1,302 research outputs found

    Adaptive swarm optimisation assisted surrogate model for pipeline leak detection and characterisation.

    Get PDF
    Pipelines are often subject to leakage due to ageing, corrosion and weld defects. It is difficult to avoid pipeline leakage as the sources of leaks are diverse. Various pipeline leakage detection methods, including fibre optic, pressure point analysis and numerical modelling, have been proposed during the last decades. One major issue of these methods is distinguishing the leak signal without giving false alarms. Considering that the data obtained by these traditional methods are digital in nature, the machine learning model has been adopted to improve the accuracy of pipeline leakage detection. However, most of these methods rely on a large training dataset for accurate training models. It is difficult to obtain experimental data for accurate model training. Some of the reasons include the huge cost of an experimental setup for data collection to cover all possible scenarios, poor accessibility to the remote pipeline, and labour-intensive experiments. Moreover, datasets constructed from data acquired in laboratory or field tests are usually imbalanced, as leakage data samples are generated from artificial leaks. Computational fluid dynamics (CFD) offers the benefits of providing detailed and accurate pipeline leakage modelling, which may be difficult to obtain experimentally or with the aid of analytical approach. However, CFD simulation is typically time-consuming and computationally expensive, limiting its pertinence in real-time applications. In order to alleviate the high computational cost of CFD modelling, this study proposed a novel data sampling optimisation algorithm, called Adaptive Particle Swarm Optimisation Assisted Surrogate Model (PSOASM), to systematically select simulation scenarios for simulation in an adaptive and optimised manner. The algorithm was designed to place a new sample in a poorly sampled region or regions in parameter space of parametrised leakage scenarios, which the uniform sampling methods may easily miss. This was achieved using two criteria: population density of the training dataset and model prediction fitness value. The model prediction fitness value was used to enhance the global exploration capability of the surrogate model, while the population density of training data samples is beneficial to the local accuracy of the surrogate model. The proposed PSOASM was compared with four conventional sequential sampling approaches and tested on six commonly used benchmark functions in the literature. Different machine learning algorithms are explored with the developed model. The effect of the initial sample size on surrogate model performance was evaluated. Next, pipeline leakage detection analysis - with much emphasis on a multiphase flow system - was investigated in order to find the flow field parameters that provide pertinent indicators in pipeline leakage detection and characterisation. Plausible leak scenarios which may occur in the field were performed for the gas-liquid pipeline using a three-dimensional RANS CFD model. The perturbation of the pertinent flow field indicators for different leak scenarios is reported, which is expected to help in improving the understanding of multiphase flow behaviour induced by leaks. The results of the simulations were validated against the latest experimental and numerical data reported in the literature. The proposed surrogate model was later applied to pipeline leak detection and characterisation. The CFD modelling results showed that fluid flow parameters are pertinent indicators in pipeline leak detection. It was observed that upstream pipeline pressure could serve as a critical indicator for detecting leakage, even if the leak size is small. In contrast, the downstream flow rate is a dominant leakage indicator if the flow rate monitoring is chosen for leak detection. The results also reveal that when two leaks of different sizes co-occur in a single pipe, detecting the small leak becomes difficult if its size is below 25% of the large leak size. However, in the event of a double leak with equal dimensions, the leak closer to the pipe upstream is easier to detect. The results from all the analyses demonstrate the PSOASM algorithm's superiority over the well-known sequential sampling schemes employed for evaluation. The test results show that the PSOASM algorithm can be applied for pipeline leak detection with limited training datasets and provides a general framework for improving computational efficiency using adaptive surrogate modelling in various real-life applications

    Detection and Localization of Leaks in Water Networks

    Get PDF
    Today, 844 million humans around the world have no access to safe drinking water. Furthermore, every 90 seconds, one child dies from water-related illnesses. Major cities lose 15% - 50% of their water and, in some cases, losses may reach up to 70%, mostly due to leaks. Therefore, it is paramount to preserve water as an invaluable resource through water networks, particularly in large cities in which leak repair may cause disruption. Municipalities usually tackle leak problems using various detection systems and technologies, often long after leaks occur; however, such efforts are not enough to detect leaks at early stages. Therefore, the main objectives of the present research are to develop and validate a leak detection system and to optimize leak repair prioritization. The development of the leak detection models goes through several phases: (1) technology and device selection, (2) experimental work, (3) signal analysis, (4) selection of parameters, (5) machine learning model development and (6) validation of developed models. To detect leaks, vibration signals are collected through a variety of controlled experiments on PVC and ductile iron pipelines using wireless accelerometers, i.e., micro-electronic mechanical sensors (MEMS). The signals are analyzed to pinpoint leaks in water pipelines. Similarly, acoustic signals are collected from a pilot project in the city of Montreal, using noise loggers as another detection technology. The collected signals are also analyzed to detect and pinpoint the leaks. The leak detection system has presented promising results using both technologies. The developed MEMS model is capable of accurately pinpointing leaks within 12 centimeters from the exact location. Comparatively, for noise loggers, the developed model can detect the exact leak location within a 25-cm radius for an actual leak. The leak repair prioritization model uses two optimization techniques: (1) a well-known genetic algorithm and (2) a newly innovative Lazy Serpent Algorithm that is developed in the present research. The Lazy Serpent Algorithm has proved capable of surpassing the genetic algorithm in determining a more optimal schedule using much less computation time. The developed research proves that automated real-time leak detection is possible and can help governments save water resource and funds. The developed research proves the viability of accelerometers as a standalone leak detection technology and opens the door for further research and experimentations. The leak detection system model helps municipalities and water resource agencies rapidly detect leaks when they occur in real-time. The developed pinpointing models facilitate the leak repair process by precisely determine the leak location where the repair works should be conducted. The Lazy Serpent Algorithm helps municipalities better distribute their resources to maximize their desired benefits

    A NEW SMART PROCESS FOR PIPELINE INTEGRITY MONITORING

    Get PDF
    Most of the prospecting areas used for hydrocarbon exploitation in the Niger Delta were originally virgin lands but has suffered urban encroachment such that any hydrocarbon loss of containment would lead to pollution, loss of lives, major fires, and loss of major assets. Pipeline loss of containment during petroleum evacuation were mainly due to corrosion but around the year 2000, pipeline vandalism which started as a way of protesting lack of development projects by host communities, rapidly grew into an industry for crude theft through hot tapping. The cost of crude oil theft is estimated at £1bln per month and it is reported that some 1000 people have died due to pipeline explosion in Nigeria within the period 2004 to 2014. Several unsuccessful initiatives like amnesty and employment of repentant oil thieves by government; burying originally surface pipelines, and regular helicopter surveillance overflies along pipeline routes were attempted to arrest the pipeline vandalism environment. This research is a new initiative in the fight against crude oil theft through a technical process that provide an early information to the operator of the position and rate of crude oil theft such that the situation could be appropriately arrested, thereby creating revenue security, preventing loss of containment fires, and potential deaths that could have arisen if there is explosion due to loss of containment. Two analytical methods, which uses the pipeline pressure gradient as a basis were independently verified in leak point identification and leak rate estimation in the proposed smart process for pipeline integrity monitoring. The leak point identification is based on pressure gradient relaxation while the leak rate estimation is based on enclosed angle vector relaxation. A near perfect (100%) accuracy in leak point determination and a 93.44% average leak rate prediction accuracy was demonstrated based on the proposed smart process for pipeline integrity monitoring. Some of the advantages of this new process is simplicity, retrofit ability and no demand for skills reassessment for operators as it fits into normal operations. The enclosed angle vector relaxation concept, which is one of the main contributions of this research: is a new knowledge addition to Physis and Fluid Mechanics; a discovery and a process invention

    Active Acoustics for Monitoring Unreported Leaks in Water Distribution Networks

    Get PDF
    Water distribution networks (WDNs) are critical infrastructure elements conveying water through thousands of kilometers of pipes. Pipes - one of the most critical elements in such systems - are subjected to various structural and environmental degradation mechanisms, eventually leading to leaks and breaks. Timely detection and localization of such leaks and bursts is crucial to managing the loss of this valuable resource, maintaining hydraulic capacity, and mitigating serious health risks which can potentially arise from such events. Much of the literature on leak detection has focused on passive methods; recording and analyzing acoustic signatures produced by leak(s) from passive piezo acoustic or pressure devices. Passive acoustic methods have received disproportionate attention both in terms of research as well as practical implementation for leak (or, bursts) detection and localization. Despite their popularity, passive methods have shown not to be reliable in detecting and localizing small leaks in full-scale systems, primarily due to acoustic signal attenuation and poor signal-to-noise ratios, especially in plastic materials. In this dissertation, an active method is explored, which uses an acoustic source to generate acoustic signatures inside a pipe network. A combination of active source and hydrophone receivers is demonstrated in this thesis as a viable method for monitoring leaks in water distribution pipes. The dissertation presents experimental results from two layouts of pipes, one a simple straight section and another a more complex network with tees and bends, with an acoustic source at one end, and hydrophones at strategic locations along the pipe. For leak detection, the measured reflected and transmitted energy using hydrophone receivers is used to determine the presence of a leak. To this effect, new leak indicators such as power reflection and transmission coefficients, power spectral density, reflected spectral density, and transmission loss are developed. Experimental results show that the method developed in this thesis can detect leaks robustly and has significant potential for use in pressurized water distribution systems. This thesis also presents a new framework for active method-based localization. Starting with a simple straight section for a proof of concept study and moving to lab-based WDNs, several methods are explored that simultaneously detect and locate a leak. The primary difficulty in detecting and estimating the location of a leak is overcome through a statistical treatment of time delays associated with multiple acoustic paths in a reverberant environment and estimated using two approaches: (i) classical signal decomposition technique (Prony's / matrix pencil method (MPM)) and (ii) a clustering pre-processing approach called mean-shift clustering. The former works on the cross-correlation of acoustic data recorded at two locations, while the latter operates on acoustic sensor data from a single location. Both methods are tested and validated using experimental data obtained from a laboratory testbed and are found to detect and localize leaks in plastic pipes effectively. Finally, time delay estimates obtained from Prony's / MPM are used in conjunction with the multilateration (MLAT) technique and extended Kalman filter (EKF) for localization in more complex WDNs. This study shows that the proposed active technique can detect and reliably localize leaks and has the potential to be applied to complex field-scale WDNs

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    An evaluation of the structural integrity of HSLA steels exposed in simulated flue-gases under dynamic conditions for anthropogenic CO2 transport.

    Get PDF
    Carbon capture and storage (CCTS) is a transitional technology offering a nearterm method of mitigating climate change. Pipelines are considered to be the most suitable systems for CCTS; however, structural integrity of pipeline has to be guaranteed in order for this technology to become a practical technical solution. The investigation detailed here is based on a systematic experimental approach to investigate the structural integrity of API X100, X60 and X70 steels exposed in simulated flue-gas under dynamic conditions. A core of the structured experiments through some methods such as aging test, tensile properties, fracture toughness, residual stress and engineering critical assessment was accomplished in parent material and exposed samples on flue-gas. The temperature range of evaluation for tensile test covers -70C to 21C while fracture toughness was over the range -196C to 21C. Tensile properties of virgin material show that steels meet standard specification while aging samples do not show significant scatter compared with parent steels. Ovalisation of the fracture surface and splitting phenomenon was observed which is related with steel anisotropy. Fracture toughness obtained from experiment was compared with that calculate by two existing correlations. However both correlations did not predict the level of fracture toughness expected indicating the methods used in this work has limited applicability under the test conditions used here. Residual stress (RS) induced in API X100 steel by cold rolling method was characterised using two complementary techniques known as Neutron Diffraction (ND) and Incremental Hole Drilling (IHD). The RS distribution shows good agreement for both techniques used but reproducibility of them depends on their own inaccuracies. An Engineering Criticality Assessment (ECA) was performed based in Failure Assessment Diagram (FAD) approach using all the experimental data obtained by a leak-before-break method under three operational pressures. The results showed the effect on the integrity of material under the presence of a flaw length assessed. Overall, the thesis presents a combined engineering critical assessment which involved the examination of materials used to transport flue-gas and established a methodology to determine fracture toughness alongside with the FAD to assess the integrity of pipelines
    corecore