity metrics may vary in their se-

lection of features, parameterizations and learning algorithms. A pairwise classifier that can tell

whether any two names refer to the same entity can be constructed naturally by thresholding the

similarity between them.

Our first approach (Li, Morie, & Roth, 2004b) for entity identification is a discriminative ap-

proach following this general direction, that models the problem as that of deciding whether any

two names mentioned in a collection of documents represent the same entity, based on the appear-

ance similarity between the two names. This straightforward modelling of the problem results in

a classification problem – as has been done by several other authors (Cohen, Ravikumar, & Fien-

berg, 2003a; Bilenko & Mooney, 2003) – allowing us to compare our results with these. This is a

standard pairwise classification task, and a classifier for it can be trained in a supervised manner;

our main contribution in this part is to show how relational (string and token-level) features and

structural features, representing transformations between names, can improve the performance of

this classifier. A similarity function between names can be naturally induced from the confidence

of the prediction of the pairwise classifier.

Several attempts have been made in the literature to improve the results of a pairwise classifier

of this sort by performing some global clustering, with the pairwise classifier as a similarity metric.

The results of these attempts were not conclusive and we provide some explanation for it. First,

we show that, in general, a clustering algorithm used in this situation may in fact hurt the results

achieved by the pairwise classifier. Then, we argue that attempting to use a locally trained pairwise

classifier as a similarity metric might be the wrong choice for this problem. Our experiments

concur with this. However, as we show, splitting data in some coherent way – e.g., to groups of

documents originated at about the same time period – prevents some of these problems and aids

clustering significantly.

In Section 2.1, we further discuss and summarize various fixed metrics for measuring string and

name similarity. In Section 2.2, we describe one learning technique that can be applied to acquiring

29



adaptive similarity metrics for each particular task, which is based on pairwise classification of

names. The learned similarity metric is then applied to a clustering task in Section 2.3, that can

perform some global optimization over entity identification – partitioning a set of names altogether,

according to the entities.

2.1 Measuring Name Similarity

Each entity name can be viewed as a string or a token vector. Due to this difference in repre-

sentation, the similar metrics between names can be categorized into three types: (1) string-based

similarity metrics; (2) token-based similarity metrics; and (3) hybrid metrics of strings and tokens.

One of the most common string-level similarity metrics (Cohen, Ravikumar, & Fienberg,

2003a) is edit distance:

Definition 2.1.1 Consider any two names ��, �� as sequences of characters � !�!� � � � !� � and

� !��!
�
� � � � !

�
� �. A few transformation operations from one name to another as follows: delete

– delete a character from ��; insert – insert a character to some position in ��; and substitute

– change a letter to a different one. Any string can be transformed to another string through a

sequence of these operations +	��
 �� %��� %��� � � � � %�� � and + is not unique for most pairs

of strings. The cost of + is typically defined as 	+	 � �, where � is the number of operations

performed. The edit distance �& ���	��� ��
 between �� and �� is defined as:

�& ���	��� ��
 � 
&'���+	��
 � ��� (2.1)

The standard edit distance – Levenstein distance, assigns a unit cost to all edit operations and is

symmetric between two strings. That is, �& ���	��� ��
 � �& ���	��� ��
 for any ��� ��. There is an

efficient recursive procedure to compute �& ���	��� ��
. Let ,	��� ��� &� -
 denote the edit distance

30



between the first & letters in �� and the first - letters in ��. Then we have,

,	��� ��� �� �
 � �� (2.2)

and

,	��� ��� &� -
 �

�����������������������

,	��� ��� &
 �� - 
 �
 if !� � !�� and you copy !� to !�-;

,	��� ��� &
 �� - 
 �
 � � if letter �� is substituted for  �;

,	��� ��� &� - 
 �
 if letter �� is inserted;

,	��� ��� &
 �� -
 if letter  � is deleted.

(2.3)

Some variations of edit distance metrics are Smith-Waterman (Durban, Eddy, Krogh, & Mitchi-

son, 1998) distance and Monger-Elkan distance (Monge & Elkan, 1996a), which adopt particular

but non-uniform cost parameters for different editing operations. In the record-linkage domain, a

broadly used similar metric is the Jaro metric (Jaro, 1995; Jaro, 1989), which is not based on an

edit distance model. Instead, it is defined over the number and order of the common characters

between two strings. A variant of Jaro metric was proposed by Winkler in (Winkler, 1999).

There is another set of distance metrics which treat each name as a sequence of tokens. For

example, the name “John F. Kennedy” is represented as �� .%�'��� �������''��/� �. The distance

metrics are defined based on the common tokens inside two names, and the tokens are weighted

differently according to some statistical models like TFIDF (Salton, 1988). Some other metrics

like Jensen-Shannon distance (Borovkov, 1984) assume that there are some underlying probability

distribution over tokens and measure the probability of two names matching based on it.

The third category of distance metrics are hybrids of the previous methods. Unlike the token-

level metrics, which ignore different but similar tokens in two names, they count on these tokens

in the measurement. For example, although “University of Illinois” and “University of Ill.” have

different tokens, the hybrid metrics still consider these two words as matching, due to the similarity

31



between “Illinois” and “Ill.”. The state-of-art distance metric evaluated in (Cohen, Ravikumar, &

Fienberg, 2003a) is a hybrid scheme (SoftTFIDF) combining a TFIDF weighting scheme of tokens

with the Jaro-Winkler string-distance scheme.

2.2 Adaptive Distance Metrics

A good distance (similarity ) metric between names is one in which close proximity correlates

well with the likelihood of being in the same class when applied in the entity identification task.

A lot of recent works (Winkler, 1999; Cohen & Richman, 2002b; Cohen, Ravikumar, & Fienberg,

2003b; Cohen, Ravikumar, & Fienberg, 2003a) formalize the entity identification as a pairwise

classification as follows:

Definition 2.2.1 The goal of entity identification is to seek a pairwise function � � ��� � ��� ��

which classifies two strings (representing entity writings) in the name space � , as to whether they

represent the same entity (�) or not (�).

A direct solution to this problem is to build a pairwise classifier through thresholding the name

similarity between two names:

�	��� ��
 � � � �	��� ��
 � � (2.4)

where � is a threshold and � � �.

The classification accuracy for a classifier can be computed over all pairs of names in a test

set and is used to evaluate the “goodness” of a similarity metric. Many experiments (Cohen,

Ravikumar, & Fienberg, 2003b; Cohen, Ravikumar, & Fienberg, 2003a; Ristad & Yianilos, 1998)

have shown the distance metrics suitable for matching names in different domains could be very

different from each other. Even the distance metric performs the best in one data set could perform

much worse in another data set of a similar but different domain. This is because the writing style

of names tend to follow different rules in various domains and situations. For example, person

32



names in the news articles of different news agencies might have different forms.

Machine learning techniques (Bilenko & Mooney, 2003; Bilenko, Mooney, Cohen, Ravikumar,

& Fienberg, 2003; Ristad & Yianilos, 1998) have been recently applied to automatically learning a

metric in the context of a specific domain. These works have shown that the learned distance met-

rics in a specific domain tend to outperform the fixed metrics. For example, (Ristad & Yianilos,

1998) provides a stochastic model for the string edit distance. Each editing operation is associ-

ated a probability obtained from a learning process. A global model defines the probability of a

string being transformed from another. In the application of learning the pronunciation of words

in conversational speech, the learned edit distance has only about one fifth the error rate of the

fixed Levenstein distance. (Bilenko & Mooney, 2003) proposed a learning framework (Marlin) for

improving entity matching using trainable measures of textual similarity. They compared a learned

edit distance measure and a learned vector space based measure that employs a classifier (SVM)

against fixed distance measures (but not the one mentioned above) and showed some improvements

in performance.

We propose a learning approach, LMR 1, that focuses on representing a given pair of names

using a collection of relational (string and token-level) and structural features. Over these we learn

a linear classifier for each entity type using the SNoW (Sparse Network of Winnows (Carlson,

Cumby, Rosen, & Roth, 1999) as described in Section 1.2.1) learning architecture. A feature

extractor2 automatically extracts features in a data-driven way for each pair of names. Our decision

is thus of the form:

�	��� ��
 � arg ���
������

� �	��� ��
 � arg ���
������

��
���

����� (2.5)

where ��� is the weight of feature ��	� � & � 

 in the function � �	��� ��
.

1Named after the initials of the designers’ last names.
2We use FEX, a feature extractor tool available from http://L2R.cs.uiuc.edu/�cogcomp/cc-software.html.

33



John Kennedy

1 2
Kennedy

J.

21 3

John

Figure 2.1: An example of feature extraction. There are two possible features (Equality and Ini-
tial) for token one in the smaller partition but only the higher priority Equality feature is activated.

2.2.1 Feature Extraction

An example is generated by extracting features from a pair of names. Two types of features are

used: relational features representing mappings between tokens in the two names, and structural

features, representing the structural transformations of tokens in one name into tokens of the other.

Each name is modelled as a partition in a bipartite graph, with each token in that name as a

vertex (see Figure 2.1) and there is a solid directed edge between two tokens (from the vertex in

the smaller partition to the vertex in the larger one) which activates a token-based feature for the

two names. At most one token-based relational feature is extracted for each edge in the graph,

by traversing a prioritized list of feature types until a feature is activated; if no active features are

found, it goes to the next pair of tokens. This scheme guarantees that only the most important

(expressive) feature is activated for each pair of tokens. An additional constraint is that each token

in the smaller partition can only activate one feature. If a particular token in the smaller bipartition

did not activate any features, then a “null” feature is activated for that token. We define thirteen

types of token-based features, shown in the priority order as described above. See Figure 2.1.

Relational features are not sufficient, since a non-matching pair of names could activate exactly

the same set of features as a matching pair. Consider, for example, two names that are all the same

except that one has an additional token. Our structural features were designed to distinguish be-

tween these cases. These features encode information in the relative order of tokens between the

34



Honorific Equal active if both tokens are honorifics and identical.
Honorific Equivalence active if both tokens are honorifics, not identical, but equivalent.
Honorific Mismatch active for different honorifics.

Equality active if both tokens are identical.
Case-Insensitive Equal active if the tokens are case-insensitive equal.

Nickname active if tokens have a “nickname” relation.
Prefix Equality active if the prefixes of both tokens are equal.

Substring active if one of the tokens is a substring of the other.
Abbreviation active if one of the tokens is an abbreviation of the other.

Prefix Edit Distance active if the prefixes of both tokens have an edit-distance of 1.
Edit Distance active if the tokens have an edit-distance of �.

Initial active if one of the tokens is an initial of another.
Symbol Map active if one token is a symbolic representative of the other.

Structural recording the location of the tokens that generate other features in two names.

Table 2.1: Features employed by LMR and SDC.

two names, by recording the location of the participating tokens in the partition. This results in a

more expressive feature set, because the same feature activated by two sets of tokens with different

relative positions can be distinguished from each other. E.g., for the pairs (“John Kennedy”,“John

Kennedy”) and (“John Kennedy”, “John Kennedy Davis”), the active relational features are iden-

tical; but, the first pair activates the structural features “	�� �
” and “	�� �
”, while the second pair

activates “	�� �
” and “	�� �� �
”.

2.2.2 Experiments

In our experimental study we evaluated different models on the problem of Entity Identification

for three entity types – People (Peop), Locations (Loc) and Organizations (Org). The document

segments shown in Figure 2.2 exemplify the preprocessed data given as input to the evaluation.

The learning approaches were evaluated on their ability to determine whether a pair of entities

(within or across documents) actually correspond to the same real-world entity.

We collected �� ��� names from 300 randomly sampled 1998-2000 New York Times articles in

the TREC corpus (Voorhees, 2002). These include about � ��� personal names3, �� ��� locations

3Honorifics and suffixes like “Jr.” are considered part of a personal name.

35



and �� ��� organizations. The documents were annotated by a named entity tagger 4. The anno-

tation was verified and manually corrected if needed and each name mention was labelled with

its corresponding entity by two annotators. The distribution of mentions and entities in the above

corpus as to the number of mentions refer to each entity is given by Figure 2.3. Tests were done

by averaging over five pairs of sets, each containing ��� names, that were randomly chosen from

the �� ��� names.

Document 1: The Justice Department has officially ended its inquiry into
the assassinations of President John F. Kennedy and Martin Luther King
Jr., finding “no persuasive evidence” to support conspiracy theories, ac-
cording to department documents. The House Assassinations Committee
concluded in 1978 that Kennedy was “probably” assassinated as the re-
sult of a conspiracy involving a second gunman, a finding that broke from
the Warren Commission’s belief that Lee Harvey Oswald acted alone in
Dallas on Nov. 22, 1963.

Document 2: David Kennedy was born in Leicester, England in 1959.?
� � � Kennedy co-edited The New Poetry (Bloodaxe Books 1993), and is the
author of New Relations: The Refashioning Of British Poetry 1980-1994
(Seren 1996).?

Figure 2.2: Segments from two documents preprocessed by our named entity tagger. Differ-
ent types of entities are annotated with different grey scales. As shown, similar mentions within
and across documents may sometimes correspond to the same entities and sometimes to different
entities.

Given a training set of ��� names (each of the five test sets corresponds to a different training

set), we generated positive training examples using all co-referring pairs of names, and negative

examples by randomly selecting pairs of names that do not refer to the same entity. Since most

pairs of names do not co-refer, to avoid excessive negative examples in training sets, we adopt a

ratio of �� � � between negative examples and positive examples.

The results in all the experiments in this chapter are evaluated using the same test sets, ex-

cept when comparing the clustering schemes. For a comparative evaluation, the outcomes of each

approach on a test set of names are converted to a classification over all possible pairs of names (in-

4The named entity tagger was developed by the Cognitive Computation Group at UIUC. A demo of this tool is
available at http://L2R.cs.uiuc.edu/�cogcomp/eoh/ne.html.

36



1 2 3 4 5 6−10 11−20 21−50 >50
0

5

10

15

20

25

30

35

40

45

50

Number of mentions for each entity

Pe
rc

en
ta

ge
 o

f e
nt

itie
s(

%
)

Distribution of entities

1 2 3 4 5 6−10 11−20 21−50 >50
0

2

4

6

8

10

12

14

16

18

20

Number of mentions for each entity

pe
rc

en
ta

ge
 o

f m
en

tio
ns

 (%
)

Distribution of mentions

Figure 2.3: Distribution of mentions and entities in different groups. This data set has about
�� ��� mentions corresponding to �� ��� entities. Mentions and Entities are partitioned into groups
according to the number of mentions referring to an entity. The X-axis shows how many mentions
of an entity in each group.

cluding non-matching pairs). Since most pairs are trivial negative examples, and the classification

accuracy can always reach nearly ����, the evaluation is done as follows. Only examples in the

set (�, those that are predicated to belong to the same entity (positive predictions) are used in the

evaluation, and are compared with the set (� of examples annotated as positive. The performance

of an approach is then evaluated by Precision and Recall, defined respectively as:

� �
	(�

	
(�	

	(�	
0 �

	(�

	
(�	

	(�	
�

and summarized by

�� �
�� �0

� �0
�

Only �� values are shown and compared in this paper.

Figure 2.4 presents the average �� for three different pairwise classifiers on the five test sets de-

scribed in Section 2.2.2. The LMR classifier outperforms the SoftTFIDF classifier and the Marlin

classifier when trained and tested on the same data sets.

Figure 2.5 shows the contribution of different feature types to the performance of the LMR

37



People Location Org
70

75

80

85

90

95

100

Different Entity Types

F
1 (

%
)

Performance of our pairwise classifier (LMR)

Baseline

Marlin
SoftTFIDF
LMR

Figure 2.4: Performance of different pairwise classifiers. Results are evaluated using the ��

value and are averaged over five test sets of ��� names each, for each entity type. The learned
classifiers are trained using corresponding training sets with ��� names. The baseline performance
in the experiment is ����� given by a classifier that predicts only identical names as positive
examples, and it is averaged over the three entity types.

classifier. The Baseline classifier in this experiment only makes use of string-edit-distance features

and “Equality” features. The Token-Based classifier uses all relational token-based features while

the Structural classifier uses, in addition, the structural features. Adding relational and structural

features types is very significant, and more so to People due to a larger amount of overlapping

tokens between entities.

2.3 Clustering Using Similarity Metrics

Clustering methods are used for the most part as an optimization procedure in many areas, such as

language processing (Pantel & Lin, 2002; Weeds, Weir, & McCarthy, 2004), computer vision (Jain,

Murty, & Flynn, 1999; Shi & Malik, 2000) and data mining (Bradley, Fayyad, & Reina, 1998),

and have been widely studied in the AI community (Kamvar, Klein, & Manning, 2002; Vilalta &

Rish, 2003). Clustering takes as input (1) a collection of domain elements along with (2) a distance

metric between them and (3) an algorithm selected to partition the data elements, with the goal of

optimizing some form of clustering quality with respect to the given distance metric. For example,

38



People Location Org
50

55

60

65

70

75

80

85

90

95

100

Different Feature Sets

F
1 (

%
)

Performance of our pairwise classifier (LMR)

Baseline
Token−based
Structural

Figure 2.5: Contribution of different feature sets. The LMR classifier is trained with different
feature sets using the five training sets. Results are evaluated using the �� value and are averaged
over the five test sets for each entity type with ��� names in each of them. The Baseline classifier
only uses string-edit-distance features and “Equality” features. The Token-Based classifier uses all
relational token-based features while the Structural classifier uses, in addition, structural features.

seeks to maximize a well defined notion of the tightness of the resulting clusters, defined based on

the Euclidean distance.

There is a long-held intuition that the performance of a pairwise classifier can be improved if it

is used as a similarity metric and a global clustering is performed on top of it. Several works (Co-

hen, Ravikumar, & Fienberg, 2003a; Cohen & Richman, 2002b; McCallum & Wellner, 2003) have

thus applied clustering in similar tasks, using their pairwise classifiers as the metric. However, we

show here that this may not be the case; we provide theoretical arguments as well as experimental

evidence that show that global clustering applied on the pairwise classifier might in fact degrade its

performance. Specifically, we show that while optimal clustering always helps to reduce the error

of a pairwise classifier when there are two clusters (corresponding to two entities), in general, for

� � � classes, this is not the case.

39



2.3.1 Definitions of Clustering

Clustering is the task of partitioning a set of elements � � � into a disjoint decomposition (par-

tition)5 �	�
 � ���� ��� � � � � ��� of �. We associate with it a partition function � � �� � � �

� � ��� �� � � ��� that maps each � � � to a class index ��	�
 � 1 iff � � ��. We will omit the

subscript � in �� and ��	�
 when clear from the context. Notice that, unlike a classifier, the image

� � � under a partition function depends on �.

A typical clustering algorithm views data points � � � to be clustered as feature vectors � �

	��� ��� � � � � ��
 in a 
-dimensional feature space. From a generative perspective, the observed

data points � � �� ��� �	��
 ��
�
� are sampled i.i.d. from a joint probability distribution � defined

over � � � (� is a mixture of � models). This distribution gives the sampling probability of a

data point 	�� �	�

 – � 	�� �	�
 � &
	� � & � �
. A distance (equivalently, a similarity) metric

� is commonly used in clustering to measure the proximity between two elements is a pairwise

function � �� � �
� .

2.3.2 Is Clustering Always Better Than Pairwise Classification ?

We now compare clustering with pairwise classification theoretically in the case of Gaussian mix-

ture models. In the following definitions we assume that 	��� �	��

� 	��� �	��

 � � � � are

sampled i.i.d according to it, with ��� �� observed and �	��
� �	��
 hidden.

Definition 2.3.1 The problem of Entity Identification is that of finding a function � � � � � �

��� �� which satisfies:

�	��� ��
 � � iff �	��
 � �	��
 (2.6)

Definition 2.3.2 Let � � � � � � �
� be a distance metric, and � � � is a constant threshold.

The pairwise classification function �� in this setting is defined by:

��	��� ��
 � � iff �	��� ��
 � �� (2.7)

5Overlapping partitions will not be discussed here.

40



The clustering based decision �� is defined by:

��	��� ��
 � � iff ��
�������	�	��
 � &� � ��
�������	�	��
 � &�� (2.8)

Definition 2.3.3 Define �	��� ��
 to be � when �	��
 � �	��
 and � otherwise. The error rate of

the function � � � �� � ��� �� is defined as:

�	�
 � �	���	��� ��
 �� �	��� ��
�
 (2.9)

where the expectation is taken over independent samples, according to ���� , of pairs of points

�	��� �	��

� 	��� �	��

�.

The possible error cases of pairwise classification and clustering in a simple setting are shown in

Figure 2.6.

Theorem 2.3.1 Assume data is generated according to a uniform mixture of � Gaussians 2 �

���� ��� � � � � ��� with the same covariance matrix. Namely, a data point is generated by first choos-

ing one of � models with probability �� � �)�, and then sampling according to the &-th Gaussian

chosen. Suppose further that the clustering algorithms yields the correct � Gaussian distributions;

then, � threshold � � �, if � � � then

�	��
 � �	��
� (2.10)

However, this doesn’t hold in general for � � �.

Proof 2.3.1 (sketch):6 It is easy to see that the probability density over tuples in � � � is

�	�� �	�
 � &
 � �
�
� ��	�
. The error rates �	��
 and �	��
 can be computed using the

density function. Thus, for � � �, we get �	��
 � �
�

 �

�
��, where � �



	
���	�
 
 ��	�
���,

6The assumption of Gaussian distributions can be relaxed.

41



g
1
(x) g

2
(x)

T

x
1

x
2

d(x
1
,x

2
)>T

X

D
en

si
ty

 F
un

ct
io

n

Error Case 1 for Pairwise Classificatiox: Two data points
(x

1
,p(x

1
)) and (x

2
,p(x

2
)). p(x

1
)=p(x

2
) but f

p
(x

1
,x

2
)=1.

g
1
(x) g

2
(x)

x
1

x
2

d(x
1
,x

2
)≤ T

T

X

D
en

si
ty

 F
un

ct
io

n

Error Case 2 for Pairwise Classificatiox: Two data points
(x

1
,p(x

1
)) and (x

2
,p(x

2
)). p(x

1
)≠ p(x

2
) but f

p
(x

1
,x

2
)=0.

g
1
(x)

R: {x:g
1
(x)<g

2
(x)}

g
2
(x)

x
1

x
2

X

D
en

si
ty

 F
un

ct
io

n

Error Case 1 for Clustering: Two data points
(x

1
,p(x

1
)) and (x

2
,p(x

2
)). p(x

1
)=p(x

2
) but f

c
(x

1
,x

2
)=1.

g
1
(x)

R: {x:g
1
(x)<g

2
(x)}

g
2
(x)

x
1

x
2

X

D
en

si
ty

 F
un

ct
io

n

Error Case 2 for Clustering: Two data points
(x

1
,p(x

1
)) and (x

2
,p(x

2
)). p(x

1
)≠ p(x

2
) but f

c
(x

1
,x

2
)=0.

Figure 2.6: Error cases of pairwise classification and clustering (for a uniform mixture of two
Gaussian generative models). � is a one-dimensional data space. 	��� �	��

 and 	��� �	��

 are
two data points with their class labels. We have two classes in this case, their density functions
over the data space satisfy Gaussian models with the same variance and correspond to �� and ��.
� is the threshold used by the pairwise classifier. �� and �� are the decision functions of pairwise
classification and clustering respectively.

and� is the area in the feature space that satisfies ��	�
 � ��	�
 	� � �
. � is a half space here.

We also have:

�	��
 �
�
�

 �

�



	
���	��

 ��	��
���� �



	��� 

���	��

 ��	��
���� � �	��


where (	��� � 
 is the sphere area in the data space � whose element � satisfies �	��� �
 � � .

This is so since



	��� 


���	��

 ��	��
���� �


	
���	��

 ��	��
����.

42



For � � �, we can compute �	��
 and �	��
 in a similar way and compare them. We

found that in this case, each can be smaller than the other in different cases, depending on the

configuration of the � Gaussians, for example, the distances between the centers of these Gaus-

sians. Specifically, when
��

��� ��	�
 � � � ��	�
 for all - and � � � , and � � �, we have

�	��
 � �	��
. �

2.3.3 Entity Identification with Clustering

To study this issue experimentally, we designed and compared several clustering schemes for the

Entity Identification task. These clustering approaches are designed based on the learned pairwise

classifier LMR. Given the activation values of the classifier — the values output by the linear

functions for the classes, we define a similarity metric (instead of a distance metric) as follows:

Let �� ' be the activation values for class � and class �, respectively, for two names �� and ��; then,

 &
	��� ��
 �
��

�����
.

In our direct clustering approach, we cluster names from a collection of documents with regard

to the entities they refer to. That is, entities are viewed as the hidden classes that generate the

observed named entities in text. We have experimented with several clustering algorithms and show

here the best performing one, a standard agglomerative clustering algorithm based on complete-

link. The basic idea of this algorithm is as follows: it first constructs a cluster for each name in the

initial step. In the following iterations, these small clusters are merged together step by step until

some condition is satisfied (for example, if there are only 1 clusters left). The two clusters with

the maximum average similarity between their elements are merged in each step. The evaluation,

presented in Figure 2.7, shows a degradation in the results relative to pairwise classification.

Although, as we show, clustering does not help when applied directly, we attempted to see

if clustering can be helped by exploiting some structural properties of the domain. We split the

set of documents into three groups, each containing documents from the same time period. After

that, we first cluster names belonging to each group, then choose a representative for the names in

each cluster and, hierarchically, cluster these representatives across groups into final clusters. The

43



People Location Org
70

75

80

85

90

95

100

Different Entity Types

F
1 (

%
)

Comparision of Pairwise Classification and Clustering

LMR
Direct Clustering
Hier. Clu. (Date)

Figure 2.7: Best performance of different clustering approaches (Various parameter settings,
including different numbers of clusters were experimented with in direct clustering and the hierar-
chical clustering.) ‘LMR’ represents our pairwise classifier. It is compared with different clustering
schemes, based on it as a similairty metric. Results are evaluated using �� values. The test set has
��� names for each entity type.

complete-link algorithm is applied again in each of the clustering stages. In this case (Hier (Date)

– Hierarchically clustering according to Dates), the results are better than in direct clustering.

We also performed a control experiment (Hier (Random)), in which we split the document set

randomly into three sets of the same size; the deterioration in the results in this case indicates that

the gain was due to exploiting the structure. The data set used here was slightly different from the

one used in other experiments. It was created by randomly selecting names from documents of

the years ����
 ����, ��� names from each year and for each entity type. The �� ��� names for

each entity type were randomly split into equal training and test set. We trained the LMR pairwise

classifier for each entity type using the corresponding labeled training set and clustered the test set

with LMR as a similarity metric.

2.3.4 Discussion

One reason for the lack of gain from clustering is the fact that the pairwise classification function

learned here is local – without using any information except for the names themselves – and thus

suffers from noise. This is because, in training, each pair of names is annotated with regard to

44



the entities they refer to rather than their similarity in writing. Specifically, identical names might

be labeled as negative examples, since they correspond to different entities, and vice versa. Our

conclusion, reinforced by the slight improvement we got when we started to exploit structure in

the hierarchical clustering experiment, is that the Entity Identification problem necessitates better

exploitation of supervision in training a local similarity metric, and better exploitation of global

and structural aspects of data. Our supervised clustering framework in Chapter 3 was designed

to address the former issue of applying supervision to clustering, while the generative model in

Chapter 4 was developed to exploit structural information of documents.

45



Chapter 3

Supervised Discriminative Clustering

Clustering is typically called an unsupervised method, since data elements are used without labels

during the clustering process, or labels are not taken into account when measuring the quality of

the partition in the optimization process. What’s more, when clustering with a given algorithm and

a fixed metric, one makes some implicit assumptions, perhaps unintended, on the data and the task

(e.g., (Kamvar, Klein, & Manning, 2002) and more on that below), which may not hold in reality1.

This scenario, however, has severe drawbacks, such as potential disparity from one’s intention, and

a lack of flexibility due to a fixed distance metric and algorithm.

Several works (Cohen, Ravikumar, & Fienberg, 2003a; Cohen & Richman, 2002b) have at-

tempted to remedy these problems by learning a domain-specific metric. Other works (Bach &

Jordan, 2003; Bar-Hillel, Hertz, Shental, & Weinshall, 2003; Schultz & Joachims, 2004; Xing, Ng,

Jordan, & Russell, 2002; Mochihashi, Kikui, & Kita, 2004; Bilenko, Basu, & Mooney, 2004) have

also pursued this general direction, and some have tried to learn a metric with a limited amount of

supervision, no supervision, or by incorporating other information sources such as constraints on

the class memberships of data elements. They have shown significant performance improvement

over traditional clustering in various tasks. Most of these approaches, though, suffer a variety of

limitations (compared and analyzed later). For example, (Bach & Jordan, 2003; Bilenko, Basu,

& Mooney, 2004) can only learn a metric for one specific clustering algorithm, such as spectral

1For example, the optimal conditions under which K-Means works occur when the data is generated from a uniform
mixture of Gaussian models in the assumed metric space.

46



clustering or K-Means respectively.

In this thesis we develop a unified framework for clustering that is guided by supervision. Our

framework provides a way to exploit supervision in the metric learning problem and do it in a way

that is parameterized by any chosen clustering algorithm. The proposed framework, Supervised

Discriminative Clustering (SDC), provides a unified perspective to address an important problem,

several aspects of which have been addressed previously. In particular, this view allows us to

develop some theoretical understanding of the problem, relate supervised clustering to existing

algorithms and suggest variations of them.

In SDC, clustering is explicitly defined as a learning problem in the context of a given task. The

training stage is formalized as an optimization problem in which a partition function is learned in a

way that minimizes a clustering error. The clustering error is well-defined and driven by feedback

from labeled data. Training a distance metric with respect to any given clustering algorithm seeks

to minimize the clustering error on training data that, under standard learning theory assumptions,

can be shown to imply small clustering error also in the application stage. One distinctive property

of this framework is that the metric is learned in an algorithm-specific way and any clustering

algorithms (e.g. K-Means, agglomerative clustering, and spectral clustering), that rely on distance

between data elements, can be applied. A general learning algorithm is also developed under this

framework, that can be used to learn an expressive distance function over a feature space (e.g., it

can make use of kernels). While this approach makes explicit use of labeled data, we argue that,

in fact, many clustering applications also make use of this information off-line, when exploring

which metrics are appropriate for the task. Our framework makes better use of this resource by

incorporating it directly into the metric training process; training is driven by true clustering error,

computed via the specific algorithm chosen to partition the data.

Motivated by the same idea, we also consider integrating metric learning into the traditional EM

framework (McLachlan & Krishnan, 1997) for probabilistic models, but with two extensions: (1)

rather than learning probabilistic models, we directly learn a partition function, parameterized by a

metric and a chosen clustering algorithm; and (2) we exploit labeled data in parameter estimation.

47



A Supervised EM* algorithm is then developed to learn a distance function in an iterative way,

guided by supervision.

Further analysis shows that SDC and Supervised EM* are not only discriminative and prob-

abilistic approaches respectively, motivated by the same idea, but also equivalent in some case –

that of learning a metric for a data space satisfying a uniform mixture of Gaussian models. In our

empirical study, SDC exhibits significant improvement (over ��� error reduction) over traditional

clustering, on both an artificial data set and a real task of matching names.

The rest of this chapter first discusses the problem of metric learning in clustering and sum-

marizes related works in Section 3.1, and then introduces the supervised discriminative clustering

framework in Section 3.2 and some variants of the EM algorithm that handle metric learning and

supervision 3.3. This section also involves a comparison between them through both theoretical

analysis and empirical simulation in the case of Gaussian mixture models. Finally, we apply the su-

pervised discriminative approach to the entity identification problem in Section 3.4 and summarize

this chapter in Section 3.5.

3.1 Metric Learning in Clustering

As we mentioned before, clustering is the task of partitioning a set of elements � � � into a

disjoint decomposition (partition)2 �	�
 � ���� ��� � � � � ��� of �. We associate with it a partition

function � � �� � � � � � ��� �� � � ��� that maps each � � � to a class index ��	�
 � 1 iff

� � ��. In practice, we use a clustering algorithm �, (e.g. K-Means), and a distance metric �,

(e.g., Euclidean distance) to generate a function � to approximate the true partition function �.

Denote �	�
 � ��	�
, the partition of � by �.

A distance (equivalently, a similarity) metric � that measures the proximity between two el-

ements is a pairwise function � � � � 0�, which can be parameterized to represent a fam-

ily of functions. For example, given any two element �� �� �
	�

� � � � � � �	�


� � and �� ��

2Overlapping partitions will not be discussed here.

48



�
	�

� � � � � � �	�


� � in an 
-dimensional space, the family of weighted Euclidean distances with

parameters # � ������ is defined as:

��	��� ��
 �

��� ��
���

�� � 	�
	�

� 
 �

	�

� 	

� (3.1)

When supervision (e.g. class index of elements) is unavailable, the quality of a partition func-

tion � operating on � � � , is measured with respect to the distance metric defined over � .

Suppose � partitions � into �� �
��

�
� , a typical quality function (used in K-Means) is defined as:

$�	�
 � 

�
�

�
����

�

�	�� 3��

�� (3.2)

where 3�� is the mean of elements in � �
�. We note that the rational for using this quality function is

that when the data is sampled from a mixture of Gaussians �4	3�� 5
�
��� with equal covariance,

$�	�
 measures the likelihood of the data. However, this measure can be computed (and is being

used in practice) irrespective of that and the algorithm used.

In many cases, supervision is used at the application level when determining an appropriate dis-

tance metric (Lee, 1999; Weeds, Weir, & McCarthy, 2004; Bilenko, Mooney, Cohen, Ravikumar,

& Fienberg, 2003). When applying clustering to a given task, one typically decides on the cluster-

ing quality measure one wants to optimize, and then chooses a specific clustering algorithm and a

distance metric. The “goodness” of a metric is empirically measured when combined with differ-

ent clustering algorithms on different problems. Without any supervision, the resulting partition

function is not guaranteed to agree with the target function (or the user’s original intention).

Moreover, it is not clear whether there exists any ‘universal’ metric that is good for different

problems (or even different data sets for similar problems) and is appropriate for any cluster-

ing algorithm. We illustrate this critical point in Figure 3.1. The �� points are clustered into �

groups, represented by solid and hollow points respectively. Data elements are positioned in a

two-dimensional space � � 	�
� �	�
 �. (a) and (b) show that even for the same data collection,

49



d(x
1 ,x

2 ) = [(x
1 (1)-x

2 (1)) 2+(x
1 (2)-x

2 (2)) 2] 1/2
d(x

1 ,x
2 ) = |(x

1 (1)+x
2 (1))-(x

1 (2)+x
2 (2))|

(a) Single-L
inkage w

ith 
E

uclidean
(b) K

-M
eans w

ith 
E

uclidean
(c) K

-M
eans w

ith a 
L

inear M
etric

Figure
3.1:

D
ifferent

com
binations

of
clustering

algorithm
s

w
ith

distance
m

etrics.

different
clustering

algorithm
s

w
ith

the
sam

e
m

etric
could

generate
different

outcom
es.

(b)
and

(c)
show

that
w

ith
the

sam
e

clustering
algorithm

,
different

m
etrics

could
also

produce
different

outcom
es.

T
herefore,a

good
distance

m
etric

should
be

both
dom

ain-specific
and

associated
w

ith

a
specific

clustering
algorithm

.

Several
recent

w
orks

have
pursued

the
general

direction
of

exploiting
supervision

or
learning

to
im

prove
clustering

perform
ance,

but
the

idea
of

learning
an

algorithm
-specific

m
etric

has
not

been
fully

considered
for

the
general

case.
For

exam
ple,

(C
ohen

&
R

ichm
an,

2002b;
C

ohen,

R
avikum

ar,&
Fienberg,2003a;

L
i,M

orie,&
R

oth,2004a)
m

ake
use

of
supervision

in
a

pairw
ise

classification
task

and
learn

a
m

etric,
but

do
it

independent
of

the
clustering

algorithm
they

use.

(X
ing,

N
g,

Jordan,
&

R
ussell,

2002;
B

ar-H
illel,

H
ertz,

Shental,
&

W
einshall,

2003;
Schultz

&

Joachim
s,2004;M

ochihashi,K
ikui,&

K
ita,2004)

form
alize

the
problem

of
m

etric
learning

as
an

optim
ization

problem
,w

ithoutexploiting
a

clustering
algorithm

or
only

im
plicitly

exploiting
one

(e.g.
K

-M
eans)

by
optim

izing
the

sam
e

objective
function.

T
hatis,the

clustering
algorithm

is
not

explicitly
taken

into
accountin

the
learning

procedure.

Several
w

orks
(B

ach
&

Jordan,
2003;

B
ilenko,

B
asu,

&
M

ooney,
2004)

suggest
to

learn
a

distance
function

directly
and

develop
their

ideas
for

a
specific

clustering
algorithm

.
T

he
form

er

learns
a

m
etric

for
spectral

clustering,and
optim

izes
a

quality
m

easure
of

the
partition,but

w
ith-

out
exploiting

feedback
from

supervision.
T

he
latter

actually
learns

a
m

etric
for

K
-M

eans
w

ith

feedback
from

supervision,butthe
learning

procedure
is

specific
to

this
clustering

algorithm
.

50



EM can be used, in some cases (Frey & Jojic, 2003; Tsuda, Akaho, & Asai, 2003) as a stan-

dalone partition function in clustering, and could even be used to learn a metric directly by ex-

tending the parameter space of a generative model to include the metric parameters. However,

this approach is only effective when the clustering algorithm used in evaluation is itself an EM

algorithm defined over the same generative model used in training.

The Supervised Discriminative Clustering framework that we describe below proposes a way

to resolve these limitations. Namely, it allows learning a distance function for any given clustering

algorithm in the context of a given task, exploiting supervision.

3.2 Supervised Discriminative Clustering Framework

When supervision is available, we design a general discriminative clustering approach, the Su-

pervised Discriminative Clustering framework (SDC), to exploit it in clustering (as shown in Fig-

ure 3.2).

A labeled data set S

A Supervised
Learner

Training Stage:

Goal: h*=argmin 
errS(h,p)

A distance
metric d

a clustering 
algorithm A+

A unlabeled 
data set S’

A partition 
h(S’)

Application 
Stage: h(S’ ) 

A partition function 
h(S) = Ad(S)

Figure 3.2: Supervised Discriminative Clustering

In this framework, a clustering task is split into training and application stages, and the chosen

clustering algorithm is explicitly involved in both stages. In the training stage, supervision is

directly integrated into the error function ��	�� �
, and the goal is to find a partition function

51



� � � (� is the chosen hypothesis space), parameterized by a clustering algorithm� and a metric

� to approximate the true function �, by minimizing the error . Consequently, given new data � �

in the application stage, under some standard learning theory assumptions, the learned partition

function is expected to generalize well and achieve small error.

3.2.1 Error Functions

Let � be the target partition function over � , and let � � � be a partition hypothesis, and �	�
 �

�� �
��

�
� . In principle, given data set � � � , if the true partition �	�
 � ������ of � is available,

one can measure the deviation of � from � over �, using an error function ��	�� �
� 0�. Please

note that we distinguish an error function from a quality function $ (e.g. as in Equation (3.2)) in

this paper: an error function measures the disagreement between clustering and one’s intention

when supervision is given, while a quality is defined without any supervision.

For clustering, there generally is no direct way to compare the true class index �	�
 of each

element with that given by a hypothesis (�	�
), so we measure the disagreement between � and �

over pairs of elements. Figure (3.3) below provides examples for error functions that can be used

for that purpose. There are two types of error over a pair of elements ��� �� � �: misclassified

apart or together, represented by ��� � ���	��
 � �	��
 � �	��
 �� �	��
� and ��� � ���	��
 ��

�	��
 � �	��
 � �	��
�, respectively. ������ � � is an indicator function.

�������� �� �
�

����

�

������

�
����� ���

� � ��� � ���� � ����� ���
�� � 	��

�

�������� �� �
�

���

������

��

���

�

����
�

���� 
���
� �

��

���

�

����

���� 
����
�

������

�������� �� �
�

����

������

��

���

�

��������

����� ���
� �

��

���

�

�������

����� ���
�

������

Figure 3.3: Examples of error functions.

52



��� is defined as the sum, over all pairs in �, of the two types of pairwise errors, weighted by

the squared distance between each pair. We integrate the metric � into the error, in order to penalize

large distances between pairs misclassified apart and small distances between pairs misclassified

together. �� � ����� �	��� ��
 is the maximum distance between any two elements in �, which is

used to avoid negative error. The error is normalized by 	�	 – the size of �. Error function ��� and

��� do not directly measure the pairwise errors. Instead, ��� measures the difference between

the quality (e.g. as in Equation (3.2)) of the partition by � and that of the true partition. It can

be used in the case that the quality is more pursued in application, when considering the tradeoff

between accurate partition and better quality. In ���, 3�� and 3��� are the mean of elements in the

cluster � �
� � �	�
 and the mean in �� � �	�
, respectively. ��� is a pairwise version of ���.

3.2.2 Supervised and Unsupervised Training

In the training stage, the goal is to learn a good partition function given a set of observed data.

Depending on whether the data is labeled or unlabeled, we can further define supervised and un-

supervised training.

Definition 3.2.1 Supervised Training: Given a labeled data set � and �	�
, a family of partition

functions � , and the error function ��	�� �
	� � �
, the problem is to find an optimal function

�� s.t.

�� � ��
&'��� ��	�� �
�

Definition 3.2.2 Unsupervised Training: Given an unlabeled data set � (�	�
 is unknown), a

family of partition functions � , and a quality function $�	�
	� � �
, the problem is to find an

optimal partition function �� s.t.

�� � ��
����� $�	�
�

53



By fixing the clustering algorithm, we can further define supervised metric learning, a special

case of supervised training.

Definition 3.2.3 Supervised Metric Learning: Given a labeled data set � and �	�
 and a family

of partition functions � � ��� that are parameterized by a chosen clustering algorithm � and a

family of distance metrics �� (# � �), the problem is to seek an optimal metric ��� with respect to

�, s.t. for �	�
 � � ��	�


#� � ��
&'� ��	�� �
� (3.3)

Learning the distance metric parameters requires parameterizing � as a function of ��, where the

algorithm � is chosen and fixed in �. One example of this task is that of learning weighted

Euclidean distances: ��	��� ��
 �
���

��� �� � 	�
	�

� 
 �

	�

� 	

� for the K-Means algorithm in our later

experiments. Note that in this case one needs to enforce some constraints, such as a normalization��
��� 	��	 � � so that the error will not be scale-dependent (e.g., metrics giving smaller distance

are always better).

3.2.3 A General Learner for SDC

In addition to the theoretical SDC framework, we also develop a learning algorithm based on

gradient descent that can train a distance function for the setting of supervised metric learning

(in Figure 3.4). The training procedure incorporates the clustering algorithm (step 2.a) so that

the metric is trained with respect to the specific algorithm that will be applied in evaluation. The

convergence of this general training procedure depends on the convexity of the error as a function

of #. For example, since the error function we use is linear in #, the algorithm is guaranteed to

converge to a global minimum. In this case, for rate of convergence, one can appeal to general

results that typically imply, when there exists a parameter vector with zero error, that convergence

rate depends on the ‘separation” of the training data, which roughly means the minimal error

archived with this parameter vector. Results such as (Freund & Schapire, 1998) can be used to

extend the rate of convergence result a bit beyond the separable case, when a small number of the

54



pairs are not separable.

Algorithm: SDC-Learner
Input: � and �: the labeled data set. �: the clustering algorithm. ������� ��:
the clustering error function. � � � : the learning rate.  (typically  is large)
: the number of iterations allowed.
Output: �� : the parameters in the distance function �.

1. In the initial (I-) step, we randomly choose �� for �. After this step we have
the initial �� and ��.

2. Then we iterate over � �� � �� �� � � � �,

(a) Partition � using ������� � � �������;

(b) Compute ���������� �� and update � using the formula: �� � ���� �

� � �����	�
����


����� .

(c) Normalization: �� � �
� � ��, where � � ������.

3. Stopping Criterion: If � �  , the algorithm exits.

Figure 3.4: A general training algorithm for SDC

3.3 Metric Learning with the EM Algorithm

The EM algorithm is typically viewed as an approach for learning a probabilistic mixture model

in an unsupervised setting (McLachlan & Krishnan, 1997; Friedman, 1998). The core idea is to

iteratively seek model parameters that achieve a local optimum of the expected log-likelihood of

a set of observed elements with hidden class labels. In this paper, the EM approach is extended

within the SDC framework, yielding some variants of EM that can be used to learn a metric for a

given clustering algorithm. Please note that in these approaches, the clustering algorithm that will

be used in actual application always explicitly participates in the training process, following our

previous claim that a good metric should be algorithm-specific.

Suppose a probabilistic mixture model (e.g., Gaussian mixture model), parameterized with

#� � ��, defines a probability distribution � over � � �. The log-likelihood of generating any set

55



of labeled elements 	�� �	�

 � ���� �	��
�
�
� from � � � (i.i.d. sampled), is defined as:

**	�� �	�
	#�
 � �%����������� �	��
	#
��� (3.4)

where �	�
 is a partition of � and �	��
 � � is the corresponding class index of ��. Suppose �

is observed but �	�
 is unknown, the standard EM attempts to estimate # �� in which the expected

log-likelihood is optimized:

#�� � ������
�����

��	�
�**	�� �	�
	#
�
� (3.5)

EM can be used to learn a metric directly by training metric parameters the same way as model

parameters. However, as previously noted, this approach is only effective when the clustering

algorithm used in evaluation is itself an EM algorithm. Thus, it is restricted to a specific class of

clustering algorithms. In order to overcome this restriction, we develop a variant of EM – EM* to

learn a distance metric for any clustering algorithm in the setting of probabilistic mixture models.

Given a set of unlabeled elements �, a family of distance metrics �� (parameterized by # � �),

and a clustering algorithm�, the goal of EM* is to seek an optimal metric ��� s.t.,

#� � ������
���

**	�����	�
	#
 (3.6)

where ���	�
 is the partition of � by the chosen clustering algorithm� with the distance function

��. For example, as in our experiments, we learn weighted Euclidean distances for K-Means for a

mixture of Gaussian models with EM*.

There are several issues in the framework. One is how to compute **	����� 	�
	#
, when #

is the parameters of the distance metric rather than those of the underlying probabilistic model # �.

In general, log-likelihood of a sampled data set can be computed independent of a metric, since

it just relies on a distribution over a data space. Sometimes, though, it is natural to make some

assumptions and link these two notions: that is, to define a metric as a function of an assumption

56



on the generative process of the distribution, or vice versa. In principle, we can define

**	����� 	�
	#
 � 
����**	����� 	�
	#
�
 (3.7)

where **	����� 	�
	#
�
 can be computed in the same way as in Equation (3.4). For a Gaussian

mixture model �4	3�� 5
�
�
�

�
� and ���	�
 � ������ , when the distance metric �� is a weighted

Euclidean distance, the optimal # � in Equation (3.7) is

3� �
�

	��	

�
����

�� 5� �

�
�

	��	

�
����

��	�� 3�
��

Another issue is that, in order to make it sound to compare log-likelihoods of clusterings un-

der different distance functions, which can also be scale-dependent, some constraints should be

enforced, (e.g.
��

��� 	��	 � � for weighted Euclidean distances).

The practical EM* algorithm finds a locally optimal #� by iterating the following two steps

(� � �� �� �� � � � ):

� 
  ��� � ��	�
 � ����
	�


( 
  ��� � #��� � ������
�

**	�� ��	�
	#


After randomly initializing the metric ��� , in each E-step, we run the clustering algorithm � with

the distance function ��� to partition the data set �. In each M-step, we re-estimate #��� based on

a gradient descent approach. Some normalization is performed to satisfy the enforced constraint.

A further extension of EM* with labeled data generates a Supervised EM* algorithm. Given a

set of labeled elements � and �	�
, the Supervised EM* algorithm seeks a metric ��� that achieves

the minimum difference between the likelihood of the partition by � with ��	# � �
and that of

the true partition �	�
, under constraints such as 		#		 � �.

#� � ������
���

	**	�����	�
	#

 **	�� �	�
	#
	 (3.8)

57



3.3.1 Relations between SDC and Supervised EM*

SDC and Supervised EM* are discriminative and generative approaches based on the same idea —

learning distance functions to minimize disagreement between clustering and the true partition, and

can be applied to discriminative clustering and model-based clustering respectively. In a specific

case, they are equivalent.

Suppose that we are learning a distance function �� in which a distribution over the data space

� � � satisfies a uniform mixture of � Gaussian models ��� � 4	3�� 5
�
��� with the same

covariance. That is, any 	�� �	�

 � � � � satisfies �	�� �	�
 � 1
 � �
����

���	
��	� �

�

���

. In

this case, we have the following theorem 3:

Theorem 3.3.1 Given a set of labeled elements � � � and �	�
, the Supervised EM* algorithm,

and SDC with error function ��� (in Figure 3.3) have equivalent objectives in learning a distance

metric �� for the K-Means algorithm� (let �	�
 � ���	�
). That is,

������
�

	**	�� �	�
	#

 **	�� �	�
	#
	 � ������
�

���	�� �


The complete proof is omitted here. One critical property used: when �	�
 � ������ and

�	�
 � �� �
��

�
� ,

**	�� �	�
	#
 � � �
��
���

�
�����

��	�� 3
�
�


� � 6 (3.9)

where �,6 are two constants in #, and 3�� is the mean of elements in � �
�. Similarly, **	�� �	�
	#
 �

� �
��

���

�
����

��	�� 3
��
�


� � 6, where 3��� is the mean of elements in ��.

3.3.2 Simulation with Gaussian Mixture Models

As an empirical study, we create an artificial data set generated from a uniform mixture of Gaus-

sians from a linear weighted Euclidean metric space (as defined in Equation (3.1)). Specifically,

we use a mixture of � Gaussians of variance , with means placed opposite each other on an ��-

3Proof is omitted here, but available on request.

58



20 40 60 80 100 120 140 160 180 200

Training Size

50

55

60

65

70

75

80

85

F
1

20 40 60 80 100 120 140 160 180 200

50

55

60

65

70

75

80

85

K�Means

EM

Xing et al

SDC KMeans

EM�

SDC EM

Figure 3.5: Performance of different clustering approaches. Different algorithms are evaluated
on data generated from a Gaussian mixture model in a weighted Euclidean metric space. The plot
shows number of elements in the training set versus ��-Measure.

dimensional sphere of radius  in the metric space defined by a weight vector selected uniformly

from ��� ����. The approaches are evaluated by their accuracy in partitioning a set of unlabeled ele-

ments into � clusters, reported in �� measure of classifying pairs of elements as “together” or “not

together” in a test set. �� �
��
�

�

��

�
����
��
, where (� and (� are the set of pairs of elements predicted

to be “together”, and the set of pairs annotated as “together”, respectively. We display results for

two comparisons, obtained by repeated runs with varying generating metrics, and evaluated on

�� ��� test elements.

Comparison of Different Approaches: The first comparison (in Figure 3.5) is among different

approaches we have discussed. The approaches include EM over a Gaussian mixture model and

K-Means, both of which assume a standard Euclidean metric, as well as EM* (see Equation 3.6)

and SDC with ��� (see Equation 3.3) , both of which learn over linear weighted Euclidean metrics

with additional training sets of elements (labeled elements for SDC). For SDC, we show results for

using both a K-Means clustering algorithm and EM as a standalone clustering algorithm, whereas

for EM* we show only the results for using EM. We also compare with a method proposed by

(Xing, Ng, Jordan, & Russell, 2002), which optimizes a linear weighted squared Euclidean dis-

tance by a constrained Newton-Raphson method separate from the clustering algorithm; we use

this as an example of an algorithm that learns a metric without reference to the particular cluster-

59



20 40 60 80 100 120 140 160 180 200

Training Size

70

75

80

85

F
1

20 40 60 80 100 120 140 160 180 200

70

75

80

85

SDC Err3

SDC Err2

SDC Err1

Figure 3.6: Different error functions for SDC. These error functions are described in Figure 3.3.
The plot shows number of elements in the training set versus ��-Measure.

ing algorithm that will eventually be used, in this case EM over a Gaussian mixture model.

As the figure shows, metric learning provides clear advantages over standard clustering (over

��� in ��), and the addition of supervision provides an extra boost in performance (�� 
 ��).

These results make good sense, since data in an appropriate metric space will fit the model in

a much better way and thus improve clustering. The figure also demonstrates the advantage of

learning a metric with respect to the specific clustering algorithm that will be used.

One interesting point to note is that, although SDC with an EM clustering algorithm outper-

forms EM*, this is not the case for SDC with K-Means. One possible explanation is that while

EM* performs the full gradient descent procedure in its M-step, SDC alternates between iterations

of gradient descent and clustering, which may introduce randomness and prevent it from fully

converging. This problem suggests a possible improvement for SDC.

Comparison of Different Error Functions: As a secondary comparison, we display the results

of the SDC approach for different error functions (in Figure 3.6). Specifically, SDC is evaluated on

the simulated data and employs the EM algorithm for a Gaussian mixture model as its clustering

algorithm. The results for this data appear to strongly support ��� and ��� .

60



3.4 Application to Entity Identification

Several approaches as below are compared in this task. Some of them (for example, those based

on SoftTFIDF similarity) do not use any domain knowledge, while others do exploit supervision,

such as LMR and SDC. Other works (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003)

also exploited supervision in this problem but were shown to be inferior.

1. SoftTFIDF Classifier – a pairwise classifier deciding whether any two names refer to the same

entity, implemented by thresholding a state-of-art SoftTFIDF similarity metric for string com-

parison (Cohen, Ravikumar, & Fienberg, 2003a). Different thresholds have been experimented

but only the best results are reported.

2. LMR Classifier (P	W) – a SNoW-based pairwise classifier (Li, Morie, & Roth, 2004a) (described

in Section 2.2) that learns a linear function for each class over a collection of relational features

between two names: including string and token-level features and structural features (listed in

Table 2.1). We train the classifier with both Perceptron (P) and Winnow (W) algorithms.

3. Clustering over SoftTFIDF – a clustering approach based on the SoftTFIDF similarity metric.

4. Clustering over LMR (P	W) – a clustering approach (Li, Morie, & Roth, 2004a) by converting

the LMR classifier into a similarity metric (see Section 2.3.3).

5. SDC – our new supervised discriminative clustering approach. In the following experiments,

the error function ��� (as defined in Table 3.3) is applied to training a weighted Euclidean

distance function under the SDC framework. Given binary pairwise features are extracted for

any elements ��� �� � � , 	��� ��
 �� 7�� 7�� � � � � 7� � 	7� � ��� ��
, the distance function,

parameterized by (# � ������ ), is

�	��� ��
 �

��� ��
���

�� � 7�	��� ��
� �

��� ��
���

�� � 7�	��� ��


61



80

82

84

86

88

90

92

94

96

(a) People

F
1 (

%
)

80

82

84

86

88

90

92

94

96

(b) Locations

F
1 (

%
)

80

82

84

86

88

90

92

94

96

(c) Organizations

F
1 (

%
)

SoftTFIDF
LMR (P)
LMR (W)
Cluster over SoftTFIDF
Cluster over LMR (P)
Cluster over LMR (W)
SDC

Figure 3.7: Performance of different approaches. The results are reported for SDC with a learn-
ing rate 	 � �����. The Single-Linkage algorithm is applied whenever clustering is performed.
Results are reported in �� and averaged over the three data sets for each entity type and �� runs of
two-fold cross-validation. Each training set typically contains ��� annotated names.

The above approaches (2), (4) and (5) learn a classifier or a distance metric using the same

feature set as in Table 2.1. Different clustering algorithms, such as Single-Linkage, Complete-

Linkage, Graph clustering (seeking a minimum cut of a nearest neighbor graph), Repeated Bi-

sections (George, 2003) and K-medoids (Chu, Roddick, & Pan, 2001) are experimented in (3),

(4) and (5). We use the clustering package Cluster by Michael Eisen at Stanford University for

K-mediois clustering and CLUTO by (George, 2003) for the other algorithms4. The number of

classes (entities) that a data set has is known for them.

Our experimental study focuses on (1) evaluating the supervised discriminative clustering ap-

proach on entity identification; (2) comparing it with existing pairwise classification and clustering

approaches widely used in similar tasks; and (3) further analyzing the characteristics of this new

framework.

We use the TREC corpus to evaluate different approaches in identifying three types of entities:

People, Locations and Organization. For each type, we generate three data sets, each containing

about ��� names. We note that the three entity types yield very different data sets, exhibited by

some statistical properties5. Results on each entity type will be averaged over the three sets and ten

4The weighted version of Single- and Complete-Linkage algorithms in the package are actually used in experi-
ments.

5The average SoftTFIDF similarity between names of the same entity is 0.81, 0.89 and 0.95 for people, locations
and organizations respectively.

62



10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(a) People

F
1 (

%
)

LMR (P)
LMR (W)
Cluster over LMR (P)
Cluster over LMR (W)
SDC

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(b) Locations

F
1 (

%
)

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

(c) Organizations

F
1 (

%
)

Figure 3.8: Performance for different training sizes. Five learning-based approaches are com-
pared. Single-Linkage is applied whenever clustering is performed. X-axis denotes different per-
centages of ��� names used in training. Results are reported in �� and averaged over the three data
sets for each entity type.

runs of two-fold cross-validation for each of them. For SDC, given a training set with annotated

name pairs, a distance function is first trained using the algorithm in Figure 3.4 (in �� iterations)

with respect to a clustering algorithm and then be used to partition the corresponding test set with

the same algorithm.

3.4.1 Comparison of Different Approaches

Figure 3.7 presents the performance of different approaches (described in Section 3.4) on iden-

tifying the three entity types. We experimented with different clustering algorithms but only the

results by Single-Linkage are reported for Cluster over LMR (P	W) and SDC, since they are the

best.

SDC works well for all three entity types in spite of their different characteristics. The best ��

values of SDC are �����, ���� and ����� for people, locations and organizations respectively,

about ��� 
 ��� error reduction compared with the best performance of the other approaches.

This is an indication that this new approach which integrates metric learning and supervision in a

unified framework, has significant advantages 6.

6We note that in this experiment, the relative comparison between the pairwise classifiers and the clustering ap-
proaches over them is not consistent for all entity types. This can be partially explained by the theoretic analysis in
(Li, Morie, & Roth, 2004a) and the difference between entity types.

63



People Locations Organizations
40

50

60

70

80

90

Different Entity Types

F
1 (

%
)

Graph
K−Medoids
RB
Complete−Linkage
Single−Linkage

Figure 3.9: Different clustering algorithms. Five clustering algorithms are compared in SDC
(	 � �����). Results are averaged over the three data sets for each entity type and �� runs of
two-fold cross-validations.

3.4.2 Further Analysis of SDC

In the next experiments, we will further analyze the characteristics of SDC by evaluating it in

different settings.

Different Training Sizes Figure 3.8 reports the relationship between the performance of SDC

and different training sizes. The learning curves for other learning-based approaches are also

shown. We find that SDC exhibits good learning ability with limited supervision. When training

examples are very limited, for example, only ��� of all ��� names, pairwise classifiers based

on Perceptron and Winnow exhibit advantages over SDC. However, when supervision become

reasonable (���� examples), SDC starts to outperform all other approaches.

Different Clustering Algorithms Figure 3.9 shows the performance of applying different clus-

tering algorithms in the SDC approach. Single-Linkage and Complete-Linkage outperform all

other algorithms. One possible reason is that this task has a great number of classes (��� 
 ���

entities) for ��� names in each single data set. The results indicate that the metric learning process

relies on properties of the data set, as well as the clustering algorithm. Even if a good distance

metric could be learned in SDC, choosing an appropriate algorithm for the specific task is still

important.

64



People Locations Organizations

86

88

90

92

94

96

Different Entity Types
F

1 (
%

)

α=1.0
α=10.0
α=100.0
α=1000.0

Figure 3.10: Performance for different learning rates. SDC with different learning rates (	 �
���� ����� ������ ������) compared in this setting. Single-Linkage clustering algorithm is applied.

Different Learning Rates We also experimented with different learning rates in the SDC ap-

proach as shown in Figure 3.10. It seems that SDC is not very sensitive to different learning rates

as long as it is in a reasonable range.

3.4.3 Discussion

The reason that SDC can outperform existing clustering approaches can be explained by the ad-

vantages of SDC – training the distance function with respect to the chosen clustering algorithm,

guided by supervision. However, it is not so obvious why it can also outperform the pairwise

classifiers. The following analysis could give some intuitive explanation.

Supervision in the entity identification task or similar tasks is typically given on whether two

names (elements) correspond to the same entity – entity-level annotation. Therefore it does not

necessarily mean whether they are similar in appearance. For example, “Brian” and “Wilson”

could both be names for a person “Brian Wilson” in different context, and thus this name pair is

a positive example in training a pairwise classifier. However, with features that only capture the

appearance similarity between names, such apparently different names become training noise. This

is what exactly happened when we train the LMR classifier with such name pairs. SDC, however,

can employ this entity-level annotation and avoid the problem through transitivity in clustering. In

the above example, if there is “Brian Wilson” in the data set, then “Brian” and “Wilson” can be

65



both clustered into the same group with “Brian Wilson”. Such cases do not frequently occur for

locations and organization but still exist .

3.5 Conclusion

This chapter presents a unified framework for clustering that is guided by supervision. In this

framework, we explicitly formalize clustering as a learning task, and propose two new approaches

for training an algorithm-specific distance metric. Our experiments exhibit their advantages over

existing clustering approaches in the case of Gaussian mixture models and real problems. The

view provided in this work allows us to develop some theoretical understanding to the problem,

relate supervised clustering to existing algorithms and suggest variations of them.

The supervised clustering framework can be viewed as an analog to multi-class classification,

but can handle a more general learning scenario. A classifier trained with labeled data can only be

used to classify new data which is sampled from the same classes as in training. Clustering, how-

ever, can be used to partition examples from new classes, as long as the learned metric works for

the whole data space. One example is the entity identification problem where there exist millions

of entities (classes) in the world and only few are seen in training. In this sense, SDC cannot be

replaced by multi-class classification. One can Combine a clustering algorithm with a metric to

create a partition function, (in some sense more expressive than a classifier). The idea of super-

vised clustering is significant in that few people have considered transplanting the general ideas of

classification into clustering, although it seems so natural and intriguing.

In addition to further theoretical analysis of the convergence of the SDC approach and devel-

oping more efficient learning algorithms, we also hope to extend it to train kernel-based metrics

for more complex feature spaces. Further research in this direction will focus on (1) applying it

to more NLP tasks, such as coreference resolution and word sense discovery; (2) analyzing the

related theoretic issues, for example, the convergence of the algorithm; and (3) extending it to train

kernel-based metrics for more complex feature spaces.

66



Chapter 4

Generative Models for Entity Identification

All of the discriminative approaches described in the prior chapters, such as pairwise classification

and different clustering approaches, only take input the local information existing in the names in

order to identify entities. This is clearly not enough since different names can refer to the same

entity in different contexts of text, while similar names may refer to different entities. An example

we have given is “Kennedy”, there are more than tens of thousands of people share this name.

Examples of names of other types that could refer to different entities are “World Trade Center”

in different cities, and “Department of Justice” in different countries . The specific context that

a name occurs in the text is critical to disambiguate these cases and identify entities in a context-

sensitive setting.

In this chapter, we focus on the following three types of contextual information: (1) The notion

of ‘Document’. If two names are within the same document and are similar in writing, they are

very likely refer to the same entity, while the chance for two similar names in different documents

is much lower. Separating the within-document entity identification problem from the across-

document problem, and apply different approaches to them, seems a better choice than treating

them the same way. (2) Entity co-occurring dependency, e.g., a document that mentions “President

Kennedy” is more likely to mention “Oswald” or “ White House” than “Roger Clemens”. (3) The

notion of “Representative” of an entity in a document. Typically, the name of an entity occurring

the first in a text is the longest name of it. For example, an author tends to write the full name of a

person at the beginning of an article, and then write only the last or first names later. Other mentions

67



of the same entity in the same text, can be viewed as being transformed from the representative by

string operations.

Motivated by the above observation, we describe next a generative model for cross-document

entity identification that is designed to exploit the structure of the documents and assumptions on

how they are generated. At the heart of this model is a view on how documents are generated and

how names (of different entity types) are “sprinkled” into them. In its most general form, our model

assumes: (1) a joint distribution over entities, (2) an “author” model, that assumes that at least one

mention of an entity in a document is easily identifiable, and then generates other mentions via (3)

an appearance model, governing how mentions are transformed from the “representative” mention.

Several relaxations of this model are also described and compared in the experiments. We show

that this approach performs very accurately, in the range of ��� 
 ��� �� measure for different

entity types, even better than the discriminative approaches trained in a supervised setting. Given

a collection of documents we learn the models in an unsupervised way; that is, the system is not

told during training whether two mentions represent the same entity. We only assume the ability

to recognize names, using a named entity recognizer run as a preprocessor.

The rest of this chapter is organized as follows: We first define the components of the generative

probabilistic model in Section 4.1. Section 4.2 then describes a generative view of documents’

creation, three practical probabilistic models designed based on it, and discusses how to make

inference with these models. After that, We illustrate how to learn these models in an unsupervised

setting in Section 4.3, and describes the experimental study of this model in Section 4.4. It will then

be compared with our previously developed discriminative approaches along several dimensions

in Section 4.5. Finally, Section 4.6 will conclude this chapter.

4.1 Basic Definitions

We consider reading a large number of documents , � ���� ��� � � � � ���, each of which may

contain mentions (i.e. real occurrences) of 	� 	 types of entities. In the current evaluation we

68



consider � � ��� %'� *%!��&%'�8��'&9��&%'�.

An entity refers to the “real” concept behind the mention and can be viewed as a unique identi-

fier to an object in the real world. Examples might be the person “John F. Kennedy” who became

a president, “White House” – the residence of the US presidents, etc. � denotes the collection

of all possible entities in the world and �� � ���� �
�	

� is the set of entities mentioned in document

�. ( denotes the collection of all possible mentions and ( � � �
�
� �

�	

� is the set of mentions

in document �. ( �
� 	� � & � ��
 is the set of mentions that refer to entity ��� � ��. For exam-

ple, for entity “John F. Kennedy”, the corresponding set of mentions in a document may contain

“Kennedy”, “J. F. Kennedy” and “President Kennedy”. Among all mentions of an entity ��� in doc-

ument � we distinguish the one occurring first, �� � (�
� , as the representative of ��� . In practice,

the representative is usually the longest mention of an entity in the document as well, and other

mentions are variations of it. Representatives can be viewed as a typical representation of an entity

mentioned in a specific time and place. For example, “President J.F.Kennedy” and “Congressman

John Kennedy” may be representatives of “John F. Kennedy” in different documents. 0 denotes

the collection of all possible representatives and 0� � ��� �
�	

� �(� is the set of representatives in

document �. This way, each document is represented as the collection of its entities, representatives

and mentions � � ���� 0��(��.

Elements in the name space : � � � 0 �( each have an identifying writing (denoted as

��	'
 for ' � : )1 and an ordered list of attributes, � � ���� � � � � ���, which depends on the

entity type. Attributes used in the current evaluation include both internal attributes, such as, for

People, �title, firstname, middlename, lastname, gender� as well as contextual attributes such as

�time, location, proper-names�. Proper-names refer to a list of proper names that occur around

the mention in the document. All attributes are of string value and can be empty when the values

are missing or unknown2.

The fundamental problem we address in cross-document entity identification is to decide what

1The observed writing of a mention is its identifying writing, i.e., “President Kennedy”. For entities, it is a standard
representation of them, i.e. the full name of a person.

2Contextual attributes are not part of the current evaluation, and will be evaluated in the next step of this work.

69



entities are mentioned in a given document (given the observed set ( �) and what the most likely

assignment of entity to each mention is.

4.2 A Model of Document Generation

We define a probability distribution over documents � � ���� 0��(��, by describing how docu-

ments are being generated. In its most general form the model has the following three components:

(1) A joint probability distribution � 	� �
 that governs how entities (of different types) are

distributed into a document and reflects their co-occurrence dependencies.

(2) The number of entities in a document,  &9�	��
, and the number of mentions of each entity

in ��,  &9�	(�
� 
, need to be decided. The current evaluation makes the simplifying assumption

that these numbers are determined uniformly over a small plausible range.

(3) The appearance probability of a name generated (transformed) from its representative is

modelled as a product distribution over relational transformations of attribute values. This model

captures the similarity between appearances of two names. In the current evaluation the same

appearance model is used to calculate both the probability � 		�
 that generates a representative

 given an entity � and the probability � 	
	
 that generates a mention 
 given a representative

. Attribute transformations are relational, in the sense that the distribution is over transformation

types and independent of the specific names.

Given these, a document � is assumed to be generated as follows (see Figure 4.1): A set

of  &9�	��
 entities �� � � is selected to appear in a document �, according to � 	��
. For

each entity ��� � ��, a representative �� � 0 is chosen according to � 	�� 	�
�
� 
, generating 0�.

Then mentions ( �
� of an entity are generated from each representative �� � 0� – each mention


�
� � (�

� is independently transformed from �� according to the appearance probability � 	
�
� 	

�
� 
,

after  &9�	(�
� 
 is determined. Assuming conditional independency between ( � and �� given 0�,

70



E

E
d

R
d

M
d

ee
di

M
d

i

r di

d

P
resident John 

F
. K

ennedy

{P
resident K

ennedy, K
ennedy, JF

K
}

H
ouse of 

R
epresentatives

{H
ouse of R

epresentatives, T
he H

ouse}

Step 2: P(r|e)

Step 1: P(E
d)

Step 3: P(m
|r)

Figure
4.1:

G
enerating

a
docum

ent.
A

docum
entis

generated
in

three
steps

according
to

under-
lying

probability
distribution.

the
probability

distribution
over

docum
ents

is
therefore

�
	�


�

�
	�

��0
��(

�

�

�
	�

�
�
	0

�	�
�
�

	(
�	0

�
�

and
the

probability
of

the
docum

entcollection
,

is:

�
	,



�

�
��
!

�
	�

�

G
iven

a
m

ention



in
a

docum
ent�

((
�

is
the

setofobserved
m

entions
in

�),the
key

inference

problem
is

to
determ

ine
the

m
ostlikely

entity
�
��

thatcorresponds
to

it.T
his

is
done

by
com

puting:

�
�
�

�
�



�
�
"
�

"
�
	�

��0
�	(

��#

�

�
�



�
�
"
�

"
�
	�

��0
��(

�	#
�
(4.1)

w
here

#
is

the
learned

m
odel’s

param
eters.

T
his

gives
the

assignm
entof

the
m

ostlikely
entity

�
��

for



.

71



4.2.1 Relaxations of the Model

In order to simplify model estimation and to evaluate some assumptions, several relaxations are

made to form three simpler probabilistic models.

4.2.2 Model I (the simplest model)

The key relaxation here is in losing the notion of an “author” – rather than first choosing a repre-

sentative for each document, mentions are generated independently and directly given an entity.

That is, an entity �� is selected from � according to the prior probability � 	��
; then its actual

mention 
� is selected according to � 	
�	��
. Also, an entity is selected into a document indepen-

dently of other entities. In this way, the probability of the whole document set can be written in a

simpler way:

� 	,
 � � 	�	��� 
�
�
�
���
 �

��
���

� 	��
� 	
�	��
�

and the inference problem for the most likely entity given 
 is:

�� � ��
����"� 	�	
� #
 � ��
����"� 	�
� 	
	�
� (4.2)

4.2.3 Model II

The major relaxation made here is in assuming a simple model of choosing entities to appear in

documents. Thus, in order to generate a document �, after we decide  &9�	��
 and � &9�	(�
� �  &9�	(

�
� 
� � � � �

according to uniform distributions, each entity ��� is selected into � independently of others accord-

ing to � 	��� 
. Next, the representative �� for each entity ��� is selected according to � 	�� 	�
�
� 
 and for

each representative the actual mentions are selected independently according to � 	
�
� 	

�
� 
. Here,

we have individual documents along with representatives, and the distribution over documents is:

72



� 	�
 � � 	��� 0��(�
 � � 	��
� 	0�	��
� 	(�	0�


� �� 	 &9�	��



�"	��
���

� 	��� 
�� �� 	 &9�	(�
� 
�  &9�	(

�
� 
� ���


�

�"	��
���

� 	�� 	�
�
� 
��

�
	�	� �

	
� 


� 	
�
� 	

�
� 


�

�"	��
���

�� 	��� 
� 	�� 	�
�
� 
�
�

	�	� �
	
� 


� 	
�
� 	

�
� 


after we ignore the size components. The inference problem here is the same as in Equation 4.1.

4.2.4 Model III (Least Restrictions)

This model performs the least relaxation. After deciding  &9�	��
 according to a uniform dis-

tribution, instead of assuming independency among entities which does not hold in reality (For

example, “Gore” and “George. W. Bush” occur together frequently, but “Gore” and “Steve. Bush”

do not), we select entities using a graph based algorithm: entities in � are viewed as nodes in a

weighted directed graph with edges 	&� -
 labelled � 	��	��
 representing the probability that entity

�� is chosen into a document that contains entity ��. We distribute entities to �� via a random walk

on this graph starting from ��� with a prior probability � 	��� 
. Representatives and mentions are

generated in the same way as in Model II. Therefore, a more general model for the distribution

over documents is:

� 	�
 � � 	���
� 	��	�
�
�


�"	��
���

�� 	��� 	�
�
���
� 	�� 	�

�
� 
��

�
	�	� �

	
� 


� 	
�
� 	

�
� 
�

The inference problem is the same as in Equation 4.1.

73



4.2.5 Inference

The fundamental problem in cross-document entity identification can be solved as inference with

the models: given a mention 
, seek the most probable entity � � � for 
 according to Equa-

tion 4.2 for Model I or Equation 4.1 for Model II and III. The inference algorithm for Model I

(with time complexity 8		�	
) is simple and direct: just compute � 	��

 for each candidate en-

tity � � � and then choose the one with the highest value. Due to exponential number of possible

assignments of ��� 0� to (� in Model II and III, precise inference is infeasible. Approximate

algorithms are therefore designed:

In Model II, we adopt a two-step algorithm: First, we seek the representatives 0� for the

mentions ( � in document � by sequentially clustering the mentions according to the appearance

model. The first mention in each group is treated as the representative. Specifically, when consid-

ering a mention 
 � ( �, � 	
	
 is computed for each representative  that have already been

created and a fixed threshold is then used to decide whether to create a new group for 
 or to add it

to one of the existing group with the highest � 	
	
 value. In the second step, each representative

�� � 0� is assigned to its most likely entity according to �� � ��
����"� 	�
 � � 		�
 3. This

algorithm has a total time complexity of 8		( �	� � 	�	 � 	0�	
.

Model III has a similar two-step algorithm as Model II. The only difference is that we need

to consider the global dependency between entities. Thus in the second step, instead of seeking

an entity � for each representative  separately, we determine a set of entities �� for 0� in a

Hidden Markov Model with entities in � as hidden states and 0� as observations. The prior

probabilities, the transitive probabilities and the observation probabilities for this HMM are given

by � 	�
, � 	��	��
 and � 		�
 respectively. In this step we seek the most likely sequence of entities

given these representatives in their appearing order using the Viterbi algorithm. The total time

complexity is 8		( �	� � 	�	� � 	0�	
. However, it can be reduced by filtering out most irrelevant

entities of a mention beforehand using some simple heuristics.

3� is known after learning the model in a closed document collection that � belongs to.

74



4.2.6 Discussion

Besides different assumptions of the models, there are some fundamental differences in inference

with the models as well. In Model I, the entity of a mention is determined completely inde-

pendently of other mentions, while in Model II the way of figuring out the entity relies on local

similarity among mentions in the same document. In Model III, it is not only related to other men-

tions but to a global dependency over entities. The following conceptual example illustrates these

differences as in Figure 4.2.

Entities E

e1=Michael Jordan e2=Michael I. Jordan e3=Steve Jordan

m1,r1=Michael  
Jordan

m2=Jordan
m3=NBA

m4,r2= Steve  
Jordan

m5=Jordan

d1 d2

Figure 4.2: A conceptual example showing the differences of Model I,II,III. There are five
mentions �
��

�
� observed in two documents ���� ��� and three entities ������. The arrows represent

correct assignment of entities to mentions. �� � are representatives.

Example 4.2.1 Given � � �George Bush, George W. Bush, Steve Bush�, documents ��, �� and

five mentions in them, and suppose the prior probability of entity “George W. Bush” is higher than

those of the other two entities, the probable assignment of entities to mentions in the three models

could be as follows:

For Model I, 
�'�&%' 	��
 � 7, 
�'�&%' 	��
 � �
�� 
�� 
�� and 
�'�&%' 	��
 � �
�.

The result is caused by the fact that a mention tends to be assigned to the entity with higher prior

probability when the appearance similarity is not distinctive.

75



For Model II, 
�'�&%' 	��
 � 7, 
�'�&%' 	��
 � �
�� 
�� and 
�'�&%' 	��
 � �
� 
��.

Local dependency (appearance similarity) among mentions inside each document enforces con-

straints that they should refer to the same entity, like “Steve Bush” and “Bush” in ��.

For Model III, 
�'�&%' 	��
 � �
�� 
��, 
�'�&%' 	��
 = 7, 
�'�&%' 	��
 � �
� 
��.

With the help of global dependency among entities, for example, “George Bush” and “J. Quayle”,

an entity can be distinguished from another entity with a similar writing.

4.3 Learning the Models

Confined by the labor of annotating data, we learn the probabilistic models in an unsupervised way

given a collection of documents; that is, the system is not told during training whether two mentions

represent the same entity. A search algorithm modified after the standard EM algorithm (McLach-

lan & Krishnan, 1997) (We call it Truncated EM algorithm) is adopted here to avoid complex

computation.

Given a set of documents , to be studied and the observed mentions ( � in each document, this

algorithm iteratively updates the model parameter # (several underlying probabilistic distributions

described before) and the structure (that is, �� and 0�) of each document �. Different from the

standard EM algorithm, in the E-step, it seeks the most likely � � and 0� for each document rather

than the expected assignment.

4.3.1 Truncated EM Algorithm

The basic framework of the Truncated EM algorithm to learn Model II and III is as follows:

The algorithm for Model I is similar to the above algorithm but much simpler in the sense that it

does not have the notions of documents and representatives. So in the E-step we only need to seek

the most possible entity � for each mention 
 � , and this simplifies the parameter estimation

in the M-step accordingly. It usually takes � 
 �� iterations before the algorithm stops for all the

models in our experiments.

76



1. In the initial (I-) step, an initial ��� and ��
� is assigned to each document � using

an initialization algorithm. After this step, we can assume that we have labelled
documents �� � ����

� � �
�
���

���.

2. In the M-step, we seek the model parameter ���� that maximizes � ������. Given
the “labels” supplied by the model in the previous I- or E-step, this amounts to the
maximum likelihood estimation as described in Section 4.3.3.

3. In the E-step, we seek (��
���� �

�
���) for each document � that maximizes

� ����������� where ���� � ����
���� �

�
�����

���. It is the same inference prob-
lem in Section 4.2.5.

4. Stoping Criterion: If no increase is achieved over � �������, the algorithm exits.
Otherwise the algorithm will iterate over the M-step and E-step.

Figure 4.3: The Truncated EM algorithm

Theorem 4.3.1 Convergence of TEM: The Truncated EM algorithm converges to a local maxima

of � 	,	#
.

Proof: The proof is somewhat trivial. During each iteration � � �� �� �� � � � , in the M-step, we

recompute the model parameter #� to maximize � 	,	#�
, so � 	,	#���
 � � 	,	#�
; in the E-step,

we re-annotate ,	��� 0�
 to maximize � 	,���	#���
, so � 	,���	#���
 � � 	,�	#���
. � 	,�	#�


is non-decreasing in each iteration and it has an upper bound �, so TEM converges to a local

maxima of � 	,	#
.�

However, due to computational complexity, we design approximate algorithms in M- and E-

step, and therefore convergence is not guaranteed in this case4.

4.3.2 Initialization

The purpose of the initial step is to acquire an initial guess of document structures and to seek the

set of entities � in a closed collection of documents ,. The hope is to find all entities without loss

even if repeated entities might be created. For all the models, we apply the same algorithm:

4K-means is a Truncated EM algorithm rather than a standard EM.

77



First, a local clustering is performed to group all mentions inside each document. A set of

simple heuristics of matching attributes is applied to calculating the similarity between mentions

and pairs of mentions with similarity above a threshold are clustered together. The first mention in

each group is chosen as the representative (only in Model II and III) and an entity having the same

writing with the representative is created for each cluster5.

For all the models, the set of entities created in different documents becomes the global entity

set � in the following M- and E-steps.

4.3.3 Model Parameter Estimation

In the learning process, assuming we have obtained labelled documents , � �	�� �

��� from

previous I- or E-step, several probability distributions underlying the relaxed models are estimated

according to maximum likelihood estimation in each M-step. The model parameters include a

prior distribution over entities �", a transitive probability distribution over pairs of entities �"�"

(only in Model III) and the appearance probability �# �# of a name in the name space W being

transformed from another name.

� The prior distribution �" is modelled as a multi-nomial distribution. Given a set of labelled

entity-mention pairs �	��� 
�
�
�
� ,

� 	�
 �
��$	�


'

where ��$	�
 denotes the number of pairs containing entity �.

� Given all the entities appearing in , , The transitive probability between entities � 	�	�
 is

estimated by

� 	��	��
 � � 	��	��
	��	��

 �
�%!�	��	��
� ��	��



�%!�	��	��


�

Here, the conditional probability between two real entities � 	��	��
 is backed off to the con-

ditional probability between the identifying writings of the two entities � 	��	��
	��	��

 in the

5Note that the performance of the initialization algorithm is ����� precision and ����� recall.

78



document set , to avoid sparsity problem. Given , � ���� ��� ���� ���. And �%!�	��� ��� ���


denotes the number of documents having the co-occurrence of writings ��� ��� ���.

� Appearance Probability, the probability of one name being transformed from another, de-

noted as � 	'�	'�
 	'�� '� � : 
, is modelled as a product of the transformation probabilities over

attribute values. The transformation probability for each attribute in � is further modelled as a

multi-nomial distribution over a set of predetermined “typical” transformation types that depend

on the entity types: �� � �!%�/�
&  &'�� �/�&!��� '%'
 �/�&!���6.

Suppose '� � 	�� � ��� �� � ��� ���� �� � ��
 and '� � 	�� � ���� �� � ���� ���� �� � ���
 are two

names belonging to the same entity type, the transformation probabilities �
 �$, �$�" and �
 �",

are all modelled as a product distribution (naive Bayes) over attributes:

� 	'�	'�
 � ��
���� 	���	��
�

We manually collected typical and non-typical transformations for attributes such as titles, first

names, last names, organizations and locations from multiple sources such as U.S. government

census and online dictionaries. For other attributes like gender, only copy transformation is al-

lowed. Assuming multi-nomial distribution for each attribute, the maximum likelihood estimation

of the transformation probability � 	�� 1
 	� � ��� �� � �
 from labelled representative-mention

pairs �	�

��� is:

� 	�� 1
 �
��$	�

 � ��� �� �

�
�

'
(4.3)

��� �� �
�
� denotes the transformation from attribute �� of  to that of 
 is of type �. Simple

smoothing is performed here for unseen transformations.

6copy denotes ��

�
is exactly the same as ��; missing denotes “missing value” for � �

�
; typical denotes ��

�
is a

typical variation of ��, for example, “Prof.” for “Professor”, “Andy” for “Andrew”; non-typical denotes a non-typical
transformation.

79



4.4 Experimental Study

Our experimental study here focuses on (1) evaluating the three models on identifying three entity

types (People, Locations, Organization); (2) evaluating the contribution of the global nature of our

model, and finally, (3) evaluating our models on name expansion and prominence ranking.

The document segments shown in Figure 2.2 exemplify the preprocessed data given as input

to the evaluation. The learning approaches were evaluated on their ability to determine whether a

pair of entities (within or across documents) actually correspond to the same real-world entity.

We still make use of the New York Times articles in the experiments as in Section 4.4. The

training process gets to see all of the ��� documents and extracts attribute values for each mention,

but no supervision is supplied. These records are used to learn the probabilistic models. In testing,

all of the ���� ��� pairs of mentions that correspond to the same entity in the ��� documents are

generated, and are used to evaluate the models’ performance. Since the probabilistic models are

learned in an unsupervised setting, testing can be viewed simply as the evaluation of the learned

model, and is thus done on the same data. The same setting was used for all models and all

comparison performed (see below). To evaluate the performance, we pair two mentions if and

only if the learned model determined that they correspond to the same entity. The list of predicted

pairs is then compared with the annotated pairs. Precision, Recall and �� are computed the same

way as in Section 2.2.2.

The generative models are compared with two straightforward discriminatory models. The

first one is a simple baseline algorithm according to which two names are co-referred if and only

if they have identical writings. The second is a pairwise classifier based on a state-of-art similarity

measure for entity names (SoftTFIDF with Jaro-Winkler distance and # � ���) as described in

Section 2.1; it was ranked the best measure in a recent study (Cohen, Ravikumar, & Fienberg,

2003a).

80



4.4.1 Comparison of Different Models

Table 4.1 presents a detailed evaluation of the different approaches on the entity identity task.

All the three probabilistic models outperform the discriminative approaches in this experiment, an

indication of the effectiveness of the generative model.

Entity Mod InDoc InterDoc All
Type ����� ����� R(%) P(%) �����

All B 86.0 68.8 58.5 85.5 70.7
D 86.5 78.9 66.4 95.8 79.8
I 96.3 85.0 79.0 94.1 86.2
II 96.5 88.1 85.9 92.2 89.0
III 96.5 87.9 84.4 93.6 88.9

P B 82.4 59.0 48.5 86.3 64.7
D 82.4 67.1 54.5 91.5 70.6
I 96.2 84.8 80.6 94.8 87.4
II 96.4 91.7 94.0 91.5 92.7
III 96.4 88.9 89.8 91.3 90.5

L B 88.8 63.0 54.8 75.0 64.1
D 91.4 76.0 61.3 95.9 76.7
I 92.9 78.9 70.9 89.1 79.5
II 93.8 81.4 76.2 88.1 81.9
III 93.8 82.8 76.0 91.2 83.3

O B 95.3 82.8 72.6 96.4 83.7
D 95.8 90.7 83.9 98.9 91.1
I 98.8 91.8 86.5 98.5 92.3
II 98.5 92.5 88.6 97.5 92.9
III 98.8 93.0 88.5 98.6 93.4

Table 4.1: Performance of different approaches over all test examples. B, D, I, II and III
denote the baseline model, the SoftTFIDF similarity model with clustering, and the three prob-
abilistic models. All,P,L,O denote all entities, People, Locations and Organizations respectively.
We distinguish between pairs of mentions that are inside the same document (InDoc, ����� of the
pairs) or not (InterDoc).

We note that although Model III is more expressive and reasonable than model II, it does not

always perform better. Indeed, the global dependency among entities in Model III achieves two-

folded outcomes: it achieves better precision but, may degrade the recall. The following example,

taken from the corpus, illustrates the advantage of this model.

Example 4.4.1 “Sherman Williams” is mentioned along with the baseball team “Dallas Cow-

boys” in eight out of ��� documents, while “Jeff Williams” is mentioned along with “LA Dodgers”

81



in two documents.

In all the models except Model III, “Jeff Williams” is judged to correspond to the same entity

as “Sherman Williams” since they are quite similar and the prior probability of the latter is higher

than the former. Only in Model III, due to the dependency between “Jeff Williams” and “Dodgers”,

the system identifies it as corresponding to a different entity than “Sherman Williams”.

While this exhibits the better precision achieved by Model III, the recall may go down. The

reason is that the global dependency among entities in Model III enforces restrictions over possible

grouping of similar mentions; in addition, with a limited document set, estimating this global

dependency cannot be done accurately, especially in the setting that entities themselves need to be

found when learning the model. We expect that Model III will dominate Model II when we have

enough data to estimate a more accurate global dependencies.

4.4.2 Further Analysis

To analyze the experimental results further, we evaluated separately two types of harder cases of

the entity identity task: (1) mentions with different writings that refer to the same entity; and (2)

mentions with similar writings that refer to different entities. Model II and III outperform other

models in these two cases as well.

Figure 4.4 presents �� performance of different approaches in the first case. The best �� value

is only �����, indicating that appearance similarity and global dependency are not sufficient to

solve this problem when the writings are very different. Figure 4.5 shows the performance of

different approaches for disambiguating similar writings that correspond to different entities.

Both these cases exhibit the difficulty of the problem, and that our approach provides a signifi-

cant improvement over the state-of-the-art similarity measure. It also shows that it is necessary to

use contextual attributes of the names, which are not yet included in this evaluation.

82



Baseline SoftTFIDF Model I Model II Model III
0

10

20

30

40

50

60

70

80

90

100

Identifying different writings of the same entity

P
er

fo
rm

an
ce

 F
1 (

%
)

People
Location
Organization
All

Figure 4.4: Identifying different writings of the same entity 	��
. We filter out identical writ-
ings and report only on cases of different writings of the same entity. The test set contains �� ���
matching pairs (but in different writings) in the whole data set. The �� values of the Baseline algo-
rithm are all zero in this experiment. Baseline, SoftTFIDF, Model I, II and III denote the baseline
model, the SoftTFIDF similarity model with clustering, and the three probabilistic models, respec-
tively. The results for each individual entity type and for all entity types are shown in different
grey scales.

4.5 Comparison between the Discriminative and Generative

Approaches

To further analyze the working mechanisms of the generative and discriminative models, in this

section, we compare and evaluate them using the same data sets. Although the models can be

trained according to different strategies as described later in detail, they are evaluated using the

five standard test sets we constructed in the previous experiments in evaluating the discriminative

models (see Section 4.4). The experiments focus on: (1) comparing the generative model with the

pairwise classification model in various settings, and (2) combining the unsupervised and super-

vised models. Here we only test Model II of the three initializations of the generative model since

it performs the best in the previous experiments.

We trained the generative model in an unsupervised way with all �� ��� names. The some-

what surprising results are shown in Table 4.2. The generative model outperformed the supervised

classifier for People and Organizations. That is, by incorporating a lot of unannotated data, the un-

83



Baseline SoftTFIDF Model I Model II Model III
50

55

60

65

70

75

80

85

90

95

100

Identifying similar writings of different entities

P
er

fo
rm

an
ce

 F
1 (

%
)

People
Location
Organization
All

Figure 4.5: Identifying similar writings of different entities (��). The test set contains ��� ���
pairs of mentions that associated with different entities in the ��� documents and have at least
one token in common. Baseline, SoftTFIDF, Model I, II and III denote the baseline model, the
SoftTFIDF similarity model with clustering, and the three probabilistic models, respectively. The
results for each individual entity type and for all entity types are shown in different grey scales.

��	�
 Marlin SoftTFIDF LMR Generative
Peop 88.3 89.0 90.5 95.1
Loc 77.3 90.5 92.5 87.8
Org 78.1 87.7 93.0 96.7

Table 4.2: Discriminative and generative models. Results are evaluated by the average �� val-
ues over the five test sets for each entity type. “Marlin”, “SoftTFIDF” and “LMR” are the three
pairwise classifiers; “Generative” is the generative model.

supervised learning could do better. Please note that the performance of the generative model over

these smaller test sets are better than that over the test using all �� ��� names (shown in Table 4.1).

This is due to different ratios of within-document examples and across-document examples in the

test sets and performance over across-document examples is usually lower7. Table 4.3 shows the

number of these examples in different test sets.

To understand the reasons behind the performance differences between the discriminative and

generative approaches, and to compare them further, we addressed the following three issues:

Data: Our first intuition is that the outcome is caused by the fact that the discriminative ap-

7The number of across-document examples is ����� where� is the number of documents in the collection, while
the number of within-document examples is only ����.

84



# of positive examples 600-name test sets 8,000-name test set
within-document 9517 13866
across-document 43346 116948

Table 4.3: The distribution of within-document and across-document positive examples in
different test sets. Only numbers of positive examples are shown here. The number of positive
examples in the 600-name test sets are the sum over �� sets (five for each entity type).

proach has an inherent limitation. So we increase our training data to a comparable size to that

of the generative model: We apply about �� �� annotated names for training. The results of the

LMR classifier are improved somewhat after this (see Figure 4.6), but still incomparable with the

generative model.

LMR (600) LMR (6,400) Generative (8,600)
80

82

84

86

88

90

92

94

96

98
Different Training Sizes

P
er

fo
rm

an
ce

 F
1 (

%
)

People
Location
Organization

Figure 4.6: More training data for the discriminative classifier. Results are evaluated by the
average �� values over the five test sets for each entity type. “LMR (���)” is the LMR classifier
trained only on ��� annotated names and “LMR (�� ��)” is the one trained on �� �� names.
Results are averaged over the five test sets.

Learning protocol: A supervised learning approach is trained on a training corpus, and tested

on a different one, necessarily, resulting in some degradation in performance. On the contrary,

an unsupervised method learns directly on the target corpus. This difference, as we show, can be

significant to performance. In a second experiment, in which we do not train the generative model

on names it will see in the test set, results clearly degrade (Figure 4.7). Since we use maximum

likelihood estimation of model parameters in the Truncated EM algorithm, the results indicate

signs of overfitting in the generative model.

85



LMR Generative(all) Generative (unseen)
70

75

80

85

90

95

Learning Protocol

P
er

fo
rm

an
ce

 F
1 (

%
)

People
Location
Organization

Figure 4.7: Results of different learning protocols for the generative model. The table shows
the results of our supervised classifier (LMR) trained with ��� names, Generative (all) – the gen-
erative model trained with all the �� ��� names and Generative (unseen) – the generative model
trained with the part of �� ��� names not used in the corresponding test set. Results are evaluated
and averaged over five test sets for each entity type.

Generative Simple Initialization
70

75

80

85

90

95

100
Simple Initialization

P
er

fo
rm

an
ce

 F
1 (

%
)

People
Location
Organization

Figure 4.8: Performance of simple initialization. “Generative” – the generative model learned
in a normal way. “Initial” – the parameters of the generative model initialized using some simple
heuristics and used to cluster names. Results are evaluated by the average �� values over the five
test sets for each entity type.

86



Structural assumptions: Our generative models benefit from the structural assumptions made

in designing the model. We exhibit this by evaluating a fairly weak initialization of the model,

and showing that, nevertheless, this results in a cross-document entity identification model with

respectable results. Figure 4.8 shows that after initializing the model parameters with the heuris-

tics used in the EM-like algorithm, and without further training (but with the inference of the

probabilistic models), the generative model can perform reasonably well.

All of the above factors have influenced the results in Table 4.2 more or less, although they do

not seem to be dominant factors that cause the performance difference between the discriminative

and generative approaches. In the next section, we will further analyze some inherent problems

in learning the LMR classifier, which explains why more training data can not make the LMR

classifier comparable to the generative model, and show that the generative models indeed have

inherent advantages coming together with their structural assumptions.

4.5.1 A Further Explanation

Consider the following examples � ��'''��/���''��/ � and � .%�'���''��/ �. Suppose

the two Kennedy’s occur in different documents and they refer to different persons in different,

we then have ��	��''��/���''��/
 � �. However, the two names have exactly the same

appearance features and there is not way to get a classifier that can tell us they are different by only

using these features. On the contrary, suppose “John” and “Kennedy” occur in different documents

and they both refer to the person “John F. Kennedy”, that is, ��	.%�'���''��/
 � �, because

their appearance features are completely different, it is hard to train a pairwise classifier to tell that

they actually co-refer. When we only want to train a local similarity function for clustering, these

examples will be noise in training.

One advantage of the generative model is that it incorporates the information of document

structures into the model. The approach, therefore, can distinguish between two levels of name

ambiguity: the ambiguity within document and across document. Inside each document, most

names belong to the same entity are similar to each other. On the cross-document level, only

87



representatives which are typically full names of entities are compared and clustered, where most

of the cases of “John” and “Kennedy” as above can be avoided. Thus in inference, it will seldom

meet the above hard cases. This advantage provides an explanation why the generative models

perform better than the LMR classifier learned with supervision.

4.6 Conclusion

This chapter presents an unsupervised learning approach to several aspects of the cross-document

entity identification problem. We developed a model that describes the natural generation pro-

cess of a document and the process of how names are “sprinkled” into them, taking into account

dependencies between entities across types and an “author” model.

Several relaxations of this model were developed and studied experimentally, and compared

with the previously-developed discriminative model that does not take a global view. The experi-

ments exhibit encouraging results and the advantages of our model.

There are several critical issues that our model can support, but were not included in this pre-

liminary evaluation. Some of the issues that will be included in future steps are: (1) integration

with more contextual information (like time and place) related to the target entities, both to support

a better model and to allow temporal tracing of entities; (2) the scalability issues in applying the

system to large corpora, and the development of an incremental approach of training the model;

that is, when a new document is observed, coming, how to update existing model parameters ? and

(3) integration of this work with other aspects of general coreference resolution (e.g., other terms

like pronouns that refer to an entity) and named entity recognition (which we now take as given).

88



Chapter 5

Semantic Integration across Text and
Databases

Many real-world applications increasingly involve a large amount of both structured data and text.

The reason is two-folded: First, certain kinds of information are best captured in structured data,

and other kinds in text. Second, the information required for the application may need to be

assembled from many sources, some of which contribute structured data, and others text. Examples

of such applications arise in numerous domains, including enterprizes, government agencies, civil

engineering, bioinformatics, health care, personal information management, and the World-Wide

Web.

However, effectively utilizing both structured data and text in the above applications remains

extremely difficult. A major reason is still the semantic heterogeneity over concepts, which refers

to the variability in writing real-world entities in text and in structured data sources, or to using the

same mention to refer to different entities.

Text documents naturally contain much ambiguity as we have shown before. On the database

side, different relational records often refer to the same person, but use different mentions, such as

(Helen Hunt, Beverly Hills) and (H. E. Hunt, 145 Main St. Beverly Hills). Conversely, different

records may use the same mention to refer to different real-world entities. For example, in the

Internet Movie Database (&
�6�!%
) the mention “Helen Hunt” refers to three different people:

two actresses and a make-up artist. This problem is especially common when data is integrated

89



from multiple databases, but arises often also in stand-alone databases, due to the nature of the data,

misspelling, and errors in data entry (Rahm & Do, 2000; Hernandez & Stolfo, 1995b; Sarawagi

& Bhamidipaty, 2002; Cohen, Ravikumar, & Fienberg, 2003a). Finally, semantic heterogeneity is

also pervasive across text and databases. For example, “Helen Hunt” in a relational record may

refer to the same person as “Mrs. H. E. Hunt” in a text document, but not “Professor Hunt”.

This chapter considers the problem of resolving the above types of semantic heterogeneity,

by matching mentions that refer to the same real-world entities, both within and across text and

databases. This problem is more general than record linkage (a.k.a. record matching), the well-

known problem of deciding if two given relational records refer to the same real-world entity (e.g.,

(Hernandez & Stolfo, 1995b; Sarawagi & Bhamidipaty, 2002; Cohen, Ravikumar, & Fienberg,

2003a)). It is also more general than mention matching in text, as Section 5.2 will discuss.

Despite significant potential benefits, as far as we know, no work has directly addressed men-

tion matching in the context of integrating text and databases, and current solutions to related

problems are not directly applicable. Solutions for record linkage are not well designed to handle

the unstructured nature of mentions in text, and solutions for matching text mentions are not suited

for exploiting the structured nature of databases.

In this thesis we build on recent advances in both areas, and propose MEDIATE1, a unifying

solution that automatically matches mentions across text and databases. The key idea underlying

MEDIATE is a generative model that extends the one in Chapter 4 to exploit characteristics of

structured database records. It specifies how entity mentions are generated both within a database

record or a text document.

Specifically, we make the following contributions:

� An architecture for mentions matching in data sets that involve both text and structured data. The

generative model provides a principled solution which can handle multiple types of entities, is

highly extensible to new entity types, and operates without the need for expensive hand-crafted

training data.

1Matching Entities in Data Instances And TExt

90



H
unt w

orked w
ith N

icolson
in…

G
ot an O

scar for “A
s good as it gets”

P
layed in a recent Spielberg film

…

FFM

C
A

L
A

C
A

H
elen H

unt

H
elen E

. H
unt

T
om

 H
anks

B
iography

Sex
A

ddr.
N

am
e

R
. R

em
eckis

S. Spielberg

J. B
rooks

T
. H

anks

T
. H

ansk
H

. H
unt

1994

1998

1997

Forest G
um

p

Saving P
rivate R

yan

A
s good as it gets

D
irector

M
ain A

ctor
Y

ear
T

itle

A
ctor

M
ovie

O
scar W

inner H
elen H

unt 
arrived in D

C
 yesterday…

H
unt declined a role offered

by C
harlie C

haplin…

T
he “Forest G

um
p” Star

H
anks played an 

all-A
m

erican role in…

(a) T
ext C

ollection
(b) R

elational D
atabase

d1d2d3

Figure
5.1:

A
sim

plified
data

set
for

a
m

ovie
application,w

hich
contains

both
text

and
struc-

tured
data.

T
he

arrow
s

denote
sem

antic
m

atches
that

w
e

w
ant

to
establish

am
ong

m
entions

of
actors

and
m

ovies.

�
A

n
extension

to
the

generative
m

odel
that

exploits
context

inform
ation

in
the

neighborhood
of

the
m

entions
as

w
ell

as
the

co-occurrence
of

real-w
orld

entities,
to

m
ake

accurate
m

atching

decisions.

�
A

m
echanism

to
transfer

know
ledge

across
contexts,to

m
axim

ize
m

atching
accuracy.

�
T

he
M

E
D

IAT
E

system
that

em
bodies

the
above

innovations,and
a

set
of

experim
ents

on
real-

w
orld

data
that

illustrates
the

system
’s

effectiveness.
O

ur
experim

ents
show

that
M

E
D

IAT
E

achieves
high

overall
m

atching
accuracy

of
77.2

-
81.7%

F-1
across

text
and

databases,
that

it
significantly

outperform
s

record
linkage

techniques
on

the
database

side,
and

achieves
even

higher
accuracy

w
ith

the
use

of
text.

T
he

experim
ents

further
show

thatM
E

D
IAT

E
can

exploit

structured
data

w
hen

available
to

im
prove

textm
entions

m
atching,and

thatitis
robustto

varying

degrees
of

sem
antic

heterogeneity.

T
he

chapter
is

organized
as

follow
s.

T
he

next
section

defines
the

m
ention

m
atching

problem
.

Section
5.2

review
s

related
w

ork.
Section

5.3-5.5
describe

the
M

E
D

IAT
E

system
.

Section
5.6

presents
experim

ents
and

Section
5.7

concludes.91



5.1 Problem Definition

We now describe the specific mention matching problem across text and databases, and reuse some

of the concepts as we have defined for the related problem in text.

Data Sets, Entities, and Mentions: We assume that an application deals with a data set that

consists of relational tables and text documents (but the ideas here can be generalized to other data

representations). Figure 5.1 shows a simplified movie data set, with two tables Actor and Movie,

and three news articles.

Given such a data set, we define a set of real-world entity types that the application is interested

in. For example, the above movie application may be interested in people and movies, whereas a

bibliography application such as Citeseer may be interested in authors, papers, and publication

venues. Next, we assume that instances of real-world entities of the above types are referred

to using mentions of their names in the data set. In Figure 5.1, examples of such mentions are

underlined: “Helen Hunt”, “T. Hanks”, “R. Remeckis”, “Forrest Gump”, etc. Note that a record

may contain multiple mentions of the same entity (e.g., “Helent Hunt” and “Hunt” in the first

record of Actor.

Mention discovery in text has received much attention and success in the database, AI, KDD,

and WWW communities, within the context of named entity recognition, information extraction,

and text segmentation (e.g., (Agichtein & Ganti, 2004; Borkar, Deshmukh, & Sarawagi, 2001;

Freitag, 1998)). The developed techniques also often benefit from learning methods. Mentions in

relational records are often marked up by the record boundaries (e.g., “Helen Hunt”, “Helen E.

Hunt”, etc. in Figure 5.1). For those which are not (e.g., mentions in the text field comment of

Table Actor), we can apply the above techniques for mention discovery in text. For these reasons,

we assume that mentions are already marked up in the data set, and focus on the problem of

matching them.

92



m
3

m
4

m
5

m
8

m
6

m
7

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
1 =

 P
rof. Jordam

m
2 =

 M
. Jordan

m
3 =

 M
ichael I. Jordan

m
4 =

 Jordan
m

5 =
 Jordam

m
6 =

 S
teve Jordan

m
7 =

 Jordan

(b)
(c)

(d)
(a)

e1
e2

e3
e4

e5

P
rof. M

. I. Jordan   (205) 414 6111   C
A

e3
(e)

e4

m
8

e3
e1

e4
(f)

m
1

m
2

Figure
5.2:

A
n

exam
ple

of
the

running
process.

T
he

generative
m

odelis
constructed

iteratively
by

assigning
m

entions
to

entities,re-learning
m

odelparam
eters,then

re-assigning
the

m
entions.

T
he

M
ention

M
atching

P
roblem

:
T

his
problem

is
sim

ilar
to

entity
identification

problem
in

text.
G

iven
the

m
arked

up
m

entions
in

a
setof

relationaltables
and

textdocum
ents,our

goalis
to

link
allpairs

of
m

entions
thatrefer

to
the

sam
e

real-w
orld

entities.
Figure

5.1
show

s
the

links
that

w
e

w
antto

establish
in

the
above

m
ovie

data
set.

5.2
B

ackground
&

R
elated

W
ork

W
e

consider
related

w
ork

from
severalperspectives.

P
roblem

D
efinition:

A
s

described,
the

m
ention

m
atching

problem
is

m
ore

general
than

both

record
linkage

and
entity

identification
in

text.R
ecord

linkage
typically

treats
each

relationaltuple

as
a

description
of

a
prim

ary
entity,then

tries
to

link
tuples

thatdescribe
the

sam
e

entity
w

ithin
a

single
table,oracross

differenttables.Forexam
ple,given

table
A

ctorin
Figure

5.1,itm
ay

attem
pt

to
decide

if
the

firstand
second

records
refer

to
the

sam
e

actress,and
so

on.
T

hus,conceptually
it

m
atches

m
entions

thatoccuronly
in

certain
attributes

(e.g.,nam
e

ofA
ctor).In

contrast,w
e

m
atch

all
m

entions
that

occur
in

the
database.

For
exam

ple,
in

Table
A

C
TO

R
w

e
also

m
atch

m
entions

such
as

“H
unt”

and
“Spielberg”

in
attribute

biography
of

the
first

and
second

records
w

ith
all

other
m

entions
in

the
database.

O
ur

problem
therefore

subsum
es

record
linkage.

W
e

dem
onstrate

em
pirically

in
Section

5.6
thatsolving

m
ention

m
atching

also
im

proves
record

linkage
accuracy.

Schem
a

M
atching:

Itis
also

im
portantto

em
phasize

thatw
e

do
notconsider

sem
antic

heterogene-

ity
atthe

database
schem

a
level,a

related
and

im
portantproblem

thathas
received

m
uch

attention

93



(Rahm & Bernstein, 2001). Instead, we consider semantic heterogeneity at the data level, in the

context of integrating structured data and text.

Techniques: A wealth of techniques have been developed to match mentions, with respect to

both record linkage and text contexts (e.g., (Tejada, Knoblock, & Minton, 2002; Cohen, 1998;

McCallum, Nigam, & Ungar, 2000; Yih & Roth, 2002; Bilenko & Mooney, 2002; Ananthakr-

ishna, Chaudhuri, & Ganti, 2002; Sarawagi & Bhamidipaty, 2002; Gravano, Ipeirotis, Koudas, &

Srivastava, 2003; Hernandez & Stolfo, 1995b; Galhardas, Florescu, Shasha, & Simon, 2000; Ra-

man & Hellerstein, 2001; Dasu & Johnson, 2003; Rahm & Do, 2000)). For record linkage, early

solutions employ manually specified rules (Hernandez & Stolfo, 1995b), while subsequent works

focus on learning matching rules from training data (Tejada, Knoblock, & Minton, 2002; Bilenko

& Mooney, 2002; Sarawagi & Bhamidipaty, 2002), efficient techniques to match strings (Monge &

Elkan, 1996b; Gravano, Ipeirotis, Koudas, & Srivastava, 2003), powerful methods to match entity

names (Cohen, 1998; Gravano, Ipeirotis, Koudas, & Srivastava, 2003; Cohen, Ravikumar, & Fien-

berg, 2003a), scaling up to large number of tuples (Koudas, Marathe, & Srivastava, 2004; Ganti,

Chaudhuri, & Motwani, 2005; Jin, Li, & Mehrotra, 2003; McCallum, Nigam, & Ungar, 2000;

Cohen & Richman, 2002a), matching in online contexts (Chaudhuri, Ganjam, Ganti, & Motwani,

2003), personal information management (Dong, Halevy, Madhavan, & Nemes, 2005), matching

XML data (Weis & Naumann, 2005), and exploiting links (Bhattacharya & Getoor, 2004).

Several recent works have also developed generative models to match mentions. The work

(Pasula, Marthi, Milch, Russell, & Shpitser, 2003) addresses citation matching in structured con-

texts, a much narrower problem. It proposes a full-blown probabilistic relational model (Friedman,

Getoor, Koller, & Pfeffer, 1999), and as such is harder to understand, requires a lot of data (to learn

the model parameters), and has a very high runtime complexity. The model proposed in (Raviku-

mar & Cohen, 2004) for matching tuples is much more efficient, but does not capture and exploit

the notion of real-world entities, as we do here.

Several recent works have employed another probabilistic framework called conditional ran-

94



dom fields (CRF) to match mentions (Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay,

2004). In particular, (Wellner, McCallum, Peng, & Hay, 2004) attempts to solve both mention dis-

covery and matching at the same time. However, the probabilistic model of CRFs is less expressive

than ours and may not be sufficient for the problem we consider here, and yet, are well known to

have very high runtime complexity and are thus not scalable to realistic database domains.

Exploiting Context: Several recent works have also exploited context in mention matching (Pa-

sula, Marthi, Milch, Russell, & Shpitser, 2003; Ananthakrishna, Chaudhuri, & Ganti, 2002; Bhat-

tacharya & Getoor, 2004; Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay, 2004).

(Ananthakrishna, Chaudhuri, & Ganti, 2002) was among the first to articulate the idea, but ex-

ploits context only at a syntactic level. For example, if “X” and “Y” are linked to two occurrences

of “Helen Hunt”, respectively, then it may decide that “X” and “Y” are related. In contrast, we

will first find out if the two occurrence of Helen Hunt refer to the same person. The works (Bhat-

tacharya & Getoor, 2004; Parag & Domingos, 2004; Wellner, McCallum, Peng, & Hay, 2004)

exploit context at a higher semantic level (as we do here) but not within the context of generative

models, and do not combine text and databases.

5.3 The MEDIATE Approach

We developed three generative models, where each builds on the previous one and exploits ad-

ditional types of knowledge in the data set to improve matching accuracy. In what follows we

illustrates the working of the models and the types of knowledge exploited during the matching

process. Here we adopt the same set of notations we have used for entity identification in text in

Section 4.1.

Entities, Mentions, & Representatives: We consider matching mentions in a data set , �

���� ��� � � � � ���. Each �� is a relational record or a text document, and henceforth will be referred

to as a “document”. We assume , contains mentions (i.e. real occurrences) of 	� 	 types of real-

95



A
ctor T

om
 H

anks
F

orrest G
um

p
R

epresentatives R
d

M
entions M

d

E
ntities E

d

E
ntities in the 

real w
orld E

1994
R

obert Z
em

eckis
H

anks w
on O

scar…
A

ctor T
om

 H
anks

F
orrest G

um
p

D
eciding D

ocum
ent T

ype 
(text, record)

C
hicago B

ulls
M

ichael 
Jordan

M
ichael Jordan

w
as born …

 
C

hicago B
ulls…

 B
ulls, M

ike

G
enerating a 

textual article
G

enerating a 
database record

(a)
(b)

(c)

Figure
5.3:

G
enerating

database
records

and
text

docum
ents.

w
orld

entities
(e.g.,person,m

ovie,etc.).
For

each
docum

ent
�,w

e
use

�
�
�
��

�
� �

to
denote

the

set
of

entities
m

entioned
in

�,
and

(
�
�
�


�
� �

to
denote

the
set

of
m

entions.
For

exam
ple,

for

entity
“Tom

H
anks”,the

corresponding
set

of
m

entions
in

a
docum

entm
ay

contain
“H

anks”,“T.

H
anks”

and
“A

ctor
Tom

H
anks”.

5.3.1
C

onstructing
the

M
E

G
enerative

M
odel

E
xam

ple
5.3.1

F
igure

5.3.a
show

s
the

docum
entgeneration

process,w
hile

F
igures

5.3.b-c
show

specific
exam

ples
ofgenerating

a
textdocum

entand
a

relationalrecord.
For

instance,F
igure

5.3.b

show
s

how
the

basketballplayer
M

ichaelJordan
generates

the
representative

“
M

ichaelJordan”
,

w
hich

in
turn

generates
m

entions
“

M
ichaelJordan”

and
“

M
ike”

in
the

textdocum
ent. �

A
ssum

ing
conditionalindependence

betw
een

(
�

and
�
�

given
0
� ,and

ignoring
the

size
com

-

ponents
due

to
assum

ptions
of

uniform
distributions,using

the
above

m
odelw

e
can

com
pute

�
��
�

�
�
��

� ��
� ��

� �
�
�
��

� ��
��

� ��
� ��

��
� ��

� �

�

�"
	
��
�	

���
�

��
��
�
� ��

��
�
� ��

�
� �	

�

	�
	
� �

	
� 
 �

��
�� ��

�� ��
(5.1)

Since
the

M
E

m
odelis

notm
uch

differentfrom
the

generative
m

odelw
e

used
in

entity
identi-

fication
in

text,w
e

learn
the

m
odelin

the
sam

e
w

ay
as

in
Section

4.3.
T

hatis,if
w

e
have

a
setof

96



annotated training documents ,�, where for each document � � ,� we already manually assign

each mention to the correct entity, then # can be estimated by the common method of maximum

likelihood estimation: #� � ��
���� 	,�	#
�

5.3.2 An Example

In the first model ME we learn to match mentions using their names. Consider a simple data set

of three text documents and one relational record, in the (fictional) area of “basketball research”.

This model is very similar to the model I developed in Section 4.2.3 for text Figures 5.2.a-d show

the data set (only the relevant mentions are shown in text documents, to avoid clutter). To match

the mentions 
� 

�, we proceed in iterations.

� First iteration: We cluster mentions within each document and record, using a text similar-

ity measure. Next, we create an entity for each cluster, and assign all mentions in the cluster to the

entity. Figure 5.2 shows the created entities �� 
 �� and the assignment of mentions. Notice that

in document (a) the two mentions “Prof. Jordam” (where “Jordan” is misspelled as “Jordam”) and

“M. Jordan” have not been clustered together and assigned to the same entity because they are not

sufficiently similar.

Next, we learn the characteristics, that is, the “profile” of each entity, based on the assigned

mentions. For example, consider entity ��. From mentions 
� and 
�, we know that the person

(corresponding to) �� has the first name “Michael”, middle name initial “I”, last name “Jordan”,

and that his last name could be misspelled as “Jordam”.

� Second iteration: Now given the entity profiles (i.e., the model learned in previous itera-

tion), we reassign each mention 
� to to the best matching entity.

In our example, we end up assigning 
� = “Prof. M. I. Jordan” (in the record) to entity ��

because 
� also has the middle initial “I” and share the first initial with ��. We also assign 
� to

��, because 
� = “Jordan” shares the same last name with ��. Figure 5.2.e shows the reassignment.

Note that entities �� and �� become empty and hence are dropped.

Now we relearn all entity profiles. Consider again person ��. From the mentions assigned to

97



Prof. Jordam
M

. Jordan
B

erkeley

M
ichael I. Jordan

Jordan
Jordam

A
ir Jordan

S. Pippen

(b)

M
. Jordan

Scott Pippen

(c)
(d)

(2)

(a)
(3)

(4)

(5)

(1)

e3

A
ffiliation

L
ocation

P
hone

N
am

e

N
B

A
C

hicago
(231) 345 6712 

Scott Pippen

C
A

414 –
6111

M
r. Jordan

N
B

A
C

hicago
(231) 456 7823

M
ike Jordan

B
erkeley

M
ichael Jordan

U
C

B
C

A
(205) 414 6111

P
rof. M

. I. Jordan

(e)

Figure
5.4:

E
xam

ples
of

exploiting
external

attributes
(e.g.,phone,

location),co-occurrence
of

entities,and
transferring

know
ledge

across
m

atches.

this
entity,w

e
know

that,am
ong

others,his
last

nam
e

can
be

m
isspelled

as
“Jordam

”
and

that
he

can
have

the
title

“Prof.”
(due

to



� ).

�
T

hird
iteration:

L
everaging

the
above

profile
of

�
� ,w

e
can

reassign



�
=

“Prof.
Jordam

”

to
�
� .

Figure
5.2.f

show
s

the
reassignm

ent,
w

hich
also

happens
to

be
the

final
reassignm

ent,
as

subsequentiterations
do

notchange
it.

M
E

then
uses

the
above

assignm
ent

to
predict

that
m

entions



�





�

and



�
m

atch,
and



� �


�
m

atch.

T
he

above
exam

ple
illustrates

the
iterative

nature
of

learning
our

m
odels

directly
from

the
data

set.
It

also
highlights

the
globalnature

of
our

m
ethods,in

w
hich

know
ledge

is
transferred

across

m
atches

to
accum

ulate
in

entity
“profiles”,

thus
enabling

m
ore

accurate
m

atching.
In

contrast,
a

m
ethod

thatm
atches

a
m

ention
pair

by
exam

ining
their

nam
es

in
isolation

is
localby

nature,and

w
ill

incorrectly
m

atch



 ,



� ,
and



�

in
the

above
exam

ple,
because

their
nam

es
(“Jordan”

or

“Jordam
”)

are
sim

ilar.

5.4
M

E
C

:
L

earning
from

C
ontext

T
he

m
odelM

E
exploits

only
characteristics

of
m

ention
nam

es,such
as

title,m
iddle

initial,etc.
To

im
prove

m
atching

accuracy,our
second

m
odelM

E
C

exploits
contextin

the
follow

ing
tw

o
w

ays:

E
xploiting

E
xternalA

ttributes:
C

onsider
a

slightly
differentdata

set,also
in

the
area

of
“bas-

ketballresearch”,as
show

n
in

Figure
5.4.

98



To match mentions in this data set, we begin by defining a set of external attributes for each

person entity, such as phone, location, and affiliation in this case. Next, we apply the ME algorithm

as described earlier, with some modification. In each iteration, when merging mentions to compute

the profile for each entity, ME computes the values for internal attributes, such as title, first name,

middle name, etc. Now, we also compute the values for external attributes. Then when reassigning

mentions, we compute the probabilities � 	
	�
 using all attributes, internal and external.

To illustrate, suppose using ME we have assigned all mentions in documents (a) and (b) as well

as mention “Prof. M. I. Jordan” in tuple (1) to an entity �� (see Figure 5.4). After computing values

for external attributes, we know that �� has phone = (205) 414 611 and location = CA (from tuple

(1)). Then in the next iteration, we can assign mention “Mr. Jordan” in tuple (4) to ��, because the

external attributes phone and location of this mention and of �� share similar values. Notice that

without using the external attributes, we would have incorrectly matched mention “Mr. Jordan” in

tuple (4) with the first mention “Mr. Jordan” in document (c), as they share the same name.

Exploiting Entity Co-occurrence: Consider “Mr. Jordan” and “Air Jordan” in documents (c)

and (d). ME would not match them, because the names are not sufficiently similar. However,

consider the two associated mentions: “Scott Pippen” and “S. Pippen”. If we already know that

they refer to the same person, then “Mr. Jordan” and “Air. Jordan” co-occur with the same entity,

and intuitively that would increase their chance to match. In MEC we develop a method to exploit

such entity co-occurrence to further improve matching accuracy.

Interplay between Text & Databases The example in Figure 5.4 also shows that text can help

record linkage, and vice versa. Given only the database, record linkage would have difficulty

matching tuples (1) and (2), since they do not share much context. Now consider the text docu-

ments (a)-(d), and assume that our method has matched mention 
 = “Prof. M. I. Jordan” in tuple

(1) with all person mentions in documents (a) and (b). Then we can infer that 
 has first name

“Michael” (from document (b)) and is also associated with location Berkeley (from document (a)).

99



This information would enable matching the two tuples (1) and (2). Similarly, we have shown

before that matching mentions in documents (a) and (b) is difficult unless we can bridge them via

mention “Prof. M. I. Jordan” in tuple (1). This demonstrates that databases can help mention

matching in text.

5.4.1 Exploiting External Attributes

We associate with each mention a set of external attributes, defined based on the attributes of the

database as well as the types of mentions we can automatically discover from the text. Recall

(model ME Section 5.3) that after selecting a set of entities �� for �, we generate a representative

 for each entity � � ��, then generate mention 
 from representative , by transforming the

internal attributes of .

In the current model MEC, we generate mention 
 from representative  by transforming both

internal and external attributes of . We compute this transformation probability as follows. Given

any two elements '�� '� � : (e.g., '� is a mention 
 and '� is a representative ), assuming inde-

pendence among all attributes (both internal and external), we can compute probability � 	'�	'�


as a product distribution over attributes. The independence assumption clearly does not hold, but

it reduces runtime complexity, and is shown empirically to work well (Section 5.6).

Let the set of internal and external attributes be ��� � � � � ��. Let '� � 	�� � ��� �� � ��� ���� �� �

��
 and '� � 	�� � ���� �� � ���� ���� �� � ���

. Since the external attributes could be of binary,

numeric and textual value, we adopt a more general model to compute � 	� ��	��
	1 � �� � � � � �


for each pair of attribute values. (1) We first measure the distance between the corresponding

attribute values ��	�
�
�� ��
 � �� using an attribute-specific distance metric. As default metrics, for

textual attributes, we convert the SoftTFIDF (Cohen, Ravikumar, & Fienberg, 2003a) similarity

between them into a distance; for numeric attributes, such as user rating, we measure the Manhattan

distance. This approach is general in that any state-of-art distance metric can be integrated into the

model, as it becomes available. (2) We then compute � 	� ��	��
 as a variation of the Gaussian

100



distribution (because �� is always non-negative):

��	�
�
�	��
 �

��
;)�5�

� ��� 	
���)5
�
�
 (5.2)

Currently we assign a constant density to missing values, and found that it empirically works well,

though more sophisticated methods are clearly possible.

Given a set of annotated entity-representative pairs �	�� 
��� , we learn the standard variance 5�

by computing the maximum likelihood estimation of 5� for each attribute �� as: 5� � �
�

�
��� ��	%�%
�

�

�

�
��&�,

where ��	��� �
�
�
 is the distance between corresponding attribute values in � and .

5.4.2 Exploiting Entity Co-occurrence

Exploiting entity co-occurrence further improves matching accuracy We currently exploit by: (1)

modeling entity co-occurrence as conditional probability between entities � 	��	��
; and (2) inte-

grating it as an external attribute.

Modeling as Conditional Probabilities: In the document generation process (Section 5.3.1),

instead of assuming independence among entities, we select entities sequentially according a con-

ditional probability � 	��	�
���
� 
: each entity �� is selected into a document � according to the set

of entities ����
� selected before it. This gives � 	��
 �

��"	�
��� �� 	���	�

���
� 
�, where ��

� � � and

� 	���	�
�
�
 � � 	���
. Thus we have

� 	�
 �

�"	��
���

�� 	���	�
���
� 
� 	��	���
��

�
	�	� �	�


� 	
��	��
� (5.3)

Computing � 	���	�
���
� 
 raises the challenge of ranking entities in a document in a sequential order,

and also the sparsity problem when learning the model in an unsupervised setting. To address

these, we approximate � 	���	�
���
� 
 as 
���	��"	����� 	���	���
. Next, we approximate � 	���	���


as � 	���
, if ��� and ��� never co-occur, and as 1 otherwise. We now can apply these formulas

101



directly in the Truncated EM algorithm (see Section 4.3.1), to compute � 	���	�
���
� 
.

Integrating as an External Attribute: We also integrate entity co-occurrence as an additional

external attribute to each representative/entity. That is, we expand the representation of a repre-

sentative/entity with an external attribute con. This set-valued attribute contains all other repre-

sentative names in the same document. For example, for an author in a citation, its con attribute

contains all other coauthor names. The con attribute of an entity is the combination of the con

attributes of all its representatives in different documents.

Let the con attribute of a representative  and an entity � be ���	
 � �'�� '�� � � � � and

���	�
 � �'��� '
�
�� � � � �. To measure their distance, we first apply the SoftTF-IDF (Cohen, Raviku-

mar, & Fienberg, 2003a) string metric to compute the similarity  	'�� '
�
�
 � ��� �� 	'� � ���	�
� '�� �

���	�

, then compute the distance as

����	� �
 �
�

������	�


��

���������	�
 	'�� '
�
�
� (5.4)

The probability of the context of a representative being transformed from that of an entity is

still computed by Equation 5.2. Note that we do not expand the representation of a mention since

this co-occurring information does not benefit the mention level.

5.5 Knowledge Transfer via Contexts

Consider matching “Mr. Jordan” in document (c) with “Mike Jordan” in tuple (3). Our second

model MEC would declare a no-match, because their names are not sufficiently similar, and they

share no context information. However, suppose we know that “Scott Pippen” in document (c)

matches “Scott Pippen” in tuple (5). Then since “Scott Pippen” in tuple (5) has location = Chicago

and affiliation = NBA, it follows that “Scott Pippen” in document (c) also has the same location

and affiliation. Since mention “Mr. Jordan” occurs close to “Scott Pippen” in document (c), it can

“borrow” the context information about location and affiliation from “Scott Pippen”. Armed with

102



this, it can now match the mention “Mike Jordan” in tuple (3), since that mention also has the same

location and affiliation. In MEC�, our third and last model, we develop a method to enable such

context transfer. The key challenge there is to transfer the right amount of context, with little noise.

As we have motivated above, often an entity can “borrow” some context from its neighboring

entities, and leverage the augmented context to increase matching accuracy. Hence, in the final

extension, MEC�, we enable such “borrowing”.

Similar to model MEC, in MEC� we add to each representative/entity a context attribute con.

However, unlike MEC, this attribute now not only contains the co-occurring names in the same

document, but also the names of “distant”: co-occurring entities (e.g., co-occurring entities of

co-occurring entities).

However, exploiting more distant entity dependency can hurt matching accuracy, if it links

irrelevant entities together. The problem is then how far we should follow context of entities.

Currently we adopt the following mechanism. Let !�	�
 be the �-th context of �, namely, the set

of entities that have a recursive co-occurring relation of distance no larger than � from entity

�. We then consider the con attribute of an entity � to be the set �!�	�
� � � � � !�	�
�, for a pre-

specified 1 (currently set at three in our experiments). The distance between the contexts of a

representative and an entity is then a weighted sum of the distance over each level of context:

����	� �
 �
�

��� � ��	� �
, where ��	� �
 is defined as a distance between two sets of names,

measured in the same way as in Equation 5.4. We currently apply a reciprocal weighting: �� � �)�,

to reflect the intuition that more distant contexts contribute less to the matching process.

5.6 Empirical Evaluation

We now present experimental results that demonstrate the utility of MEDIATE. We show that

MEDIATE significantly increases accuracy over current baseline matching methods, and that it

can utilize text to improve accuracy for record matching, and vice versa.

103



5.6.1 Experimental Settings

Data Sets: We evaluated MEDIATE on two data sets obtained from the Internet Movie Database

IMDB at &
�6�!%
 and the CS Bibliography DBLP at �6����'& 
 �&����. From IMDB, we

downloaded all news articles in 2003-2004 (to be treated as text documents in our experiments),

then retrieved the IMDB home pages of people (such as actors, directors) and movies mentioned in

the news articles. Next, we converted each home page into a structured record, thereby obtaining

two tables: PEOPLE and MOVIES, whose schemas are shown in Figure 5.5.

From DBLP, we downloaded �� home pages of authors, focusing on home pages with high

degree of ambiguity. For each paper � in the downloaded home pages, we followed URL links

to retrieve home pages of the conference that � was published in, as well as the HTML abstract

(wherever available) that is a text blurb listing the conference name, author affiliation, and the paper

abstract. The conference home pages and HTML abstracts are treated as the text documents in our

experiments. Finally, we converted each paper citation to a structured record, thereby obtaining a

table: CITATIONS, whose schema is shown in Figure 5.5.

We then marked up the mentions (people names, movie titles, and author names), exploiting the

already existing HTML markups and employing an automatic tagger method whenever necessary.

Next, we manually found all pairs of matching mentions, to be used in evaluating experimental

results.

In the next step, following common research practice in record linkage (Hernandez & Stolfo,

1995b; Ananthakrishna, Chaudhuri, & Ganti, 2002), we perturbed the tables of the data sets, to

generate varying degrees of semantic ambiguity for experimental purposes. For the IMDB tables,

we randomly selected records with a probability �, then perturbed each selected record in several

ways, e.g., randomly adding titles and misspelling, and abbreviating the first names. For movie

titles we randomly removed articles (a, an, the) and sequel numbers (e.g., Star War III � Star

War), and added misspelling. We also randomly split records, by keeping certain mentions (e.g.,

certain actor names in attribute actors of table MOVIES in Figure 5.5), and dropping others. We

also perturbed the DBLP table by randomly removing middle names, and abbreviating first names.

104



IM
D

B
: T

w
o tables: people and m

ovies;  w
ith 2,043 records and 868 text docum

ents;

P
eople:

<
nam

e, gender, brithdate, birthplace, deathdate, deathplace, m
ovies>

M
ovies:

<
title,year,genre,runtim

e,language,country,director,color,rating,actors>

C
ontains  9,725  m

entions of  1,687 entities, and 55,147 correctm
atching pairs.

People have 1,231 records 4,227 m
entions.

M
ovies have 812 records 5,498 m

entions.

D
B

L
P

: O
ne table of citations w

ith 944 records and 721 text docum
ents;

C
itations:

<
title, authors, coference/journal, pages, year>

.

C
ontains  7,356 m

entions of  1672 authors, and 55,186 correct m
atching pairs.

Figure
5.5:

C
haracteristics

of
the

data
sets.

Figure
5.5

describes
a

data
setw

here
allIM

D
B

records
w

ere
perturbed

(i.e., �
�

�).O
urgoalis

to
m

atch
the

m
entions

ofthree
types

ofentities:
people,m

ovies,and
authors,in

these
data

sets.W
e

use
this

data
set

for
experim

ents
in

Sections
5.6.2-

5.6.4.
In

Section
5.6.5,w

e
present

sensitivity

analysis
w

ith
data

sets
perturbed

using
varying

�
values.

B
aseline

M
atching

M
ethods:

W
e

com
pare

M
E

D
IAT

E
w

ith
three

m
ethods

com
m

only
used

in

record
linkage

and
m

atching
m

entions
in

text.

�
Pairw

ise
m

atching
ofnam

es:
T

his
m

ethod
declares

tw
o

m
entions

m
atched

if
the

sim
ilarity

of
their

nam
es

exceeds
a

threshold.
For

com
puting

sim
ilarities,

w
e

use
SoftT

F-ID
F,

a
m

easure

described
in

(C
ohen,R

avikum
ar,&

Fienberg,2003a)
and

show
n

em
pirically

to
be

the
bestam

ong

several.

�
C

lustering:
M

any
different

clustering
algorithm

s
have

been
developed

for
record

linkage

(e.g.,(M
cC

allum
,N

igam
,&

U
ngar,2000;C

ohen
&

R
ichm

an,2002a)),as
w

ellas
m

ention
m

atch-

ing
in

text
(L

i,
M

orie,
&

R
oth,

2004a).
W

e
im

plem
ented

a
variation

of
these

algorithm
s,

using

the
SoftT

F-ID
F

m
easure

(C
ohen,R

avikum
ar,&

Fienberg,2003a)
to

com
pute

sim
ilarities

betw
een

m
ention

nam
es.

�
Pairw

ise
LW

(linear
w

eight)
record

linkage:
W

hen
exam

ining
M

E
D

IAT
E

’s
perform

ance

on
the

task
of

record
linkage,w

e
also

w
ant

to
com

pare
it

to
state-of-the-art

record
linkage

m
eth-

ods.
N

um
erous

such
m

ethods
have

been
developed

in
the

past
few

years
(see

Section
5.2),

but

105



no comprehensive study is available yet to evaluate them. For our experiments, we implemented

the pairwise attribute-based method, which has been applied successfully in many database and

AI works (Hernandez & Stolfo, 1995b; Sarawagi & Bhamidipaty, 2002; Cohen, Ravikumar, &

Fienberg, 2003a). Given two records, this method computes a similarity score between each pair

of corresponding attributes (using attribute-specific similarity measures), then combines the scores

and deciding the match using linear weighted sum, or learning methods such as decision tree,

SVM, etc. (Sarawagi & Bhamidipaty, 2002). We experimented with a small set-aside developing

set and found linear weighted sum work best.

Performance Measures: We convert the outcome of each matching method into a set of mention

pairs that are predicted to match. Since we want to retrieve all and only matching pairs, we use

precision, recall, and �� to measure the method’s performance as we did in Section 2.2.2.

5.6.2 Overall Matching Accuracy

Table 5.1: Matching accuracy over both databases & text.
��(R/P) IMDB DBLP

Entity Type Person (4227) Movie (5498) Author (6356)
Pairwise 60.5 (65.7/56.0) 75.0 (84.4/67.4) 67.4 (66.0/68.9)

Clustering 54.2 (74.7/42.5) 76.7 (77.3/76.1) 61.9 (68.1/56.9)
Model ME 74.1 (63.6/88.8) 77.5 (75.7/79.3) 77.7 (86.3/70.6)

Model MEC 74.7 (63.3/91.0) 80.7 (76.7/85.1) 78.5 (86.3/72.0)
Model MEC� 77.2 (67.3/90.5) 81.7 (78.1/85.6) 81.6 (85.9/77.8)

Table 5.1 shows the accuracy of different methods for mention matching over both databases

and text. The rows show the F-1 values (with R and P in parentheses) for pairwise matching,

clustering, ME, MEC, and MEC� (i.e., the complete MEDIATE system). Note that the LW record

linkage method is not applicable because it cannot extract attribute values for mentions in the text

documents.

The results show that MEC� achieves high accuracy across the entity types in both IMDB and

DBLP, ranging from 77.2 to 81.7% F-1. In contrast, the best baseline methods (pairwise for actors

106



and authors, and clustering for movies) obtain only 60.5 - 76.7% F-1.

Compared to the best baseline, applying ME significantly improves accuracy by 10.3 - 13.6%

(except 0.8% for movies). Exploiting context and entity co-occurrence in MEC further improves

accuracy by 0.6 - 3.2%. Exploiting recursive context in MEC� adds 1 - 3.1%. In all our experi-

ments, subsequent versions of MEDIATE outperform previous ones, confirming that our generative

model is able to exploit immediate context, entity co-occurrence, and recursive context.

An analysis of the results shows that the accuracy gains depend on the nature of transforma-

tions for mentions, as well as the discriminative power of the context. For instance, movie titles

usually are not transformed as frequently or significantly as person names. This explains why

the basic MEDIATE which relies only on movie titles to match movies obtained only a minimal

improvement over pairwise and clustering.

Finally, Table 5.2 shows the number of real-world entities that MEC� estimated in each iteration

of the Truncated EM algorithm. The final estimated numbers of entities, and the correct number

of entities are in the last second lines, respectively.

Table 5.2: Number of entities, as estimated in each iteration.
Person Movie Author

Initialization 2111 2611 4124
1st Iteration 1423 1559 2145

Last Iter. (between 5-8) 963 927 1382
Annotated 890 797 1672

Accuracy over Databases, Text, and Cross-Linking: To further understand the above results,

we break the accuracy down into “within database”, “within text”, and “across database and text”,

respectively. The results (not shown on figures) demonstrates that MEC� (i.e., the complete ME-

DIATE) outperforms the baselines across all three entity types, and achieves accuracy of 70 - 91%

F-1, while the best baseline method achieves 51.8 - 84.8% F-1. This suggests that MEDIATE can

link mentions within databases, text, and across them with high accuracy.

107



People Movies Authors

50

60

70

80

90

Text helps DB

A
cc

u
ra

cy
 F

1 (
%

)

Pairwise Matching
Clustering
LW Record Matching
MEC2 over DB
MEC2 over DB, exploit text

Figure 5.6: achieves significantly higher accuracy than LW record linkage when applied to
databases, and obtains even higher accuracy when exploiting text.

People Movies Authors

60

70

80

90

DB helps Text
Pairwise matching
Clustering
MEC2 over Text
MEC2 over text, exploit DB mentions
MEC2 over text, exploit DB entities

Figure 5.7: can exploit databases to improve accuracy over text.

5.6.3 Exploit Text to Improve Record Linkage

Figure 5.6 shows the accuracy of MEDIATE in matching records on the database side. For each

of the three entity types people, movies, and authors, the first four bars show the F-1 accuracy of

the pairwise matching method, clustering, LW record matching, and MEC�, when they are given

only the databases (with no associated text). The last bar shows the accuracy of MEC� when it is

also given text documents (as described in Figure 5.5) and can exploit them for record matching

purposes. The results show that, first of all, record matching beats baseline methods, which exploit

only names, to reach accuracy of 75.6-82.5% F-1. Second, MEC� even without the help of text

beats record matching significantly, improving accuracy by 6 - 8.6% F-1, to reach 81.6 - 90%.

Finally, when text is available, MEC� can exploit it to improve accuracy across all three entity

types, by 0.9 - 3.9%.

108



0  20 40 60 80 100

50

60

70

80

90

100

Degree of Ambiguity

A
cc

u
ra

cy
 F

1 (
%

)
(a) People

0  20 40 60 80 100

60

80

100

Degree of Ambiguity

(b) Movies 

0  20 40 60 80 100

60

80

100

Degree of Ambiguity

(c) Authors

MEC2

MEC
ME
Clustering
Pairwise

Figure 5.8: The MEDIATE system is robust across a broad range of degrees of semantic am-
biguity.

5.6.4 Exploit DBs to Match Text Mentions

Figure 5.7 shows the accuracy of MEDIATE in matching mentions in text. Again, for each entity

type, the first three bars show the accuracy of pairwise matching, clustering, and MEC� when they

are not given any associated database. The fourth bar shows the accuracy of MEC� when it is given

a database to aid in matching mentions in text. The fifth bar describes a situation similar to that of

the fourth bar, but here MEC� is also told that the database contains all entities whose mentions

appear in text (a situation that commonly arises in practice).

The results show that, on text side alone, best baseline (pairwise or clustering) achieves 66.4 -

84.2%, whereas MEC� achieves 72.2 - 90%, resulting in a gain of 5.7 - 12.4%. It also shows that

MEC� can exploit the given databases to improve accuracy by 1.8 - 4.6%, to reach 76.8 - 91.7%.

5.6.5 Sensitivity Analysis

Figure 5.8 shows the accuracy of the matching methods over different degrees of semantic ambi-

guity. The data points at, say, value 60 on the X axis, represent the F-1 accuracies when run on a

data set that was created by perturbing the original IMDB and DBLP data sets with � � ���. The

results show that MEDIATE is robust to varying degrees of semantic ambiguity.

109



5.7 Conclusion

This chapter describes the MEDIATE system which automatically matches entity mentions within

and across both text and databases. The system can handle multiple types of entities (e.g., people,

movies, locations), is easily extensible to new entity types, and operates with no need for annotated

training data. MEDIATEis created based on the generative models described in Chapter 4, but

allow several extensions of it in the context of a structured database. The model exploits the

similarity of mention names, common transformations across mentions, and context information

such as age, gender, and entity co-occurrence. To maximize matching accuracy, MEDIATE also

propagates information across contexts. Experiments on real-world data show that MEDIATE

significantly outperforms existing methods that address aspects of this problem, and that it can

exploit text to improve record linkage, and vice versa.

110



Chapter 6

More about Concept-Based Text
Understanding and Mining

Entity disambiguation and identification is a critical step towards implementing concept-based text

understanding mining. Based on the work of globally identifying real-world entities from a large

collection of text, we aim at building a unified framework to support intelligent access to textual

information, as shown in Figure 6.1. The hope is to provide a variety of inference and access

functionalities for users and other text-related tasks such as information retrieval, information ex-

traction and question answering.

In this framework, after entities and concepts are recognized from a large collection of text

(e.g. the collection of all the online the web pages), indexing is created to link each of them to

all of its occurrences in text. This is similar to the indexing mechanism implemented in most

search engines, but indexing here takes entities as the basic unit rather than tokens. Moreover

all the variations of the entity name have been identified from text, and are indexed together. In

addition to indexing, meta-information about each entity, such as their occurrence frequency in all

the text, other entities that are closely related to them, and other facts and events about them that

can be extracted from the text, are put into the knowledge base. Users, including those end users

who want to search for knowledge about entities as those of search engines, and the higher-level

text understanding and mining systems, can access the indexed and integrated information in this

knowledge base through multiple access functions. These functions involve direct concept query,

111



Identification, T
erm

 E
xpansion, 

P
rom

inence

John F
. K

ennedy

H
ouse of R

ep…

D
allas

A
ccess Functions

D
atabase

Probabilistic M
odel

D
ocum

ent C
ollection

T
w

o-w
ay Indexing

Q
uery

Figure
6.1:

A
know

ledge
base

for
intelligent

access
to

text

as
w

ell
as

som
e

inference
m

odules
based

on
som

e
probabilistic

m
odel

learned
from

the
text

in
a

w
ay

as
described

in
C

hapter
4,and

updated
w

hen
new

textcom
e

in,e.g.
daily

new
s

articles.

In
this

chapter,
w

e
first

discuss
in

Section
6.1,

using
search

engines
as

an
exam

ple,
w

hat
the

potential
functionalities

this
fram

ew
ork

can
support,

and
how

text-related
tasks

can
m

ove
from

string-
and

m
ention-level

processing
to

processing
real-w

orld
concepts

directly
and

benefit
from

it,
w

ithout
being

bothered
by

the
nam

e
am

biguity.
A

fter
that

in
Section

6.2,
w

e
w

ill
discuss

som
e

future
w

ork
in

im
plem

enting
this

fram
ew

ork
to

supportconcept-based
textunderstanding

and

m
ining

,involving
both

scalability
issues

and
a

further
task

of
coreference

resolution
–

identifying

entities
from

other
types

of
references

like
pronouns.

In
the

end,
w

e
w

ill
conclude

this
thesis

in

Section
6.3.

112



Figure
6.2:

Search
by

concept

6.1
A

C
ase

Study
w

ith
Search

E
ngines

W
e

use
search

engines,
as

an
exam

ple
of

concept-based
text

understanding
and

m
ining

tasks,
to

show
how

text-related
tasks

can
benefit

from
entity

identification
and

disam
biguation.

L
et’s

first

take
a

look
at

an
exam

ple
in

Figure
6.2,to

see
w

hat
are

the
setbacks

of
the

current
search

engine

techniques.

Suppose
a

user
is

looking
for

inform
ation

aboutthe
senior

presidentG
eorge

B
ush

and
query

a

search
engine

w
ith

his
nam

e.A
standard

search
engine

thatis
based

on
keyw

ord-m
atching,outputs

a
collection

of
“relevant”

w
eb

pages
to

the
user.

A
ll

of
the

output
pages

contain
both

the
query

term
s

“G
eorge”

and
“B

ush”,butsom
e

ofthem
are

actually
related

to
the

son
ofthe

seniorpresident,

G
eorge

W
.B

ush,w
hich

is
not

the
one

the
user

is
looking

for.
T

hat
is,nam

e
am

biguity
can

bring

noise
to

the
search

engines.
M

ore
interestingly,since

his
son

is
the

incum
bent

President,
w

hose

nam
es

are
supposed

to
occur

frequently
in

recentw
eb

pages,m
ore

pages
abouthim

are
output.

A

113



more significant setback of this keyword-matching scheme, is that when a web page only contains

the name “Bush”, even if it refers to the same person the user is looking for, the search engine will

not treat it as a relevant page. Moreover, different web pages about the same person are scattered

in the result, and it is up to the user to further identify the truly “relevant” information.

Assume entity identification and indexing have been implemented as a component of a search

engine. After all the occurrences of entities, such as people, locations, and companies, are iden-

tified and disambiguated in the web pages, a search engine could benefit from it in at least five

aspects: (1) expanding queries of names; (2) ranking prominence; (3) creating more accurate rele-

vance ranking; (4) clustering relevant documents based on entities; and (5) providing more context

to guide iterative search.

They are further discussed in the rest of this section, and some of them formalized as inference

tasks based on the generative model described in Chapter 4. In the preliminary experiments, we

evaluate our generative model on these tasks related to the cross-document entity identification

problem, but present results only for Model II as described in Section 4.2.3.

6.1.1 Name Expansion

The problem of Name Expansion in a search engine is that, given a name of an entity (say, in a

question), find other likely names of the same entity. An inference task can be defined to address

it, based on the probabilistic model as described in Chapter 4. That is, given a mention 
' in a

query $, decide whether mention 
 in the document collection D is a ‘legal’ expansion of 
':


' � 
 iff ����
� ��
����"� 	�'� 0'�('
 � 
 � 
�'�&%' 	��


We assume here that we already know the possible mentions of �� after learning the models in ,.

In the following preliminary experiments, given a mention 
 in a query (for example, in an $),

we find the most likely entity � � � for 
 using our inference algorithm. All unique mentions of

the entity in the documents are output as the expansions of 
. The accuracy of Name Expansion

114



for one mention in a query is defined as the percentage of correct expansions among all expansions

output for a query. The average accuracy of Name Expansion of Model II is shown in Table 6.1

(averaged over �� queries for each of the three entity types). Here is an example of a query:

Query: Who is Gore ?

Expansions: Vice President Al Gore, Al Gore, Gore.

Entity Type People Location Organization
Accuracy(%) 90.6 100 100

Table 6.1: Accuracy of name expansion. The accuracy of Name Expansion for one mention in a
query is defined as the percentage of correct expansions among all expansions output for a query.
Accuracy is averaged over �� randomly chosen queries for each entity type.

6.1.2 Prominence

The problem Prominence is that: given a question “What is Bush’s foreign policy?”, and given that

any large collection of documents may contain several Bush’s, there is a need to identify the most

prominent, or relevant “Bush”, based on a ranking of the prominence of entities, perhaps taking

into account also some contextual information. The inference task for this problem, based on the

probabilistic model as described in Chapter 4, can be formalized as: given a name ' � : , the

most prominent entity for ' is given by:

�� � ��
����"� 	�
� 	'	�
�

� 	�
 is given by the prior distribution �" and � 	'	�
 is given by the appearance model.

We refer to Example 4.2.1 and use it to exemplify qualitively how our system supports promi-

nence ranking. The following examples show the ranking of entities with regard to the value of

� 	�
 � � 	
	�
 using Model II, given a query name 
.

Input: George Bush

1. George Bush 2. George W. Bush

Input: Bush

115



1. George W. Bush 2. George Bush 3. Steve Bush

6.1.3 Other Applications

Creating more accurate relevance ranking. One of the most important statistics used in rank-

ing web pages is term frequency – counting how many times a query term occurring in a web page

to be ranked. Since names are also split into individual query terms in the current search engine

techniques, and names of the same entity could be very ambiguous in text as we have claimed, the

statistics is not very accurate, with regard to the importance of a name in ranking the page. This

problem has two-folded influence in reality. On one hand, if a web page only contains the term

“Bush” rather than “George”, the term frequency for “George” will be zero, resulting in a very

low relevance for this page. On the other hand, when multiple entities share the same name, term

frequency over each token of the name will mistakenly accumulate over all these different entities.

One solution to these setbacks is to take entity-based frequency statistics, rather than token-

base frequency statistics. For user queries with a name, the real-world entity behind this name is

first identified, given the other context of the query. The frequency statistics is taken based on the

identified entity according to how many times this entity is mentioned in it, no matter which name

of it is used. The frequency of an entity in a collection of pages is computed correspondingly, as

how many times its names occur in all these pages.

Clustering relevant documents based on entities. The layout of the search results could also

be reorganized, base on identified entities. When there are multiple possible entities for a query,

(e.g. searching for “Bush”). A search engine could first returns a list of candidate Bush’s (such as

“George Bush”, “David Bush”) as the first-tier outcome. A short biography is provided for each

person and can be used to help the user decide the one he is looking for. Moreover, web pages

about the different persons can be split apart into different groups. The user can choose a entity

here, and then go to its relevant pages for more relevant information. Some further categorization

and summarization of the web pages about the same entity, can be performed to avoid redundant

116



output.

Providing more context to guide iterative search. After entities are identified in text, further

knowledge can be extracted for each entity based on straightforward statistics over the entities. One

type of the most important knowledge for an entity is the other “related” entities, that frequently

occur with one entity in different texts. “George W. Bush”, as an instance, can be easily identified

relating to the following entities, such as “White House”, “Dick Cheney”, “Iraq”. The related

entities can provide a user some context of the target entity that he is searching for. He may then

follow the relation to find information about other entities, and get the ultimate information he is

interested with, in an iterative setting.

6.2 Future Work

For implementing the framework to support intelligent access to textual information as in Fig-

ure 6.1, there are still many issues to be addressed in the future.

6.2.1 the Scalability Problem

The practical system of concept disambiguation and tracing of ambiguous names, that can work

in the domain of news articles and web pages, should be capable of efficiently processing of a

great number of documents, even millions of documents, with reasonable computing resources.

However, the current implementation of the discriminative and generative approaches as described

in Chapter 2 – Chapter 4, have about �	4 �
 time complexity and �	4
 space complexity, where

4 is the number of documents. In the ��� documents that we have experimented with, there are

�� ��� names which correspond to �� ��� entities. It takes about hours to train the pairwise classifier

and one or two hours to train our generative model (mode II). Therefore it is impossible form them

to handle a much larger document collection.

There are two possible solutions to this problem: (1) hierarchically clustering documents; and

117



(2) incrementally training the generative models and building the knowledge base.

Our current generative models are hierarchical models in some sense. When training the model

parameters, the observed mentions are clustered into groups within each document, and a repre-

sentative is selected for each group. Only representatives participate in the global clustering on

the cross-document level. This scheme avoids direct clustering of all mentions and computing

pairwise similarities for all pairs of mentions. The same idea can be extended further to include

more levels in the training and inference process of the generative models because documents are

naturally clustered corresponding to different dates, sources and so on, mentions can be clustered

step by step according to the common properties they or the documents have.

The second solution is to train the generative models and to build the knowledge base incre-

mentally. The parameters of the generative models and the content in the knowledge depend on a

set of statistics over entities, entities dependencies and features in the appearance models, which

could be updated in an incremental way. For example, if the frequency of each entity occurring in

processed documents has been maintained, when new documents come in, entities are identified

using the inference algorithm with the existing model parameters. If necessary, new entities will

be created. Then the frequency can be easily updated then by incorporating statistics over the new

documents. After some time, all the parameters in the generative models can be re-estimated based

on the new statistics.

An ideal implementation of the system should integrate both of the above strategies in a rea-

sonable way.

6.2.2 Coreference Resolution

In addition to proper names, coreference resolution cares about other types of reference ambiguity

to real-world concepts as well, such as nominal and pronominal references. Consider the following

simple story (See Figure 6.3) and some related comprehension questions (Hirschman, Light, Breck,

& Burger, 1999):

What is involved in being able to understand this story and to answer the following questions ?

118



(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He
is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived
in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote
a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then
wrote a book. He made up a fairy tale land where Chris lived. His friends were animals.
There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a
piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to
life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh
was written in 1925. Children still love to read about Christopher Robin and his animal
friends. Most people don’t know he is a real person who is grown now. He has written two
books of his own. They tell what it is like to be famous.

Question:
1. Who is Christopher Robin?
2. When was Winnie the Pooh written?
3. What did Mr. Robin do when Chris was three years old?
4. Where did young Chris live?
5. Why did Chris write two books of his own?

Figure 6.3: An example of coreference ambiguity in text. Noun phrases that refer to “Christopher
Robin” or his father are in bold.

Clearly, there are many small local decisions need to make. We need to recognize that there are two

Chris’s here. Mentions of “Christopher Robin” and his father interweave in the above story and

occur in different forms. “Christopher Robin” is referred as ���& �%���0%6&'� ��� �& � ��& �

while his father is referred as �(�0%6&'� ��� �& ������ �& �. Coreference resolution is crucial

here to automatically identify all types of occurrences of concepts, not just proper names, and

relations between them.

In solving the coreference ambiguity of proper names, we have concentrated more on the ap-

pearance similarity of different names and the co-occurring dependency among entities. In coref-

erence resolution, however, the usage of the nominal and pronominal references depend more on

the lexical semantics of noun phrases, syntactic structures of a sentence and contextual informa-

tion around a reference. For this reason, modelling the problem and seeking neat solution is much

harder. An example of the more complex coreference ambiguity in the above article is the use of

pronouns: “he” and “His” are used many times in the story and they can both refer to either of two

Chris’s in different contexts.

119



Most works in this area only focus on noun phrase coreference within documents. Many ma-

chine learning approaches (Carbonell & Brown, 1988; Dagan & Itai, 1990; Aone & Bennett,

1995; McCarthy & Lehnert, 1995; Ge, Hale, & Charniak, 1998; Cardie & Wagstaff, 1999; Flo-

rian, Hassan, Ittycheriah, Jing, Kambhatla, Luo, Nicolov, & Roukos, 2004) have been applied in

determining whether a pair of NPs refers to the same entity based on local context of them in a

document. The contextual information of a noun phrase is converted into a set of features. For

example, (Soon, Ng, & Lim, 2001) applies decision tree induction based on �� features types to

two standard coreference data sets (MUC-6, 1995; MUC-7, 1999).

The influence of these works is two-folded. On one hand, their results have shown the impor-

tance of features in this task. By using an exhaustive set of lexical, grammatical, semantic and

positional features, their system can achieve 70.4% and 63.4% F-measure on MUC-6 and MUC-7

corpus respectively, which is a significant progress from the 64.3% and 61.2% reported in (Soon,

Ng, & Lim, 2001). On the other hand, the result is also an indication of the hardness of this prob-

lem. By applying most of currently known features — many of which are even hand-selected, the

performance is still far from satisfactory. This hardness motivates us to turn to better modelling of

the problem in the future, instead of focusing on feature engineering.

6.3 Conclusions of the Thesis

Our major conclusion in this thesis is that: semantic understanding of text and intelligent access

to textual information require concept-based text understanding and mining, that is, a framework

of organizing, indexing, accessing textual information centered around real-world concepts, and

a mechanism of analyzing and integrating segregated information. This framework consists of

several steps: (1) recognizing occurrences of real-world concepts and entities from text; (2) identi-

fying real-world concepts from their ambiguous occurrences in text; (3) integrating and organizing

textual information based on concepts; and (4) extract their properties, relations and other facts or

knowledge based on this integrated organization.

120



After all the occurrence of a real-world entity has been identified, information related to this

entity which are previously scattered in different texts and different context of the same text, can be

indexed and integrated together. A lot of text-related applications such as Information Retrieval,

Information Extraction Question Answering, Text Summarization and Reading Comprehension,

can be improved by directly working on the concept-level, rather than being bothered by ambigu-

ous names and different occurrences of the same entity.

In this thesis, we describe our effort in one of the above fundamental steps – disambiguation

and identification of entities (people, locations, organizations and so on) from their ambiguous

writings of names, in the across-document setting of text. While semantic integration of structured

information has been widely studied, little attention has been paid to a similar problem in unstruc-

tured and semi-structured data. This paper also describes one of the first efforts towards sematic

integration in unstructured textual data, providing a promising perspective on the integration of

structured databases with unstructured or semi-structured information. We propose multiple ma-

chine learning techniques to address the entity identification and semantic integration problem.

It has been shown that as more information can be exploited, the learning techniques developed

accordingly, can continuously improve the identification accuracy.

Our first solution (described in Chapter 2) is a discriminative approach for studying the influ-

ence of appearance similarity between names in entity identification. This approach models the

problem as deciding whether any two names mentioned in a collection of documents represent the

same entity. This is a standard pairwise classification task, under a supervised learning protocol;

our main contribution in this part is to show how relational – string and token-level features – and

structural features, representing transformations between names, can significantly improve the per-

formance of this classifier. We also show that the appearance similarity between names are critical

information in entity identification, and the classifier based on it, without any help from contextual

information, can already achieve decent performance.

Our second approach in Chapter 3, is a new clustering framework, that can make global opti-

mization by making decisions over a set of names together in entity identification. The proposed

121



supervised discriminative clustering framework (SDC) targets learning a partition function, pa-

rameterized by any chosen clustering algorithm, to minimize the clustering distortion from given

supervision. Our experiments on entity identification task show that SDC which trains a similar

metric for a chosen clustering can significantly outperforms the pairwise classification approach,

and existing clustering approaches, and other metric learning approaches where clustering is dis-

joint from the metric learning procedure. This new clustering framework is very promising to be

applied a broad of problems in natural language processing, and data mining domains.

In Chapter 4, we develop a global probabilistic model to exploit more contextual information

for Entity Identification, at the heart of which is a view on how documents are generated and

how names (of different entity types) are “sprinkled” into them. This unsupervised approach can

outperform the supervised pairwise classifier in the experiments, an indication of the advantages of

more contextual information in this task, such as concurring entities, and the notion of documents.

In addition to developing more advanced learning techniques that can effectively exploiting

more information, we also extend our global probabilistic model to address another related prob-

lem – semantic integration between text and databases in Chapter 5. This is a very significant

problem since there are many important applications require integration of structured databases

with a greater amount of unstructured text, which can provide both efficient access to textual in-

formation, and expansion to databases with more related and integrated textual information.

Based on the work of globally identifying real-world entities from a large collection of docu-

ments (for example, everyday news articles or the whole set of online web pages), our ultimate goal

is to design and implement a unified framework for intelligent access of textual information. For

this purpose, in Chapter 6 we study several applications of entity identification in a text-mining

task like search engine, and show how text-related tasks can benefit significantly from concept-

level understanding and mining.

122



Bibliography

Agichtein, E., & Ganti, V. (2004). Mining reference tables for automatic text segmentation.

Ananthakrishna, R., Chaudhuri, S., & Ganti, V. (2002). Eliminating fuzzy duplicates in data
warehouses.

Aone, C., & Bennett, S. W. (1995). Evaluating automated and manual acquisition of anaphora
resolution strategies.

Bach, F. R., & Jordan, M. I. (2003). Learning spectral clustering.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison Wesley
Longman.

Bagga, A., & Baldwin, B. (1998). Entity-based cross-document coreferencing using the vector
space model. In the 17th international conference on Computational linguistics (pp. 79–85).
Association for Computational Linguistics.

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (2003). Learning distance functions using
equivalence relations.

Bhattacharya, I., & Getoor, L. (2004). Iterative record linkage for cleaning and integration.

Bickel, P. J., & Doksum, K. A. (1977). Mathematical statistics: Basic ideas and selected topics.
San Francisco: Holden-Day.

Bilenko, M., Basu, S., & Mooney, R. (2004). Integrating constraints and metric learning in
semi-supervised clustering.

Bilenko, M., & Mooney, R. (2002, February). Learning to combine trained distance metrics
for duplicate detection in databases (Technical Report Technical Report AI 02-296). Austin,
TX: Artificial Intelligence Laboratory, University of Texas at Austin.

Bilenko, M., & Mooney, R. (2003). Adaptive duplicate detection using learnable string similar-
ity measures.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., & Fienberg, S. (2003). Adaptive name
matching in information integration. IEEE Intelligent Systems.

Borkar, V., Deshmukh, K., & Sarawagi, S. (2001). Automatic text segmentation for extracting
structured records.

Borovkov, A. A. (1984). Mathematical statistics. Mir,Moscow.

Bradley, P. S., Fayyad, U. M., & Reina, C. (1998). Scaling clustering algorithms to large
databases.

123



Brill, E. (1995). Transformation-based error-driven learning and natural language processing:
A case study in part of speech tagging. Computational Linguistics, 21(4), 543–565.

Brill, E. (1997). Unsupervised learning of disambiguation rules for part of speech tagging.
Kluwer Academic Press.

Brown, P., deSouza R. Mercer, P., Pietra, V., & Lai, J. (1992). Class-based n-gram models of
natural language. Computational Linguistics, 18(4).

Califf, M., & Mooney, R. (1999). Relational learning of pattern-match rules for information
extraction.

Carbonell, J. G., & Brown, R. D. (1988). Anaphora resolution: A multi strategy approach.

Cardie, C., & Wagstaff, K. (1999). Noun phrase coreference as clustering. In Proceedings of
The Conference on Empirical Methods in Natural Language Processing (pp. 82–89).

Carlson, A., Cumby, C., Rosen, J., & Roth, D. (1999, May). The SNoW learning architecture
(Technical Report UIUCDCS-R-99-2101). UIUC Computer Science Department.

Charniak, E. (1993). Statistical language learning. MIT Press.

Charniak, E. (1997). Statistical techniques for natural language parsing. The AI Magazine.

Charniak, E. (2000). A maximum entropy-inspired parser. In Proceedings of North American
chapter of the Association for Computational Linguistics annual meeting (pp. 132–139).

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy match
for online data cleaning.

Chieu, H., & Ng, H. (2002). A maximum entropy approach to information extraction from
semi-structure and free text. In the Eighteenth National Conference on Artificial Intelligence
(AAAI 2002) (pp. 786–791).

Chu, S. C., Roddick, J. F., & Pan, J. S. (2001). A comparative study and extensions to k-medoids
algorithms.

Cohen, W. (1998). Integration of heterogeneous databases without common domains using
queries based onb textual similarity.

Cohen, W., Ravikumar, P., & Fienberg, S. (2003b). A comparison of string metrics for matching
names and records.

Cohen, W., Ravikumar, P., & Fienberg, S. (2003a). A comparison of string metrics for name-
matching tasks.

Cohen, W., & Richman, J. (2002a). Learning to match and cluster entity names.

Cohen, W., & Richman, J. (2002b). Learning to match and cluster large high-dimensional data
sets for data integration.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing.

Collins, M. (1999). Head-driven statistical models for natural language parsing. PhD thesis,
University of Pennsylvania.

Collins, M., & Duffy, N. (2002). New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and voted perceptron.

124



Collins, M., & Singer, Y. (1999, June). Unsupervised models for name entity classification.

Dagan, I., & Itai, A. (1990). Automatic acquisition of constraints for the resolution of anaphora
references and syntactic ambiguities. In Proceedings of International Conference on Com-
putational Linguistics, Volume 3 (pp. 330–332).

Dagan, I., Karov, Y., & Roth, D. (August 1997). Mistake-driven learning in text categoriza-
tion. In EMNLP-97, The Second Conference on Empirical Methods in Natural Language
Processing (pp. 55–63).

Dagan, I., Lee, L., & Pereira, F. (1999). Similarity-based models of word cooccurrence proba-
bilities. Machine Learning, 34(1-3), 43–69.

Dasu, T., & Johnson, T. (2003). Exploratory data mining and data cleaning. John Wiley and
Sons.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(B), 1–38.

Doan, A., Lu, Y., Lee, Y., & Han, J. (2003). Profile-based object matching for information
integration. IEEE Intelligent Systems, 18(5), 54–59.

Dong, X., Halevy, A., Madhavan, J., & Nemes, S. (2005). Reference reconciliation in complex
information spaces.

Durban, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis -
probabilistic models of proteins and nucleic acids. Cambridge University Press.

Even-Zohar, Y., & Roth, D. (2001). A sequential model for multi-class classification. In
EMNLP-2001, the SIGDAT Conference on Empirical Methods in Natural Language Pro-
cessing (pp. 10–19).

Florian, R., Hassan, H., Ittycheriah, A., Jing, H., Kambhatla, N., Luo, X., Nicolov, N., &
Roukos, S. (2004). A statistical model for multilingual entity detection and tracking.

Freitag, D. (1998). Multistrategy learning for information extraction.

Freitag, D. (2000). Machine learning for information extraction in informal domains. Machine
Learning Journal, 39(2/3), 169–202.

Freund, Y., & Schapire, R. (1998). Large margin classification using the Perceptron algorithm.

Frey, B. J., & Jojic, N. (2003). Transformation-invariant clustering using the EM algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1).

Friedman, N. (1998). The Bayesian structural EM algorithm.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational
models.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer Journal, 35(3),
243–255.

Fuhr, N. (2001, May 31 – June 1). Language models and uncertain inference in information
retrieval. Extended abstract.

125



Galhardas, H., Florescu, D., Shasha, D., & Simon, E. (2000). An extensible framework for data
cleaning.

Ganti, V., Chaudhuri, S., & Motwani, R. (2005). Robust identification of fuzzy duplicates.

Ge, N., Hale, J., & Charniak, E. (1998). A statistical approach to anaphora resolution. In the
Sixth Workshop on Very Large Corpora (COLING-ACL 98) (pp. 161–170).

George, K. (2003). Cluto: A clustering toolkit (Technical Report). Dept of Computer Science,
University of Minnesota.

Golding, A. R., & Roth, D. (1999). A Winnow based approach to context-sensitive spelling
correction. Machine Learning, 34(1-3), 107–130. Special Issue on Machine Learning and
Natural Language.

Gooi, C., & Allan, J. (2004). Cross-document coreference on a large scale corpus.

Gravano, L., Ipeirotis, P., Koudas, N., & Srivastava, D. (2003). Text join for data cleansing and
integration in an rdbms.

Hernandez, M., & Stolfo, S. (1995a). The merge/purge problem for large databases.

Hernandez, M., & Stolfo, S. (1995b). The merge/purge problem for large databases. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (pp. 127–138).

Hindle, D. (1990). Noun classification from predicate-argument structures. In Proceedings of
the Annual Meeting of The Association for Computational Linguistics (pp. 268–275).

Hirschman, L., Light, M., Breck, E., & Burger, J. (1999). Deep read: A reading comprehension
system.

Hovy, E., Gerber, L., Hermjakob, U., Lin, C., & Ravichandran, D. (2001). Toward semantics-
based answer pinpointing.

J. Hartigan, M. W. (1979). A k-means clustering algorithm. Applied Statistics, 28(1).

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing
Surveys, 31(3).

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985
census of tampa, florida. Journal of the American Statistical Association, 84, 414C420.

Jaro, M. A. (1995). Probabilistic linkage of large public health data files. Statistics in
Medicine, 14, 491C498.

Jin, L., Li, C., & Mehrotra, S. (2003). Efficient record linkage in large data sets.

Kamvar, S., Klein, D., & Manning, C. (2002). Interpreting and extending classical agglomera-
tive clustering algorithms using a model-based approach.

Kehler, A. (2002). Coherence, reference, and the theory of grammar. CSLI Publications.

Khardon, R., Roth, D., & Valiant, L. G. (1999). Relational learning for NLP using linear thresh-
old elements. In Proceedings of the International Joint Conference on Artificial Intelligence
(pp. 911–917).

Kobayashi, M., & Takeda, K. (2000). Information retrieval on the web. ACM Computing Sur-
veys, 32(2), 144–173.

126



Koudas, N., Marathe, A., & Srivastava, D. (2004). Flexible string matching against large
databases in practice.

Kupiec, J. (1992). Robust part-of-speech tagging using a hidden Markov model. Computer
Speech and Language, 6, 225–242.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data.

Lafferty, J., & Zhai, C. (2001, Sept). Document language models, query models, and risk mini-
mization for information retrieval. In Proceedings of SIGIR’2001 (pp. 111–119).

Lafferty, J., & Zhai, C. (2002). Probabilistic relevance models based on document and query
generation.

Lee, L. (1997). Similarity-based approaches to natural language processing. Doctoral disserta-
tion, Harvard University, Cambridge, MA.

Lee, L. (1999). Measure of distributional similarity.

Li, X., Morie, P., & Roth, D. (2004a). Identification and tracing of ambiguous names: Discrim-
inative and generative approaches. In Proceedings of The National Conference on Artificial
Intelligence (pp. 419–424).

Li, X., Morie, P., & Roth, D. (2004b). Robust reading: Identification and tracing of ambigu-
ous names. In Proceedings of Human Language Technology conference / North American
chapter of the Association for Computational Linguistics annual meeting (pp. 17–24).

Li, X., & Roth, D. (2001). Exploring evidence for shallow parsing.

Li, X., & Roth, D. (2002). Learning question classifiers. In Proceedings of International Con-
ference on Computational Linguistics (pp. 556–562).

Light, M., Mann, G., Riloff, E., & Breck, E. (2001). Analyses for Elucidating Current Question
Answering Technology. Journal for Natural Language Engineering. forthcoming.

Littlestone, N. (1989, March). Mistake bounds and logarithmic linear-threshold learning algo-
rithms. Doctoral dissertation, U. C. Santa Cruz.

Mann, G., & Yarowsky, D. (2003). Unsupervised personal name disambiguation.

McCallum, A., Nigam, K., & Ungar, L. (2000). Efficient clustering of high-dimensional data
sets with application to reference matching.

McCallum, A., & Wellner, B. (2003). Toward conditional models of identity uncertainty with
application to proper noun coreference.

McCarthy, J., & Lehnert, W. (1995). Using decision trees for coreference resolution. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (pp. 1050–1055).

McLachlan, G., & Krishnan, T. (1997). The EM algorithm and extensions. Wiley.

Mitchell, T. M. (1997). Machine learning. New York, NY: McGraw-Hill.

Mochihashi, D., Kikui, G., & Kita, K. (2004). Learning nonstructural distance metric by mini-
mum cluster distortions.

127



Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Lacatusu, F., Novischi, A., Badulescu,
A., & Bolohan, O. (2002). Lcc tools for question answering. In Voorhees, E. (Ed.), the 11th
Text Retrieval Conference, NIST (pp. 144–154).

Moldovan, D., Pasca, M., Harabagiu, S., & Surdeanu, M. (2002). Performance issues and error
analysis in an open-domain question answering system. In the 40th Annual Meeting of the
Association for Computational Linguistics (pp. 33–40).

Monge, A., & Elkan, C. (1996a). The field-matching problem: algorithm and applications.

Monge, A., & Elkan, C. (1996b). The field matching problem: Algorithms and applications.

MUC-6 (1995). Proceedings of the sixth message understanding conference (muc-6). Morgan
Kaufmann, San Francisco, CA.

MUC-7 (1999). the seventh message understanding conference (muc-7). Morgan Kaufmann,
San Francisco, CA.

Munoz, M., Punyakanok, V., Roth, D., & Zimak, D. (1999, June). A learning approach to
shallow parsing.

Ng, V., & Cardie, C. (2003). Improving machine learning approaches to coreference resolution.

Pantel, P., & Lin, D. (2002). Discovering word senses from text.

Parag, & Domingos, P. (2004). Multi-relational record linkage.

Pasula, H., Marthi, B., Milch, B., Russell, S., & Shpitser, I. (2002). Identity uncertainty and
citation matching.

Pasula, H., Marthi, B., Milch, B., Russell, S., & Shpitser, I. (2003). Identity uncertainty and
citation matching.

Punyakanok, V., & Roth, D. (2001). The use of classifiers in sequential inference. In NIPS-
13; The 2000 Conference on Advances in Neural Information Processing Systems (pp. 995–
1001). MIT Press.

Rahm, E., & Bernstein, P. (2001). On matching schemas automatically. VLDB Journal, 10(4).

Rahm, E., & Do, H. (2000). Data cleaning: Problems and current approaches. IEEE Data Eng.
Bull., 23(4), 3–13.

Raman, V., & Hellerstein, J. (2001). Potter’s wheel: An interactive data cleaning system. In The
VLDB Journal (pp. 381–390).

Ravikumar, P., & Cohen, W. (2004). A hierarchical graphical model for record linkage.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(5).

Roth, D. (1998). Learning to resolve natural language ambiguities: A unified approach. In Pro-
ceedings of The National Conference on Artificial Intelligence (pp. 806–813).

Roth, D. (1999). Learning in natural language. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (pp. 898–904).

128



Roth, D., Cumby, C., Li, X., Morie, P., Nagarajan, R., Rizzolo, N., Small, K., & Yih, W.
(2002). Question answering via enhanced understanding of questions. In Proceedings of Text
REtrieval Conference (pp. 592–601).

Roth, D., Yang, M.-H., & Ahuja, N. (2000). Learning to recognize objects. In CVPR’00, The
IEEE Conference on Computer Vision and Pattern Recognition (pp. 724–731). Acceptance
Rate: 200/466 (43%).

Roth, D., Yang, M.-H., & Ahuja, N. (2002). Learning to recognize objects. Neural Computa-
tion, 14(5), 1071–1104.

Roth, D., & Yih, W. (2001). Relational learning via propositional algorithms: An information
extraction case study. In Proceedings of the International Joint Conference on Artificial In-
telligence (pp. 1257–1263).

Salton, G. (1988). Syntactic approaches to automatic book indexing. In Proceedings of the
Annual Meeting of The Association for Computational Linguistics (pp. 204–210).

Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. McGraw-Hill.

Sang, E., & Meulder, F. (2003). Introduction to the conll-2003 shared task: Language-
independent named entity recognition.

Sarawagi, S., & Bhamidipaty, A. (2002). Interactive deduplication using active learning.

Sarawagi, S., & Cohen, W. W. (2004). Exploiting dictionaries in named entity extraction: Com-
bining semi-markov extraction processes and data integration methods.

Schultz, M., & Joachims, T. (2004). Learning a distance metric from relative comparisons.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8).

Soon, W., Ng, H., & Lim, D. (2001). A machine learning approach to coreference resolution of
noun phrases. Computational Linguistics (Special Issue on Computational Anaphora Reso-
lution), 27, 521–544.

Tejada, S., Knoblock, C., & Minton, S. (2002). Learning domain-independent string transfor-
mation weights for high accuracy object identification.

Tsuda, K., Akaho, S., & Asai, K. (2003). The EM algorithm for kernel matrix completion with
auxiliary data. Journal of Machine Learning Research, 4(May).

van Rijsbergen, C. J. (1979). Information retrieval. Butterworths.

Vilalta, R., & Rish, I. (2003). A decomposition of classes via clustering to explain and improve
naive bayes.

Voorhees, E. (2002). Overview of the TREC-2002 question answering track. In Proceedings of
Text REtrieval Conference (pp. 115–123).

Weeds, J., Weir, D., & McCarthy, D. (2004). Characterising measures of lexical distributional
similarity.

Weis, M., & Naumann, F. (2005). Dogmatix tracks down duplicates in xml.

129



Wellner, B., McCallum, A., Peng, F., & Hay, M. (2004). An integrated, conditional model of
information extraction and coreference with application to citation matching.

Winkler, W. E. (1999). The state of record linkage and current research problems. Statistics of
Income Division, Internal Revenue Service Publication R99/04.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2002). Distance metric learning, with
application to clustering with side-information.

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Infor-
mation Retrieval, 1(1/2), 69–90.

Yih, W., & Roth, D. (2002). Probabilistic reasoning for entity and relation recognition.

Zhang, T., & Johnson, D. (2003). A robust risk minimization based named entity recognition
system. In Daelemans, W., & Osborne, M. (Eds.), CoNLL-2003 (pp. 204–207). Edmonton,
Canada.

Zhang, T., & Oles, F. J. (2001). Text categorization based on regularized linear classification
methods. Information Retrieval, 4, 5–31.

130



Publishing Notes

Most of the content in this dissertation is based on the following papers I have published during

Ph.D. study.

Journal Papers

1. Xin Li, Dan Roth. Learning Question Classifiers: The Role of Semantic Information. To

appear in Journal of Natural Language Engineering, volume 11(4), Dec. 2005.

2. Xin Li, Paul Morie, Dan Roth. Semantic Integration in Text: From Ambiguous Names to

Identifiable Entities. In AI Magazine, Vol. 26(1), 2005. Pages 45-58. Invited paper.

Conference Papers

3. Xin Li, Dan Roth. Discriminative Training of Clustering Functions: Theory and Exper-

iments with Entity Identification. In Proceedings the 9th Conference on Computational Natural

Language Learning (CoNLL 2005, acceptance rate: 27%).

4. Warren Shen, Xin Li and Anhai Doan. Constraint-Based Entity Matching. In Proceedings

of the 21th National Conference on Artificial Intelligence (AAAI 2005, acceptance rate: 18%).

5. Xin Li, Paul Morie, Dan Roth. Toward Robust Reading: Discriminative and Generative

Approaches. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI

2004, acceptance rate: 27%).

6. Xin Li, Paul Morie, Dan Roth. Robust Reading: Identification and Tracing of Ambiguous

Names. In Proceedings of the 3rd Annual Conference of North American Chapter of Association

131



of Computational Linguistics (HLT-NAACL 2004, acceptance rate: 26%).

7. Xin Li, Dan Roth, Kevin Small. The Role of Semantic Information in Learning Question

Classifiers. In Proceedings of the 1st International Joint Conference on Natural Language Process-

ing (IJCNLP 2004, acceptance rate: 31%).

8. Xin Li, Dan Roth, Yuancheng Tu. PhraseNet: Towads Context Sensitive Lexical Seman-

tics. In Proceedings of the 7th Conference on Computational Natural Language Learning (CoNLL

2003).

9. Xin Li, Dan Roth. Learning Question Classifiers. In Proceedings of the 19th International

Conference on Computational Linguistics (COLING 2002, acceptance rate: 39%).

10. Xin Li, Dan Roth. Exploring Evidence for Shallow Parsing. In Proceedings of the 5th

Conference on Computational Natural Language Learning (CoNLL 2001, acceptance rate: 30%).

Workshop and Technical Reports

11. Xin Li, Dan Roth. Discriminative Training of Clustering Functions: Theory and Exper-

iments with Entity Identification. The Second Midwest Computational Linguistics Colloquium

(MCLC 2005).

12. Xin Li, Dan Roth. Supervised Discriminative Clustering. In ”Learning with Structured

Outputs” Workshop, Eighteenth Annual Conference on Neural Information Processing Systems

(NIPS 2004).

13. Xin Li, Dan Roth. A Unified Framework to Integrate Supervision and Metric Learning into

Clustering. UIUC Technical Report UIUCDCS-R-2004-2488, Dec. 2004.

14. Xin Li, Paul Morie, Dan Roth. Robust Reading of Ambiguous Writing. UIUC Technical

Report UIUCDCS-R-2003-2371, Dec. 2003.

15. Dan Roth, Chad Cumby, Xin Li, Paul Morie, Ramya Nagarajan, Nick Rizzolo, Kevin

Small, Wen-tau Yih. Question Answering via Enhanced Understanding of Questions. In Proceed-

ings of the 11th Text Retrieval Conference (TREC 2002).

16. D. Roth, G.K. Kao, Xin Li, R. Nagarajan, V. Punyakanok, N. Rizzolo, W-t Yih, C. Oves-

132



dotter Alm, L. Gerard Moran. Learning Components for A Question-Answering System. In Pro-

ceedings of the 10th Text Retrieval Conference (TREC 2001).

133



Vita

Xin Li was born in Wuhan, China – where the grand Yangtsze River runs across, on May 26,

1975. He grew up by the river and stayed in this city, until he got his Bachelor degree in Computer

Science from Wuhan University in 1997. After that, he moved to Beijing, China, to pursue his

master study in Software Engineering in Peking University. Again in 2000, he was relocated to

Champaign, Illinois and started his doctoral research on artificial intelligence and natural language

processing. Following five years of hard working in this area, he will receive his Ph.D and continue

his research work in Yahoo! Search.

134


