2,692 research outputs found

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    Electricity and Fuel Consumption in a Lean Energy Supply Chain

    Get PDF
    Human activities are the main sources of environmental pollution. Awareness about this fact, motivated us to make changes in different paradigms of our lives including industrial or personal activities. Environmental activities assumed to have conflict with financial objectives, in this study we try to align business requirements with environmental concerns. Among all human activities, generating energy has the most negative impact on the environment. The major part of the generated energy will be consumed in transportation and industrial demand which makes them the most effective targets for the reduction of greenhouse gas emission. In a lean environment, small batch sizes increase the number of set-ups and consequently, energy consumption in manufacturing. On the other hand, small batch sizes increase the delivery rates and complexity of transportation. Therefore, the focus of this study will be on reducing the environmental impact of human activities in transportation and industrial loads as a part of lean supply chain. The focus in transportation will be on trucking with gasoline or diesel as the source of energy. In industrial loads, the emerging opportunities after deregulation of the electricity market and incentive programs toward cleaner productions encouraged us to focus on electrical demand in the industry. Despite motivations for reducing emissions in supply chain management, lack of knowledge and expertise in measuring, modeling and optimizing energy consumption is a barrier in production section. In this dissertation, a framework of a power measurement and simulation will be introduced. In the next section, a production planning model incorporating energy will be developed considering different states of electricity consumption (idle, startup, etc.). As the next segment of the supply chain, a method for optimal carrier selection and routing will be developed and tested based on real world data. This model can use the advantage of geographically distributed carriers while utilizing private fleet at an acceptable level. Based on the insight developed in transportation and industrial loads, an experience based performance measure will be developed to quantify the performance and associated energy consumption in the supply chain

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Green supply chain quantitative models for sustainable inventory management: A review

    Full text link
    [EN] This paper provides a systematic and up-to-date review and classification of 91 studies on quantitative methods of green supply chains for sustainable inventory management. It particularly identifies the main study areas, findings and quantitative models by setting a point for future research opportunities in sustainable inventory management. It seeks to review the quantitative methods that can better contribute to deal with the environmental impact challenge. More specifically, it focuses on different supply chain designs (green supply chain, sustainable supply chain, reverse logistics, closed-loop supply chain) in a broader application context. It also identifies the most important variables and parameters in inventory modelling from a sustainable perspective. The paper also includes a comparative analysis of the different mathematical programming, simulation and statistical models, and their solution approach, with exact methods, simulation, heuristic or meta-heuristic solution algorithms, the last of which indicate the increasing attention paid by researchers in recent years. The main findings recognise mixed integer linear programming models supported by heuristic and metaheuristic algorithms as the most widely used modelling approach. Minimisation of costs and greenhouse gas emissions are the main objectives of the reviewed approaches, while social aspects are hardly addressed. The main contemplated inventory management parameters are holding costs, quantity to order, safety stock and backorders. Demand is the most frequently shared information. Finally, tactical decisions, as opposed to strategical and operational decisions, are the main ones.The research leading to these results received funding from the Grant RTI2018-101344-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe". It was also funded by the National Agency for Research and Development (ANID) / Scholarship Program/Doctorado Becas en el Extranjero/2020 72210174.Becerra, P.; Mula, J.; Sanchis, R. (2021). Green supply chain quantitative models for sustainable inventory management: A review. Journal of Cleaner Production. 328:1-16. https://doi.org/10.1016/j.jclepro.2021.129544S11632

    EA-BJ-03

    Get PDF

    Human Aspect on Chain of Custody (CoC) System Performance

    Get PDF
    The tropical forests cover 24% of tropical land area. They are the most productive terrestrial ecosystems on earth with high priorities for biodiversity conservation. These forests store a substantial amount of carbon in biomass and soil, and they also regulate the transfer of carbon into the atmosphere as carbon dioxide (CO2). Indonesia is having the third tropical forest area in the world after Brazil and Congo. Over 50 years forest has been felled both legally as well as illegally. High rate of forest degradation resulted from unsustainable forest management, rampant illegal logging, forest area encroachment, conversion and natural disaster. All urges rapid improvement of management system of Indonesia’s forest resources (Holmes, 2002). Forest certification is one tool that can support the achievement of sustainable forest management goal. Under current operation of join certification protocol between the Forest Stewardship Council (FSC) and the Indonesian Ecolabelling Institute (LEI) in Indonesia, forest management units must be able to show the required performance indicated in LEI criteria and indicator as well as FSC principles and criteria to attain certification of their products. The gap between current practices and performance required by forest certifications schemes is still enormous. The performance of forest certification system from LEI is determined very much by the human that is involved in the process of planning and operation. The name of certification system is chain of custody (CoC) certification. CoC operation involves activities such as tracing raw material from the forest to the factory, through shipping and manufacturing, to the final end product. In all of the above processes, the roles of human are critical, although the specific roles played from one process to another are different. In this paper we present an identification of human aspect and other factors that predominantly affect CoC system performance

    Multiproduct supplye chain analysis through by simulation with kanban and EOQ system

    Get PDF
    This work reviews lean literature on the supply chain focused on the operational approach, from the lean management to the Kanban system. But, the main issue of this work is to analyze the behavior of a lean supply chain using a Kanban system managing the planning in two different ways. The difference between both is related to the production order or sequence to follow: the product with fewer inventories in stock (the most critical to run out) or the one which requires less set-up time to optimize unproductive times. The study the behavior of the supply chain, it would be done through simulation with many different scenarios: 5 different demands, each one with two coefficients of variance, 4 different batch sizes, 4 different compositions of production and process saturation and ensuring different service levels between 92% and 98%. To compare these supply chain models, an approach of the supply chain using the EOQ (Economic Order Quantity) system will be also simulated in the same conditions but with one batch size, the most economic one
    corecore