78,341 research outputs found

    Learning the Morphological Diversity

    Get PDF
    International audienceThis article proposes a new method for image separation into a linear combination of morphological components. Sparsity in global dictionaries is used to extract the cartoon and oscillating content of the image. Complicated texture patterns are extracted by learning adapted local dictionaries that sparsify patches in the image. These global and local sparsity priors together with the data fidelity define a non-convex energy and the separation is obtained as a stationary point of this energy. This variational optimization is extended to solve more general inverse problems such as inpainting. A new adaptive morphological component analysis algorithm is derived to find a stationary point of the energy. Using adapted dictionaries learned from data allows to circumvent some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial to capture complex texture patterns

    Vector ordering and multispectral morphological image processing

    No full text
    International audienceThis chapter illustrates the suitability of recent multivariate ordering approaches to morphological analysis of colour and multispectral images working on their vector representation. On the one hand, supervised ordering renders machine learning no-tions and image processing techniques, through a learning stage to provide a total ordering in the colour/multispectral vector space. On the other hand, anomaly-based ordering, automatically detects spectral diversity over a majority background, al-lowing an adaptive processing of salient parts of a colour/multispectral image. These two multivariate ordering paradigms allow the definition of morphological operators for multivariate images, from algebraic dilation and erosion to more advanced techniques as morphological simplification, decomposition and segmentation. A number of applications are reviewed and implementation issues are discussed in detail

    Interoceptive robustness through environment-mediated morphological development

    Full text link
    Typically, AI researchers and roboticists try to realize intelligent behavior in machines by tuning parameters of a predefined structure (body plan and/or neural network architecture) using evolutionary or learning algorithms. Another but not unrelated longstanding property of these systems is their brittleness to slight aberrations, as highlighted by the growing deep learning literature on adversarial examples. Here we show robustness can be achieved by evolving the geometry of soft robots, their control systems, and how their material properties develop in response to one particular interoceptive stimulus (engineering stress) during their lifetimes. By doing so we realized robots that were equally fit but more robust to extreme material defects (such as might occur during fabrication or by damage thereafter) than robots that did not develop during their lifetimes, or developed in response to a different interoceptive stimulus (pressure). This suggests that the interplay between changes in the containing systems of agents (body plan and/or neural architecture) at different temporal scales (evolutionary and developmental) along different modalities (geometry, material properties, synaptic weights) and in response to different signals (interoceptive and external perception) all dictate those agents' abilities to evolve or learn capable and robust strategies

    On the taxonomic resolution of pollen and spore records of Earth’s vegetation

    Get PDF
    Premise of research. Pollen and spores (sporomorphs) are a valuable record of plant life and have provided information on subjects ranging from the nature and timing of evolutionary events to the relationship between vegetation and climate. However, sporomorphs can be morphologically similar at the species, genus, or family level. Studies of extinct plant groups in pre-Quaternary time often include dispersed sporomorph taxa whose parent plant is known only to the class level. Consequently, sporomorph records of vegetation suffer from limited taxonomic resolution and typically record information about plant life at a taxonomic rank above species.Methodology. In this article, we review the causes of low taxonomic resolution, highlight examples where this has hampered the study of vegetation, and discuss the strategies researchers have developed to overcome the low taxonomic resolution of the sporomorph record. Based on this review, we offer our views on how greater taxonomic precision might be attained in future work. Pivotal results. Low taxonomic resolution results from a combination of several factors, including inadequate reference collections, the absence of sporomorphs in situ in fossilized reproductive structures, and damage following fossilization. A primary cause is the difficulty of accurately describing the very small morphological differences between species using descriptive terminology, which results in palynologists classifying sporomorphs conservatively at the genus or family level to ensure that classifications are reproducible between samples and between researchers. Conclusions. In our view, the most promising approach to the problem of low taxonomic resolution is a combination of high-resolution imaging and computational image analysis. In particular, we encourage palynologists to explore the utility of microscopy techniques that aim to recover morphological information from below the diffraction limit of light and to employ computational image analyses to consistently quantify small morphological differences between species

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Sparsity and adaptivity for the blind separation of partially correlated sources

    Get PDF
    Blind source separation (BSS) is a very popular technique to analyze multichannel data. In this context, the data are modeled as the linear combination of sources to be retrieved. For that purpose, standard BSS methods all rely on some discrimination principle, whether it is statistical independence or morphological diversity, to distinguish between the sources. However, dealing with real-world data reveals that such assumptions are rarely valid in practice: the signals of interest are more likely partially correlated, which generally hampers the performances of standard BSS methods. In this article, we introduce a novel sparsity-enforcing BSS method coined Adaptive Morphological Component Analysis (AMCA), which is designed to retrieve sparse and partially correlated sources. More precisely, it makes profit of an adaptive re-weighting scheme to favor/penalize samples based on their level of correlation. Extensive numerical experiments have been carried out which show that the proposed method is robust to the partial correlation of sources while standard BSS techniques fail. The AMCA algorithm is evaluated in the field of astrophysics for the separation of physical components from microwave data.Comment: submitted to IEEE Transactions on signal processin

    Linking adult second language learning and diachronic change:a cautionary note

    Get PDF
    It has been suggested that the morphological complexity of a language is negatively correlated with the size of its population of speakers. This relationship may be driven by the proportion of non-native speakers, among other things, and reflects adaptations to learning constraints imposed by adult language learners. Here we sound a note of caution with respect to these claims by arguing that (a) morphological complexity is defined in somewhat contradictory ways and hence not straightforward to measure, and (b) there is insufficient evidence to suggest that children’s cognitive limitations support mechanisms beneficial for learning of complex morphology relative to adults. We suggest that considering the informational value of morphological cues may be a better way to capture learnability of morphology. To settle the issue of how age related constraints on learning might impact language change, more cross-linguistic studies comparing learning trajectories of different second languages and laboratory experiments examining language transmission in children and adults are needed

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy

    Scalable Co-Optimization of Morphology and Control in Embodied Machines

    Full text link
    Evolution sculpts both the body plans and nervous systems of agents together over time. In contrast, in AI and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behavior arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioral performance. Here, we further examine this hypothesis and demonstrate a technique for "morphological innovation protection", which temporarily reduces selection pressure on recently morphologically-changed individuals, thus enabling evolution some time to "readapt" to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioral training -- while simultaneously providing a testbed to investigate the theory of embodied cognition
    corecore