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ABSTRACT 

Carbon capture and storage (CCTS) is a transitional technology offering a near-

term method of mitigating climate change. Pipelines are considered to be the 

most suitable systems for CCTS; however, structural integrity of pipeline has to 

be guaranteed in order for this technology to become a practical technical 

solution.  

The investigation detailed here is based on a systematic experimental approach 

to investigate the structural integrity of API X100, X60 and X70 steels exposed 

in simulated flue-gas under dynamic conditions. A core of the structured 

experiments through some methods such as aging test, tensile properties, 

fracture toughness, residual stress and engineering critical assessment was 

accomplished in parent material and exposed samples on flue-gas.  

The temperature range of evaluation for tensile test covers -70C to 21C while 

fracture toughness was over the range -196C to 21C. Tensile properties of 

virgin material show that steels meet standard specification while aging samples 

do not show significant scatter compared with parent steels. Ovalisation of the 

fracture surface and splitting phenomenon was observed which is related with 

steel anisotropy. Fracture toughness obtained from experiment was compared 

with that calculate by two existing correlations. However both correlations did 

not predict the level of fracture toughness expected indicating the methods used 

in this work has limited applicability under the test conditions used here. 

Residual stress (RS) induced in API X100 steel by cold rolling method was 

characterised using two complementary techniques known as Neutron 

Diffraction (ND) and Incremental Hole Drilling (IHD). The RS distribution shows 

good agreement for both techniques used but reproducibility of them depends 

on their own inaccuracies. An Engineering Criticality Assessment (ECA) was 

performed based in Failure Assessment Diagram (FAD) approach using all the 

experimental data obtained by a leak-before-break method under three 

operational pressures. The results showed the effect on the integrity of material 

under the presence of a flaw length assessed.  

Overall, the thesis presents a combined engineering critical assessment which 

involved the examination of materials used to transport flue-gas and established 

a methodology to determine fracture toughness alongside with the FAD to 

assess the integrity of pipelines. 

Keywords: Supercritical CO2 and impurities; fracture toughness; HSLA steel  
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1 STRUCTURAL INTEGRITY OF MATERIALS FOR CO2 

TRANSPORT 

1.1 Introduction and background 

The effort required to reduce emissions of large amounts of carbon dioxide 

(CO2) and other greenhouse gases (GHGs) is a priority with immediate action 

required to keep CO2 out of the atmosphere. The main sector with the highest 

emissions of CO2 is the energy area, with approximately 77% of total GHGs 

originating from the burning of oil, coal and gas by power plants for electricity 

generation (Figure 1-1). Thus, burning fossil fuels at power stations requires 

technical solutions to be found for the capture, transport and storage of 

anthropogenic CO2 [1,2]. 

  

(a) Global CO2 emissions [3]   (b) CO2 concentrations [4] 

Figure 1-1 Global perception of CO2 emissions  

Within the energy sector five approaches have been proposed as alternatives to 

tackling climate change: energy efficiency, decreasing fuel use, renewable 

energy, nuclear power, and carbon capture and storage (CCS) (Figure 1.2). 

Renewable energy and nuclear energy could offer a clean technological 

solution for zero emissions and help to tackle climate change but there is not 

enough development into supplying the worldwide demand for delivering all of 

the GHGs’ reductions [5].  
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Figure 1-2 Technological keys to tackle climate change (After Kårstad1) 

In the short term, only CCS has the potential to reduce 20% of greenhouse 

emissions by 2050, using engineering methods [1,6]. Figure 1-3 shows the CCS 

scheme that comprises the capture of CO2 from large sources such as power 

stations or industrial facilities, transportation of the CO2 to a suitable storage 

point and injection underground either for storage or via enhanced oil recovery 

(EOR) [1,7].  

The chain clearly involves transportation which undoubtedly has to be included 

as part of the system. Proposals to rename CCS as CCTS (Carbon Capture 

Transportation and Storage) have been raised as the former does not include 

transportation which  it is one of the main parts of this technology. Hereafter the 

CCTS acronym will be used as it better describes this system. 

 

Figure 1-3 CCTS chain 

                                            
1
 Original Illustration source: Kårstad, Freund. “Keeping the lights on”. Universitetsforlaget, 

2007. 

CO2  capture from sources 

Transport
By pipeline, car or ship

Storage/Injection
-EOR

-Depleted reservoirs

Pre-combustion

Post-combustion

Oxy-combustion Compression

O2, H2S, SOx, NOX, H2, N2, 

CH4, CO & H2O
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Even though on a commercial scale CO2 can be transported via tankers or 

ships, transporting anthropogenic CO2 from the energy or industry plants to a 

remote sequestration place may be an issue for CCTS systems due to the 

feasibility of applying this technology [8–11]. In this framework, pipelines – both 

onshore and offshore – are considered to be the most suitable solution to 

transport safely, efficiently and with least expense, supercritical or dense phase 

CO2 over long distances [1,12,13].  

Conveying CO2 by pipeline is not a new concept in the world. There is a 40 

years experiences  transporting CO2 from natural and anthropogenic sources 

for EOR application, mainly in the USA. However, with only approximately 7000 

km of pipelines operating worldwide without environmental, health or safety 

issues this could be insufficient or inadequate for UK or European scenarios 

[9,14] as there are differences between the existing and new pipelines to 

transport anthropogenic CO2 [15]. This dissimilarities are summarised in Table 

1-1. 

Table 1-1 Differences between current and new pipelines transporting CO2 

Parameters Existing CO2 pipelines New CO2 pipelines 

Application EOR CCTS 

Sources Nearly pure CO2  
Impurities depending on capture 

method 

Transited 

areas 
Remote or unpopulated Populated 

Demand ‘Static’ Fluctuation due to load factors 

Perception Benign Higher throughput 

From a captured standpoint, CO2 may contain impurities that could affect CCTS 

systems. Non-condensable components such as nitrogen (N2), oxygen (O2) and 

water (H2O), but also air pollutants such as sulphur oxides (SOx), nitrogen 

oxides (NOx), hydrochloric acid (HCl), hydrogen fluoride (HF), mercury (Hg), 

Argon (Ar), hydrogen sulphide (H2S), Methane (CH4), hydrogen (H2) and carbon 
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monoxide (CO) can also have negative impacts on the physical properties of 

CO2 [16–21].  

Normal operating conditions (recompression distance & hydraulic behaviour), 

material properties (corrosion, embrittlement) and design (fracture control & 

propagation) could be affected [22,23]. Likewise large variations in composition 

are anticipated in CCTS due to the inclusion of other CO2 sources for this 

technology to be economically viable.  

Thus, composition will depend mainly on fuel type, energy conversion process 

and capture process [24–30]. Also networks connecting multiple sources of 

anthropogenic CO2 would be required for appropriate specification; however, a 

review of the codes and standards focused on the transport of fluids has 

revealed that suitable guidelines for anthropogenic CO2 transportation are not 

available.  

In this scenario, transportation of supercritical CO2 with impurities in a CCTS 

framework is undoubtedly critical; however, it has not been well addressed. 

While little effort has been conveyed in filling the existing gap of knowledge in 

CO2 transport in a safe, efficient and convenient manner, capture and storage 

have been receiving major attention. Therefore, while most of the know-how is 

already available for natural gas and pure CO2 transportation systems, which 

could be used in CCTS, it cannot be applied directly to anthropogenic CO2 

transportation. 

The lack of CCTS operational knowledge, combined with the uncertain long-

term financial environment, the regulatory constraints and the acceptability and 

capacity of selected areas, will impact on the general development of 

anthropogenic CO2 capture, transport and sequestration technologies, 

particularly in the UK and extending to Europe. Unless efforts to reduce this gap 

are made and help is given to decrease these barriers, the acceptability of 

CCTS as a potential key both to reduce GHGs and to achieve the 2020 targets 

agreed by the European Union in June 2009 will be at higher risk.  
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1.2 The need for this research 

 

Figure 1-4 Challenges in CO2 transportation 

Technical challenges exits  for transporting supercritical CO2. Even though 

transport of natural gas by pipeline is well established, CO2 transportation, 

particularly with impurities, is not well understood as there are significant 

differences in terms of physical properties and behaviour during pipeline 

transportation. The implicated issues with the process are summarised in Figure 

1-4 [31]. From a structural integrity standpoint, the most significant differences 

between both these could be:  

 Susceptibility to long-running ductile fracture propagation in natural gas 

pipelines operating at the same conditions and using similar grade of steels, 

as the CO2 decompression curve is more severe than that of natural gas-

CH4 (Figure 1-5). As a result, the driving force is stronger and the crack 

arrest conditions could be reached only using steel with high toughness or 

using crack arrestors. 

 The probability of lower temperatures during pipeline operation or an unlikely 

event of a leakage when there are sudden drops in temperature  due to the 

Joule Thompson effect. This can have material implications such as 

embrittlement (local brittle behaviour & high local residual stress) and also 

promote the behaviour of material change from ductile to brittle. 

Capture Transport Storage

Pipeline
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Figure 1-5 Experimental and theoretical decompression curves for pure CO2 

and CO2 & N2 [15] 

 The presence of non-condensable and free water causes the formation of 

acid components and also promotes hydrate formation, which increases 

corrosion rates (CRs) and/or stress corrosion susceptibility as well as 

material embrittlement. Although, a high pressure dry CO2 is essentially non-

corrosive, the formation of a moisture environment could change its 

behaviour, affecting pipeline integrity. 

 There is no international regulatory framework for specific design or fitness-

for-service (FFS) procedure for CO2 pipelines and a compositional 

specification for a CO2 mixture to be transported by pipelines does not exist.  

Data concerning the effects of impurities along CO2 transport are non-existent; 

thus, this gap in knowledge will be addressed in order to generate reliable data 

for determining the ability to re-use existing or to develop new steel pipeline 

systems for transporting anthropogenic CO2. Although, there is a consensus to 

transport CO2 with small remaining impurities in order to make CCTS 

economically feasible and avoid energy penalties due to the extra purification 

process, it is necessary to establish acceptance levels [32], [33]. 
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Pipelines are designed using defect-tolerant principles, where knowledge of 

defects or crack-like flaws can be used to predict or determine the remaining life 

of a component. Up to now, there has been little or no information or data about 

the effects of anthropogenic CO2 on integrity in low carbon pipeline steels. 

Therefore, the mechanical and material behaviour of these pipelines cannot be 

accounted for by using the current gas concepts, but this knowledge could be a 

baseline for future developments in order to deliver a fail-safe structural integrity 

assessment.  

1.2.1 Current approach 

To evaluate or assess the remaining life of pipeline or structural components, 

one approach known as failure assessment diagram (FAD), is used (Figure 1-

6).  

 

Figure 1-6 FAD levels, after [35] 

This approach has been incorporated into international codes and other 

guidelines such as API 579 [34], BS 7910 [35], PD6493 [36], R-6 [37], PDAM 

[38], SINTAP [39], and FITNET-FFS [40] for FFS purposes.  

FAD is classified into three different types depending on the information 

available and accuracy required. Increasing levels require more complex data 

but are less conservative. Levels 1 and 2 involve universal failure assessment 

curves independent of material properties.  



8 

Level 3 considers material-specific data such as strain, true strain, true stress 

and elastic modulus, obtained from the tensile curve, and fracture mechanics 

parameters from impact toughness or fracture toughness tests. 

Fracture toughness evaluation could be performed by many approaches such 

as J-integral, Crack Tip Opening Displacement (CTOD), Crack Tip Opening 

Angle Displacement (CTOA) and Crack Mouth Opening Displacement (CMOD) 

where the stress intensity factor (K) and plane strain stress intensity factor (KIc) 

are determined [41–45]. These parameters are used to assess fracture control 

and propagation of fracture but issues in terms of size of specimen (thickness), 

costs and functionality restrict their use as quality control tools in industry [29]. 

Two experimental methods, called Drop Weight Tear Test (DWTT) and Charpy-

V notch (CVN) test impacts, are generally used to prevent propagating fractures 

with higher acceptance of performance integrity assessment. 

Both are cheaper and feasible to perform but these approaches, particularly 

CVN, evaluate the fracture resistance rather than fracture toughness which is 

not considered a suitable method for fracture toughness measurement [46–48]. 

Empirical correlations in order to estimate fracture toughness have been applied 

for years; however, these are not accurate and are restricted to particular 

materials strength, thickness and test temperature range in which the 

correlations were established [49], [50]. 

Likewise, as both are not suitable for evaluating toughness from pipes due to 

the small scale specimen and accuracy, then conservative predictions cannot 

be obtained from them. Battelle Memorial Institute introduced an approach, 

namely the Battelle Two-Curve Model (BTCM). It is being used as a tool to 

control the fracture initiation and prevent propagation in pipelines transporting 

gas, particularly, for lower and medium high strength steel pipelines rather than 

steel grades above API X65 grade. To overcome this, the application of a 

correction factor extrapolation of arrest energy from lower to higher grades of 

pipeline is suggested. However, it does highly question the data and issues 

emerging on steels above X90 as this correction factor is still not easy to be 

determined [51,52]. 
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Furthermore, the CVN, DWTT and BTC approaches require a minimum 

toughness value which could be achieved if the energy values were on the 

upper scale of the ductile-brittle transition temperature curve [53]. Also, as 

presented in Figure 1-5, there is huge concern over crack propagation speed 

when the material exposed to flue gases of CO2 is decompressed. 

Avoidance of brittle fracture and arresting running ductile fracture (RDF) might 

be considered to hold fracture resistance demands. Using BTC and its variant, 

known as the HLP approach (High Strength Line Pipe Committee), could predict 

the final crack length of a RDF. Nevertheless, as explained above, many 

drawbacks exist with the application of these methods due to the lack of 

knowledge on how anthropogenic CO2 will affect brittle or ductile mechanisms. 

Higuchi et al. [54] have proposed an alternative method as well as the 

modification of DWTT specimens using pre-cracked samples to give a new 

concept of crack arrestability. Even though DWTT and Charpy energy 

correspondence is not linear, the method proposed is to convert the Charpy 

absorbed energy to pre-crack DWTT. New parameters are introduced to 

compensate for the size effect on fracture velocity in the model. Even if the 

model can predict arrestability in higher grade steels, it is only applicable in 

natural gas transportation at a higher pressure by pipeline. 

To overcome fracture toughness concerns originating from Charpy energies 

correlations, Wallin [55] developed a new methodology to characterise the 

fracture toughness in the lower transition region. It is named the “Master Curve” 

(MC) and has proved that valid MCs can be determined with small Charpy size 

specimens on ferritic steels [56], [57] .  

Even though the MC was developed mainly to be applied to nuclear 

surveillance, the methodology has demonstrated that estimated fracture 

toughness on ferritic steels covering quenched and tempered (Q&T) martensitic 

and bainitic steels rely on the same tendency to form transition curves of the 

same shape. Also a step-by-step procedure has been developed which allows a 

reliable assessment with quantified probability and confidence levels [58].  
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Due to some constraints with MC, Schindler and Kalkhof [59] developed a 

mathematical model in order to fill the gap when lower-bound fracture 

toughness values are required which MC and American Society of Mechanical 

Engineers (ASME) lower-bound are unable to offer.  

1.2.2 Problem statement 

One of the biggest problems facing the development of large pipe diameters 

with small thickness to save weight and reduce costs is the manufacturing 

limitations (Transporting CO2 will be at high pressures, >>120 bar). The 

complexity behind developing high strength steels and optimisation of 

mechanical properties such as toughness and corrosion resistance depends on 

many factors such as: 

 The technological feasibility of manufacturing steel that achieves high 

levels of toughness and mechanical strength due to the opposite effect of 

both. Corrosion resistance is the other issue in high strength low carbon 

alloy (HSLA) steels. 

 Lack of experimental data about the decompression of anthropogenic 

CO2 from supercritical conditions that can provide a suitable explanation 

of driving forces during the ductile fracture propagation event; this is not 

available in the literature. 

 Limitations of traditional fracture parameters to correctly describe the 

resistance to crack propagation; this leads to the difficulty of designing 

and evaluating appropriate materials as well as failing to predict 

arrest/propagation cracks. 

 Lack of knowledge predicting structural crack arrest behaviour using 

small-scale material characterisation tests. 
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1.3 Aim and objectives of the present work 

This research is specifically aimed at defining the toughness requirements, 

material compatibility and behaviour of high strength low alloy (HSLA) steels 

exposed to flue gases containing supercritical CO2 as well as providing 

empirical data to establish failure criteria. This overall aim will be achieved by: 

a) Evaluating and developing test methods which will: 

 Determine the modes of fracture failure in HSLA pipeline steels 

immersed in a CO2 environment with impurities. 

 Generate toughness, yield and ductility date to quantify the fracture 

behaviour of HSLA pipeline steels exposed to a CO2 environment with 

impurities. 

b) Quantitatively measuring the impurities and establishing their role on failure 

mechanisms, and their contribution to material damage properties of HSLA 

steels. 

c) Providing guidance on performing failure assessment defects for axial 

external/internal surface flaws in HSLA steels immersed in an anthropogenic 

CO2 environment. 

The framework of the present investigation is presented in Figure 1-7. Within it 

are clearly defined the main aspects to study, which cover different topics to 

explain the possible mechanical behaviour of material and the environmental 

effect on the integrity of steels used to transport CO2. 
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Figure 1-7 General plan of the research proposal identifying contributors 
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1.4 Thesis overview 

The objective of this research is both to assess and develop a novel 

engineering critical assessment of the integrity of steel used to transport flue-

gases.  

To achieve this, Chapter 1 presents the background, needs, current approach 

and problems of CCTS technology. A current state-of-the-art regarding 

structural integrity of materials involving pipeline material, fracture toughness, 

environment effects on material, residual stress and the engineering critical 

assessment by FAD approach is explained in Chapter 2. 

Chapter 3 describes in detail the experimental methodology used to evaluate 

mechanical properties and fracture toughness of the steels used in this 

investigation as-received and aging condition. Tensile tests are carried out on 

strip and round bar samples while fracture toughness testing was conducted on 

pre-cracked Charpy samples.  

Round tensile and precracked Charpy samples were exposed to simulated flue-

gas containing H2S and SO2 impurities. Both virgin and exposed materials were 

tested from lower temperature to room temperature. Fracture toughness was 

performed over the range -196C to 21C while tensile tests were performed in 

the range -70C to 21C. In addition, cold rolling by combination of different load 

and width roller, which was performed to induce compressive residual stress on 

API X100 flat plates, is explained in detail. Both neutron diffraction and blind 

hole-drilling approaches to determine in-plane compressive-tensile stresses 

profiles through-thickness are described. 

Chapter 4 presents the results obtained from tensile, hardness and Charpy test. 

Analytical methods such as XRD, scanning electron microscope (SEM), Optical 

microscope (OM) were used to characterise compounds deposited on the 

surface of samples as well as fracture surfaces after testing are included here. 

Fracture toughness analysis is evaluated by a different approaches and 

discussions are carried out for each topic evaluated. 
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Chapter 5 addresses residual stress analysis performed in cold rolled samples. 

Neutron diffraction and Hole-drilling methods are compared in order to establish 

differences and constraints. Discussion is made taking into account the scope 

and significance of this approach to measure residual stress analysis and its 

impact on the integrity of pipes. In addition, this study was incorporated to 

quantify and better understand the use of compressive stresses as a potential 

method to be incorporated for crack arrest purposes.  

Chapter 6 presents the structural integrity analysis for CO2 pipelines based on 

the FAD approach performed by R6 code along with other tools and results 

obtained in previous chapters in terms of mechanical properties, fracture 

toughness and residual stress. A leak-before-break approach was conducted 

taking into account operational pressures, and integrity variation of the materials 

was evaluated by analysing the FAD locus discrepancy.  

Chapter 7 summarised and highlighted the major findings and conclusions 

obtained from this research, as well as the contribution and discussion of the 

future work that required to be undertaken in order to advance in the research 

of this fascinating field of the CCTS technology. 

Overall, the thesis presents a comprehensive examination of materials used to 

transport supercritical CO2 with impurities and establishes a first-hand 

methodology to evaluate fracture toughness along with the FAD for assessing 

the Finest-For-Service of pipelines. 
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2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a state-of-the-art analysis of materials for CO2 

transportation in terms of environment, material integrity and defect 

assessment. There is sparse information regarding CO2 transportation in dense 

phase via pipelines, these is not a well-established deep-knowledge 

transporting anthropogenic CO2. Thus, the baseline is provided from the 

literature available in the public domain about oil and natural gas field. 

2.2 Pipelines steel grades 

The early steels were C-Mn steel grades X42 and X52. These steels were 

microalloyed to improve weldability; however, due to high carbon, poor steel 

cleanliness and little grain refinement, notch toughness was very poor [60,61]. 

The development of modern pipeline steel has been performed in an effort to 

obtain an excellent combination of mechanical properties such as strength, 

toughness, ductility and weldability thus improving their performance to operate 

in harsh environments. HSLAs were developed for their potential to be used for 

high pressure requirements (>15 MPa) without increasing wall thickness but 

improving economic feasibility in the transportation of gas in arctic regions and 

in the exploitation of sour oil and gas reserves [62,63].  

The latest advances in manufacturing technologies have relied on the 

integration of metallurgical concepts, such as chemical composition, thermal 

history, deformation process and microstructure modification, and offer 

beneficial results by increasing strength, ductility and toughness. However, 

these complex interactions have been studied by many researchers including 

Das, Gray, Pickering and Klassem et al. [61,63–66] who have considered all 

individual operating components required for inclusion to complete multi-

parametric analysis; however, gathering all the requirements is often difficult to 

accomplish as variants in any one of these properties often leads to changes in  

the others. 



16 

Despite this drawback, nowadays, pipelines meet all the requirements for good 

performance of the material including weldability, strength, toughness, fatigue 

and collapse resistance, strain tolerance, as well as environment resistance by 

the use of so-called high strength low alloy (HSLA) steels. The most common 

HSLA steels in operation are made of API X52, X60, X65, X70, X80 and lately, 

X100 and X120. Table 2-1 summarises the mechanical requirements for 

pipelines in accordance with API specification [67]. 

Table 2-1 Mechanical requirements for PSL2 API pipelines[67] 

Grade Steel 
Rp0.5 
(MPa) 

Rp0.2 
(MPa) 

Rm 
(MPa) 

Ratio 
Rp0.5/Rm 

L415 or X60 415-565 - 520-760 0.93 

L450 or X65 450-600 - 535-760 0.93 

L485 or X70 485-635 - 570-760 0.93 

L555 or X80 555-705 - 625-825 0.93 

L625 or X90 - 625-775 695-915 0.95 

L690 or X100 - 690-840 760-990 0.97* 

L830 or X120 - 830-1050 915-1145 0.99* 

*Elongation is calculated by 𝐴𝑓=𝐶∗ 
𝐴𝑥𝑐

0.2

𝑈0.9 and lower yield ratio values may be specified by 

agreement for L690 and L830. 

Manufacturing of HSLA grades X65 to X80 usually follows the route of TMCP 

combined with an accelerated cooling process (ACC) (Figure 2-1) [58]. Even 

though the combination of TMCP with chemical composition establishes a 

correct balance between strength, toughness and weldability, precipitation of 

second phases and solid solution hardening, it can contribute to decrease 

fracture toughness (Figure 2-2) [64] and modify tensile properties (Figure 2-3) 

[66].  

Application of pipeline API X100 grades is not common and only some trial 

projects have been undertaken using this steel. Hillenbrand et al. [52,69–72] 

have been working with this material in order to find the best balance between 

strength, toughness and weldability.  
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Figure 2-1 Variation of chemical composition of HSLA steels [64] 

 

Figure 2-2 Relationship between transition temperature and final temperature of 

reduction for steels containing less 0.05% of microalloys elements [60] 

They have developed a method which is based on selecting the best 

combination of chemical compositions and rolling conditions, carbon content, 

cooling rate, cooling stop temperature and carbon equivalent (known as Pcm, 

CEIIW or CEN). As a result three different approaches can be used; however, 

approach C (green) is considered to be the best for producing pipeline steels 

grade X100, as can be seen in Figure 2-4.  
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Figure 2-3 Stress-strain curves evaluating the influence of the harder phase on 

the stress-strain behaviour [68] 

 

Figure 2-4 Different approaches to develop grade X100 steel [73] 

A high temperature process (HTP) approach has been used to produce grades 

X90 to X120 where Cu and Nb are added. The main advantage of this method 

is that niobium retards the recrystallization temperature and the material can be 

rolled at higher temperatures to provide a lower carbon equivalent (Pcm) thus 

improving toughness [63]. 
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2.2.1 Microstructure and mechanical relations 

The appropriate chemical composition, rolling temperature, finish temperature, 

cooling rate and cooling interrupted temperature are the most significant 

variables that affect the final microstructure and have been studied extensively 

[61,74–76]. Figure 2-5 presents the possible variations in microstructure that 

can be obtained by the TMCP method at different cooling rates.  

From the TMCP process, different microstructures can be obtained which are 

classified into four types: polygonal ferrite (P-F), quasi-polygonal ferrite (Q-F), 

granular bainite-ferrite (GB-F) and bainite-ferrite (B-F). P-F is transformed at the 

highest temperatures and slowest cooling rates which nucleate as grain 

boundary allotriomorphs growing into equiaxed grains.  

 

Figure 2-5 Processing methods utilized in TMCP and their characteristics in 

control of microstructures with reference to a CCT diagram [64] 

Q-F and its austenite parent can be transformed together in grains with irregular 

boundaries containing a high density of dislocations and martensite/austenite 

(M/A) islands. B-F consists of an elongated ferritic lath with a high density of 

dislocations and is separated by low angle grain boundaries (LAGBs). G-F is 

obtained by slower cooling rates containing a high density of dislocations and is 

separated by LAGBs [76]. 
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The effect of TMCP on the microstructure of HSLA steel was investigated by 

Zhao et al. [74,75]. They found that the acicular ferrite (A-F) dominated the 

microstructure and as a result strength and toughness were enhanced. A similar 

study was made on a commercial API X70 grade P-F microstructure and X90 

grade A-F microstructure by Wang et al. [76]. They found that strength and 

toughness are similarly improved; however, the elongation and Y/T ratio of both 

steels were not changed by the thermal treatment. A high density of dislocations 

was observed.  

Hillenbrand et al. [73] carried out studies on the impact of microstructures on 

the mechanical properties of X70, X80 and X100 pipeline steels. Their 

investigation concluded that strength and toughness were increased by 

modifying the microstructure from Pearlite-Ferrite (P-F) to Ferrite-Bainite (F-B), 

leading to the development of the X80 grade. Examples of this microstructure of 

HSLA steels can be seen in Figure 2-6. The X70 matrix corresponds to F-P, 

X80 is compound of F-B and X100 by bainite. However characterisation of this 

structure, mainly X80 and beyond is restricted under optical microscopy. 

 

Figure 2-6 Microstructure of HSLA pipeline steels: X70 (left), X80 (centre), X100 

(right) [73] 

Electron microscopy combined with electron backscatter diffraction (EBSD) has 

been demonstrated to be powerful. Characterisations of the microtexture, 

measure of the grain size, type of bainite and crystal orientation allow a more 

precise identification of the category of steel.  
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Figure 2-7 presents an inverse pole figure, which is a power tool, to determine 

boundaries’ misorientations, effective grain size, and also high angle and small 

angle grain boundaries can be measured. These angles are related to 

constitutive obstacles for dislocation motion, which markedly determine the 

mechanical properties of the steel [77]. 

 

Figure 2-7 Inverse pole chart of HSLA line pipe steel measured by EBSD where 

each colour determines a preferential crystal orientation [73] 

Das et al. [78] investigated the influence of heat treatment on the microstructure 

and mechanical properties of Cu-strengthened HSLA X100. From the study 

carried out they found that the coherency of Cu precipitates controlled fatigue 

crack, susceptibility to ductile fracture and avoids microvoid coalescence. The 

ageing improves high strength and high toughness. However, some 

investigations have determined that steel with a microstructure of pearlite-ferrite 

is considered to be more susceptible to the corrosion process than acicular 

ferrite and bainite-ferrite [79,80]. 

The previous discussion about microstructure and processing determining the 

heterogeneity of the HSLA exists; as a result, mechanical properties can 

significantly vary both from different manufacturers and heats [81]. This 

variation in yield strength, ultimate strength and toughness is presented in 

Figures 2-8 and 2-9 respectively.  
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Figure 2-8 Mechanical properties of HSLA steel varying microstructure [81] 

 

Figure 2-9 Scheme of the microstructure, mechanical and toughness properties 

evolutions depending on manufacturing process 

Aiming at the heterogeneity pipe, there are three directions to be considered: 

longitudinal, circumferential and through-thickness. The former is linked to the 

thermal history during the rolling process, while circumferential heterogeneity is 

associated with the non-axisymmetric cold forming during tube forming.  

The latter is related to the effect of cooling rates to modify grain sizes and 

tension-compression cycles induced during the forming process. Depending on 

the direction-deformation during the rolling process and tube forming, tensile 

properties differ for longitudinal and transverse directions during plate and pipe 

production.  
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Thus, longitudinal strength properties tend to be lower than transverse strength 

characteristics as a consequence of anisotropy [82,83]. Also, the strength 

characteristic that meets steels of the same or closer grade reflecting 

differences between minimum and maximum yield, or the average of these, 

could fairly be similar [84], [85].  

 

Figure 2-10 Yield strength distribution HSLA steel [81] 

This is shown in Figure 2-10 where a probability distribution of the yield strength 

for steel X60 to X100 reflects the heterogeneity of HSLA steels in both 

directions. Aspects such as strain hardening, Y/T ratio, and uniform elongation, 

shown in Figure 2-11, significantly influence the type of steel that is dealt with, 

and also reflect the scatter on tensile properties of HSLA. 

The Y/T ratio is specified in API 5L standard as Rt0.5/Rm; however, this definition 

can be redefined as Rp0.2/Rm  due to Rp0.5 potentially not taking into account the 

work hardening applied on steel above X90. Even though Rp0.2 and Rt0.5 are 

closer for most line pipe steel, the significance of the former parameter has 

gained acceptance over the latter.  
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Figure 2-11 Stress-Strain engineering curve  

As shown in Figure 2-12, the Y/T ratio has a marked influence on the grade of 

the steel, indicating that this factor could potentially better describe the physical 

relevance of this parameter on the onset of plasticity. 

 

Figure 2-12 Relation between Rt0.5 and Rp0.2 for X65 to X100 HSLA steels [52] 

To achieve high toughness clean steel, treatment is provided during the casting 

process. These values are frequently obtained from standard CVN and DWTT 

tests. Although these methods are currently used as quality control, there are 

many concerns about the correlation of CVN as a representative measure of 

fracture toughness. However, as shown Figure 2-13 microstructures have a 

strong effect on impact toughness [81,86].  
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Figure 2-13 CVN and DWTT energies depending of microstructure [81] 

2.2.2 Anthropogenic CO2 environment 

The capture of CO2 from power plants and industrial processes may contain 

impurities. There are three basic approaches: pre-combustion or integrated 

gasification combined cycle (IGCC), post-combustion and Oxyfuel. CO2 

produced from these capture technologies might contain more impurities, which 

may be a drawback for the CCTS system, because realistic compositions are 

still unknown [8,9,18,25]. A general CCTS scheme is presented in Figure 2-14. 

 

Figure 2-14 Scheme of anthropogenic CO2 transportation [87] 
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Although there is a wealth of knowledge on the effects of impurities such as 

SOx, NOx, H2S, CH4, H2 and CO when oil and gas are transported by pipelines, 

little is known about CO2 transportation and how impurities affect pipeline 

mechanical integrity. Moisture is not considered to be an issue but it is clear that 

the formation of hydrates and acid increases with rising free water 

[16,17,88,89].  

Researchers have shown that some of the identified components could be 

present in low concentrations in the CCTS system. Thus, the impurities in CO2 

are not concerned with big numbers, even though their effect in the CCTS 

system should be much higher. For CCTS to become a reality, pipeline integrity 

will need to be assured. 

2.2.2.1 Properties of CO2 

The properties of CO2 are well known. At standard temperature and pressure, 

CO2 exists as a gas. As shown in Figure 2-15, pure CO2 is characterised by two 

main points; the triple point (5.18 bar, -56.6 C) and the critical point (73.77 bar, 

31.1 C). At the first point, CO2 can exist either as a gas, solid or liquid.  

 

Figure 2-15 Phase diagram for pure CO2 [2,9]. 
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At the second point, CO2 exists as a supercritical or dense phase liquid. In this 

stage, CO2 becomes identical in the liquid and gaseous phases due to its 

properties as a pure substance. This condition is considered to be the most 

efficient for CO2 transportation over longer distances because the fluid has the 

density of a liquid and the viscosity and compressibility of a gas.  

2.2.2.2 Background on CO2 Capture 

Prior to being transported, CO2 has to be compressed to a pressure above the 

critical point; however, as CO2 is captured from an anthropogenic source these 

conditions would be changed by the impurity levels present in the flow.  

According to Race et al. [9,12,89,90] and Kaufmann [22], the types and 

concentrations of impurities have a practical impact on the hydraulic parameters 

of pipelines, such as pressure and temperature drop, and also density and 

viscosity. As a result, it may be inconvenient to maintain CO2 as a dense phase 

due to the formation of two phases of gas-liquid.  

Higher H2S and SO2 concentrations have negative effects on the health of 

people regarding toxicity and also sulphur precipitation which can potentially 

cause equipment blockages. O2 is interacting with corrosion, causing material 

damage and pipeline capacity will be reduced by the presence of N2 

[9,12,33,70,90–93].Material embrittlement due to stress corrosion cracking 

(SCC), sulphide stress cracking (SSC) and hydrogen induced cracking (HIC) 

are caused by H2S and H2. If dewatering is not appropriate, highly corrosive 

carbonic acid is formed which can lead to CRs rising up to 1-2 mm within two 

weeks or 10 mm/y [91,94,95].  

Reducing the concentration of trace elements and obtaining a high purity CCTS 

stream is technically viable, but purification leads to additional increments in 

cost and energy requirements which would be considered economically 

unfeasible. Despite this, a small amount of impurities may still remain in the 

system, therefore, it would be much better to transport and store some of these 

impurities within the CO2 stream rather than removing them before 

transportation.  
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A report was released to the author [96] describing the main aspects of the 

current state-of-the-art of anthropogenic environments. This document 

describes the main processes underlying the influence of CO2 and impurities on 

the degradation of the material in the CCTS system. From the document 

different issues were highlighted: 

 Change in the composition of the CO2 stream due to the presence of 

major or new impurities are inevitable; therefore, it is difficult to predict 

what the composition will be in the future and the effects upon the 

transport of CO2 by pipeline. 

 Although pipelines could not normally operate under corrosive 

conditions, if there is a temperature drop in the gas to below its dewpoint 

or failure in the dehydration plant, this can lead to the introduction of 

moisture. Material selection will be critical for CCTS to be successful. 

General conclusions were raised from the analysis as follows: 

 From the analysed data, it can be seen that the nature of the base alloy 

and the properties of the environment of CO2 and their interrelation are 

important factors that can have a significant impact on CO2 corrosion and 

environmental cracking. In spite of the effort made, contradictions exist 

between the different data available. 

 Therefore, as remarked throughout the report, it is not possible to specify 

the general composition of CO2 with impurities, mainly due to the 

complexity of the CO2 system and the interrelation within the different 

factors involved. Thus, the composition proposal could be revised and is 

subject to change by the annotations previously made.  

 Although it could be considered that some of the components specified 

might not even be present in captured CO2 from power plants, if they are 

then it is not easy to say without testing how they would behave in a 

pipeline.  
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 A realistic specification would be proposed for testing materials used for 

CO2 transportation by pipeline based on recommendations from different 

projects and research, taking into accounts the typical operation range of 

pipelines, in order to establish a baseline when selecting or testing 

materials. 

Table 2-2 Summary of component mixtures used for testing materials in 

flue-gas saturated with water 

No Impurity 
Level 
(%) 

WHY Reference 

1 NO2 0.05 

Because it might be selected to 

understand exacting behaviour 

along with a realistic composition 

from the Oxyfuel capture process. 

[97,98][70] 

2 SO2 0.05 

The presence of water could raise 

corrosion issues causing health and 

safety issues/challenges From post-

combustion capture process. 

[70,99–103] 

3 H2S 0.05 

Health and safety considerations. 

Material degradation by HIC. 

Embrittlement. From pre-

combustion capture process.  
[70,93,94,104–

115] 

4 H2 2 

Health and safety 

issues/challenges. Hydrogen 

induced cracking.  From post-

combustion capture process. 

5 O2 4 

Unclear about its effects on 

anthropogenic CO2.Issues are being 

associated with corrosion 

mechanisms. From Oxyfuel capture 

process. 

[70,116–118] 

6 
Free 

H2O 
4 

Corrosion issues. Material 

degradation associated with 

corrosion mechanisms. From 

Oxyfuel capture process. 

[70,119–122] 
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In spite of the complexity of CO2 systems and the lack of clarity on the 

specification or concentration limits, a gas composition was presented as a 

final result of the analysis performed. The specification proposed in Table 2-

2 is not intended to be a guide or the latest specification, due to the 

drawbacks of the interaction of the great number of variables involved. 

However, it is focused to provide some basic input for the evaluation of 

materials used in transporting CO2 by pipelines. 

2.2.3 Pipeline integrity: Impurities and their effect on material 

performance 

Degradation of pipelines is due mainly to the environment. This may lead to the 

reduction in the integrity of material and potentially reduce the service life, 

causing premature degradation or failure. Factors that may contribute or 

prevent the initiation and attack by the environment are identified; such as pipe 

coatings, cathodic protection, soil conditions, ambient conditions, temperature, 

stresses, pipe pressure and cyclic loading. In addition, temperature and 

metallurgy variations can influence the material degradation. 

Mechanical damage and corrosion are classified as two principal causes of the 

deterioration of pipelines. The former could be caused by the manufacturing 

process, a third party (welding, dent, gouges, spalling), soil settlement or 

movement [123–125]. Also, residual stress, external stress and secondary 

stresses are considered to reduce the service life of materials [37].  

In terms of material, the corrosion mechanism activation depends not only on 

electrolyte conditions but on other factors such as chemical composition and 

microstructure, which can change the susceptibility of material and influence its 

corrosion performance [126], as well as impurities, oxides, inclusions, mill scale, 

orientation of grains, grain boundaries, dislocation, precipitated phases, 

localized stresses, scratches and nick facilitated localized corrosion [127]. 
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From the corrosion point of view, it reduces a design life due to the rate and 

severity of corrosion. Corrosion is categorised into eight forms or types which 

are based on the visual characteristics of the morphology of attack [126]: 

uniform or general corrosion, crevice corrosion, pitting, intergranular corrosion, 

selective leaching, erosion corrosion, environment induced cracking and 

hydrogen damage. Each of the corrosion forms produces characteristics or 

patterns that determine uniform defects, pitted surfaces, channel and striations 

[127]. The result is metal loss or stress raisers that could compromise the 

integrity of the pipeline. The chemical reaction can be given as equation (2-1). 

  HOHFeFeOH 3)( 3

3

2
 (2-1) 

In oil and gas production systems corrosion under CO2, H2S and O2 are the 

most prevalent form of materials degradation. CO2 corrosion also known as 

sweet corrosion, H2S corrosion namely as sour corrosion and O2 corrosion in 

water injection systems causing the majority of pipelines failures [128–130].  

Sweet corrosion is typically characterised by metal dissolution followed by 

pitting when materials are exposed to carbon dioxide, moisture or similar 

corrosive agents which form carbonic acid (H2CO3) given FeSO3 as the main 

corrosion product. Deterioration of steel due to interaction with H2S is reference 

as sour corrosion. When hydrogen sulphide mixed with moisture a reaction 

occurred forming FeS corrosion product. If H2S is presented alone in the system 

the corrosion rates is lower in the order of 0.5 mm/y or less [131,132]. 

Figure 2-16 shows a general view of pipeline integrity transporting 

anthropogenic CO2. Several authors have discussed the issues of corrosion in 

anthropogenic environments and the evaluation of materials’ compatibility with 

CO2 transportation which were derived from material specification guides 

[133],[134]. Although, there has been considerable effort made to understand 

the corrosion mechanism and its control in the CO2 environment, the interaction 

of CO2, impurities and material is unknown [110,133,135]. 
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Figure 2-16 Scheme of CCTS technology counting issues that could 

compromise structural integrity of the system 

The CO2 mechanism can be explained by the chemical reaction in equation 

(2-2). 

  HHCOCOOH 322
 (2-2) 

It is well known that partial pressure and temperature increase the corrosion 

rate when CO2 is present; however, the majority of CO2 studies have conveyed 

relatively low CO2 partial pressure characteristics of hydrocarbons production 

conditions. According to Seiersten [106], the CRs decrease at lower or 

moderate pressures whilst at high pressure they are higher. The former 

behaviour can be partly explained by the formation of carbonate films on the 

surface; while the mechanism for the latter is not well understood. In addition, 

Seiersten considers that further investigations are required to determine the 

influence of temperature.  

With regard to corrosion prediction models, there is a general consensus that 

modelling tools are inadequate for use in supercritical CO2 environments 

because CRs are much lower than expected and they decrease with increasing 

pressures above 10 bar [127,136–140].  
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Although, impurities such as SO2 and NO2 are considered to have an important 

effect on corrosion, water is the impurity which is of greatest concern. Although 

many operators transporting CO2 specify 500 ppm as the water limit, a recent 

research [141] found that the presence of water (~100 ppm) is sufficient for the 

formation of a second phase and higher CRs reaching 1-2 mm/yr but 

decreasing significantly when an inhibitor is added (Figure 2-17).  

 

Figure 2-17 Corrosion rate of steel in supercritical environment [141] 

Experimental investigation by Electrochemical Impedance Spectroscopy (EIS) 

of SO2, NO2 and O2 impurities with water in supercritical CO2 had been 

conveyed to study their effect on the CRs of carbon steel. It was concluded that 

the presence of water along with SO2 and O2 in supercritical CO2 causes small 

increases in corrosion rates, and NO2 results in CRs in the order of 12 mm/y 

[141,142]. This behaviour is similar to that reported by Eldevik et al. [143] and 

Caraballo et al. [32].  

Choi and Nešić [144] conducted research by combining experimental work with 

thermodynamic modelling of a scCO2-water system to determine the mutual 

solubilities of CO2 and water in the two coexisting phases on API X65 steel. 

They found that the solubility of water in CO2 and the solubility of CO2 in water 

at supercritical conditions increased with increasing pressure; however, the 

solubility of CO2 in water was much larger than that of water in CO2. 
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Furthermore, a low corrosion rate was obtained in the CO2 dense phase which 

is consistent with the literature. Conversely, carbon steel in CO2 saturated water 

showed higher values of corrosion but this did not change significantly with a 

pressure change from 40 to 80 bar. The corrosion products were identified by 

SEM and EDS and analysis determined that those products corresponds to iron 

carbonate scales (FeCO3), matching other investigations 

[94,100,110,125,132,145].  

Although, Choi et al. [146] and Dusgtad et al. [110] briefly discussed the 

corrosion mechanism of carbon steel in supercritical CO2 containing water, 

oxygen and sulphur dioxide impurities, reaction mechanisms under the 

presence of SO2 in dense phase CO2 have not yet been discussed in open 

literature. However, the corrosion behaviour studies of carbon steel exposed to 

wet air polluted by SO2 might also be helpful to understand this phenomenon.  

For example, the addition of SO2 in the gas phase can reduce the pH of the 

system increasing the CRs of the steel when water condenses on the material 

surface by the formation of sulphurous acid, H2SO3. The possible reaction 

mechanism containing the anodic and cathodic reactions generally accepted is 

presented in equation 2-3.  

3222
SOHOHSO   

(2-3) 

With regard to material, the influence of microstructure on the CRs was studied 

by Clover et al. [80] on various grades of carbon steels’ ASTM and API. They 

found that the localized and general corrosion rate varied slightly between 

different carbon steels. Steels with a banded ferrite/pearlite structure are most 

susceptible to localized corrosion caused by segregation of the iron carbide 

phase cementite (Fe3C). Furthermore, for steels having fine-grained ferrite, 

ferrite/coarser, and acicular pearlite or tempered martensite microstructures, no 

significant differences were observed. 
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From the materials  point of view, grain boundaries are at different energy levels 

which facilitate the localization of corrosion. Local corrosion (pitting) is related to 

the existence of spot areas on the surface layer of metal that show up as 

reactive zones compared to the surrounding area; from there cracks could 

initiate and propagate in the presence of load [147], [148]. 

Papavinasam et al. [149] conducted research to determine if failure of carbon 

steel under sour and sweet environments is due to general corrosion, pitting 

corrosion or localized corrosion. They found that under high temperatures (HTs) 

the pit density is lower but deeper whilst at lower temperatures the pit density is 

higher but these are shallower. In contrast, the pit depths decrease with 

increasing partial pressure of CO2. 

Four types of mechanically and chemically assisted cracking can exist. Fatigue 

cracking, SCC, SSC and HIC have been recognized as the most frequent 

mechanism of pipelines failures. In the case of SCC the mechanisms can occur 

due to a combination of the environment (pH), residual stress (hoop, tensile, 

axial, fluctuating stress), temperature and material properties (phases, non-

metallic inclusions, steel type, surface roughness).  

Depending on the condition presented, intergranular or transgranular cracks 

may occur. The former is determined by high pH, the latter by low pH. The 

presence of cracks may be as isolated cracks or within colonies [150]. The SSC 

mechanism can be explained by the chemical reaction given in equation (2-4). 

HFeSFeSH 2
2

  (2-4) 

The presence of carbonates in soil is associated with intergranular SCC which 

has been observed in high transmission gas pipelines; however, transgranular 

cracks have been detected due to the presence of CO2 with a pH near to 6.5 

[54]. Later work by Parkins [150] concluded that the initiation of transgranular 

SCC is associated with corrosion pits; in contrast, intergranular cracking 

depends only on grain boundaries for cracks nuclei.  
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The pits were associated with non-metallic inclusions and the plasticity 

localization and localized dissolution were the two major aspects of crack 

development. Besides, cycling and loading  pipelines results in the propagation 

of both types of SCC but this could be reduced by decreasing temperature and 

pressure variations and avoiding overprotection from cathodic protection [151]. 

With regard to hydrogen sulphide gas (H2S), HIC and SSC embrittlement 

phenomena can occur when hydrogen diffuses into the material. Regions 

having high triaxial tensile-stress conditions or defects such as inclusions, 

precipitates, or dislocations that work as hydrogen trapping sites, cause the 

embrittlement of steel by the formation of internal cracks known as delamination 

or blisters [152]. In oil and gas pipeline steels, SSC is one of the main 

mechanisms of failure. It is now known that increasing the strength of steel 

results in lower resistance of SSC. Microstructure and chemical composition are 

two of the variables that affect the steel [80,93,153,154]. The SSC mechanism 

can be represented in Figure 2-18. 

 

Figure 2-18 Hydrogen Induced Cracking (HIC) mechanisms on steel 

Kim et al. [152] evaluated the effect of metallurgical factors on SSC 

susceptibility for three high strength, low alloys (API X70) under an H2S 

environment. They found that Ti-Nb-C-N (~2 m) constituents act as nucleation 

sites of cracks perpendicular to the applied stress. Grain boundary networks of 

F3C in coarse ferritic-pearlite structures and inter-lath Martensite/Austenite 

acted as sensitive SSC nucleation.  
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In addition, non-metallic inclusions favoured the nucleation of blisters parallel to 

the applied stress. Ferrite-acicular ferrite presented the highest resistance to 

SSC whilst ferrite-bainite showed the lowest resistance. These results are 

consistent with later work conducted by Zhao et al. [74], [75] concluding that 

material component decreases SSC resistance of steel. HIC occurred when 

atomic hydrogen (H2) as result of the corrosion reaction between H2S flux gas 

and material diffused into the metal and accumulated as gaseous hydrogen at 

defects, cracks or non-metallic inclusions. The corrosion reaction generally 

accepted is presented in equations 2-6 to 2-9 [155,156]. 

Anodic reaction: 

  eFeFe 22

 (2-5) 

Dissociation reactions: 

HSHSH  

2  (2-6) 

  2SHHS  (2-7) 

Cathodic reaction: 

)(2)(222 gasHhydrogenatomicHeH 

 
(2-8) 

Kim’s work discusses the relationship between HIC and SOHIC (stress oriented 

hydrogen induced cracking). They found that although SOHIC is characterised 

by the formation of the planar cracks parallel to the rolling direction of steels, the 

HIC mechanism was uncertain because SOHIC is present in steels with HIC 

resistance.  

It was observed that base metal exhibited a higher susceptibility to SOHIC and 

the result was similar to the outcomes of Cayard [157] and Koh [158] which 

have been discussed by Kobayashi [159] who explained the mechanics 

involved to initiate SOHIC from conventional HIC to a low-strength HIC. It is well 

known that increasing the strength of steel leads to a decrease in the resistance 

of material to HIC.  
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Hardie et al. [160] compared the susceptibility of API X60, X80 and X100 steels 

to HIC. It was found that the loss of ductility upon hydrogen-charging becomes 

greater while the strength level of the steel increases. Dong et al. [113] 

investigated the sulphide SCC of X100 steel in an H2S environment and found 

that cracks nucleated at inclusions such as aluminium oxides, titanium oxides 

and ferric carbides in the steel. Besides, it caused a reduction of plasticity and 

ductility due to hydrogen charging time.  

The minimum amount of H2S required to inhibit embrittlement is not well 

established; however, it has been suggested in some studies as 15 ppm or 30 

ppm [126],[161]. However low pH with very low H2S cracking of low carbon 

alloys is prevalent [133],[162]. Although some diagrams have been published 

data representing the cracking susceptibility of steel depending on pH vs. H2S 

partial pressure, it is not clear which one could cover all the range to evaluate 

HIC severity [82,163–165]. 

These conditions may be relevant for CCTS systems where high CO2 partial 

pressure and water can lead to low pH, and H2S may be present as an impurity 

at a low concentration (<5 ppm) [135], increasing the concern about high 

strength materials cracking by SSC or SCC. 

The presence of O2 is related to the increase of CRs, especially localized pitting 

corrosion. Schmitt and Hörstemeier [124] point out that some studies have 

shown that the corrosion rate in CO2 is accelerated in the presence of oxygen 

by 0.5 mm/y per ppm of oxygen; however, Martin [166] finds that in sweet 

conditions, the presence of O2 can increase corrosion up to 23 mm/y. If O2 and 

H2S are present in the environment, then FeSO4 can produce further oxidation 

becoming in FeO(OH) (Ferric Oxyhydroxide). On the other hand, sulphuric acid 

could appear and react, causing higher CRs with the virgin steel (Eq. 2-9). 

42224
4)(464 SOHOHFeOOOHFeSO   

(2-9) 
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Figure 2-19 shows the impurity effects on pipelines while Figure 2-20 gives 

values of the CRs when these are presented in the system. Even though the 

results were obtained from lab scale on static rate instead of dynamic stream, 

they quantify the interaction of different components on materials exposed to 

this environment. 

 

Figure 2-19 Corrosion mechanism in pipeline [167] 

 

Figure 2-20 CRs of API X65 steel in super critical CO2 with SO2 (1%), O2 (4%) 

and NO2 (0.01%) impurities at different amounts of water, pressure and 

temperature [93,168] 
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Regarding evaluation of materials properties used to transport supercritical CO2 

little information is available. Recently two works have addressed this issue, 

one using an outflow model while other carry out an experimental investigation 

both focused to establish a framework about ductile fracture propagation and 

fracture toughness.  

Mahgerefteh et al [169] using an outflow model, show that the temperature in 

front of a crack could drastically fall to -70C in the case of a puncture, which is 

well below the normal operational conditions of a pipeline. The material used for 

the calculation was an HSLA steel grade X100 steel and the crack was running 

along the rolling direction of the pipe. A corrosive environment was considered 

in this study by taking into account the composition of impurities available in the 

literature. 

Zargarzadeh, P [170] assessed the same kind of steel for leak-before-break 

(LbB) approach by considering a through-thickness flaw in a cylinder oriented 

axially. It was found that at -70C, the critical crack length is 14.8 mm under 

operating pressure conditions; while at the environment temperature (21C) the 

crack length can be extended more than double (~30 mm). However, no 

evaluation of the material within a simulated flue-gas was performed. 

2.3 Fracture mechanics 

Fracture mechanics is the area of solid mechanics concerned with the 

evaluation of crack propagation on materials. It uses methods to calculate the 

driving force on a crack to determine the materials’ resistance to fracture. The 

route mode a crack extends through the materials is indicative for fracture 

mechanics which is used to estimate the fracture strength of cracked 

components under fracture toughness and stress analysis approaches.  

Examples of the aforementioned driving force are shear fracture, cleavage 

fracture, fatigue fracture, crazing and de-adhesion. Thus, the mechanical 

performance of a structure or components rescinds in the application of elastic 

and plastic theories on a microscopic scale in order to predict the macroscopic 
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mechanical failure of bodies.  Fracture mechanics is divided into two categories: 

linear elastic fracture mechanics (LEFM) covering the fundaments of linear 

elasticity theory and elastic-plastic fracture mechanics (EPFM) considering the 

plastic behaviour of ductile solids. 

2.3.1 Linear elastic fracture mechanics 

In 1921 Griffith’s crack theory was released, which is based on early Inglis work, 

in order to explain the failure of brittle materials. Griffith’s work was oriented to 

explain why the potential energy decreased and the surface energy increased 

when a stressed plate of an elastic material contained a crack. To resolve the 

energy release concept, it was assumed that both external and internal energy 

are transferred into surface energy. It was called the Griffith energy balance. 

The energy release rate G and the crack resistance force R are connected by 

the surface energy of the material which is described by Equations 2-11 to 2-14. 

Energy balance; 

a

a

a

i

a

e
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  (2-10) 

Energy release rate; 
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Crack resistance force; 
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Griffith’s crack criterion; 

 22  JmRG   (2-13) 
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Figure 2-21 Scheme of Griffith’s energy balance criterion 

Now, considering an infinite plate with a crack length equal to 2a and uniform 

thickness loaded in mode I, the Griffith stress, gr, and the critical crack length, 

ac, is calculated. 

If Ui=2a2B1/2[2/) and Ua=4aB    [Nm=J] 

Griffith’s balance (dUe=0) 
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Griffith stress; 
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Critical crack length; 
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2.3.2 Elastic-plastic fracture mechanics 

Griffith’s energy concept is valid for brittle materials but is not suitable for metals 

where plastic deformation always occurred. Orowan [171] and Irwin [172] 

concluded independently that plastic deformation is involved in the creation of a 

new fracture surface resulting in the large amount of additional energy that the 

small plastic flow generated in the brittle fracture zone. 

Based on Westergaard’s work [173] on the elastic solution of the stress 

distribution at a sharp crack, both Irwin and Orowan modified Griffith’s elastic 

surface energy, equation 2-13, by adding a plastic strain work (p) in the fracture 

process. 

 2)(2  JmRG ps   (2-18) 

2

2
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G  

(2-19) 

Rearranging the equation gives a significant expression in terms of LEFM.  

aI   (2-20) 
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Here, ’= /. Combining equation 2-18 and 2-21 yields, 

For plane stress; 
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For plane strain; 
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From there a parameter I is obtained, called the stress intensity factor, which 

is considered to be the crack driving force (CDF). Also its critical value, Ic, is a 

material property known as fracture toughness that determines the resistance 

force to crack extension. The equations resolved above show a distinctive crack 

opening mode; however, these can be applied to modes II and III. As shown in 

Figure 2-22, there are three modes of applying a force to initiate crack 

propagation, known as Modes I, II and III. 

 

Figure 2-22 Fracture modes to initiate crack extension [174] 

Assuming an infinite stress at the crack tip when r=0, that determines a small 

volume at the crack tip which is slightly bigger than the yield stress, a plastic 

state is obtained. Dugdale [175] and Irwin [172] established a couple of 

approximations to estimate the effect; thus, by rearranging equations 2-20 to 2-

23, the plastic zone diameter, ry, is derived by equation 2-25 and sketched in 

Figure 2-23.  
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Figure 2-23 Correction of Irwin plastic zone [172] 

In thicker samples, conditions of plane strain are retained in the centre of the 

thickness whereas near to the surfaces plane stress conditions prevail. The 

plastic zone is much bigger further ahead of the crack near to the outside 

surfaces than near at the mid-thickness. Thus, if the thickness is less than some 

critical value that is proportional to (I/ys)
2 the constraint influence free 

surfaces, which extends totally through the thickness before the stress intensity 

reaches KIc. These conditions can be seen in detail in Figures 2-24. 

 

Figure 2-24 Representation of crack tip plastic zone shape showing plane 

stress and plane strain in a plate specimen (After [176] ) 
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2.3.3 Fracture toughness 

2.3.3.1 Ductile-Brittle transition temperature (DBTT) 

Ductile and brittle fractures are two common mechanics to material failure. 

Fracture is a process that involves two principal stages: crack initiation and 

crack propagation. To evaluate the risk of brittle fracture, a DBTT parameter 

has been chosen as an indication that the material has enough ductility to arrest 

cleavage initiation, which is a representative indication of material toughness.  

DBTT can be accounted for by different methods and geometries which involve 

static and dynamic approaches [177–180]. The most common dynamic test is 

known as the Charpy Impact test and determination of DBTT would be 

accounted for by the curve fitting method [181]; the fracture toughness 

correlation could be obtained by ASME lower-bound [182], MC [183] or some 

analytical approaches derived from J resistance curve [59], [184]. 

In terms of tests, dynamic tests have been performed using non-instrumented 

and instrumented impact testers with conventional and pre-cracked CVN 

samples. From there values obtained a curve that can be plotted as a function 

of energy absorbed vs. temperature to determine DBTT, as depicted in Figure 

2-25.  

 

Figure 2-25 Absorbed energy curve for Charpy-V specimen fitted with tanh 

hyperbolic function [185] 
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From the Charpy curve, variations of fracture toughness with the temperature, 

can physically be divided into three regions: brittle (lower shelf), transition 

(intermediate zone) and ductile (upper shelf). Each region can also be divided 

into two separates zones. In the brittle zone, lower shelf, size effects are 

negligible; however, for materials with higher toughness values, the brittle 

fracture toughness could be affected by a statistical size effect.  

The transition region is defined as the region where cleavage and ductile 

mechanisms are presented during the fracture process. This region is 

considered to be specimen size, depending on the statistical size effect. Lastly, 

the upper shelf is characterised as the temperature region where the fracture 

mechanism is 100% ductile. This region is also size dependent because the 

statistical size effect and fracture toughness might be affected by specimen 

constraint. 

Depending on the instrument used, fracture toughness could be inferred but 

there are significant differences. Force-displacement parameters are obtained 

by instrumented machine (Figure 2-26) while total fracture energy is only 

available from experimental values with a non-instrumented impact tester.  

 

Figure 2-26 Load-time test record of instrumented Charpy showing 

characteristic points obtained from the graph which are associated with KIc 

fracture toughness [185] 
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From the former, fracture toughness is calculated by analytical approximations 

whereas from the latter semi or empirical correlations have been developed for 

this purpose, which can be found in the literature. Charpy energy is neither 

discretised energy for crack initiation nor for propagation. Thus, its 

transferability into fracture toughness by the aforementioned correlations 

appears to be non-unique lumping which therefore effect size, loading rate, 

crack length-to-width ratio and is also material-dependent. It is well known that 

a single correlation with derived fracture toughness from Charpy energies is not 

valid for all materials and conditions.  

Extending the notch by introducing a pre-cracked fatigue on the Charpy sample 

increases the constraint under the root notch. The sharper crack tip increases 

the level of tensile stress in the blunt crack and also reduces the energy 

required to initiate crack propagation when the specimen is fractured. Thus, pre-

cracking Charpy samples could simulate the conditions when an existing sharp 

crack extends. 

However, comparing energy absorbed by conventional and pre-cracked CVN 

difference arises due to ligament length. This results in a lowering of the upper 

shelf energy of the material and shifts the transition temperature upward 

compared with the notched samples [55,186]. Some of these methods included 

the calculation of an index temperature, namely T0, RTNDT and based on 

fracture mechanics concepts which determine that a stress intensity factor value 

of 100 MPam0.5 prevents crack initiation. 

2.3.3.2 Fracture toughness correlations from Charpy energy 

In general a conventional CVN test is considered unsuitable for providing 

toughness information for designing against fractures because of its limited 

thickness and inapplicability to low- and moderate-toughness materials. 

However, when correlated with more basic information, the Charpy test is very 

useful for acceptance and screening purposes. 
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Although it is well known that a simple correlation between Charpy energy, Cv, 

and fracture toughness, KIc, could be obtained, this correlation is not valid for all 

the materials and conditions. Figure 2-27 plots the type of correlations 

developed and Tables 2-3 and 2-4 the equations obtained; however, limited 

data are available, as well as adequate descriptions, and there is considerable 

scatter of the data to establish the equations.  

 

Figure 2-27 Empirical correlations used to associate CVN with KIc [187] 

Regardless of the type of correlation, all correlations have been broadly 

organised according to the temperature transition curve range of application as 

follows: lower-shelf, lower-shelf/transition, transition, transition-upper-shelf, 

upper-shelf and lower shelf/transition/upper-shelf.  

Table 2-3 Summary of lower shelf and lower transition correlation 

Name 
Correlation IcK  

(MPam) 
UTS (MPa) 

CVN(J) 
range 

Temp (ºC) 

Barsom 1 
5.12

1.45 CVNK Ic   270 to 1700 4 to 82 -196 to 27 

Barsom 2 CVNK Ic 105
2

  270 to 1700 3 to 61 -196 to 0 

Sailors 5.05.14 CVNK Ic   410 to 815 7 to 70 Lower & Transition 

Marandet 5.019CVNK Ic   274 to 820 5 to 50 -196 to 50 

Imai   5.05.2/ CVNK YIc   Not specified 5 to 215 -196 to -40 
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Correlations developed by Barsom and Rolfe [49], Marson and Rolfe [188], 

Sailors and Corten [50] and Marandet and Sanz [189] have received significant 

consideration; the latter being the only one that considered specimen size 

independent of the temperature [190]. Therefore Charpy impact energy could 

meet requirements for certain applications such as quality control during 

manufacturing, for materials toughness comparison or if there is limited material 

availability.  

Table 2-4 Summary of correlations covering Temperature Shifts 

Name Correlation IcK  (MPam) UTS (MPa) CVN(J) 

ASME-

PVRC 
IcK = 1.33 exp [0.0261(T-NDTT+89)] + 29 <621 NA 

BS PD 

6493:1 
IcK = 1.33 exp [0.0261(T-NDTTT40J +89)] + 29 <480 NA 

Barsom 
CVNK Ic 105

2
  

T=119-0.12*Y (Y < 965 MPa) 

270 to 1700 7 to 70 

Matsumoto IcK = 1.615 exp [0.038(T-ATT+140)] + 31 Not specified 5 to 50 

Sanz 

5.019CVNK Ic   

TK100 MPam=1.37TCVN 28J + 9 

274 to 820 5 to 215 

Wallin TK100 MPam=TK27J - 18 300 to 1500 NA 

Wallin - 300 to 1500 
T= -109 ºC to 

20 ºC 

Wallin - 300 to 1500 NA 

2.3.4 Mechanics of cleavage fracture 

Many different possible mechanisms of cleavage fracture initiation are 

qualitatively well known. Primarily crack initiation is a critical stress controlled 

process, where forces acting on the material produce a small failure developing 

into a propagating and dynamic cleavage crack. Local “initiators” may be 

precipitates, inclusions or grain boundaries, acting either alone or together 

[191–193].  
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Examples of typical cleavage fracture initiation process are presented 

schematically in Figure 2-28. Cleavage for fracture steps are: 

 Microcrack initiation by of a second phase fracturing of a particle or grain 

boundary. 

 Propagation of these microcracks into the surrounding grains. 

 Further propagation of extends microcrack into other adjacent grains. 

     

Local stress produces a dislocation 
pile-up which intrudes on grain 
boundary carbide. 

Cracking of the carbide introduces a 
microcrack which extended into the 
matrix. 

Advancing microcrack run into the 
first large angle boundary 

Figure 2-28 Schematic of a cleavage fracture initiation mechanics 

Depending on temperature, loading rate, loading geometry, and material, 

different steps are more likely to be most critical. Structural steels at lower shelf 

temperatures and ceramics show that steps II and III are more difficult to initiate 

as they tend to control the fracture toughness. At higher temperatures, where 

gradient stress distribution is smaller, propagation becomes easier in relation to 

the initiation process. Consequent step I becomes even more dominant for the 

fracture process. The temperature region where step I dominates is called the 

transition region.  

Specimen with a fatigue cracks fracture surfaces are usually seen as changes 

in the number of initiation sites visible surfaces, as shown in Figure 2-29. At 

higher temperatures of the transition region, only a couple of initiation sites are 

able to be seen contrary at lower shelf temperatures numerous initiation sites 

are visible. Notched or plain specimens, only have a few initiation sites even on 

the lower shelf section.  
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The reason for this is that crack peak stresses are very high almost from the 

beginning of loading, whereas notched and plain specimens show the peak 

stresses responses increase gradually during loading episodes.  

    

Figure 2-29 Drawing of typical cleavage fracture surfaces for components 

containing a crack 

Because materials are never fully uniform on a microscale level, cleavage 

fracture initiation is a statistical event, having implications on the macroscopic 

nature of the brittle fractures. A statistical model is therefore needed to fully 

describe probability of cleavage fractures [183]. A general statistical model is 

presented in Fig. 2-30 assuming that the material in front region of the crack 

contains a distribution of possible cleavage fracture initiation sites, i.e. cleavage 

initiators.  

 

Figure 2-30 Sketch showing assumptions of the statistical model 
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Cumulative probability distribution for a single initiator is critical and can be 

expressed as Pr{I} this is a complex function of the initiator size distribution, 

grain size, temperature, stress and strain rate etc. The source and form of the 

initiator distribution is not important in the case of a "sharp" crack. But it is 

necessary to assume that no complete interaction between initiators exists. 

Consequently interactions on a local scale are permitted. Groups of cleavage 

initiations may be required for macroscopic instigation. As long as the cluster is 

small, it can be interpreted as being a single event. All of these above factors 

can be structurally grouped into the initiator distribution and they are not 

important as long as the shape and specific nature of the distribution is not 

determined from this. 

If a particle (or grain boundary) fails, but the broken piece is not capable of 

replicating a cleavage fracture in the matrix, the particle sized microcrack will 

blunt and a void will form. Void formation is not considered to be able to initiate 

a cleavage fracture. Therefore cleavage fracture initiator distribution is affected 

by void formation, causing a conditional probability for cleavage initiation 

(Pr{I/O}).  

The condition of this is that the cleavage initiator must not have become a void. 

Cleavage fracture process contains other conditional events such as 

propagation. Initiated cleavage cracks must be able to permeate through the 

matrix in order to produce a failure. So, conditional probability is that of 

propagation after initiation (Pr{P/I}).  

Misconceptions originating from the incorrect interpretation of conditions 

required for plane strain fracture toughness are to assume that only valid KIC 

results correspond to plane strain. Size requirements given in ASTM E-399, are 

assumed to be a necessary criterion for plane strain. However in reality 

requirements are intended to ensure the application of linear-elastic fracture 

mechanics, meaning that fracture toughness is estimated from load data.  
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These requirements do not affect limiting conditions for plane strain stress state 

in front of the crack. Modern finite element analyses have shown that the 

specimen thickness is able to be reduced by greater than a factor of 10 without 

losing the plane strain stress state.  

Differences between KIC and KJC are that KJC should be estimated via the elastic 

or plastic parameter J requiring measurement of load and load-point 

displacement. As long as the KJC values fulfil the size requirements given in 

ASTM E1921, they are equally significant as valid KIC values for cleavage 

fracture. In both instances, fracture toughness is affected by the statistical size 

effect. Therefore both KIC and KJC values, in the case of cleavage fracture, need 

to be analysed using the MC method. In 2007, ASTM E1921 uses modern 

understanding of EPFM, allowing determination of To using specimens as small 

as a pre-cracked CVN, with limits on the preceding deformation fracture being 

satisfied. 

2.3.4.1 Methods to determine fracture initiation 

The effects of constraint on cleavage fracture received considerable attention at 

the end of the last century. In the early 1980s, Landes and Schaffer noticed a 

statistical “size” effect for specimens failing through transgranular cleavage 

[194]. They demonstrated that large specimens fail at lower toughness values 

than small specimens.  

In 1984, Wallin and co-workers from the VTT technical research centre in 

Finland [183] combined the concept of “weakest link” size effect with micro-

mechanical models of cleavage fracture proposed by Smith [195], Knott [196], 

Ritchie [197], and Curry [198], [199]. Later a model developed by Wallin that 

accounts for the size effects providing a means to calculate statistical 

confidence bounds on cleavage fracture toughness data was introduced [200]. 

The combination of these concepts with the observation, first made by Wallin in 

1984 and reinforced in 1991 [183], [201] that all ferritic steels exhibit a common 

variation of cleavage fracture toughness with temperature, gave birth to the 

notion of a “master” transition curve for all ferritic steels. 
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The MC concept gave origin to the ASTM E1921 standard which describes the 

determination of a reference temperature, T0 in oC, which characterises the 

fracture toughness of ferritic steels that experience the onset of cleavage 

cracking at elastic, or elastic-plastic KJc instability, or both. By definition, T0 is a 

temperature at which the median of the KJc distribution from 1T size specimens 

will be equal to 100 MPam.  

The three-parameter Weibull model, the cumulative failure probability (63%), 

the scale parameter K0 (data-fitting parameter) and the inclusion of Kmin set as 

20 MPam, determine the estimated median (50% probability) KJc of the 

population tests and is expressed by equations 2-26 for CT and 2-27 for CVN.  

𝐾𝐽𝐶(50%) = 30 + 70exp [(0.019(𝑇 − 𝑇𝑜)]  𝑀𝑃𝑎√𝑚 (2-26) 

𝐾𝐽𝐶(50%) = 31 + 77exp [(0.019(𝑇 − 𝑇𝑜)]  𝑀𝑃𝑎√𝑚 (2-27) 

The reference temperature (T0), for which KJc is 100 MPam, is calculated from 

the expression in equation 2-28.  

𝑇0 = T − 
1

0.019
  ln [

𝐾𝐽𝑐(𝑚𝑒𝑑)−30

70
]  (2-28) 

Correlation between Charpy-V and T0 can be made by two equations which 

were developed by Wallin [202] (Eq. 2-29) and Sokolov [203] (Eq. 2-30). The 

latter is most commonly used in nuclear surveillance programmes. 

𝑇0 = 𝑇28𝐽 −  18 C  
(2-29) 

𝑇0 = 𝑇41𝐽 −  24 C  
(2-30) 

T0 temperature should be relatively independent of the test temperature of the 

area of interest; hence, data that are distributed over a restricted temperature 

range, namely T0 ± 50 C, can be used to determine T0. This temperature range, 

together with the specimen size requirement, provides a validity window as 

shown in Figure 2-31. 
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Figure 2-31 Schematic of Master Curve “MC” with validity window of a PCCVN 

specimen [57] 

Comparison between MC and ASME lower bounds have been carried out and it 

was found the MC described more accurately the cleavage fracture toughness 

determined for the T0 index temperature than the calculation by ASME using 

RTNDT. However, the inherent scatter that affects the DBTT regime fracture 

toughness steels determination of low cumulative failure probabilities is required 

for which neither the empirical ASME-reference nor the MC approach is able to 

deliver a good description for components dealing with lower bound calculations 

[204].  

Pallaspuro et al. [205] found that fracture toughness calculated in high strength 

steels using the correlation between the Charpy V-impact toughness transition 

temperature T28J do not follow this and the T0 temperature estimates could be 

unconservative, so there is a risk in estimating the brittle fracture toughness 

based on this parameter. 

𝑇0 = 0.8𝑇28𝐽 +  14 C  
(2-31) 
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Schindler [59], [184] has suggested that a physical lower bound exists which 

depends on the temperature and yield strength and a theoretical model has 

been proposed to fill the existing gap. The analytical approach developed 

enables the correlation of KIc from KJc for smaller samples. Conversely a 

thickness-dependent lower bound of KJc can be obtained which is provided from 

a lower-bound KIc obtained by the ASME-code. The considerations and model 

can be seen in Figure 2-32 and equation 2-32. 

 

Figure 2-32 Dependence of the lower bound of KJc on the thickness B according 

to the model [184] 

 

(2-32) 

2.3.5 Review of fracture toughness of HSLA steels 

Fractures in pipeline steel can be initiated by defects introduced into or 

developed within the material. There are two main stages of fracture process: 

crack nucleation and propagation within which two types of fracture or a 

combination of them can be present: brittle and ductile fracture.  

Fracture control involves two main issues: fracture initiation and fracture 

propagation. The former is controlled by toughness, diameter, wall thickness, 

grade of pipe, the size of defect and level of stress of the steel.  

𝐵𝑠𝑎𝑡 ≈ 𝐵𝑝𝜀 =  2.5(𝐾𝐽𝑐|𝑅𝑝)
2 

Weibull statistic 
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The latter is controlled by the depressurisation in the pipe, ductile-to-brittle 

transition temperature of the steel, the backfill conditions and toughness of 

material [15,143]. The factors that affect the toughness of material are low 

temperature (i.e. below transition temperature), high strain rate, relationships 

between strength and ductility, and triaxial state of stress (e.g. notch).  

Fracture initiation toughness temperature (FITT) and fracture propagation 

transition temperature (FTTP) are two parameters usually used to assure that 

the pipeline has sufficient resistance to the presence of flaws in the pipeline 

[206,207]. Experimental determination of fracture toughness is considered to be 

an important and critical aspect in the application of structural integrity 

assessment of components exposed to a continued load and/or harsh 

environment.  

Also toughness plays an important role in material characterisation, 

performance evaluation and quality assurance of engineering structures, piping, 

tanks, vessels, automotive, ship, aircraft and pipelines. The relationship existing 

between theories and experimentation for fracture toughness analysis based on 

fracture mechanics concepts are presented schematically in Figure 2-33. 

 

Figure 2-33 Interaction of different theories and approach for fracture mechanic 

analysis[208] 
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Evaluation of stress intensity factor, K, or elastic energy release rate G, the J-

integral, the crack tip opening displacement (CTOD), and the crack tip opening 

angle (CTOA), are considered to be the most important parameters to evaluate 

fracture toughness. Conversely impact toughness is an expression used to 

define the energy values that can be obtained from CVN and DWTT. J-integral, 

CTOD, CTOAD and CMOD were developed especially to measure toughness 

of materials presenting a ductile fracture. Also, stress intensity factors (K) are 

selected to determine the critical plane strain stress intensity factor (KIc), but 

there are some issues in terms of size of specimen, costs and functionality. 

However, the aforementioned drawbacks could be resolved by DWTT and 

Charpy V tests [209–211]. 

The former test ensures the material is not brittle (85% shear area) and the 

latter is to ensure the steel has sufficient ductility. A minimum toughness is 

required to prevent brittle fracture which can be achieved if the CVN value is on 

the upper shelf of the transition curve (Figure 34). According to the specification 

of API 5L [67] an average of the impact energy is required to be 68 J (minimum 

27 J in the L-T notch direction and 41 J in the TL at 0°C) using standard CVN 

samples for pipelines with 16-20 mm thickness. 

 

Figure 2-34 Schematic illustration of fracture toughness in terms of Charpy 

energies and their correspondence regions as function of temperature [212] 
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However, this value could be different when PCCVN samples are used. If the 

requirements of DWTT and CVN are met, then brittle fracture can be prevented; 

however, it does not prevent the cause of a ductile fracture. DWTT and CVN 

cannot be considered as direct measurements of toughness of material, making 

both unsuitable for evaluating this parameter on materials. The main reason is 

due to the small scale specimen that is used, as accuracy and conservative 

predictions cannot be obtained from them [213]. A large amount of correlation 

with full scale has been done for relationship behaviour between DWTT and 

CVN.  

Maxey [214] developed an equation which used parameters such as the hoop 

stress at failure, internal pressure level at failure, flow stress of the material, 

folias correction, radius of pipe, wall thickness, length of through wall flaw, CVN 

shelf energy, fracture area of Charpy specimen and Young’s modulus to predict 

fracture initiation. PRC-Battelle, AISI, British Gas, Japan, CSM (Italsider) 

Mannesmann have developed formulae to predict propagating failure arrest, by 

CVN energy [75]. Nowadays, one of the concerns with high pressure gas is 

RDF propagation which is considered to be the fracture mode, instead of CO2. 

The Battelle Two Curve Method is the most used methodology for predicting 

crack initiation prevention [46,71] as can be depicted in Figure 2-35. 

 

Figure 2-35 Battelle Two Curve Method [15] 
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Andrews and Batte [215] described how DWTT has been shown to be 

conservative compared to the full scale pipe burst (West Jefferson) test as 

shown in Figure 2-36. The results of Charpy, DWTT and West Jefferson 

demonstrated that the behaviour of HSLA X100 is similar to that of a lower 

grade pipeline and that the same criteria for brittle fractures resistance can be 

applied. 

 

Figure 2-36 DWTT and Charpy transition curves and West Jefferson test results 

for X100 pipe [215] 

However, Demofonti et al. [216] used the value obtained from CVN for arresting 

ductile fracture propagation with the Battelle simple equation and TCB 

approach, which is a predictive method for medium high strength steel 

pipelines. They concluded that this is a highly questionable extrapolation of 

arrest energy by BTC from lower to higher grades of pipeline, and suggested 

the application of a correction factor, as is presented in Figure 2-37 and Figure 

2-38.  

Barsanti et al. [71] conducted an investigation to test high strength pipelines of 

X80 using the BTC method to predict energy arrest, which is presented in 

Figure 2-39. It was found that the BTC method is not applicable for this material. 

Even though the correction factor was introduced for compensating the arrest 

energy, it was still not easy to determine in X100 HSLA steels. 
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Figure 2-37 Charpy energy vs. Predicted Battelle Simplified Equation [216] 

 

Figure 2-38 Charpy energy vs. Predicted Battelle Two Curve Approach [216] 

 

Figure 2-39 Predicted arrest energy on high strength linepipe by BTC [71] 
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Higuchi et al. [54] proposed a new concept of crack arrestability and developed 

a new method based on DWTT and Charpy. Although DWTT and Charpy 

energy are not lineal (Figure 2-40), they proposed converting absorbed energy 

from CVN to a modified DWTT method. Pre-crack DWTT energy is proposed as 

the best indicator to express fracture resistance propagation. 

 

Figure 2-40 Relationship between DWTT and Charpy energy [54] 

The model was developed by introducing new parameters in order to 

compensate for the size effect on fracture velocity. Comparison of the accuracy 

of the crack velocity prediction on HLS steel by BTC, HLP and Sumitomo 

methods is presented in Figure 2-41. There is an indication that Sumitomo’s 

model prediction is more reliable than the others; however, this model is only 

applicable for the transportation of natural gas by pipelines at a higher pressure. 

 

Figure 2-41 Comparison of the accuracy of the crack velocity prediction by each 

equation [54] 
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Cosham et al. [15] studied the decompression characteristics of CO2 and its 

implications for fracture control when impurities are added. It was found that 

CO2 has highly non-linear thermodynamic properties which suggests that in 

increasing the pressure its behaviour is separated from ideal gas behaviour. 

Thus, after careful consideration, the trends observed for CO2 are not the same 

as those for natural gas. Furthermore, impurities could increase the saturation 

pressures which require the highest toughness of material, which can be seen 

in Figure 2-42. 

 

Figure 2-42 Theoretical decompression curves for pure CO2 and pure CH4 [46] 

Variations in microstructure have an important effect on the fracture toughness 

of material. Several investigators have reported fluctuations and non-realistic 

values of KIc in the case of HSLA steels, C-Mn microalloys steels and C-Mn 

steel manufactured by HT methods. It was found that when the plane strain 

fracture toughness is increased the impact toughness decreases which is 

contrary to the relationship between grain size and toughness [86]. Possible 

mechanics could be present, such as inter-lath austenite, elimination of twinned 

martensite plates, changes in the morphology of inclusions, and second phase 

particles and effects in the notch tip.  
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A study of the effect of microstructures on fracture toughness in API X70 was 

conducted by Shin et al. They analysed that the correlation between 

microstructure and low-temperature toughness has been limited to evaluate 

DBTT and energy absorber from Charpy values. However, no effects have been 

studied regarding the microstructure, grain size, and test conditions of DWTT 

and CVN. In this way, Das et al. [78] found that precipitates and microstructure 

have an influence on the mechanical properties of the material, and ageing is 

related to stretch zone width (SZW) and the critical crack extension (Figure 

2-43).  

 

Figure 2-43 Fractography  of fracture surface on HSLA steel showing the 

stretch zone region [78] 

Several investigations have been conducted to explain the causes of abnormal 

fracture appearances (AFAs) in DWTT and CVN where variables such as notch, 

thickness, crystallographic texture and microstructure were studied [217–222]. 

The AFAs of DWTT have been classified into three categories according to the 

causes of cleavage fracture appearance on the fracture surface. Type I can be 

affected by the rolling supports of the test machine. Type II depends on sharp 

notch. Five different configurations were investigated: PN (pressed notch), PC 

(pre-cracked), LC (Lateral compression), Chevron notch (CN) and the so-called 

“weld notch” (WN) [221,223]. 
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It was concluded that the variety of ductile to brittle transition is significant with 

the type of notch evaluated. Better results were obtained with LC and WN 

configurations. Type (III) is affected during crack propagation and it is 

impossible to avoid or modify. Similarly the phenomenon was analysed by Yang 

who determined that two types of fracture can be found due to excessive 

compression deformation and increasing of the thickness locally. The third type 

is a result of its own material [224]. It can be seen in Figure 2-44. 

 

Figure 2-44 The AFAs in DWTT (a) type I, (b) type II and (c) type III [224] 

Shin et al. [218] studied the separation phenomena occurring during the Charpy 

test of HSLA X80 steel. It was found that bainite elongation was the main cause 

of this phenomenon, followed by high work hardenability. The length and 

number of separations depended on fluctuations of temperature. Figure 2-45 

shows the surface features determined at lower temperatures. 

As discussed before, strength and toughness in the longitudinal direction is 

much lowers that transversal orientation. For example, Ju et al. [225] found a 

difference of about 220J when samples of X65 were tested in both longitudinal 

and transverse directions. Similar steel was studied by Oh et al. [226] but the 

energy value at the same temperature (-60°C) was 100J. 
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Figure 2-45 Charpy impact specimens fractured at -140°C to -20°C [218] 

As known from the literature, fracture toughness is dependent on temperature 

for many ferritic materials. Parameters such as strain-rate, thickness, 

microstructure and notch acuity have effects on fracture toughness and shifting 

CVN transition temperatures (Figure 2-46).  

 

Figure 2-46 Schematic variation of KJc/KIc along with temperature for different 

thickness [227] 
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In fact, there is a big difference between CVN and valid fracture toughness (K, 

CTOD and J). The standard Charpy sample is 10x10x55 mm with a blunt notch 

of 0.25 mm radius while the latter requires a sharp notch introduced by fatigue 

pre-cracking and large samples to meet plain-strain requirements. 

To overcome difficulties associated with the Charpy samples’ dimensions and 

test constraints, some correlations are now in place to associate Charpy energy 

with fracture toughness from “non-standard” Charpy specimens such as: side-

grooved, quasi-static 3PB, sub-size specimens, fatigue pre-cracked specimens, 

instrumented impact machines and combinations of them. In terms of fatigue 

pre-cracking, this offered the opportunity to give an alternative solution as this 

method increases the constraints on root notch when the Charpy specimen is 

fractured.  

The sharper crack tip increases the level of tensile stress at the blunt end and 

also reduces the energy required to initiate crack propagation. This results in a 

lowering of the upper shelf energy of the material and shifts its transition 

temperature upward. Thus, a pre-cracking Charpy test could simulate the 

conditions through which an existing sharp crack extends. By using an 

instrumented machine or performing the test under quasi-static loading, the 

load-time displacement could be obtained and fracture toughness could be 

calculated by J-integral approximation [227]. However, Robinson and Tetelman 

[228] carried out an investigation which concluded that the equivalent energy 

obtained from non-standard pre-cracked specimens produced poor correlations 

and overestimated KIc by up to 40%. 

Server and Tetelman [186] determined KId from pre-cracked Charpy samples 

using an instrumented machine and compared these data with valid static and 

dynamic fracture toughness on A533B steel from two researches. Their study 

concluded that by increasing the loading rate, fracture toughness decreases 

due to strain rate sensitivity of the yield stress. However KId value shows good 

agreement with CT data, as presented in Figure 2-47.  
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Figure 2-47 Comparison of static and dynamic fracture toughness as a function 

of temperature by PCCVN specimens [186] 

Transferring material toughness values is still a key issue in applications of 

fracture mechanics to assess the integrity of structural components. For 

pipelines or structures manufactured using low carbon steels, brittle fracture 

triggered by transgranular cleavage in the DBTT region represents a potentially 

catastrophic failure mode. Due to the highly localized character of the failure 

mechanism, the cleavage fracture toughness exhibits a strong sensitivity to the 

local stress and deformation fields. 

2.4 Residual Stress 

Residual stresses (RS) are those which remain in a body under static 

equilibrium when all external forces (surface tractions and body forces) are 

removed. These stresses can act alone in a specimen or in addition to applied 

stresses on the component. In metal structures, residual stress fields can be 

generated sporadically, by various processes in the manufacturing of materials 

and joining of components, based on mechanical changes to the microstructure 

during these processes.  
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It is shown in Figure 2-50. These include, but are not limited to, hot and cold 

working, rolling, bending, forging, casting and welding processes. It should also 

be noted that residual stress fields can also be induced into a metal specimen 

and can be used to increase the material/ component’s resistance to 

failure/fracture. 

  

a) Schematic thermal process  b) RS from rolling method 

Figure 2-48 Residual stresses’ origins by thermal and mechanical processes 

[229] 

Depending on the nature of residual stress fields, that nature can be a beneficial 

or a destructive feature in a component, i.e. residual stresses can be either 

compressive or tensile in nature. Normally, tensile stress fields are deemed to 

be destructive and can result in greater likelihood of fatigue failure, whereas 

compressive stress fields act against tensile loads and reduce the likelihood of 

fatigue.  

2.4.1 Origins of residual Stress 

The origins of RS are considered to be the result of size misfits within the 

material. Such misfits may extend over a long or short distance, describing 

stresses by their characteristic length, l0 , which is the length over which the 

stresses equilibrate [230–232]. Table 2-5 and Figure 2-49 show the 

classification in terms of length.  
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Table 2-5 Classification of RS based on the length, l0 

Type stress Scale level length 

I ~Structure Macro l0I 

II ~3 t0 times of grain size Micro l0II 

III < grain size Atomic l0III 

 

Figure 2-49 Classification of RS based on the length of scales [230] 

The misfit that causes or introduces residual stress is induced in various ways. 

Non-uniform plastic flow, thermal gradients steep and phase transformations 

are the most common sources of stress, as is presented in Figure 2-50. RS can 

be defined as either macro or micros stress which should be present in either a 

structure or component.  

 

Figure 2-50 Residual stresses’ origins and classification depending on the level 

[230] 
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Macro stresses defined as Type I RS vary within the bulk of the component in a 

range further ahead than the grain size. Micro residual stresses are a 

consequence of microstructure variations and can be classified as Type II or III. 

Type II is presented at the grain size level, while Type III is generated at the 

atomic level. Micro RSs can change the sing and/or magnitude over the grain 

size length. As tensile/compression RSs are both presented (self-equilibrating), 

their determination is not particularly easy. Quite a wide range of techniques to 

determine the residual stress area is available, classified as destructive, semi-

destructive and non-destructive. Some are applicable on real components or 

structures while others suit a laboratory scale. As a result, more realistic 

information becomes available and their combination will be more suitable for 

structural integrity assessments. 

2.4.2 Methods to evaluate residual stress 

The effect of residual stresses and the associated consequences are commonly 

used to explain unexpected engineering failures in components. As a result, the 

study, measurement and understanding of residual stress fields have become 

of greater importance in recent years in an attempt to quantify stress fields. 

Consequently, residual stresses can affect structural behaviour and it is 

imperative that residual stress fields can be visualized measured and relieved 

or induced based on the requirements of the engineering application.  

Methods developed to measure residual stress are categorized as destructive, 

semi destructive or non-destructive, as summarised in Table 2-6. Measurement 

and understanding stress field behaviour will facilitate better design practice 

against static and dynamic loading and will aid in predicting structural failure 

and the assessment of structural integrity. Destructive or semi destructive 

techniques involved removing partially or completely material to determine the 

relieved residual stress. Non-destructive techniques are usually centred on the 

diffraction measurement of the lattice parameter that is related to measuring the 

elastic strain of the specific atomic lattice planes of the stress that is present 

[233–238].  



73 

Table 2-6 Methods to evaluate residual stress 

Category Technique 

Destructive 
Sectioning technique 

Contour Methods 

Semi-destructive 

Hole-drilling technique 

Ring core method 

Deep Hole method 

Non-destructive 

Barkhausen noise 

X-ray diffraction method 

Neutron diffraction method 

Ultrasonic method 

Magnetic testing method 

Differences between the unstressed and deformed lattice are characterised by 

the (hkl) parameter from their difference residual stresses  are determined by 

Bragg’s equation. Except for techniques such as diffraction, which selectively 

samples “special” grains (i.e. those correctly oriented for diffraction), the 

sampling gauge volume used is usually significantly larger than the grain size 

which means that the Type I macrostress is always measured. 

 

Figure 2-51 Schematic of the current techniques available to measure residual 

stress in terms of penetration and spatial resolution [238] 
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Figure 2-51 provides a comparison of the corresponding spatial resolution of 

destructive and non-destructive methods to measure residual stress fields. 

Even though there has been immense progress achieved in recent decades to 

develop methods oriented to determine residual stresses, extensive work is still 

required to improve efficient and cost-effective methods, analysis and 

technologies to obtain a more realistic spectrum of material residual stresses 

redistribution. 

2.4.3 Neutron diffraction 

Diffraction is perhaps the most important non-destructive resource for 

determining residual stress fields within crystalline materials and engineering 

components. The neutron diffraction measurement technique permits an 

accurate map of the stress fields within a relatively thick component which 

possesses a crystalline lattice. Despite the high cost and limited accessibility to 

test equipment (test equipment requires specialist application and is restricted 

to special testing facilities), the neutron diffraction technique is emerging as the 

most attractive stress field measurement method.  

The strains in a specimen are calculated by the changes within the lattice of the 

material. This is represented by the relationship between the wavelength of the 

emitted radiation and the distance between selected lattice planes in the 

specimen microstructure. The stresses are then calculated through the 

incorporation of the elastic properties of the material given by Hooke’s law. A 

sample to be examined is placed in a beam of thermal or cold neutrons and the 

intensity pattern around the sample gives information of the structure of the 

material.  

The diffraction angle and wavelength of the maximum peaks can be expressed, 

in general, using Bragg’s equation (Eq. 2-33): 

 sin2dn   (2-33) 
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Where d is the lattice spacing,  the angle between the wave vector of the 

incident plane wave, ko, and the lattice planes,  its wave length and n is an 

integer, the order of the reflection. This equation is the basis of all diffraction 

measurements of lattice spacing and hence of strain in polycrystalline materials. 

In an unstressed material the lattice spacing is a constant; however, the lattice 

spacing can vary according to the applied stress as a result of elastic 

deformation (Figure 2-52).  

 

Figure 2-52 Schematic representation of Bragg’s diffraction [239] 

From Figure 2-52, the interplanar spacing, d, can be determined if the 

wavelength of the incident beam is known, by measuring the diffraction angle. 

Thus, the elastic strain change in the material, with the introduction of residual 

stresses, can be calculated by equation 2-34. 

dod zyxzyx /),,(),,(   (2-34) 

The relations between normal strain and normal stress components are 

expressed by Hooke’s law when the material is assumed as elastic, isotropic 

and homogeneous. The stresses can be expressed in terms of strains. 

Therefore, the value of strain direction calculated from equation 2-34 is 

substituted in equations 2-35, 2-36 and 2-37 to solve the system, stress 

components are given, where 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧 is the longitudinal, transverse and 

normal residual stress depending on which direction of stress is to be calculated 

and the process or method used to introduce residual stress.  
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For example, in the cold rolling approach, all the directions are utilized as a 

result of the effects or variations that the process could impose on the material. 

The values of the constants are 𝐸 and 𝜈 (the material’s plane-specific Young’s 

modulus and Poisson ratio, respectively). 
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2.4.4  Incremental hole-drilling 

The incremental hole-drilling (IHD) technique initiated by Mathar in 1933 [240] is 

classified as a material-removal approach to quantify residual stresses, 

particularly in structures or components manufactured from metallic materials. 

This approach is referred to as a semi-destructive method which determines the 

macro residual stress of a linearly elastic material. It is considered to be a 

simple, inexpensive, reasonably accurate and reliable technique when it is 

implemented correctly. Hole-drilling can provide the residual stress distribution 

across the thickness in magnitude, direction and sense. Once the small hole is 

drilled the damage caused to the specimen is often tolerable or repairable [241]. 

Important improvements were introduced during the middle of the last century, 

for example, the introduction of electrical resistant strain gauges by Soete and 

Vancrombrugge in 1950 to measure released strains more accurately [242]. As 

a consequence, hole diameters could be considerably reduced. Soete and 

Vancrombrugge also realized the necessity of considering the integration field 

of strain gauges instead of the radial centre line or the centre point.  
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In order to determine residual stress depth distributions Kelsey [243] developed 

the incremental evaluation formalism in 1950, assuming that released strains 

can be assigned to the removed material increment exclusively. The formalism 

by Kelsey was modified in 1996 by Kockelmann and Schwarz [244], called the 

differential method. In 1966 Rendler and Vigness introduced the low-speed 

drilling technique and defined the geometry of the strain gauge rosette making 

the method easily and methodically reproducible to determine the magnitudes 

and principal directions of the at the hole position [245] .To prevent the 

induction of additional stresses as a consequence of machining effects, in 1980 

Flaman [246] introduced high speed orbital drilling instead of low speed drilling, 

results that were confirmed by Yavelak [247]. 

Figure 2-53 sketch the ICHD principle to evaluate residual stress. Basically, the 

hole-drilling method involves drilling a small hole of diameter d0 to a depth of up 

to 1.5 times its diameter at the location of a stressed material. The hole is drilled 

in steps and for each hole-depth, z direction, residual stresses are released and 

the corresponding strains on the surface are measured using three strain gauge 

rosettes which are bonded around the hole on the surface. It is only possible to 

measure the two in-plane components of the stress field and the stress profile 

measurement is dependent on the thickness of the sample. Once the drilling is 

completed and strains recorded, the residual stresses are calculated from 

equations that use appropriate calibration coefficients obtained by finite 

elements.  

Improvements to eliminate experimental errors measurement was introduced by 

Bijak-Zochowski [248] using an integral method. Lately Schajer, based on the 

fundamental work of Bijak, developed an evaluation formula to determine 

residual stress depth distribution, known as The Integral Method [249,250] 

which is contained in ASTM E 837 since 2008 [251]. In comparison with the 

differential method, this formalism can only be carried out on the basis of 

numerically computed calibration coefficients. However, integral formalism 

considers strain releases due to changes in stiffness of the hole for material 

increments which have already been removed in previous steps.  
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Figure 2-53 ICHD principle to estimate residua stress 

Thin specimens are considered to possess a uniform stress profile and the 

through hole-drilling method is normally employed. For thick specimens with 

non-uniform stress profiles, the blind hole-drilling method is used, namely 

Incremental Centre Hole Drilling (ICHD) [241,251,252], as shown in Figure 2-

54a and Figure 2-54b, respectively. 

The theory of elasticity is usually utilised to correlate the strain relaxation and 

the residual stresses existing prior to hole-drilling. Thus there is a probability 

that local yielding presented due to stress concentration in the proximities of the 

hole should affect calculations of the RS.  
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a) Uniform stresses  b)Non-uniform stresses 

Figure 2-54 Schematic representation of hole geometry and residual stress 

distribution [251] 

If RS reaches a yield strength value circa 60%, the effects become significant 

[253,254]. According to [245,255–257] residual stresses of 70% yield strength, 

an error of 15% can be expected in the stress calculation. An overestimation of 

20% for residual stresses reaching 90% yield strength is given in [258].  

The measurement of in-depth non-uniform residual stresses requires 

incremental drilling. Currently, four different methods are used to calculate non-

uniform residual stresses: the integral method [248,250,259,260], the 

incremental strain method [243], the power series method [261] and the 

average stress method [262]. 

The influence of calculation procedures on residual stress results has been 

analysed by several authors such as Schajer [261] and Zuccarello [263] using 

the finite element method. Schajer, for example, concluded that the integral 

method is a good stress evaluation method when strong stress gradients are 

present. However, this method implies very precise measurements of relieved 

strains and depths for each incremental step.  

Calculation results are very sensitive to measurement errors because of 

propagation effects [255,264–269]. Error sensitivity is proportional to the 

number of hole depth increments (the inverse is true for the power series 

method) [270,271].  
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For this reason, the integral method should be used with a few large depth 

increments. From a comparison of residual calculation procedures and the 

introduction of new methods, it has been concluded that the differential method 

and the integral method are the most suitable for the analysis of complex 

residual stress states[272]. 

2.4.4.1 Residual stress calculation by the integral method 

Methods for measuring through-thickness profiles of residual stress in materials 

typically involve measuring surface deformations in a sequence of steps as 

stressed material is incrementally removed. Examples of such techniques are 

hole-drilling [273], slitting [274] and layer removal [275,276].  

Evaluation of the through-thickness stress profile from the measured 

deformations requires the solution of an inverse equation [277]. Such 

calculations are well known to be ill-conditioned, causing amplification of 

modest measurement errors into relatively larger errors in the evaluated 

stresses.  

This error amplification places severe demands on the quality of the 

measurement technique to ensure that stress evaluation errors remain within an 

acceptable range. Care must also be taken with the mathematical method used 

to evaluate the residual stress profile from the measured data. Numerical 

techniques have been developed to reduce the effects of measurement errors 

through data averaging [261] and regularization [277]. 

During the hole-drilling process, removal of material from the first drilling 

increment results in surface strains (at the gauge) that relate directly to the 

residual stresses relieved at the hole boundary within that increment. Removal 

of material from the second increment produces two effects. Firstly, the stiffness 

of the structure is changed such that there is further relief of stresses within the 

stratum of material corresponding to the first increment, producing a strain 

change at the gauge.  
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Secondly, stresses relieved at the hole boundary of the second increment 

produce an additional strain change at the gauge. Thus, even if the second 

increment contains no residual stress, any stress within the first increment will 

produce a change in strain at the gauge as the second increment is drilled. 

 

Figure 2-55 Cross section of the hole varying with the depth (left). Physical 

interpretation of matrix coefficients for the hole-drilling method (right) [235] 

Accordingly, different sets of coefficients are required to relate the surface strain 

changes to residual stresses for each of the stress depth and hole depth 

combinations shown in Figure 2-55. This example is given for four calculation 

increments for the ā coefficients; the �̅� coefficients are arranged and calculated 

in a similar manner. To calculate the residual stresses from the relaxed strains, 

Schajer [249,250] proposes the following steps:  

 The hole should be produced with many small drilling increments so that the 

resulting strain data can be smoothed or filtered to reduce noise. 

 With a smaller number of calculation increments, combination strains p, q 

and t are calculated from the smoothed strain data. 

 Cumulative strain relaxation functions (A and B) for the measured hole 

diameter are calculated, by interpolation, from the sets of triangular matrices 

given in [249] and [251]. 

 Coefficients ā and �̅� are calculated directly by subtraction of adjacent 

elements in the cumulative strain function matrices. 
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 Stresses P, Q and T are calculated for successive increments using the 

relationships listed below: 

�̅� P = pE / (1 + ) (2-38) 

�̅� Q = qE (2-39) 

�̅� T = tE (2-40) 

The combination of the pressure stress P, Q and T the Cartesian stresses are 

calculated as, x, y and xy. The principal stresses and the direction are 

computed by equations 2-41 and 2-42. 

(max), (min)= P +/- Q2 + T2 (2-41) 

= ½ arc tan (-T/-Q) (2-42) 

A positive value of , for example b = 30°, indicates that max lies 30° clockwise 

of the direction of gauge 1. A negative value of , say b = –30°, indicates that 

max lies 30° counter-clockwise of the direction of gauge1. 

2.5 Structural integrity assessments  

The integrity of structures used in the oil, gas and liquids fields is an important 

issue to prevent failure or catastrophic accidents, especially in pipelines, which 

are the method widely used for low cost and safe transport of hydrocarbons or 

products. There are several methodologies and procedures for assessing the 

significance of defects, which depend on the application [278].  

To characterise the remaining strength of pipelines with corrosion defects of 

both through and part wall, three methods exist. The most popular is 

ANSI/ASME B31.G and modified ASME B31.G which include an effective area 

method commonly known as RSTRENG [279,280]. A new assessment was 

developed by DNV under the denomination of DNV RP F101 [281]. This method 

is very similar to ASME B31.G and modified ASME B31.G with the difference 

that flow stress is taken from the ultimate tensile strength and estimation of 

curve tension-deformation. Nowadays, this method has higher acceptance for 

corrosion assessment in modern pipeline steels. 
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The procedure API RP 579 [282] has a specific application for equipment in the 

petroleum and chemical industries. The methodology addresses flaws from 

pressure vessels, piping and tanks, and evaluates integrity and the remaining 

life of components using analytical procedures, material properties and NDE 

guides [37]. Other methods for assessment purposes are: BS 7910, PDAM, R-

6, FITNET-FFS and SINTAP which have been established with the objective of 

analysing the fracture behaviour of pipelines using FFS assessments [35–

37,283–286].  

Figure 2-56 show two approaches that have been established. The first uses 

the concept of a FAD and the second scheme uses a CDF curve. The bases of 

both approaches are mechanics criteria and plastic limit analysis. The fracture 

mechanics analysis involves the evaluation of the CDF, the fracture toughness 

or fracture resistance of the material and the geometry of the component.  

  

(a) FAD 

 

(b) CDF 

Figure 2-56 Approaches for the assessment of flaw [39,287] 
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The crack tip loading is evaluated by elastic-plastic concepts and depends on 

the structure, crack size and shape, tensile properties and loading. Both 

approaches are based on elastic-plastic concepts; however, their application is 

simplified by the use of elastic parameters. The analysis can be made by using 

either of two methods which obtain identical results; however, the most popular 

assessment for fitness for purpose is the FAD. For the application of an FFS 

procedure to either evaluate a defect or optimise a design, the FAD requires the 

following information: 

 Description of mechanism of damage 

 Determination of operating conditions, load/stress analysis 

 Flaw characterisation (localization, size-NDE) 

 Material properties including environmental effects. 

2.5.1 R6 Defect assessment approach 

Since 1976 the R6 code approach has been constantly developed [288] and is 

presently at Revision 4. Fractures R6 assess failure of the structure or 

component by a linear elastic fracture and a fully plastic fracture. The former is 

controlled by local crack-tip stress-strain fields and the latter by overall 

plasticity. Previous version of R6 defined a parameter known as Sr to assess 

proximity to plastic collapse which was demarcated in terms of a limit load 

based on a flow stress and failure assessment was obtained from a strip-yield 

model.  

Recently version replaced Sr by Lr parameter to define the curve more properly 

taking into account stronger strain hardening materials such as austenitic 

steels. To normalised limit load with a cut-off in the failure assessment curve for 

plastic collapse Lr uses the 0.2 % proof stress allowing that some material 

hardening beyond yield can be included. However Sr has been retained with 

specific application in assessing materials particularly relevant to UK nuclear 

power plant. Other major changes introduced and ongoing area for future 

improving in the R4 are described in detail in references [283,289,290]. 
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2.5.2 The FAD approach 

There are usually assessment modules to be applied in different fields such as 

fracture, fatigue, creep, corrosion. The FAD method provides three levels of 

assessment (i.e. 1, 2, 3). The classification is according to the material 

properties available for FFS assessment. FAD axes are presented as 

dimensionless parameters known as Stress ratio (Sr), Load ratio (Lr) and Stress 

Intensity ratio (Kr) [291,292]. These parameters can be calculated using the 

relations given in the following equations: 

mat

I
r

K

K
K   (2-43) 

)(/ YlPPLr   
(2-44) 

Where KI is the stress intensity factor at load P, Kmat correspond to fracture 

toughness, PL is the limit load for a flow stress equal to the material's 0.2% 

proof stress, y. Stress intensity factor can be obtained by; 

aYK I  )(  (2-45) 

There are three options to assessment failure of structure within R6 which 

defines the type of analysis, shape of the FAD curve and material properties 

requirement. The basic option requires only material properties (tensile and 

fracture toughness) and simple calculations of Kr and Lr are made. 

Stress intensity factors, K, and limit loads, PL, are available for many 

components in books or may be evaluated by diverse stress analysis 

approaches, including finite element methods. The option 1 to define f(Lr) is 

obtained by:  

  )65.0exp(7.03.014.01)f(L 62

r rr LL   (2-46) 
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Where limit is provided by the plastic collapse cut-off and u is the ultimate 

stress: 

Lr < Lr
max =1/2 (1+ u/y) (2-47) 

Level 1 required basic material information. If a selection of materials detailed 

stress-strain is choice at option 2 is assumed which is independent of load and 

geometry. Option 3 curves are characterised to be depended on material, crack 

size and geometry and required an explicit J-integral analysis.  

Increasing type the analysis conservatism is reduced in an assessment but 

more analysis and data are required which obviously increased the cost to 

perform this type of analysis. When plain strain conditions are met, KIc can be 

expressed as: 

aYK Ic  )(  (2-48) 

However if plain strain is not gathered Kmat could be used instead of KIc; where 

Kmat is the fracture toughness determined either by J-integral or CTOD 

approach. 
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If primary and secondary stresses are combined in the failure assessment 

curve, Kr = (Lr), Lr depends only on the primary stresses not on any secondary 

load (residual or secondary stresses). Contributions of primary and secondary 

stress are included in Kr where both primary and secondary stress interaction is 

covered by means of a factor denoted as  (R6 Revision 3) which was modified 

in revision 4 by introducing the parameter V [290].  
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V is a multiplication factor used to treat interaction between primary and 

secondary stresses. Both expressions are as follows where p and s 

superscripts denote primary and secondary stresses: 
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Figure 2-57 represent the assessment points Lr and Kr are plotted on the FAD 

and compared with the bounding curve defined by Kr = (Lr) (See). 

 

Figure 2-57 The R6 FAD, presenting the level 1 assessment curve. A typical, 

cut-off Lr is noticeable  

If the point lies within the curve the component can be assessed as safe; 

however, if the point lies outside the curve, the criterion is changed and the 

point is determined as unsafe. Refined analysis or remedial action should be 

introduced to assess again the structure and determine its condition.  
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3 EMPIRICAL PARAMETERS 

3.1 Introduction 

This chapter is focused to obtain relevant experimental data of three pipeline 

steels: API X100, X70 and X60. Seven methods were selected as the most 

relevant within the scope of this project related to assess the integrity of pipeline 

steels exposed to flue-gas CO2 environments. Work undertaken is summarised 

in Figure 3-1. A description of the importance of each approach and its 

contribution to this investigation is highlighted as follows: 

 Material and dimensions (Section 3.2): This section describes the type of 

materials & dimensions including determination of the rolling direction. 

 Metallurgical characterisation (Section 3.3): It is imperative to characterise 

the metallurgical composition of materials so that chemical reactions and 

micromechanical mechanism can be properly considered. 

 Aging test (Section 3.4): It have been discussed by some authors that 

exposure of steels in a flue gases atmosphere containing free water, 

impurities and supercritical CO2 has a large impact on the mechanical 

behaviour of the steel [33,90,93,293,294]. Therefore, this aspect has been 

considered here in order to establish the effect of flue gases and moisture in 

supercritical CO2 on mechanical and toughness properties of HSLA steel. In 

the literature the majority of tests carried out in this area have been 

performed under static conditions; here a dynamic setting has been used as 

a first approximation to simulate pipeline flow conditions. 

 Mechanical properties evaluation (Section 3.5): The evaluation of the 

structural integrity by FAD considers two dominant mechanisms. Tensile test 

data evaluated at low and room temperature was important to evaluate more 

accurately the plastic collapsed aspect of the FAD curve as Lr is assessed 

from realistic values covering interaction of primary load stress on fracture. 

 Fracture toughness evaluation (Section 3.6): Toughness depends on 

temperature and material properties. Evaluation of these properties 

assesses materials from a fracture mechanics perspective allowing 
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determination of driving force in materials change when different levels of 

plasticity are introduced due to variation of toughness by temperature and/or 

other material conditions. 

 Residual stress determination (Section 3.7): Residual stress has a big 

impact on integrity as it can be induced during service or manufacturing 

processes. These tests allow quantification of these levels and the 

interaction with primary loads. 

 R6 code (Section 3.8): The experimentally derived parameters above and 

detailed in the following section are considered in Chapter 6 where these are 

inputs into a R6 FAD approach in order to establish a baseline regarding the 

integrity of steel used to transport supercritical CO2 with impurities. 

The core test have been structured such that the underlying mechanisms 

affecting the material, which are currently not well understood, can be 

examined.  

3.2 Material and dimensions 

The microalloyed steels used in this study were API 5L [67] specification grade 

X100, X60 and X70 high strength steel low carbon (HSLA) as-received. Steels 

X100 and X60 steels were supplied 20 mm and 9 mm thick in the form of flat 

plate. For API X70 steel, a small pipeline section, 24 mm in thickness, was the 

material used. Details of plate and pipe dimensions are showed in Appendix A.  

Details about the manufacturing method of the steels were not reported; 

however, it is presumed to be processed by thermo-mechanical controlled 

rolling (TMCP) and an accelerated cooling process (ACC). As rolling direction 

was unknown it was initially determined and once identified all the specimens 

were manufactured following the requirement of ASTM E8 [295], ASTM E23 

[180], BS EN ISO 6892-1[296] and BS EN ISO 10002-1[297] standards. 
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Figure 3-1 Flow chart of experimental work 

3.2.1 Rolling direction 

There are several methods used to evaluate the rolling direction of steels 

obtained from TMCP process. One cheaper and straightforward method is the 

metallographic approach. Basically the method involves metallographic 

preparation, then using optical microscope deformations of grain boundaries, 

banding or stretched structural phases, such as inclusions or pearlite blocks, 

are used as indications of the directional path in the rolling process. 

Samples were cut from the edge of each plate and a short pipe section, as 

shown in Figure 3-2, into 39 mm x 25mm x thickness specimens for 

metallographic preparation by mechanical method. These were cut in two 

different directions and identified randomly as longitudinal (L) and transverse (T) 

along with the central axis of the sample. Following the metallographic 

preparation steps, which are explained in section 3.3.2, the rolling orientation 

was determined in all the plates.  
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Longitudinal orientation was chosen preferentially to manufacturing all the 

samples, as this in-plane is considered to be critical due to the presence of less 

tensile and fracture toughness properties and cracks would easily grow in 

fracture in this orientation. 

 

Figure 3-2 Type of specimen used for rolling and metallographic analysis 

3.3 Metallurgical characterisation 

3.3.1 Chemical composition of HSLA steels 

Small samples were sectioned from the plates to determine the chemical 

composition of all materials in accordance with ASTM A-751 [298]. The 

chemical composition was undertaken by ESG2, using the Optical Emission 

Spectroscopy (OES) approach. Basically, the method determines specific 

constituents of steel by heating the surface of the sample test until the material 

emits light which is collected by sensors and then dispersed via a prism. The 

resultant spectrum shows the presence of specific elements by their wavelength 

which is a characteristic of each element. located 

This wavelength is measured to determine the ratio of the element to the rest of 

the alloy and calculated as the average percentage of each element present in 

the alloy tested. The weight measured percentage of each element, such as 

Carbon, Manganese, Sulphur, Phosphorus, Nickel, Cooper, Vanadium, 

                                            
2
 Environmental Scientifics Group Ltd (EG) is a company situated in Acrewood Way, St Albans, 

Hertfordshire, AL4 0JY. 
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Titanium, Niobium and traces, was made and compared with X100, X70 and 

X60 specifications in the API 5L standard.  

3.3.2 Metallographic characterisation 

Metallographic evaluation was made following the ASTM E-3 standard [299]. 

Longitudinal and transverse sections, of all three steels, were mounted in resin 

and mechanical grinding was performed using a rotating wheel covered with 

silicon carbide (SiC) abrasive papers which were ground up to 1200 grit. 

Final polishing was made with 6 m, 3 m and 1 m diamond suspension and 

finished with silica colloidal suspension 0.05 m. Polished samples were 

washed in distilled water, swabbing with Isopropyl Alcohol (ISP) and dried with 

warm air. After that, the samples were analysed without being etched in order to 

examine the presence of inclusions, oxides or phases that indicated the rolling 

path by using an optical microscope (OM). Once each sample was studied, it 

was degreased with acetone and etched for 30 - 60s using Nital solution (98 ml 

ethanol + 2 ml nitric acid) to reveal the general microstructure. Each specimen 

was again swabbed with Isopropyl Alcohol (ISP) and dried with warm air.  

A Nikon optical microscope and attached camera together with image 

acquisition software (AcQuis) was used to perform metallography analysis up to 

500X magnification both as-polished and etched samples. A scanning electron 

microscope (SEM) was used to examine the specimens and obtained the 

representative microstructure of the steels at high magnification. Electron 

dispersive spectroscopy (EDS) was used to determine the chemical 

composition of particles and second phases found on the material bulk or the 

fracture surface area. Figure 3-3 shows the Optical and SEM microscopes 

used. 
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Figure 3-3 Left: Optical microscope. Right: Scanning electron microscope 

(SEM) 

3.3.3 Fractography evaluation 

Fracture surfaces of tensile and PCCVN specimens were studied under optical 

inspection with a lower magnification to see fracture morphology differences 

between steels and conditions of tests in order to establish fracture patterns. An 

optical stereoscope NIKON model SMZ745T magnification 0.67X to 5X, 

together with a digital camera AxioCam ERc 5s, were used for this purpose.  

Scanning electron examination was performed to determine contamination or 

particles from the aging test deposited on the fracture surface. EDS analyses 

were conducted to quantify the composition of elements existing on the layer 

adhered to the metal surface, and were complemented by the XRD technique. 

The analytical characterisation was conducted using a FEI S-FEG XL30 SEM 

complemented by a DX-4EDAX system and an X-Ray diffractometer D5005 

Siemens was also used.  
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3.4 Aging tests of HSLA steels 

In spite of the complexity of CO2 systems and the lack of clarity on the 

specification or concentration limits, the main objective of this section was 

focused to integrate the specification proposed in Chapter 2, section 2.2.2 and 

exposed samples taking into account the real condition that could be present in 

transporting anthropogenic CO2. However, each test was performed changing 

the type of impurity and having constant CO2 and free amount of water. 

3.4.1 Test rig for CO2 environments 

The experimental set up consisted of a pressurised vessel with a circulation 

pump, high pressure liquid metering pump for delivering liquids (impurities), and 

gas tanks. In addition, a vacuum pump and cooling/heating system, pressure 

controller, and capture and data acquisition system were included. The ageing 

tests are based in standards, however, due to pressure conditions 

determination of pH was not measured being one of the limitations of this work 

together with monitoring corrosion by electrochemical methods. Measurement 

of corrosion rate was performed by weight loss method [300–302]. 

3.4.1.1 Geometry of the specimen 

The Super Critical CO2 Corrosion Rig (SC3) includes several coupon 

geometries such as plates, tubes, bar, precracked Charpy and tensile 

specimens. The coupons are made from API X60, X70, X100 and non-metallic 

materials (seals). Table 3-1 presents the dimensions of the samples and Figure 

3-4 shows a short arrangement used during the ageing test. Appendices H to J 

present a sketch containing details of the sample distribution for each reactor. 
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Table 3-1 Nominal dimensions of samples for the aging test 

Parameter Tube Round 
tensile 

Plate PCCVN 

Do, mm +/- 0.1 14 4 - - 

Di, mm +/- 0.1 7.98 - - - 

Width, mm +/- 0.1  - 15 10 

t, mm +/-0.1  - 2 10, 7.5 

L, mm +/- 0.1 34 28 25 55 

 

Figure 3-4 Stack of coupons distribution to be mounted on the 1” tubular reactor 

3.4.2 Experimental set up 

The SC3 dynamic flow loop consists of the following parts which are shown 

schematically in Figure 3-5:  

 Liquid CO2 & contaminants supply system. 

 Booster pump – up to 700 bar. 

 High pressure dynamic flow loop with circulation pump (0-50 g/min). 

 4 reactor, 1m length and 1”OD of the vertical sections connected in series 

with a different geometry of samples passing directly through the pipe. 

 Remote monitoring of the pressure and temperature on the rig through NI 

Labview application. 

 Analytical analyser to monitor impurities composition. 

 Drag tube method for H2S monitoring. 

Spring
Tube Plates

Non-metallic materials

Charpy coupon



96 

 Protective case to address health and safety issues. 

Prior to the aging test, all the samples were polished using finer grades of 

silicon papers up to 600 grit. The specimens were cleaned in an ultrasonic bath 

with acetone for 15 minutes and then with Isopropyl Alcohol (IPA). The samples 

were placed in a desiccator for minimum 24h to remove water and weighted 

using an electronic balance with a precision of 0.0001 mg.  

 

Figure 3-5 Schematic representation of SC3 dynamic flow loop rig 

3.4.3 Operational procedure 

The general description of the operating system is described as follows. Once 

coupons are introduced into the reactor, the CO2 source is assumed to deliver 

CO2 at 5.7 MPa and 5C. The liquid is saturated with water and is compressed 

slowly until reaching 9 MPa at the same temperature. When the pressure 

reaches above the critical pressure, the CO2 is fed with contaminants either H2S 

or SO2. The mixture is then heated to supercritical condition (45C) and the 

recirculation process starts using a pump which keeps the pressure constant.  
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Pressure and impurities composition are dependent parameters of the process. 

This means that the pressure and impurities became lower with time due to the 

consumption of components for the chemical reaction between the materials 

and the environment. 

Following standard procedures established for this work, measurements were 

made in the morning and from the readings estimated concentrate dosing was 

added (3% impurity, 97% CO2). To distribute slug concentration, a standard 

circulation of the system was made at 50 ml/gr until it reached the target 

concentration of 500 ppm.  

To get the pressure back up, 10% of CO2 was added to the mixture which was 

balanced for 15 minutes. If the concentration was close to 500 ppm, the system 

was restarted but any decaying correction was made. Variation of pressure, 

impurity concentration and temperature were monitored throughout the test and 

it was stopped once the exposure time was reached following the plan sketched 

in Figure 3-6. Then, the system was slowly decompressed and coupons were 

taken for WLC, surface and corrosion analysis. Appendix K describes all the 

experimental plans to test steel and non-metallic materials. 

 

Figure 3-6 Schematic timeline for aging test on SC3 rig 

End of exposure-1100h

400h exposure

50h exposure

200h exposure

152h exposure

50h exposure 700h exposure 1100h exposure

200h exposure 300h exposure 400h exposure

Plate and cylindrical coupons removed from each material; no replacement; seals replaced

Seals, precracked Charpy and round tensile coupons removed from each material; replaced with new coupons
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3.4.4 Evaluation of the material degradation  

Conventional methods used to monitor corrosion are based on the conductivity 

of the medium during the whole period of the test; for example electrochemical 

methods such as EI and LPR [140]. However, those methods could be 

inappropriate when applied to a supercritical fluid system due to the high 

pressure of the system. 

The weight loss method (referred to as WLC or coupons) is a common 

technique used and is easy to implement to evaluate corrosion rates. Coupons 

of metal in the shape of a strip or disk are normally exposed in the environment 

(fluids or gas). In this research the coupons used were small pipes and plates to 

be analysed using this method. WLC unexposed were weighed and after 

exposure were re-weighed. The difference in weight, time of exposure, exposed 

surface area and material density were converted to a corrosion rate using 

equation 3-1 and then plotted. This equation shows the general equation for 

calculating the corrosion rate. 

factorUnit 
 timeexposureDensity    Area

  weight)Final- weight (Initial
 rateCorrosion   (3-1) 

The surface composition of the material metallic corroded and seals were 

examined using SEM and energy dispersive X-ray spectroscopy (EDS) with a 

scanning voltage of 20 kV. A crystal analysis of the corrosion products was also 

made using X-ray diffraction (XRD).  

Corrosion products were not removed but samples were mounted, using a 

resin, on a metallographic preparation to be assessed later under a statistical 

method documented by Encinas-Oropesa, A. [303]. However, although this 

analysis is beyond the scope of this research, it is currently under review to be 

carried out. 
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3.5 Mechanical properties evaluation  

The evaluation of mechanical properties in the material was achieved by three 

mechanical approaches: hardness, tension and Charpy V-Notch (CVN) Test.  

3.5.1 Hardness  

There are different scales, depending on the material and the load applied. 

Micro hardness test corresponds to a test performed with loads less than 1 kgf 

using a square diamond pyramid (Vickers) or elongated diamond pyramid 

(Knoop). A surface quality of no less than 1 micron is required (metallographic 

finish) and the precision optical microscope is used with magnifications of 

around 100X to 400X. All the requirements follow the indications of the 

international standard ASTM E-384 [304]. 

3.5.1.1 Experimental set up 

Micro hardness tests (HV0.1) were performed on two polished cross sections of 

each material. Distributed indentations were made on each section using a 

micro hardness tester Zwick-Rowell, 0.1 kgf to 1000 kgf (Figure 3-7).  

 

Figure 3-7 Left: Microhardness test set up. Right: Indentation and measurement 

Three zones were selected and hardness profiles were performed by making a 

distributed indentations through-thickness sample (Figure 3-8). Table 3-2 shows 

the parameters used to perform the hardness tests profiles.  
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Figure 3-8 A schematic of the hardness test profile performed 

Table 3-2 Hardness test parameters 

Steel Load (g) 
Time load 

(s) 
Thickness 

sample (mm) 

Depth region (mm) 

top middle bottom 

X100 100 15 20 2 16 2 

X70 100 15 23 2.4 18 2.4 

X60 100 15 9 0.9 7 0.9 

3.5.2 Tensile tests 

3.5.2.1 Dimensions and geometry of the specimen 

Tensile tests were performed in the longitudinal direction in two geometries: pin-

load (strip) and round samples following ASTM E8 [295] and BS [296,297] 

guidance. Pin-loaded tensile samples of API X100 and X60 were fabricated with 

dimensions of 145 mm x 12.50 mm x 9 mm (Figure 3-9). API X70 strip samples 

were not machined due to a shortage of material.  

 

Figure 3-9 Pin-loaded tension test specimen  

TOP 

MIDDLE 

BOTTOM 
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Figure 3-10 Small-size round tension test specimen  

Small-size, round tension specimens 30 mm length and 4 mm diameter were 

manufactured for all the steels (Figure 3-10). All the samples were machined in 

alignment with the rolling direction. The dimensions of the specimens are given 

in Appendix B. 

3.5.2.2 Method verification of the alignment of 500 kN and 100 kN servo-

hydraulic test machines 

Misalignment can be introduced for a number of reasons, such as changing 

grips, replacement fixtures or fitting new ones. Basically, misalignment has the 

consequence of applying unwanted stresses which are put on a sample 

affecting the stress/axial distribution inside the piece.  

Two servo-hydraulic Instron machines identified as 8803L1469 (500 KN) and 

8801MTL4740 (–100 KN) capacities were used, respectively. Both load cells 

are 0.5 class and these were calibrated following procedures established by the 

ISO 7500-1 standard.  

The stress distribution was measured, on both the strip and round sample. 

Following ASTM, BS and ISO procedures, the machine and gripping system 

was fitted with a strip and round specimen for 500 KN and 100 KN respectively. 

Both were configured with a set of linear Vishay strain gauges reference CE-

06UZL-120 and strain gauges were bonded on the surface of the material using 

MBOND- 200 compound (modified alkyl cyanoacrylate).  

The strip specimen was mounted with two strain gauges, either at the top or at 

the bottom, while the round sample was bonded with two strain sensors in the 

middle of the piece mounted on each other at 180.  
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The standard suggests the use of four strain gauges for each side, but due to 

the small width section or diameter of the sample two strain gauges could be 

used. Once the strain gauges were wired with temperature compensation wire, 

these were connected to PS3 strain recorded and software was used to record 

automatically the bending strain which were converted to stress. The strain was 

measured in the longitudinal direction along with the applied load direction. 

Figure C-1 presents the set up configuration and strain gauge bounded in detail 

which was used to verify the system alignment. 

3.5.2.3 Tension and environmental test set up 

A set of strip (virgin material) and round geometry (parent and aging material) 

samples were tested by uniaxial load. The tension tests were performed under 

displacement control at temperatures of –70C, –40C, –20C and 21C  for 

both strip and round samples of virgin material three samples per datum 

obtained. Aging samples were only evaluated at –20C and just one sample 

was tested due to space constraint in the reactor used to expose the material in 

simulated flue-gas. An insulated environmental chamber was used with nitrogen 

as a cooler for the lower temperature test. All specimens were soaked at the 

test temperature within +/-1C for a minimum of 60 minutes (strip samples) and 

30 minutes (round samples) before the tension test was carried out.  

Strip specimens of the parent material were tested using a servo-hydraulic 

Instron machine of 500 KN capacities while round samples were tested using a 

servo-hydraulic Instron machine of 100 KN capacities. A calibrated Instron 

strain gauge extensometer, 50 mm gauge length, +50% –5% maximum strain, 

and 10 mm gauge length, +1% maximum strain was used to record strain 

values in the strip and round specimens, respectively.  

The former was mounted over the 9 mm thickness and the latter on 4 mm 

diameter from where strain readings were collected using Wavematrix software 

together with load and displacement values. All tests were carried out under a 

constant strain rate equal to about 3.3x10-4 s-1.  
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The yield strength was determined from the strain-stress curve at 0.2% strain 

offset stress, 0.5% extension-under-load (EUL) and proof strength for X70, 

X100 and X60 respectively. Figure D-1 presents the set up used for both 

machines. 

3.5.3 Fracture toughness tests 

3.5.3.1 Dimensions and geometry of the specimens 

Standard CVN samples were cut from the plate in the transverse-longitudinal 

orientation (T-L) for API X60 and X100, and transverse orientation (L-T) for API 

X70 steel. The notch end was manufactured using an Electrical Discharge 

Machine (EDM) and a broaching method which ensures a sharper crack tip. 

The nominal dimensions, those given in BS EN 10045 [305], BS EN 14556 

[179] and ASTM E-23 [180] standards, are presented in Table 3-3.  

Table 3-3 Nominal dimensions and tolerances of conventional CVN 

Steel 

Details on sample, mm Details on notch, mm 

H ± 0.075 W ± 0.075 L +0/-2.5 R± 0.025 a ± 0.025 
D ± 

0.025 

X100 10 10 55 0.025 2 8 

X70 10 10 55 0.025 2 8 

X60 10 7.5 55 0.025 2 8 

A sketch of geometry and dimensions is shown in Figure 3-11 showing both 

conventional and precracked specimens. Two impact test specimen 

configurations were used. For X100 and X70 a steel Charpy single-beam type A 

(1T) was machined. For X60, 3/4T a sub-size specimen was selected as the 

material available does not permit making a standard configuration. 
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(a) Conventional CVN     (b) PCCVN 

Figure 3-11 Drawing showing geometry of Charpy V-notch and PCCVN sample 

3.5.3.2 Fatigue precracking  

Simulating a natural crack by machining a notch starter does not provide plane 

strain fracture toughness conditions. The significance of precracking is to afford 

a sharper crack of satisfactory size and straightness which ensures that 

machining start notch and effects of subsequent crack growth or precracked 

load history are eliminated [306].  

Accomplishing fatigue precracking can be done at room temperature but it is 

required that the material has to be in the final heat treatment, mechanical work 

or environmental condition in which it is to be tested. Different approach can be 

used to conduct fatigue precracking such as: displacement control, load control 

or K control. Parameters as stress intensity factor (K), Kmax and K have to be 

controlled in order to prevent excessive plastic deformation at the crack tip. It is 

advised that once the advanced crack has reached two-thirds of the final crack 

length, 0.6Kmax should not be exceeded [180,306,307].  

The maximum load to be used can be calculated using an equation given in the 

ASTM E-23 standard; however, it is related to a three-point bend. For this 

research a four-point bend specimen’s equation (3-2) was used to calculate the 

maximum load as a stress intensity factor, K, function. Plotted curves can be 

seen in Figure G-1.  

)/()1(3/ 2/122 DNfaLBWKP Ic

   (3-2) 
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Where: 

P=maximum load 

Kmax=maximum stress intensity= *(2**ry)
1/2 

B=Thickness 

W=specimen width 

S= Span 

(N/D)= geometrical factor 

= Poisson’s ratio 

3.5.3.3 Fatigue precracking procedure 

Fatigue precracking was conducted by a four-point bend (4PB) configuration 

using a servo-hydraulic Instron machine model 8803L1469 500 kN capacity 

under load control (Figure 3-12). Precracking followed the procedure given in 

British and ASTM standards [180,306–309].  

  

Figure 3-12 Set up for fatigue precracking Charpy V-Notch bar. At the right 4PB 

bend rig (top) and positioned sample (bottom). 

An Instron software “Wavematrix” was used to create a method where preload, 

cyclic waveform, load amplitude and frequency parameters were introduced to 

meet the fatigue precracking criteria described in section 3.5.3.2 and 

summarised in Table 3-4. A unipolar waveform (90⁰ ) was chosen in order to 

ensure the load was always under compression from the set point (Figure 3-13).  
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(a) Types of amplitude waveform 

 

(b) Waveform starting phase 

Figure 3-13 Tri-modal waveform  

Table 3-4 Fatigue precracking steps  

Parameter Step 1 Step 2 Step 3 Step 4 Step 5 

Preload (kN) -1.8 -1.5 -1.3 -1.1 -1.0 

Amplitude (kN) 8 6.5 5.5 5.0 4.2 

Frequency 5 5 5 5 5 

To prevent any plasticity on the crack tip during fatigue, the ‘precracking 

envelope’ method was applied. This established technique is used to increase 

the load from a specified value (e.g., zero) to the load of interest in a slot of 

time. The envelope duration was set at 15 seconds, the time that the machine 

needs to reach the maximum amplitude. The advantage of this method is to 

achieve a uniform load when both starting and ending the test (Figure 3-14).  
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(a) Start envelope    (b) End envelope 

Figure 3-14 Waveform envelope for fatigue cycling 

Five steps were designed to achieve a precracking; length, time, load, position 

and numbers of cycles were recorded at each step for every sample (Figure 3-

15). Precracking was performed, decreasing the maximum stress intensity 

factor (Kmax) by using a discrete method.  

 

Figure 3-15 Fatigue precracking method per each step 

The stress intensity factor applied during the first stage of the precracking was 

maintained below 35 MPam which was gradually reduced by no greater than 

20% at each step (ash) to reach 25 MPam which corresponds to the last 0.5 

mm (af) of precracking (Figure 3-16). Fatigue precracking was conducted at R-

ratio (Pmin/Pmax) equal 0.1.  
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Figure 3-16 Kmax envelope allowable during precracking 

The crack length growth was controlled by using a visual method with a speed 

camera. Both sides of the sample were polished using emery paper 240 grit, 

400 grit and 800 grit to obtain a surface quality on which could be seen the 

crack initiation and propagation. Fatigue crack length was measured using a 

Baumer camera fitted with a Navitar lens capable of showing crack extensions 

of 0.01 mm. A light source was required in order to give plenty of illumination on 

the surface of the sample to obtain a sufficient resolution on the crack tip.  

To record the crack propagation, a software known as StreamPix, was used. A 

method (script) was set with the purpose of recording five frames per second 

every minute per each precracking step giving the ability to achieve the crack 

length resolution advance of 0.01 mm. The crack direction was chosen to be 

parallel with the rolling direction of the plate.  

Monitoring and crack measurements were made on both sides to ensure 

symmetrical crack information was gathered. If crack propagation  was irregular 

on one side, the samples were rotated to compensate and straighten the crack. 

Crack length was kept between 2.80 +/- 0.05 mm on the surface from the crack-

started notch, achieving a total crack depth of 3 +/- 0.2 mm at the centre of the 

crack front. An example of the finished fatigue precracking is depicted in Figure 

3-17.  
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(a) Pre-cracked Charpy sample  (b) Fatigue precracking (red arrow) 

Figure 3-17 Pre-cracked Charpy V-Notch bar – PCCVN 

3.5.3.4 Fracture toughness test using PCCVN 

The fracture toughness tests were performed on precracked Charpy specimens 

(PCCVN) loaded in three point bending in accordance with ASTM, BS EN and 

ISO standards [177–180,305,307–309]. Specimens were tested at 

temperatures of –196ºC, –100ºC, –70ºC, –40ºC, –20ºC and 21ºC. 

Lower temperature tests were achieved by an environmental cooling chamber 

covering the temperatures between –20ºC to –70ºC (Figure F1-b1). A 

polystyrene cooler box was used to keep samples at –100ºC and –196ºC 

(Figure F1-b2). Samples tested at -100ºC were immersed in a cryogenic bath of 

nitrogen and anhydrous alcohol liquids and tests carried out at -196ºC were 

submerged in pure liquid nitrogen. The temperature was controlled by an R-type 

thermocouple placed on the sample surface and maintained during soaking 

time and testing within +/-1ºC of the nominal value. Soaking time for all the 

samples was 30 minutes prior to testing. 

The PCCVN specimens were tested using a standard Pendulum Impact Tester 

217 Ft-lb (~300J) capacity (see Figure F1- a). A single impact load (high strain 

rate) of 5 m/s was applied and the total energy absorbed values were obtained 

from the recorded dial. Total crack length was measured by optical microscope 

and fracture surfaces analysis was carried out by OM.  
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To fit the toughness data, transition brittle-ductile behaviour Charpy energy 

versus temperature data was fitted by hyperbolic tanh function developed by 

Oldfield which is shown in Figure 3-18 and equation 3-3 [181]. 

𝑌 = 𝐴 + 𝐵 tanh[(𝑇 − 𝑇0)/𝐶] (3-3) 

Where Y is the CVN energy, T is the test temperature, A represents CVN 

energy at transition temperature T0, B is the energy jump between brittle-ductile 

plateaus and C is the temperature range of the Charpy energy transition. Those 

parameters are adjustable by regression procedures. Based on the regression 

analysis, two energy values, 28 J and 41 J, were selected and their 

corresponding temperatures determined.  

 

Figure 3-18 Fitting curve for toughness data [181] 

3.5.3.5 Post-mortem examination 

Crack length measure can be achieved by two approaches known as five-point 

or area average method [310,311]. The five-point method is characterised 

bringing acceptable results compared to the area average, as the former being 

more reliable. In this research, examination of the fracture surfaces was carried 

out by OM in order to analyse the mechanics of the fracture and/or other 

features on the fracture zone. 
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Measurement of the total crack length between the notch root and final crack 

front were made by optical microscope using a five-point average method [310]. 

The method follows the ISO 14556 [311], focusing on measurement crack 

length extension and the values obtained which can be used to establish the 

variation of toughness under impact loading rates at different temperatures. 

The approach is focused on determining the average of five measurements per 

crack length which are made at five equidistant points. The outer points have to 

be located 0.01B inward from the references lines. If measurements exceeded 

10%, the specimen was discarded (Figure 3-19).  

 

(a) Five-point average   (b) Right: Area average 

Figure 3-19 Methods to measure crack length on PCCVN specimens [311]  

3.5.3.6 Fracture toughness evaluation 

Fracture toughness evaluation was performed by using some aspects provided 

by the master curve and SINTAP approach. Firstly, correlation between Charpy 

energy absorbed and fracture toughness was performed using equations 3-4 

and 3-5 accounted by references [58,190] . 

 mMPaCVNKmat

5.019  (3-4) 

 mMPaCVNKmat

5.012  (3-5) 
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To transfer Charpy energy absorbed to fracture toughness, a different approach 

can be used such as the Marandet & Sanz correlation, Master Curve (MC), 

ASME lower-bound approach and SINTAP correlation. Each of them has a 

different scope and application; however, choosing the correct one or the most 

suitable is not an easy task. For example, MC becomes a useful alternative 

method to evaluate the fracture of ferritic steels in the DBTT range which can be 

treated as a statistical phenomenon.  

This phenomenon in turn can be described by a three-parameter Weibull 

distribution, weakest-link theory and by establishing an index temperature 

namely, T0, which is positioned on the temperature axis of the steel of interest in 

the MC curve, a median fracture toughness values is determined. However, due 

to the absence of standardisation for the correlation of energy absorbed with 

fracture toughness obtained from the precracked CVN samples using a non-

instrumented machine, an alternative methodology was introduced.  

It consisted of establishing an empirical correlation between the superficial 

energy of conventional and precracked Charpy. A comparison of both energy 

values obtained were made and a deeper analysis was performed in order to 

determine tendencies between both geometries.  

3.6 Residual stresses determination 

The integration of residual stress on this research has as objective to determine 

compressive-tensile stress distribution induced by cold rolling. The advantage of 

cold rolling is that it is simple, economical and feasible to be applied and it could 

be used to introduce compressive stress for crack arrested purpose on pipeline. 

To evaluate RS two approaches, non-destructive (ND) and semi-destructive 

(IHD), were chosen to characterise the residual stress fields of cold-rolled 

specimens manufactured using HSLA steel grade X100.  
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Neutron diffraction was undertaken using a neutron diffractometer. The ND 

measurement was used to visualize the stress field pattern and behaviour 

through the material thickness at various points across the specimen surface. 

Its points were equally distributed from 0.8 mm to 7.2 mm depth from each 

other on each side.  

Incremental centre hole drilling (ICHD) was performed at the Structural Integrity 

Laboratory at Cranfield University and Orbiting Incremental hole drilling (O-IHD) 

was carried out by Stresscraft Ltd. Both ICHD and O-IHD were used to measure 

the longitudinal and transverse residual stress from surface to 1 mm and 2 mm 

depth, respectively. 

3.6.1 Cold rolling test 

3.6.1.1 Geometry and dimensions of the specimens 

Rolling tests were carried out on API X100 steel plates which were machined 

from virgin material at 250mm x 100mm x 10 mm. Then these plates were used 

to induce residual stress using a rolling rig. The dimensions are summarised in 

Table 3-5 and a sketch is shown in Figure 3-20. 

 

Figure 3-20 Shape and roller area from the samples 
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Table 3-5 Dimensions of the plates 

Parameter 
Dimensions in millimetres +/- 0.01 mm 

A1/A2 B1/B2 C1/C2 D1/D2 

H 100.0 100.1 100.1 100.0 

Hm 50 50 50 50 

Hrz 34 34 34 17 

W 251 250 261 250 

w1 75 75 80 75 

w2 100 100 100 100 

O 6 6 6 3 

t 10.1 10.2 10.1 9.9 

3.6.1.2 Experimental set up and procedures for rolling 

Deep rolling was carried out by a machine with a maximum rolling force of 200 

KN. The relation between the force applied by the cylinder and the cylinder 

pressure with repeatability to within +/-2% of the magnitude of the force applied 

is shown in Figure 3-21.  

 

Figure 3-21 Calibration roller load versus cylinder pressure for the rolling 

machine in constant-force mode [312] 

The workpiece was attached to the machine platform base using a clamping 

system. Plates were aligned along the rolling direction and two paths were 

produced by axial flat rollers with widths 20 mm and 10 mm, respectively. The 

load was applied straight to the roller axis by a hydraulic jack mounted vertically 

and attached to the machine’s crossbeam.  
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The roller speed at which it traversed the plate during rolling was 500 mm/min 

(8.33 mms-1). The machine and setting are shown in Figure 3-22. The roller 

area was made as symmetrical as possible about the middle-plane of the plate 

on both the X and Y axis for both sides of the plate, front and back . To achieve 

the best stress distribution three passes of rolling were used in all of them [313]. 

The distance between the edge of the plate and the centre of the roller's contact 

path was constant and equal to 100 mm for all the samples.  

 

 

a) Rolling Machine. 1. 
Crossbeam, 2. Hydraulic jack 

b) Set up for rolling. 1. Roller fork, 2. Roller, 
3. Platform base, 4. Clamps, 5. Workpiece, 6.  
Backing plate 

Figure 3-22 Experimental setting for cold rolling test 

During rolling, each individual plate was held securely with a mechanical clamp 

as the roller passed over it parallel to the upper edge of the plate. To avoid 

damage to the clamps, the area of the plate directly underneath the path of the 

roller was supported by a steel backing plate. Two basic rolling parameters 

were varied to assess their effect on the specimen: a) the compressive force 

transmitted through the roller, and b) the roller width (See Table 3-6). 

Measurements of the depth through the rolling zone were made in order to 

establish the depth profile as a result of the load applied. A laser profiler model 

was used to measure the depth generated by the cold rolling test for both sides 

of each sample. 
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Table 3-6 Rolling parameters of API X100 steel 

Sample 
Sides 

(Front/Back) 
Rolling force  

(kN) 
Roller width 

(mm) 
No. 

Passed 

A A1/A2 100 20 3 

B B1/B2 150 20 3 

C C1/C2 200 20 3 

D D1/D2 150 10 3 

Once the profile was obtained and to ensure that the measurements were being 

taken into account, the material correction was made in terms of guarantees 

that the gauge volume was completely immersed in the sample. Figure 3-23 

shows the type of profile obtained and Table 3-7 summarised the correction 

value to introduce during the ND tests.  

 

Figure 3-23 Laser profile measured in sample A 

Table 3-7 Measurement of depth as result of load applied on plates 

determined by laser profiler. 

Sample Side Max. depth, mm 

A A1 0.038 
A2 0.038 

B B1 0.080 
B2 0.080 

C C1 0.125 
C2 0.210 

D D1 0.240 
D2 0.900 
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3.6.2 Measurement of residual stress 

3.6.2.1 Experimental set up and procedures for Neutron Diffraction test 

An ND technique was used for measurement of the residual stresses 

distribution in the specimens rolled previously. The measurement was made 

using a neutron diffractometer STRESS-SPEC at the FRM II facilities in Munich. 

The parameters of the instrument are listed in Table 3-8 and the set up can be 

seen in Figure 3-24.  

Table 3-8 Neutron diffraction parameters 

Parameter Value 

Wavelength ~1.66 Å 

Monochromator Si (400) 

Detector distance 1040 cm 

Slit size Primary Slit, 1 mm x 10 mm 

Secondary Slit: 1 mm 

Detector distance 1040 mm 

2-Theta 90.8º 

  

a) Set up for transverse and normal 

strain measurement 

b) Set up for longitudinal strain 

evaluation 

Figure 3-24 Set up at the Stress-Spec instruments at FRM II 

To set the thickness of the specimen, the sample was placed and positioned 

with the help of positioner table and optical positioning system (theodolite) 

which was set at a nominal angle of 45° to the path of the incident neutron 

beam.  
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A point on the surface of the sample was located close to one of the edges of 

the sample. To determine the exact coordinate where the point is placed, the 

procedure involved using the diffraction of neutrons across the specimen 

thickness. The point where the curve changes (inflexion point) corresponds to 

the exact coordinate in the three directions (X, Y, Z) which is referred to as the 

reference coordinate. For each point at the surface, seven different points 

through the wall thickness and length, symmetrical with respect to the mid-plane 

of each sample, were chosen.  

To maximise beam time, only half of the width sample was tested under the 

assumption that the residual stress distribution is symmetrical and no significant 

difference can be found. Figure 3-25 presents the beam flux path while Figures 

3-26 and 3-27 give the spot location of interest through the thickness and along 

the surface. Diffraction measurements were accomplished using an 

instrumental gauge volume (IGV) of 1x1x15 mm3 for transverse and normal 

direction, and 1x1x1 mm3 for longitudinal direction. Table 3-9 shows the 

estimated time consumed for each gauge volume. 

  

a) Position of IGV for transverse and 

normal strain measurement 

b) Location of IGV for longitudinal 

strain evaluation 

Figure 3-25 Set up at the Stress-Spec instrument. 
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Table 3-9 Estimated counting time for strain measurement 

Description Item  Transverse/Normal Longitudinal 

Gauge volume- Strain scanning, Fe 15x1x1 mm3 1x1x1 mm3 

Estimated count time per each 

point  
5 min 20 min 

Total points per sample 35 35 

Total time per sample 175 min 700 min 

Total time per 6 samples 700 min 2800 min 

Dimensions and points location are summarised in Table 3-10 and a sketch of 

the rolling zones is shown in Figure 3-26. P1 is located at the overload zone, P2 

and P3 at the rolling region and P4 outside rolling track. P5 is positioned outside 

the rolling areas and considered to be a remote point unaffected by cold rolling 

process.  

Table 3-10 Load applied and location points distance both surface and 

through-thickness 

Parameter Dimensions in millimetres +/- 0.01 mm 

A1/A2 B1/B2 C1/C2 D1/D2 

Load (kN) 100 150 200 150 

Width Roller (WR) 20 20 20 10 

Middle-rolled track 17 17 17 8.5 

Distance roller 

area to plate edge 
33 33 33 41.5 

P1 50 50 50 50 

P2 43 43 43 48.5 

P3 35 35 35 43.5 

P4 31 31 31 39.5 

P5 10 10 10 10 
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Figure 3-26 Sketch showing points location on both surface through thickness 

for ND measurement 

Reflection at 45.4 was used to measure the in-plane stress components 

transverse (yy) and normal (zz) to the surface. As the longitudinal component 

(xx) to the surface is neglected, the specimen was rotated through 90° in the 

plane, and then strains in the longitudinal direction (xx) were evaluated. The 

coordinate system used to identify the direction is shown in Figure 3-27. 

   (a)    (b) 

Figure 3-27 Coordinate system using both orientation 1 (a) transverse direction 

2 (b) longitudinal direction 

Once we had chosen the measurements points and gauge volume for each 

orientation, the experiment was carried out to determine d-spacing of the stress 

free (do) and stressed material (d).  
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Reference measurements were made in the virgin material at a corner of the 

sample to obtain the reference value (do) for the unstressed material. The strain 

at a point was then measured and dx,y,z were obtained for each direction, which 

are given in terms of angles.  

Using StressTexCalculator software, the peak position angles obtained from 

the three normal strain components were used to calculate the strain in 

direction 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧 using equation 3-6. The stress components ( 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧) 

were obtained from the three normal strain components using inverse Hooke’s 

law which is represented by equations 3-7 to 3-9. 
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For the rolling approach all the directions are utilized as a result of the effects or 

variations that the process could impose on the material. Constants 𝐸 and 𝜈 

values are the material’s plane-specific Young’s modulus and Poisson ratio, 

respectively. 

3.6.2.2 Incremental Hole Drilling (IHD) 

Spatial resolution of the ND technique is constrained to determine the residual 

stress profile over distances above 1 mm. As a consequence, a non-destructive 

measurement is not feasible in the range from 0.0 mm to 1 mm. A powerful 

method to cover this range is the hole drilling method which was used in this 

research.  
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Stresses variation at the sub-surface of the material was determined by 

incremental hole drilling following the basic procedure described in ASTM, NPL 

and Measurement Group guidance [241,251,253]. To determine the levels of 

residual stresses at three points of four steel plates, conventional Incremental 

Centre Hole Drilling (ICHD) [251] was carried out to 1 mm depth at Cranfield 

University (SILab). A third party known as Stresscraft Ltd3, performed a second 

test to 2 mm deeper using an Orbiting Incremental Hole Drilling (O-IHD) 

technique on the remote point identified as P5. From both comparisons with the 

ND method were established. From Figure 3-28 it can be seen that P1 is 

located at the overload zone. P2 is placed at the rolling zone. P5 (1, 2) is 

positioned outside the rolling zones and is considered to be a remote point. P5 

FAW is a remote point which is not affected by the cold rolling process. 

 

Figure 3-28 A schematic drawing of the points distribution on the sample for the 

ICHD test 

To assess the ICHD, a number of different steps were followed involving 

surface preparation, strain gauge bonding and drilling a hole. At each point, the 

plate surface was initially degreased and then ground with emery paper 240 

and 320 grit, degreased again and finally neutralised. The target gauges used 

were Vishay Precision Group type CEA-06-062UL-120 and EA-06-125RE-120 

which were installed following the guide established by Vishay Precision Group 

[314].  

                                            
3
 Stresscraft Ltd is a company located in St Winefrides Chapel, Pick St, Shepshed, 

Loughborough LE12 9BB which is dedicated to the provision of stress analysis services. 

RD 

Transverse 

Longitudinal 
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The steps can be summarised as follows: 

1. Degreasing of the surface 

2. Conditioning of the surface 

3. Neutralising  

4. Bonding of the SGR  

5. Wiring of the SGR 

Each gauge was bonded with element 1 aligned in the transverse direction and 

element 3 in the longitudinal direction along the rolling direction of the plate. The 

rosette gauge terminals were wired then connected to a strain indicator for 

strain readings. The RS 200 milling guide and a miniature PC-controlled 3-axis 

hole-drilling machine were used for drilling holes 1 mm and 2 mm in depth, 

respectively. 

3.6.2.3 Experimental set up and procedures for Incremental centre-hole 

drilling  

For the ICHD test, each plate was fixed and the RS-200 milling guide was 

positioned at the centre of the gauge and its pad cemented to the drilling rig to 

align the instrument with the centre line of the SGR. To ensure the alignment 

between the centre of the strain gauge and the drill bit (cutter) an adjustable 

microscope was attached to the equipment and used together with four 

adjusting screws.  

When the system was aligned, the microscope was removed from the guide 

and the high-speed air turbine was inserted with an inverted cone tungsten 

carbide (T/C) cutter of 1.6 mm diameter to produce a hole-diameter of ~2.0 mm 

with a final depth of 1.0 mm achieved by equal increments of 0.05 mm (20 

steps). The ICHD setting, plate and strain gauge installations are shown in 

Figure 3-29. 
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Figure 3-29 Hole drilling set up for 1mm (left) and hole drilling test (right) 

Following strain gauge bonding and wiring, the SGR was connected to a strain 

indicator; the zero (initial) readings were taken at the point of interest and 

residual stresses released during the drilling were measured. Once the hole 

was drilled, the diameter was measured using the scale of the microscope and 

verified by removing the SGR and measuring with an optical microscope. To 

compute non-uniform residual stress from the raw strain data, an integral 

method was developed using a Matlab code according to ASTM E837-08 and 

longitudinal, transverse and shear stress calculations were set into the principal 

stress and plotted. 

3.6.2.4 Experimental set up and procedures for orbiting incremental hole 

drilling (O-IHD) 

A miniature PC-controlled 3-axis hole drilling machine was aligned and each 

gauge was subjected to orbital drilling at 6 x 32 µm + 6 x 64 µm + 5 x 128 µm + 

6 x 256 µm increments respectively. Drilling was carried out using a 2.3 mm 

diameter inverted cone T/C cutter with a pre-set radial eccentricity to produce a 

hole-diameter of ~3.9 mm with a final depth of 2.8 mm. A typical set up for 

drilling is shown in Figure 3-30. 



125 

  

(a) Drilling set up   (b)Strain gauge rosette 125RE bonded 

Figure 3-30 Set up for Orbiting Incremental Hole Drilling up to 2 mm 

Following completion of the drilling process, the gauge was removed and the 

hole-diameter measured using an optical head. Relaxed strains measured at 

the three gauge elements to a depth of  2.0 mm  were recorded and analysed 

using a home-built software by means of the integral method developed by 

Schajer [249,250]. Within the data reduction program, the strain data were 

subjected to a variable smoothing (2.0 mm drilled-hole) process and then 

reduced to direct stress longitudinal, transverse and shear stress components 

at selected depth increments.  

Stresses were further resolved into principal stresses and conventional plots of 

Cartesian stresses versus depth, and the principal stresses versus the depth 

were plotted. In Chapter 5 is presented in detail the analyses of the results 

obtained from ND and incremental hole drilling methods. 

3.7 Integrity of materials exposed to simulate flue-gas 

All the data obtained for the different tests performed either in the parent or 

aging material, addressed in the previous sections 3.2 to 3.6 of this chapter, are 

used to assess the integrity of high strength low carbon steel identified as API 

X60, X70 and X100, in an simulated flue-gas environment which are carried out 

in Chapter 6.  
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However, a short description of the R6 code has been presented  below in order 

to give a better idea of the steps followed to perform the ECA using the FAD 

approach contained in the R6 software. Numeral 2.5 has described the 

methodologies available or established with the objective of analysing the 

fracture behaviour of pipelines using ECA approach. The most popular method 

is the FAD and the more practical, reliable and economic code used to assess 

the integrity of structures containing defects is R6 which is utilised in this 

research [315]. Even though this procedure was developed for use in the 

nuclear industry, other sectors have found this methodology very useful and it is 

widely used. 

3.7.1 R6 code 

The R-code interface is divided in two display panels. The left hand panel is 

visible at all times, and shows a tree structure of the current project. The right 

hand panel is used to show different displays, depending on the analysis carried 

out. The root of the tree is an item showing the current project while at the top 

level below this are the interviews in the current project. The interview conducts 

the user through the numerous potential judgment points which are required for 

the definition of data for Geometry, Materials, Loading, Plastic Collapse, 

Assessment and Problem definition themes.  

Themes are individual sections which are designed by using menus, buttons 

and defaults making the process effortless. The R6 incorporates a single 

structure where the user merely identifies at the stage of creating an interview 

whether an R6 interview is to be created. The program enables more than one 

project to be open at the same time and switching between projects is achieved 

by selecting the tabs shown at the bottom of the window. Once the problem is 

assessed, the R code implements a default process allowing all the available 

problems to be drawn on a graph on entry to the post-processor. 

R6 code is a simple 2-parameter graphical engineering tool for the FAD with a 

choice of assessment options and analysis types which are dependent on 

material properties and geometry. The approach considers two parameter, Kr 
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(Fracture proximity) and Lr (plastic collapse) based on LEFM and LEPM 

concepts. Two failure modes containing crack-like flaws are classified into three 

different levels, ranging from option 1 to option 3 [35]. Two criteria can be used: 

limiting crack size and/or limiting load criteria as is shown in Figure 3-31 and 3-

32.  

A series of cases are considered where different parameters such as geometry, 

temperature, gas composition, loading conditions and material characterisations 

are input in order to perform the engineering critical assessment. Depending of 

the application different types of defect could be considered for the assessment.  

For pressurise system such as vessel or pipeline, part-through thickness flaw 

and through-thickness flaw oriented axially or circumferentially under leak-

before-break concept is now widely applied to assess this type of component. In 

Figure 3-33 the stage in the description of the LbB concept is sketched, which is 

explained in detail in BS 7910-13 standard (Annex F). 

 

Figure 3-31 Results of the assessment theme under R6 by limiting crack size 

criteria 
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Figure 3-32 Results of the assessment theme under R6 by limiting load criteria 

  

a) Part through-thickness flaw   b)Through-thickness flaw 

 

c) LbB diagram  

Figure 3-33 Leak-before-Break assessment parts [35] 
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3.8 Summary 

In this Chapter a description of the experimental methodology has been 

addressed which involved seven different methods. Each section contains the 

parameters of test, equipment, type of samples, dimensions, experimental set 

up, as well the environmental conditions under which the tests were carried out 

in order to meet repeatability and reproducibility of results of measurements. 

Understanding repeatability as the closeness agreement between independent 

results obtained with the same method on identical test material, under the 

same conditions where the absolute difference between two single test results 

may be expected to lie with a specified probability. In the case of reproducibility, 

this is similarly measured as the repeatability but under different conditions.  

The following chapter covers the mechanical properties evaluation where the 

influence of temperature, microstructure and environment and their effect on the 

integrity of the steels studies, it will be discussed.  
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4 MECHANICAL PROPERTIES & TOUGHNESS OF 

HSLA STEELS 

4.1 Introduction 

A good combination of mechanical strength and toughness properties of 

steels for line pipe applications is required to improve efficiency and 

performance in the transportation of oil/gas and lately anthropogenic CO2 over 

long distances under high pressure. Thus, developing higher grade pipeline 

steels with excellent cost reduction and operational requirements, and 

superior metallurgical and mechanical properties, has been found difficult to 

achieve, particularly for these last two properties [82,85,316–319]. 

Fracture mechanics is one of the most important tools being used since its 

development to assess structural components either for new designs or in-

service. To undertake fracture assessment, the quantification of material 

toughness shall be known as KIc, the crack tip opening displacement (CTOD), 

fracture toughness of material KQ and J-integral (J); however, the only one 

representing lower-bond (plain strain) toughness is KIc.  

One of the most economical, fast and popular methods is the Charpy V-notch 

test (CVN). From the test values of energy, variants of temperature are 

obtained and using empirical or semi-empirical correlations fracture toughness 

is determined. However, it is well-known that CVN evaluates the fracture 

resistance rather than fracture toughness, which is one of its major 

disadvantages.  

On this investigation fatigue pre-crack specimens has been considered to 

bring a better estimation of the fracture toughness with the purpose to 

evaluate the potential of this approach to estimate fracture toughness of HSLA 

steels. Along with this approach this chapter is focused to determine the 

mechanical properties and fracture toughness of high strength low carbon 

alloy grades X60, X70 and X100 in as-received and aging condition.  
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A general framework of the materials’ behaviour in order to establish the 

evolution of fracture toughness with/without the environment at different 

temperatures was carried out.  

4.2 Experimental procedure  

4.2.1 Outline 

Strip and round specimens manufactured in the longitudinal direction were 

obtained from the flat plates and small pipe, and were tested from -70C to 

21C at a strain rate of 3.3 x 10-3 s-1 in accordance with the BS and ASTM 

standard test method by a servohydraulic Instron machine of 500 kN and 100 

kN capacity.  

The tensile test was conducted three times for each datum point. The 0.2% 

off-set flow stress was determined to be the yield strength in the steels 

showing continuous yielding behaviour, whereas the lower yield point was 

determined to be the yield strength in the steels showing discontinuous 

yielding behaviour. Technical details of the metallurgical characterisation, 

hardness test, tensile test, fracture toughness tests and methods of analysis 

used are described in detail in Chapter three, numeral 3.2 to 3.5. 

4.3 Results and discussion 

4.3.1 Chemical composition 

The nominal compositions of the steels are given in Table 4-1. Having low 

carbon content reduced the grain size and carbide formation and increased 

yielding strength. The existence of manganese increased strength and 

toughness. The low amount of sulphur and silicon reflects the cleanliness of 

the steelmaking process and improved toughness due to reduced inclusions 

formation which could be potential defect initiation sites.  
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Table 4-1 Nominal composition of the API X60, X70 and X100 steel (wt %) 

Element X60 X70 X100 API 5L 

Carbon (C) 0.04 0.05 0.07 0.10-0.12 

Silicon (Si) 0.19 0.26 0.30 0.45 -0.55 

Manganese (Mn) 1.04 1.89 1.83 1.60-2.10 

Sulphur (S) 0.008 0.010 0.009 0.020-0025 

Phosphorus (P) 0.013 0.010 0.012 0.010-0.015 

Nickel (Ni) 0.03 0.44 0.28 <0.50 

Chromium (Cr) 0.03 0.41 0.17 <0.50 

Molybdenum (Mo) <0.01 0.40 0.16 <0.50 

Copper (Cu) 0.02 0.45 0.15 <0.50 

Vanadium (V) 0.04 0.07 0.01 
Their sum must 

be <0.15 
Niobium (Nb) 0.06 0.05 0.04 

Titanium (Ti) 0.01 0.01 0.02 

Aluminium (Al) 0.03 0.01 0.04 - 

Cobalt (Co) <0.01 <0.01 <0.01 - 

Boron (B) - - - <0.004 

Iron (Fe) Balance Balance Balance Balance 

*Note: The sum of V + Nb + Ti must be <0.15 

Molybdenum content near 0.3% is beneficial as toughness is improved, as 

well as for chromium, nickel, copper and occasionally boron. Vanadium, 

titanium and niobium are kept limited to 0.15% for steels with yield strength 

above X60 due to strengthening by the precipitation of vanadium or niobium 

carbonitrides which could also harm toughness. The chemical composition 

determined for the three steels matches the specification of the standard API 

5L [67]. 

4.3.2 Rolling direction 

As heat treatment, soak time and cooling rate affect microstructure features, 

the determination of spherical and elongated non-metallic inclusions are 

preferred as indicative of rolling orientation. To identify these structural defects 

as-polished samples are preferred as they give better results than etched 

surfaces.  
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Figure 4-1 shows the optical micrographs with a lower magnification (left) 

indicating the presence of banding. Flattened inclusions of MnS (manganese 

sulphide) were found at higher magnifications, indicated by the red arrows. 

The latter feature emerges when steel is fabricated by rolling and inclusions 

tend to be deformed and elongated in the rolling plane. 

  

Figure 4-1 Left: Deformation bands direction is indicated by the arrow. Right: 

arrow indicates the shape of a flattened MnS inclusion presence. Nital 2%. 

Thus, if a section contained deformation bands (dark lines along the plane) 

with non-metallic inclusions, it was selected as a longitudinal axis, as it 

provided evidence of the direction of the steel rolling mill process. The 

recrystallization involved the formation of new, strain-free grains, making it 

difficult to determine grain elongation; however, inclusions, oxides or second-

hard particles cannot be regenerated. But cleanliness of the steel could be a 

drawback in determining the rolling direction. 

4.3.3 Hardness test  

The Vickers hardness was measured under a 100g load with equal intervals 

of 0.2 mm near to the top/bottom surface increasing to 1 mm intervals on the 

middle of the sample thickness, as shown in Figure 4-2 (a, b). The results are 

plotted in Figure 4-3. From the figure the hardness values of the plates and 

pipe section are representative of the steel evaluated.  
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A high content of Manganese (Mn), Nickel (Ni), Copper (Cu) and Molybdenum 

(Mo) tends to increase the hardness of the material as well as formation of low 

temperature microstructures, such as martensite, bainite. From Figure 4-3 it 

can be seen that hardness values for grade X100 and grade X70 are 

exceeding 248 HV100 (~HRC 22) which is the maximum hardness value 

recommended by NACE for steel in sour environments. 

 

(a) General view 

         

(b) Details of intervals per zone 

Figure 4-2 Profile hardness test performed through the thickness, presenting 

the length covered in each part of the samples’ thickness 

 

Figure 4-3 Vickers hardness distribution through the thickness for all the steel 

obtained from longitudinal axis 
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4.3.4 Metallographic characterisation 

Optical micrographs and SEM images of the microstructure of the steels 

evaluated are shown in Figure 4-4 (a)-(f). Micrographs (a, d) are 

representative of the microstructure of steel grade X60 which consisted of 

ferrite (white) with small zones of pearlite (dark). The micrographs do not 

show significant deformation or banding. Non-banded ferrite/pearlite could 

emerge as an indication that the microstructure was recovered during the 

rolling process (hot rolling) which is a typical method used to manufacture 

steel under 450 MPa yield strength. 

Optical micrographs (b, e) and (c, f) corresponding to steel grades X70 and 

X100 respectively, show a typical tempered structure. From the figures it can 

be seen that both steels showed a more complex microstructure which can be 

identified slightly under optical microscopy. The microstructures of both steels 

are characteristic of rolled and tempered steel owing to TMCP and ACC 

methods.  

The matrix is composed of low carbon lath-like bainite, granular bainite, 

allotriomorphic and quasi polygonal ferrite (white), and martensite (dark). It is 

presumed that M/A packets are present, along with bainite lathes. Under high 

magnification fine precipitates (black dots) dispersed on the matrix could 

indicate the presence of titanium or niobium carbides. Very small and 

randomly dispersed stringers of MnS inclusions were observed in the matrix 

but showed no signs of clustering. 

As fine details are not possible to distinguish using optical or SEM, many 

authors have addressed this study using the EBSD technique; however, this 

was not performed for this research. A detailed study of the microstructures is 

beyond the scope of this research; however, their effects on mechanical 

properties and fracture toughness have been addressed using the literature 

available on this topic.  
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(a) Magnification 500X   (b) Magnification 500X    (c) Magnification 500X 

   

(d) Magnification 2000X   (e) Magnification 2000X   (f) Magnification 3000X 

Figure 4-4. Optical and SEM micrographs of microstructure for virgin material on the longitudinal section (a, d) grade X60 (b, e) 

grade X70 (c, f) grade X100 
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4.3.5 Tensile tests  

The tensile tests have been accomplished on steel grades X60, X70 and 

X100 over the range 21°C to –70°C temperatures for virgin material while 

aging samples were performed only at –20°C. Yield strength, tensile strength, 

yield/tensile ratio and uniformed elongation variation obtained experimentally 

are presented in detail in Appendices L and M respectively. The former 

summarises the tensile properties of as-received material while the latter 

shows mechanical properties of the steels exposed in a simulated flue-gas 

environment saturated with water.  

Pictures of all samples exposed in CO2, saturated water, SO2 and H2S 

environment at 50h, 150h, 200h, 300h and 400h are presented in Appendix 

O. A rusty layer is observed on the surface of the samples exposed up to 

about 200h in SO2 while a golden colouration can be seen for those 

introduced in H2S without layer formation on the surface. 

4.3.5.1 Tensile properties of virgin material 

It is now accepted that definition of the uniform elongation load, at 0.5%, 

prejudices the work hardening potential of high strength materials, which is 

less exploited, compared with the lower yield strength of other steels [73,85] 

and a 0.2% offset is proposed as a better indication of this. However, the API 

5L standard does not explain clearly why a 0.2% offset is a better indication of 

yield strength instead of the yield point at 0.5% total elongation for grades 

>L625 (X90).  

For this research the calculation of yield stress for steel X100 was made 

under 0.5% UEL instead of 0.2% offset as it is was determined that the latter 

parameter underestimated the values. Grade X70 was calculated using the 

0.2% parameter while for grade X60 the process indicated by BS EN 10002-1 

standard for proof strength (non-proportional) determination was followed. 

Figure 4-5a shows typical stress-strain engineering curves for the steels used 

in this research. A graphical method was applied to obtain yield stress, or 

proof strength and ultimate strength, as well as uniform elongation.  
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(a) Engineering Stress-Strain Curve 

  

(b) Yield strength at 0.2% offset, 0.5% EUL and proof strength 

Figure 4-5 Stress-Strain engineering curve for steel grades X100, X70 and 

X60 

The values obtained are presented in Appendices M and N, but an example is 

showed in Figure 4-5b. Figure 4-6 shows the variation for yield and ultimate 

strength of the steels determined under virgin conditions over the range –

70°C to 21°C. The mechanical properties of as-rolled plate of grade X100, 

both strip and round geometry are presented at (a, b). There is a tendency to 

increase yield and ultimate strength as temperature decreases. This 

behaviour is more evident for X100 than grades X60 and X70 (See c, d and 

e).  

For API X100, the yield strength reached values in the range of 540 MPa to 

640 MPa which is 20% lower than that specified for this steel by API 5L for 

grades above X90 to 0.5%. The tensile strength was ≥720 MPa which 

corresponds to the minimum value required from the standard [67].  
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a) Grade X100, strip geometry     b) Grade X100, round geometry 

    

c) Grade X60, strip geometry     d) Grade X60, round geometry 

Figure 4-6 Variation of yield  and ultimate yield strength with temperature for steels in as-received condition using strip and 

round samples 
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e) Grade X70. Round geometry 

Figure 4-7 Variation of yield and ultimate strength vs. temperature for steel in as-

received condition 

Uniform elongation was at least 6% achieved but yield ratio was clearly lower 

(maximum 0.84). Since steel grade X60 exhibited yield strength over the range of 

431 MPa to 500 MPa and ultimate strength between 520 MPa and 579 MPa, this 

fulfils the mechanical requirements of the standard for this grade of pipeline steel. 

However, yield ratio was 10% less than the API specification.  

Grade API X70 shows a larger yield and ultimate strength values, at 771 MPa and 

814 MPa, respectively. As the specimen was extracted from a pipe section, this 

could indicate that the material properties have increased due to work hardening 

induced after the pipe manufacturing process. Yield ratio and uniform elongation was 

achieved, gathering standard specification.  

In general, it can be seen that the stress-strain engineering curves of the X100 and 

X70 steels do not show the yield phenomenon which was presented for the X60 

steel which exhibited a plateau after its yield point then dropped due to the Lüders 

band formation. The formation of Lüders bands, also named “slip bands” or 

“stretcher–strain marks”, are presented in metals experiencing tensile stress due to 

plastic deformation common to low carbon steels and certain Al-Mg alloys.  
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Even though grades X70 and X100 have low carbon content, the deformation 

mechanisms on those steels are mainly different as they are affected by the 

Bauschinger effect. The Bauschinger phenomenon causes loss of strength in TMCP 

steel when the strain direction is changed during cold worked metal. High strength 

steels are characterised to be anisotropic which determines that the strength of the 

material is dependent on the orientation. Microstructure, plastic strain introduces 

during pipe manufacture, heat treatment and cooling rates can all affect the 

mechanical properties of those steels [320–322]. Examples of the fracture zone of 

strip samples of steel grades X100 and X60 are shown in Figure 4-8.  

 

a. Sample 2. RT    b. Sample 3 (-70C) 

Figure 4-8 Images showing the fracture zone of the strip tensile samples 

It can be seen that one specimen has broken in the middle of the gauge length while 

the other falls outside/limit of this region but within the parallel length of the sample. 

In spite of this issue, yield and tensile strength evaluation were assumed as 

particular material responses, providing a general framework of their mechanical 

behaviour. It is well-known that the stress-strain curve, flow and fracture properties 

are strongly dependent on temperature. For body-centred-cubic metals, the yield 

stress increases rapidly and ductility decreases with decreasing temperature. This 

behaviour was usual for the samples tested over the range –70°C to 21°C which 

were presented in Figures 4-6 and 4-7 above.  
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4.3.5.2 Tensile properties of aging material 

The results of the evaluation of mechanical properties of steels exposed in flue-

gases  are presented in Figures 4-9 to 4-11. The atmosphere is constituted by CO2 

in dense phase, free water (3.3%) plus SO2 or H2S impurity, at 500 ppm for each 

case. Each figure shows the yield and ultimate tensile stress determined for each 

impurity evaluated. As it was discussed in reference [96] and section 2.2.2 the 

exactly amounts of impurities on CCTS is unknown, however, 500 ppm was chosen 

as it value represent the worst scenario for testing materials involving health and 

safety conditions. Reference [1,23,70,109] are recommended lecture if more details 

about type and composition levels of impurities is required. 

The samples exposed were not strained to failure immediately after exposure as 

they were stored in a desiccator in order to dry before subsequent weighting. Visual 

inspections were performed and it was found that samples exposed in the SO2 

atmosphere after 200 h had a layer of rust formed in all of them; these can be seen 

in the figures in Appendices N and R. The specimens introduced to H2S had their 

metallic colour changed to a golden-yellow colouration. 

 

Figure 4-9 Tensile properties of steel X100 exposed in H2S and SO2 impurities  and 

tested at –20°C 
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From the results obtained for grade X100, in the variation of mechanical properties 

when compared with virgin material at –20°C, there are no significant differences 

that show any effect on the environment or the mechanical response of the material. 

A scatter of 20 MPa between virgin and aging samples indicated the variation could 

be considered normal and within the acceptance level of deviation. Steel X70 

presented a similar variation of its tensile properties with a peak of 860 MPa yield 

strength on SO2 and 841 MPa for H2S. Similar tendency were obtained for ultimate 

tensile strength.  

 

Figure 4-10 Tensile properties of steel X70 exposed in H2S and SO2 impurities  and 

tested at –20°C 

Embrittlement or corrosion phenomenon reduces yield strength, tensile strength and 

elongation and a scatter of 80 MPa, compared with virgin value, which could be an 

indication of material degradation. Even though the material was classified as API 

X70 this does not guarantee that slight differences could not emerge in the material 

properties as a consequence of microstructure variation due to the material used to 

manufacture the samples came from two sections  from the same source.  
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With regard to grade X60, the variation of the properties shown in Figure 4-11 does 

not present a large discrepancy in the mechanical properties obtained from the 

material as-received and tested at the same temperature. A scattering of 10% of the 

results is not a criterion to establish the effects of the environment on the material 

properties and it could be statistically accepted as an indication of material behaviour 

rather than material degradation. However, investigations by Al-Mansour et al. [112], 

Duncan and Wang [318] and Jin et al. [323], indicated that hydrogen embrittlement 

(HE) has to be included as a potential factor of damage when materials are exposed 

in a hydrogen environment. 

 

Figure 4-11 Tensile properties of steel X60 exposed in H2S and SO2 impurities  and 

tested at -20 °C 

4.3.5.3 Fracture surface characterisation of tensile specimens 

Fractography analysis of the fracture surface morphology was achieved by OM. The 

strip samples evaluated are grade X100 and X60. The evaluation was performed in 

all the samples tested but only samples at 21°C and –70°C are shown in Figure 4-12 

(a to d). Photographs (a, b) correspond to steel grade X100 and (c, d) to grade X60. 

In tension tests after plastic deformation, the cross section started to change due to 

continued reduction which is imposed as a result of the load action.  
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a) X100 at 21°C    b) X100 at –70°C 

   

c) X60 at 21°C    d) X60 at –70°C 

Figure 4-12 Fracture surface of strip samples tested at RT and –70°C 

For a rectangular specimen, when necking takes place it causes the sides of the 

minimum section to bend, as shown in figures (a-d). For X100 (a-b) it was observed 

that after the failure point the load started to decrease but at 30% of the remaining 

load an abrupt change was determined.  

A second load drop was found before the specimen broke. This behaviour was more 

evident in tests carrying a lower temperature. For X60 a singular jump was not 

detected in spite of a similar fracture surface being observed. Once the failure 

process had taken place and the cross section necking started, a crack initiation 

process at around 10% was also initiated. At this point splitting of the cross section, 

also named delamination, occurred and the minimum cross section was constituted 

of two separate strips of the material holding the load up until final failure.  



 

146 

 

 

Figure 4-13 Loads vs. elongation at splitting point: A) Failure initiation, B) Starting 

delamination, C) End of unexpected elongation, D) Final failure 

Figure 4-13 presents the splitting phenomenon presence on the stress-strain curve 

which was detected both in strip and round samples. Figure 4-14 shows fractographs 

taken at 21°C (a, c, e) and –70C (b, d, f) of round bars of material as-received which 

were tested under the same conditions as the strip samples. The fracture surface of 

X100 at 21°C and –70C temperature displayed cracks which grew along with the 

larger axis of the ellipse, referred to as the plane, normal to the minimum cross 

section and a diametral contraction is observable (ovalisation). 

In Figure 4-15 fracture cross sections of steels tested at –20°C for unexposed and 

exposed in flue-gases are shown. From the figures, crack formation is clearly 

notorious, and it was found for the three conditions on X100 and X60 while on grade 

X70 there is clearly defined an environmental contaminant with SO2 impurity. From 

all the figures it can be identified that crack propagation in tensile samples is 

associated with slant and flat fractures. The red arrows identify the slant fracture 

while the white arrows highlight the flat fracture on the samples.  
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(a) X100 at 21°C    (b) X100 at –70°C 

   

(c) X70 at 21°C    (d) X70 at –70°C 

   

(e) X60 at 21°C    (f) X60 at –70°C 

Figure 4-14 Fracture surface of round tensile as-received samples tested at 21°C 

and –70°C 
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Grade X100 a) Virgin b) SO2 per 400h c) H2S per 400h 

   

Grade X70 a) As-received (b) SO2 per 400h c) H2S per 400h 

   

Grade X60  a) As-received (b) SO2 per 400h c) H2S per 400h 

Figure 4-15 Fracture surface evaluation of round tensile specimen unexposed and 

exposed in a simulated flue-gas and tested at –20°C 
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4.3.6 Discussion of microstructure and mechanical properties results 

4.3.6.1.1 Hardness 

The microhardness profiles of the longitudinal cross sections show, in general, a 

constant value of the microhardness average through the thickness; these are 

summarised in Table 4-2. The profile presented in Figure 4-3, illustrated as grade 

X70, has an increment on the bottom section. This could be the result of the rolling 

process resulting in the generation of a deformed layer which is reflected in the 

increment of the hardness. X100 and X60 steel hardness values do not change 

notably and remain at the same value with no significant difference on the section.  

Table 4-2 Vickers hardness values for API X100, X70 and X60 steel HV=100g 

Steel Plane 
Section Section 

avg. 

Total 
avg. Top Middle Bottom 

X100 
Longitudinal 247 244 244 246 

251 
Transverse 256 257 257 256 

X70 
Longitudinal 286 285 328 298 

302 
Transverse 295 294 333 305 

X60 
Longitudinal 209 207 208 207 

208 
Transverse 222 201 203 208 

It should be well-known that maximum hardness specified for steels to be exposed to 

a sweet or sour environment cannot be higher than 248 HV200 (HRC ~22). This value 

cannot be exceeded as this hardness value corresponds to a critical surface–flaw 

depth of about 0.5 mm for steel to be used in acid environments containing H2S, as 

recommended by NACE [164].  

However, from the literature, this limit looks unclear. For example, Canadian 

specification standard CSAZ245.1-2007 still specifies 248 HV as the maximum 

allowed hardness but CSAZ662-2007 changed the requirements to 250 Vickers. The 

GOST standard established a limited maximum hardness up to 260 HV. Thus, the 

permissible range could be between 248 and 260 HV; however, some issues could 

arise due to the harshness of the environment. 
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Domizzi and Anteri [293] found that microhardness below 300 HV25 has little 

influence on HIC resistance for steels with a banding F-P microstructure. 

From Table 4-2 it can be observed that hardness X70 HV > X100 HV > X60 

HV which indicates that the former are more susceptible to corrosion 

degradation or HE.  

4.3.6.1.2 Metallurgical characterisation 

Chemical composition of high strength steels can differ widely, depending on 

the mechanical requirements and dimensions of the product. The main 

function of the alloy elements is to improve strength by mechanical means, 

such as grain refining, solid solution and precipitation hardening. The 

interaction between rolling process, cooling rate and chemical composition 

determines the type and volume of phases to develop, given their particular 

mechanical toughness properties.  

The increase in strength has a direct relation to increasing alloying elements 

such as Mo, Si and Ni. However, the unknown effects of interactions with 

other elements result in difficulties in establishing a complete frame of their 

impact on the material. The combination of V+Mo+Nb produced carbides, 

nitrides and carbonitrides by secondary hardening while Ni+Mo enhanced 

hardenability by precipitation hardening which refined the microstructure.  

The same effect can be obtained by Ni+B, while Nb+V strengthen properties 

but a high carbon equivalent could be required. In thicker pipelines, Mo+Nb 

+Ti is effective to increase strength as well as small ferrite grain size. 

Favourability on the bainite formation of acicular carbide needles in X70 steels 

is also mainly attributed to these elements [60,64,324–326]. The final 

microstructure of TMCP steels are composed of different phases and 

precipitates, which increases their complexity depending on their chemical 

composition. Depending on the application, one of the main aspects of steel 

production is to reduce the low carbon content in order to offer conditions for 

lower bainite formation [61] but lately the steel industry has started to develop 

tempered lath martensite and dual phases to produce grade X120.  
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The steel is in its trial phase, which has been developed for strain-based 

design application;  this implies accomplishing microstructure complexity in 

order to enhance strength, but compromising toughness, ductility or 

weldability [84]. 

 

Figure 4-16 Schematic representation of strength improving and 

microstructure developing for the new generation of HSLA steels [84] 

Manufacturing of API X80 and X100 have been focused to produce steel with 

a bainite structure or dual phase (bainite-ferrite) which enhances mechanical 

properties to increase deformability for high strain capacity, for example, in 

Arctic applications [68,82,316,327]. Figure 4-17 shows a novel metallurgical 

process which improves precipitation hardening by using very fine carbide, 

formation of MA constituents and recovery of dislocation density. 

The effects of the microstructure, grain size, heat treatment, processing 

method on fracture toughness of micro-alloyed steel have been studied for 

many researches during recent years [75,328–330]. From those studies it was 

determined that cleavage fracturing resistance is controlled by grain size and 

bainitic/martensitic packets. Prior-austenite grain size was assumed to have 

an effect on cleavage fracture toughness; however, as mentioned by Lee et 

al. [331], in the event of cleavage fracture on toughness evaluation using pre-

cracked specimens, the initiation was a consequence of a second-phase 

particle.  
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Figure 4-17 Schematic illustration of TMCP processing and microstructural 

transformation obtained by HOP process [332,333] 

Besides, Lee et al. [331] determined that fraction carbides larger than critical 

size near the crack tip are considered to be the key parameters controlling the 

cleavage fracture, being more effective than grain size refinement. Parallel 

studies confirmed the importance of carbide distribution on mechanical and 

fracture toughness properties. Due to the different controls in terms of 

temperature process, chemical composition variability, microstructure 

combination, carbides precipitation and accelerated cooling, conventional and 

new steels offer a complicated scenario of their mechanical, weld and 

toughness properties [334,335].  

Table 4-3 summarises the different types of microstructure feasible for 

different processing routes, as well as treatment during steel fabrication 

extracted from the literature available in the public domain. The scenario of 

manufacturing HSLA steels offers a multiplicity of options; however, the 

microstructure options determine a stronger impact on the final mechanical 

properties and toughness of the steel. From the steel performance point of 

view, the type of microstructure and chemical composition determine the 

degradation resistance of the material.  

This matter has been recognised and studied for many years, however, even 

though the stronger investment done there is remaining contradictions which 

are still in place [61,63,65,84].  
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Table 4-3 Type of microstructure obtained from TMCP and ACC 

processes to manufacture HSLA steels [81] 

Steel Manufacturing process Microstructure 

X60 TMCP  Banding polygonal ferrite-pearlite 

X70 

TMCP 
 Polygonal ferrite (PF) 

 Bainite (B) 

TMCP + QT  Bainite (B)+Martensite (M)+Ferrite (F) 

TMCP + QT+ ACC  Fine*grained bainite 

X80 TMCP + ACC 

 Lower bainite (LB) 

 Ferrite (F)+Bainite (B) 

 Lower bainite (B)+Lath martensite 

(LM) 

X100 TMCP  Ferrite (F)+Bainite (B) 

X120 TMCP + ACC 

 Lower bainite (LB) 

 Ferrite (F)+Martensite (M) 

 Tempered lath martensite (TLM) 

 Degenerate bainite (DGB) 

 Granular bainite (GB) 

As observed from Table 4-3 and Figure 4-6, a similar microstructure could be 

obtained with the same chemical composition only varying ACC and an 

equivalent mechanical property is achieved. Alloy composition and 

microstructure have been found to play an important role in the challenges of 

CO2 corrosion. Both are particularly critical for the CO2 corrosion susceptibility 

of low carbon steels and martensitic stainless steels [124]. In low carbon 

steels, the martensitic microstructure is more susceptible to localised 

corrosion than the ferritic-pearlitic microstructure due to less adherent and 

less crystalline FeCO3 layers forming on the material surfaces [336] (Figure 4-

18).  

Some elements can help to improve corrosion or embrittlement resistance. 

Sulphur below 0.01% and additions of calcium or rare earth metals produce 

globular sulphide inclusions which improve HE resistance.  
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Figure 4-18 Effect of microstructure on CO2 corrosion of low carbon steel 

(yellow) and Cr-steel (green) at 60C, 30 bar CO2, 5% NaCl, 1 m/s, 720 h 

Similarly, segregation effects can be avoided by reducing the amount of 

carbon, manganese and phosphorus; however, it remains that manganese is 

beneficial in improving toughness by refining the ferrite grain size. Copper and 

nickel are also effective in improving resistance to HIC. At pH levels above 5, 

both form protective films which prevent the diffusion of hydrogen into the 

steel. Nevertheless, at pH levels below 5 their addition has little advantage 

due to a protective film not being formed. On the other hand, copper additions 

of 0.2-0.3% are extremely beneficial in preventing HIC, as determined by the 

NACE TM 0177-96 standard [302]. 

A ferrite-pearlite microstructure could be less resistant to corrosion 

phenomena when steels contain a martensite/bainite structure. López et al., 

[337] carried out a revision of this issue, finding that banding F-P is more 

susceptible to the corrosion of steel in CO2 environments. Its resistance could 

be improved by adding chromium which was confirmed by Choi and Nešić et 

al [121,127,338]. Heat treatment is considered to be one of the factors that 

impact high corrosion rates.  
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Even though the mechanics of this phenomenon are not well-known yet, 

formation of FeCO3 layers on the material surface could be protective but 

depend of the type of microstructure [125,339]. This will be discussed in 

section 4.3.6.  

Hydrogen induced cracking (HIC) is an embrittlement of the steel which 

occurs when internal cracks are generated due to the recombination of 

hydrogen gases which are trapped in the lattice of the steel, inclusions or 

pearlite bands. This phenomenon is internal and does not require any external 

stress. Kittel et al., [141] studied HIC through immersion testing and hydrogen 

permeation. They determined that with 1 bar H2S pressure and pH 4.5, the 

evolution of HIC is higher  but required more than 200h exposures to crack 

initiation while at 0.1bar cracks were detected after only 96h exposure. The 

susceptibility of HIC is higher in APIX80 than X100 due to the former being 

constitutive for bainite lath while the latter, for ferritic/granular bainite, is 

less[336]. A similar finding was presented by Huang et al., [79] working with 

steels consisting of granular bainite and M/A (martensite/austenite).  

From the microstructure point of view, the steels investigated in this research 

could be susceptible to corrosion or embrittlement by hydrogen taking into 

account the environmental conditions when they are exposed in flue-gas. 

4.3.6.1.3 Mechanical properties of steel grades X100, X70 and X60 

 Tensile properties of HSLA steel (As-received) 

The results given in Appendix L and plotted in Figure 4-6, indicate that the 

tensile strength of the X100 plate in the longitudinal direction is lower while 

X60 and X70 meet the specification of the API 5L standard. From the 

microstructure analysis and tensile results obtained in this research, it is clear 

that the X100 plate has a lower yield and tensile strength, 560 MPa and 720 

MPa respectively. Even though no SEM or TEM analyses were performed, 

micrographs obtained at 500X magnifications gave an indication that the 

higher percentage of white areas on the material bulk correspond to ferrite, 

resulting in lower materials strength[331,340,341].  
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Production of plates with yield stress between 620-720 MPa and tensile 

strength over the range 758-896 MPa to achieve high UEL and low Y/T ratio, 

can be accomplished by modifying the microstructure. The process implied 

minimising the contents of phosphorus, sulphur and oxygen with a thorough 

cleanliness treatment to prevent the presence of inclusion and segregation on 

the slabs. References [85,342–344] provide an explanation regarding the 

lower values of the mechanical properties of plates. 

During the alloying process after TMCP, a multi-purpose interrupted cooling 

microstructure, a dual phase structure can be obtained. This dual phase of 

10% martensite, 30% bainite and ferrite accomplishes the minimum values 

required in yield and tensile stress as well as Y/T and UEL. However, it is 

required that mechanical properties of plates can be maintained at the 

minimum requirement to achieve the target values during pipe forming and 

expanding, which increases tensile properties due to work hardening and 

coating aging [92], [266], [281]. Thus, it could be assumed that the yield ratio 

will increase after the process.  

 

Figure 4-19 Modification of strength and Y/T ratio with temperature [282] 

Figure 4-19 shows how the mechanical properties of the high strength steels 

can be modified with the temperature during the TMCP process. Variations of 

50-100C could increase 100 MPa in strength and 10% in elongation and 

Y/ratio. The yield strength above 560 MPa and 720 MPa in ultimate strength 

indicated that the steel could meet API X 100 specifications.  
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For the X60 and X70 grades there is an indication that the steels are in 

accordance with the standard values as well as the tensile properties 

required. Ductile fractures are characterised by three stages: void nucleation, 

void growing and void coalescence. The void initiation occurs at inclusion and 

when second-phase particles grow by plastic deformation of the contiguous 

matrix and coalescence, causing a small crack which is characterised by a 

zig-zag when the crack goes “slant”, forming the shear lips and finally the 

specimen breaks into two or more parts.  

Ductile fractures are also characterised by cup-cone fractures, and stress 

triaxiality is a parameter that affects the ductile fracture which is defined as the 

ratio of hydrostatic stress to the von Mises equivalent stress. The triaxiality 

value varied with the type of specimen used; for example, for smooth round 

samples this value is 0.3-0.5, thick/thin plate 0.5-0.8 and cracked samples as 

CT geometries is 2.0-4.0 [283].  

High levels of triaxiality appear when the material is strengthening and the 

maximum level of voids occurs in the middle of the specimen, resulting in high 

amounts of dimples. Once the void fraction reaches its critical value, failure is 

imminent. In reference [283] a polished fracture surface of a notched bar 

normal to the loading axis was examined revealing a secondary ductile crack 

orthogonal to the main crack.  

This kind of crack is a consequence of delamination mechanics as a result of 

steel anisotropy which can limit the ductile of high strength steel severely. In 

addition, growing and coalescence are turning faster and the samples fail in a 

lower strain if triaxiality increases. Another parameter to consider is the load 

angle which is associated with a third invariant, the deviatoric stress tensor, 

affecting the ductile fracture.  

A lode angle has some effects on void growth and coalescence. If this 

parameter decreases, the dimples tend to elongate during growing helping the 

coalescence process; however, some materials are insensitive while for 

others its effect is very important for the ductile fracture.  
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A particular problem arises which is associated with the anisotropy of tensile 

properties and toughness of the material. Joo et al., [345] in their publication 

titled “Mechanical anisotropy in steels for pipelines” described in detail the 

sources and issues derived from the mechanical anisotropy of TMCP steel. 

This anisotropy affected both tensile response and Charpy values.  

The effect of delamination is related to separation on {100} a cleavage plane 

which decreases the upper shelf regime and irregular contraction (ovalisation) 

during tensile deformation is then visible. Ovalisation of the fracture surface in 

a round bar and bend in a rectangular cross section is a characteristic of the 

anisotropy, particularly on grade X70 and above which can be observed in 

Figures 4-12 to 4-15 above.  

Mirone and Corallo [346] conducted an investigation to determine the 

mechanism of contraction of the diameter (elliptical shape) to calculate true 

stress and true strain using an experimental method on API X100 steel. The 

irregular fracture shape is a consequence of steel anisotropy and failure strain 

is not sensitive to the lode angle at high triaxiality on smooth samples at the 

failure point. In X100 steel, delamination has a direct relation with the ellipse 

morphology of the fracture surface during tensile tests of a smooth round bar.  

Initially the shape section exhibited is round but as a result of anisotropic 

plasticity during material strengthening, an ellipse is formed, giving a ratio 

between large and small near 2. One of the axes is deformed substantially 

compared to the other due to necking and the plasticity effect [347]. Thus, a 

tensile load has a component that tends to open the crack while a high 

triaxiality factor is developed due to necking towards the internal cracks 

initiation.  

Two kinds of cracks can be formed; however, these cracks are not formed in 

the same plane of the material. The central crack in a longitudinal direction is 

created in the L-T plane determining a splitting phenomenon presence. This 

splitting or delamination happen when two separate strips are formed which 

are responsible for holding the load until final rupture.  
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This phenomenon was observed in this investigation during a tension test of 

strip samples, which is shown in Figure 4-20. 

 

 

 

 

 

 

Figure 4-20 Presence of delamination on necking zone of strip sample X100 

steel during tensile test which is highlighted by the red arrow 

In summary, according to what has been described above, delamination is a 

particular type of failure on hot rolled plates. An opening force is required and 

high triaxiality has to be present for failure to occur under these mechanics.  

These two driving forces have been reported in different investigations carried 

out in Charpy, CT and tensile test on steels X70, X80 and X100. Surface 

analysis has determined that splitting has occurred in the centre of the thick 

specimens where the triaxiality is high and the necking actuates as the 

opening force. 

 Tensile properties of steel exposed in simulated flue-gas 

Procedures to determine embrittlement susceptibility of steels in H2S 

(hydrogen sulphide) have been covered under NACE TM 0177, MR 0175, TM 

0284 and BS EN ISO 15165-2 standards. They complement each other to 

cover the different mechanisms and type of embrittlement in the presence of 

H2S. Hydrogen Induced Cracking (HIC) and Sulphide Stress Cracking (SSC) 

are two mechanisms that affect pipelines, the difference being that the former 

does not require any external stress while the latter requires an applied stress.  
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Presence of SO2 (sulphur dioxide) is related to the formation of H2SO4 

(sulphuric acid) or H2SO3 (sulphurous acid) in wet environments. As 

mentioned before, the present research is dealing with samples exposed in 

supercritical CO2 with free water adding either SO2 or H2S. Therefore it was 

anticipated that the former atmosphere implied pitting or corrosion damage 

while the latter involved hydrogen damage by HIC mechanism.  

The presence of hydrogen in steel affects the tensile ductility and causes early 

material failure. The mechanism is unclear but three theories have been 

accepted to explain the phenomenon: the planar pressure theory, the reduced 

energy theory and the decohesion theory [283]. HE is characterised by its 

small plastic deformation and the fracture mode is brittle cleavage or quasi-

cleavage. In hydrogen, atmosphere concentrations greater than 10 ppm 

(0.001%) crack formation could be present without the application of an 

external force while steels with yield stress above 1000 MPa just 1 ppm is 

enough to induce crack formation. 

Ductility expressed in terms of percentage was determined in one sample due 

to space constraints for locating more samples on the SC3 rig. Results are 

given in Figures 4-21 to 4-23 for steels X100, X70 and X60 respectively. The 

influence of time of exposure to the atmosphere is minimal and no significant 

impact on mechanical properties is determined.  

Ductility expressed in terms of percentage was determined in one sample due 

to space constraints for locating more samples on the SC3 rig. Results are 

given in Figures 4-21 to 4-23 for steels X100, X70 and X60 respectively. The 

influence of time of exposure to the atmosphere is minimal and no significant 

impact on mechanical properties is determined.  

It is important to underline that ductility does not change with time or impurity 

for the steels investigated. It is noted that steel grade X100 ductility is roughly 

20%, X70 is 14% and X60 achieves 34%, showing non-sensitivity to HE or 

corrosion mechanisms during the holding time.  
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Figure 4-21 Ductility vs. aging time grade X100 

 

Figure 4-22 Ductility vs. aging time grade X70 
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Figure 4-23 Ductility vs. aging time grade X60 

The explanation for this is probably done by considering different aspects 

such as: 

 Alloying elements 

 Microstructure 

 Diffusion of hydrogen into material lattice 

 Entrapping hydrogen on interfaces or lattice imperfections 

 Hydrogen diffusion environment  

 Time of testing after exposure in flue-gas 

The effect of the alloying element on HIC is a result of the effects on strength, 

microstructure and segregation. As mentioned before, Cu reduces the uptake 

of hydrogen which is increased when CO accompanies Cu. C, Si, Cr, Ni and V 

have reduced effects on their susceptibility. Forming a film on the surface of 

the material is promoted by Bi, Pd and Pt; however, their use is very 

expensive. Ca, Al, Ce and rare earth metals, used during foundry processes, 

can precipitate or form inclusions which raise hydrogen concentration. 
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In terms of microstructure such as ferrite/pearlite, upper/lower bainite, 

martensite (Q&T), these are considered harmful for materials immersed in 

H2S atmospheres [79,348,349]. One characteristic of HIC is the formation of a 

crack or blister in the material occurs due to microstructural heterogeneities in 

the steel, making these zones stronger areas of hydrogen traps. However, to 

evaluate the effect of hydrogen, different methods for this purpose have been 

implemented, such as electrochemical charging which is preferentially used in 

hydrogen research.  

In this investigation, the mechanical degradation due to exposure flue-gas 

was studied, allowing the hydrogen to diffuse naturally under transport 

conditions of supercritical CO2. For hydrogen, one aspect to consider was the 

impact on mechanical evaluations due to the ingress of H2 or being trapped in 

the material. Similar considerations were assumed when SO2 was present 

during the test; however, it was also assumed that local or pitting attacks are 

dealing with loss of strength or ductility.  

From the results obtained, in both the tensile test and fractography 

examination no significant differences have been noticed for the two impurities 

evaluated. The engineering stress-strain indicated a normal tendency 

showing, in the case of hydrogen, that it was not present on the material or if it 

was trapped during the exposure process that it had naturally escaped from 

the pre-exposed samples.  

It is proved for the higher percentage of ductility achieved for specimens 

exposed either in H2 or SO2 atmospheres. Similarly, fracture surfaces showed 

a high grade of deformation, which is an indication of ductile fracture, and that 

the presence of brittle areas is restricted to very small zones. Probably 

cleavage facets or quasi-cleavage could be present but the magnification 

used does not allow clear identification of this. 

An investigation carried out for Chattoraj et al.,[350], probably on grade X60 or 

lower, established that samples tested immediately after exposure in a 

hydrogen environment and others on different days after exposure indicated 
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ductility differences (Figure 4-24a). Restoration of the ductility is presented on 

samples stored for several days while for those tested after exposure the 

effects on their ductility was evident.  

 

a) Engineering stress-strain curve for specimens tested at different time 

intervals after exposure in a sour environment 

 

b) Hydrogen content diffusion by natural process 

Figure 4-24 Engineering stress-strain curve and natural diffusion of hydrogen 

content of samples exposed in a sour  environment (After [350]) 
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Measurement of the total hydrogen was determined and the concentration 

values show decreases to values close to the unexposed samples as shown 

in Figure 4-24b. Zhang et al. [351] studied the correlation between hydrogen-

induced stress and HE when using steel API X80, by introducing hydrogen 

through cathodic charging at different current densities. Using SSRT, test 

fracture stress and elongation were evaluated and from the results it was 

found that hydrogen induced both plastic loss and strength loss (Figure 4-25).  

 

Figure 4-25 Stress-strain curves of six specimens before (dotted lines) and 

after charging at various current density (solid lines)[351] 

Kim et al [352] studied the X70 grade using different test solutions and varied 

combinations of PH2S and pH value. It was determined that the key parameter 

affecting HIC is PH2S rather than the pH value of the test solution. An API 5L 

X100 steel was studied by Jin et al. [260] by means of cathodic polarization to 

introduce hydrogen.  

They found that the concentration of hydrogen in the steel increased with 

hydrogen-charging current density and that HIC occurs when the critical value 

is reached. The concentration only was achieved in the steel after 20 h of 

charging at 30 mA/cm2. Blister and HIC are presented by crack formation 

which is associated with Al- and Si-enriched inclusion, rather than MnS 

inclusion. 
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4.3.7 Fracture toughness derived from Charpy absorbed energy 

Charpy energy data for steel grades X100, X70 and X60 were determined 

both for as-received and aging material. The temperature range was –196°C 

up to RT for as-received material while for aging samples it was –20°C. The 

impact energy absorbed for each material condition and specimen type was 

fitted with a tanh hyperbolic function to obtain transition temperatures’ upper 

and lower shelf energy represented by the relationship in equation 4-1.  

]/)tanh[( CTTBAY DBTT  (4-1) 

Where A, B, C and TDBTT are fittings parameters while T is the test 

temperature. A represents Charpy energy at transition temperature, TDBTT is 

the mid transition temperature, B is the energy located in the middle between 

plateaus and C is the temperature range of the Charpy energy transition. 

More details are explained in reference [181]. The transition temperature has 

been determined at half the jump between the brittle and ductile plateaux 

contained in parameter TDBTT. Table 4-4 summarises the values of the four 

constants as well as the transition temperature obtained. 

Table 4-4 Values of constants of the tanh hyperbolic function for the 

steels tested 

Steel A B C TDBTT (°C) 

X100 49.3 43.67 63.64 -17 

X70 46.6 45.9 73.5 -70 

X60 14.6 10.1 14 -36 

Figures 4-26 to 4-28 present the variations of energy versus temperature for 

virgin materials, while Figures 4-29 and 4-30 summarise the energy absorbed 

for steels exposed in anthropogenic CO2. 
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Figure 4-26 Absorbed energy vs. temperature for grade X100. B=1T 

 

Figure 4-27 Absorbed energy vs. Temperature of grade X70. B= 1T 
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Figure 4-28 Absorbed energy vs. Temperature of grade X60. B= 3/4T 

Transition temperatures were determined at conventional levels of 28 joules 

and 41 joules which are reported in Table 4-5. In addition, a transition 

temperature T0 was obtained using the empirical relationship given in 

equations 4-2 and 4-3 [177], [190]. 

T0_28J = T28J − 18C ( 15C) 
(4-2) 

T0_41J = T41J − 24C ( 15C) 
(4-3) 

Table 4-5 Transition temperatures at 27 J and 41 J, °C 

Steel T28J T41J T0_28J T0_41J 

X100 -54 -27 -72 -51 

X70 -102 -79 -120 --103 

X60 19 - 1 - 

Figures 4-29 and 4-30 show the variation of the energy absorbed for the 

steels exposed in SO2 and H2S impurities respectively over the range 50 h to 

400 h.  
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Figure 4-29. Charpy absorbed energy values for API X100, X70 and X60 steel 

exposed on SO2 at 90 bar and 45C. 

 

Figure 4-30. Charpy absorbed impact energy values for API X100, X70 and 

X60 steel exposed in H2S at 90 bar and 45C. 

A comparison of the energy obtained with virgin material (placed on the Y 

axis) indicated that no significant variations are present for steel X60 and 

X100.  
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However in grade X70 (green triangles) and for both impurities, it was 

observed that a slight deflection of the energy at 400 h could be an indication 

that the environment could have some effects on the material. However, to 

base a conclusion on this finding is not appropriate as only one specimen was 

tested and maybe it could have been part of the experimental scatter. 

Due to the shape of the Charpy transition, there is no unique correlation 

capable of evaluating for the lower shelf, transition and upper region. There 

are three correlations commonly used to link energy absorbed with toughness 

which are part of SINTAP. In this research the energy absorbed with fracture 

toughness was initially undertaken following references [189,190,353] and 

represented by equations 4-4 and 4-5.  

mMPaCVNKmat

5.019  (4-4) 

mMPaCVNKmat

5.012  (4-5) 

The toughness values calculated using both correlations are summarised 

below in Table 4-6 for as-received material and Table 4-7 for aging specimens 

respectively. It can be seen that the difference between Eq. 4-4 and 4-5 

reaches a 37% disparity. This dissimilarity is presented in both sets of data. 

From the calculations realised and the literature available in the public domain 

it was found that the correlations used are only applicable for conventional 

CVN samples rather than pre-cracked Charpy. It was required to find an 

empirical correlation to correlate fracture toughness taking into account the 

Charpy configuration. However, after an exhaustive search it looks as if the 

correlation does not exist for the test conditions carried out. 
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Table 4-6 Fracture toughness evaluation of virgin HSLA steels by 

Marandet & Sanz and SINTAP correlation 

Steel T (C) 
CVN exp_wv_avg 

(J) 
KIc _exp_wv_avg (MPam) 

M & S SINTAP 

X100 

21 74.3 164 103 

-20 44.0 126 80 

-40 35.6 113 72 

-70 22.7 90 57 

-100 12.8 68 43 

-196 3.2 34 21 

     

X70 

21 84 174 110 

-20 80 170 107 

-40 58 144 91 

-70 49 131 83 

-100 29 102 64 

-196 4 35 22 

     

X60 

21 28.4 101 64 

-20 18.4 81 51 

-40 13.6 70 44 

-70 7.0 50 32 

-100 4.2 39 25 

-196 2.1 27 17 
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Table 4-7 Fracture toughness of aging HSLA steels by Marandet & Sanz 

and SINTAP correlation 

Steel Impurity 
Aging CVN exp_wv_avg  KIc _exp_wv_avg (MPam) 

(h) (J) M & S SINTAP 

X100 

SO2 

50 43 124 78 

150 41 122 77 

200 41 122 77 

300 45 128 81 

400 43 125 79 

H2S 

50 41 121 77 

150 50 134 84 

200 46 129 81 

300 46 129 81 

400 45 128 81 

X70 

SO2 

50 81 171 108 

150 83 173 110 

200 81 170 107 

300 74 163 103 

400 68 156 99 

H2S 

50 77 167 105 

150 81 171 108 

200 84 174 110 

300 81 171 108 

400 60 148 93 

X60 

SO2 

50 19 83 52 

150 21 87 55 

200 22 88 56 

300 22 90 57 

400 22 88 56 

H2S 

50 20 85 54 

150 20 84 53 

200 22 88 56 

300 19 83 52 

400 21 87 55 
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4.3.7.1 Fracture surface characterisation 

Figure 4-31 (a-f) shows the lower magnification fractographs of Charpy impact 

sample fractures at lower temperatures and RT. At 21°C Figure 4-31 (b, d, f) 

shows separations that formed in the crack propagation direction for the three 

steels, and only grade X70 still presented delamination at –70C. Shear lips 

are observed in all steels at both edges of the samples impacted upon, 

decreasing in width as the temperature decreased. Cleavage fractures can be 

observed on grade X60 at 21°C as well as at –70C. A mixture of brittle and 

ductile morphology is observable on the fracture surface of grade X100 while 

in grade X70 ductile fracture exists at both temperatures. 

For steels exposed in SO2 impurity, the fracture surface of samples X70 and 

X100 show separation in the middle of the thickness. Even though the shear 

lips are not visible at the magnification utilised, the separations were 

observable during the analysis as seen in Figure 4-32(e, d, f). In the impact 

specimen of X100 steel exposed in H2S and tested at –20C showed in Figure 

4-33f, there is an indication of delamination in the middle of the thickness at 

400 h exposure just for this one.  

Investigation carried out for Shin et al. [218] and Yang et al. [354] on API X80 

and X100 steel show the effect of microstructure and texture on delamination 

of these types of steel. Although their work was developed using conventional 

Charpy samples, the effect of bainite grain orientation, temperature and work 

hardening due to hammering revealed that all these aspects have a strong 

effect on the separation mechanism. 
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(a) X100 at –70°C   (c) X70 at –70°C   e) X60 at –70°C 

   

(b) X100 at 21°C    (d) X70 at 21°C   f) X60 at 21°C 

Figure 4-31 Fracture surface of samples obtained at low magnification on virgin PCCVN samples  
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(a) X60 set of samples    (b) X70 set tested    (c) X100 set 

       
(d) X60 at 400h     (e) X70 at 400h     (f) X100 at 400h 

Figure 4-32 Fracture surface of pre-cracked Charpy exposed in SO2 environment and tested at –20ºC  

50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h 

Separation 
Separation 
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(a) X60 set of samples    (b) X70 set tested    (c) X100 set 

       
(d) X60 at 400h     (e) X70 at 400h     (f) X100 at 400h 

Figure 4-33 Fracture surface of pre-cracked Charpy samples exposed in H2S and tested at –20ºC 

50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h 
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4.3.7.2 Discussion results fracture toughness  

The data summarised in Tables 4-6 and 4-7 gave an estimation of the fracture 

toughness as a function of energy absorbed for the material during the test. 

The equation to correlate Charpy energy with fracture toughness was selected 

from the equations developed for lower bound and available in the public 

domain. It determines mainly the minimum fracture toughness value to 

establish the ductile-brittle transition phenomenon which is the main area of 

interests when anthropogenic CO2 is transported by pipeline.  

Determination of the TDBTT  temperature was analysed by the hyperbolic tanh 

curve fitting model used to study energy variation with temperature [181]. The 

model fits very well for X60 and X70 data but was uneven for X100. The 

reason for this behaviour was due to the insufficient range of data, the 

asymptote was ill-defined and the parameters are not well determined. This 

issue was analysed by Urwank [355] who established that this regression 

algorithm may fail to find the global point in solution space and may only 

calculate the local best point. 

The ASME Code cases N-629 and N-631 approaches have been used for a 

long time to determine an index temperature which can be correlated with the 

temperature of transition on the low bound. An alternative method is the 

Master Curve (MC) [187] that determines an index temperature parameter 

namely, To, which is directly associated with a stress intensity factor equal to 

100 MPam0.5 value. The MC approach relies on the ASTM E 1921 standard 

which covers all the aspects to determine T0. 

The ASME and MC methodologies, however, need to meet certain conditions 

to be valid, as follows: 

 The impact energy could be obtained from standard or sub-size notched 

samples. 

 If pre-cracked Charpy specimens are used an instrumented impact tester 

has to be used. 

 An instrumented impact test should be performed and KJc is calculated 

from the force-displacement value. 
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 If sufficient tests at appropriate temperatures are not available T0 cannot 

be obtained. 

 Tensile test results at the test temperature should be available to perform 

the analysis. Yield strength should be the dynamic yield strength not the 

static one. 

 ASTM E1921-13 requires KJc value input and not KIc input. 

 Conversion KJc=19*CVN0.5 is very approximate on standard notched 

samples but no correlation could be applied with pre-cracked Charpy 

specimens. 

 Charpy-V-KIc correlation is available for standard sized notched specimens  

based upon cleavage fracture on the 28J (35 J/cm2). 

Sokolov and Nanstand [356], Corwing et al. [48], Lucas et al.[357] and Kumar 

et al. [358] have been working to develop a correlation of absorbed energy 

between full-size and sub-size Charpy specimens. The method consists of 

establishing an empirical ratio between the upper shelves of these two 

specimens. 

Wallin [187,202] developed an empirical correlation which intended to 

determine Charpy energy values from sub-size specimen to full-size while that 

of Schindler and Kalkof [59] introduced an analytical approach based on J 

energy which can estimate fracture toughness in terms of KJc parameters. All 

the above-mentioned works have in common that the estimation is applicable 

to correlate energy from sub-size samples to full-size and the test has to be 

performed on static conditions or in dynamic circumstances using an 

instrumented machine.  

But no correlation exists nor it is allowed to determine fracture toughness from 

energy absorbed by testing pre-cracked samples without accomplishing the 

conditions mentioned before. To overcome the issue and assuming that cross 

section areas have a correspondence, a procedure is proposed. This method 

relied on temperature as the parameter, looking to establish a correlation that 

allows the association of energy with fracture toughness.  
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The standard Charpy-V test is based on the 28 J (35J/cm2) impact energy 

level transition temperatures. 35J/cm2 is related to the specify energy which is 

the energy absorbed in Joules (J) divided by the area in cm2 of the full-size 

Charpy specimen. Figure 4-34 summarises the phenomenon.  

It can be observed that material with a lesser cross section area (A2) offers 

less resistance to be broken than a sample with a bigger cross section (A1). 

Based on this concept a correction or normalization factor was introduced 

taking into account that resistance to breaking materials has the same 

mechanical properties and fracture toughness, and their areas have an 

energy correspondence following the assumption in equation 4-6, thus: 

𝑅𝑒𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑖𝑎 = 𝑓(𝑡𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 + 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑒𝑛𝑡) (4-6) 

A1

A2

R2

R1

HIGH ENERGY 

LOW ENERGY 

(R) 

a/W=0.5

a/W=0.2

PCCVN 

sample

Standard CVN 

sample

 

Figure 4-34 Scheme of the final position of the pendulum after breaking a 

conventional sample (Red) and a PCCVN sample (Blue) 

Establishing a correspondence between Charpy conventional and pre-cracked 

Charpy as a function of the geometrical parameter of the cross section area 

equation 4-7 is obtained: 
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𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐶𝐶𝑉𝑁

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑃𝐶𝐶𝑉𝑁
=

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑉𝑁

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐶𝑉𝑁
 (4-7) 

Equation 4-7 can be transformed as: 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑉𝑁 = 𝐶𝐹𝐸𝑛𝑒𝑟𝑔𝑦𝑃𝐶𝐶𝑉𝑁 (4-8) 

To solve equation 4-7, the ratio factor of geometrical parameters, from 

equation 4-8, is calculated which can be used to correct the energy values 

obtained from PCCVN to CVN. Charpy energy data were scaled and the 

curve fitting method was applied to determine TDBTT which characterises the 

ductile-brittle transition temperature.  

As a result the absorbed energy and temperature was shifting. However, it is 

noticeable that if the DBTT temperatures calculated may not be accurate a 

sophisticated fitting curve approach can be applied or the appearance of the 

ductile-brittle transition should be used as a parameter to evaluate DBTT in 

terms of cleavage (50%).  

Figures 4-35 to 4-39 show the results obtained from the normalisation 

accomplished. Table 4-8 summarises the new transition temperatures 

obtained as a result of the correlation applied.  

Table 4-8 Transition temperatures at 27 J and 41 J, °C after scaling 

energy absorbed 

Steel T28J T41J T0_28J T0_41J TDBTT 

X100 -88 -63 -106 -87 -27 

X70 -125 -106 -143 -130 -69 

X60 -23 - -41 - -24 
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Figure 4-35 Absorbed energy vs. Temperature for grade X100. B=1T 

 

Figure 4-36 Absorbed energy vs. Temperature. Grade X70. B= 1T 
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Figure 4-37 Absorbed energy vs. Temperature. Grade X60. B= 3/4T 

 

Figure 4-38. Charpy absorbed energy values for HSLA steels exposed in SO2 

at 90 bar and 45C. 
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Figure 4-39. Charpy absorbed impact energy values for API X100, X70 and 

X60 steel exposed on H2S at 90 bar and 45C 

4.3.7.3 KIC calculations for virgin and aging material 

Although it is well known that a single correlation between Charpy test results 
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using standard CVN samples.  

However, this value could be different when PCCVN samples are used. It has 

been found that an impact value in the longitudinal direction is much lower 

than the transversal orientation. For example, Ju et al. [359] found differences 
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transverse direction. Similar steel was studied by Baek et al. [360] but the 

energy values at the same temperature (-60°C) was 100J for conventional 
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using standard CVN samples and found that the impact transition temperature 
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It can be seen that the tensile and yield strength could increase and be 

detrimental to ductility which is not the behaviour presented for the material. In 

reference [170] the author evaluated the fracture toughness of the API X100 

using CT geometries and found the KQ of the material was 142 MPam0.5 at 

21°C and the ductile-brittle transition could be below –70C. 

Xue et al. [361] reported that the yield stress increases from 35% to 53% 

when the material (API X100) is tested at –196°C and –83°C respectively, but 

no significant differences were found for the elongation. Researches carried 

out by Fields et al. [362] and Mikalac et al. [363] demonstrated that the 

difference mentioned above is greatest at the upper shelf where the 

deformation is totally plastic. At the lower shelf the difference is not large due 

to the fracture mechanics being cleavage. They conclude that the energy 

absorption transition temperature range is slight higher for the pre-cracked 

specimens. 

The results obtained and compared with conventional Charpy or CT, indicated 

that instead of being normalised the energy absorbed by the steels were lower 

in pre-cracked samples at all temperatures. This result agrees with references 

[363] and [364] which are shown in Figure 4-40. 

From the calculation of fracture toughness and following the revision 

bibliography [58,177,184,185,190,202,209,220,365,366], it was found that the 

considerations to determine fracture toughness from PCCVN are not viable. 

For this reason there is no correspondence between the energy values 

determined and fracture toughness calculations as it can be seen in Figure 4-

41 and Figure 4-42 on API X100 steel. Appendix O, P, Q, S, T and U 

summarised the raw data obtained from the experimental tests performed on 

parent and exposed material. 
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a) Steel API X100 (After [363]) 

 

b) Steel API X60. FS: Full size; SS:(Sub-size) (After [364]) 

Figure 4-40. Variation of the Charpy energy in sub-size and pre-cracked 

Charpy V-notch samples  
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Figure 4-41 Variation of Charpy energy absorbed with temperature for 

conventional Charpy V-notch (literature) and currently research (PCVN). Steel 

grade X100. 

 

Figure 4-42 Comparison fracture toughness values determined on 

conventional CVN, CT [297] and PCCVN geometry in the longitudinal 

direction. API X100 
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4.3.8 Corrosion and embrittlement of steels in flue-gas saturated 

with water 

In practical and real situations, transporting anthropogenic CO2 implies that 

many other species could be present due to the necessity to make CO2 

transportation economically feasible. A combination of CO2 and H2S becomes 

corrosive through the presence of moisture and the corrosiveness is 

determined solely by the levels of these compounds. With regard to NACE, a 

fluid is designated as sour when it contains greater than a 0.0035 atmosphere 

partial pressure of H2S.  

Although pipelines could not normally operate under corrosive conditions, if 

there is a temperature drop in the gas to below its dewpoint or failure in the 

dehydration plant, this can lead to the introduction of moisture. Sulphur 

dioxide, SO2, enters the atmosphere as a result of both natural phenomena 

and anthropogenic activities. Coal burning is the single largest man-made 

source of SO2, accounting for about 50% of annual global emissions, with oil 

burning accounting for a further 25 to 30%. SO2 reacts on the surface of a 

variety of airborne solid particles, is soluble in water and can be oxidised 

within airborne water droplets, producing sulphuric acid. This acidic pollution 

can be transported by wind over many hundreds of kilometres, and is 

deposited as acid rain.  

CO2 dissolves in the presence of water, forming carbonic acid (H2CO3), which 

is corrosive to low carbon steel. Eq. 4-9 to 4-11 corresponds to the general 

reactions describing this process. 

  eFeFe 22

 (4-9) 

HeH 222  

 
(4-10) 

)()()(
3222

aqCOHlHOgCO 
 

(4-11) 

Due to these processes, a layer of iron carbonate, FeCO3, is formed on the 

steel surface. This film plays an important role in the formation of protective 

deposits in the first stage of the corrosion mechanism. Moisture and free 

water is an issue transporting CO2.  
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Race et al. [89,367] describe how the acceptable level of water in the pipeline 

is dependent on the solubility of water in the fluid at the operating temperature 

and pressure. The solubility limit for water in pure CO2 at pipeline operating 

conditions is 2560 ppm. As a result, it is now accepted that corrosion rates in 

CO2 pipelines will not occur if the water content is kept at less than 60% of the 

saturation value (1574 ppm). For industrial applications, the levels of water for 

pipeline facilities are specified between 288 ppm and 500 ppm.  

Figure 4-43 presents SEM images showing corrosion products in a quite 

regular structure and shaped corrosion products which were piled up in a very 

regular arrangement. As can be seen from the analysis in this work, the 

corrosion behaviour of X100, X70 and X60 steels under the present 

investigation is not mainly due to CO2 and free water but SO2 and H2S also 

play a very important role. Choi and Nešić briefly discussed the corrosion 

mechanism of carbon steel in supercritical CO2 containing SO2, H2O and O2 

impurities [121,144,168]. Their results showed that the corroded specimen 

with 500 ppm SO2 had a smoother surface in some areas, while other zones 

had many small protrusions on the corroded surface, and that was probably 

where the anodic corrosion reactions occurred and match with the results 

obtained in this investigation (Figure 4-43a).  

  

(a) X100 steel. Magn 500X   (b) X60 steel. Magn 500X 

Figure 4-43 SEM pictures of sample surfaces after being exposed for 400h in 

flue-gases at a CO2 partial pressure of 90 bar, 45C, with 3.3% free water and 

500 ppm SO2 
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It is characteristic at some points to have many, cellular-shaped corrosion 

products, which were not visible with lower magnification. In Figure 4-43b, 

many cracks were observed on the surface of the corrosion products, which 

are provided by the SEM of X60 steel.  

The protectiveness of the surface scale formed in the CO2 environment 

depends on the nature of the base alloy (composition, microstructure, heat 

treatment) and on the properties of the environment, such as temperature, 

CO2 partial pressure, pH, flow rate and impurities present [125].  

Although this behaviour has been presented at partial pressures relevant for 

the oil and gas transport (p<10 bar), in the case of transporting CO2, a partial 

pressure above 72 bar should give corrosion rates exceeding 10 mm/y. In 

fact, the corrosion rate will depend on the corrosion layer which has formed on 

the steel surface [94]. The dissolution of CO2 at high partial pressures is 

different from that at low partial pressures due to the non-ideality of the 

phases. 

In low pressure systems, the concentration of dissolved CO2 is directly 

proportional to its partial pressure according to Henry’s law. However, in high 

pressure systems this relationship between concentration and pressure is no 

longer linear and Henry’s law cannot therefore be used [337]. The corrosion 

product film under those experimental conditions looks similar to those 

obtained by Choi and Nešić [144,146] and Dusgtad et al.’s experiments 

[110,368].  

Results by EDS tests in the region of 10 and 7 (Figure 4-44a); and re-

evaluated with XRD (Figure 4-44c), determine that the corrosion product is 

probably FeSO4. This result reaches good agreement with the results of 

Dusgtad et al., who determined this product using the same method. Placed in 

the air, the specimen surface would be a white-grey colour, which was 

probably related to the efflorescence phenomenon in that the FeSO4 hydrate 

could be converted to FeSO4 when exposed to the air. This can be seen in 

Appendix N. 

 



 

190 

  

a) Grade X100, exposed 1100h SO2 

  

b) Grade X60, exposed 400h SO2 

Figure 4-44 Evaluation layer deposited on the metal surface for samples exposed with SO2 and analysed by SEM, EDX and X-Ray 
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For example, the addition of SO2 in the gas phase can lower the pH of the 

system, increasing the corrosion rates of the steel when water condenses on 

the steel surface due to the formation of sulphurous acid, H2SO3. The possible 

reaction mechanisms containing anodic and cathodic reactions generally 

accepted are presented in equations 4-12 to 4-16.  

3222
SOHOHSO   (4-12) 

  HSOOHSO 22

322
 (4-13) 

  eHSOOHSO 222

42

2

3  (4-14) 

4

2

4

2 FeSOSOFe    (4-15) 

42224
4464 SOHFeOOHOOHFeSO   

(4-16) 

The presence of H2S provides alternative mechanisms for corrosion mitigation 

since it enables the formation of FeS films on the surface of the material. 

However, low concentrations of H2S in CO2 wet gas systems might result in 

accelerating corrosion rates, compared with systems without H2S. The causes 

of this effect of low concentrations of H2S in CO2 are not well understood 

[124]. Equation 4-17 presents the general corrosion reaction. 

adsHFeSSHFe 22 
 

(4-17) 

The hydrogen is generated by the reduction of the hydrogen ion (H+), which is 

produced from the anodic reactions on the material; this can be expressed 

using equations 4-18 and 4-19 which are widely accepted as the corrosion 

reactions of steel exposed to a sour environment. 

2HHH adsads 
 

(4-18) 

absads HH   (4-19) 

The dissolution reactions result in the generation of hydrogen ions which 

would be reduced to hydrogen atoms. These could be absorbed on the 

surface and combined to form hydrogen gas which is then released into the 

environment.  
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If the hydrogen diffuses into regions of high triaxiality tensile stresses or to 

some microstructural areas that contain defects such as the inclusions 

(elongated Type II MnS) and segregations zones or bands with lower 

temperature transformation products (such as bainite and martensite), it 

becomes entrapped. Moreover, when the material reaches a critical hydrogen 

concentration value (CH), it could cause the substantial rearrangement of 

dislocations and de-cohesion of grain boundaries and the formation of micro 

crevices at the grain and phase boundaries.  

The hydrogen concentration about CH  2.1*10-6 mol/cm3 can be considered 

as critical because at this value the steel loses its local strength by 2.5 times 

in comparison with the test air [369]. This mechanism is known as sulphide 

stress cracking (SSC) and this phenomenon is observed in stressed 

components. The formation of surface blisters and/or internal cracks in the 

absence of applied stress, or under elastic tensile stress developed from the 

sulphide corrosion process on the steel surface, is called hydrogen induced 

cracking (HIC) [126,162].  

 

Figure 4-45 SEM image of the surface of the samples after being exposed for 

400h in flue-gases , at a CO2 partial pressure of 90 bar, 45C, with 3.3% free 

water and 500 ppm H2S. Mag 650X. 

The effect of the H2S in the samples exposed in the SC3 is shown in Figure 4-

45 where it can be seen that the layer deposited on the surface of the 

samples was distributed irregularly.  
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a) Grade X100, exposed1100h with H2S 

  

b) Grade X100, exposed 400h with H2S 

Figure 4-46 Evaluation layer deposited on the metal surface for samples exposed on H2S by SEM, EDX XRD 
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As few signs of corrosion were observed for all the samples, alternative analysis 

by EDS and XRD were performed to identify the component. The spectrum of 

both analyses determined that the compound can be classified as FeSO. Figure 

4-46 presents the spectrums and places where tests were made. In addition, as 

the corrosion was lower, even though free water was in the system, verification 

was undertaken to quantify the circulating water in the CO2 rig. The evaluation 

was made capturing a mass sample of 40 mL from where concentrations were 

inferred. Water grams were assumed to equal mL @ 90 bar. Table 4-9 presents 

all the values obtained. 

Table 4-9 Measure of water in the SC3 rig 

Test number H2O g g/L ppmw ppmv 

1 0.034 0.85 1511 850 

2 0.065 1.63 2890 1630 

CO2 at 90 bar, 37 °C = 563 kg/m3 (By Peacesoftware) 

From the results, it can be inferred that the amount of water in the system was 

lower than expected for the test run with H2S and SO2 giving lower corrosion 

rates for the steels tested. From the literature a large variance in “saturation” 

concentrations has been reported, giving solubility for the conditions established 

in this research at around ~ 0.24 gm/L (426 ppmw, 240 ppmv) which is lower of 

others investigation that state 3300 ppm for 80 bar, 50°C [109,368,370]. 
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4.4 Summary 

Based on the results of the presented investigation on strength and fracture 

characteristics of the X100, X70 and X60 grade steel, the following major 

deductions can be made: 

 The mechanical properties in three kinds of HSLA steels as-received and 

aging conditions tested over a range from 196C to RT has been carried out. 

The relation between hardness and type of microstructure and their effects 

on tensile properties along with temperature variation and anisotropy effect 

is essentially complex due to the possible variations and connections to the 

obtained similar properties of the material.  

 As it was expected the total energy absorbed by the pre-crack Charpy 

specimens is less than conventional Charpy. The  correlations used to 

determine fracture toughness from the absorbed energy was not reliable as 

huge differences were observed compared to the literature using 

conventional CVN. 

 Various models were reviewed from the literature and methods used as 

alternatives to investigate whether or not it might be possible to relate KIc to 

Charpy toughness for both pre-cracked and conventional specimens. 

Following an exhaustive analysis no consistent relationship can be reliably 

observed. Finally it must be concluded that Charpy toughness cannot be 

related to fracture toughness. 

 The results obtained from the corrosion analysis could encourage using 

alternative characterisation methods in order to clarify differences between 

the compounds to establish more precise values. Measurement of pH and 

corrosion rate on real time by other methods are critical as it could offer 

more information to understand corrosion mechanics on dynamic systems.  

 The repercussion from H2S and SO2 on mechanical responses due to 

embrittlement or corrosion is an issue for steels exposed in anthropogenic 

CO2. An attempt to establish or understand the phenomenon, along with 

microstructure, chemical composition, impurities concentration and their 

interaction was carried out. 
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5 RESIDUAL STRESS 

5.1 Introduction 

Residual stresses can significantly affect the mechanical properties and integrity 

of components or structures [371], [229]. Those stresses can be produced by 

the manufacturing process, heat treatment, welding processes and also by 

service loading. The origin of the residual stress may be a consequence of 

differential plastic flow, differential cooling rates or phase transformation 

[230,231]. 

Depending on the nature of residual stress fields, it can be a beneficial 

(compressive) or a destructive (tensile) feature in a component. Compressive 

residual stress can be induced in the subsurface of a material by deforming a 

layer which varies in depth depending on the method used. Deep rolling, 

peening processes such as shot peening, laser peening, hammer peening and 

ultrasonic peening, are some of the techniques utilised for this purpose. 

Measurement and understanding of stress field behaviour will facilitate better 

design practice against static and dynamic loading, and will aid in predicting 

structural failure and the assessment of structural integrity. Methods of 

measuring residual stress might be categorized as destructive, semi-destructive 

or non-destructive. Ring-core, deep-hole and hole-drilling are representative of 

semi-destructive techniques and magnetic, acoustic or diffraction of Non-

destructive approaches [230,233,236,237,372,373].  

There are some issues regarding non-destructive technique capabilities such as 

spatial resolution meaning that the residual stress measure is restricted very 

near or far from the surface [233,238,275]. Thus, combination of two or more 

approaches could reduce the constraint. ND and hole-drilling combination are 

two powerful techniques that working together extended the range to measure 

RS in thick components [241,245,249,251,259,374,375]. 
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This chapter presents a study carried out by an ND and hole-drilling method to 

evaluate residual stress variation on cold-rolled specimens. The procedure 

involved the measurement of the induced stresses and sought to visualize the 

stress field pattern and behaviour through-thickness across the specimen 

surface. For the incremental centre hole-drilling (ICHD) and orbiting incremental 

hole-drilling (OIHD) approaches, residual stress evaluation was performed 

using an inverse solution known as the integral method. While for the ND 

calculations the home-software StressTextCalculator® was used. 

5.2 Experimental procedure  

5.2.1 Outline 

API X100 high strength steel as-received and yield strength was obtained from 

tensile test. The material was used in the form of flat plates to carry out cold 

rolling, introducing residual stresses (See section 3.6.1). Cold rolling, which was 

undertaken by a combination of load and axial flat rollers, was carried out in 

alternative directions to produce two rolling tracks for each side of the plate. As 

a result, two rolling tracks were obtained, one with three passes and the other 

with six passes. 

Two approaches were used to characterise the residual stress profile in the 

rolling plates. A set of ND measurements, was performed to size residual stress 

through-thickness and along the transverse plate section. Details of settings 

were described previously in section 3.6.2. ND measurements were made using 

a 1.66 Å constant wavelengths with an IGV of 1x1x1 mm3 for longitudinal 

direction, and 15x1x1 mm3 for transverse and normal direction.  

Points measured on the surface and through-thickness is shown in Figure 5-1. 

Diffraction data obtained from the 211 crystallography plane were used to 

calculate the elastic strain in-plane which was converted to stresses using the 

inverse Hooke’s law. More detail can be obtained from Chapter 3 section 

3.6.2.1. 
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Figure 5-1 A schematic drawing of the selected points for RS analysis on the 

plate. Arrows indicated the directions abreast the stresses were measured 

either on the surface or through the thickness. 

 

 

 

Figure 5-2 A schematic representation drilling a hole performed by ICHD or 

OIHD from zero to 2 mm depth 
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Stresses variation at the sub-surface of the material was determined by 

incremental hole drilling following the basic procedure described in ASTM, NPL 

and Measurement Group guidance [241,251,253]. ICHD and OIHD were 

undertaken at the Structural Integrity laboratory at Cranfield University and 

Stresscraft Ltd4 respectively, from which comparisons with the ND method were 

established. A schematic illustration can be seen in Figure 5-2. 

Strain releases were recorded using a Vishay strain gauge rosette CEA-06-062 

UL-120 and EA-06-125RE-120. Strain data, both ICHD and OIHD, were 

analysed using the integral method developed by Schajer, allowing the 

calculation of residual stresses which are invariants with depth. The method 

was explained in Chapter 2 section 2.4.4.1 and more details can be found in 

references [249,250,277,374]. 

5.3 Results 

5.3.1 Cold rolling 

 

Figure 5-3 A schematic illustration showing transverse depth of indentation () 

and thickness reduction due to rolling at the centre span of the specimen 

Figure 5-3 represents the profile expected to be obtained after the cold rolling 

process was performed. It was assumed that the rolling track would be shaped 

with two similar areas with three passes each while an overload area with six 

passes were expected after the test.  

                                            
4
 Stresscraft Ltd is a company located in St Winefrides Chapel, Pick St, Shepshed, 

Loughborough LE12 9BB which is dedicated to the provision of stress analysis services. 
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Measurements of the depth through the rolling zone were made in order to 

establish the thickness reduction and deflection outcome of the load applied, as 

illustrated by Figure 5-4 and summarised in Table 5-1. It can be observed that 

on samples A and B the depth indentation is similar for both sides. 

Table 5-1 Measurement of depth as a result of load applied on the plate by 

cold rolling 

Sample Side 
Thickness 
plate (mm) 

Depth indentation 

() rolling track 
(mm) 

Thickness 
reduction (mm) 

 (%) 
total 

A 
A1 10 0.038 

9.92 0.76 
A2 10 0.038 

B 
B1 10 0.080 

9.84 1.6 
B2 10 0.080 

C 
C1 10 0.125 

9.67 3.35 
C2 10 0.210 

D 
D1 10 0.240 

8.86 11.4 
D2 10 0.900 

In samples C and D the indentation depth is higher for the side where rolling 

was performed initially while the second side is less. Also the depth value is still 

similar when applying the same load, even though the width of the roller was 

decreased from 20 mm to 10 mm.  

In order to determine any distortion as a consequence of lateral forces during 

the deformation process, particularly along with the rolling area, measurements 

of the sample width were made. Three equally-spaced zones abreast of the 

indented region were measured indicating dimensional changes as a 

consequence of the load applied. The maximum peak value was found at the 

mid-section of the total length of the rolling zone which was chosen as a 

representative value of the maximum deformation, as shown in Figure 5-4.  
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Figure 5-4 Maximum width deformation of the plate applying different load 

It is evident from the results that the percentage of deformation is enlarged 

linearly if the load still increased but it should, however, be noted that by 

changing the roller width, the deformation increased significantly, by at least 

75%. In order to give a clear correspondence with the drawing in Figure 5-3, the 

profile was divided into three regions which are namely rolled areas 1 and 2 

(three passes) and overload area (six passes).  

Figure 5-5 shows the profile obtained by laser measurement across the 

transverse section of the plate. As it can be seen, there were different depths 

for each part of the rolled areas depending on load applied. Even though there 

are no significant differences in rolling depth for 100 KN and 150 KN (Figure 5-

5a), it can be seen that the rolling track is slightly flat in the centre of the each 

rolling area (roller areas 1 and 2) but it is slightly deeper over the edge of the 

same rolling path. Conversely, deformation introduced by applying a 200 kN 

load (Figure 5-5b) makes the rolling track deeper involving higher compression 

stresses underneath the surface. In addition, as the plate was rolled without a 

pair of rollers working at the same time, it is apparent that the indented regions 

do not match on both sides of the sample. Also, this was found for all 

specimens and it is likely that a recovery/displacement mechanism is actuating 

at the roller-plate contact during cold work. 
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(a). Sample A. 100 kN load, roller width=20 mm 

 

(b) Sample C. 200 kN load, roller width=20 mm 

Figure 5-5 A laser profile obtained across the rolling area indicating different 

depths in track region, namely, roller areas 1 and 2 and overload. 

This could imply that a bending moment might be introduced during the rolling 

process affecting the stressed induced; however, this bending strain was not 

measured. Likewise, this investigation assumed that stress distribution was 

equal for both sides of the samples abreast the transverse section; however, 

comparing Figures 5-3 and 5-5 shows that the zone expected to be found 

(Roller Area 1, Roller Area 2 and overload) is different. It may, therefore, be 

inferred that even though the load applied is the same, the roller is not reaching 

the total depth on both sides and a step is formed.  
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This could affect load distribution and hence residual stress due to the 

considerable amount of deformation produced from the previous roller passes. 

Evidence of this can be found in Figures V-1 and V-2 (Appendix V). 

5.3.2 Residual stress measurement 

5.3.2.1 Neutron diffraction 

It is recognized from the literature that mechanical deformation induces plastic 

strain distortion on the surface layers of the material induced residual stresses 

due to the constraining effect of the bulk. However, this plastic deformation and 

thereby the residual stress decline gradually as one moves into the material as 

detailed in Figure 5-6. Depending on the method used to generate the 

deformation layer, it should vary from a few microns to some millimetres in 

depth. For example, cold rolled should affect the material bulk to 2 mm in depth. 

 

Figure 5-6 A schematic drawing of the stresses variation of the in-plane strain 

with depth 

ND results for sets A, B, C and D are shown in Figure 5-7, separated into plots 

that give longitudinal stress profiles of through-thickness and along transverse 

sections of the samples rolled. Transverse and normal distribution profiles can 

be found in Figure W-1 (Appendix W). 
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Through-thickness residual stress: The compressive residual stresses 

developed by cold work on both sides of the specimens are compared in Figure 

5-7 (a-d). The magnitude of longitudinal compression stress on a lower load 

(Sample A) is -140 MPa average, for points 1 to 3 at a nominal depth of 2 mm, 

from where a slight upward trend rises to nearly 100 MPa tensile stresses at the 

middle of the material’s thickness.  This should be a response of the material in 

order to maintain the equilibrium in the system. Points 4 and 5 are retained in 

tensile stress across the section up to 200 MPa. An opposite trend was found 

after increasing the load. Compressive  stresses are presented in the few first 

depths, for points 1 to 4, without significant changes in stresses placed in the 

middle of the thickness, mainly, for points 4 and 5.  

Nevertheless, the residual stress level, at point 3, is reduced to zero when 100 

KN and 150 KN loads are applied but is almost identical at points 1 and 2 near 

the surface. For the latter points, the stress distribution in compression with 

depth is one magnitude less in sample B compared to sample C – 100 MPa and 

200 MPa, respectively. However, in sample D, there is an opposite tendency as 

the levels of residual compressive surface stress at point 1 (across the section) 

increased by 100% and increased by 1.5 times more tensile stress than sample 

C at point 2. Stress levels at point 3 are still the same in both cases. 

In the majority of cases, RS distribution at point 5 revealed a considerably 

tensile uniform tendency across the thickness. However, it can be observed in 

Figure 5-7 that once the load was increased to 200 KN, there was a noticeable 

enhancement of 100 MPa tensile stresses in sample C and when the width 

roller was reduced to 10 mm, specimen D rose to 150 MPa. 

Transverse stresses are basically kept in a tensile state varying between 150 

MPa to 400 MPa in the middle of the section, decaying to zero near to the 

surface for samples A and B. The peak stress value is quite high, being 70% of 

the yield strength of the material. For specimen C, the stresses dropped in 

sample B, -200 MPa and -50 MPa for points 1, 2 and 3, respectively.  
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a) Sample A load100 kN         b) Sample B load150 kN 

    
c) Sample A load 200 kN        d) Sample B load 200 kN 

Figure 5-7 Variation of longitudinal residual stress obtained by ND on samples A, B, C and D through-thickness 
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There was a substantial increment of 150 MPa at point 5, falling to 200 MPa at 

point 3. The stress distribution in D revealed a considerably higher variation at 

the rolling track. The results seem to indicate that the residual stress was 

dramatically affected by the reduction of the roller width, implying that a 

considerable plastic deformation is induced during the previous rolling stage. 

The overall response of normal stresses indicates a more reasonable 

distribution along the thickness, even though it was in a tensile mode in the 

range between 400 MPa to nearly zero for all the points at set A, B, C and D. It 

is evident that P3 and P4 are varying with the load increment, which is more 

noticeable in sample D when the stress level falls to nearly zero for P1 and P4. 

It is observable that near to the wall track their effects are more marked. 

Residual stress distribution along with the transverse section: Figure 5-8 

compares the residual stress profiles at points 1 to 5 and the depth changing 

from 0.8 to 9.2 on the rolled steel. Indeed, the graph clearly shows the rolling 

zone and points’ location from the middle to the edge of the plate in accordance 

with Figure 5-1 above. As mentioned before, the depth stress distribution was 

clearly affected by load and roller width. In order to consider their effects from 

the plate centreline to the edge for each point through the thickness, stress 

distribution was plotted and similar behaviour was observed in all cases, with no 

unexpected changes from the analysis done previously.  

As can be seen from the figures, compression stresses are always presented in 

one half of the thickness and slightly in tension in the other half of the plate. 

This could indicate that one of the side’s plastic strains was much higher than 

the other one as rolling was made first on one side and after that the plate was 

turned and rolled on the other face producing a different deformation layer. 

Additionally, the longitudinal stresses in point 4 (outside the rolling track) were 

shifted up in samples A, B and C but dropped dramatically in specimen D with 

the exception of point 0.8 mm depth. This could suggest that a higher tensile 

stress is introduced due to the adhesion forces undertaken in the contact side-

facing roller-material near to the surface. 
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Figure 5-8 Variation of longitudinal stresses in samples A, B, C and D along points on the surface and through-thickness 
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A contrary effect is produced over 2.2 mm in depth as compression stresses 

were developed during the rolling. This should be a consequence of the rolling 

process. However, different views of transverse stresses distribution are 

presented in Figure X-1 from where the curves indicate that the residual stress 

in the plate outside, near the edge of the rolling tracks, is affected considerably 

by roller-material contact. Nevertheless, transverse and normal stress tendency 

was similar in all the samples indicating that there is reasonable agreement with 

the analysis undertaken previously. 

5.3.3 Incremental hole drilling 

The strain relaxations were measured in three directions, longitudinal, 

transverse and shear, for which three linear equations were used to calculate 

the residual stresses in the material using the integral method. Details can be 

found in Chapter 3 section 3.6.5 or in Stefanescu et al., [376] and Schajer [250]. 

Figure Y-1 (Appendix Y) shows the measurements of the strain released on the 

rolled samples surface after successive stages varying in depth during the 

drilling of the hole. Figure 5-9 illustrates the findings of residual stress obtained 

from 0.0 mm to 1 mm for ICHD and 0.0mm to 2 mm for OIHD with distributed 

step increments. From the plots a and b, it may be seen that at points 1 and 2 

all the surface stresses are in compression, which is in agreement with the 

theory and expected findings.  

For point 5 (plot c), near to the surface the compressive stress was observed in 

sample A, -24 MPa, and sample B, -113 MPa, respectively. However, for a load 

of 200 KN, the minimum stress measured was at least 160 MPa (Figure 5-9 c). 

The same trend was found for the OIHD test in sample A with -116 MPa; 

however, the tensile stress of 156 MPa was determined in Sample B. Samples 

C and D preserved tensile conditions at all depths. 
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a. Point 1 in the overload zone  b. P2 rolling area 

 

c. P5 far away from the rolling track 

Figure 5-9 Comparison of residual stresses distribution obtained in the 

longitudinal direction by ICHD and OIHD over ranges 1mm and 2 mm, 

respectively. a. P1 b. P2 c. P 5. 

Tables 5-2 to 5-5 summarise the longitudinal, transverse, shear stress and 

principal stress values obtained which are those averaged over 0.8 mm, 1.0 mm 

and the total hole depth of 2 mm as stated in ASTM [212] since the steepness 

of the stress gradients and uncertainties encountered for a non-uniform stress 

field. The RS data in Table 5-2 indicated that the maximum longitudinal stresses 

at P1 location at 0.8 mm depth were found to be 73% and 60% of yield stress at 

1.0 mm depth in compression in samples D and A, respectively.  
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Table 5-2 Summary of Residual Stresses in plates A, B, C and D point 1 by 

ICHD. Six passes. 

Plate 
Hole 
depth 
(mm) 

Residual Stresses (MPa) 
Principal Stresses 

(MPa) 
Angle 

longitudinal transverse shear maximum minimum  

A1 
0.8128 -336 -374 -71 -282 -428 53 

1.016 -343 -424 -73 -300 -467 59 

B2 
0.8128 -194 196 147 245 -244 -19 

1.016 -122 277 166 338 -182 -20 

C2 
0.8128 -320 28 138 76 -368 -19 

1.016 -313 -180 160 -158 -342 -8 

D1 
0.8128 -414 -78 -109 -45 -446 17 

1.016 -329 -10 -76 21 -193 23 

As listed in Table 5-3, at the P2 location, the amount of residual stress at 0.8 

mm becomes 64% of yield strength in compression and 72% compressive 

stress of yield strength at 1.0 mm deeper in plate B.  

Table 5-3 Summary of Residual Stresses in plates A, B, C and D at point 2 

by ICHD. Three passes. 

Plate 
Hole 
depth 
(mm) 

Residual Stresses (MPa) 
Principal Stresses 

(MPa) 
Angle 

longitudinal transverse shear maximum minimum  

A1 
0.8 -252 -53 28 -49 -256 -8 

1.0 -261 -113 20 -111 -264 -7 

B1 
0.8 -362 71 86 87 -379 -11 

1.0 -409 50 99 70 -430 -12 

C1 
0.8 -316 179 162 228 -365 -17 

1.0 -304 242 207 312 -374 -19 

D1 
0.8 -315 -499 79 -285 -528 65 

1.0 -220 -456 27 -217 -459 52 

At point 5 (Table 5-4) the RS amount by the ICHD method at 0.8 mm depth was 

found to be 89% of yield strength and 94% of yield strength in both tensile 

condition for sample D. For samples A, B and C the difference was between 

56% and 21% of the material yield strength.   
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Table 5-4 Residual Stresses distribution in plates A, B, C and D at point 5 

by ICHD. Zero passes. 

Plate 
Hole 
depth 
(mm) 

Residual Stresses (MPa) 
Principal Stresses 

(MPa) 
Angle 

longitudinal transverse shear maximum minimum  

A2 
0.8 125 -17 9 126 -18 -86 

1.0 117 -37 -36 125 -45 77 

B1 
0.8 173 -277 -5 173 -277 -87 

1.0 143 -496 -12 143 -496 -88 

C1 
0.8 320 -39 39 408 -42 -85 

1.0 306 -175 -96 307 -40 -85 

D1 
0.8 506 -75 32 508 -76 82 

1.0 536 -81 29 538 -82 86 

Similar tendencies were found by OIHD, varying slightly at 11% less than ICHD 

at 0.8 mm and reducing to 18% at 1.0 mm depth. At 2.0 mm the difference was 

66%, which is higher, taking into account that the depth is twice the distance 

from the surface. 

Table 5-5 Residual Stresses distribution in plates A, B, C and D at point 5 

by OIHD. Zero passes 

Plate 
Hole 
depth 
(mm) 

Residual Stresses (MPa) 
Principal Stresses 

(MPa) 
Angle 

longitudinal transverse shear maximum minimum  

A2 

0.8 75 -63 -13 76 -64 -5 

1.0 84 -38 -6 85 -38 -3 

2.0 88 -9 -2 88 -9 -1 

B1 

0.8 179 -108 23 181 -110 5 

1.0 197 -84 25 199 -86 5 

2.0 209 -34 30 212 -37 7 

C1 

0.8 280 -127 -7 280 -127 -1 

1.0 299 -103 -26 301 -105 -4 

2.0 267 -104 -19 268 -105 -3 

D1 

0.8 447 -108 11 444 -109 1 

1.0 433 -108 -8 433 -108 -1 

2.0 378 -167 -23 379 -168 -2 
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The surface stress determined gives an indication of the greater level of 

compressive residual stress that can be produced by increasing the amount of 

work hardening as a result of multi-pass rolling. It can also be seen that there is 

a considerable variation in the residual stress through-thickness. If localised 

yield should be present during drilling the hole, the results of RS could be 

overestimated as a result of local yielding. Figures 5-10 display the differences 

computed for the residual stress values analysed using the integral method for 

the P1and P2 points by ICHD; while Figure 5-11 shows it for P5 by ICHD and 

OIHD. 

 
a. Point 1 by ICHD 

 
b. Point 2 by ICHD 

Figure 5-10 Comparison in percentage of RS obtained by ICHD at P1 and P2 

over 1 mm depth. Dotted line indicates limits since RS is valid while negative 

axis (y) indicates compressive stress. L = longitudinal orientation and P = point 

assessed. 
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a. Point 5 by ICHD 

 

b. Point 5 by OIHD 

Figure 5-11 Comparison in percentage of RS obtained by ICHD and OIHD-at 

P5 over range 1 mm to 2 mm depth. Dotted line indicates the limits up to RS 

values that are considered valid. Positive axis indicates tensile stress. L= 

longitudinal orientation and P = point assessed. 

However, different investigations have stated and it is consequently accepted 

that errors can be neglected when computed residual stresses are between 

60% and 70% of the material yield stress [251,260]. Thereby, it might be 

inferred from Figures 5-10 and 5-11 that residual stress measured 

(compressive/tensile) at less than 343 MPa is valid. 
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As discussed above, ICHD and OIHD assessments were made for depths of 

0.8 mm, 1.0 mm and 2.0 mm which are summarised in Table 5-6. However, as 

ND is constrained to IGV near to the surface, comparisons for the three 

methods were performed at 0.8 mm in order to establish differences or 

tendencies for all of them in line with points 1, 2 and 5. It can be depicted in 

Table 5-7. Nevertheless, it is important to clarify that only the line point 5 was 

compared by the three methods used in this investigation. All the results 

obtained are summarised and discussed in numeral 5.4.  

5.4 Discussion of results 

5.4.1 Residual stress 

As stated in the introduction to this chapter, the combination of IHD and ND 

complement each other to measure the RS profile induced by any surface 

modification method. From the results given in section 5.3, which are plotted in 

Figures 5-12 to 5-14, a discussion of the techniques was required as well as an 

understanding of the residual stress field pattern obtained. The variation in 

residual stress between incremental hole-drilling and ND are plotted together in 

order to estimate the stress profile at points 1, 2 and 5.  

From the figures it is noticeable that there is a good match from the data 

obtained by ND, observable through-thickness; however, there is a particular 

variation between the two faces of the sample which is common between the 

stress profiles. Due to the condition of the rolling process, the deformation was 

made in two steps. When the sample is rolled on one of the sides, compressive 

stresses are induced causing upward deformation on the plate, generating 

tensile stress in the middle of the plate and near to the surface. It is presumed 

that this has an effect on the residual stresses pattern, therefore causing 

deviation at the different points examined. 
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Table 5-6 Longitudinal RS obtained by ICHD & OIHD at 1.0 mm and 2.0 mm depths at point 5 in plates A, B, C and D 

Plate 

Incremental Centre Hole-drilling  Orbiting Incremental Hole-drilling  

Residual stresses at depth 1.0 mm Residual stresses at depth 1.0 mm Residual stresses at depth 2.0 mm 

Residual 

Stresses (MPa) 

Principal 

Stresses 

(MPa) 

Angle 
Residual Stresses 

(MPa) 

Principal 

Stresses 

(MPa) 

Angle 
Residual Stresses 

(MPa) 

Principal 

Stresses 

(MPa) 

Angle 

xx yy xy 1 2  xx yy xy 1 2  xx yy xy 1 2  

A 117 -37 -36 125 -45 77 84 -38 -6 85 -38 -3 88 -9 -2 88 -9 -1 

B 143 -96 -12 143 -196 -88 197 -84 25 199 -86 5 209 -34 30 212 -37 7 

C 306 -175 -96 307 -40 -8 299 -103 -26 301 -105 -4 267 -104 -19 268 -105 -3 

D 536 -81 29 538 -82 86 433 -108 -8 433 -108 -3 378 -167 -23 379 -168 -2 

Table 5-7 Comparison longitudinal RS measured by ICHD, OIHD and ND at 0.8 mm depth in samples A, B, C and D. Units 

in MPa. 

Plate 
Point 5 (0 passes) Point 2 (3 passes) Point 1 (6 passes) 

OIHD ICHD ND ICHD ND IHD ND 

A 85 125 91 +/- 49 -252 -245 +/- 40 -336 -263 +/- 39 

B 189 173 166 +/- 36 -362 -384 +/- 43 -194 -199 +/- 52 

C 290 320 177 +/- 42 -316 -363 +/- 42 -320 -320 +/- 42 

D 447 506 496 +/- 75 -315 -275 +/- 67 -414 -374 +/- 26 
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Reversing the sample and rolled with the same load, part of the compressive 

stress induced is used to reduce tensile stresses developed in the previous 

part. It can also be found that residual stresses were slightly tensile for all the 

points. Due to misalignment or mis-positioning it might be expected to see a 

disparity in the readings as a result of the bend introduced.  

Chahardehi et al. [377] investigated the residual stresses effect in fatigue by 

laser peening and found that the compressive stresses were reduced due to the 

introduction of new tensile stresses when the sample treated both faces at 

different times. Similarly, Coules et al. [312]and Cozzolino [378], reported the 

same effect in their investigation using a low carbon steel in a pre-welding 

process.  

 

Figure 5-12 Comparison longitudinal residual stresses distribution obtained by 

ICHD and ND at point 1 at 0.8 mm depth. 
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Figure 5-13 Comparison residual stresses distribution obtained by ICHD and 

ND at point 2 at 0.8 mm depth in a longitudinal direction 

 

Figure 5-14 Comparison residual stress variation in longitudinal, transverse and 

normal directions at 1.024 mm depth by ICHD and OIHD methods in P5 
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This should explain the tendency for one of the sides of the samples to be less 

compressive or more tensile when the RS was measured. Figure 5-14 shows 

the results of the residual stress measurement using the three methods used in 

this investigation. Reasonable results were obtained for the points of interest in 

common. The results are quantitatively similar and the three methods have 

good reproducibility but they may have considerable inaccuracies, particularly 

the incremental hole-drilling.  

The residual stress evaluated by incremental hole-drilling, ICHD and OIHD, 

shows good agreement with the expected tendency for cold rolling. Figure 5-15 

presents a comparison of residual stress measurements using ICHD and OIHD 

for P5. In the majority of the cases, the results indicate that the stress in the 

longitudinal and transverse directions were similar for all the samples with a 

slight difference for sample C in the transverse orientation for both methods. 

Sample C reached almost 100 MPa more using ICHD or OIHD than ND. 

Although this behaviour it is not clear compare with the tendency in the other 

samples, it could be assumed that there is remarkable influence of the scatter of 

the amount of compressive strains measured by ND technique for this particular 

sample. Table 5-8 summarises the residual stress determined by OIHD and ND 

which are compared at a 2.0 mm depth at point 5. It can also be seen that 

values at 2 mm for both ND and OIHD seem consistent as good agreement 

exists between the RS measurement as a result of the load applied. 

There are other factors which account for the differences in the measured 

residual stress profiles for the conventional and orbiting methods. These factors 

can be broadly classified into two main categories: firstly differences caused by 

the technique and secondly, variations which originate due to the material 

properties. Thus a number of factors need to be analysed for the stresses 

values measured for the two measurement techniques. 
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Figure 5-15 In-depth longitudinal residual stresses comparison by ND, ICHD and OIHD over the range to 0.8 mm at P5 
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Table 5-8 Results of residual stresses obtained by ND and OIHD on plates 

A, B, C and D at point 5 at 2.0 mm depth  

Plate 
Residual Stresses (MPa)) 

OIHD ND 

A 88 111 +/- 74 

B 208 159 +/- 55 

C 267 201 +/- 57 

D 378 477 +/- 102 

From the computed stresses, it was found that there was a significant difference 

existing on the stresses and the calculated angle. It has been pointed out by 

some researchers, such as Scafidi et al. [271,379], Render and Vigness [245], 

Schajer [272], Nau et al. [256,270] and Nobre et al. [380] that variations in the 

RS are part of the experimental uncertainty which undoubtedly affects the final 

value. In reference [263] it is emphasized that hole-drilling is highly sensitive to 

small errors in strain measurement as it can cause large errors in the computing 

stresses.  

Casavola et al. [381] investigated the integral and power series stress 

calculation methods using two commercial systems. They found that different 

responses are obtained depending on how the strain measurement error was 

evaluated. The error in Restan software was 400% higher than H-Drill at 20 

depths as the latter has implemented Tikhonov regularisation. In addition the 

errors increasing in the strain measurements at a higher drilling step, due to 

conventional strain gauges, are less sensitive at a higher depth.  

By reducing the number of steps, the error level on the calculation is reduced. It 

could be that one of the causes regarding the lower stress values obtained in 

this investigation, and taking into account the integral method used to evaluate 

the data in this research, was developed without the regularisation mentioned 

by Casavola et al.  
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Results from ICHD, calculated by integral method, exhibited considerable 

uncertainties in the first step up to 0.3 mm approximately, reducing of measure 

with the depth. This behaviour has been reported in other investigations 

[230,382–384] and it has been found that the residual stresses were always 

lower in magnitude. Nau and Scholtes [256] investigated the effect of bit 

geometry and drilling techniques. They used the RS-200 Milling Guide, 

standard strain gauge rosette, six-blade bit, two-blade bit and diamond bits. 

This study found that the geometry and positioning depth have a significant 

influence on the strain measurements.  

The RS measurements by orbital drilling (OIHD) with six-blade bits for the first 

increments are uncertain as sometimes they can be compressive and 

sometimes tensile. Also another consequence of the inaccuracy of the 

measurement is due to chamfers that affect the depth settings. In order to 

explain this, Nau and Scholtes simulate the effect of different deviations from 

the ideal depth position (see Figure 5-16). The results show that deviation from 

the ideal position, t +/- 0.005 mm, means the error involved is at least +/-15 

MPa and at t +/-0.015 mm the error is +/-35 MPa.  

 

Figure 5-16 Relationship between initial depth setting and hole diameter 

inaccuracy by FE [320]. Stress reference is 105 MPa. 
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From this simulation it could be concluded that the determination of residual 

stress between 0.0 mm to 0.2 mm depth and error of +/-33% is always present 

which increased RS uncertainties near to the surface and explains clearly the 

findings reported by others researches although it was not explained at the time 

[374,382]. In addition, simulation of the release strains by conventional drilling 

with six-blades is approximately 60% less than the ideal one for the three 

directions evaluated.  

 

a. Cutter profile by OM 

 

b. Hole-drilling profile after test 

Figure 5-17 Typical configuration of bits used to drill a hole (a) Six-blade bit (b) 

ICHD hole profile obtained by optical microscope 
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In order to verify the type of cutter utilised and the hole-profile obtained, a 

sample was prepared after the hole was drilled. A precision cutter was used to 

obtain a half-section of the hole. Figure 5-17 shows the geometry of the bit and 

the hole-drilling profile. It can be seen that the cutter has a chamfer which is 

0.05 mm length at an angle of 42.  

It is noticeable that the hole shape differs from the ideal cylindrical hole with a 

flat bottom and sharp edges assumed from the calculation using the integral 

method. To understand the issues with the depth setting, a drawing was made 

which is presented in Figure 5-18. The total diameter of the bit is about 1.6 mm; 

however, only a small part of the hole has been chosen (rectangular red) to give 

a detail of the remaining material consequences of the chamfer found on the bit. 

The scheme clearly presented that the final hole diameter cannot be completely 

drilled during the first steps, due to the chamfer’s dimensions, or to achieve the 

total hole depth with any accuracy. This verification matches the work in 

references [256,257,380,382]. In summary, it can be concluded that the 

experimental parameters have a considerable influence on the reliability of 

residual stress determination by the hole drilling method. It is clear that each 

method has important advantages and drawbacks, too.  

For ND the method is very accurate but requires special facilities and extreme 

care for a high accuracy result, which made it very expensive. Hole drilling has 

the advantage of being semi-destructive and can be used for large structures 

and it is portable and less expensive. Here it is important to clarify that hole 

drilling is considered “semi-destructive” because the hole would raise the local 

stresses at the surface and make crack initiation more likely.  

Inaccuracy and the necessity for surface preparation could be one of its major 

disadvantages. However, from this research it could be highlighted that in spite 

of the error implicated in each technique, the results obtained, summarised in 

Figure 5-19, show that one important feature of all the figures is the similarity of 

the trends and magnitudes of the RS evaluates.  
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a. Non-zero           b.-0.05 mm 

        

c. -0.15 mm         d.-0.20 mm 

Figure 5-18 A schematic drawing of the incremental hole-drilling process up to 0.20 mm depth 
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Figure 5-19 Comparison residual stress distribution by ICHD, OIHD and ND at 

0.8 mm depth in a longitudinal direction 

5.4.2 Elastic-plastic stress 

Classical Hertz theory established the elastic solution for the contact stress of 

two surfaces, either a cylinder-cylinder or cylinder-flat plane. From this theory 

the pressure distribution and stress in the contact region to introduce 

deformation on the surface have been explained in detail by many authors such 

as Hamilton [385], Ollerton [386], Merwin and Johnson [387]. 

The influence that the residual stress state induces beneath the contact surface 

of rolling near the surface is marked by the presence of two stresses: one 

oriented in the longitudinal direction (xx) and the other in the transverse 

direction (yy). The normal stress (zz) can usually be ignored as it is particularly 

small [388]. Residual stresses induced by plastic deformation during repeated 

loading have been investigated and a good match between theoretical 

assumptions and experimental measurements have been reported in the 

literature available [389–392].  
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From the literature it has been pointed out that the minimum Hertz stress 

necessary to produce residual stresses depends on the material strength and 

the order of stresses; magnitude is always reached in the first cycle of loading 

[393]. However, the maximum number of passes to induce plastic deformation, 

carrying compressive stresses, is conditioned at the historical cycle loading and 

determined by a point of steady state beyond which its slightly plastic 

deformation could be introduced but once a limit point is reach distortion will not 

be contained for the elastic material. 

Investigations carried out by Knight et al. [313,394], and Chahardehi et al. [377] 

analysed the significance of surface modification and its effect to improve 

fatigue life and corrosion resistance of components by introducing beneficial 

residual stress. Wang and Mote [395] investigated the effect of localised rolling 

in bandsaw steel strips, and found that compressive RS grew asymptotically as 

the rolling load increases.  

Reference [394] investigated the influence of compressive residual stress 

controlling the cold rolling process. They found that after three roller passes a 

greater amount of compressive residual stresses are introduced as a result of 

deformation arising. Figure 5-20 illustrates the results obtained for both works 

where it was found the number of rolling passes to obtain an effective RS 

distribution is dependent on load applied. 

In reference [378] a simulation of cold rolling was made on a low carbon steel. 

Figures 5-21 and 5-22 show comparisons of the variation of the predicted 

longitudinal plastic strain in the upper and lower surfaces across the plate width, 

between the frictionless and friction models, after rolling at 55 mm from the 

edge, with 50, and 200 KN loads, respectively, and unclamping.  

The stretching of the material, along with the rolling direction (longitudinal), was 

indicated for a positive value of the plastic strain. As the rolling action was only 

near the surface, an asymmetrical plastic strain through the thickness was 

caused. Furthermore, a limitation of the longitudinal plastic strain to the rolling 

path was caused by rolling with a low load of 50 KN. 
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a. Drillstring thread [394] 

 

b. Bandsaw plates [395] 

Figure 5-20 Variation of RS as a consequence of the number of passes  

It was observed that a direct relationship between rolling load and longitudinal 

plastic strain was found. Increasing rolling load plastic strain is magnified in 

magnitude with a wider deformed plastic region. The high plastic deformation 

peak was observed with the highest load, 200 KN, and 10 mm wide roller.  
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Figure 5-21 Contour plot of longitudinal plastic strain after rolling with 50 KN 

load a. frictionless, b. with friction; and 200 KN c. frictionless, d. with friction 

[378] 

 

Figure 5-22 Variation of RS and plastic strain as a consequence of the number 

of passes[378] 

Figure 5-23 represents the transverse cross section of the samples where cold 

rolling was performed. As mentioned above, two section areas were 

established, two with three passes each and one with six passes. From the plot, 

the features of the rolling track can be observed. At lower loads the contact area 

is elastic; however, by increasing the load the stress field will reach the material 

yield point.  
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Figure 5-23 A schematic drawing of the transverse section of the plate on the 

rolling track showing deformation depth differences on both sides of the plate 

during the rolling process 

At higher loads some plastic flow is present leaving residual stress under the 

rolling track after the roller has passed. If subsequent passes of the load are 

applied the material is exposed to a combination of residual and contact 

stresses. Hence, for loads not greatly in excess of the elastic limit, plastic 

deformation will be contained by the elastic material and the order of the elastic 

and plastic strains will be the same. However, once the yield point is passed a 

plastic deformation is formed and the shakedown limit is exceeded. Local 

plastic deformation is in place in a layer at a depth of approximately 0.7a 

according to Hertz’s theory. During this deformation the surface is compressed 

only slightly below its original level and residual elastic compressive stress is 

acting parallel to the surface. 

The analysis presented above is orientated to give an explanation about the 

rolling process. The samples used in this investigation were rolled following the 

process detailed in Chapter 3. Therefore, it could be inferred that the number of 

passes applied to each zone has enough energy to induce compressive 

stresses beneath the rolling track area. However, it was found that the step 

produced during the process could affect the stresses.  
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During rolling, increasing rolling loads caused deep penetration of the roller in 

the material which produces the build-up of material in front of the roller, as 

shown in Figure 5-24 (a-c), causing local work hardening in the portion of 

material in front of the roller. As a result of the work-hardening, the roller is not 

able to cause similar plastic deformation since the load applied was constant, 

as can be seen schematically in Figure 5-24a. 

Once the material reached the point where no more work-hardening can be 

inferred further, Figure 5-24a, the roller jumped and then it underway rolling 

material again with the difference that the new material has not been deformed 

to the same scale, as shown in Figure 5-24 b and c. As a result ripple marks 

might be formed in the surface of the material after rolling due to the huge 

rolling loads.  

 

Figure 5-24 A schematic drawing showing normal plastic deformation during 

cold rolling [378] 

Furthermore, numerical simulations conducted by Cozzolino [378], have shown 

that local rolling carried out with constant rolling penetration (instead of the 

rolling load), caused variations in the vertical rolling force causing the ripple 

marks on the material surface. 

It could be inferred that the asymmetric distribution of stresses could be 

introduced due to the rolling process that was made by steps on one side. If this 

assumption is correct, it is expected that the amount of the compressive stress 

on point 1 will be greater than that on point 2 as the number of passes was 

double.  
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However, the values listed in Table 5-7 show that the values do not follow the 

pattern that was expected and random values were found. This indicated that 

the preliminary deformation was affecting the second step or that the roller was 

not in flat contact with the material surface. 

5.5 Summary 

 Beneficial longitudinal and transverse residual stress induced through 

thickness increasing along the load is enlarged mainly in points 1 to 3, 

averaging at point 4 and marginally affecting point 5 which remains tensile. 

Normal stresses were always tensile (150 MPa) inferring, perhaps, that the 

remaining stresses are present from the manufacturing process. 

 Cold rolling, depending on the load applied, generates transverse, lateral 

and longitudinal deformations in the rolling track and on the outside of it. The 

lateral plastic deformation widens the plate where the peak is located in the 

middle of the rolling area. 

 The longitudinal plastic deformation induces residual longitudinal 

compression in the rolling track and longitudinal tension in the plate outside 

the rolling track. Residual stress in the rolling track is highly compressive 

and is proportional to the magnitude of the average longitudinal plastic 

strain. 

 The compressive RS induced by rolling in the rolling path is equilibrated by 

tensile RS beside the rolling path. Asymmetrical distribution is the effect of 

the load applied.  

 The stress values obtained for ICHD were lower compared with ND; 

however, a reasonable correlation was found and a good agreement 

between stresses measured by OIHD was determined. 

 The reproducibility of the three methods shown a reasonable agreement 

between the stresses determined at the depth of the cross-over point of 0.8 

mm, 1.0 mm and 2.0 mm. 

 The results obtained by ICHD, OIHD and ND may be different as the stress 

values average over different layers. Combinations of these give a good 
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agreement and offer the most suitable of the stress profiles on the surface 

as well as across the depth of the specimen. 

Next Chapter failure assessment diagram have been performed by R6 code. 

The analyses are carried out by integrating all the mechanical properties 

evaluated in previous Chapter. Operational pressures where supercritical 

conditions of CO2 are met contributed to enhance the understanding about the 

integrity of pipelines exposed a flue-gases and tested over range -70C to 21 C 

by a Leak-before-break approach. 
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6 ENGINEERING CRITICALITY ASSESSMENT  

6.1 Introduction 

The main concern in transporting flue-gas by pipeline is determined by 

operating conditions (high pressure and temperature), flaw-crack presence for 

material-environment interaction, material defects and installation damage. 

When a flaw is present, the probability of failure increases in the system. 

For CCTS to become a reality, pipeline integrity will need to be assured. 

Implementation of integrity managed programmes could minimise risk and 

prevent likely failures by addressing properly the integrity threats based on 

structural integrity assessment. Structural integrity assessment involves many 

aspects, such as engineering critical assessment and fitness-for-purpose 

services (FFS), where methodologies and procedures are well-known for 

assessing the significance of defects in components, depending on the 

application [37,284,396–398].  

R6 is one of these procedures and the failure assessment diagram (FAD) is the 

most popular for flaw assessment. Zerbst et al. [284,292] and Ainsworth et al. 

[288,289,397] present an overview of the major methods currently in use where 

FAD is the common assessment route for analytical assessment. FAD is a plot 

of the failure envelope of the crack, demarcated in terms of Kr, Lr and flow stress 

parameters that define the failure assessment diagram for each condition 

tested.  

In accordance with the scope of this research, to assess the integrity of the 

steels used in this research, either in virgin condition or exposed simulated flue-

gas, all the data obtained over the previous sections such as tensile properties, 

fracture toughness and residual stress values were collected along with other 

input such as physical properties which were obtained from the literature to 

complement the information required to perform the analysis. 
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The aim is to establish an engineering framework for HSLA steels working at a 

lower temperature plus in a harsh atmosphere which are assessed under FAD 

option 2 of the LbB procedure within the BS 7910-13 guide [35]. 

6.2 Leak-before-Break (LbB) procedure 

A leak-before-break (LbB) assessment has been applied previously in the 

nuclear sector; however, it is now common practice in engineering to design or 

assess pressure vessels and pipelines. There are two LbB procedures to be 

considered. The first is called the “detectable leakage” procedure considered to 

be a through-wall flaw, which cannot be a part-penetrating flaw. The procedure 

starts under the assumption that fluid leakage can be detected before a flaw 

reaches the limiting length.  

The second is known as the “Full leak-before-break” procedure and it can be 

applied when flaws are detected or felt likely to occur. Both procedures involve 

the following steps: 

 Characterising the type of defect or assuming one 

 Determination of the limiting length, 2cc,of through-thickness flaw 

 Calculation or estimation of flaw length, 2cL or 2cb, of a through-wall flaw that 

leaks at the minimum detectable rate under normal conditions of operation 

 Calculation of crack opening area 

 Calculation of leak rate from flaw  

 Estimation time to detect leak from flaw 

 Calculation time of flaw to grow to limiting length 

 Assess results. 

These LbB procedures are basically applied when gases or liquids are involved; 

however, transportation of anthropogenic CO2 implicates other aspects which 

could be critical, and therefore have to be included to assess the system or a 

pipeline. The data referenced here has been taken from the EGIG [399] report 

released in 2011 and related to European gas transmission systems: 
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 Pressure of operation of the current pipelines is undertaken at 65 bar (6.5 

MPa), however the tendency is to operate above 75 bar. The most popular 

grade of steel used is X52, X60; however, notably applications of X65 and 

X70 have been increasing in the last 10 years. Grade X80  above have 

started to be used with some restrictions. The most frequently used wall 

thicknesses are 5 to 10 mm which are increasing to 15 to 20 mm; however, 

there is no reported thickness beyond 25 mm. 

 To transport supercritical CO2 the optimal pressure is 150 bar (15 MPa); 

however, the presence of impurities such as H2S, SO2 or CH4 have effects 

such as the sudden expansion of depressurisation due to a sudden drop in 

temperature which could reach the DBTT, causing catastrophic failure 

through brittle-collapse mechanism. 

 Damage mechanisms derived from the interaction of material-environment 

could induce crack or pitting which can trigger a driving force on the crack tip 

for crack propagation. In the case of leakage or gas decompression, the 

presence of residual stresses could add extra stress, contributing as driving 

forces to initiate the crack propagation phenomenon [400,401]. 

 In the case of an oil or gas leak, the current technology is well developed 

[402–405]; however, for anthropogenic CO2 the scenario is critical. CO2 is 

heavier than air and might accumulate in depressions. A release of CO2 

would have a negative impact on human life, animals, plants and 

environment above concentrations of 10% and would be lethal over 25%. 

Higher H2S and SO2 concentrations also have negative effects on health 

related to toxicity [406–408]. This clearly indicates that sensitivity sensors 

and methods for fast responses are required [409]. 

The general overview presented here has indicated that an assessment within 

the analysis of LbB procedures could be applied as it is considered to be the 

best approach to determine critical crack length towards  avoiding catastrophic 

failures of pipelines transporting anthropogenic CO2 in a supercritical phase. 
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6.3 Failure assessment approach 

Basically there are three FAD assessment levels namely options 1, 2 and 3 

which, in this order, provide decreasingly conservative procedures. However, in 

turn, these require an increased knowledge of the mechanical properties, 

quality of data and obviously there will be an increase in cost.  

Linear elastic stress analysis was used to determine toughness ratio Kr and the 

load ratio, Lr. For a given flaw and load, Kr and Lr are plotted on an FAD. In the 

diagram, the horizontal axis represents the stress ratio and the vertical axis 

denotes the stress intensity ratio. The solid curve indicates the threshold for 

failure that encloses the regions of safety. The FAD curve is defined according 

to the accuracy required of the analysis indicated by the equations presented 

within the diagram of Figure 6-1 and represented by the FAD locus in Figure 6-

2.  

 

Figure 6-1 Options existing for FAD assessment 

Figure 6-3 summarises the type of considerations taken into account to assess 

pipes or cylinders which would be similar in terms of analysis to be performed. 

However, the major difference that is addressed is regarding the orientation of 

the crack on the component, which is indicated by the axial or circumferential 

direction. 
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Figure 6-2 FAD yielding curve at option 1 defined by BS 7910 [410] 

 

Figure 6-3 Cylindrical geometries considered for pipes and cylinders [411] 

Following the previous considerations, the FAD selected to assess the material 

in this investigation was material-specific (BS 7910-13 option 2) which requires 

that a stress-strain engineering curve has to be available to obtain more 

accurate results compared with a standard FAD.  

The type of defect considered is an axial through-wall flaw in a cylinder oriented 

axially, as shown in Figure 6-4, [IV.3.4.9] [278] or [A.28] [35]. Parameters to 

assess the operational conditions and material properties have been 

summarised in section 6.4.  
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Figure 6-4 Through–wall flaw in a cylinder oriented axially [35,278] 

As explained in Chapter two numeral 2.5, the requirements for performing 

assessment option 2 considering a through-thickness flaw, include the following 

considerations which are taken from BS 7910-13 annex M: 

mat

I
r

K

K
K  ; aYK I  )(   (6-1) 

sp YYY )()()(    (6-2) 

pY )(   and sY )(   correspond to primary and secondary stress which are 

calculated as follows: 

}])1({[)( mmbmkmtbmmkmtmwp PkPMMkPMMkMfY   (6-3) 

bbmms QMQMY )(   
(6-4) 

kmM  and kbM  are equal to 1 as the flaw or crack is located in a region of local 

stress concentration, so equation 6-3 can be simplified as: 

bmmmp PMPMY )(   (6-5) 

mP  and bP  correspond to primary membrane stress and primary bending stress 

respectively. The stress intensity magnification factor can be calculated by 

equation 6-6.  
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21 MMMm     at the outside surface 

21 MMMm     at the inside surface 

43 MMMb     at the outside surface 

43 MMMb     at the inside surface 

(6-6) 

1M to 4M are given in BS 7910-2013, Annex M, Table M.1(a-d) in terms of  

both membrane and through wall bending loading. The parameters mQ and bQ , 

in equation 6-4, are the secondary membrane and bending stresses 

respectively. In addition, the stress magnification factor should be applied if 

angular or axial misalignment, or both, can cause variation in the stress at the 

welded join when it is loaded.  

If there is a misalignment tk , tmk , tbk and mk parameters have to be determined 

and, therefore, the bending stress ( s ) might be determined from Annex D in 

the BS 7910-13. For axial through-thickness flaws in pipes under internal 

pressure, the stress intensity factor is calculated from Eq. 6-7; 

bending

I

membrane

II KKK   
(6-7) 

As no bending stresses are assumed, only the membrane stress is dominant. 

There is a consideration that the general bulging factor M=w should be taken 

as 1 which is covered by parameter  defined by equation 6-8. 

)()}1(12{ 25.02

Br
a

m

   (6-8) 

Where  is Poisson’s ratio, a is half of the flaw and B is the thickness of the 

pipe.  

The solution in equation 6-6 is only valid for long cylinders or pressure vessels 

with closed ends. The range of the application for  is determined for Eqs. 6-9 

and 6-10. 
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211.120    
(6-9) 

100/5  Brm  
(6-10) 

w = 1 if the actual flaw area is not greater than 10% of the load bearing cross 

section area. 

The primary and secondary stress interaction is covered in Annex R BS 7910-

13 where major changes were introduced in the current version, expressed by 

Eq. 6-11. The term V determines a multiplying factor that compensates for 

plasticity derived from the work-hardening process. 

mat

s

I

p

I
r

K

VKK
K


  (6-11) 

In the new edition of BS 7910 the contradiction between K/J-based and CTOD-

based calculations was resolved by calculating the resistance of the material in 

terms of matK , which is derived directly from IcK by JK (J test) or CTODK (CTOD 

values). JK is calculated by equation 6-12 and CTODK  by equation 6-13.  

)1( 2v

EJ
K mat

J




 

(6-12) 

)1( 2v

Em
K

maty

CTOD





 (6-13) 

Values of stress intensity factors or fracture toughness (KIc, KJc, K) can be 

expressed in terms of MN/m3/2, N/mm3/2 or MPa*m1/2 units. However, note that 

the conversion factor could be applied as follows: 

1.0 MN/m3/2 = 1.0 MPa*m1/2 = 31.625 N/mm3/2 (that is (N/mm3/2)*103/2) 

The coefficient m is related to the tensile properties of the material at the same 

temperature of the fracture toughness test which is derived from the SINTAP 

and FITNET procedures as follows: 
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3188.0)/(517.1  Uym   
(6-14) 

Thus the equation is applicable to the range; 

98.0)/(3.0  Uy   (6-15) 

Equation 6-14 is basically oriented to be used with CTOD data. If equation 6-14 

cannot be used m could be equal to 1.5 which covers high-strength pipeline 

steels. By determining IK and matK  the coordinate rK can be determined. To 

calculate the parameter rL , equation 6-16 is used. Annex P in BS 7910-13 gives 

the equation 6-17 to calculate the reference stress as follows: 

y

ref
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(6-16) 
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Where; 

5.0
2

)}(6.11{
Br

a
M

i

T   (6-18) 

The hoop stress is identified by mP  and the bending stress transverse to the 

flaw is bP . R-code determines rL using the following loads: 

 Secondary stress distribution obtained from elastic analysis 

 Secondary stress distribution by an elastic-plastic analysis 

 Stress distribution from the strains 

The stress component actuating perpendicular to the crack plane, referenced as 

a hoop component, can be calculated using equation 6-19.  

)()1(
)21)(1(

zzxxyyyy 


 



  (6-19) 
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The loading factor is used as a sensitivity variable which is applied in critical 

crack analysis to all the variable loads (primary and secondary). Stress can be 

expressed as Pa, MPa or GPa5. 

6.4 Input parameters for assessment 

To assess the integrity of the steels selected for this study, guides from LbB 

procedures in BS 7910-2013 [35] and content in the R6 code [278] were 

followed. In order to evaluate the limits of the LbB criteria, the through-thickness 

axial crack has been considered. The geometrical definition, shown in Figure 6-

4, as well as fluid and mechanical properties summarised in section 6.4.1 were 

used to assess the steels in the longitudinal direction by the FAD approach, 

option 2. 

Loading considerations are as follows: the pipe is subjected to internal pressure 

which implies that two types of crack could be developed; part through and 

through-thickness crack size. In the former case, the maximum part through-

crack size could turn into through-thickness and unstable fracture. In the latter, 

the maximum through-wall crack size determines the bursting of the tube.  

Determination of the critical crack length in both cases is necessary to verify the 

LbB criteria; however, for the purpose of this investigation only through-

thickness crack size is evaluated by the R6 code. The critical size and limited 

load have been assessed for internal pressures of 7.5, 9 and 15 MPa at 37°C, 

taking into account that these forces meet both supercritical conditions and 

operational pressure when transporting anthropogenic CO2. 

  

                                            
5
 1 Pa = N/m

2
;  

1 MPa = N/mm
2
= (N/m

2
)10

6
;  

1 GPa = KN/mm
2
=(N/m

2
)10

9
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6.4.1 Parameters to assess the integrity of steels 

Table 6-1 Technical input data of the materials [67] 

Parameter Steel grade API X100, X70 & X60 

Geometry Cylinder 

Length (m) 

 

500 

Outside diameter (mm) 610 

Mean radius (mm) 

 

300 

Wall thickness (mm) 

 

10 

R/t ratio  5 30 

Fluid transporting CO2 

Operating pressure (MPa) 7.5, 9, 15 

Leaking pressure (MPa) 0.1 

SIF ((MPa*m1/2) 1.1 

Type of flaw Through-thickness 

 

Table 6-2 CO2 physical properties [412,413] 

Property Value 

Pressure (MPa) 7.5 9 15 

Temperature (°C) 37 37 37 

Density (kg/m3) 253.4 563 802.5 

Viscosity (Pa*sec) 0.00001 0.000023 0.00007 

Conversion factor: 1 centipoise = 0.001 Pascal*second 

Table 6-3 Tensile properties of X100 steels 

Ttest (°C) 
0.5%exp 
(MPa) 

UTS 
(MPa) 

0.5% + UTS)/2 UE(%) 

20 570 769 669 8.8 

-20 604 723 664 7.9 

-40 622 765 694 7.7 

-70 636 792 714 7.4 
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Table 6-4 Tensile properties of X70 steels 

Ttest (°C) 0.2%exp 
(MPa) 

UTS 
(MPa) 0.2% + UTS/2 UE(%) 

20 769 814 791 7.9 

-20 771 817 794 7.6 

-40 786 844 815 8.0 

-70 810 855 833 7.6 

 

Table 6-5 Tensile properties of X60 steels 

Ttest 
(°C) 

0.5%exp 
(MPa) 

UTS 
(MPa) 0.5% + UTS/2 UE(%) 

20 451 533 492 17.5 

-20 455 539 497 19.7 

-40 461 549 505 17.7 

-70 463 551 507 13.8 

 

Table 6-6 Fracture toughness values for HSLA steels from KIc/KQ/KJc 

(MPa*m1/2) 

Steel 
Temperature, °C 

Reference 
RT -20 -40 -70 

X100 147 138 130 114 [170] 

X70 190 140 120 98.5 [414] 

X60 250 200 150 110 [415] 
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Table 6-7 Residual stress distribution through-thickness on steel API X100  

Depth 
(mm) 

Residual stress at Point 2 (MPa) 

Sample A Sample B Sample C 

0.2 -119 -210 -327 

0.5 -199 -285 --329 

0.8 -153 -218 -186 

2.2 -25 -117 -159 

3.6 24 -70 -144 

5 64 -97 -185 

6.4 85 -102 -172 

7.8 -50 -78 -189 

9.2 -114 -212 -205 

9.5 -105 -206 -296 

9.8 -83 -196 -304 

6.5 Results, analysis and discussion 

The results of the assessments performed in this investigation are summarised 

in sections 6.5.1 and 6.5.2. The former is based on limiting load (LL) and the 

latter on limiting crack size (LCS) analysis. The applied force assumed was only 

internal pressure as this is the main force on the pipeline and the load factor 

was established to be 1.2 in order to keep similar conditions to hydrostatic 

testing. The data collected is presented in figures and tables which contained 

the main values obtained and extracted from the analysis carried out by the R6 

code. 

6.5.1 Limited crack size 

6.5.1.1 API X100 steel 

Figures 6-5 to 6-13 are FAD-option 2 for flaws in the base metal with axial 

stress and longitudinal crack growth through-thickness. Tensile properties over 

range -70C to 21C temperature and fracture toughness were applied at the 

middle thickness of the material, which is parallel to the crack direction, and 

those were evaluated at 7.5MPa, 9MPa and 15MPa operational pressure.  
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The failure assessment plotted in Figure 6-5 to 6-7 indicated that for a constant 

flaw of 5 mm the loci is moving towards Lr when the pressure applied increases. 

This tendency is similar to the flaws assessed at 10 mm and 20 mm, as 

represented in Figures 6-8 to 6-13 respectively. Besides it was observed that 

the crack length decreased as the temperature of the material reduced. In 

Tables 6-8 to 6-10 the length of the crack versus pressure is summarised where 

it is observable that at 15 MPa pressure the crack length was not affected for 

the flow stress evaluated a different temperature. 

Even though its value was the lower one with values around 13 mm length, 

keeping the pressure constant and varying the crack length, the Kr/Lr ratio was 

stable at 7.5MPa and 9MPa but decreased slightly at 15MPa. Once the crack 

length reached the critical length, it started to initiate and fell into the failure 

region of the FAD loci. The FAD indicates that the material is more susceptible 

to elastic failure when the pressure increases.  

Table 6-8 Steel X100_RT_to_-70C_LCS_Crack length 5 mm_LF=1.2. Crack 

initiation analysis 

Temperature 

C 

Pressure 
MPa 

Crack 
length, 

mm 

Res. 
Tough 

(MPam1/2) 

Total SIF 
(MPam1/2) 

Kr-R6 Lr-R6 

21 

7.5 64 147 134.0 0.912 0.596 

9 49 147 130.2 0.886 0.666 

15 13 147 96.4 0.655 0.994 

-20 

7.5 60 138 127.7 0.925 0.552 

9 46 138 124.7 0.904 0.621 

15 14 138 98.8 0.716 0.939 

-40 

7.5 56 130 121.3 0.933 0.527 

9 43 130 118.6 0.912 0.596 

15 13 130 96.6 0.743 0.911 

-70 

7.5 48 114 107.2 0.941 0.496 

9 36 114 105.0 0.921 0.567 

15 11 114 87.0 0.763 0.888 
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Table 6-9 Steel X100_RT_to_-70C_LCS_Crack length 10 mm_LF=1.2. Crack 

initiation analysis 

Temperature 

C 

Pressure 
MPa 

Crack 
length, 

mm 

Res. Tough 
(MPam1/2) 

Total SIF 
(MPam1/2) 

Kr-R6 Lr-R6 

21 

7.5 64 147 134.0 0.912 0.595 

9 49 147 130.2 0.886 0.666 

15 13 147 96.3 0.655 0.994 

-20 

7.5 60 138 127.7 0.925 0.552 

9 46 138 124.7 0.904 0.621 

15 14 138 98.8 0.716 0.939 

-40 

7.5 56 130 121.2 0.933 0.527 

9 43 130 118.6 0.913 0.596 

15 13 130 96.6 0.743 0.911 

-70 

7.5 48 114 107.2 0.941 0.496 

9 36 114 105.0 0.921 0.567 

15 11 114 87.0 0.763 0.888 

 

 

Figure 6-5 FAD assessment by limited crack size at 7.5 pressure with 5mm 

crack length and load factor=1.2 over -70C to 21C 
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Figure 6-6 FAD curve by limited crack size analysis at 9 MPa operational 

pressure with 5mm crack length and load factor=1.2 over -70C to 21C 

 

Figure 6-7 FAD locus by limited crack size at 15MPa internal pressure with 5 

mm crack length and load factor=1.2 over -70C to 21C. 
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Figure 6-8 FAD assessment by limited crack size at 7.5 pressure with 10mm 

crack length and load factor=1.2 over -70C to 21C 

 

Figure 6-9 FAD curve by limited crack size analysis at 9 MPa operational 

pressure with 10mm crack length and load factor=1.2 over -70C to 21C 
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Figure 6-10 FAD locus by limited crack size at 15MPa internal pressure with 

10mm crack length and load factor=1.2 over -70C to 21C 

 

Table 6-10 Steel X100_RT_to_-70C_LCS_Crack length 20 mm_LF=1.2. 

Crack initiation analysis 

Temperature 

C 

Pressure 
MPa 

Crack 
length, 

mm 

Res. Tough 
(MPam1/2) 

Total SIF 
(MPam1/2) 

Kr-R6 Lr-R6 

21 

7.5 64 147 134 0.912 0.596 

9 49 147 134 0.886 0.666 

15 20 147 122.1 0.83 1.007 

-20 

7.5 60 138 127.7 0.925 0.552 

9 46 138 127.7 0.904 0.621 

15 20 138 122.1 0.884 0.95 

-40 

7.5 56 130 121.2 0.933 0.527 

9 43 130 118.6 0.912 0.596 

15 20 130 122.1 0.939 0.922 

-70 

7.5 48 114 107.2 0.941 0.496 

9 36 114 107.2 0.921 0.567 

15 20 114 122.1 1.071 0.902 
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Focusing on the lower temperature, the results indicate that at lower pressure 

the material is more resistant as crack length can increase to around 64 mm in 

length. Since the level 2 FAD includes tensile properties, fracture toughness 

and residual stress, the main difference or changes of the FAD curve were at 

the collapse region. The cut-off line is moved from 1.175 to 1.1, with the 

temperature order as follows from right to left: 21°C >-70°C >-40°C >-20°C. 

Zargarzadeh [297] found that with the steel grade X100 at -70°C, if a crack 

reaches 9.9 mm in length then crack initiation is inevitable. The author used for 

the assessment mechanical properties extracted from the API standard; 

however, compared with the crack length obtained in this research under the 

same conditions (except for the fracture toughness which is higher) the 

difference is 10% (~1.2 mm). When experimental values are applied to assess 

any structure it becomes less conservative if values are used from other source. 

 

Figure 6-11 FAD assessment by limited crack size at 7.5 pressure with 

20mm crack length and load factor=1.2 over -70C to 21C 
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Figure 6-12 FAD curve by limited crack size analysis at 9 MPa operational 

pressure with 20mm crack length and load factor=1.2 over -70C to 21C 

 

Figure 6-13 FAD locus by limited crack size at 15MPa internal pressure with 

20mm crack length and load factor=1.2 over -70C to 21C 

From the analysis performed, it could be concluded that for a crack-like flaw for 

pressure up to 9 MPa, a crack length of 20 mm is acceptable for the established 

conditions for X100 pipeline steel. However, with pressure at about 15 MPa the 

crack length could be around 11 mm from the analysis performed at option 2 
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level. It can be seen from the FAD analysis that crack assessment at room 

temperature is located in a combined zone and more susceptible to plastic 

collapse than for the lower temperature where the behaviour is the opposite. 

The effect of the residual stress on the stress intensity factor is related to Kr 

which could be higher if no residual stresses are present. 

6.5.1.2 API X70 steel 

Similar analyses were performed on steels grade X70 and X60 but only at 15 

MPa operational pressures. For X70 steel the results are shown in Figures 6-14 

to 6-16 which correspond to 15 MPa pressure and crack lengths of 5, 10 and 20 

mm.  

 

Figure 6-14 FAD locus by limited crack size analysis at 15 MPa operational 

pressure with 5 mm crack length 
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Figure 6-15 FAD locus by limited crack size analysis at 15 MPa operational 

pressure with 10 mm crack length 

 

Figure 6-16 FAD locus by limited crack size analysis at 15 MPa operational 

pressure with 20 mm crack length 
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Table 6-11 Steel X70_RT_to_-70C_LCS_Crack length 5, 10, 20 mm_LF=1.2. 

Crack initiation analysis 

Flaw 
Length, 

mm 

Temperature 

C 

Crack 
length, 

mm 

Res. Tough 
(MPam1/2) 

Total SIF 
(MPam1/2) 

Kr-R6 Lr-R6 

5 

21 31.5 190 160.8 0.846 0.77 

-20 19.5 140 120.2 0.859 0.743 

-40 15.2 120 104.2 0.868 0.723 

-70 10.9 98.5 86.6 0.879 0.697 

10 

21 31.5 190 160.8 0.846 0.77 

-20 19.5 140 120.3 0.859 0.743 

-40 15.2 120 104.2 0.868 0.723 

-70 10.9 98.5 86.6 0.879 0.697 

20 

21 31.5 190 160.8 0.846 0.77 

-20 20 140 122.1 0.872 0.744 

-40 20 120 122.1 1.017 0.73 

-70 20 98.5 122.1 1.239 0.708 

The tendency is similar to the X100 behaviour where the mechanisms involved 

are mixed brittle-collapse mechanics, as can be observed on the assessment 

curve. No residual stresses were applied; therefore, only membrane stresses 

from the internal pressure are involved.  

From the data in Table 6-11, it is clear that if the crack extended to 20 mm the 

system becomes unstable when the material reaches -20C, falling into the 

unsafe zone. At 5 and 10 mm flaw length, the system is stable; however, the 

assessment points (Kr, Lr) move closer to the failure assessment curve as the 

temperature decreases 

6.5.1.3 API X60 steel 

Figures 6-17 to 6-19 show the assessment for steel X60 which was carried out 

using 9 MPa instead of 15 MPa as at the latter pressure value the component 

failure before any crack length is extended. From Table 6-12 the results show 

that the crack length is reduced as the temperature decreases due to the 

material turning more brittle and Kr is the dominant mechanism of failure.  
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Figure 6-17 FAD locus by limited crack sized analysis at 9MPa operational 

pressure with 5 mm crack length 

 

Figure 6-18 FAD locus by limited crack size analysis at 9MPa operational 

pressure with 10 mm crack length 
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Figure 6-19 FAD locus by limited crack size analysis at 9MPa operational 

pressure with 20 mm crack length 

Table 6-12 Steel X60_RT_to_-70C_LCS_Crack length 5, 10, 20 mm_LF=1.2. 

Crack initiation analysis 

Flaw 
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length, 

mm 

Res. Tough 
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Total SIF 
(MPam1/2) 
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on X100 and X70 steel, the difference in the pressure assessed clearly 

determines the lower integrity of the X60 which is determined by the mechanical 

properties of the material. However, the tendencies for fracture toughness, 

temperature and flaw length all follow the same pattern. 

6.5.2 Limited load 

6.5.2.1 API X100 steel 

Limited load analyses were performed in order to determine where the load of 

design could be affected by the operational pressure and crack length. Tables 

6-13 to 6-15 are organised to show the main values when the system is 

unstable, denoting a failure of the component. For fracture initiation, the load 

factor limiting condition for a single primary load is determined by the 

intersection with the failure assessment curve of the locus of assessment points 

for different values of load.  

Table 6-13 Steel X100_RT_to_-70C_LL_Crack length 5 mm_LF=1.2. Failed 

criteria 

Temperature Pressure Res. Tough Total SIF 
Kr-R6 Lr-R6 

Load 
factor C MPa (MPa*m1/2) (MPa*m1/2) 

21 

7.5 

147 

65.7 0.447 1.131 2.75 

9 67.6 0.46 1.164 2.36 

15 65.7 0.447 1.131 1.38 

-20 

7.5 

138 

67.0 0.485 1.089 2.81 

9 68.9 0.499 1.12 2.41 

15 67.0 0.485 1.089 1.4 

-40 

7.5 

130 

68.5 0.527 1.08 2.87 

9 70.4 0.541 1.11 2.46 

15 68.5 0.527 1.08 1.43 

-70 

7.5 

114 

68.9 0.604 1.063 2.89 

9 70.8 0.621 1.092 2.47 

15 68.9 0.604 1.063 1.44 
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For the analysis performed using pressure 7.5 MP to 9 MPa and crack length 

constant equal to 5 mm, the load factor determined could indicate that the 

component at lower temperatures failed, at 2.89, 2.47 and 1.44. As the design 

pressure is set at 1.2 times the operation pressure, the load factor obtained 

could indicate that once the crack length extends to 5 mm the component is 

able to carry out a greater load than the design pressure. It could be assumed 

as the maximum load value to be reached.  

Figure 6-20 shows the intersection of the points for the different loads 

assessed. Table 6-14 shows that the values obtained for the different 

temperatures which follow the same tendency but with less value. Figures 6-21 

and 6-22 show the locus points are moving toward Kr. For pressure at 15 MPa 

and crack length extended to 20 mm, it can easily be seen from Table 6-15 that 

the crack assessment results in a load factor of 1.17 for room temperature 

decreasing to 1.07 at -70C. It indicates that once the crack length reaches 20 

mm, a crack is initiated and falls into the unsafe zone of the FAD curve. 

 

Figure 6-20 FAD locus by limited load analysis at 7.5 MPa operational pressure 

with 5 mm crack length 
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Table 6-14 Steel X100_RT_to_-70C_LL_Crack length 10 mm_LF=1.2. 

Failure criteria 

Temperature Pressure Res. Tough Total SIF 
Kr-R6 Lr-R6 

Load 
factor C MPa (MPa*m1/2) (MPa*m1/2) 

21 

7.5 

147 

90.5 0.615 1.082 2.62 

9 93.2 0.634 1.115 2.25 

15 90.5 0.615 1.082 1.31 

-20 

7.5 

138 

93.7 0.679 1.058 2.72 

9 96.4 0.699 1.089 2.33 

15 93.7 0.679 1.058 1.36 

-40 

7.5 

130 

93.9 0.722 1.03 2.72 

9 96.7 0.744 1.06 2.34 

15 93.9 0.722 1.03 1.36 

-70 

7.5 

114 

90.3 0.792 0.968 2.62 

9 93.0 0.816 0.997 2.25 

15 90.3 0.792 0.968 1.31 

 

 

Figure 6-21 FAD locus by limited load analysis at 9 MPa operational pressure 

with 10 mm crack length 
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Table 6-15 Steel X100_RT_to_-70C_LL_Crack length 20 mm_LF=1.2. 

Failure criteria 

Temperature Pressure Res. Tough Total SIF 
Kr-R6 Lr-R6 

Load 
factor C MPa (MPa*m1/2) (MPa*m1/2) 

21 

7.5 

147 

118.7 0.807 0.979 2.33 

9 122.8 0.835 1.013 2.01 

15 118.7 0.807 0.979 1.17 

-20 

7.5 

138 

118.4 0.858 0.921 2.33 

9 122.4 0.887 0.953 2.01 

15 118.4 0.858 0.921 1.16 

-40 

7.5 

130 

116.2 0.894 0.878 2.28 

9 120.2 0.925 0.909 1.97 

15 116.2 0.894 0.878 1.14 

-70 

7.5 

114 

108.8 0.954 0.804 2.14 

9 112.8 0.99 0.834 1.85 

15 108.8 0.954 0.804 1.07 

 

 

Figure 6-22 FAD locus by limited load analysis at 15 MPa operational pressure 

with 20 mm crack length 
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6.5.2.2 API X70 steel 

Figures 6-23 to 6-25 show the behaviour of the locus assessed due to 

temperature and pressure of the operation. As can clearly be seen, the load 

factor decreased as the pressure increased. The correspondence between 

fracture toughness and Lr is inversely proportional while with Kr it is directly 

proportional. 

As was observed from the analysis of the steel X100, the same tendency  has 

been followed on the variation on the load factor and Lr being opposite for  Kr . 

From Table 6-16 it can be seen that the load factor decreases with the 

temperature and gives a clear indication that the material could meet the 

requirements or integrity totally for all temperatures below 9 MPa. However, a 

15 MPa and temperature above -20C could be used as the material has 

enough capacity to carry the load conditions. The integrity requirements of the 

material decay when temperature falls to -20C. 

Table 6-16 Steel X70_RT_to_-70C_LL_Crack length 5, 10 and 20 

mm_LF=1.2. Failure criteria. 

Temperature Pressure Res. Tough Total SIF 
Kr-R6 Lr-R6 

Load 
factor C MPa (MPa*m1/2) (MPa*m1/2) 

21 

7.5 

190 

81.2 0.428 1.037 3.41 

9 118.5 0.624 1.051 2.86 

15 152.2 0.801 0.931 1.5 

-20 

7.5 

140 

80.7 0.577 1.028 3.38 

9 110.9 0.792 0.981 2.68 

15 129 0.921 0.787 1.27 

-40 

7.5 

120 

81.7 0.681 1.02 3.42 

9 103.8 0.865 0.901 2.51 

15 117.4 0.978 0.702 1.15 

-70 

7.5 

98.5 

77.2 0.784 0.936 3.24 

9 93.7 0.951 0.789 2.26 

15 103 1.045 0.598 1.01 
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Figure 6-23 FAD locus by limited load analysis at 7.5 MPa operational pressure 

with 5 mm crack length 

 

Figure 6-24 FAD locus by limited load analysis at 9 MPa operational pressure 

with 10 mm crack length 
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Figure 6-25 FAD locus by limited load analysis at 15 MPa operational pressure 

with 20 mm crack length 

6.5.2.3 API X60 steel 
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conditions. The mechanics of the fracture show that collapse at the lower 

temperature, -70C, is the most critical parameter for all the cases. Figures 6-26 

to 6-28 show the assessment performed. 
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Table 6-17 Steel X60_RT_to_-70C_LL_Crack length 5, 10 and 20 

mm_LF=1.2. Failure criteria. 

Temperature Pressure Res. Tough Total SIF 
Kr-R6 Lr-R6 

Load 
factor C MPa (MPa*m1/2) (MPa*m1/2) 

21 

7.5 

240 

52.8 0.22 1.148 2.21 

9 74.02 0.308 1.119 1.07 

15 106.7 0.445 1.112 1.05 

-20 

7.5 

200 

52.5 0.262 1.132 2.2 

9 73.8 0.369 1.107 1.07 

15 107.5 0.537 1.11 1.06 

-40 

7.5 

150 

51.9 0.346 1.105 2.18 

9 74.6 0.498 1.104 1.08 

15 108.6 0.724 1.107 1.07 

-70 

7.5 

110 

52 0.473 1.102 2.18 

9 74.9 0.681 1.103 1.09 

15 103 0.936 1.046 1.01 

 

 

Figure 6-26 FAD locus by limited load analysis at 7.5 MPa operational pressure 

with 5 mm crack length 
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Figure 6-27 FAD locus by limited load analysis at 9MPa operational pressure 

with 10 mm crack length 

 

Figure 6-28 FAD locus by limited load analysis at 15 MPa operational pressure 

with 20 mm crack length 
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6.6 Summary 

From the above considerations the analyses performed in this chapter focused 

on determining the effect or influence of material properties on the FAD. A first 

approximation could indicate that if a crack is located at point 1 (Figure 6-29) 

and kept constant, if the fracture toughness of the material decreases then the 

curve could be seen as moving towards point 1. Conversely, if the toughness 

were to increase, the curve would move away from point 1. However, if tensile 

residual stresses are present, then point 1 will move towards the right, while 

compressive residual stress would cause point 1 to move to the left.  

On the other hand, at point 2, plastic collapse is affected by ductility which could 

indicate that collapse is more likely at lower temperatures. The two lines plotted 

from the origin through the Kr/Lr ratio of 1.1 and 0.4 divide the diagram into 

three regions indicated by two blue arrows. From the 1.1 ratio line to the Kr/r 

axis a potential benefit is achieved if residual stresses are alleviated. 

Conversely little advantage is seen for improving tensile properties.  

 
Figure 6-29 FAD representing the possible variations of the locus as a result of 

the effect of material properties on Kr and Lr 
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Similarly, from the 0.4 ratio line towards the Lr axis, advantage is obtained by 

enhancing tensile properties and a slight benefit if toughness is improved. Point 

3 corresponds to the zone delimited by the 1.1 and 0.4 ratio lines, where the 

interaction between tensile properties, stress intensity factor, fracture 

toughness, temperature, residual stress or any secondary loads effect the 

failure mechanism and likely to be a mixed mode.  

However, the assumptions made above differ from the analysis carried out by 

limiting both load and crack size on API X100steel, where the only part modified 

was the cut-off limiting Lr for all the cases evaluated. No extension of the 

assessment curve on the fracture dominated region was observed while the 

FADs’ assessments show that acceptable crack lengths were located inside the 

failure assessment line. Details were shown in sections 6.5.1.1 and 6.5.2.1. 

Likewise, the results for each assessment performed, including and excluding 

residual stresses in the calculations, show that the residual stress has no 

significant effect on the FAD (Figure 6-30). It could be a consequence of the 

high plasticity induced, indicating that the plastic collapse load is independent of 

any initial residual stress [290]. 

In addition, it was observed that the critical point for limiting crack analysis was 

a crack 20 mm in length at 15 MPa pressure at -70°C. The equivalent case at 

room temperature was assessed as “safe”. For limiting load analysis at the 

same pressure and crack length, the data show that failure occurs before the 

design pressure (1.2H) is reached.  

For steel grades X70 and X60, the assessments were performed in the same 

manner as for steel grade X100. However, the mechanical response in the 

functional hardening region of the stress-strain engineering curve is different for 

both the two steel options used. For example, X60 is characterised by a plateau 

on the stress-strain curve; therefore all the analyses were performed using the 

FAD for discontinuous yielding, whilst for X70 steel this phenomenon was not 

observed and the analysis was accomplished by continuous yielding. 
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Lower temperature, i.e. -70°C, and higher pressure are critical factors as the 

combination of both of these affects the integrity of the physical parameters of 

the steel. 

 

Figure 6-30 FAD curve representing slight effect of residual stress on fracture  
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7 SUMMARY, CONCLUDING REMARKS AND OUTLOOK 

7.1 Summary 

This thesis has been structured through the development of experimental and 

analytical methods for investigating the integrity of materials used for 

manufacturing pipelines and their interaction with simulated flue-gas. The 

background and main activities to develop the objectives of this research are 

presented in Chapter 1. In Chapter 2 a detailed review is introduced to establish 

the state-of-the-art on Capture, Transport and Storage of CO2 along with 

fracture mechanics. The integrity issues of pipelines and structural integrity 

assessment concepts are also covered.  

Chapter 3 describes in detail the methodology used to complete and achieve 

metallurgical characterisation, mechanical properties, fracture toughness, aging 

tests, residual stress and engineering critical assessment of pipeline steel. 

Chapter 4 describes the mechanical properties and fracture toughness of 

material on virgin and aging conditions, while residual stress evaluation is 

accomplished by neutron diffraction and Hole drilling tests which are presented 

in Chapter 5.  

Finally Engineering Critical Assessment based on the FAD approach is 

presented in Chapter 6 to evaluate the integrity of pipelines transporting 

supercritical CO2 with impurities using a “leak-before-break” approach. 

7.2 Concluding remarks 

The context of the present investigation, which was presented in Figure 1-7, 

underlined the core parts undertaken in this research as well as main 

contributors. Aspects as mechanical behaviour of material, residual stress and 

the effect impurities on the integrity of steels exposed in simulated flue-gas was 

undertaken and explained. 
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As a result of the current experimental work, the results and analysis performed 

determine the integrity of HSLA steels. The foremost conclusions are 

summarised as follows: 

1. Tensile properties of API X100, X70 and X60 steels tested over range -

70C to 21C in the longitudinal direction show lower values compared 

with the transverse orientation data obtained from the literature and API 

5L standard. Features of the fracture surface indicated the influence of 

the anisotropy with remarkable effect on API X100. Variation of the 

tensile properties along with temperature was noticed which followed the 

behaviour expected. Vickers hardness values determined susceptibility 

of X100 and X70 steel in sour environments. 

2. Comparison between tensile tests performed on virgin and aged samples 

indicated that the samples tested did not show significant variation on the 

mechanical properties. Ductility was not affected both as-received and 

exposed to a SO2/H2S environment which indicates an influence of the 

alloying element or dissipation of hydrogen before testing. 

3. Specimen exposed to SO2 and H2S and analysed by XRD and EDS 

analytical methods determined that the layer deposited on the surface 

was hydrated FeSO4 and FeSO. The corrosion products from SO2 

impurities were regularly distributed while the layer formed within a H2S 

atmosphere was distributed irregularly. The layer formed could be 

considered to be protective as no signs of corrosion were noticed. 

Another aspect was the lower amount of free water on the system which 

prevents corrosion process.  

4. Metallurgical characterisation defines that the steels have a combination 

of microstructure as a consequence of the manufacturing as well as 

cooling processing routes which differed according to chemical 

composition. Steel grades API X100 and X70 were composed of 

martensite, granular bainite and polygonal ferrite with fine precipitates 

distributed in the matrix. For API X60 steel small amounts of pearlite 
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distributed on the ferrite matrix where  no deformation or banding were 

determined. 

5. Fracture toughness evaluation by precracked Charpy tests determined 

that energy variation with temperature is lower when a fatigue crack is 

introduced. Toughness data obtained by using precracked samples 

tested in a conventional impact tester was found not to be viable as no 

consistency was found with the data available in the public domain. A 

Master curve and lower bound correlations can be used but the tests 

have to be performed on an instrumented pendulum machine or quasit-

static test. 

6. The compressive-tensile residual stress profile obtained from ND and 

ICHD measurement showed good agreement between the approaches 

used; however, unavoidable inaccuracies from the method have 

influenced stress level determination. It was found that the compressive 

stress distribution through the thickness increased according to the load 

on the rolling track.  

7. A leak-before-break running FAD assessment, analysed by limiting crack 

size and limiting load under three operational pressures showed that the 

tensile stress, residual stresses and fracture toughness influenced the 

integrity of material under the existence of different flaw length. In API 

X100 steel with properties evaluated at -70C and pressure about 15 

MPa, crack initiation is inevitable at crack length above 10 mm. API X70 

exhibit similar tendency but at crack length  below 10 mm at -70C and 

15 MPa pressure. API X60 showed that at 15 MPa the component fails 

before any crack length is reached.  

Following the conclusions highlighted previously a general comments could be 

presented in order to clarify the importance or impact of these results obtained 

in the CCTS framework. 
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 Pipelines are considered to be the most suitable solution to safely and 

efficiently transport at minimal expense supercritical CO2 over long 

distances. Depending on fuel type, energy conversion process and capture 

process, there are large variations in the composition of CCTS, due to the 

inclusion of other CO2 sources. Stronger implications not only for the 

construction of new pipelines, but also for the reuse of old pipelines are of 

paramount interest. 

 Manufacturing companies and regulating bodies are presently developing 

concise guidelines or standards to establish a combination of an appropriate 

chemical composition and proper processing of manufacturing to guarantee 

final mechanical properties which would meet the technical requirements to 

transport fluids above 7.5 MPa. However, such guidelines are currently only 

being considered for transporting oil and gas, not supercritical CO2 with 

impurities.  

 The selection of appropriate steel for CCTS application requires a clear 

understanding of the loading applications and environmental challenges that 

the pipeline faces. Despite efforts to accomplish the required technical 

specifications, issues remain due to uncertainties between interactions of 

impurities with material at pressures above 15 MPa where fracture 

toughness is a weak factor due to manufacturing constraints, despite 

material strength. 

 Structural integrity of materials or components infers their capacity to 

withstand a design service of any type of load resistance to breaking before 

the intended life of the designated structure. Loss of integrity implies that the 

structure or component is no longer able to be load-carrying as a 

consequence of excessive forces and strain due to loads or deterioration 

from external conditions either directly or indirectly associated with 

mechanical, physical and chemical properties. Engineering criticality 

assessment is of critical importance in order to evaluate the integrity of 

components within the framework of realistic data. 
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 Unless efforts are made to reduce the gap between compositional 

specifications for CO2 mixtures, lack of CCTS operational knowledge and 

the uncertain long-term financial environment, then regulatory constraints 

and the acceptability of CCTS as a potential promoter for both reduction in 

GHGs and achievement of the 2020 targets agreed by the European Union 

in June 2009 will be jeopardised.  

7.3 Contributions of this PhD 

This research has developed specific material performance criteria for 

supercritical CO2 transport by pipeline as a first step towards creating 

requirements for the safe design or reuse of steels in this environment. 

Improvement of knowledge of failure mechanisms gives the experimental data 

collected concerning HSLA steels exposed to flue-gasses as one of the most 

relevant technical topics in this investigation. 

Furthermore, the information and data on the damage tolerance of steel has 

been collected and used to evaluate its structural integrity by the development 

of a defect assessment approach. The data generation and elaboration of the 

FAD based on experimental evidence are considered novel, as they could 

provide a possible explanation of issues related to materials transporting 

supercritical CO2 with impurities, to be used on fracture arrest predictions or 

fracture control models or methods. 

The current investigation has three main objectives. Firstly, to apply 

experimental data to the determination of modes of fracture within HSLA steel; 

secondly to measure impurities and establish their role on fracture toughness 

and material damage; thirdly to provide FAD assessment results on the 

integration of all material properties of virgin and aging samples.  

 A general framework for material properties, integrity and assessment 

methodologies has been established. This included clear definitions of 

aspects such as variation of chemical composition, microstructure and 
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mechanical properties in relation to pipeline integrity, and methods to 

evaluate the structural integrity of systems transporting supercritical CO2. 

 The establishment a new methodology to expose materials in simulated flue-

gases using an unique dynamic loop system to provide a baseline for aging 

tests, it is considered as one of the most important contributions of this 

investigation. 

 Practical procedures to perform each test are described based on a 

systematic methodology which combines guidance from the standardisation 

and proprietary developmental work. Collected data can be used as a 

reference point for future work or for developing models on pipeline 

transportation of flue-gas. 

 Determination of the constraints for fracture toughness using standard and 

non-standard samples is presented, indicating both the advantages and 

disadvantages. 

 A FAD-based engineering critical assessment for CO2 has been presented 

showing the effect of different pressure values and material properties by 

limited crack size and limiting loading analyses by Leak-before-break 

methodology is considered other important contribution of this research. 

7.4 Limitations of the research 

The limitations of this research are outlined in Chapters 4 and 5. A deeper 

analysis including more precise identification of embrittlement deterioration by 

hydrogen, such as the presence of crack or blister formation and its interactions 

with microstructure, was not carried out. Performing such an analysis would 

determine important information to understand how HIC mechanics operate. 

Regarding the aging processes, constraints on space have limited the number 

of samples to meet the minimum standard requirements which have increased 

uncertainties about the variation of tensile and toughness properties. In 

addition, determination of H2 concentration, determination of corrosion rates 
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using electrochemical techniques as well as pH which were not carried out due 

to the limitation of monitoring samples or adequate instrumentation inside the 

chamber need to be undertaken. 

With regard to the cold rolling process to induce compressive residual stress, 

the utilisation of one roller could be the cause of the final distribution of residual 

stress, which was enhanced more on one side than the other. Performing the 

test by using two pairs of rollers would guarantee a better compressive stress 

distribution throughout the material thickness. 

7.5 Further Work 

As the studies carried out in this research are a new area of investigation, this 

work does not give a complete explanation of all parameters involved in both 

fracture mechanics and an aging environment. Additional work may be needed, 

including:  

 The presence of hydrogen on steels can cause reduction of fracture 

toughness. Therefore conducting investigation to evaluate JISCC/KISCC on 

pipeline steel, for example API X100, could provide an estimate of 

toughness in flue-gas environments based on fracture mechanics criteria 

in order to establish an alternative methodology to evaluate the structural 

integrity of linepipe in terms of FAD. 

 To study corrosion phenomena under stress by including conventional 

and precracked samples (standard/non-standard geometries) to 

investigate the effect of free water and flue-gas and their impact on 

structural integrity of linepipe at pressure above 7.5 MPa, 35 °C with pH 

varying between 3.0 to 5.5. 

 Determination of compressive residual stress by cold rolling tests at 

different distances between each track to understand RS distribution and 

its effect in the in-plane directions. Additionally, to include laser peening 

as an alternative to compare the RS profile with cold rolling methods. 
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 Investigate residual stress profiles by X-Ray to determine the distribution 

near the surface and complement values obtained from ICHD and ND. In 

so doing, establish correlations to develop a model to predict residual 

stress on steel with 625 MPa yield strength and above. 
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Appendix A Dimensions of plates 
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Figure A-1 Schematic illustration of the cutting of plates and samples of API 

X100 steel for chemical composition and metallographic analysis 
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Figure A-2 Schematic illustration of the cutting of plates and samples of API 

X100 steel 
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Figure A-3 Schematic illustration of the cutting of plates and samples of API 

X70 steel 
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Figure A-4 Schematic illustration of the cutting of plates and samples of API 

X60 steel 
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Appendix B Schematic illustration of tensile specimens 

used for tensile test with typical dimensions 

 

(a)  Pin-loaded specimen for tension test with 50 mm gauge length. Units in 

mm. 

 

(b) Small-size round specimen proportional to standard specimen for tension 

test. 

Figure B-1 Shape and dimensions of specimen for tension test with 50 mm and 

10 mm gauge. Units in mm. 
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Appendix C System alignment  

 (a)  

 (b)  

Figure C-1 Configuration to verify alignment (a) 500 kN, strip sample and (b) 

100 kN round sample. Both are using linear strain gauge. Left: Set up. Right: 

Strain gauge (SG). 
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Appendix D Set up tensile test 

  

(a) 500 kN machine 

  

(b) 100 kN machine using round sample 

Figure D-1 Experimental set up for tensile test of flat and small round 

specimens 
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Appendix E Nominal dimensions and tolerances 
Charpy V-Notch (CVN) 

 

(a) API X60. B= 3/4T  

 

(b) API X100 and X70. B= 1T 

 

(c) Notch dimensions 

Figure E-1 Charpy V-Notch a, b) General dimensions (b) Notch dimensions 
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Appendix F Charpy V-Notch Set up 

   

(a) Pendulum Impact tester 217 Ft-lb (~300 J) capacity 

   

1) From –70ºC to –20ºC   2) Test at –196ºC and –100ºC 

(b) Set up to PCCVN test a lower temperature. 

Figure F-1Pendulum impact testing machine and environmental chamber, 

datalogger, laptop and Nitrogen tank used to test a lower temperature 
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Appendix G Precracking curves for API X100, X70 and 

X60 

 

Figure G-1 Curve for API X100 and API X70 Steel 

 

Figure G-2 Curve for API X60  
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Appendix H Distribution samples aging test- API X60  
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Appendix I Distribution samples aging test- API X70  
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Appendix J Distribution samples aging test- API X100  
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Appendix K Aging parameters 

Phase Environment saturated with water Material  In test  Post test 

1 
Pure CO2 + 0.5 mol% SO2 

Tubes 

Plates 

Round tensile 

PC-CVN 

O-Ring 

Flow rate 

Temperature 

Pressure 

Gas composition 

Weight loss 

pH of fluid collected 

Optical Microscope 

Scan Electron Microscope 

2 Pure  CO2 + 0.5 mol % H2S 

3 Pure CO2  

 

Material 
Temperature, 

C 

Pressure, 
bar 

Immersion 
time, h 

H2O, g  
Initial 

SO2,ppm 
Initial 

H2S,ppm 
Initial 

CO2,ppm 

Mass flow  
Rate, 
g/min 

API X60 
45 

95 
50,150,200,400 

700 and 1100 
1.23 500 500 10000 50 

API X70 
45 

95 
50,150,200,400 

700 and 1100 
1.23 500 500 10000 50 

API X100 
45 

95 
50,150,200,400 

700 and 1100 
1.23 500 500 10000 50 

Seals 
45 

95 
50,150,200,400 

700 and 1100 
1.23 500 500 10000 50 
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Appendix L Mechanical properties of virgin steels tested over range RT to –70C 

temperatures 

Steel Shape 
Ttest 
(°C) 

0.2% 
(MPa) 

Std dev 
(MPa) 

UTS 
(MPa) 

Std dev 
(MPa) 

0.2%/UTS (0.2%+UTS)/2 
UE 
(%) 

X100 

Strip 21 540 16 688 31 0.79 613 6.2 

Round 21 580 9 738 17 0.79 659 8.7 

Strip -20 581 8 730 9 0.8 632 7.2 

Round -20 604 7 723 14 0.84 664 7.9 

Strip -40 589 13 745 19 0.79 656 6.2 

Round -40 622 9 765 7 0.81 694 7.7 

Strip -70 610 22 850 38 0.72 730 6.9 

Round -70 636 9 792 3 0.80 714 7.4 

X60 

Strip 21 432 7 516 8 0.84 474 14.3 

Round 21 472 9 536 3 0.88 504 17.5 

Strip -20 442 7 529 4 0.84 486 18 

Round -20 452 8 540 2 0.84 496 19.7 

Strip -40 445 9 532 10 0.84 489 18.5 

Round -40 451 2 538 2 0.84 495 17.7 

Strip -70 456 12 541 9 0.84 499 11.3 

Round -70 462 13 552 8 0.84 507 13.8 

X70 

Round 21 769 3 814 10 0.94 791 7.9 

Round -20 771 4 817 8 0.94 794 7.6 

Round -40 786 6 844 14 0.93 815 8.0 

Round -70 810 5 855 8 0.95 833 7.6 
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Appendix M Tensile properties of aging steels for different hours and tested at –20C 

Steel Impurity Timetest (h) 0.2% (MPa) UTS (MPa) 0.2%/UTS (0.2% + UTS)/2 UE(%) 

X100 

SO2 

50 620 727 0.85 674 7.8 
150 658 758 0.87 708 8 
200 630 737 0.85 684 8.2 
300 610 715 0.85 663 8.5 
400 612 720 0.85 666 8 

H2S 

50 600 718 0.83 659 8.2 
150 598 722 0.83 660 8.8 
200 601 717 0.88 659 8.7 
300 570 685 0.83 628 8.9 
400 562 672 0.84 617 8.3 

X70 

SO2 

50 782 805 0.97 794 6.1 
150 860 867 0.99 864 4 
200 857 865 0.99 861 5.1 
300 800 809 0.99 805 6.2 
400 792 810 0.98 801 6.1 

H2S 

50 815 840 0.97 828 7.3 
150 825 843 0.98 834 7 
200 841 847 0.99 844 4 
300 800 807 0.99 804 6.21 
400 820 822 1.00 821 3 

X60 

SO2 

50 500 578 0.87 539 21 
150 502 581 0.86 542 20 
200 505 583 0.87 544 21 
300 479 550 0.87 515 21.5 
400 454 546 0.83 500 21 

H2S 

50 495 545 0.91 520 21 
150 500 576 0.87 538 19 
200 501 573 0.87 537 19 
300 456 544 0.84 500 20 
400 448 529 0.85 489 19 
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Appendix N Set of samples exposed for different hours in simulated flue-gas  

 

a. Grade X60, impurity SO2  (b) Grade X70, impurity SO2  (c) Grade X100, impurity SO2 

 

d) Grade X60, impurity H2S   (e) Grade X70, impurity H2S  (f) Grade X100, impurity H2S 

50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h 50 h 150 h 200 h 300 h 400 h
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Appendix O Charpy absorbed energy grade X100 as- 

received over range -196C to RT temperature tested in 

non-instrumented machine 300 J by PCCVN. B= 1T 

T  
(°C) 

a1 
(mm) 

b1 (w-a) 
(mm) 

Ratio 
(a/w) 

CVNexp_wv 

(J) 
CVNexp_scale_wv 

(J) 

21 2.81 4.85 0.51 76.6 126.3 

21 3.05 4.58 0.54 69.1 120.7 

21 2.86 4.80 0.52 77.3 128.7 

-20 2.74 4.94 0.51 46.1 74.7 

-20 2.90 4.76 0.52 41.4 69.5 

-20 2.84 4.82 0.52 44.6 74 

-40 2.81 4.85 0.51 38.1 62.8 

-40 2.87 4.79 0.52 33.2 55.5 

-40 2.87 4.79 0.52 35.5 59.3 

-70 2.73 4.94 0.51 22.4 36.2 

-70 2.86 4.80 0.52 23.7 39.5 

-70 2.84 4.82 0.52 22.0 36.4 

-100 2.84 4.82 0.52 12.5 20.7 

-100 2.89 4.77 0.52 11.8 19.8 

-100 2.92 4.74 0.53 14.2 24.1 

-196 2.75 4.92 0.51 2.8 4.6 

-196 2.76 4.91 0.51 3.9 6.4 

-196 2.86 4.80 0.52 2.8 4.7 
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Appendix P Charpy absorbed energy grade X70 as- 

received over range -196C to RT temperature tested in 

non-instrumented machine 300 J by CVNPC.B= 1T 

T 
(°C) 

a1 
(mm) 

b1 (w-a) 
(mm) 

Ratio 
(a/w) 

CVNexp_wv 

(J) 
CVNexp_scale_wv 

(J) 

21 3.00 5.01 0.50 86.6 138.5 

21 2.91 5.10 0.49 82.4 129.4 

21 2.89 5.12 0.49 82.7 129.4 

-20 2.83 5.18 0.48 86.1 133.1 

-20 2.82 5.18 0.48 81.3 125.6 

-20 2.81 5.19 0.48 72.5 111.8 

-40 2.88 5.13 0.49 62.4 97.4 

-40 2.88 5.13 0.49 65.8 102.6 

-40 2.87 5.14 0.49 46.1 71.8 

-70 2.89 5.11 0.49 67.8 106.1 

-70 2.90 5.11 0.49 44.7 70.1 

-70 2.91 5.10 0.49 33.9 53.2 

-100 2.86 5.15 0.49 28.5 44.3 

-100 2.87 5.13 0.49 33.9 52.9 

-100 2.87 5.14 0.49 24.4 38 

-196 2.90 5.11 0.49 3.0 4.7 

-196 2.82 5.19 0.48 3.4 5.2 

-196 2.91 5.09 0.49 4.1 6.4 
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Appendix Q Charpy absorbed energy grade X60 as- 

received over range -196C to RT temperature tested in 

non-instrumented machine 300 J by CVNPC.B= ¾ T 

T  
(°C) 

a1 
(mm) 

b1 (w-a)  
(mm) 

Ratio 
(a/w) 

CVNexp_wv 

(J) 
CVNexp_scale_wv 

(J) 

21 2.84 5.17 0.48 27.5 42.6 

21 2.78 5.22 0.48 30.0 45.9 

21 2.77 5.24 0.48 27.8 42.3 

-20 2.98 5.02 0.50 20.3 32.4 

-20 2.94 5.06 0.49 16.5 26.2 

-20 2.96 5.05 0.50 18.3 29 

-40 2.81 5.19 0.48 14.8 22.8 

-40 2.82 5.19 0.48 12.5 19.2 

-40 2.82 5.18 0.48 13.6 20.9 

-70 2.86 5.15 0.49 7.6 11.8 

-70 2.87 5.14 0.49 6.6 10.4 

-70 2.90 5.11 0.49 6.8 10.6 

-100 2.89 5.12 0.49 4.1 6.4 

-100 2.77 5.24 0.48 4.7 7.3 

-100 2.94 5.07 0.49 3.8 6.0 

-196 2.80 5.20 0.48 2.0 3.1 

-196 2.84 5.17 0.48 2.2 3.4 

-196 2.76 5.25 0.48 2.0 3.1 
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Appendix R PCCVN set of samples exposed at different hours in flue-gas 

 

(a) Grade X60, impurity SO2  (b)Grade X70, impurity SO2   (c) Grade X100, impurity SO2 

 

d) Grade X60, impurity H2S   (e) Grade X70, impurity H2S  (f) Grade X100, impurity H2S 

50 h 150 h 200 h 300 h 400 h
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Appendix S Energy absorbed of steels exposed in flue-

gas over range 50h to 400h tested at -20C using a non-

instrumented machine 300J capacity 

Steel 
Gas 

Impurity 

Agingtemp 

(C) 

a1 
(mm) 

b1 (w-a) 
mm 

Ratio 
(a/W) 

CVNexp_wv 

(J) 
CVNexp_scale_wv 

(J) 

X100 

SO2 

50 3.25 4.75 0.53 42.7 126 

150 3.21 4.79 0.52 41.4 132 

200 3.16 4.85 0.52 40.9 136 

300 3.04 4.97 0.50 45.4 133 

400 3.17 4.84 0.52 43.4 98 

H2S 

50 3.07 4.93 0.51 40.8 72 

150 3.08 4.92 0.51 49.5 69 

200 3.09 4.92 0.51 46.1 68 

300 3.09 4.91 0.51 46.1 73 

400 3.04 4.97 0.50 45.4 72 

        

X70 

SO2 

50 3.10 4.91 0.51 81.3 133 

150 3.10 4.91 0.51 83.4 136 

200 3.07 4.93 0.51 80.0 130 

300 3.07 4.93 0.51 73.9 120 

400 3.13 4.88 0.51 67.8 111 

H2S 

50 3.11 4.90 0.51 77.3 126 

150 3.11 4.90 0.51 80.7 132 

200 3.03 4.98 0.50 84.3 136 

300 3.14 4.87 0.51 80.8 133 

400 3.05 4.95 0.51 60.3 98 

        

X60 

SO2 

50 3.11 4.90 0.51 19.0 31 

150 3.12 4.89 0.51 21.0 34 

200 3.12 4.88 0.51 21.7 36 

300 3.25 4.75 0.53 22.4 38 

400 3.07 4.93 0.51 21.7 35 

H2S 

50 3.10 4.91 0.51 20.2 33 

150 3.14 4.86 0.51 19.7 32 

200 3.15 4.86 0.51 21.7 36 

300 3.10 4.91 0.51 19.0 31 

400 3.10 4.91 0.51 21.0 34 
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Appendix T Fracture toughness of steels exposed in 

simulate flue-gas tested at -20C and determine by 

Marandet & Sanz correlation 

Steel Impurity 

Aging 
temp 

KIc_exp_wv_M&S KIc_exp-scale_wv_M&S 

(h) (MPa.m0.5) (MPa.m0.5) 

X60 

SO2 

50 83 106 

150 87 111 

200 88 113 

300 90 117 

400 88 113 

H2S 

50 85 109 

150 84 108 

200 88 114 

300 83 106 

400 87 111 

X70 

SO2 

50 171 219 

150 173 222 

200 170 216 

300 163 208 

400 156 200 

H2S 

50 167 214 

150 171 218 

200 174 221 

300 171 219 

400 148 188 

X100 

SO2 

50 124 161 

150 122 158 

200 122 156 

300 128 163 

400 125 161 

H2S 

50 121 155 

150 134 170 

200 129 165 

300 129 165 

400 128 163 
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Appendix U Fracture toughness of steels exposed in 

simulated flue-gas tested at -20C and determine by 

SINTAP correlation 

Steel Impurity 
Aging temp KId_exp_wv_ST KId_exp-scale_wv_ST 

(h) (MPa.m0.5) (MPa.m0.5) 

X60 

SO2 

50 83 106 

150 87 111 

200 88 113 

300 90 117 

400 88 113 

H2S 

50 85 109 

150 84 108 

200 88 114 

300 83 106 

400 87 111 

X70 

SO2 

50 171 219 

150 173 222 

200 170 216 

300 163 208 

400 156 200 

H2S 

50 167 214 

150 171 218 

200 174 221 

300 171 219 

400 148 188 

X100 

SO2 

50 124 161 

150 122 158 

200 122 156 

300 128 163 

400 125 161 

H2S 

50 121 155 

150 134 170 

200 129 165 

300 129 165 

400 128 163 
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Appendix V Laser profile for rolled samples  

   

   

Figure V-1 Profile rolling track determined using a laser profiler for samples A and B 
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Figure V-2 Profile rolling track determined using a laser profiler for samples A and B 
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Appendix W Transverse and Normal residual stresses 

  

  

  

  

Figure W-1 Residual stress variation on samples A, B, C and D from ND test 
through-thickness 
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Appendix X Transverse and Normal residual stresses 

  

  

  

  

Figure X-1 Residual stress samples A, B, C and D from ND test along 
transverse section 
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Appendix Y Strain data variation with depth obtained by ICHD  

  

  

Figure Y-1 Typical curves for strains measurements. Sample A  
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Appendix Z Transverse RS by ICHD and OIHD 

 

Figure Z-1 Comparison transverse RS by ICHD 
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Appendix AA Transverse RS by ND and ICHD 

 

 

 

Figure AA-1 Comparison transverse stresses in samples A, B, C and D through-

thickness at points 1, 2 and 5. 
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Residual Stress Distribution for Neutron diffraction  (d0 exp) and Incremental 
Hole drilling all samples at P2. Transverse orientation.

Sample A FRM-2 Sample B  FRM-2 Sample C FRM -2 Sample D FRM -2

Sample A IHD-2 Sample B IHD-2 Sample C IHD-2 Sample D IHD-2
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Experimental Residual Stress of Neutron diffraction (d0 exp)  and Incremental 
Hole drilling  for all samples at Point 5. Transverse orientation

Sample A FRM-5 Sample B FRM-5 Sample C FRM-5 Sample D FRM-5

Sample A IHD-5 Sample B IHD - 5 Sample C IHD-5 Sample D IHD-5


