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ABSTRACT 

Detection and Localization of Leaks in Water Networks 

 

Samer Mohammad El-Zahab, Ph.D.  

Concordia University, 2018 

 

Today, 844 million humans around the world have no access to safe drinking water. 

Furthermore, every 90 seconds, one child dies from water-related illnesses. Major cities lose 

15% - 50% of their water and, in some cases, losses may reach up to 70%, mostly due to leaks. 

Therefore, it is paramount to preserve water as an invaluable resource through water networks, 

particularly in large cities in which leak repair may cause disruption. Municipalities usually 

tackle leak problems using various detection systems and technologies, often long after leaks 

occur; however, such efforts are not enough to detect leaks at early stages. Therefore, the main 

objectives of the present research are to develop and validate a leak detection system and to 

optimize leak repair prioritization.  

The development of the leak detection models goes through several phases: (1) technology and 

device selection, (2) experimental work, (3) signal analysis, (4) selection of parameters, (5) 

machine learning model development and (6) validation of developed models. To detect leaks, 

vibration signals are collected through a variety of controlled experiments on PVC and ductile 

iron pipelines using wireless accelerometers, i.e., micro-electronic mechanical sensors (MEMS). 

The signals are analyzed to pinpoint leaks in water pipelines. Similarly, acoustic signals are 

collected from a pilot project in the city of Montreal, using noise loggers as another detection 

technology. The collected signals are also analyzed to detect and pinpoint the leaks. The leak 

detection system has presented promising results using both technologies. The developed MEMS 
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model is capable of accurately pinpointing leaks within 12 centimeters from the exact location. 

Comparatively, for noise loggers, the developed model can detect the exact leak location within a 

25-cm radius for an actual leak.  

The leak repair prioritization model uses two optimization techniques: (1) a well-known genetic 

algorithm and (2) a newly innovative Lazy Serpent Algorithm that is developed in the present 

research. The Lazy Serpent Algorithm has proved capable of surpassing the genetic algorithm in 

determining a more optimal order using much less computation time. The developed research 

proves that automated real-time leak detection is possible and can help governments save water 

resource and funds. The developed research proves the viability of accelerometers as a 

standalone leak detection technology and opens the door for further research and 

experimentations. The leak detection system model helps municipalities and water resource 

agencies rapidly detect leaks when they occur in real-time. The developed pinpointing models 

facilitate the leak repair process by precisely determine the leak location where the repair works 

should be conducted. The Lazy Serpent Algorithm helps municipalities better distribute their 

resources to maximize their desired benefits. 
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I CHAPTER I: INTRODUCTION 

I.1 Problem Statement 

Nearly one billion people worldwide do not have access to clean drinking water (Krchnak 2016). 

Substantial quantities of drinking water are lost in water distribution systems mainly due to 

leaks, which often leads to potential water losses. The percentage of water loss is around 20% - 

30% of the treated water for urban consumption in distribution networks mainly due to leaks 

(Cheong 1991), and in some systems, this loss can surpass 50% of the produced water (AWWA 

1987). The contribution of leaks to the total water loss within distribution networks is estimated 

to be at 70% and is expected to rise in low maintenance locations (Van Zyl and Clayton 2007). 

Water loss is not the only outcome of leaks, as they also create problems at the social and 

environmental levels. For example, the United Kingdom is estimated to dig approximately 4 

million holes annually into its road network to install pipes and repair water leaks. The overall 

cost of the damages created by leaks in the UK is estimated to be GPD 7 billion a year (around 

USD 10 billion) divided into GPD 1.5 billion (around USD 2.16 billion) of direct damage costs 

and GPD 5.5 billion (around USD 8 billion) of social impact costs (Royal et al. 2011). 

Furthermore, leaks that are left unrepaired are susceptible to grow and thus allow pathogens and 

contaminants from the environment into the water network, which results in a significant 

decrease in the quality of the provided water and might harmfully affect the lives of humans and 

other living species (Alkasseh et al. 2013). 

In response to these damages and negative impacts, researchers have developed a real-time 

monitoring system within water distribution networks that allows early detection of leaks and 

eventually optimally-timed repairs. Multiple models were developed to address the issue. 

Nevertheless, some have had limitations in terms of accuracy, device availability, applicability, 
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false alarms and the impacts of external conditions. Hence, this research proposes a real-time 

monitoring system for pressurized water networks, capable of detecting, localizing and 

pinpointing leaks by utilizing accelerometers that are widely available in the market. 

 

I.2 Research Objectives 

The primary objective of this research is to develop an automated wireless real-time monitoring 

system for pressurized networks, which is coupled with an algorithm capable of prioritizing leak 

repairs as a function of the priority of the damaged pipeline. To fulfill this primary objective, the 

following sub-objectives are developed:  

1. Identify, study, and select leak detection technologies.  

2. Develop and validate technology-based leak detection and pinpointing models.  

3. Build an optimized model for leak repair prioritization. 

4. Automate the developed models. 

 

I.3 Research Methodology Overview 

This research proposes a detailed framework for a real-time monitoring system for pressurized 

water networks and a leak prioritization algorithm. The overall flow diagram of this research is 

displayed in Figure I-1. The figure highlights three main topics as follows: (1) Literature review, 

(2) model development and (3) model verification and experimentation. Figure I-1 illustrates the 

reviewed literature in four main categories: (1) Leak detection models and approaches, (2) Leak 

detection technologies, (3) Prioritization algorithms and (4) Simulation techniques. Leak 

detection approaches are techniques that rely mainly on a mathematical model that interprets the 

readings of a leak detecting technology, whereas leak detection technologies are modern day 
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technologies that have proven to be capable of reacting to the existence of leaks. The two fields 

are interconnected and interrelated and thus difficult to be separated. In this research, the aim is 

to identify technologies that are capable of detecting the existence of leaks in real-time and to 

review how previous research have tackled the problem of interpreting the data derived from the 

available technologies. Prioritization algorithms are studied to identify what algorithms are 

currently used in the industry and what is missing in those algorithms. The limitations help 

establish the enhancements provided by the newly proposed algorithm, i.e. the lazy serpent, 

compared to the currently used algorithms. The study of simulation techniques is essential to the 

newly developed algorithm as one of the lazy serpent’s contributions and the advantages are 

simulating the progression of the leaks and identifying the constant change in state. Completing 

the aforementioned literature review completes the first objective of this thesis mentioned in 

section I.1 and that is to identify, study, and select leak detection technologies. 

To complete the second objective, two sets of leak detection models are developed. The 

technologies are Accelerometers and Noise Loggers. The models are described in Chapters 3 and 

Chapter 4 respectively. As far as the models are concerned, the first principal model is the real-

time monitoring system. The goal of the pressurized water network monitoring system is to 

identify the existence of leaks in the first place and then pinpoint the leak. The model also 

explores possible approaches to identifying the size of the leak and how the vibration signal 

moves in the pipeline. In terms of model verification, multiple experiments are done on one-inch 

and two-inch pipelines made of PVC and ductile iron to develop and verify the leak detection 

model. The experiments are designed to identify the behavior of leaks and their induced 

vibration signal as well as to develop the models above and then verify these models.  
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Figure I-1: General Methodology and Overview 

 

The third objective is tackled by the development of two repair prioritization models. The 

models are described in Chapter 5. The chapter introduces the algorithm named “Lazy Serpent.” 

Lazy Serpent aims to simulate the deterioration of each leak within a three-dimensional 

landscape where the axis x, y, and z represent three main factors that govern the deterioration 

and the optimization factors that are set by the user. When it comes to the Lazy Serpent 

Algorithm, case studies from previous research are simulated in this algorithm and their output 



5 
 

are compared to previous results. Fictitious data will be also developed and simulated to discover 

the extent and capabilities of the newly developed algorithm.  

Finally, the fourth objective of this research is fulfilled in Chapter 6. Chapter 6 introduces three 

computer-based tools. The tools are for leak identification, leak pinpointing, and an automated 

version of the lazy serpent. In summary, the overall research methodology can be described as 

follows: 

Step 1: Literature Review 

A comprehensive state-of-the-art literature review presents leak detection technologies and leak 

detection models. A leak detection technology is a technology – hardware – that is capable of 

reacting to the existence of leaks. On the other hand, leak detection models are mathematical and 

analytical approaches that utilize technology readings to detect and identify leaks. This literature 

review is intended to be expanded by an overview of the-state-of-the-art prioritization 

algorithms.  

Step 2: Signal Analysis Model 

After the selection of accelerometers and noise loggers as the technologies this research 

develops, the need for deciphering the readings from the devices was identified. Thus, following 

several trials, a model was adopted based on the literature review to overcome the problem of 

signal deciphering and analysis.  

Step 3: Leak Detection and Localization Model  

This model presents a new way to pinpoint leaks by utilizing the readings from accelerometers 

and noise loggers to identify, localize, and pinpoint leaks. The presented models are based on 

experiments in addition to statistical analysis techniques, such as regression analysis and 

artificial neural networks.  
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Step 4: Leak Repair Prioritization Model  

In this step, a new three-dimensional prioritization algorithm is developed using a combination 

of simulation techniques and optimization. This algorithm aims to minimize the damage of leaks 

by setting an optimal leak repair prioritization approach.  

Step 5: Software Development 

Finally, a software is developed to automate the whole framework. This software is expected to 

be user-friendly and useful to municipalities.  

 

I.4 Structure of the Thesis  

This thesis is composed of seven chapters summarized as follows:  

Chapter 1 – Introduction  

This chapter sheds light on the research problem at hand, introduces the thesis contents and 

summarizes the methodology.  

 

Chapter 2 – Literature Review 

The chapter reviews previous leak detection models as well as available leak detection 

technologies. Furthermore, previous approaches and techniques are compared to establish the 

advantages and the limitations of the previous models and available technologies.  

 

Chapter 3 – Accelerometer Based Models  

The chapter presents a detailed description of the methodology utilized for the development of 

the models using accelerometers. The chapter also describes the experiments conducted to 

collect data from the devices, the models developed, and the results achieved by the models.   
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Chapter 4 – Noise Logger Based Models 

The chapter describes the methodology for noise loggers followed by the implementation of the 

methodology and data collection that were conducted with the city of Montreal. The developed 

models are presented, and their results are discussed.  

Chapter 5 – Repair Prioritization Models 

The chapter presents the methodology used for the development of two approaches for leak 

repair prioritization, the genetic algorithm approach and the lazy serpent. The implementation of 

the two models is presented and their results are compared and discussed.  

 

Chapter 6 – Developed Automated Tools 

The chapter discusses three automated tools that are developed to accompany the model. Chapter 

6 goes over the structure and design of the developed tools and presents a user walkthrough or 

manual for the user of the tools.  

 

Chapter 7 – Research Contributions and Future Work 

The chapter concludes this research by presenting its current contributions, limitations and the 

expected future work. Chapter 7 also discussed the possible future advancements.  
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II CHAPTER II: LITERATURE REVIEW 

This chapter summarizes the previous research in leak detection and independent event 

prioritization. Figure II-1 illustrates the steps of conducting the literature review. The literature 

review is composed of two main categories: (1) Leak detection literature and (2) Independent 

event scheduling and prioritization literature. The bulk of the literature review is on leak 

detection, covering the topics of leak detection phases, current leak detection models, available 

leak detection technologies and model development techniques. Meanwhile, accelerometer 

signal analysis is presented separately due to its importance in comprehending the derived data 

from the selected devices although it is basically relevant to the leak detection technologies 

section. This chapter serves to accomplish the first objective of this thesis that is described in 

Chapter 1 and the objective aims to identify, study, and select leak detection technologies. 

As its primary outcome, research on the leak detection phases helps identify the general 

approaches and steps, to detect the exact leak location. In terms of leak detection models, the aim 

of the literature review is to review available models and their techniques and move on to 

identify the limitations of those models. Additionally, leak detection technologies are addressed 

and compared, to identify the current state of the art and their limitations. Model development 

techniques in leak detection were explored to determine suitable techniques for this research. 

Finally, a signal analysis model for vibration signals was adopted. Independent event 

prioritization was adopted mainly because leaks are assumed to be independent of one another 

and hence conventional scheduling techniques are not viable; thus, another approach must be 

utilized. In this part, independent event prioritization approaches are presented along with their 

limitations. 
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Figure II-1: Literature Review Overview 
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II.1 Leak Monitoring Overview 

This section provides an overview of the current state-of-the-art approaches and understandings 

in leak detection. Here, the phases of leak monitoring are identified and the difference between 

their definitions are explained. The state-of-the-art models and technologies are then discussed. 

Finally, a model for the analysis of vibrational signals is presented. The overall methodology of 

this literature survey can be summarized in Figure II-2. The first step of this research is to gather 

a substantial amount of the published works on leak detection in urban water mains. For this 

purpose, the Web of Knowledge (WoK) database was selected as the main database to conduct 

the search. The main keywords of the search are “leak detection in pipelines”. The data collected 

from the WoK database will be analyzed to have a sense of the historical, technological, and 

demographical trends in pipeline leak detection research. The second step is to randomly select 

between 30 to 35 papers on the topic and analyze the chosen papers with more depth. This 

approach creates two main datasets, the WoK dataset which contains nearly 1000 papers on the 

topic of leak detection pipelines and the in-depth dataset for this research article that studies a 

randomly selected collection of papers. The in-depth dataset will be analyzed regarding 

capabilities and technologies used. Additionally, the papers will be assessed for their historical 

progression and the distribution of the models regarding technologies used and capabilities 

provided. This analysis allows the development of a general sense of the progression and flow of 

leak detection research.  
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Figure II-2: Leak Detection Literature Review Methodology 

 

II.1.1 Leak Monitoring Phases 

In 2009, Hamilton defined leak detection as a subsidiary of three main phases know as localize, 

locate, and pinpoint or LLP. In Table II-1, localize is defined as narrowing down a leak to a 

specific segment within the network or a specific district metered area after the suspicion of a 

leak. Several tools can be used in this domain such as district metered area and fitting surveys (Li 

et al. 2011). The second phase is locating, and it is the first phase where a location for the leak is 

determined. The location of the leak is said to be within a radius of 30 centimeters. Furthermore, 

multiple tools are available for utility in this phase including correlators and 

microelectromechanical sensors (El-abbasy et al. 2014; El-Zahab et al. 2016; Martini et al. 

2015). Finally, the third phase, according to Hamilton, would be pinpointing. Pinpointing is 
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another phase where another estimate for the exact location of the leak is determined but within a 

radius of 20 centimeters. In this phase, a variety of tools are available including hydrophones and 

geophones (Fantozzi et al. 2009; Royal et al. 2011). In contrast, multiple researchers in the field 

of leak detection have highlighted the existence of another challenging aspect in the development 

of leak detection systems and approaches. The challenge lies in differentiating the signs of leaks 

from other aspects such as pumps or an open hydrant. This problem is vivid in acoustic noise 

loggers and accelerometers and other wireless sensor devices that are used in leak detection. 

Sensors would pick up any form of signs and signals similar to those of leaks and end up 

providing false alarms. False alarms create an expenditure of workforce and funds for the bodies 

monitoring the respective networks (El-Zahab et al. 2016; Khulief et al. 2012; Stoianov et al. 

2007a). Therefore, a new phase of leak detection is proposed, and that is the identification phase. 

As described in Table II-1, the identification phase works towards determining if the signs detect 

and the signals derived indicate a leak in the network of pipelines or not and how to differentiate 

between leaks and other factors affecting the network. Subsequently, the leak detection phases 

can now be summed up as ILLP, identify-localize-locate-pinpoint. It is highly possible to merge 

locating and pinpointing due to the 10-centimeter difference between the two phases. This 

approach helps in creating three distinct and unambiguous phases. Thus, another approach would 

be the ILP approach, identification-localization-pinpointing. Where the first step identifies the 

existence of a leak, the second phase identifies the segment where the leak is, and finally the 

third phase would determine the exact location of the leak with a certain accuracy. 
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Table II-1: Phases of Leak Detection - ILLP 

Phase Definition 
Identify Determine the existence of a leak and distinguish leaks from false 

alarms.  
Localize Narrow down the location of a leak to a specific area or segment.  
Locate Determine the location of a leak with a radius of 30cm.  
Pinpoint Determine the location of a leak with a radius of 20cm.  

 

II.1.2 Progress in Leak Detection Research 

The advances in leak detection research have grown remarkably in recent years, but the field of 

leak detection is not a new field of research. The damages created by leaks in pipeline networks 

presented researches with the curiosity of developing reliable and immediate solutions to fight 

the leakage epidemic. In a survey performed on the Web of Knowledge database, 941 scholarly 

articles about the topic of leak detection in pipelines were found. A timeline analysis was 

conducted for the most referenced papers in the field of leak detection using the CitNetExplorer 

software for bibliometric analysis (Van Eck and Waltman 2014). The results of this analysis are 

illustrated in Figure II-3, The first paper found by this survey existed in the year 1968 by Zielke 

as displayed in Figure II-3, who suggested the study of wall shear stress in laminar pipe flow 

along with the mean velocity of the flow and the changes in the velocity can aid in detecting any 

anomalies within the pipeline. The figure further displays that the research in the field of leak 

detection started booming further in the mid-1980s. Beyond that point, the research field started 

gaining more and more attention especially after 1994. After the year 2000, research in leak 

detection saw numerous publications and contributions with the rise of the importance of water 

conservation and water scarcity and the abundance of novel technologies that are capable of 

facilitating and automating the leak detection process.  
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Figure II-3: Display of most cited papers in the leak detection field via CitNetExplorer 

 

The dataset was further studied using another bibliometric analysis software that is named 

VOSviewer (Van Eck and Waltman 2010). Figure II-4 was established using the software. The 

figure aims to establish the countries with the most interest in researching the field of pipeline 

leak detection and to provide a sense of the number of publications provided by those countries. 

In the figure, the countries with at least 25 publications in the field of pipeline leak detection are 

displayed. Starting with Germany with 25 publications in the field within the Web of Knowledge 

database and moving all the way up to Canada with 58 publications in the field, then England 

with 74 publications in the field, exceeded by the United States of America with a sum of 144 

publications, and finally on top of the list is the People’s Republic of China with 263 

publications. The proximity between the globes highlights the amount of co-authored works as 

well. Therefore, from the figure, it is deductible that the People’s Republic of China had multiple 
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co-authored works with England. Same goes for Australia and South Korea as well as the United 

States of America, Germany, and Saudi Arabia.  

 

Figure II-4: Display of most publishing countries in the leak detection field via VOSviewer 

 

After studying the geographical distribution of research interests, the next step is to analyze the 

most repetitive keywords in the global dataset provided by WoK. Figure II-5 displays the top ten 

most used words within the collected dataset. The figure starts at number 0 and ends at number 

11 skipping the values 6 and 10 due to a software glitch. The first keyword with the most 

prominent recurrence is “gas pipelines”. The importance of gas pipelines is relative to the 

criticalness of the material they transport. Natural gas and oil are hazardous materials that are 

transported in a pressurized state. Therefore, any leakage will have a tremendous impact in a 

small time. The impacts of leaks in gas pipelines include major economic losses along with the 

pollution of the surrounding environment and a grand possibility for injuring personnel (Geiger 

et al. 2006; Inaudi et al. 2008; Sun et al. 2011). The second most common keyword is “short 
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period analysis”. The keyword refers to the analysis that focus on the first characteristic time of 

the pipe. The analysis revolves mainly around pressure transients within pipelines due to leaks 

and conducts analysis based on the time and frequency domains and it considers the conditions at 

minor losses as boundaries for the analysis (Meniconi et al. 2010). The third keyword is 

“forecasting model” which are also known as prediction models. Prediction models play key 

roles in leak detection as they utilize learned historical data to make calculated decision for 

future leaks. Additionally, forecasting models can learn and progress through time as they incur 

new information. Forecasting models are usually used with leak detection technologies to 

develop thresholds and equations that are capable of detecting and locating leaks (El-Abbasy et 

al. 2016; El-Zahab et al. 2016; Fahmy and Moselhi 2009; Whittle et al. 2010). The fourth most 

recurring keyword in the dataset is “energy analysis”. The term energy analysis refers to the 

study of the anomalies created by the reflected energy caused by leaks in pipelines. The term 

may also refer to the study of the variation of energy consumption by pumps surrounding leaks 

to maintain a stable pressure. In both cases the persistence of a disruption indicates the existence 

of leakage and accordingly it can be localized (Belouchrani et al. 2013; Mostafapour and 

Davoudi 2013; Shibley 2013). The fifth most recurring keyword is “frequency response 

diagram”. The figure shows that the frequency response analysis is the oldest recurring keyword 

within the data set under study. Frequency response is one of the oldest techniques in leak 

detection. It relies on studying the response to an excitation frequency within a pipeline. The 

method studies the frequency diagram provided as a result of the excitation and accordingly 

detects leaks (Brennan et al. 2007; Mpesha et al. 2001). The keyword with the sixth place in 

recurrences is “leak diagnosis algorithm”. Leak diagnosis algorithms are mathematical or 

artificial intelligence and machine learning models that utilize available data to automatically 
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identify, locate, or pinpoint leaks. Those algorithms can be paired with a wide variety of 

technologies such as infrared, ground penetrating radar, and noise loggers. Some of the 

algorithms that are used include support vector machines, artificial neural networks, and genetic 

algorithms (El-Abbasy et al. 2016; El-Zahab et al. 2017; Fahmy and Moselhi 2009; Al Hawari et 

al. 2015, 2016). In the seventh place comes the keyword “zigzag pipeline” which refers to 

pipelines that are not linear and have some turns and unique shapes within their structure. Those 

pipelines include pipelines that are part of an L-shape or T-shape structure. The importance of 

those pipelines lies in the fact that the unique changes in their shapes create new challenges and 

parameters for leak detection through altering the collected data. Therefore, extra care and 

attention is invested in this abundant class of pipelines (Datta and Sarkar 2016; Lay-Ekuakille et 

al. 2009, 2010). In the eighth position of the list comes the keyword “pipe diameter”. The 

diameters of pipelines that are studied for leaks have proven to be a critical factor in the leak 

detection process for multiple technologies and techniques. The smaller a pipeline is, the more 

likely it is for the leak signal to travel longer distances based on the leak size. Therefore, the 

diameter of pipelines is an important parameter in multiple research works (Covas et al. 2005; 

Hauge et al. 2007). In the ninth standing is the keyword “underground pipe”. Underground 

pipelines are a crucial element in the leak detection study as urban infrastructure systems are 

mostly deployed underground. That is why a substantial amount of research is conducted on 

underground pipes and also simulative experiments where pipes are tested in underground-like 

conditions (Mashford et al. 2009; Rajani and Kleiner 2001; Stoianov et al. 2007b). Finally, in the 

tenth position is the keyword “in-pipe system”, which a form of a static leak detection system. 

In-pipe systems rely on the placement of sensors within networks. Those sensors are connected 

to a main data collection server by means of a communication technology such as 3G. The data 
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is then received in a timely fashion at the headquarters of the operator. Accordingly, analysis can 

be conducted in a timely fashion as well or using software. In-pipe systems allow for the 

immediate detection of leaks and that is why they are a growing leak detection topic recently ( 

Stoianov et al. 2007; Srirangarajan et al. 2013;  El-Abbasy et al. 2016; El-Zahab et al. 2017). 

 

Figure II-5: Top ten most utilized keywords in leak detection research by CiteSpace 

 

II.1.3 Leak Detection Classes 

Through the observation of the literature and the applied works in leak detection, two main 

categories of leak detection systems can be identified. The categories are static (or stationary) 

leak detection and dynamic (or mobile) leak detection. Although each class on its own its own is 

capable of identifying, locating, and pinpointing leaks, it is not uncommon to utilize a 
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combination of both classes (Atef et al. 2016; Billmann and Isermann 1987; Romano et al. 

2017). The two classes of leak detection system can be defined as follows:  

- Static leak detection systems: are systems that rely on sensors and data collectors that are 

placed within the water network and on valves and are capable of transmitting periodical 

data to the network management office. This data can be used to identify, localize, and 

pinpoint leaks.  

- Dynamic leak detection systems: are systems that rely on moving leak detection devices 

to suspected leakage area to perform an investigation. Therefore, they rely initially on 

suspicion of an existing leak. Another approach is performing regular surveys around 

cities to identify leaks as soon as possible. Those systems can confirm the existence of 

leaks and immediately localize and pinpoint them.  

The main distinction between the two classes is that static leak detection systems can inform the 

water network management of the existence of a leak almost immediately, whereas dynamic leak 

detection systems are required to have information of a leak possibility so that they can be 

mobilized for investigation. On the other hand, dynamic leak detection systems can pinpoint the 

exact location of a leak almost immediately under ideal operating conditions, whereas static leak 

detection systems will provide a location within a certain area and they are also more prone to 

false alarms. It is not uncommon to use a static leak detection system to detect leak and a 

dynamic leak detection system to pinpoint them, but that is not expected to be the most 

affordable route (Cataldo et al. 2014; Lee et al. 2005). The two classes encompass a wide variety 

of technologies to provide an accurate leak detection system, but the technologies are not limited 

to one class. For example, acoustic technologies, specifically noise loggers, can be dynamic and 
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moved from one location to the other periodically to detect leaks as in (Hunaidi and Wang 2006) 

or they can be left in the network as in (El-Zahab et al. 2017).  

 

II.1.4 Leak Monitoring Models 

Researchers have kept a keen eye on the problem of leakage and water loss in water networks, 

for minimizing the corresponding losses. Thus, multiple models were developed, starting with 

mathematical models and going through pressure transducers and infrared models all the way to 

custom made devices for detecting water leaks. Geiger (2006) classified leak detection systems 

into two main categories: (1) Externally based systems and (2) Internally based systems. 

Externally based systems rely on sensors that read the information provided by the pipeline and 

then process the information to detect leaks and identify leak locations, whereas internally based 

systems rely on measurements of flow and network data to detect the leaks. Externally based 

systems include acoustic detectors, vibration sensors, fiber optic sensing cables, vapor or liquid 

sensing tubes and liquid sensing cables. Internally based systems include a wide range of 

mathematical models, such as line balance and volume balance as well as transient models, 

statistical analysis models and pressure and flow monitoring.   

 

Mathematical Models 

Mathematical models are the earliest techniques for leak detection; they relied on basic input 

measurement and output estimation through mathematical equations, to detect the leak and 

identify its possible location. Mathematical models are still widely used because their cost is 

minimal compared to other approaches. Mathematical models rely on simple readings regarding 

the condition on the water network, such as pressure and flow rate. The most commonly utilized 
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approaches are Mass/Volume Balance and Transient Analysis. For Mass/Volume Balance, the 

calculations are based on pressure and flow measurements at the inlets and outlets of pipelines, 

referred to as ‘nodes’. Based on the collected data, the network is divided into orifice areas and 

each area serves as an unknown variable. Through utilizing the collected data, the network would 

be converted to an inverse problem that is solved using a specific set of equations. The authors 

identified three types of mathematical representations to tackle: (1) Underdetermined problems, 

as problems with less data points than the expected number of leaks, (2) overdetermined 

problems, with an amount of data larger than that of the number of expected leaks – this type of 

problems was the most favorable, and (3) undetermined problems, which have been analyzed 

multiple times, yet showing inconclusive results. The output of this model identifies the segment 

within the network that is most likely affected by a leak (Pudar and Liggett 1992). The 

limitations of the aforementioned approach are: (1) the need for a significant amount of data in 

order to be accurate, (2) inaccuracy in identifying the location of the leak, i.e. the segment could 

span multiple kilometers and (3) the possibility of giving incorrect or inaccurate results due to 

the low quantity or precision of the data collected. Those limitations can be accounted for 

through utilizing transient analysis within the technique, accompanied with a significant amount 

of data to have a more accurate estimate of the friction factor. To increase the accuracy of the 

model, it is critical that the measurements of pressure and flow be taken at vulnerable and 

sensitive locations (Liggett and Chen 1994).  

On the other hand, transient analysis is only capable of detecting leaks using the pressure and 

flow rate data within the network. Transient analysis can detect leaks in water mains and gas 

transmission networks. This model utilizes pipe flow rate values into a set of two coupled one-

dimensional first order nonlinear hyperbolic partial differential equations to determine the state 
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of the flow and the existence of leaks. The system consists of an adaptive Luenberger-type 

observer and a set heuristic update laws. In terms of its limitations, the model requires 

improvements for more accuracy and the utilized technologies should be enhanced (Hauge et al. 

2007).  

Transient analysis has been improved in terms of time-frequency analysis. Array processing 

along with time-frequency distributions and quadratic time-frequency distributions make it 

possible to explore various aspects of leak signals. This approach provides a significantly more 

accurate calculation for the identification of leaks and origin signal recovery (Belouchrani et al. 

2013). The transient analysis required further development to be capable of detecting multiple 

leaks at the same time. Comparing changes between the leak state and the steady state, i.e. 

preceding a leak occurrence, reduces the number of unknown parameters in identifying leaks and 

eventually minimizing the quadratic error within the calculation. This approach was tested with 

12 scenarios over a 200-meter pipeline and showed results with less than 1% of deviation from 

the correct value (Verde et al. 2014).  

With the current technological advancement, new mathematical models continue to rise in the 

field of leak detection. The mathematical model presented by Piller and Van Zyl (2014) is one 

example of an approach for detecting leaks mathematically. The authors presented a method to 

solve the Fixed And Varied Area Discharges (FAVAD), modeling the hydraulic equations using 

energy minimization equations. Here, a damped Newton algorithm is used as a tool for solving 

the FAVAD equations.  
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Pressure Transducers 

Pressure transducers are a conventional approach intuitively using pressure measurements to 

detect and locate leaks. Similar to other techniques, pressure transducers need improvements to 

match the needs of modern-day technologies. This approach can be improved by an online 

computational approach to analyze the hydraulic transients within a single pipeline as a result of 

leaks (Silva et al. 1996). A lot of experiments were done in the aforementioned research work, 

using two PVC pipelines of 3/4-inch diameter pipelines. The two pipelines were of 433 meters 

and 1.248 kilometers. The model used pressure transducers along the pipeline, that were 

connected to digital-to-analog and analog-to-digital converters. Through reading and analyzing 

transient pressure plots, the model can detect leaks with the size of 5% up to 50% of the flow 

rate. Furthermore, the model can identify the leak location using the pressure wave velocity. The 

identified leaks were within 5 meters of the exact location of the leak. The accuracy of pressure 

transducers can be enhanced by coupling it with the Frequency Response Method. The proposed 

model was capable of successfully detecting and locating small leaks (i.e. leaks as small as 0.5% 

of the average flow rate). This method relies on measuring pressure values and fluctuations as 

well as flow rate fluctuations. The collected data was analyzed by the frequency response 

method and used equations of continuity and momentum. The model presented equations that 

were capable of identifying the location of a leak for one or more anticipated leaks. This method 

cannot be applied to materials that are beyond a specific range of material friction. Furthermore, 

0.5% of flow rate is a tremendous value of lost water in large transmission pipelines (Mpesha et 

al. 2001).  

As pressure is a known measure, improvements are commonly needed in the analysis stage. For 

example, by analyzing the pressure data provided by the transducers using Hilbert transform and 
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Hilbert-Huang transform, the approach can detect leaks within a pipeline segment by recognizing 

the reflection in the analyzed signal data. However, this technique cannot pinpoint the exact leak 

location (Ghazali et al. 2011). To adopt this technique to modern day needs, real-time 

capabilities were added by Sala and Kolakowski (2014). The model relies on the transmission of 

pressure measurement throughout a network that uses a GSM platform. Then, the collected data 

is analyzed by a software and converted into pressure data, to predict the leak location, using a 

set of developed equations.  

 

Ground Penetrating Radar 

Stampolidis et al. (2003) have worked on a case study of Ground Penetrating Radars (GPR), 

proving that they can detect underground water pipelines under ideal GPR working conditions. 

The case study includes a large number of field experiments and a significant amount of 

collected data. A leak was identified at the existence of any disruptions in the coloring pattern, 

usually red, within the images derived from the GPR readings. The findings were compared to 

the exact leak location and the radars were assessed to have accurate leak detection under ideal 

weather and operational conditions. Improving the readings of GPRs can be conducted through 

radargram refinement, which converts the raw images collected by the GPR into usable data that 

are more effective in leak detection and localization (Al Hawari et al. 2016). GPR readings can 

be further improved when coupled with infrared readings. In this case, the GPR images can be 

used as a second layer of images to overlay the infrared images, thus providing a more accurate 

leak location estimate. This technique provides a small margin of error ranging between 2.9% 

and 5.6% (Atef et al. 2016).  
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Vibro-Acoustic Methods 

Vibro-acoustic methods are arguably the most famous leak detection and localization technique 

currently. Those methods rely on the collective power of vibration detection technologies and 

acoustic listening technologies. The term ‘vibro-acoustic’ comes from using the two technologies 

together. Often, acoustic listeners would detect a specific leak location and the data derived from 

vibration measurement devices helps identify the accuracy of that value. Therefore, various 

researchers were directed at improving the vibro-acoustic technologies and empowering them. 

Vibro-acoustic technologies can be cost-efficient and simple for multiple types of pipes, 

including plastic pipelines. In 2004, Hunaidi et al. developed a mobile leak detection system, 

named LeakFinderRT. The model used a computer software directly connected to acoustic 

listeners coupled with wireless transmitters and low-frequency vibration sensors. The software 

receives the noise signal from the transmitters and processes it. In the next step, an enhanced 

cross-correlation method is used to detect the leak and localize it. However, the system needs 

further testing in the case of large pipelines. To operate, the system requires three main inputs: 

pipe type, pipe diameter, and sensor-to-sensor spacing. The author displayed that vibration 

sensors -accelerometers- can be very effective in detecting leaks in plastic pipelines. 

Additionally, the model relies on leak suspicion for the user to go to a suspected leak site and 

detect a leak. Even then, non-linear pipeline shapes may cause the system to produce incorrect 

results (Hunaidi et al. 2004). In the previous model, the cross-correlation method is used to 

detect the behavior of water pressure, flow velocity and pipeline vibration (Gao et al. 2005). The 

model showed that acoustic detectors are efficient when there is minimal noise, yet correlation 

can be vastly improved when vibration signals, derived from accelerometers, were utilized to 
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complement the correlation technique. This model also included a set of experimental field 

testing to validate the theoretical results.  

Several researchers referred to the vibro-acoustic approach for leak detection as a highly accurate 

technique for estimating and pinpointing a leak. For instance, Brennan et al. (2007) present a 

model using a vibro-acoustic approach. The authors use the time domain and the frequency 

domain to pinpoint leaks within pipeline systems. Acoustic listeners and accelerometers are used 

to detect the signals of leaks. The received signals were filtered to eliminate noise and they are 

processed by a privately developed software to be converted to frequency domain figures and 

time domain figures. Then, the time delay is estimated using the time between the signals, to 

assess the speed of the signal and triangulate the leak location. Real life experiments were 

performed using fire hydrants as access points and, as the results show, the difference in delay 

between the time domain and the frequency domain is negligible. Vibro-acoustic detection was 

improved via collecting signals in the time and frequency domains and then filtering the noise 

out of the collected data via wavelet transform. This modification helped improve acoustic 

technologies in leak detection and raise their accuracy through decreasing the possibility of 

having false alarms (Meng et al. 2012). For more accurate estimates of leaks, Khuleif et al. 

(2012) proposed the utilization of in-pipe hydrophones as complementary measurements for 

acoustic detectors or even as a standalone leak detection system. The authors developed a 

software to process hydrophone data collected from the experiments. The research also 

concluded that the leak signal is more prevalent with the flow rate rather than against the flow of 

water.  

As real-time monitoring is gaining more popularity, real-time monitoring enhancements can be 

coupled with vibro-acoustic technologies to provide over-the-clock monitoring of water 
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networks to detect sudden failures, blockages and third-party interferences such as sabotage. To 

accomplish the model, flow-induced vibrations were collected using accelerometer sensors and 

then they are analyzed. The relationship between the pipe over-all-status and the flow vibration 

signals acquired by the accelerometers is studied by a set of lab experiments. The researcher 

concluded that there is a strong relationship between the vibration signal of the flow and the flow 

rate. The research also revealed certain limitations due to the interference of external factors that 

can distort the signal (Awawdeh et al. 2006). Real-time models are developed using new 

iterations and device under the vibro-acoustic category such as Stoianov et al. (2007), who 

proposed a system to help in near real-time monitoring of water networks as well as water 

network control; the system was dubbed “PIPENET.” The system is composed of a field-

deployable combination of hardware and software capable of measuring and collecting 

hydraulic, water quality, acoustic and vibration data. The data was collected over twenty-two 

months of trial in the city of Boston in the US. The collected data was fed into cross-correlation 

algorithms and signal analysis software to detect and locate leaks in the network under study. 

Besides, lab experiments further validated the model capabilities. The system relied mainly on 

the analysis of pressure signals, vibration signals and acoustic signals. The system showed 

promising results; yet, according to the authors, more work is required to develop more accurate 

results and minimize the number of false alarms given by the system. Relevant research suggest 

that vibration monitoring and acoustic signal monitoring can be separated, and each technology 

is capable of detecting and locating leaks on its own. Mostafapour and Davoudi (2013) studied 

the impact of leaks in pressurized pipelines using the stress waves from the energy loss caused 

by leaks. The model uses acoustic methods to model the acoustic emission that is created by 

vibration in the pipeline because of leakage. For more accurate results than in conventional 
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approaches, this model used Fast Fourier Transform. The mean level of error between theory and 

the experiments was averaged at 6%. One of the models that rely completely on wireless acoustic 

technology came in the form of a noise logger leak detection and localization model developed 

by El-Abbasy et al. (2016). The authors propose that noise loggers can go beyond leak detection 

and are capable of leak pinpointing. Multiple experiments were conducted and data was collected 

from the acoustic listeners. Regression analysis and Artificial Neural Networks (ANN) was used 

to analyze the data. The results show that both models presented high levels of accuracy, with 

accuracies of 88% and 93% from the original leak location for the regression analysis and ANN 

models respectively.  

Accelerometer-based approaches have received more attention in recent years, as a complete 

leak detection system, using their capabilities to detect vibration signals that are emitted by leaks. 

Shinozuka et al. (2010) suggested using accelerometers to measure the variation in acceleration 

forces (g-force) and record those variations to identify damaged areas and map the network. 

Regarding standalone vibrational models, Almeida et al. (2014) developed a technique for the 

interpretation and assessment of the data coming from accelerometers, which monitor water 

pipelines by using a set of mathematical models. The model showed enhanced accuracy in 

identifying the frequency range of accelerometers, identifying time delays between the two 

sensors and estimating the wave speed of propagation. The correlation formula can use the 

derived values to pinpoint the leak. Figure II-6 shows the experiment by Almeida et al., where 

one sensor is located on the right side of the leak and the other on the left side of the leak. The 

sensors are placed on the valves connected to a buried plastic pipeline. A leak was simulated at a 

random distance in the pipeline between the two sensors in order to study the variation in 

vibration signals and accordingly create a leak detection and pinpointing model.  
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Figure II-6:  Schematic of buried water pipe in which sensors are positioned at access 

points. (Almeida 2013) 

The correlation formula, in this case, is displayed in Equation (II-1). The equation relates d2, that 

is displayed in the figure, to the total distance d by using the time difference between the two 

sensors and the normal wave speed in the pipeline. The wave speed in the pipeline is expected to 

vary from one material type to another and it is usually assumed to be 400 m/s in ductile iron 

pipelines. After determining d2, d1 can be determined via subtracting the value of d2 from the 

total distance d.  

𝒅𝒅𝟐𝟐 =  𝒅𝒅−𝒄𝒄𝑻𝑻𝟎𝟎
𝟐𝟐

       (II-1) 

Where:  

c: wave speed 

d: the total distance between measurement positions 

d2: distance from sensor 2 to the leak 

t0: the time delay between sensor 1 and sensor 2 

Additionally, when it comes to vibration analysis, Martini et al. (2015) presents a model that 

relies on vibration signals in PVC pipelines. The model presented a vibration signal analysis 

approach to decipher the signals and convert their values to a comprehensible index. The model 
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proved to be accurate in identifying the slightest leaks in PVC pipelines. This model was 

improved by El Zahab et al. (2016) through further experiments. The model used the index 

already developed by Martini et al. (2015) to develop a regression model that can pinpoint the 

leak in PVC and ductile iron pipelines with an average accuracy of 95%.  

 

Fiber Optic Sensors 

Inaudi et al. (2007) has made a step forward in the volume balance technique that can detect 

small leaks in water transmission systems. The system relies on fiber optic sensors throughout 

the network. The sensing systems are based on Brillouin and Raman scattering. The system can 

detect leaks in fluid, gas and multiphase transmission lines. Using this approach, the system can 

locate a leak with an accuracy of one to two meters by measuring variation in distributed 

temperature and strain. When it comes to limitations, the system allows room for false alarms as 

both heat and strain can be affected by external factors. Besides, the system installation might 

not be affordable for small to medium municipalities. 

 

Infrared Thermography 

Fahmy and Moselhi (2009) presented a model that integrates the imagery collected from an 

infrared surveyor with computer-based computational models to monitor underground pipelines 

and locate any possible leaks. The research presents experimental work over the span of two 

years, utilizing the infrared technology. Based on the fieldwork, a localization equation was 

presented in the model to locate possible leaks. Upon comparing the model to acoustic and 

vibratory models, the model has proved viable and accurate. The limitations of the infrared 

technology itself limit the model in terms of working temperatures and certain times of the day 
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favored over others. Infrared detection can be further improved when combined with statistical 

analysis and prediction techniques. Statistical analysis can help define leak-related patterns in 

images and leak-related temperature thresholds. Under ideal operating conditions the coupling of 

IR thermography with statistical analysis can provide leak detection and localization models with 

95% accuracy (Al Hawari et al. 2015).  

 

Other Technologies 

In this section, various models from different backgrounds are investigated and the approaches 

and developmental technologies are explored. Those models might not be correlated entirely but 

they revolve around leak detection models that cover the phases of localizing, locating and 

pinpointing. Colombo and Karney (2002) have developed a model that relates consumed energy 

to the energy expenditure and costs of pumping water through water pipelines. The model 

presents a set of equations that use the changes in energy consumption of pumps to identify the 

existence of the leak. Then, the leak can be located using the energy consumption envelope. The 

authors highlight the importance of the immediate leak repair and a prioritization scheme for the 

leak repair order. The model also confirms that leaks create costly impacts on the level of water 

resource and the age of the water network.  

Whittle et al. (2010) presented another wireless monitoring system for water mains by the name 

“WaterWise@SG”. The research objectives here were to (1) develop a system to provide high-

quality data for low costs in a remote manner and (2) monitor and assess the parameters that 

govern the water quality and hydraulic quality. The devices in this research consisted of pressure 

sensors, hydrophones and flow meters. Besides, the devices had 3G and Wi-Fi interfaces to send 

the acquired data. The data was received via an automated platform and was analyzed by a 
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software privately developed to model the state of the water network. When it comes to its 

limitations, the device itself is too big for small networks. Moreover, the algorithms and the 

software need to be more accurate and efficient.  

Li et al. (2011) have used a geographic information system (GIS) platform along with the district 

metering area technique to create an integrated system for detecting, early warning and leak 

control in water mains. The system was tested in Beijing on an experimental scale and was 

capable of detecting 102 non-obvious leaks. Additionally, a leak prediction algorithm was 

developed using historical data to pinpoint the next possible leak. However, this system still 

requires a lot of testing and experimenting to increase the accuracy of the system. Another 

wireless network for monitoring underground transmission assets was presented by Sun et al. 

(2011) namely “MISE-PIPE.” The presented system relies on a wireless sensor network that is 

based on magnetic induction wireless sensors. The model presented a low-cost solution with 

real-time leakage detection and localization capabilities using a magnetic induction waveguide 

technique. MISE-PIPE consists of two sets of pipelines, a set inside the pipeline and a set on the 

surface of the pipeline. The set consists of magnetic induction sensors, acoustic sensors, pressure 

sensors and soil property sensors. This novel technique is promising, but it requires further 

research on real-world applications and sensor placement reconfiguration in the pipeline.  

 

II.1.5 Accelerometer Signal Analysis 

Throughout this research endeavor, twenty-three attempts for the analysis of leak signals through 

accelerometers were conducted. The approaches included Fourier Transform, moving average 

calculations, and basic value measurements. The approaches did not provide a significant 

assessment for the signal that can be used in model development. Additionally, the models did 
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not highlight the change in condition effectively. In 2015, a research paper was published by 

Martini et al. that addresses the issues tackled in this research work. Martini et al. (2015) 

proposed a model to use accelerometers for leak detection. They also suggested an approach for 

analyzing the signal received from the sensors. Their mathematical analysis approach can be 

summed in four steps as follows:  

1. Determining acceleration reading per second in (g).  

2. Each t = 100 second, the readings are collected and their standard deviation is 

determined.  

3. After several hours of monitoring, the lowest ten standard deviations are averaged to 

determine the lowest monitoring index as shown in Equation (II-2).  

 𝑀𝑀𝐼𝐼𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜎𝜎𝑗𝑗 , 10) (II-2) 

 

4. A value named Monitoring Index Efficiency (MIE) is determined by dividing the current 

monitoring index of any instant with the lowest monitoring index in no leak state of a 

given duration MIj,no leak as illustrated in Equation (II-3). This equation allows the 

establishment of sensor-specific values. For example, MI0 can be unique for each sensor 

and the readings, hence taking into consideration any pre-existing conditions and external 

factors. Martini initially utilized the maximum monitoring index of a duration, whereas 

MIE is determined each t = 100 second in this research.  

 𝑀𝑀𝐼𝐼𝐸𝐸𝑥𝑥 =
𝑀𝑀𝐼𝐼𝑖𝑖
𝑀𝑀𝐼𝐼0

 (II-3) 

Where:  

- MIE is the Monitoring Index Efficiency.  

- x can be either L or R, representing left or right sensor respectively.  
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- MI0 is the lowest recorded monitoring index at no leak state.  

- MIi is the monitoring index of a given signal at time i.  

 

II.2 Prioritization of Independent Events 

This thesis also tries to tackle the problem of leak repair prioritization and resource allocation for 

repair projects. Thus, here, leak repair projects are considered independent events, i.e. not related 

in terms of succession. Moreover, all leaks are assumed to be deteriorating at an individual rate 

determined by each case and through historical data. Accordingly, in this section, previous work 

on prioritization approaches of independent events under constraints are discussed. Some 

researchers attempted to distinguish independent event prioritization approaches from regular 

scheduling approaching and dubbed them the name “Priority Algorithms.” Davis (2003) 

identified priority algorithms and their role in solving prioritization problems. The report 

identified multiple algorithms capable of solving prioritization problems, mainly greedy 

algorithms, genetic algorithms, adaptive priority algorithms and dynamic programming. The 

author also distinguished between fixed priority algorithms and adaptive priority algorithms. An 

early approach for optimizing independent event ordering was presented by Coloroni et al. 

(1992). Their proposed approach used evolutionary Genetic Algorithms (GAs) to solve the 

timetable problem. This problem is limited by school hour constraints and teacher schedule 

constraints and the objective was to remove conflicts in classrooms and to remove the course 

overlaps. The authors simulated the problem as a multi-constrained, NP-hard, combinatorial 

optimization problem. Using genetic algorithm with local search as well as genetic algorithms 

without local search, the authors have concluded that genetic algorithm presents more flexibility 

in defining constraints and outperforms handmade timetables and simulated annealing 
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timetables. Scheduling problems can be solved using a resource-driven model that is capable of 

optimizing the schedules of linear projects by utilizing a dynamic programming formulation and 

heuristic rules, as proposed by Moselhi and Hassanein (2003). The model accommodates 

repetitive and non-repetitive optimization activities to develop practical and near-optimal 

schedules. A software was developed to embody the theoretical concepts of the model and 

develop case studies. The model has proved to be capable of optimizing construction time, cost 

or both under a cost-plus-time bidding environment.  

Prioritization models are required not only to prioritize but also to optimize expenditure and cost. 

For example, Morcous and Lounis (2005) have presented a model that is capable of minimizing 

life-cycle cost of infrastructure through predicting deterioration in infrastructure networks using 

genetic algorithms and Markov chain networks. This model is important in this research as it 

shows previous work predicting and assessing multiple maintenance alternatives for a specific 

network within a specific timeline. To prioritize independent events, a scale of measurement is 

required. Elbehairy et al. (2006) has introduced a repair prioritization approach for bridge deck 

repairs. Two evolutionary algorithms are used in this approach to optimize the order within the 

repair order. These two algorithms are genetic algorithms and shuffled frog leaping algorithms. 

Each repair event is identified by three aspects as follows: (1) Expected deterioration, (2) Cost 

and (3) Repair impact. This research has concluded that both optimization approaches are 

equally suitable to optimize bridge repair prioritization. Another prioritization model, this time 

for pipe replacement prioritization, was presented by Giustolisi and Berardi (2009). The authors 

identify three main aspects of leak repair: (1) Economic aspect, (2) Reliability aspect and (3) 

Water quality aspect. The main aim of the model is to develop a plan that maximizes the 

effectiveness of each pipe rehabilitation to help the decision maker identify how to tackle the 
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replacement plans within an infrastructure network. The primary tool for the development of this 

model was a multi-objective evolutionary optimization with the best results obtained when the 

multi-objective genetic algorithm is utilized. The research above proves the need for an approach 

that can help the decision maker plan for the long-term changes within multiple similar projects. 

A dedicated approach to the prioritization of events, leaks specifically and assess the best manner 

to allocate resources is not directly available.  

 

II.3 Model Development Techniques 

In this section, various model development techniques are explored for their uses and algorithms. 

The four techniques to be presented are: (1) Artificial Neural Networks (ANN), (2) Genetic 

Algorithms, (3) Regression Analysis and (4) Support Vector Machines (SVMs).  

 

II.3.1 Artificial Neural Networks (ANN)  

The biological term “neural network” refers to an interconnected grouping of simple processing 

units, i.e. neurons, that are coupled via axons and dendrites. The term “artificial” refers to an 

algorithm that simulates a network of simple processing units and has an architecture similar to 

that of the naturally occurring neural networks. In an artificial neural network, synapses are 

processing units that carry a pure, usually binary, value, referred to as a weight. Each synapse 

operates via a threshold logic unit that reacts based on the incoming input values provided by the 

input dendrite or link. If the input is sufficient enough to tilt the threshold, then the processing 

unit will output a high value, which is usually one; otherwise, the output would be zero. From a 

machine learning perspective, artificial neural network is a supervised learning technique. A 
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supervised learning technique requires a set of learning data to which the algorithm tries to adapt 

its neuron layers. The developed model can be validated against the testing data (Gurney 1997). 

Artificial neural networks have recently improved, and interest has grown in feed-forward neural 

networks, also referred to as “Perceptrons.” Figure II-7 shows that the structure of a neural 

network algorithm is composed of three essential layers. The first layer is the input layer where 

all the required learning input is provided to the algorithm. The second layer is the hidden layer, 

where several layers can be established to fit the needs of the user. Inside the hidden layer, the 

processing stage occurs using a learning algorithm such as backpropagation. The final layer is 

the output layer where the results of the model are presented and the quality of the solution is 

assessed (Müller et al. 2012). Artificial neural networks are widely applied in the leak detection 

field due to the algorithm’s capability to identify existing patterns that are not readily 

recognizable. Furthermore, artificial neural networks are capable of unearthing relationships 

between factors and presenting accurate solutions. Belsito et al. (1998) utilized artificial neural 

networks to detect leaks in liquefied gas pipelines. The inputs for the model are pressure, flow 

and energy measurements. To recognize a leak pattern, several experiments were done and 

simulated leaks as well as a no-leak pipeline, i.e. an ideal state pipeline were used. The 

developed model can detect leaks as small as 1% of the total flow rate within a time frame of 100 

seconds. However, the success probability of the model is around 50%, which is considerably 

low.  
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Figure II-7: Artificial Neural Network Structure 

With technological advancements in sensors and artificial neural networks, the above-mentioned 

model was improved by Mounce and Machell (2006) who used flow and pressure measurements 

besides two neural networks architectures, static and time delay to identify and classify time 

series patterns related to leaks. Based on the developed classifications, the existence of leaks can 

be determined if any time series fits the pre-determined patterns. Moreover, through a field trial 

and a set of experiments, the authors have concluded that artificial neural networks rely on 

sufficient learning data as well as a high data quality to be effective. They have also identified 

the time delay neural network as the better counterpart of the static neural network regarding 

result quality. Besides, several researchers tried to identify the most suitable ANN function for 

leak detection systems. For example, Santos et al. (2013) have compared two artificial neural 

network functions, multilayer feedforward and radial basis function network. They did 

experiments and leak simulation on a 60-meter galvanized iron pipeline and used acoustic 

listeners or microphones. The collected data was fed to the two algorithms and the results were 

compared. The multilayer feedforward network, also referred to as multilayer perceptron 
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network, performed slightly better than the radial basis function in leak detection using acoustic 

signals within a 60-meter galvanized pipeline.  

The previous attempts at coupling acoustic data with ANN algorithms highlight the potential of 

having an automated leak detection system based on acoustic listeners supported by ANN 

algorithms. One of the recent approaches in this domain is proposed by El-Abbasy et al. (2016). 

They show the application of noise loggers on 6-meter ductile iron pipelines of one-inch 

diameter size. The experiments are fed to both a regression platform and a neural network 

platform and the results are compared. The ANN model outperforms the regression model and 

presents a model capable of providing a solution with a 93% validity as well as a mean square 

error close to zero. Based on what was discussed so far in this section, the artificial neural 

network algorithm can provide accurate and robust models to help in the process of leak 

detection mainly in ductile iron and galvanized iron mediums. However, the ANN algorithm is 

seldom capable of providing equations to be immediately applied because the ANN algorithm 

performs as a black box, with the layers in the algorithm remaining unknown.  

 

II.3.2 Genetic Algorithms 

Genetic Algorithms (GAs) were invented by John Holland in the 1960s and are currently used to 

solve a variety of optimization and evolution problems. GAs rely on mimicking the concepts of 

natural biological evolution and utilizing the power of biological adaptation. Application of GAs 

and other concepts of evolutionary computation have grown in the engineering field (Mitchell 

1998). Inspired by natural evolution and the graphical summary provided in Figure II-8, the 

algorithm starts with a set of possible individual solutions. This set is referred to as a population 

of solutions. Each solution is then assessed for its level of fitness using a fitness function. 
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Through the level of fitness, original solutions become parent solutions and can reproduce and 

create a new generation of solutions. The new generation has the same size as the old generation 

and each new solution has mixed properties from its respective parent solutions. Eventually, if 

the problem is well designed, the algorithm will converge to an optimal solution (Goldberg 

2006).  

GAs are frequently used in the field of prioritization and schedule optimization. Researchers 

have presented multiple possibilities with evolutionary algorithms capable of providing solutions 

for complicated multi-objective optimization problems, e.g. scheduling, and event prioritization 

problems. Cai and Li (2000) proposed genetic algorithms to solve a scheduling problem. They 

presented a multi-objective genetic algorithm to optimize the schedule of 624 staff members 

based on three predefined criteria by the user. The algorithm proved effective in organizing 

shifts, optimizing the schedule and reducing the costs through decreasing the required number of 

staff members to 593 individuals. The research works reviewed in this section and those 

presented in section II.2 show that evolutionary algorithms in general and specifically genetic 

algorithms offer a feasible and practical solution to prioritization problems and are capable of 

providing adequate and reliable optimal schedules. On the other hand, evolutionary algorithms 

can be time-consuming as they are not explicitly designed to solve prioritization problems.   
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Figure II-8: Generalized Genetic Algorithm Flowchart  

 

II.3.3 Regression Analysis 

Regression analysis is a statistical modeling technique. The primary goal of regression analysis is 

to develop mathematical models that are capable of correlating and defining, in a sensible 

manner, the behavior of selected variables (Sykes 2007). Both the quality of the developed 

regression models and their applicability to reality are directly related to the quality of the 

provided data. Two main types of models can be developed via regression analysis. The first 

type of models, named linear models, are formed by simple input-output correspondence and the 

development model would be a linear equation. The second form of models, named non-linear 

models, are deemed more applicable to real-world problems as they explore multiple possible 

relationships beyond linear solutions between the input and the desired output (Rawlings et al. 

1998). Regression analysis aims to develop a line of best fit between the inputs and the outputs. 

Therefore, the analysis presents an equation of the developed model using the provided training 
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data and the quality of the model can be assessed through indices such as mean square error, r-

squared, p-value, mallows Cp and s-value (Sykes 2007).  

In terms of leak detection, regression analysis is widely utilized due to its powerful pattern 

recognition capabilities and its capability to provide an equation for predicting leak locations. 

Wang et al. (2002) suggest regression analysis to analyze and assess transient flow to detect 

leaks. The linearized assessments and experiments can determine the governing dampening 

equations, which reduce the signal emitted by the leak, and thus locate leaks as small as 0.1% of 

the total flow rate. Another advancement in regression analysis for leak detection is presented by 

El-Abbasy et al. (2016). They correlate the percentage of the leak location from each acoustic 

sensor to the level of noise heard by the left and right sensors. The presented approach is able to 

develop models that can pinpoint the leak with an accuracy of 88%, with a mean square error 

that is close to zero. However, when the regression model was compared with the ANN, the 

values of the ANN had a higher accuracy by 5%. Regression analysis is a technique of 

correlating relationships and identifying patterns and eventually developing models that 

represent the relationships under study. The mathematical models presented by a well-developed 

regression model can give better understanding of incomprehensible relationships.  

 

II.3.4 Support Vector Machines (SVM) 

The Support Vectors Machine (SVM) algorithm is a supervised learning classification algorithm 

first proposed by Cortes and Vapnik (1995). The algorithm was developed to serve as an 

intelligent classification technique. One of the main capabilities of SVM is to create thresholds, 

that can aid in decision making, and solutions for binary classification problems. The SVM 

algorithm can be divided into two main categories: (1) Linear SVM for linearly separable 
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problems and (2) non-linear SVM for problems that are not linearly separable and require much 

more complex solutions (Fletcher 2009). The SVM algorithm has also been utilized to identify 

leak locations as proposed by Mashford et al. (2009). The authors have used pressure data and 

flow rate data to detect and pinpoint leaks using the SVM algorithm as a classifier and as a 

regressor. The data was collected through multiple experiments, via a hydraulic modeling system 

that is dubbed “EPANET.” The developed regression model via SVM algorithm had a high r-

squared that is close to 100% and a mean square error close to zero. The model relies heavily on 

the quality of the provided data and the sensitivity of the used sensors.  

Besides, the SVM algorithm is functional in leak detection when coupled with other concepts 

such as the rough set theory as presented by Mandal et al. (2012). The rough set theory was used 

to create a set of rules that would exclude any predetermined and easily identifiable non-leak 

states or leak states to guarantee that the SVM algorithm would not be confused by any 

anomalies and then, a trained SVM algorithm was used to classify the cases that were not ruled 

out by rough set theory. This approach has multiple advantages including high accuracy and 

capability to replace mass balance and pressure point analysis. It also provides a detailed 

simulation of the pipeline being studied and can be effective to be utilized in old pipelines. The 

SVM algorithm is deemed to be a robust supervised classification and regression tool that is 

capable of differentiating leak states and identifying leaks’ location, given that the data is well 

constructed. 
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II.4 Limitations of Current Approaches 

In this section, the limitations of the currently used approaches are discussed in terms of 

technologies and prioritization approaches. Leak detection technologies are compared and 

assessed against one another.  

 

II.4.1 Limitations of Current Technologies 

From the perspective of this research, a specific guideline is necessary to define leak detection 

systems and to identify what is expected from such systems. Geiger (2006) identified four main 

aspects to evaluate the performance of leak detection systems. The four main aspects are (1) 

reliability, which represents the extent to which the system is capable of detecting a leak and the 

accuracy of the received information, (2) sensitivity, which shows the capability of the system to 

identify leaks of various sizes ranging from big leaks and bursts to small leaks, (3) accuracy, 

which, unlike reliability, provides extra information such as leak location and leak size and (4) 

robustness, which displays the ability of the system to provide reliable data even under changing 

conditions within the network or in the case of data loss. Additionally, Geiger identified that 

externally-based leak detection sensors can pinpoint leak accurately, whereas, with internally-

based leak detection systems, leak locations are estimated and are rarely as accurate as the values 

derived from externally-based leak detection sensors. When it comes to the costs, externally-

based leak detection systems are considerably expensive and complicated to install. Thus, they 

are not used as much as internally-based systems that cost much less. Externally-based leak 

detection systems, as stated in section II.1, rely mainly on sensors for collecting various types of 

signals and data. However, externally-based leak detection systems have proven to be the most 

capable of leak pinpointing. Therefore, the limitations of such systems can come from the 
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technologies they utilize. Thus, in this section, a brief discussion and a comparison of 

technologies and their limitations will be discussed.  

Lately, multiple technologies are utilized to minimize the damage created by the leaks. One of 

the most popular technologies is acoustic detectors or listening devices. Listening devices rely on 

identifying the sound emitted by the leaks to detect a leak and, in some recently developed 

models, pinpoint the leaks. The primary tools in this category are geophones and hydrophones, 

described in section A.1 of the appendix. Those devices listen to audible sounds in the network 

mainly using listening sticks or microphones. Besides being popular, acoustic technology 

encounters multiple limitations that impair their effectiveness as follows: (1) Acoustic devices 

must go over or in the pipe, which might require opening the pipeline or drilling and digging 

sometimes; (2) acoustic devices are affected by ground dampening on the signal and thus their 

accuracy is reduced, (3) acoustic devices rely on well-trained operators to detect and pinpoint the 

leaks while listening and the human operators must be able to distinguish the signal from the 

background noise picked up by the devices pickup; (4) acoustic devices need to be close to the 

leak to be able to detect it, not functioning efficiently in plastic pipes such as PVC (Echologics 

Inc. 2006; United States Environmental Protection Agency 2009).  

Another popular technology, considered an improvement in acoustic phones, is acoustic devices 

with correlation techniques such as noise loggers. Such devices rely on placing two acoustic 

listeners on opposite sides of the expected leaks with their data input into a correlator, as 

described in section A.2 of the appendix. This technology has shown promising results and 

received multiple contributions. Nevertheless, they are costly to utilize and they require the 

anticipation of the leak location to be confirmed. Besides, acoustic devices with correlators face 

difficulties in correlating small and low-sound leaks and tend to struggle detecting leaks within 
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PVC pipelines and large diameter pipelines (Echologics Inc. 2006; Datamatic Inc. 2008; El-

Abbasy et al. 2016).  

Infrared thermography has been widely used for leak detection through sensing the infrared 

radiation and temperature change within surfaces where leaks are expected. Section A.3 of the 

appendix provides more details on this technology. However, infrared devices can be expensive 

and require well-trained operators for good results., Moreover, the accuracy of infrared devices 

can be impaired by external factors, mainly weather conditions that limit the operational 

capabilities of the technology to a specific temperature range (Echologics Inc. 2006; Fahmy and 

Moselhi 2009; Varone and Varsalona 2012). Another form of leak detection technologies is 

chemical leak detection. Chemical leak detection is performed using tracer gasses injected into 

the network and escaping through leaks to be detected at the surface as described in section A.4 

of the appendix. Chemical leak detection, however, faces multiple challenges as it takes a 

substantial amount of time to detect a leak and thus a large number of resources and huge funds 

are needed. Moreover, the accuracy of chemical leak detection is affected by factors such as 

depth and inner soil paths that might render the leak to go out of another location or dissipate 

through the soil (Echologics Inc. 2006; KVS 2015).  

Another technology widely used in leak detection is Ground Penetrating Radar (GPR). This 

device relies on emitting radar waves into the soil and generating an image of the soil based on 

the reflection of the emitted signals, as illustrated in section A.5 of the appendix. However, the 

images derived from the GPR data are hard to interpret and require extensive research to become 

viable (Eyuboglu et al. 2003; Echologics Inc. 2006; United States Environmental Protection 

Agency 2009).  
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Multiple devices have recently been developed to solve the leak detection problem. This class of 

devices is known as leak detection robots that include devices such as Smart Ball, Beaver, 

Explorer and Pearpoint. As illustrated in section A.6 of the appendix, most of these devices are 

able to venture through pipelines on their own with little or no human aid. However, these 

devices are, in some cases, exclusive to the developer company. Additionally, leak detection 

robots fall under the risk of getting stuck in the pipeline and having a moderate accuracy level 

compared to other available technologies (Schempf et al. 2003; WCT Products 2015; Puretech 

Ltd. 2015). 

Micro-electro-mechanical sensors (MEMS) have been extensively used in recent years as real-

time leak detection devices. MEMS belong to a broad category of sensors, which contains 

various types of sensors as described in section A.7 of the appendix. MEMS in this research are 

accelerometers, as devices that can read vibration signals. Accelerometers still require more 

research in terms of plastic pipelines and metallic pipelines to become a standalone technology 

for leak detection., Studies are also required in terms of the signal interpretation to eliminate any 

noise within the signal, mainly due to the high sensitivity of accelerometers (Kim et al. 2011; 

MEMS and Nanotechnology Exchange 2015; El-Zahab et al. 2016).  

Table II-2 provides a comparative analytical summary of all the aforementioned leak detection 

technologies and assesses the technologies based on their cost, accuracy, capabilities of detection 

in metallic and non-metallic pipelines, market availability, traffic interruption and susceptibility 

to external factors. Another factor is permanent installation determining whether a system is 

permanently installed in the network to provide real-time data or it is brought in when a leak is 

detected. For example, micro-electromechanical sensors (MEMS) provide a low-cost solution 

with high accuracy and they can be installed permanently in the network. However, MEMS are 
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still experimental when it comes to experimental pipelines and plastic pipelines and their 

functionality needs further research. Leak detection using MEMS is affected by external factors 

that need to be addressed in signal analysis, yet this detection does not interrupt the traffic flow. 

Besides, the table indicates that MEMS are readily available in the market for purchase.  

 

Table II-2: Comparison of the Available Technologies against Multiple Criteria. 

Technology Cost Accuracy Perman
ent 

Metallic 
Pipes 

Non-
Metallic 

Pipes 

Market 
Available 

Interru
pts 

Traffic 

External 
Factors 

Geophone/ 
Hydrophone Low Low No Yes Yes Yes Yes Yes 

GPR High Operator 
dependent No No Yes Yes Yes Yes 

Infrared  n/a Low No Yes Yes Yes Yes Yes 

Leak noise 
Loggers High High Yes Yes No Yes No Yes 

Smart Ball Low Moderate No Yes Yes Company 
Only No No 

MEMS Low High Yes No No Yes No Yes 

 

II.4.2 Limitations of Prioritization Approaches 

In the field of single event prioritization, multiple contributions have been made (as mentioned in 

section II.2,), using evolutionary learning algorithms and more specifically genetic algorithms. 

Although beneficial and powerful, genetic algorithms have drawbacks in terms of computational 

efficiency and time efficiency. Evolutionary algorithms are considered time-consuming and 

might deflect away from the optimum solution to near-optimal solutions (Davis 2003). 

Additionally, evolutionary algorithms can be inefficient in handling large quantities of events 

without affecting their computational performance and lowering their respective speed (Colorni 



49 
 

et al. 1992). Finally, most evolutionary algorithms tend to utilize static schedules to create 

optimally prioritized schedules. However, in the case of prioritizing leak repairs, there is a need 

for more dynamic approaches to consider the worsening of the condition of a leak that is to be 

repaired. Therefore, an algorithm with minimal simulation and prediction capabilities to 

prioritize events as they move through time is highly needed (Colombo and Karney 2002).  
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III CHAPTER III: ACCELEROMETER BASED MODELS 

III.1 Accelerometer Real-time Monitoring Model 

The second objective of this thesis is to develop and validate technology-based leak detection 

and pinpointing models. In this chapter the review constructed in Chapter 2 is built upon to select 

accelerometers as one of the main devices for development. Therefore, Chapter 3 goes over the 

selection and development of the leak detection models that utilize accelerometers (MEMS). The 

review of available leak detection technologies is followed by a set of criteria established to 

determine the technology that are developed in this research. As illustrated in Figure III-1, these 

three primary criteria are:  

- Real-time Capabilities, highlighting the technology’s ability to send almost instant 

monitoring data to control centers.  

- Cost-Effectiveness, representing the expected costs per network for a specified 

technology based on the collected data.  

- Room for contribution, identifying the amount of research still required for the specified 

technology.  

Based on those three criteria and the literature review, microelectromechanical sensors (MEMS) 

and accelerometers are identified to have high real-time capabilities and an affordable cost and 

they still require a significant amount of research. Therefore, accelerometers are selected to be 

the subject of this research.  

The selection of the device is the first stage in the process of developing the real-time monitoring 

system model, as shown in Figure III-2. After accelerometers are selected, the signals they emit 

need to be deciphered. Then, the signals should be processed into meaningful values and indexes 

to help identify and pinpoint leaks. Following analyzing the signals and establishing leak 



51 
 

identifying values, the data is used to develop a model capable of informing the user of the 

existence of a leak. To improve the model, additional experiments have been done to determine 

if the model can detect the size of the detected leak. This way, the accelerometers are able to 

pinpoint the origin of the signal (i.e., the leak location). Knowing the possible areas of leakage 

and their respective monitoring index values, the values are entered into a machine learning 

model to automate the process and determine the leak location. The final step is to identify how 

the signal moves in the leak by utilizing the discovered leak locations and the values sensed at 

far away sensors. These models will be further illustrated and explained in the following 

sections. Additionally, at this stage, the methodology used for acoustic loggers is identical to that 

of accelerometers except when it comes to signal analysis, where sound waves undergo Fourier 

transform and signal amplitude analysis. This is mainly due to acoustic loggers recently added to 

this research project, that are still under development.   

 

Figure III-1: Accelerometer Real-Time Monitoring System General Methodology 
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III.1.1 Vibration Signal Analysis Model  

 

Figure III-2: Vibration Signal Analysis Model 

 

After thoroughly reviewing Martini’s model, specifically section II.1.5, the previous diagram in 

Figure III-2 illustrates the flow of the process. First, multiple hours of signal data at various 

points were are recorded using the a measuring accelerometer to record the signal. The value of 

the recorded data for this research is around eleven hours. For every 100 seconds, the standard 

deviation was determined. During the no-leak state, the lowest ten standard deviations were 

selected and averaged to determine the baseline monitoring index MI0. The previously 

determined standard deviations were divided by the newly calculated (MI0) to determine the 

Monitoring Index Efficiency (MIE), which are later utilized to identify leak states from no-leak 

states and to pinpoint the leak.  
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III.1.2 Accelerometer Leak Detection Model  

The goal of the leak detection model is to instantly make the user alert to the existence of a leak 

in a particular segment. Thus, to develop this model, the first task is to perform multiple 

experiments mainly on PVC and ductile iron pipelines with the sizes of one-inch and two-inch, 

as in Figure III-4. Afterward, using the signal received from the accelerometers in simulated leak 

and no-leak states and their respective collected MIE, the model inputs are organized. The form 

of the model input is represented by the predetermined MIE and the relevant state, for example 

(MIE = 0.982, State = No Leak). The overall approach for the development of this study can be 

summarized in Figure III-3. The first step is to explore the literature, and study the available 

classification techniques and explore the current advancements in leak detection using 

accelerometers. The second step is to set up a series of relevant experiments to explore the 

interaction of leaks and accelerometers. Using the collected data from the experiments, the 

models will be developed using the techniques: (1) Linear SVM, (2) Decision Tree and (3) Naïve 

Bayes. After the models are developed, they are cross-validated using the available data sets to 

determine their accuracy. In case the models were inaccurate, the development process and the 

experiments are reassessed. Finally, the accuracy and validity of the developed models are 

determined and the best models are selected. The developed models will be assessed using the 

three following parameters: Accuracy, class recall and class precision. Class recall can be 

defined as “the number of correctly classified positive cases divided by the total number of 

actual positive cases in the dataset.” Class recall is used to calculate the percentage of positive 

classes that are classified accurately. However, class precision can be defined as “the number of 

correctly classified positive cases divided by the number of cases that are classified positive by 

the model.” Class precision is used to calculate the percentage of positive classes accurately 
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predicted by the total predicted classes in the positive class (Hossin and Sulaiman 2015; 

Sokolova and Lapalme 2009). 

 

Figure III-3: Leak Identification Model by Vibration Signals 

 

Earlier in this research, the index for assessment (MIE) and the required target as an MIE 

threshold for identifying various leak states were defined. As in Figure III-4, the next step is to 

do experiments on PVC and ductile iron pipelines with the sizes of one inch and two inches each. 

The analyzed data of the experiments are collected and fed into three model development tools 

using the Rapid Miner 7.4 platform. Each tool develops a model using the acquired data; then the 

respective models are validated using cross-validation.  
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Figure III-4: Accelerometer Leak Identification Model Development Approach 

 

The models that pass cross-validation with the highest accuracy are selected and their results are 

compared to define the required thresholds. In this research, two types of models are targeted. 

Leak identification models and leak size classification models. Leak identification models aim to 

find a particular plane that separates the leak state from the no leak state (existing or non-

existing). The input for these models is a data set that contains the value of MIE versus the state 

of the leak. Leak size classification models go a step further in terms of identify the size of the 

leak. Those models try to identify small leaks ranging from 10% of the flow rate up to 25% and 
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big leaks ranging from 25% to 50% of the total flow rate in the pipeline. The assumed ranges are 

similar in the available markings on the valves used in the experiment. 

 

III.1.3 Accelerometer Leak Size Estimation Model 

The development of the leak size estimation model uses the same experimental data collected in 

section III.1.2. The data similarly is also validated using cross-validation using the rapid miner 

platform. As in Figure III-5, the main differences are in the way the data was input and the 

technique the experiment was done with. For the development of this model, instead of two 

states, there were three states, namely No Leak, Small Leak and Big Leak. A small leak is 

assumed to be between 1 to 25% of the total flow rate and a big leak is estimated to be 25% to 

50% of the total flow rate. SVM will also be the development technique of this model.  

 

Figure III-5: Leak Size Identification Model by Vibration Signals 
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III.1.4 Accelerometer Leak Pinpointing Model 

After identifying the size of the leak, the next step is to identify the origin of the disruptive signal 

(i.e. pinpointing the leak). Figure III-6 displays the approach for developing a leak pinpointing 

model. After device selection and multiple experiments, the signal data was analyzed and the 

values of the monitoring index efficiencies were determined. The collected data mainly consists 

of the MIE of the left and right sensors of an expected leak location and the distance between 

them.  

 

 

Figure III-6: Leak Pinpointing Model by Vibration Signals 
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The inputs were a variety of iterations of the collected data such as MIET, representing the total 

value of detected MIE between the left and right sensors and the proportions of left and right 

over the total. These values also interacted with the distance to detect the relativity amidst the 

factors. Also, the factors were squared to detect any relation during statistical analysis. To 

develop the model, artificial neural networks and regression analysis were utilized. The first step 

in developing the regression model was best subset analysis. Best subset analysis was used to 

filter out the least relevant parameters previously developed and to identify the most relevant 

factors helpful in terms of developing an efficient model. The newly selected relevant factors 

will then be utilized into Minitab and a multiple step regression has been performed to develop a 

valid leak pinpointing equation. Analysis of Variance (ANOVA) will be performed on each 

developed model and the model with the best ANOVA results will be selected. When it comes to 

ANN, the factors determined in the best subset analysis will be used to select the inputs for 

ANN. The output of ANN will be then compared to the results of regression analysis, and 

afterward, a sensitivity analysis of the inputs will be performed. This model aims to pinpoint the 

leak based on immediate data transmission within a 25-centimeter radius from the real leak 

location.   

 

III.1.5 Vibration Signal Decay Model 

After analyzing multiple hours of signal data and viewing the relative MIE values of sensors near 

and far from the leak, the decay in the amplitude of vibration signals was discovered. To 

understand the decay, the model illustrated in Figure III-7 was developed. The figure shows that, 

to assess the dissipation of the signal, two central assumptions were made. The first is that the 

steady-state baseline affects signal detection by its minimal variation; and the second is that the 
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steady-state baseline’s variation is too negligible to create a significant impact on the motion of 

the signal. When the experimental data on both PVC and ductile iron are used, the two 

mathematical theories can be put to the test to allow for the comprehension of the leak decay 

phenomenon and to understand the changes that happen a signal at a certain distance. The 

experiments aim to create a baseline at the origin of the leak and then assess the measure of the 

signal at farther locations. The development of leak impact assessment is based on the 

uniqueness of the baseline of each sensor that is affected by a variety of factors such as 

manufacturing flaws, location and external noise. Therefore, it is paramount to assess if the 

baseline is impactful in signal decay.  

 

Figure III-7: Vibration Signal Decay Model 
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As a result, the following experiment is shown in Figure III-8 and Equations (III-1) and (III-2) 

are developed.  Equation (III-1) relies on measuring the MIE value at the leak location, which is 

sensor 2 in Figure III-8. The main assumption of the equation is that MIE can fully represent the 

leak signal. The values at remote sensors, i.e. sensors 1 and 3 in Figure III-8, are then measured 

and are dubbed MIEsensor in Equation (III-1). The values at the sensors are subtracted from the 

value determined by the sensor at the leak location. The result of the subtraction is then divided 

by the distance between the two sensors. Equation (III-2) uses the same concept as Equation 

(III-1). In constrast Equation (III-1), Equation (III-2) assumes that the baseline MI0 must be 

removed such that the remaining MIE represents the leak signal. This allows to assess how the 

leak impacts the reception of the signal at each sensor.  

 

Figure III-8: Decay Theory Experiment Setup 

 

The equations developed for the assessment of the phenomenon are as follows:  

MIE Decay: 𝒄𝒄 = 𝑴𝑴𝑴𝑴𝑴𝑴𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝑴𝑴𝑴𝑴𝑴𝑴𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑫𝑫

      (III-1) 

Leak Impact Decay: 𝒄𝒄 = 𝑳𝑳𝑴𝑴𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 − 𝑳𝑳𝑴𝑴𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑫𝑫

          (III-2) 

Where:  

• c = the decay of the monitoring index efficiency per unit meter (m-1). 

• MIEleak = the value of the monitoring index efficiency at the leak when the leak 

occurs.  
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• MIEsensor = the value of the monitoring index efficiency of the remote sensor 

under study.  

• D = the distance between the sensor at the leak location and the sensor under 

study (m).  

• LIleak = MIEleak – MI0 = the exact value of the leak impact at the initial leak 

location calculated by subtracting the baseline average MI0 at the no leak state.  

• LIsensor = MIEsensor – MI0 = the exact value of the leak impact at the remote sensor 

under study by subtracting the baseline MI0 of the sensor at the no leak state. 

 

III.2 Data Collection for Accelerometers 

This section reviews experiments done to collect signal data from accelerometers in the pipelines 

subject to leaks. They are conducted in Qatar in partnership with Qatar Foundation and the 

University of Qatar. In these experiments, four pipelines of two material types are used: (1) PVC 

and (2) Ductile Iron. Besides, of each material type, two sizes are used: (1) One-inch and (2) 

Two-inch. The collected data amounts to eight hours of streaming signal at various states.  

 

III.2.1 Experimental Work  

The following experiments are designed to study the possible potential of accelerometers ina 

leak detection setting. Therefore, they present only the necessary conditions for experimentation 

which are a pressurized pipeline with flowing water andinduced leaks. In reality, leaks grow over 

time and therefore, their progress is not as instantaneous as in those experiments. Additionally, 

pipelines in the real world operate in confined spaces such as underground and walls, and they 

have branches and extensions and valves. The aforementioned missing factors are of interest in 

future research but currently the goal is to realize the pattern of leak vibration signals.  
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To understand the reaction of accelerometers in the presence of leaks, multiple experiments are 

required on multiple levels. The first level is to understand the readings noted by the MEMS 

devices. Thus, at this stage, the first step is to setup any pipeline and place multiple sensors over 

the pipeline. Figure III-9 displays the general setup of all experimental pipelines of all material 

types along with the relative distances and sensor placements. Each point noted as P(n) is a valve 

that can be opened at multiple values to simulate the leak. Pressurized water is inserted through 

point P1 and exits through point P7. Sensor locations are identified by the term S(n). The 

locations of the sensors are varied in the experiments to have a more complete view of the 

problem under study. The image in Figure III-10 displays a two-inch ductile iron pipeline 

supported by two concrete blocks before the installation of the accelerometers and testing. The 

valves will act as leak simulators as they are slowly opened and closed.  

 

Figure III-9: Experimentation Setup Diagram  

 

Figure III-10: Two-inch Ductile Iron Pipeline  

During experimentation, it was observed that the existence of an immediate open valve at the end 

creates strong signals that may propagate throughout the whole body of the pipeline and disrupt 
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the data collection process. Thus, the solution has been to create a damper that would allow 

water to flow outside of the pipeline without creating a violent vibration that would disrupt the 

experiment. Figure III-11 shows the solution in the form of a hose extension connected to the 

exit. 

 

 

Figure III-11: Pipeline Exit with Release Extension 

 

Figure III-12 displays how the sensors would be placed on each valve following the general 

installation of the pipeline and before the initiation of the water flow. Once water begins to flow 

within the pipeline, it takes a certain amount of time to reach a pressurized state and maintain a 

uniform flow. Once the inlets and outlets have a cohesive uniform flow, the experiments can 

start. The figure on the right also shows one of the performed experiments on a one-inch PVC 

pipeline, where a small leak is simulated via having a small opening in the valve.  
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Figure III-12: One-inch and Two-inch PVC Pipelines 

 

The conducted experiments can be further illustrated in Figure III-13. The figure displays the 

time distribution of opening and closing the water valves that simulate the leak for two types of 

experiments: the leak identification experiments, aiming to create a threshold between the leak 

state and the no-leak state, and the leak size experiments, aiming to distinguish between various 

leak sizes. The leak identification experiment was conducted, as shown in the figure, by allowing 

the water into the pipeline without inducing any leaks for the first five minutes. Then, the next 

five minutes the valve will open and a leak will be induced. After another five minutes pass, the 

leak would be closed and five minutes for the no-leak state will be induced. The process would 

be repeated for one hour. The other form of experiment is the leak size experiments. This set of 

experiments includes similar features to the leak identification experiments, yet leaks are defined 

more complexly. Small leaks are assumed to have a flow between 1% to 25% of the flow rate in 

the pipeline, whereas big leaks are assumed to have a flow rate of 26% up to 50% of the overall 

flow rate. As Figure III-13 shows, leak size experiments are conducted by allowing the 

pressurized water to flow with no leaks for five minutes, then the leak size is increased to small 

leaks and another set of five minutes are allowed to pass. Afterwards, the leak size is increased to 
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the level of a big leak for the next five minutes, and finally, the leak is closed and five minutes of 

no leaks would be conducted. The process is then repeated for one hour.  

 

 

 

Figure III-13: Time Distribution of Accelerometer Experiments 

 

III.2.2 Data collection  

On the level of data collection, the used accelerometers provide measurements of vibration 

signals in gravitational force units (g). Each second, these values are recorded for each 

accelerometer to monitor and identify the difference between states. Figure III-14 displays the 
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data sent by Sensor 1 during a one-hour on-off experiment. An on-off experiment is an 

experiment where the pipeline is allowed to behave normally with no leaks for the first five 

minutes and then a leak is induced under the sensor for five minutes and is turned off again then 

on again till the timer reaches one hour. The collected data is vibration signals and it is measured 

in (g) as time progresses until one hour has elapsed. Each second represents one data point as 

data is collected at each second. The figure shows that the duration with no leak tends to be more 

stable and cohesive. On the contrary, when leaks are induced, the signal would become highly 

unstable and turbulent, in addition to being much more prominent in terms of value. 

 

 

Figure III-14: Sample of Received Data during Experimentation 

 

Using the previously mentioned model in 2.3, developed by Martini et al. in 2016, a Matlab code 

was developed. The code is designed to automate the process of data collection from sensors, 

then necessary calculations are done to decipher the received signal data and present 

incomprehensible monitoring index efficiency (MIE) values. The software takes in data sets of 

second by second readings and analyzes them per model specifications to develop a bar chart 



67 
 

that shows us the condition of the pipeline by means of MIE for time span t=100 seconds. Figure 

III-15 shows the result of the analysis of the signal received from sensor 1, that is illustrated in 

Figure III-14. The figure shows a clear distinction between the leak and no leak states within the 

signal, by measuring the MIE of the signal for each 100-second span until one hour has elapsed. 

The leak signal displayed in black has a much higher monitoring index efficiency value than that 

of the no leak signal displayed in grey. And therefore, we can deduce that leaks create more 

turbulent signals within the system.  

 

Figure III-15: Sample Matlab Analysis of Sensor Signal 

III.2.3 Developed Indicators 

Based on the aforementioned data-collection process, multiple indicators were developed in each 

experiment. The indicators and variables are aimed to give a representation for the states of the 

pipeline under study. The indicators and variables are defined and illustrated in this section.  
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Free Variables 

Free variables are the intended and designated output under study and the developed models aim 

at identifying free variables. In this part, two free variables are available and they are XL and XR. 

Where:  

- XL is the distance from the sensor on the left of the expected leak to the location of 

the leak.  

- XR is the distance from the sensor on the right of the expected leak to the location of 

the leak.   

 

Indicators  

Indicators are values that represent the current state of the pipeline between two sensors at any 

given time. Some indicators are fixed, such as the distance between the sensors and its 

derivatives. The indicators in model development are as follows.  

- D is the total distance between the two sensors on both ends of the leak and the 

summation of XL and XR must be equal to D after both are determined.  

- MIEL is the monitoring index efficiency of the signals detected by the sensor to the 

left of the suspected leak.  

-  MIER is the monitoring index efficiency of the signals detected by the sensor to the 

right of the suspected leak.  

- MIET is the total monitoring index efficiency and it is equal to the sum of the left and 

right monitoring index efficiencies, MIEL and MIER. 

- L/R is the relative value of MIEL over MIER.  

- R/L is the relative value of MIER over MIEL.  
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- L/T and R/T are the relative values of MIEL and MIER over the total monitoring index 

efficiency MIET. 

- LD/T and RD/T are multiplications of the relative monitoring efficiencies, MIEL and 

MIER, over the total monitoring index efficiency, MIET, with the total distance, D.  

- (L/T) ^2, (R/T) ^2 and D ^2 are the squares of the initially identified values.  

Those values are determined by experiments and organized in an excel sheet for all the 

performed experiments on both PVC and ductile iron pipelines with the sizes of one inch and 

two inches. Figure III-16 illustrates a sample of the excel sheet of the collected experiment-

driven data. This data will be later used in the development of leak detection models using 

regression analysis, support vector machines and artificial neural networks. The factors 

enlisted in the figure below is explained earlier in this section. 

 

 

Figure III-16: Sample of the Collected Data Sheet 

III.3 Results of Developed Models  

For leak detection, two models are currently available. An SVM model is developed to 

differentiate between leak states and identify the existence of a leak. For leak pinpointing, a set 

of two equations is developed to identify the exact location of a leak using regression analysis. 

The leak pinpointing model is general and can be utilized for both PVC and ductile iron pipelines 

of sizes one and two inches.  
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III.3.1 Leak Detection and Size Identification Models 

The initial step in the development of an accelerometer-based leak monitoring system is to 

identify the existence of leaks with leak detection models. This section presents the 

implementation of the developed models for leak detection and leak size identification. The first 

step would be to identify a threshold for leaks using vibration signals. The second step would be 

to identify the significance of the leak through identifying its size.  

 

III.3.1.1 Leak Identification Model Implementation 

For leak state identification, the primary assessment criterion is the capability of the devices and 

the models to find a separating plane between the leak state and the no-leak state. After cross-

validating each model, the results are collected and displayed in this section and detection 

thresholds for each model are identified.  

 

Linear SVM Model  

For SVM, the model presents a threshold of MIE = 1.018 in Equation III-3. The model is cross-

validated against the original 282 MIE data points and the results are summarized in the first row 

of Table III-1. Table III-1 shows that the accuracy of the Linear SVM model is averaged at 

96.44% with an average deviation of 5.76% increasing or decreasing. Table III-1 also shows that 

the Linear SVM Model has missed nine leaks and categorized them under no-leak states. 

Furthermore, the model is capable of identifying and retrieving No Leak and Leak data 

accurately. So, the class-recall values are 93.31% and 93.38% for No Leak and Leak states 

respectively. Additionally, the quality of the retrieved data per class is high as the class 

precisions are 94.12% for the No Leak state and 99.22% for the Leak state.  
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𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �≤ 𝟏𝟏.𝟎𝟎𝟏𝟏𝟎𝟎, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟏𝟏.𝟎𝟎𝟏𝟏𝟎𝟎, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍      (III-3) 

 

Decision Tree Model  

The Decision Tree Model suggests the value of MIE = 1.052 be the threshold, as in Figure III-17 

and Equation III-4. The figure also illustrates that any value equal or less than 1.052 is 

considered a no-leak state with 100% confidence, while any value higher than 1.052 is 

considered to be a leak. The cross-validation results of this model are summarized in the second 

row of Table III-1.  

 

Figure III-17: Decision Tree Leak Identification Model 

 

The accuracy of the model is calculated to be at 99.29% with an average deviation of 1.43%. The 

model does not classify any leaks as no leaks, while the model classifies two no-leak states as 

leaks. The model has the highest percentage of leak data retrieval among the developed models 

with a 100% class recall and 98.55% of the collected data is precisely identified as leaks. As for 

the No Leak state, the model is capable of accurately collecting No Leak data with a 98.62% 

class recall and it classifies the collected data into the No Leak state with a 100% class precision.  
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𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �≤ 𝟏𝟏.𝟎𝟎𝟎𝟎𝟐𝟐, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟏𝟏.𝟎𝟎𝟎𝟎𝟐𝟐, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍      (III-4) 

 

Naïve Bayes Model 

As for the Naïve Bayes Model, Figure III-18 and Equation III-5 show that the separating point 

between the leak and no-leak states is estimated to be at the intersection point between the two 

curves where MIE = 1.07. The figure displays the densities of each category compared to MIE 

and therefore the distribution of each category on the MIE axis. The capabilities of the model are 

validated using cross-validation and the results are summarized in the third row of Table III-1. 

Table III-1 shows that the average accuracy of the NB model is estimated to be 98.57% with an 

average deviation of 2.37%.  

 

 

Figure III-18: Naïve Bayes Leak Identification Model 
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The NB Model has three missed leaks and one false alarm during testing and validation. It has 

also shown high levels of proper data retrieval with 99.31% and 97.79% class recall for No Leak 

and Leak states respectively. Additionally, the collected data is classified with high precision. 

The class precision for the No Leak state is 97.96%, whereas the class precision for the Leak 

state is 99.25%.  

𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �≤ 𝟏𝟏.𝟎𝟎𝟎𝟎, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟏𝟏.𝟎𝟎𝟎𝟎, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍       (III-5) 

 

Table III-1: Leak Detection Model Cross Validation Results 

Model Results 

Support 
Vector 

Machines 

Accuracy = 96.44% 
+/- 5.76 % 

True 
No Leak True Leak Class Precision (%) 

Predicted as No Leak 144 9 94.12 

Predicted as Leak 1 127 99.22 
Class Recall (%) 93.31 93.38  

 

Decision 
Tree 

Accuracy = 99.29% 
+/- 1.43% 

True 
No Leak True Leak Class Precision (%) 

Predicted as No Leak 143 0 100 
Predicted as Leak 2 136 98.55 
Class Recall (%) 98.62 100  

 

Naïve 
Bayes 

Accuracy = 98.57% 
+/- 2.37% 

True 
No Leak True Leak Class Precision (%) 

Predicted as No 
Leak 144 3 97.96 

Predicted as Leak 1 133 99.25 
Class Recall (%) 99.31 97.79  

 

 

III.3.1.2 Leak Size Identification Model Implementation  

Regarding leak size identification, the models are expected to identify planes that separate 

between three different states, i.e. (1) No-Leak, (2) Small Leak and (3) Big Leak. Besides, to 

reassess the consistency of the leak detection models, the data of no-leak states is used in the 
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development of leak size classification models. A small leak is assumed to have a discharging 

leak between 10% to 25% of the overall flow rate, whereas a big leak has a discharge rate of 

26% and up to 50% of the overall flow rate.  

 

Linear SVM Model 

For leak size classification, the Linear SVM Model provides a threshold of 1.018, in Equation 

III-6, to separate small leaks from no leak condition. The provided value is consistent with the 

previously developed model. The model also provides the value of MIE = 2.24 to distinguish 

between small leaks and big leaks. The average accuracy of the model is 80.06% with an average 

deviation in accuracy, equal to 7.55% as displayed in the first row of Table III-2. The model has 

retained its capacity to accurately retrieve and identify No Leak data with a class recall of 100% 

and class precision of 84.8%. For big leaks, the model has an equal class recall and precision 

amounting to 80%. However, the model has encountered issues in classifying small leaks; the 

model often misinterprets them as no leaks or big leaks and thus has a low class-recall for small 

leaks equal to 32.79% and a low class-precision of 57.14%.  

𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �
≤ 𝟏𝟏.𝟎𝟎𝟏𝟏𝟎𝟎, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

∈ ]𝟏𝟏.𝟎𝟎𝟏𝟏𝟎𝟎,𝟐𝟐.𝟐𝟐𝟐𝟐], 𝑺𝑺𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟐𝟐.𝟐𝟐𝟐𝟐, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

     (III-6) 

Decision Tree Model 

The Decision Tree Model has remained consistent in separating leak states from no-leak states 

by retaining the threshold of MIE = 1.052, as in Figure III-19 and Equation III-7. Additionally, 

the Decision Tree Model specifies the value of 1.595 for MIE to represent the threshold 

separating small leaks from big leaks. If the value of MIE is less than or equal to 1.595, yet 
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above 1.052, the leak is, with a very high degree of confidence, a small leak. Above an MIE of 

1.595, the leak is most probably a big leak while small leaks are also very likely at this range. 

 

Figure III-19: Decision Tree Leak Size Identification Model 

The second row of Table III-2 summarizes the results of the cross-validation of the model. The 

model has an accuracy of 85.39% with an average deviation of 3.02%. The model has had 2 false 

alarms and two small leaks that have gone undetected. Furthermore, the Decision Tree Model 

behaves better than the SVM Model with the class precision and the class recall both equal to 

98.62% for the No Leak state plus a class recall rate of 49.18% for small leaks and a class 

precision of 75%. For big leaks, the class recall shows an improvement in the Decision Tree 

Model, compared to the SVM Model by 9.33%, whereas the class precision is 10% less than in 

the SVM Model.  

𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �
≤ 𝟏𝟏.𝟎𝟎𝟎𝟎𝟐𝟐, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

∈ ]𝟏𝟏.𝟎𝟎𝟎𝟎𝟐𝟐,𝟏𝟏.𝟎𝟎𝟓𝟓𝟎𝟎], 𝑺𝑺𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟏𝟏.𝟎𝟎𝟓𝟓𝟎𝟎, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

     (III-7) 

 

Naïve Bayes Model 

As for Naïve Bayes, the leak versus no leak separation threshold remains consistently at MIE = 

1.07, as in Figure III-20 and Equation III-7. On the other hand, the threshold between a small and 
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a big leak is estimated to be at the meeting point between the downward curve of the small leak 

and the upward going cure of the big leak state. Thus, the threshold is the straight-line MIE = 

1.88. In terms of accuracy, the third row of Table III-2 shows that the NB Model has an average 

accuracy of 86.8% with an average deviation of 6.01%. The model has had one false alarm and 

two small leaks going undetected. The table also shows that the Naïve Bayes Model provides a 

more stable model than the other techniques with a class recall of 99.31% for the No Leak state 

and a class precision of 98.63%. The NB Model provides the highest classification for small 

leaks with a 63.93% class recall and 72.22% class precision. The classification of big leaks using 

the NB Model is acceptable with an 81.33% class recall and a 75.31% class precision.  

𝒊𝒊𝒊𝒊 𝑴𝑴𝑴𝑴𝑴𝑴 �
≤ 𝟏𝟏.𝟎𝟎𝟎𝟎, 𝑵𝑵𝒔𝒔 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

∈ ]𝟏𝟏.𝟎𝟎𝟎𝟎,𝟏𝟏.𝟎𝟎𝟎𝟎], 𝑺𝑺𝑺𝑺𝒍𝒍𝒍𝒍𝒍𝒍 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍
> 𝟏𝟏.𝟎𝟎𝟎𝟎, 𝑳𝑳𝒍𝒍𝒍𝒍𝒍𝒍

     (III-8) 

 

Figure III-20: Naïve Bayes Leak Size Identification Model 



77 
 

Table III-2: Leak Size Identification Model Cross Validation Results 

Model Results 

Support 
Vector 

Machines 

Accuracy: 80.06% 
+/- 7.55% 

True 
No 

Leak 

True 
Small 
Leak 

True 
Big 

Leak 

Class 
Precision (%) 

Predicted as No Leak 145 26 0 84.8 
Predicted as Small Leak 0 20 15 57.14 
Predicted as Big Leak 0 15 60 80.00 

Class Recall (%) 100 32.79 80.00  
 

Decision 
Tree 

Accuracy: 85.39% 
+/- 3.02% 

True 
No 

Leak 

True 
Small Leak 

True 
Big 

Leak 

Class 
Precision (%) 

Predicted as No Leak 143 2 0 98.62 
Predicted as Small Leak 2 30 8 75.00 
Predicted as Big Leak 0 29 67 69.79 

Class Recall (%) 98.62 49.18 89.33  
 

Naïve Bayes 

Accuracy: 86.8% 
+/- 6.01% 

True 
No 

Leak 

True 
Small 
Leak 

True 
Big 

Leak 

Class 
Precision (%) 

Predicted as No Leak 144 2 0 98.63 
Predicted as Small Leak 1 39 14 72.22 
Predicted as Big Leak 0 20 61 75.31 

Class Recall (%) 99.31 63.93 81.33  
 

 

III.3.1.3 Discussion of Results 

The results presented here show the capabilities of accelerometers to detect the vibrations caused 

by leaks and accurately identify them. Regarding leak identification, the three used techniques 

produce high results as summarized in Figure III-21(a). The box and whisker plot represents the 

median as a thick line that cuts the box into two partitions, each partition representing a quartile 

of the distribution of the accuracies presented by the model. Besides, the distance from the 

periphery of the box to each outer line represents a quartile of the data. For example, the 

Decision Tree data in Figure III-21(a) shows a median of 99.29% and a maximum possible 

accuracy of 99.8% and minimum possible accuracy of 97.8%. The illustration also indicates that 

75% of the time, the accuracy of Decision Tree Model has range from 98.2% to 99.8%.  
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Figure III-21: Box and Whisker Plot for (a)Leak Identification Models and (b) Leak Size 

Models 

 

Regarding leak identification accuracy, the Decision Tree Algorithm provides the model with the 

highest accuracy with the minimum deviation at 99.29% accuracy and a deviation of 1.43%. The 

Decision Tree Model is followed by the Naïve Bayes Model and the Linear SVM Model. For 

leak size identification, the Naïve Bayes Model provides the highest average accuracy at 86.8% 

but with a deviation of 6.01% followed by the Decision Tree Model with 85.39% and finally the 

Linear SVM Model. From the box-and-whisker plot in Figure III-21(b), it can be deduced that 

the Decision Tree Model has a lesser accuracy than that of the Naïve Bayes Model and that the 

deviation of the Decision Tree Model is 3.02%, representing a more consistent model 

development than that of the two other techniques.  

The determined thresholds are summarized in Table III-3. The lowest threshold to separate the 

leak state from the no-leak state is provided by the Linear SVM Model with a value of MIE = 

1.018, whereas the highest threshold is provided by the NB Model with an MIE of 1.07. Since 

the three models show high levels of accuracy, it is possible to view the three thresholds as three 
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levels of conservativeness with 1.018 being the most conservative threshold and 1.07 being the 

least conservative threshold separating the leak states from the no-leak state.  

 

Table III-3: Leak Identification Model Thresholds 

  ALGORITHM RESULTS (MIE = x) 
  Linear SVM Decision Tree Naive Bayes 

ST
A

T
E

 

No-Leak 
1.018 1.052 1.07 

Small Leak 

2.24 1.595 1.88 
Big Leak 

 

Accordingly, the leak size identification thresholds can be assessed the same way, with MIE 

equal to 1.595 as the most conservative threshold and MIE of 2.24 as the least conservative 

threshold for separating small leaks from big leaks. Evidentially, the moderately conservative 

selections for thresholds would be MIE of 1.052 to identify the existence of a leak and an MIE of 

1.88 to signify the existence of a big leak. The midpoint solution is considered to be a valid 

starting point for network assessment. 

 

III.3.2 Accelerometer Leak Pinpointing Model Results  

For the leak pinpointing model, the indicators developed in section III.2.3 of this thesis are 

utilized. The data is collected and input into the Minitab 16 software for analysis. First, a best-

subset analysis is performed using the whole data population with XL and XR as free variables. 

Based on the best-subset analysis, the selected factors for the distance from the left sensor to the 

leak, XL, are L/R, L/T, D, D2 and LD/T. As for XR, the selected factors are R/T, (R/T)2, D, D2 
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and LD/T. Based on the preceding, the indicators for each variable are input into Minitab, step-

wise regression is performed and a general model is developed. 

 

III.3.2.1 Developed Pinpointing Models 

A. General Regression Model 

The Minitab results show two equations for calculating the values of the distances from the left 

and right sensors surrounding the leak. Equation (III-9) displays the relationship developed for 

determining XL using the best-subset variables determined via best-subset analysis. In the case of 

XL, they are L/R, L/T and D. As one of the main assumptions of this approach, the flow always 

moves from XL to XR. The leak location is also considered an origin point. Based on that, since 

XL is against the flow, XL is considered a negative value with a maximum of zero and XR is 

always considered a positive value with a minimum of zero. XR is illustrated in Equation (III-10) 

as an interaction between three variables remaining from the best subset analysis and they are 

R/T, L/T and D.  

𝑋𝑋𝐿𝐿 =  −2.05 + 0.1718 ∗ 𝐿𝐿
𝑅𝑅

+ 3.5 ∗ 𝐿𝐿
𝑇𝑇
− 0.295 ∗ 𝐷𝐷 + 0.01985 ∗ 𝐷𝐷2 − 0.3351 ∗ 𝐿𝐿

𝑇𝑇
∗ 𝐷𝐷     (III-9) 

𝑋𝑋𝑅𝑅 =  2.766 − 6.88 ∗ 𝑅𝑅
𝑇𝑇

+ 2.251 ∗ �𝑅𝑅
𝑇𝑇
�
2

+ 0.4178 ∗ 𝐷𝐷 + 0.0248 ∗ 𝐷𝐷2 + 0.3187 ∗ 𝐿𝐿
𝑇𝑇
∗ 𝐷𝐷  (III-10) 

Where: 

 XL = the distance from the left sensor to the suspected leak. 

 XR = the distance from the right sensor to the suspected leak.  

 L = monitoring index efficiency at the left sensor MIEL. 

 R = monitoring index efficiency at the right sensor MIER. 

 T = total monitoring index = L + R. 

 D = total distance between sensors. 
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Figure III-22: General XL Regression Prediction Report 

 

The extent of equation III-9 is studied in Figure III-22 and the first row of Table III-6. The figure 

shows the testing data used to verify the developed model versus the exact leak locations. The 

straight line in red represents the developed model and the black points represent the actual leak 

location during the experiment. The model has proximity to all data points except for two 

outliers that are relatively far from the model; those high discrepancies can be a consequence of 

experimental error or other external factors. The figure also shows that the p-value for the model 

is less than 0.001, implying that the model has a high statistical correlation with the phenomenon 

under study. Finally, the level of correlation via r-squared is displayed at 94.83%. Besides, Table 

III-6 shows that the F-test value for equation III-9 is equal to 187, which is a high numerical 

value. The high value of the F-test result indicates that the developed equation is statistically 

significant. The table also displays the step p-values for each variable used in the equation. The 

equation starts off with a zero p-value, yet the p-value increases when D and D2 are used to be 

later dropped to less than 0.001 with the implementation of (L/T)*D. 
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Figure III-23: General XR Regression Prediction Report 

 

Similarly, a prediction report has been established for the general XR model, for understanding 

the behavior of the model as highlighted in Figure III-23. The model displays more concise 

predictions than its XL counterpart with no outliers and accurate predictions. The model also 

displays a high level of correlation through its p-value, which scores a value less than 0.001 to 

indicate the high significance of the relationship. Furthermore, the model has a high r-squared 

percentage of 98.77% and a high correlation value between the model and test points of 0.99. 

Furthermore, the second row of Table III-6 proves that the model is statistically significant given 

that it has an F-value of 734.5 with a high r-squared percentage close to 100% and a p-value that 

is less than 0.001. The progression of the p-value displays that the p-value of the model has 

progressed smoothly with a minimal increase except for D2, but the model has readjusted.  
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B. Ductile Iron Specific Regression Model 

Similar to the previously developed general model, a specific model is developed to study the 

differences between ductile iron pipelines and PVC pipelines. After performing a best-subset 

analysis, the following models are displayed in Equations III-11 and III-12 for XL and XR 

respectively. XL relies on MIEL along with the total MIE, MIET and D as the distance between 

the two sensors, to determine the distance from the leftmost sensor XL to the leak.  

𝑋𝑋𝐿𝐿 = −2.708 + 3.12(𝐿𝐿
𝑇𝑇

)2 + 3.194 𝐿𝐿
𝑇𝑇

+ 0.1134𝐷𝐷 − 0.754 𝐿𝐿
𝑇𝑇
𝐷𝐷    (III-11) 

 

 

Figure III-24: XL for Ductile Iron Regression Prediction Report 

 

To delve further into the model, a prediction report is established and displayed in Figure III-24 

and the third row of Table III-6. The figure shows the red line that represents the model against 

the experimental testing data points. The developed model has a small deviation as the figure 

shows. Also, the model is statically significant because its p-value is less than 0.001 and its r-
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squared percentage is at 93.99%. Finally, the correlation factor between the model and the real 

data is rated at 0.97, showing a high level of representation by the model for the phenomenon. 

Additionally, the F-value for the developed model is determined at 81.17, which is a value 

greater than zero and thus attests to the statistical significance of the model. The variables that 

create spikes in the p-value of the model are L/T and D. Similarly, the model for XR is displayed 

in equation III-12 and relies on the value of MIE in the rightmost sensor and the total MIE 

detected between the two sensors and, finally, the total distance between the two sensors D.  

 

𝑋𝑋𝑅𝑅 = 3.609 − 9.44 𝑅𝑅
𝑇𝑇

+ 3.12(𝑅𝑅
𝑇𝑇

)2 + 0.359𝐷𝐷 + 0.754 𝑅𝑅
𝑇𝑇
𝐷𝐷     (III-12) 

 

 

Figure III-25: XR for Ductile Iron Regression Prediction Report 
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experimental value. The model also presents a high statistical significance via the p-value which 

is less than 0.001. The r-squared value of the model is approximated at 97.09% with a correlation 

factor of 0.99, which is a considerably high value that attests for the statistical compatibility of 

the developed model. Since the model has a high value of r-squared and a p-value less than 

0.0001, the next step is to conduct the F-test as in Table III-6. The model presents an F-value of 

416.82, which attests to the statistical significance of the model because the value is substantially 

high. Furthermore, the used variables imply minimal to no impactful change in the p-value 

throughout the model development progression.  

 

C. PVC Specific Regression Model 

As in the ductile iron pipelines experiments, a PVC model is similarly developed using solely the 

data collected from the PVC experiments. The models are displayed in equations III-13 and III-

14. XL has an equation that is composed of three variables left MIE, right MIE and D, the 

distance between the two sensors.  

 

𝑋𝑋𝐿𝐿 = −2.1364 + 3.569 𝐿𝐿
𝑇𝑇

+ 2.591 𝐿𝐿
𝑅𝑅
− 0.18478𝐷𝐷 − 11.11(𝐿𝐿

𝑇𝑇
)2 − 0.2058(𝐿𝐿

𝑅𝑅
)2  (III-13) 

 

The predictive capabilities of equation III-13 can be summarized in Figure III-26 and the fifth 

row of Table III-6. The linear-shaped model shows that it is capable of predicting the leak 

location with minimum deviation and high accuracy. The statistical significance measured by the 

p-value is less than 0.001, which implies a high significance. The correlation is high for the 

model as r-squared is 98.96% and the correlation factor is at 0.99. Since all the preceding values 

prove the significance of the model, the next step is to check the F-value in Table III-6. The F-
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value of the model at hand is equal to 637.22, which confirms the finding that the developed 

model is statistically significant. 

 

Figure III-26: XL for PVC Regression Prediction Report 

Additionally, none of the variables to develop the model in equation III-13 present a high p-

value, completely negating the null hypothesis. In parallel, a model for detecting the XR distance 
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the previous models, as it is output by the Minitab software used for the development of all the 

regression models in this section. The XR model in equation III-14 utilizes the MIE of the left 

and the right sensors along with the distance and their square variations.  
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Figure III-27: XR for PVC General Prediction Report 

 

Figure III-27 presents the prediction report for the model of equation III-14. The figure confirms 
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hypothesis. 
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Table III-4 regarding the mean square error (MSE) for both training and testing, as well as their 

relative r-squared in both training and testing. The models are developed using the Matlab neural 

networks package and the data is divided into 80% training and 20% validation. The summary of 

the stated statistical features of the ANN models can be found in Table III-4. All models 

performed relatively better than the regression analysis. The general model scores a mean square 

error of 0.06067 m2 for the training of XL and a value of 0.04107 m2 when validated. Those 

values represent an error of 20 centimeters, which is a very high accuracy value. Regarding R2, 

the general ANN XL model scores a value of 96.92% in training and a value of 96.783% in 

testing to attest to the existence of a high statistical correlation. Similarly, for the general XR 

model, a low mean square error is scored in both training and testing with values of 0.05473 m2 

and 0.07265 m2 respectively, thus averaging at around 25 centimeters. Consequently, the R2 of 

the model in both training and testing is highly correlative, scoring a 99.5% value and a 98.71% 

value respectively.  

 

Table III-4: Statistical Results of the Developed ANN Models 

 XL XR 

G
en

er
al

 

MSE Training 0.06067 0.05473 
Testing 0.04107 0.07265 

R2 (%) Training 96.92 99.55 
Testing 96.783 98.71 

PV
C

 MSE Training 0.0344 0.0543 
Testing 0.0116 0.071 

R2 (%) Training 98.64 99.1 
Testing 99.65 98.3 

D
uc

til
e 

Ir
on

 MSE Training 0.0773 0.0627 
Testing 0.0897 0.09 

R2 (%) Training 94.22 98.82 
Testing 96.91 97.75 

 



89 
 

In emulation of the performed regression analysis, two models are developed for PVC and 

ductile iron pipelines respectively. Besides, the ANN model for PVC pipelines performs better 

than its regression counterpart. The XL model for PVC pipelines has a mean square error of 

0.0344 m2 and a testing MSE of 0.0116 m2. The value presents an average deviation of 19 

centimeters, which is a high measure of accuracy for leak pinpointing. The XL model of PVC 

shows a correlation percentage, R2, of 98.64% in training and 99.65% in testing. Similarly, an 

XR model for PVC pipelines is developed. The model presents low mean square error values of 

0.0543 m2 and 0.071 m2 in training and testing respectively, thus having a deviation of 26 

centimeters in pinpointing the leak. The correlation of the model is also relatively high, having a 

percentage of 99.1% in training and a percentage of 98.3% in testing.  

Finally, a ductile-iron model is developed. The ductile iron model performs less than its PVC 

counterpart with a higher mean square error on all ends. The ANN model for ductile iron 

performs much better than its regression counterpart. The XL model has a mean square error of 

0.0773 m2 in training and 0.0897 m2 in testing, thus having a deviation of 30 centimeters with a 

high correlation of 94.22% in training and 96.91% in testing. Consecutively, the ANN model for 

XR pinpointing has a mean square error of 0.0627 m2 in training and 0.09 m2 in testing, thus 

having a deviation of 30 centimeters with a correlation of 98.82% in training and 97.75% in 

testing. 
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Figure III-28: Sensitivity Analysis of the General XL and XR Models 

 

To delve into the understanding of the developed neural network models, a sensitivity analysis is 

performed for each developed model. The sensitivity analysis is conducted by varying the values 

of the parameters that comprise the model between -50% of decrease to +50% of increase with 

10% increments. The model is run and the results are recorded to determine the level of change 

in mean square error. Figure III-28 displays the results of the sensitivity analysis conducted for 

the general XL and XR models. Figure III-28(a) shows the variation in the mean squared error as 

a function of the three variables used to develop the model, L/T, L/R and D. The general XL 

model is most sensitive to the L/T parameter that represents the portion of the leftmost MIE to 

the total Mie in both sensors. This is because the slope for L/T is the steepest slope among the 

three parameters. Similarly, the general XL model is the least sensitive to L/R due to a much 

subtle slope than the other two parameters. Figure III-28(b) presents the sensitivity analysis for 

the general XR model against the two main parameters comprising it, which are R/T and D. The 
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two parameters have significantly high variations and impacts on the model, yet the distance 

between the two sensors, D, seems to have the highest impact on the model due to a steeper slope 

for its curve.  

For specific models, a sensitivity analysis is conducted for the PVC and ductile-iron models. 

Figure III-29 displays the results of the conducted sensitivity analysis. Figure III-29(a) shows the 

results of the sensitivity analysis for the XL model for ductile iron pipelines. The model is 

analyzed against its two parameters, L/T and D. The figure shows that both parameters have an 

equally substantial impact on the model because both parameters possess almost equal slopes for 

their sensitivity curves yet in opposite directions, making their impact inversely proportional. 

Therefore, the model is equally sensitive to its two parameters.  

 

 

Figure III-29: Sensitivity Analysis of the XL and XR Models for Ductile Iron 
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Similarly, Figure III-29(b) shows the sensitivity graph for the XR model developed using the 

ductile iron experimental data. As its XL counterpart, the model shows the equal importance of 

its two parameters, R/T and D, with nearly equal slopes, yet with a slightly higher impact for 

distance D. Finally, for PVC, the results of the sensitivity analysis for the XL and XR models 

developed for PVC pipelines are summarized in Figure III-30. Both XL and XR for PVC are 

developed using three parameters. In Figure III-30(a), the sensitivity graph of the XL model 

developed using the PVC pipelines is highlighted. The most critical parameter for XL in PVC 

pipelines is L/T due to having the steepest slope amidst the parameters. On the other hand, D has 

the least steep slope between all three parameters, yet its impact is still considerably significant. 

As for XR in PVC pipelines, Figure III-30(b) shows that the distance D is the most significant 

parameter holding the highest slope between all parameters. On the contrary, the impact of R/L 

on the overall model is next to zero because it has a very minimal variation regardless the 

direction in which it changes.  

 

Figure III-30: Sensitivity Analysis of the XL and XR Models for PVC Pipelines 
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III.3.2.2 Statistical Analysis of Pinpointing Models 

To select a model in regression analysis, multiple factors are taken into consideration. In this 

research, the utilized values are R-squared, R-squared predict, p-value, mallows Cp and mean 

square error (MSE). The selected models have the highest R-squared and R-squared predict, the 

closest mallow’s Cp to the number of free variables and a low mean square error (El-abbasy et al. 

2014). The model should also have a p-value less than 0.05 to negate the null hypothesis. Those 

values of the analysis are listed in Table III-5. The results in Table III-5 display that r-squared 

and r-squared-predict values are above 90%, indicating a high statistical relationship between the 

developed model and the derived output. The p-values for both XL and XR are both less than 

0.05, negating the null hypothesis. Finally, Mallow’s CP values for the parameters under study 

are near the number of indicators or variables from which the equations are derived. 

 

Table III-5: Statistical Analysis of the Developed Regression Models 

 General PVC Steel 

 XL XR XL XR XL XR 

R2 94.8% 98.77% 98.96% 99.98% 93.99% 97.09% 

R2 Predict 91.87% 97.81% 98.75% 99.32% 88.68% 96.81% 

P-value <0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Mallows Cp 3.9 4.0 4.0 4.0 2.1 2.1 

MSE 0.2444 0.2508 0.0829 0.0828 0.2535 0.2537 
 

 

Table III-6 presents further insight into the statistical robustness of the proposed models in this 

section. The table contains a coding sequence that is followed by the number of the respective 

equation in this thesis. For each number, R2 is restated and the p-value of the overall model is 
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identified. Having a high R2 along with a p-value that negates the null hypothesis, i.e. less than 

0.05, the models can be checked for their f-value. The overall f-value should accordingly have a 

high positive value to confirm the previous findings and highlight the statistical significance. 

Finally, the p-value of the coefficients through the step-wise regression are listed to state the step 

by step significance of each variable. 

 

Table III-6: Advanced Statistical Analysis of the Developed Regression Models 

Code 
Model 

Equation 
Number 

R2 (%) Model 
P-value F-value Coefficient P-value 

1 III-9 94.83 < 0.001 187 

• Constant = 0.000 
• L/R = 0.000    
• L/T = 0.000  
• D = 0.014   
• D^2 = 0.048  
• (L/T)*D = 0.000   

2 III-10 98.77 < 0.001 734.5 

• Constant = 0.000 
• R/T = 0.000   
• (R/T)^2 = 0.000 
• D = 0.000 
• D^2 = 0.020 
• (R/T)*D = 0.000 

3 III-11 93.99 < 0.001 81.17 

• Constant = 0.000 
• L/T = 0.001 
• D  =  0.166 
• (L/T)^2  =  0.008 
• D*(L/T)  = 0.000 

4 III-12 97.09 < 0.001 416.82 

• Constant = 0.000 
• (R/T)^2 = 0.009  
• D*(R/T) =  0.000   
• D =  0.002   
• R/T =  0.000   

5 III-13 98.96 < 0.001 637.22 

• Constant = 0.000 
• L/T  = 0.000 
• L/R = 0.000 
• (L/T)^2 = 0.000 
• (L/R)^2 = 0.000 
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• D = 0.000 

6 III-14 99.48 < 0.001 2360.56 

• R/T = 0.000 
• R/L = 0.000 
• D = 0.000 
• (R/T)^2 = 0.000 
• (R/L)^2 = 0.000 
• RD/L = 0.010 
• D^2 = 0.000 

 

III.3.2.3 Validation and Testing of Pinpointing Model 

To test the model, 20% of the experimental data was collected and not utilized in the 

development of the regression model. Through implementing the model, the values of XL and XR 

are calculated and the predicted values are compared to the original value to determine deviation 

DEi. The deviation of each instance i is determined using Equation (III-15), where the deviation 

of each instance is determined by subtracting the exact location of the leak from the predicted 

location to get a numerical that describes how far is the prediction from reality and that is done 

using the equations mentioned above, such as (III-16) and (III-17) for XL and XR respectively.  

 

𝑫𝑫𝑴𝑴𝒊𝒊 = 𝑿𝑿𝑨𝑨𝑨𝑨𝒊𝒊 −  𝑿𝑿𝑨𝑨𝒊𝒊        (III-15) 

Where:  

 DEi = the deviation of the prediction from the original leak location of case i.  

 XAPi = the predicted value of XL or XR at case i.  

 XAi = the original real-life value of XL or XR at case i.  

 A = left (L) or right (R) indication of the value of X predicted or actual.  

 

Furthermore, deviation values are collected and their standard deviation is determined and 

reported as σerror. Another estimated value is the average deviation of the results of the testing set, 
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and that is 𝐷𝐷�, which is the summation of the deviation value of all tests over the whole number of 

values in the testing set. In order to determine the efficiency of the model in having the predicted 

value of the leak within 25 cm from the actual value, an equation is developed. This value is A±25 

cm. To calculate A±25 cm, a variable Ai, a binary value of either one or zero, is determined. Ai is 

equal to 1 if the value of the deviation, Di, is less than 25 cm. Otherwise, Ai is equal to zero. A±25 

cm is the sum of all Ai over their total number n. The concepts of Ai and A±25 cm are illustrated in 

equations III-16 and III-17 respectively. The results and values are displayed in Table III-7. The 

output under consideration from the A±25 cm value is to study how many times is the developed 

model within the 25 cm range from the exact leak location.  

 

𝐴𝐴𝑖𝑖 = �1, |𝐷𝐷𝑖𝑖| ≤ 25 𝑐𝑐𝑚𝑚
0, |𝐷𝐷𝑖𝑖| > 25 𝑐𝑐𝑚𝑚      (III-16) 

𝐴𝐴±25 𝑐𝑐𝑐𝑐 =  ∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

       (III-17) 

 

Table III-7: Validation Results of Developed General Model. 

 General Ductile Iron PVC 

 XL XR XL XR XL XR 

A±25 cm 80% 85% 87.5% 87.5% 75% 100% 

σerror 18.74 cm 19.19 cm 19.44 cm 19.36 cm 19.88 cm 12.16 cm 

𝑫𝑫 -0.8 cm 1.9 cm -4.38 cm -4.63 cm -6.42 cm -2.75 cm 
 

Table III-7 shows that the standard deviation for the general XL model is 18.74 centimeters and, 

for the general XR model, it is 19.19 centimeters. Thus, the models has 68.2% of the results 

within the vicinity of 19 centimeters from the original leak location. Additionally, the average 
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deviation for XL is -0.8 centimeters and, as for XR, the average error or deviation is 1.9 cm for 

the original leak location. Additionally, Figure III-31 displays the distribution of the deviation 

and shows that the majority of the predicted values would lie between ± 25 centimeters from the 

original leak source with the existence of multiple outliers that can be attributed to experimental 

error.  

 

Figure III-31: Deviation Data Distribution for General XL and XR Equations 

Similarly, Table III-7 shows that the regression models developed for ductile iron pipelines 

provide an accuracy of 87.5% for both XL and XR models. Additionally, the table shows that 

ductile  iron accuracy is within ± 19.4 centimeters with an average distance deviation of around   

-4.5 centimeters. This is illustrated in Figure III-32 where the deviation of the model is generally 

within ± 20 cm. Additionally, the distributions of model deviation of XL and XR are very similar 

due to the closeness of the accuracies of both models as confirmed in Table III-7. 



98 
 

 

Figure III-32: Deviation Data Distribution for Ductile Iron XL and XR Equations 

 

Figure III-33: Deviation Data Distribution for PVC XL and XR Equations 

 

As for PVC pipelines, Table III-7 shows that XL has an accuracy of 75% after testing, whereas 

XR has an accuracy of 100% within a 25-centimeter range. The XL model for PVC has a standard 

deviation of error equal to 19.88 centimeters, whereas XR has a much minor deviation with a 

12.16-centimeter standard deviation. The average deviation of the prediction of the XL model for 

PVC is -6.42 centimeters and the average deviation of the prediction in the XR model for PVC is 

estimated at -2.75 centimeters. Figure III-33 shows the results of the testing of the models. While 

the XL model has a much wider range yet mostly within the limit of 20 centimeters, the XR 
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model has a more precise and lesser range in prediction and produces more accurate results. The 

normal distribution curve is used as a prediction envelope for future uses of the model, to be a 

benchmark for predicting the accuracy of the model.  

 

III.3.3 Vibration Signal Decay Model 

The decay experiments are conducted to understand the nature of the vibration signal within the 

pipelines of experimentation. The aim is to see how the signal is lost within the system and in 

which direction it is lost. Table III-8 provides insight into the pattern where the signal is 

depreciating in terms of loss in monitoring index efficiency (MIE) or leak impact (LI). The study 

is conducted in two directions, to the left of the leak and the right of the leak. Leftwards, the 

signal travels against the flow of the pressurized water. Rightwards, the signal travels with the 

flow of water. Thus, we can also identify the existence of friction within pipelines.  

 

Table III-8: Vibration Signal Decay Model Results  

 MIE Decay LI Decay 
cL (/m) cR (/m) cL (/m) cR (/m) 

PVC 
1-inch µ 0.1 0.14 n/a 

σ 0.043 0.024 n/a 

2-inch µ 2.14 0.4 2.62 0.52 
σ 0.5 0.18 0.4 0.18 

Ductile Iron µ 2.72 0.61 2.75 0.61 
σ 0.61 0.25 0.61 0.25 

 

Table III-8 shows that for small one-inch PVC pipelines, the loss in MIE is insignificant, being 

around 0.12 MIE lost per meter. Although this value has an impact on the design and distribution 

of the monitoring network, the loss is minimal. Meanwhile, when the diameter of the PVC 

pipeline is doubled up to two inches, the losses against the flow of the water become highly more 
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critical and significant with a cL = 2.14 MIE lost per meter in the left direction, whereas in the 

right direction, the loss is still minimal although more than that of a one-inch PVC pipeline with 

cR = 0.4 MIE lost per meter. In PVC pipelines, leak impact estimates are higher than those of the 

monitoring index efficiency (MIE), which is returned to the tendency of the material to transfer 

vibration signals, making the baseline itself slightly more turbulent than that of ductile iron 

pipelines. Ductile iron pipelines have presented a higher tendency to dissipate vibration signals 

than PVC pipelines that tend to conserve the signal. Ductile iron has a cL of 2.72 MIE per meter 

in MIE estimates in the left direction and a cR of 0.61 MIE per meter. Since ductile iron is a more 

rigid material than PVC, no significant difference will be noticed if the decay value is measured 

for monitoring index efficiency (MIE) or leak impact (LI). Those values present a guideline for 

the distribution of the sensors within the network to be monitored. An example of the suggested 

distribution approach can be summarized in the following steps:  

- Step 1: Select a leak threshold and an average leak size threshold. 

In this example, the developed mid thresholds are selected such that a leak threshold 

is at MIE = 1.052 and a big leak threshold is at MIE = 1.88.  

- Step 2: Find the value lost between the two thresholds.  

In this example, the difference is 1.88 – 1.052 = 0.828 MIE. The value represents how 

much of MIE needs to be lost before a sensor can no longer detect it.  

- Step 3: Divide the value of the lost MIE over the signal decay in both flow directions. 

The obtained value represents the required distance from the sensor to the average 

leak for it to be detected.  

a. Case 1: One-inch PVC pipelines.  

i- Leftward: 0.828 (MIE) / 0.1 (MIE/m) = 8.28 m. 
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ii- Rightward: 0.828 (MIE) / 0.14 (MIE/m) = 6 m. 

b. Case 2: Two-inch PVC pipelines.  

i- Leftward: 0.828 (MIE) / 2.14 (MIE/m) = 0.4 m = 40 cm.  

ii- Rightward: 0.828 (MIE) / 0.4 (MIE/m) = 2.07 m. 

c. Case 3: Ductile iron pipelines.  

i- Leftward: 0.828 (MIE) / 2.72 (MIE/m) = 0.3 m = 30 cm. 

ii- Rightward: 0.828 (MIE) / 0.61 (MIE/m) = 1.35 m. 

- Step 4: Determine the desired length for distribution, based on the predetermined 

minimum and maximum. The determined leftward and rightward values represent the 

minimum and maximum required distances from a sensor in the given direction to the 

leak for a successful detection. To distribute the device efficiently on the levels of 

price and detection, it is recommended to choose a value near the average between 

the two determined values. 

a. Case 1: One-inch PVC pipelines.  

Selected distribution distance is 7 m. Thus, the distance between one sensor and 

the other is 14 meters for one-inch PVC pipelines.  

b. Case 2: Two-inch PVC pipelines.  

Selected distribution distance is 1.2 m. Thus, the distance between one sensor and 

the other can be 2.4 meters for two-inch PVC pipelines.  

c. Case 3: Ductile iron pipelines.  

Selected distribution distance is 0.85 m. Thus, the distance between one sensor 

and the other can be 1.7 meters for ductile iron pipelines.  
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IV CHAPTER IV: NOISE LOGGERS BASED MODELS 

Similar to Chapter 3, Chapter 4 introduces a set of leak detection and pinpointing models in 

water mains using a different static technology which is noise loggers. This chapters aims to 

fulfill the second objective of this thesis that is to develop and validate technology-based leak 

detection and pinpointing models. 

 

IV.1 Noise Loggers Leak Detection System 

Acoustic technology is another leak detection technology for study and development in this 

research. The selected devices are noise loggers as a very abundant technology in the market, 

that offer a reasonable range of detection and pinpointing relative to their price. Loggers are 

currently part of a pilot project in the city of Montreal for the automation of leak detection 

wirelessly.  

 

Figure IV-1: Acoustic Real-Time Monitoring System Model 
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The development of the acoustic real-time monitoring system has steps similar to those in the 

development of the accelerometer-based vibration real-time monitoring system. This is further 

clarified in Figure IV-1, where the system follows similar initial steps to those of the 

accelerometers. Yet, for noise loggers, there is neither a signal decay model nor a leak size 

estimation model to develop. Rather, a model is needed, that can identify acoustic signals that 

represent leaks and signals which represent pump sounds. The interference of signals has been 

highlighted in the city of Montreal as a critical issue in their pilot project, as causing a lot of false 

alarms, which in return cause an overdistribution of workforce and resources.  

 

IV.1.1 Acoustic Signal Analysis Model  

The conversion of signal sound files into comprehensible and measurable parameters is a 

significant task in this research since there is a need for values that can represent the cases under 

study. Figure IV-1 highlights the two forms of analyses conducted in this research: single signal 

analysis and dual signal analysis.  

 

Figure IV-2: Frequency Distribution Analysis 

 

The single signal analysis represents the full analysis of one single file where the required 

parameters are derived and developed. The first step for single signal analysis is Fast Fourier 
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Transform (FFT). FFT is conducted via a written Matlab code using the recorded sound file and 

converts the file into viewable and readable data represented in decibels, as displayed in the right 

image in Figure IV-2. Additionally, the FFT can provide the frequency distribution of the sound 

file, highlighting the repetitions and amplitude at each given frequency. The frequency 

distribution of a given sound file after analysis can be viewed in Figure IV-2, where the signal is 

converted to a percentage of the dominance of each frequency band starting with 0 Hz and 

ending with 500 Hz. The development of the acoustic signal analysis model is summarized in 

Figure IV-3. The first step is to determine whether the analysis is for a single file for the purpose 

of detection or more than one file for the purpose of pinpointing. If the analysis is for more than 

one file, then correlation analysis is performed to determine the relationships between the two 

sound files collected from the sensors surrounding the leak. However, a single signal analysis 

begins with conducting fast Fourier transform to determine the amplitude and the frequency 

curves of the signal. 

 

Figure IV-3: Acoustic Signal Analysis Model 
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The next step is to calculate the average amplitude as displayed in Equation IV-1. The value of 

the amplitude in decibels is calculated at each data point in the signal. The sum of those values is 

then divided by the total number of data points in the signal sequence.  

𝜇𝜇𝑆𝑆𝑖𝑖𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆 =  ∑ 𝐴𝐴𝑐𝑐𝐴𝐴𝑆𝑆𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁
     (IV-1) 

Where:  

 µSignal (dB) = the average sound amplitude of sound file under study.  

 Amplitudei (dB) = sound amplitude at instant i in the sound file under study.  

 N = the total number of data points within the sound file under study.  

Following the calculation of the average sound amplitude, the next step will be to determine the 

standard deviation of the signal. Equation IV-2 shows the calculation approach for σSignal by 

using the previously developed µSignal in Equation IV-1. The equation is the same as a basic 

standard deviation equation but rewritten to fit the particular problem at hand.  

 

𝜎𝜎𝑆𝑆𝑖𝑖𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆 =  �1
𝑛𝑛

 ∑ (𝐴𝐴𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖 −  𝜇𝜇𝑆𝑆𝑖𝑖𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆)2𝑁𝑁
𝑖𝑖=1      (IV-2) 

Where:  

 σSignal (dB) = the standard deviation of the amplitudes within the sound file under study.  

 

Following the development of the average signal amplitude and the standard deviation of the 

signal amplitude, the level of the signal and the spread are developed. The level of a signal 

represents the dominant or governing amplitude of the signal, i.e. the highest amplitude of the 

signal. Equation IV-3 displays the calculation of a sound file’s level through computing the 

sound amplitude in decibels at each instant i. The level of a signal is the peak of the signal. Thus, 

the equation determines the highest value in the sequence. 
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𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴 (𝐴𝐴𝑑𝑑) = max ({𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴(𝐴𝐴) ∶ 𝐴𝐴 = 1, … ,𝑁𝑁})    (IV-3) 

 

Following the calculation of the level of the signal, another representation of the variation of the 

recorded sound is calculated. The parameter, in this case, would be the spread of the recording in 

the sound files. The spread represents the distance between the highest and lowest points in the 

signal sequence. Thus, the spread is determined by calculating the level or the maximum 

amplitude found in the recording as in equation IV-3. The level value determined has the 

minimum sound value subtracted from it. The spread represents the span of amplitudes within a 

signal.  

 

𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴 (𝐴𝐴𝑑𝑑) = max({𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴(𝐴𝐴) ∶ 𝐴𝐴 = 1, … ,𝑁𝑁}) −  min({𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴(𝐴𝐴) ∶ 𝐴𝐴 = 1, … ,𝑁𝑁})   (IV-4) 

 

After calculating the spread, the analysis moves from single sound file analysis to the analysis of 

two sound files representing the same phenomenon. In this case, the study aims at determining 

the level of similarity between the two signals by determining the correlation lag and also the 

time signal delay between the two signals. Regarding the correlation lag, the equations under 

study are discrete because the used loggers provide 16 seconds of recordings each time they 

record a sound and the values are consistent, so they do not increase or decrease. As a result, the 

discrete equation of correlation, Equation IV-5, has been used to determine the correlation lag 

value. The equation shows similarities with the convolution equation and convolution concepts. 

The aspired output of this equation is the displacement or lag (n) between the two signals. The 
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approach calculates the complex conjugate of function (f ), (f*), then moves ahead to determine 

the displacement (n) of function (f ) against function (g).  

 

(𝑓𝑓 ∗ 𝑆𝑆) [𝑚𝑚] ≝  ∑ 𝑓𝑓∗[𝑚𝑚] 𝑆𝑆[𝑚𝑚 + 𝑚𝑚]∞
𝑐𝑐= −∞    (IV-5) 

Where:  

 f = the initial sound function under study for the leak event.  

 g = the second correlation sound function under study for the leak event.  

 n = the lag between the two leak event functions.  

 

Accordingly, after determining the lag values, another critical relational parameter is the time 

delay values. The standard cross-correlation equation for time delay, Equation IV-6, has been 

used to identify the discrepancy in time between the two leak event signals. The equation aims at 

determining the time difference between two signals at their point of similarity. The main unit 

for assessment is seconds. This value allows the user to realize which signal arrived before the 

other and with what time difference.  

 

𝜏𝜏𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑑𝑑 =  𝑚𝑚𝑆𝑆𝑆𝑆𝐴𝐴max ((𝑓𝑓 ∗ 𝑆𝑆)(𝐴𝐴))    (IV-6) 

 

IV.1.2 Acoustic Leak and Pump Detection Model  

To develop the approach, the first step was to collect multiple sets of data and to do experiments. 

The main topic was leak detection and thus two platforms were selected: acoustic signals and 

vibration signals. Acoustic signals were provided by the city of Montreal and were analyzed 

using Fourier transform and frequency spectrum in order to create detection baselines between 
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the leak state and the no leak state. One month of leak data was collected via acoustic noise 

loggers and was analyzed to form the acoustic leak database. When it comes to accelerometers, 

multiple experiments were performed to collect vibration signal data. Eight hours of signal data 

were collected and analyzed according to the Martini approach (Martini, Troncossi, and Rivola 

2015). Using the analyzed and collected vibration signal data, the vibration signal database was 

constructed.  

 

Figure IV-4: Identification by Aggregation Model 
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Figure IV-4 shows that a classifier was developed for each database using three different 

machine learning techniques with varying algorithms. The three techniques are namely Decision 

Tree, Naïve Bayes and 3- Deep Learning. Thus, acoustic noise loggers had three models with 

each technique and accelerometers. Each model was cross-validated with the test data set to 

check their accuracy. If the accuracy was above 85%, then the model would be accepted and 

used in further development. Otherwise, the model would be reassessed and redeveloped for 

further improvement. 

The genetic algorithm operates on two instances to develop the envelope of improvement. 

Equation IV-7 shows the approach for determining the maximum possible accuracy using one 

varying model, where i represents the accuracy of the varying model and keeps changing 

between the values of 0 and 100 with an increment of 10% in each iteration. Then, the genetic 

algorithm is asked to modify the model such that when it is aggregated with the two available 

models, it has higher accuracy than in the initial model. The algorithm would run until all 

possible iterations are performed and the maximum possible accuracy – accuracyTotal – after 

aggregation would be determined.  

 

For i = 0:10:100 

Maximize:  accuracyTotal 

Subject to:   accuracyVariable = i                       (IV-7) 

End 

 

Similarly, Equation IV-8 displays the approach for determining the minimum possible 

aggregated accuracy with the two good models. The accuracy of the varying model would be 
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varied between 0% and 100% with 10% increments, but the genetic algorithm aims to determine 

the worst possible scenario when aggregation is performed. Therefore, the output would be the 

minimum possible accuracyTotal of the aggregated model.  

 

 

 

 

For i = 0:10:100 

 Minimize:  accuracyTotal 

 Subject to:   accuracyVariable = i                 (IV-8) 

End 

 

To assess the impact of the aggregation approach, two good models with accuracy over 85% 

were used against a varying model with no specific accuracy. The varying model would be 

varied using the genetic algorithm between 0% accuracy and 100% accuracy. The minimum and 

the maximum possible improvement would be recorded too, to form the envelope of the 

classification aggregator and therefore identify the advantages and disadvantages of aggregating 

multiple models.  
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Figure IV-5: Aggregator Methodology 

The architecture of the aggregator is simple and straightforward. The aggregator expects an odd 

number of classifying models, ideally 3 or 5. The aggregator will then monitor each classifier 

and record their response to a given data set. As shown in Figure IV-5, the aggregator was 

identifying between leak states and no-leak states. If the classifier identifies a leak, then one 

point would be recorded for the leak state. If the total recorded points for the leak state are two or 

three, then a leak is identified. Meanwhile, if the sum of points is 0 or 1, the data point would be 

considered to represent a no leak state.  

 

IV.1.3 Acoustic Leak Pinpointing Model 

Another critical aspect of the pilot project in the city of Montreal is the automated pinpointing of 

leaks using the sound recording of the noise loggers installed in the water network all over 

downtown Montreal. In Figure IV-6, the approach for tackling the pinpointing problem is 
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summarized. The initial step is to collect the analyzed signal data from two sensors prescribing 

one leak. The steps of signal analysis described in section IV.1.1 are conducted for dual signal 

analysis and for single signal analysis for each sound recording separately. Afterwards, best 

subset analysis for XL and XR is done for all the developed parameters based on the learning data 

set established from the recorded leaks and experiments. Based on the best subset analysis, the 

most suitable parameters for model development are selected and a regression analysis is 

conducted for XL and XR respectively. The developed models are then checked for accuracy, 

statistical soundness and the representation of the original dataset that was developed. In case 

best subset analysis approves more than one possible right approach for model development, 

multiple models will be developed. Each model that is deemed statistically sound and offers a 

good representation of the phenomenon would be added to a set of models for both XL and XR. 

The developed models would then be used as parameters to be regressed against the real data to 

develop a combining equation for all models and to present a final model for both XL and XR. 

When the newly developed final models for XL and XR and the total distance (D) between the 

two sensors under study are used, models for PXL and PXR are developed to help narrow the 

deviation gap and make the prediction of the leak location more precise. PXL represents the 

percentage of XL over D, i.e. the distance from the left sensor to the leak over the total distance 

between the two sensors. Similarly, PXR represents the percentage of the distance from the right 

sensors over the total distance between the two sensors. The new models are then verified for 

accuracy and compatibility with the data that was collected for learning and validation. If the 

model is accurate and usable, it will be adopted and used.  
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Figure IV-6: Acoustic Pinpointing Model Methodology 

The proposed leak detection system differentiates from the leak detection system proposed by 

Hunaidi et al. in section II.1.4. by being real-time and therefore staying in the network all the 

time to detect leaks as soon as they happen, on the contrast of relying on leak suspicion to 

conduct a survey to verify the leak location as in the aforementioned model. Additionally, the 

model in section II.1.4 requires three main inputs to pinpoint leaks which are pipe type, pipe 

diameter, and the distance between the two sensors, whereas the model proposed in this section 

requires only the distance between the two sensors. The removal of pipe type and pipe diameter 

allows municipalities that lack proper records of their infrastructure to still benefit for early-on 

leak detection. Furthermore, LeakFinderRT system that is suggested in section II.1.4 relies on an 

integration between acoustic noise loggers and accelerometers, whereas the system proposed in 
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this section relies on noise loggers only, which helps in reducing the analytical and 

computational work done by the system. This can be highly beneficial in metropolitan areas 

where thousands of loggers are installed and multiple calculations are required at the same time.  

 

IV.2 Data Collection for Loggers 

The collection of data from acoustic loggers is done in coordination with the water services 

agency in the city of Montreal. The agency has placed a series of loggers covering downtown 

Montreal or the area known as Ville-Marie. The loggers are provided and installed by a company 

named Guttermann. The state of the loggers and the network can be viewed via an online system 

named Zonescan. Permitted by the agency, this research collects a substantial number of acoustic 

signals that cover multiple aspects of the acoustic leak detection spectrum. Additionally, the 

agency has checked to assess and verify the quality of their currently installed system.  

 

IV.2.1 Zonescan System  

The zonescan interface is an online system that connects all the installed acoustic loggers. 

Through transmitters and online servers, the data is collected and assessed to determine the 

existence of leaks, the status of the network and the status of the loggers and other devices 

forming the surveillance network. Figure IV-7 presents one of the interfaces of the zone scan 

system. This interface represents the status of the loggers regarding power and battery life. 

Similarly, through another interface, it is possible to detect leaks and collect sound files of the 

relative leaks. Additionally, through the regular checkups, it is possible to identify new sounds 

that create interference within the network, such as leak sounds and pump sounds. Another 
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interface is the leak detection interface, which presents correlated between multiple sensors to 

identify the existence and locations of leaks.  

 

 

Figure IV-7: Zonescan Maintenance Interface 

 

Figure IV-8 shows this interface by showing a detected leak in the vicinity of the Fine Art 

Museum of Montreal. To detect the leak, the figure shows that two loggers are used and their 

codes are presented as 507-241 and 507-244. The figure also shows the overall length of the 

pipeline between the two sensors as well as the predicted distance from each sensor towards the 

leak. Another presented measure is the distance from the center point between the two sensors 

towards the leak. The software indicates 100% certainty of the existence of this leak, but this 

remains to be further investigated as errors may arise from this system and that is one of the main 

reasons for the conduction of this research. The aim is to increase the reliability of this system 

through increasing its detection accuracy by eliminating false alarms and increasing its 

pinpointing accuracy as well.  
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Figure IV-8: Zonescan Leak Pinpointing Interface 

 

To pinpoint a leak, the system uses the sound signals collected from the loggers on both ends of 

the suspected leak. Figure IV-9 shows that the system then moves towards performing a cross-

correlation between the two signals for pinpointing purposes. As the figure shows, the software 

shows that the leak is closer to sensor 507-241 than to its counterpart sensor 507-244. 

Additionally, the software predicts that the distance from sensor 507-241 towards the leak 

location is 28.7 meters, whereas the distance from the second sensor, i.e. sensor 507-244, is 

estimated to be 56.5 meters. The software also indicates that the quality of their assessment is 

100% and therefore the leak is highly likely to exist. Multiple situations may have occurred 

where pump sounds and other factors within the network create leak like conditions, but no leaks 

are to be found.  
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Figure IV-9: Zonescan Leak Cross Correlation Report 

 

IV.2.2 Data Collection 

The zonescan interface regularly listens to the underground network to detect sound anomalies 

within the network. The loggers start listening after 2 AM in the morning to minimize outside 

interference and noise. After listening for multiple hours, the loggers establish a sense of the 

ideal state and accordingly identify irregularities. In multiple cases, pump sounds are often 

assessed as leaks. The initial step is to collect sound files for various states. Therefore, the data is 

collected over the span of 30 days and various categories of sound files are collected, including 

leaks, no leaks, possible leaks, pump sounds and valve leaks. The possible leak option is created 

by the providing company. However, this research aims to eliminate the possible leak response 
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as it offers little to no information and adds confusion to the process. Additionally, pump sounds 

are distinguishable from leak sounds on the micro level because of the variation of the frequency 

distribution between the two classes of detection.  

Over the course of 30 days, various types of sound signals were collected and analyzed, totaling 

5167 sound files for different states of the leak detection system. Each sound file represents 16 

seconds of recording and is comprised of 16384 data points forming the acoustic signal. Table 

IV-1 concludes the collection works over the course of 30 days, starting on April 1st, 2017 and 

ending on April the 30th of the same year. The collected files have 722 leak state sound files, 957 

no-leak state sound files and 3488 sound files for possible leaks. The collected data is analyzed 

as in section IV.1.1 of the methodology and the data is collected and organized in an excel sheet 

for analysis.  

Table IV-1: Summary of Collected Acoustic Data 

Class Leak No Leak Possible Leak Total 
Collected Signals 722 957 3488 5167 

IV.3 Acoustic Leak Monitoring Implementation and Results  

The main aspects of the leak detection approach in acoustic systems are the utilization of 

aggregation to minimize and even eliminate false alarms and the misclassification of the data 

received from the sensors placed all over the downtown of the city of Montréal. Consequently, in 

this section, the results of aggregation and its potential impact on any binary classification 

problem are discussed.  

 

IV.3.1 Noise Logger Leak Identification Model 

Multiple models are developed for the differentiation between leak signals and non-leak signals 

that are received from the noise loggers dispersed throughout the water network located in 
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downtown Montreal. Three different techniques are used due to their unique handling of data and 

processing of information.  

 

IV.3.1.1 Decision Tree Model  

The first model is developed using the decision tree algorithm. The decision tree differentiates 

between leak and no leak states by analyzing the frequency spectrum of each sound signal from 

both origins (leak and no-leak). The origin of the signals is confirmed by field investigation.  

 

Figure IV-10: Decision Tree Model for Identifying Logger Leaks 

Figure IV-10 shows the output of the decision tree model as probabilistic decisions performed at 

each segment of the frequency spectrum. For example, when the frequency index between 151 
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and 200 Hz is greater than 18.395 million occurrences, then the algorithm may assume that the 

sound file is a leak.  The decision tree is initiated by checking the frequency index for sound 

waves that are less than 50 Hz. Figure IV-11 presents the results of the cross-validation analysis 

that is conducted on the decision tree model. The model displayed an average accuracy of 

85.89% with a possible deviation of 5.82% either positively or negatively.  

 

Figure IV-11: Accuracy of Decision Tree Leak Identification Model for Noise Loggers 

 

IV.3.1.2 Naïve Bayes Model 

Using the same data set that was utilized for the development of the DT model, a Naïve Bayes 

model is developed. The Naïve Bayes model provided multiple distribution graphs to create 

statistical thresholds between leak and no-leak at each band of the frequency diagram. Figure IV-

12 shows that the average cross-validated accuracy of the model is 83.35% with a possible 

deviation of 6.04%.  

 

 

Figure IV-12: Accuracy of Naïve Bayes Leak Identification Model for Noise Loggers 
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IV.3.1.3 Deep Learning Model  

The previous dataset was used a third time to develop a deep learning model to help differentiate 

between the leak and no-leak states. Figure IV-13 shows that the model had an average accuracy 

of 86.97% with a possible deviation of 6.38%.  

 

Figure IV-13: Accuracy of Deep Learning Leak Identification Model for Noise Loggers 

 

IV.3.1.4 Aggregation 

The study is performed on three levels. The first level has two accurate models with one model 

of varying accuracy. The second level has one accurate model with two models of changing 

accuracy. Finally, the third level has three models of varying accuracies. These three stages aim 

to explore the possible aspects of binary classification improvement through aggregation. 

 

Figure IV-14: Accuracy Change Impact for One Model With Two Models at 87% 
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The first stage can be summarized in figures IV-14 and IV-15. Figure V-14 shows the possible 

envelope of aggregation for two models with an average accuracy of 87%. The figure shows that 

an overall accuracy of 100% is attainable with a model that is at least 20% accurate. This model 

must fit the missing gaps in the two other models, which could be challenging to provide. 

Therefore, to achieve a good aggregation impact, the lowest recommended accuracy for the third 

model should be at least 80%, beyond which the minimum possible outcome starts to decline, 

thus minimizing the potential for error. Equation IV-9 summarizes the findings in Figure IV-14. 

The equation calculates the expected aggregated accuracy, Aagg, of two models with an average 

accuracy of 87% when aggregated with a third model of accuracy Avar. 

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆(2@87%) =  0.7982 + 0.1536 ∗ 𝐴𝐴𝑣𝑣𝑆𝑆𝑣𝑣     (IV-9) 

Figure V-15 studies the amplification impact of a varying model when aggregated with two 

models of average accuracy of 87%. The figure shows that a model less than 13% of accuracy 

will have a negative impact on the overall model, whereas having a model with over 85% 

accuracy will be more influential and beneficial for the overall model when aggregated by 

providing an added accuracy of 10%, thus making the accuracy of the overall model 97%.  

 

 

Figure IV-15: αAMP for One Changing Model with Two Models at 87% 
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The second level includes studying the aspects and impacts of having one model with an 

accuracy of 89%, aggregated with two stochastic models with accuracies between 0% and 100%. 

In Figure IV-16, the envelope for aggregating one accurate model at 89% accuracy with two 

random models of the same accuracy is displayed. It is noticeable that the two random models 

have a varied potential, they can improve the model up to 100% accuracy with 60% accuracy 

each, but they can also destroy the model if they both carry 0% accuracy, for example. 

Therefore, it is highly recommended to utilize models with at least 60% accuracy to improve the 

accuracy of a model. Meanwhile, the more accurate a model, the more efficient the outcome of 

the aggregation. Equation IV-10 was developed from the average -yellow- line in Figure IV-16. 

The equation represents a mathematical model that can predict the aggregated average of a 

model with 89% accuracy with two models of equal accuracy Avar. 

 

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆(1@89%) =  0.02913 + 0.9443 ∗ 𝐴𝐴𝑣𝑣𝑆𝑆𝑣𝑣     (IV-10) 

 

 

Figure IV-16: Impact Envelope for Two Models Aggregated with an 89% Model 
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Another studied aspect in this form of aggregation is αAMP. Figure IV-17 shows that the model 

does not benefit much from aggregation until the two models are at least 88% accurate where the 

potential benefit above 88% value can reach help increase the accuracy of the aggregated output 

to 100%. Since the model is 89% of the time accurate, it is challenging to boost its accuracy with 

just any model and therefore the results of the figure present a valid point for this particular 

aggregation.  

 

 

Figure IV-17: αAMP for Two Models Aggregated With One Model at 89% 
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to improve by aggregation, and therefore it would be a recommended approach. The average 

expected accuracy, the yellow line, shown in the figure can be illustrated by equation IV-11. The 

equation shows that the predicted probability of an aggregated model using three random binary 

classification models of equal accuracies is a quadratic equation with Avar as its only variable. 

 

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆(3 𝑅𝑅𝑚𝑚𝑚𝑚𝐴𝐴𝑅𝑅𝑚𝑚 𝑀𝑀𝑅𝑅𝐴𝐴𝑚𝑚𝐴𝐴𝑀𝑀) = 0.03066 + 0.2234 ∗ 𝐴𝐴𝑣𝑣𝑆𝑆𝑣𝑣 + 0.7562 ∗ 𝐴𝐴𝑣𝑣𝑆𝑆𝑣𝑣2            (IV-11) 

 

 

Figure IV-18: Aggregation Impact of Three Changing Models 
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extra 5% accuracy on average and 2% for 90% accurate models. The extent of the 

implementation of the aggregation model is tested in an acoustic leak detection and leak 

differentiation model. The model aims to differentiate between leak states and no leak states, but 

more importantly, to successfully identify leak sounds. Three binary classification models are 

developed using three techniques: Decision Tree (DT), Deep Learning (DL) and Naïve Bayes 

(NB). Those models are each presented with the same classification problem for an experimental 

data set of leak sounds and pump sounds. Table IV-2 shows the original accuracies of the models 

used in the development of the aggregation model. Decision Tree has an accuracy of 85.89%, 

Naïve Bayes has an accuracy of 83.35% and Deep Learning has an accuracy of 86.93%. 

 

 
Figure IV-19: αAMP of Three Models Changing Accuracies 
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Table IV-2: Aggregation Results of Leak Identification Model 

Model Decision Tree Naïve Bayes Deep Learning 
Original Accuracy (%) 85.89 83.35 86.93 

Aggregation Accuracy (%) 100 
 

IV.3.2 Acoustic Leak Pinpointing Model Implementation and Results  

In this section, multiple steps are utilized for the development of a series of models for leak 

pinpointing in pressurized water mains using acoustic loggers. The initial step is to develop a 

model using best-subset analysis of the available data that is capable of pinpointing leaks. The 

second step is to use one model to detect its counterpart. Finally, a combination of the two 

models are utilized and XL and XR models are utilized to determine PXL and PXR, i.e. the 

percentages of the distances from the left and right sensors over the total distance between the 

two sensors.  

The primary step is best-subset analysis. Figure IV-20 shows a sample of the best-subset analysis 

performed for XL. The analysis consists of analyzing 12 variables derived from the analysis of 

correlated leak signals. The parameters describe the received signals and the relationship 

between those signals. The best subset analysis would then output a series of values that describe 

the statistical relationship between the desired output and the parameters at hand. The main 

aspects to study are Mallows Cp, R-squared and S. Mallows Cp represents the statistical 

relationship between the number of variables and the model A good model is expected to have a 

Mallows Cp close to the number of variables plus one constant. The last model that is dubbed 

number 5 and utilizes all the available parameters has a Mallows Cp of 13, which is precisely 

equal to the number of variables 12 plus one constant. R-squared is the correlation factor that 

identifies how statistically significant the relationship between the variables and the output is. 

Therefore, the higher the r-squared, the better for the soundness of the model. Finally, S 
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represents the standard error for the prediction provided by the model in the same units as the 

desired output. For example, the final model with 12 variables shows a standard error of 1.9569 

meters, implying that whenever this model makes a prediction, it is highly likely for the exact 

value to be within a range of ±1.9569 meters.  

 

 

Figure IV-20: Best Subset Analysis Report for XL 

 Best Subsets Regression: XL versus D, FI 1, ... 
Response is XL 
                                                                     S 
                                                                     i 
                                                                     g 
                                                                     n 
                                                                     a 
                                                                     l 
                                                                     L 
                                                                     a 
                                                                     g 
                                                                 S s V 
                                                                 i i a 
                                                                 g g l 
                                                                 n n u 
                                                           S   d a a e 
                                                     L S L p d B l l 
                                                     e p e r B   d d ( 
                                                     v r v e   R e e 1 
                                                 F F e e e a L i v v 0 
                                                 I I l a l d e g     ^ 
             R-Sq    R-Sq                              d     f h S S 8 
Vars  R-Sq  (adj)  (pred)  Mallows Cp       S  D 1 2 1 1 2 2 t t 1 2 ) 
   1  45.9   45.6    45.2     18370.2  19.340  X 
   1  22.3   21.9    21.1     26482.1  23.185    X 
   2  65.0   64.7    64.3     11812.4  15.592  X       X 
   2  61.8   61.4    61.1     12925.5  16.299  X X 
   3  74.6   74.2    73.8      8528.3  13.321  X       X           X 
   3  73.0   72.6    72.2      9082.9  13.739  X       X   X 
   4  89.1   88.9    88.7      3553.8  8.7466  X   X X X 
   4  87.2   86.9    86.5      4221.5  9.4961    X   X X           X 
   5  94.3   94.2    94.0      1765.1  6.3281  X X   X X           X 
   5  94.2   94.1    94.0      1794.8  6.3763  X   X X X           X 
   6  97.8   97.7    97.7       581.9  3.9660  X X X X X           X 
   6  97.1   97.0    96.9       814.7  4.5331  X X   X X X X 
   7  98.8   98.7    98.7       248.5  2.9722  X X   X X X X     X 
   7  98.6   98.5    98.5       314.8  3.1959  X X X X X X X 
   8  99.2   99.2    99.2        84.7  2.3265  X X X X X X X     X        6 
   8  99.2   99.2    99.1        94.4  2.3700  X X X X X X X         X 
   9  99.5   99.4    99.4         8.2  1.9473  X X X X X X X   X X        7 
   9  99.4   99.4    99.4        17.2  1.9951  X X X X X X X X   X 
  10  99.5   99.4    99.4         9.2  1.9471  X X X X X X X   X X   X    1 
  10  99.5   99.4    99.4         9.8  1.9505  X X X X X X X   X X X      2 
  11  99.5   99.4    99.4        11.0  1.9515  X X X X X X X   X X X X    3 
  11  99.5   99.4    99.4        11.0  1.9517  X X X X X X X X X X   X    4 
  12  99.5   99.4    99.4        13.0  1.9569  X X X X X X X X X X X X    5 
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IV.3.2.1 Initial Pinpointing Models  

The first developed models for leak pinpointing rely on performing a best-subset analysis 

through all the available parameters for XL and XR. The models are represented in Equations IV-

12 and IV-13. The primary variables under study are D, the distance between the two sensors 

that detected the leak, FIn, the frequency index for each signal received from either the left or the 

right sensor, Leveln, the maximum sound level in decibels detected in the sound signal received 

from either the left or right sensors, Spreadn, the difference between the maximum heard sound 

in decibels and the least heard sound, and finally σNS, which represents the standard deviation of 

the signal decibels in either the left or right sensor.  

 

𝑋𝑋𝐿𝐿(1) = −7605 + 0.17604 ∗ 𝐷𝐷 − 15.098 ∗ 𝐹𝐹𝐼𝐼𝐿𝐿 + 6.808 ∗ 𝐹𝐹𝐼𝐼𝑅𝑅 + 189.57 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝐿𝐿 − 34.915 ∗

𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝐿𝐿 − 16.631 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝑅𝑅 + 11.446 ∗ 𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝑅𝑅 + 14.89 ∗ 𝜎𝜎𝐿𝐿𝑆𝑆    (IV-12) 

 

The initial models present a good description of the leak pinpointing phenomenon and a good 

projection for the estimation of the location of future leaks. In Figure IV-21, the XL model of 

equation IV-12 is displayed in red, surrounded by various data points used for testing and 

validation. The figure shows that the model has a limited number of outliers. On the statistical 

level, the model has a p-value that is less than 0.05, which attests to the statistical significance of 

the model in determining the location of the leak. Additionally, the figure shows that the r-

squared of the model is estimated at 99.49%, proving that the equation is highly correlated with 

the reality of acoustic leak detection. All testing points within a 4-meter radius from the actual 

location of the leak and thus the accuracy of this model is ± 4m. Table V-10 further proves the 

statistical significance of the developed model by providing an F-value of 3029.13, the high 
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value of the f-test when coupled with an r-squared that is close to 100% and a p-value that is less 

than 0.001. This negates the null hypothesis and confirms the robustness of the model.  

 

 

Figure IV-21: Acoustic XL(1) Regression Prediction Report 

 

Furthermore, the table shows that the progression of the p-value has no fluctuations when all 

variables are utilized. Similarly, equation IV-13 describes the leak location from the right sensor 

to the expected leak location utilizing similar parameters to equation IV-12.  
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𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝑅𝑅 ∗ 𝜎𝜎𝑅𝑅𝑆𝑆 + 7.96 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝑅𝑅 ∗ 𝜎𝜎𝑅𝑅𝑆𝑆       (IV-13) 

 

Figure IV-22 provides the analysis of the model. The figure shows the model in equation IV-13 

as a red line surrounded by the testing envelope. The testing data shows that the model is usually 

with 19 meters from the exact leak location, thus having an accuracy of ±19 meters. The model 
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presents a p-value that is less than 0.05 and therefore the model is statistically significant and 

capable of predicting the location of the leak in the right direction. Moreover, the model has an r-

squared value of 91.69%, which shows a significant correlation between the model and the 

location of the leak. Finally, the model has a correlation factor of 0.96 between the predicted 

value and the exact value of the leak location. To complement the findings of the model analysis, 

the f-value of the model is calculated and listed in Table IV-3 to be 342.47, which is a value 

greater than zero and proves the significance and quality of the developed model. Additionally, 

throughout development, the utilized variables do not create any increase in the p-value of the 

model.  

 

 

Figure IV-22: Acoustic XR(1) Regression Prediction Report 
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IV.3.2.2 Nested Pinpointing Models  

The concept of nested models suggests using the results of the opposing initial model to deduce 

the complementary value for leak pinpointing. For example, the value of the original XR(1) is 

used in the regression of the XL(2). As for XL(2), the model is illustrated by equation IV-14. 

Through the regression of this model, the Minitab software repeatedly eliminates XR(1) and 

labels it as insignificant. Yet, due to the addition of the lag value between two signals, a new 

model is derived regardless of the contribution of the initial model. 

 

𝑋𝑋𝐿𝐿(2) = 34.05 + 0.1276 ∗ 𝐷𝐷 − 15.06 ∗ 𝐹𝐹𝐼𝐼𝐿𝐿 − 20.95 ∗ 𝐹𝐹𝐼𝐼𝑅𝑅 + 53.82 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝐿𝐿 − 19.89 ∗

𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝐿𝐿 − 52.16 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝑅𝑅 + 35.07 ∗ 𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝑅𝑅 + 39.74 ∗ 𝜎𝜎𝐿𝐿𝑆𝑆 − 29.22 ∗ 𝜎𝜎𝑅𝑅𝑆𝑆 − 53.35 ∗

𝐿𝐿𝑚𝑚𝑆𝑆𝐿𝐿𝑚𝑚𝐴𝐴𝐴𝐴𝑚𝑚          (IV-14) 

 

The results and accuracy of the model is summarized in Figure IV-23, where the model is 

displayed in red surrounded by the testing data points for prediction. The model has a few 

outliers that impact the overall accuracy. The model also has a p-value less than 0.001 to validate 

the statistical soundness of the model. The r-squared of the model is assessed to be 97.08%, 

presenting a strong relationship between the variables and the desired output. Finally, the 

correlation coefficient has a value of 0.99 to display the high quality of the model in representing 

the phenomenon under study. The f-value in Table IV-3 confirms the findings of the r-squared 

and the p-value. The f-value of this model is estimated to be 2788.32, which is a value greater 

than zero. Additionally, the variables utilized in this model have minimal to no impact on 

increasing the p-value of the model.  
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Figure IV-23: Acoustic XL(2) Regression Prediction Report 

 

Similarly, a model for XR is developed, named XR(2) and presented by equation IV-15. On the 

contrary of XL(2), XR(2) utilizes the value of XL presented by the XL(1) model to determine XR. 

Therefore, this model is a nested model having to use two regression models to achieve its final 

value.  

 

𝑋𝑋𝑅𝑅(2) =  −252.25 + 118.01 ∗ 𝐹𝐹𝐼𝐼𝐿𝐿 + 164.11 ∗ 𝐹𝐹𝐼𝐼𝑅𝑅 − 422 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝐿𝐿 + 155.89 ∗ 𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝐿𝐿 +

408.66 ∗ 𝐿𝐿𝑚𝑚𝐿𝐿𝑚𝑚𝐴𝐴𝑅𝑅 − 274.77 ∗ 𝑆𝑆𝐴𝐴𝑆𝑆𝑚𝑚𝑚𝑚𝐴𝐴𝑅𝑅 − 311.35 ∗ 𝜎𝜎𝐿𝐿𝑆𝑆 + 228.91 ∗ 𝜎𝜎𝑅𝑅𝑆𝑆 + 417.94 ∗ 𝐿𝐿𝑚𝑚𝑆𝑆𝐿𝐿𝑚𝑚𝐴𝐴𝐴𝐴𝑚𝑚 +

6.836 ∗ 𝑋𝑋𝐿𝐿(1)           (IV-15) 

 

The analysis of the developed equation is found in Figure IV-24. The figure shows that the 

model has minimal outliers and an accuracy of 8 meters. The p-value of the model is less than 

0.001 and therefore the model is statistically sound, and the null hypothesis is void. The r-
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squared of the model is 98.23%, proving the high quality of the correlation. The correlation 

factor between the predicted, tested results and the real values is 0.99, proving a high correlation 

between the model and the phenomenon described by the model. The f-value of the model from 

Table IV-3 is calculated to be 934.89, which is a significantly greater value than zero and thus 

proves that the model is statistically robust and significant. Additionally, the utilized variables 

provide no impactful p-value, thus negating the null hypothesis.  

 

 

Figure IV-24: Acoustic XR(2) Regression Prediction Report 

 

IV.3.2.3 Combined Pinpointing Models 

Another concept for regression equations is to combine the models into a third new model using 

the equations in sections IV.3.2.1 and IV.3.2.2 The results of the two models are used for a new 

regression analysis against the real XL and XR values. The result of the regression are two new 

sets of equations that aim to form a relationship between the equations of each class to reduce the 
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noise and make the prediction more accurate. The models are dubbed XLF and XRF and are 

illustrated by equations IV-16 and IV-17. Equation IV-16 aims to set up a relationship between 

the output of equations XL(1) and XL(2). The equation also tries to develop a balanced state 

between the two equations such that it minimizes the error developed by both equations and 

gives a more stable final output.  

 

𝑋𝑋𝐿𝐿𝐿𝐿 =  0.676 + 1.0054 ∗ 𝑋𝑋𝐿𝐿(1) − 0.0056 ∗ 𝑋𝑋𝐿𝐿(2)     (IV-16) 

 

In Figure IV-25, the aspects of equation IV-16 are studied. The model is displayed as a red line 

surrounded by the testing data used for model validation. The model has displayed a deviation 

accuracy of ± 3.8 meters to be 95% accurate in detection. Yet, the data points displayed in the 

figure show a much narrower window of prediction and a higher level of accuracy than the one 

reported by the software. Furthermore, the model has a p-value that is less than 0.001, which 

negates the null hypothesis and testifies for the health of the model. Finally, the model has a 

99.49% value for r-squared, thus proving the significant level of correlation between the model 

and the variable of interest. To advance the model, the f-value of the equation is calculated and 

displayed in Table IV-3. The f-value is equal to 18000, which attests to the high level of 

significance of the model. Furthermore, XL(1) presents a high p-value in the model that is 

rectified by the addition of XL(2) to the model to make the p-value of the model less than 0.000. 
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Figure IV-25: Acoustic XLF Regression Prediction Report 

 

In parallel, a combinatorial model for XR is developed to mitigate the errors between the two 

previously developed models XR(1) and XR(2). The regression helps in developing a more 

comprehensible and straightforward equation that is much easier to realize and implement. The 

XRF developed model is displayed in equation IV-17.  

 

𝑋𝑋𝑅𝑅𝐿𝐿 =  1.035 − 0.1792 ∗ 𝑋𝑋𝑅𝑅(1) + 1.1689 ∗ 𝑋𝑋𝑅𝑅(2)     (IV-17) 

 

The analysis of the equation can be studied in Figure IV-26. The equation, marked in red, is 

surrounded by the testing data points with a detection accuracy envelope of ± 8 meters. On the 

other hand, the values displayed by the testing show a much higher and cleaner accuracy in 

detection with much less deviation. The p-value produced by the model is less than 0.001 to 

negate the null hypothesis. Furthermore, the r-squared of the model is evaluated at 98.38%, thus 

displaying a highly correlated relationship between the variables and the studied outcome. The 
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conclusion is confirmed by having a correlation coefficient of 0.99 for the model. Table IV-3 

displays the f-value of this model to be 5674.2, which is a highly significant value that confirms 

the results of r-squared and p-value. Additionally, throughout the development of the model, the 

constant value provides a high p-value for the model but is rectified by the addition of XR(1) and 

XR(2).  

 

 

Figure IV-26: Acoustic XRF Regression Prediction Report 

 

IV.3.2.4 PXL and PXR Models 

The final proposed conceptual model for the pinpointing of leaks within water mains monitored 

by acoustic loggers and listeners is the percentage model. The percentage model aims at 

developing an equation using the developed XLF and XRF and the distance between the two 

sensors, D, to determine a percentage value from the total distance. This model aims to mitigate 

the deviation to study if it can provide more accurate results in identifying the exact leak 
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location. The first model, illustrated by equation IV-18, represents the percentage of XL from the 

total distance between the two sensors, D. 

 

𝑃𝑃𝑋𝑋𝐿𝐿 =  44.037 + 1.1226 ∗ 𝑋𝑋𝐿𝐿𝐿𝐿 + 0.1312 ∗ 𝑋𝑋𝑅𝑅𝐿𝐿 − 0.5536 ∗ 𝐷𝐷   (IV-18) 

 

 

Figure IV-27: Acoustic PXL Regression Prediction Report 

 

The analysis of the model is summarized in Figure IV-27. The model is marked by the red line 

surrounded by black points that represent the testing data points. The average deviation of 

detection is displayed to be ± 6% of the value. The big distance can create confusions as it can be 

highly accurate for short distance problem where the two loggers are near each other. On greater 

distances, a percentage model can suffer from great deviations. The p-value of the model is less 

than 0.001, thus negating the null hypothesis. Additionally, the model has a high correlation 

percentage represented by having a 97.06% value for r-squared. Finally, the f-value and 

progressive p-values of the variables can be viewed in Table IV-3. The f-value of this model is 
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estimated at 1980.91, which proves the statistical significance of the model. Furthermore, XRF 

provides an impact on the p-value but the overall value is rectified with the addition of the total 

distance D. Complementarily, a model for PXR is developed to assist the PXL model. The 

variables are similar to the PXL model as they include XLF, XRF and the distance between the two 

sensors, D. The output of the regression analysis is represented by equation IV-19 

complementing the previously developed equation.  

 

𝑃𝑃𝑋𝑋𝑅𝑅 =  55.963 − 1.1226 ∗ 𝑋𝑋𝐿𝐿𝐿𝐿 − 0.1312 ∗ 𝑋𝑋𝑅𝑅𝐿𝐿 + 0.5536 ∗ 𝐷𝐷   (IV-19) 

 

 

Figure IV-28: Acoustic PXR Regression Prediction Report 

 

The analysis of the model is highlighted by Figure IV-28 showing a deviation accuracy of ±7%. 

The p-value of the equation is less than 0.001 to eliminate the null hypothesis and assure the 

soundness of the model. Finally, the r-squared of the model is high as it is estimated at 97.06%. 

Additionally, the f-value of the model in Table IV-3 is equal to that of the PXL model at 1980.91, 
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confirming that the two models complement each other. Furthermore, XRF provides an impact on 

the p-value but the overall value is rectified with the addition of the total distance D. 

 

IV.3.2.5 Statistical Analysis of Developed Models 

The developed statistical models require statistical analysis to validate their strength and 

applicability to the performed experiment and real-world applications. Table IV-3 has been 

extensively utilized in the previous sections to highlight the values and results of the statistical 

analysis of the developed models. Table IV-3 is comprised of six columns. The first column 

represents the code number of the equation under study. The second column represents the 

number of the equation in the text. The third column represents the respective r-squared 

percentage for the equation. The fourth column represents the overall p-value of the model. If the 

p-value is less than 0.001 and the r-squared value is closer to 100%, it is plausible to check for 

the fF-value. If the fF-value is greater than zero, the model is statistically significant. The higher 

the fF-value, the better it attests to the statistical significance of the model. The final column in 

the table displays the change in the p-value at each step of the model development and the 

change implied by each variable in the final version of the equation. Hence, the order of the 

variables listed within the table is of high significance.  

 

 

 

 

 

 



141 
 

Table IV-3: Advanced Statistical Analysis of Acoustic Leak Pinpointing Models 

Code 
Model 

Equation 
Number 

R2 (%) Model 
P-value F-value Coefficient P-value 

1 IV-12 99.49 < 0.001 3029.13 

• Constant = 0.000 
• D = 0.000 
• FIL = 0.000  
• FIR = 0.000    
• LevelL = 0.000   
• SpreadL = 0.000 
• LevelR = 0.000  
• SpreadR = 0.000 
• σSL = 0.000 

2 IV-13 91.69 < 0.001 342.47 

• Constant = 0.000 
• SpreadR = 0.000 
• LevelR = 0.000 
• D = 0.000 
• σRS = 0.000 
• LevelR* σRS = 0.000 
• SpreadR* σRS = 0.000 

3 IV-14 97.08 < 0.001 2788.32 

• Constant = 0.000 
• SpreadR = 0.000  
• LevelR = 0.000 
• D = 0.000 
• σRS = 0.037 
• FIL = 0.000 
• FIR = 0.000 
• LevelL = 0.000 
• SpreadL = 0.000 
• σLS = 0.000 
• Lag Value = 0.000 

 

4 IV-15 98.23 < 0.001 934.89 

• Constant = 0.000 
• SpreadR = 0.000 
• LevelR = 0.000 
• σRS = 0.000 
• FIL = 0.000 
• FIR = 0.000 
• LevelL = 0.000 
• SpreadL = 0.000 
• σLS = 0.000 
• Lag Value = 0.000 
• XL(1) = 0.000 
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5 IV-16 99.49 < 0.001 18000 
• Constant = 0.012 
• XL(1) =  0.872 
• XL(2) =  0.000 

6 IV-17 98.83 < 0.001 5674.2 
• Constant = 0.078 
• XR(1) = 0.000 
• XR(2) = 0.000 

7 IV-18 97.06 < 0.001 1980.91 

• Constant = 0.000 
• XLF = 0.000 
• XRF = 0.041 
• D = 0.000 

8 IV-19 97.06 < 0.001 1980.91 

• Constant = 0.000 
• XLF = 0.000 
• XRF = 0.041 
• D = 0.000 

 

IV.3.2.6 Comparative Validation of Developed Models 

Following the development of the four types of models are illustrated in the previous sections. 

Those models should be validated against real data extracted from the field. Therefore, a leak has 

been discovered by the city of Montreal on Viger street and its data is collected in the form of 

sound signals. The sound signals are analyzed as explained earlier and their data is input into the 

developed models to analyze their results. Furthermore, the water service agency in the city of 

Montreal has used geophones and hydrophones to verify the exact location of the leak from the 

sensors that detected its existence. Table IV-4 presents the results of the findings from testing the 

models against the real leak. The XL location of the leak is 84.9 meters and the XR distance of the 

leak is 154 meters. Accordingly, the results of each class of models are recorded to test their 

extent in detection. The initial models have the highest levels of metric deviations with 3.2 

meters of deviation in the left direction and 16.7 m deviation in the right direction. On the other 

hand, the second set of models has performed better than the initial models with a 20-centimeter 

deviation in the left direction and no deviations in the right direction. The combined models do 

well in mitigating the deviations of the initial model by complementing it with the results of the 
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second model. The deviations are at 1.9 meters from the left direction and 3 meters from the 

right direction. Finally, the percentage models have the most significant deviation due to the size 

of the distance between the two sensors with 11% deviation in each direction. It is safe to 

conclude that the second set of models are capable of accurately detecting leaks, yet it is highly 

recommended to use all the available models to have a sense of the leak situation that is being 

studied.  

 

Table IV-4: Viger Street Leak Validation of Leak Pinpointing Models 

 Actual 
Location 

Initial 
Models 

Second 
Models 

Combined 
Models 

Percentage 
Models 

XL(m) 84.9 81.7 84.7 83 24% 
XR(m) 154 170.7 154 151 76% 

Deviation 
XL(m) ---- 

-3.2 -0.2 -1.9 -11% 

Deviation 
XR(m) +16.7 0.0 -3.0 +11% 
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V CHAPTER V: REPAIR PRIORITIZATION MODELS 

V.1 Repair Prioritization Model Development Methodologies 

The main aim of this section is to develop novel approaches for analyzing multiple deteriorating 

events that coexist at the same time. After analysis, the events are then prioritized based on a set 

of selection criteria that is defined by the user to maximize the expected benefit against the 

spending on the repair events. This chapter fulfills the third objective of this thesis and that is to 

build an optimized model for leak repair prioritization.   

V.1.1 The Lazy Serpent Algorithm 

Municipalities deal with more than one leak at the same instance and hence face the question of 

“which leak has the priority over the rest to repair?” This section proposes a new prioritization 

algorithm with a three-dimensional approach to tackle the leak prioritization problem. Figure V-

1 presents a preliminary model for the Lazy Serpent Algorithm that is currently under 

development. To develop the Lazy Serpent Algorithm, research is needed in terms of simulation 

techniques and optimization algorithms. The primary purpose of having a background simulation 

technique is to predict the behavior of the leak (event) as time progresses, whereas optimization 

algorithms are utilized to determine the best path for repairing the maximum number of leaks 

with the minimum amount of damages or effects as predefined by the user. The impact estimator 

is a smart decision-making merger between simulation and optimization that allows the serpent 

(resource or repair team) to select the least problematic event; this approach is currently still 

under development. The Lazy Serpent Algorithm can tackle the time consumption problem in 

other prioritization algorithms by immediately going towards a user-oriented near-optimal 

solution. This is done by the algorithm’s capability to immediately start constructing a solution 

that optimizes the priorities provided by the user. Furthermore, the three-dimensional definitions 
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of the Lazy Serpent Algorithm allow municipalities and other organizations that require 

prioritization of independent events to define and select the criteria that most matter and define 

their changes. Thus, the algorithm creates a field for analysis that targets only their needs based 

on their available data. Additionally, the Lazy Serpent Algorithm is created to solely solve the 

prioritization problem. Therefore, it is much simpler to use and implement than other algorithms 

requiring a lot of definitions and setups. Figure V-2 summarizes the components of the Lazy 

Serpent Algorithm. The algorithm contains two main compartments, boundaries and inputs. The 

input compartment is composed of two partitions, that are inputs on the level of events and 

inputs on the level of resources (serpents). 

 

 

Figure V-1: Lazy Serpent Algorithm Preliminary Model 

 

Each partition has its type of inputs. There are four main types of event inputs and they are (1) 

Basic Events (BE), (2) Serpent-Specific Events (SSE), (3) Multi-Serpent Events (MSE) and (4) 
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Any-Serpent Events (ASE). MSEs are divided into two types, (1) Simultaneous (SMSE) and (2) 

Consecutive-Layers (CLMSE). Accordingly, the input of resources (serpents) is characterized by 

three primary attributes as (1) Behavior, (2) Color and (3) Consumption Rate. Behavior is 

divided into two behaviors as (1) Establishing Behaviors and (2) Returning Behaviors. 

Establishing behaviors can be either independent or pack mode behaviors.  

 

 

Figure V-2: Lazy Serpent Algorithm Components Summary 

 

The second compartment is boundaries, which are the constraints of the algorithm. The Lazy 

Serpent Algorithm has two main constraints as (1) Time and (2) Energy (funds or money). Each 

of those two constraints can be used separately or they can be used together. Another option is to 
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avoid the use of constraints to identify the ideal solution. The aspects above will be defined and 

explained further throughout this section. The current version of the algorithm is crude and 

requires further development on multiple aspects. Yet, it can be summarized as follows:  

 

V.1.1.1 Definition 

The Lazy Serpent Algorithm simulates the motion of hungry serpents (snakes) throughout a field 

trying to eat hopping rabbits or rolling eggs (moving events) in the 3D field. The serpent is lazy 

and thus it tries to follow the most profitable path with the least effort. Besides, when a serpent 

deals with an event, the serpent will not be available within the specified amount of the time 

required to fix the leak (event). The algorithm relies on representing resources as serpents and on 

upcoming events as moving eggs or hopping rabbits. The events are expected to have 

an initial condition and equations that represent their motion through the three dimensions of the 

field. The three dimensions are specified by the user with a minimum and a maximum and they 

are preferred to be equally weighted and uniform in direction (decreasing or increasing from 

maximum to minimum). Each event is expected to move with each of the three dimensions X, Y, 

and Z with a specified dimension equation f(x), f(y) and f(z), as predetermined by the user. Each 

event is expected to have a weight, which represents the amount of time required to complete 

this task/event. During this time, the resource (serpent) attached to this event is considered busy 

and unable to function until the weight time passes.  

 

V.1.1.2 Inputs  

To operate the Lazy Serpent Algorithm, a set of inputs is required to set up the three-dimensional 

space. Primarily, the events are distributed based on the three axes of importance specified by the 
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user, with their specific range preferably 0 to 10. The inputs are classified on three levels events, 

resources and boundaries. The events in this specific case are discovered leaks and their 

respective information, as they are required by the algorithm and are further explained in section 

V.1.1.2 part A. Resource input, also referred to as serpent input, indicates the number of 

available resources with their respective specific algorithm information. In the particular 

example given, it refers to the number of available repair teams as highlighted in section V.1.1.2 

part B.  The third type of input is boundaries; however, boundaries are not a necessity for the 

operation of the lazy serpent and thus the algorithm can run without any constraints to find the 

optimal solution regardless of the time or the resources required. However, constraints can be 

added to maximize or minimize the particular aspect the user wishes to tackle. For instance, a 

time constraint can be added to let the algorithm maximize the number of repairs in the specified 

limit. Boundaries are further explained in section V.1.1.2 part C.  

 

A. Event Input 

An event is simply an occurrence that has a certain state at the time it takes place. Thus, an event 

within the Lazy Serpent Algorithm is assumed to have an initial condition on all three axes of 

assessment (x0, y0, and z0), in addition to the change of condition functions in each axis (f(x), f(y), 

and f(z)). The change equations are assumed to be a function of the same unit of time. In addition 

to the initial condition and the expected change in condition through time, an event will have two 

other parameters that identify the time expense and the financial expense and they are tn and cn. 

Tn indicates the amount of time needed for the complete disposal of the event and cn indicates the 

total cost needed for handle the event completely. Therefore, an event A can be represented as A 

(x0, y0, z0, f(x), f(y), f(z), tn, cn). The definition is further described in Equation (V-1), where the 
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initial condition is part of the motion equations f(x), f(y), and f(z). The equations are composed of 

the initial condition x0, y0 and z0 along with their relative variation through time g(t). 

𝐴𝐴 =  �
𝑓𝑓(𝑥𝑥) =  𝑥𝑥0 + 𝑆𝑆𝑥𝑥(𝐴𝐴)
𝑓𝑓 (𝑦𝑦) =  𝑦𝑦0 + 𝑆𝑆𝑑𝑑(𝐴𝐴)
𝑓𝑓(𝑧𝑧) =  𝑧𝑧0 +  𝑆𝑆𝑧𝑧(𝐴𝐴)

 , 𝐴𝐴𝑛𝑛, 𝑐𝑐𝑛𝑛                                               (V-1) 

For example, let us assume an event A with initial conditions (6,8,4) and a change in time g (-

0.1t, -0.4t, 0) and a tn of 8 days and a cn of 100,000$. Therefore, f(x), f(y) and f(z) would be (6-0.1t, 

8-0.4t, 4). In case we want to determine the condition after four days of the initial investigation, 

we replace t with 4 and the results would be (6-0.1(4) = 5.6, 8-0.4(4) = 5.4, 4) and A4 would be 

(5.6, 5.4, 4). Throughout the development of this algorithm, multiple conditions have been 

identified that require the existence of multiple types of events to deal with each type of real-life 

event appropriately. The identified event types are enlisted as follows:   

 

i - Basic Events (B): 

The first type of events is a basic event. A basic event is an event that has no specific nature or a 

specific approach such as delivering a simple item or refilling a gas tank. Regarding leaks, it can 

be iterated as a simple leak that any available team can easily dealt. Thus, a basic event would 

have no specific color and can be handled by any resource as illustrated in Figure V-3. The 

drawing illustrated in Figure V-3 shows that the basic Event A is capable of getting eaten by any 

of the three serpents on the basis of first come first served.  A basic event is represented as a 

colorless circle with a dotted circumference. The value eight located within event A represents 

the weight tn that presents the time required to complete event A. Equation (V-2) presents the 

mathematical and logical presentation of basic events. For a devouring to occur (e.g. event 

handling or leak repair for example), the event must be at the shortest distance from any serpent 
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and that serpent must be idle. If the two conditions are met, the event begins to be devoured and 

thus, in real life, the leak repair begins. 

(𝒅𝒅 = 𝑺𝑺𝒊𝒊𝒔𝒔⋀𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔 = 𝒊𝒊𝒅𝒅𝒍𝒍𝒍𝒍)
 
⇒  𝒅𝒅𝒍𝒍𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔 = 𝒔𝒔𝒔𝒔𝒅𝒅𝒍𝒍                           (V-2) 

 

 

Figure V-3: The Reaction of Serpents to Basic Events 

 

ii - Serpent Specific Events (SS): 

The second type of events are those that can be solved by only one type of resource. In this 

algorithm, they are dubbed as “Serpent Specific Events” and are represented by a specific color. 

Thus, only the matching serpent can handle this event and any other type of serpent would 

merely ignore it. The illustration in Figure V-4 displays an event B colored in blue. Thus, the 

orange and green serpents are unable to react event B and only the blue serpent can react event B 

and complete it, whereas the rest stay idle even if they are available. A specific event is 

represented as a full circle filled with the color of the necessary type of serpents along with the 

time weight t0. Mathematically, serpent specific events can be illustrated using Equation (V-3). 

The equation shows that, to have an event interaction between serpent and event, three 
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conditions must be met. The distance conditions and the idle condition are the same from the 

previous section. The new condition for this type of events is color. The color of the event 

(colore) and the color of the serpent (colors) must match precisely to start the interaction.  

(𝒅𝒅 = 𝑺𝑺𝒊𝒊𝒔𝒔⋀𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔 = 𝒊𝒊𝒅𝒅𝒍𝒍𝒍𝒍⋀ 𝒄𝒄𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒍𝒍 = 𝒄𝒄𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒔𝒔)
 
⇒  𝒅𝒅𝒍𝒍𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔 = 𝒔𝒔𝒔𝒔𝒅𝒅𝒍𝒍               (V-3) 

 

Figure V-4: The Reaction of Serpents to Serpent Specific Events 

 

iii - Multi-Serpent Events (MS): 

In real life, not all events or actions require one resource or team to be completed. As a result, 

multi-serpent events have been developed. Multi-serpent events are events that require more than 

one resource (serpent) to complete and they are divided into two types: 

 

a – Simultaneous: a simultaneous event is an event that requires the existence of two 

specific resources or more at the same time to be completed. Once commenced, all resources will 

suffer the same delay (tn) required for the event but the cost of the event (cn) will be one 

regardless of the number of used resources. Further costs as the operational costs of each serpent 

are referred to as energy consumption; this concept will be later explored in Section III.2 part B. 
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Figure V-5 displays how serpents react in the presence of a simultaneous event. Event C is not 

tackled when either the blue or green serpent is available; then, event C is tackled and completed. 

A simultaneous event is drawn as a circle that is equally divided by the colors representing the 

required serpents along with the amount of the required time t0.  

 

 

Figure V-5: The Reaction of Serpents to Simultaneous Multi Serpent Events 

 

On the level of mathematical representation, Simultaneous Multi Serpent Events (SMSE) can be 

represented as a decision tree with three main decision criteria that must coexist at the same time. 

Each criterion has two primary objectives to be validated for it to be true. When all three criteria 

are valid, then the execution can be carried out. Equation (V-4) illustrates this idea by 

highlighting the three required conditions to carry out the assessment leading to decision making. 

The first criterion is distance, where the two serpents are checked for their proximity from the 

event. The second is idleness and the last criterion is color matching.  
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(𝒅𝒅𝟏𝟏 && 𝒅𝒅𝟐𝟐 = 𝑺𝑺𝒊𝒊𝒔𝒔⋀𝒔𝒔𝟏𝟏 && 𝒔𝒔𝟐𝟐 = 𝒊𝒊𝒅𝒅𝒍𝒍𝒍𝒍⋀ 𝒄𝒄𝒔𝒔𝟏𝟏 && 𝒄𝒄𝒔𝒔𝟐𝟐 = 𝒄𝒄𝒍𝒍𝟏𝟏 && 𝒄𝒄𝒍𝒍𝟐𝟐)
 
⇒𝒅𝒅𝒍𝒍𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔 =

𝒔𝒔𝒔𝒔𝒅𝒅𝒍𝒍           (V-4) 

 

b – Consecutive-Layers: Although prioritization algorithms do not normally deal with events 

with interdependencies, a certain type of events was noted with certain interdependencies that 

require being tweaked into the Lazy Serpent Algorithm. Consecutive-Layers events are those 

that require more than one resource to be completed. The required resources must be available in 

a certain order. Therefore, consecutive-layers events are considered layered events that change 

their color after a serpent completes a layer to become another task that requires another 

resource. Figure V-6 illustrates this concept by displaying event D that has a green outer layer 

and a blue sublayer. Event D will be treated as a green event until a green serpent (resource) is 

available to complete it. When completed, event D becomes a blue event and waits for an 

available blue serpent to be finalized. The blue serpent cannot tackle event D before the green 

serpent. Only after the green serpent is done, can the blue serpent tackle event D. In terms of 

cost, a consecutive-layers event will not be charged until completion, i.e. until all layers are 

resolved. In this figure, the first layer requires four days to be performed after which the event 

will become a blue event and require eight days to be finalized. On the level of coding and 

mathematical representation, consecutive-layers events are considered serpent specific events 

based on their initial layer as in Equation (V-3). However, after the primary interaction is 

completed, the devour command will trigger another command as in Equation (V-5), which is 

the transform command. The transform command transforms the event into another event after 

the serpent-event interaction. The equation displays the transformation of an event Ai from it is 

first layer (Ai1) to its second layer (Ai2). 
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𝒅𝒅𝒍𝒍𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔 = 𝒔𝒔𝒔𝒔𝒅𝒅𝒍𝒍
 
⇒  𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒊𝒊𝒔𝒔𝒔𝒔𝑺𝑺 (𝑨𝑨𝒊𝒊𝟏𝟏 𝒔𝒔𝒔𝒔 𝑨𝑨𝒊𝒊𝟐𝟐)                                  (V-5) 

 

 

Figure V-6: The Reaction of Serpents to a Consecutive Layers Multi Serpent Events 

 

iv - Any-Serpent Events (AS): 

Another type of events in the field is characterized as those that can be performed by a specific 

pool of resources. Thus, the difference between a basic event and an any-serpent event is that any 

existing resource can handle basic events, whereas any serpent events are handled by any serpent 

from a predefined group of resources. Thus, as in Figure V-7, an any-serpent event is displayed 

as an equilateral triangle that is colored equally by the serpents (resources) capable of handling 

it. The figure shows event E is colored half orange and half blue, which means only the blue and 

the orange serpents can deal with event E. As a result, whichever of the two serpents is available 

first handles this task and has to spend the amount of time tn, which is 8 days in the case of 

Figure V-7, that is required for completion. At that time, the serpent is categorized as digesting 

(unavailable resource), which means busy and unable to move or leave the location of event E.  
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Regarding mathematical representation, any-serpent events are similar to serpent specific events 

except for the matching condition where the closest serpent must belong to a pool of colors. As 

in Equation (V-6), the serpent is first checked for proximity, then availability and idleness, and 

finally if it belongs to a predefined set of colors.  

(𝒅𝒅 = 𝑺𝑺𝒊𝒊𝒔𝒔⋀𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔 = 𝒊𝒊𝒅𝒅𝒍𝒍𝒍𝒍⋀ 𝒄𝒄𝒔𝒔𝒍𝒍𝒔𝒔𝒔𝒔𝒔𝒔 ∈ {𝒄𝒄𝒍𝒍𝟏𝟏, 𝒄𝒄𝒍𝒍𝟐𝟐})
 
⇒  𝒅𝒅𝒍𝒍𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔 = 𝒔𝒔𝒔𝒔𝒅𝒅𝒍𝒍             (V-6) 

 

 

Figure V-7: The Reaction of Serpents to Any Serpent Events 

 

B. Resource Input (Serpent Definition)        

All serpents are governed by one single motion or action type called behavior and each serpent is 

then defined based on color and consumption as the two main variables. Regarding color, each 

serpent can have only one color, which represents the type of action the resource (serpent) could 

perform. However, consumption signifies the amount of energy resource consumed per time (tn) 

by the resource. During the time required by the resource tn, the serpent is unable to move and is 

referred to by the term “digesting” (occupied) and stays at the location of the event until the 
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process is complete. Beyond the completion of an event, the serpents will react per a predefined 

behavior that governs the behavior beyond the task completion.  

The overall behavior defines the way the serpent behaves after devouring an egg (completing an 

event) and these reactions are divided into two main categories: 

 

i – Returning behavior, assuming that all serpents will return to their headquarters, i.e. the 

point of origin specified by the user, which is default set at (0, 0, 0). Therefore, whenever a 

serpent (resource) finishes a task, the serpent will return to the origin point to select the next best 

event to tackle. Figure V-8 displays this behavior as all serpents first set out to their targets and, 

after completing each task, the serpents shall return to the point of origin. Since the green serpent 

had the event with the lowest time consumption, it returns to the origin first and it immediately 

sets on to go to a new target if it exists, whereas the orange serpent would be the last to return to 

the origin point due to having its event requiring the most time.  

 

Figure V-8: Returning Serpents Schematic Explanation 
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ii – Establishing behavior: In practice, not all resources return to their starting point once 

they finish the task they are assigned. Rather, the resource would search for the problem nearest 

to its location to tackle it. Thus, the concept of establishing serpents or establishing behavior was 

developed to simulate the reality on the field. Establishing serpents can establish new origins as 

they are on their paths to determine the next best solution. Establishing serpents are divided into 

two main categories, independent and pack mode, and they are defined as follows: 

 

a - Independent: In this category, it is assumed that each resource selects the 

location of the finished task and establishes its respective location as a new point of 

origin. Immediately after setting the new point of origin, the serpent moves to select the 

event location closest to the newly established origin and solve it. After solving the 

second event, the serpent establishes the new location as a new origin point and this 

process goes on. Figure V-9 illustrates the approach with more clarity. As highlighted, all 

serpents start at the origin point (0, 0, 0) and then move towards their targets. Later, after 

completing their tasks, each serpent has its origin point and it selects its next target 

accordingly.  

 Figure V-9: Independent Serpent Behavior 
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b - Pack Mode: In some situations, a moving resource will be referenced as a 

strategic point or a moving command center that other units have to return to when they 

are done. Thus, a pack mode behavior requires the central resource to be selected and 

identified. The chief resource becomes the origin point as it moves and all other serpents 

have to return to the current location of the chief serpent (central resource) before going 

onto their next target. Figure V-10 displays this behavior by showing the chief blue 

serpent at the origin point before each serpent embarks on its task. After completion, all 

serpents return to the blue serpent’s current location before heading off to their new tasks.  

 

 

Figure V-10: Pack Mode Serpents Behavior 

 

C. Boundaries 

Boundaries are the third factor of setting the lazy serpent field. Although boundaries are not a 

must, they are critical to the decision-making process as they represent the constraints that the 

decision maker, e.g. municipalities and project managers, have at hand. The primary two 
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constraints for the Lazy Serpent Algorithm are time and energy (cost). Time as a constraint 

represents the total amount of time consumed by the overall algorithm and energy represents the 

cost consumed by the project. However, energy is a general term, too, as money might not be the 

only resource of concern that is consumed by the project.  

Based on what is discussed above, the governing factor is the relationship between benefit and 

cost. This relationship is predetermined based on the type of the problem. For the problem of 

leak repair, all leaks are assumed to be deteriorating and therefore the faster they are repaired, the 

better it is for saving precious water resources and to minimize their impending damage. Based 

on this assumption, the benefit of an event is the collected value of its current point. For 

example, an event H is repaired when it reaches the point (4,7,6) in the 3D space. Therefore, its 

benefit is btH = 4+7+6 = 17. Further illustration is provided by Equation (V-7), where the benefit 

at termination btH is equal to the summation of the end of repair point’s coordinates in the 3D 

space.  

 

𝒃𝒃𝒔𝒔𝒊𝒊 = 𝒙𝒙𝒔𝒔𝒊𝒊 +  𝒚𝒚𝒔𝒔𝒊𝒊 + 𝒛𝒛𝒔𝒔𝒊𝒊      (V-7) 

 

However, the cost is the summation between the cost needed (cni) by the event and the resource 

operational costs calculated by multiplying the time needed for repair (tni) by the cost rate of the 

resource (rcs). The illustration of this concept can be found in Equation (V-8), where each event 

has its own overall cost.  

 

𝑪𝑪𝑶𝑶𝒊𝒊 = 𝒄𝒄𝒔𝒔𝒊𝒊 + (𝒔𝒔𝒔𝒔𝒊𝒊 ∗  𝒔𝒔𝒄𝒄𝒔𝒔)     (V-8) 
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Based on the two event equations, the total benefit of a solution is the summation of all the 

benefit values of all the events that comprise the selected solution as displayed in Equation (V-

9). The equation shows the approach to determine the total benefit (B) of a solution by 

calculating the respective benefits conserved for each event that is selected for repair. Letter n 

refers to the total number of events within the solution.  

 

𝑩𝑩 =  ∑ 𝒃𝒃𝒔𝒔𝒊𝒊𝒔𝒔
𝒊𝒊=𝟏𝟏        (V-9) 

 

Similarly, the total cost of a solution is the summation of the costs of all the events comprising 

this solution as in Equation (V-10), where the total cost (C) is the sum of all the events in the 

solution whose number is n. Moreover, the benefit to cost ratio is assumed to be equal to the 

division of B from Equation (V-9) over C from Equation (V-10). This division represents the 

value that was prevented from deteriorating over the expenditure spent in the repairs.  

 

𝑪𝑪 =  ∑ 𝑪𝑪𝑶𝑶𝒊𝒊𝒔𝒔
𝒊𝒊=𝟏𝟏        (V-10) 

 

Thus, the following approaches are identified:  

i- Free/Unbound: The primary assumption in the unbound setup is that energy (money) 

and time are abundant and can be spent openly. The field of algorithm has no 

constraints and thus the algorithm runs until all events are completed and solved. 

Furthermore, the algorithm tries to figure out the best path with the lowest time and 

energy consumption. Equation (V-11) illustrates the optimization goal of this mode 

and that is to find the maximum benefit to cost ratio for all possible orders.  
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𝑺𝑺𝒍𝒍𝒙𝒙{ 𝑩𝑩
𝑪𝑪

 }      (V-11) 

ii- Time Bound: In this approach, it is mainly assumed that energy (fund) is abundant 

but time is scarce. Thus, a time limit (T) exists, forcing the algorithm to stop after the 

running time (trun) reaches the time limit (T). Thus, the main aim of algorithm is to 

maximize the benefit to cost ratio within the time limit regardless of cost.  In 

Equation (V-12), the previously mentioned conditions and goals can be summarized 

by an optimization equation. 

 

𝑺𝑺𝒍𝒍𝒙𝒙{ 𝑩𝑩
𝑪𝑪
∶ 𝒔𝒔𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑻𝑻 }      (V-12) 

 

iii- Energy Bound: The exact reverse of time boundary is an energy boundary (E). The 

main assumption is that time is abundant and holds no constraints whereas funds are 

scarce and must be efficiently allocated. Therefore, the algorithm tends to maximize 

the number of tasks performed for a specific amount of energy (funds). Equation (V-

13) displays the approach of maximizing the benefit to cost ratio for a maximum 

allotted energy or fund (E) that the solution expenditure or cost (erun) must never 

exceed.  

 

𝑺𝑺𝒍𝒍𝒙𝒙{ 𝑩𝑩
𝑪𝑪
∶ 𝒍𝒍𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑴𝑴 }      (V-13) 

 

iv- Dual Boundaries: The main condition under this boundary is that both energy and 

time are scarce. Thus, the algorithm tends to maximize the number of tasks performed 

within the limits of time and energy as displayed in Equation (V-14).  
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𝑺𝑺𝒍𝒍𝒙𝒙{ 𝑩𝑩
𝑪𝑪
∶ 𝒔𝒔𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑻𝑻 , 𝒍𝒍𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑴𝑴}     (V-14) 

The optimization equations above can be summarized in Equation (V-15). The main objective is 

to maximize the benefit of the incurred expenses, taking into consideration a specific timeline 

and overall budget. One or both constraints can be removed depending on the user’s needs.  

 

𝐦𝐦𝐦𝐦𝐦𝐦  𝐁𝐁
𝐂𝐂
  

(V-15) 
 s.t.: 

 𝒔𝒔𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑻𝑻 

 𝒍𝒍𝒔𝒔𝒅𝒅𝒔𝒔 ≤ 𝑴𝑴 

   

Another field setup is the threshold. A threshold in the Lazy Serpent Algorithm is a set of values 

on each plane that represent a borderline the user, e.g. municipalities, prefer not to cross at all 

costs. A threshold is made of 3 planes with specific values along with the intersection with the 

origin planes. It is not necessary that all axes have thresholds, it is possible to have all or none. A 

threshold represents the worst condition from the eyes of the user and thus if an event crosses a 

threshold, the event has crossed into an undesirable condition. Once an event or multiple events 

cross the threshold, the Lazy Serpent Algorithm notifies the user that there might be a need to 

increase the number of resources to prevent further events from crossing the threshold.  

 

D. Proposed Solution: Inverse Pyramid  

To solve the lazy serpent problem, a greedy solution is proposed. The solution imagines the 3D 

space events in a planar space that consists of the points of distance calculated previously. The 

first event to be selected is the event with the lowest distance since it fits the budget and time 
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constraints, as in Figures V-11 and V-12. Figure V-11 shows that the algorithm starts with an 

initially assigned population of all the events under analysis. Whenever an event is contained, a 

new plane is created without the handled event. The selected mode of analysis is then performed 

on the new plane and the cycle is repeated until all constraints are met. Hence, the name 

“inverted pyramid” solution, where the solution starts with the complete population at first and 

starts creating new populations that are smaller than the earlier populations due to the 

eliminations process. The selected event is then removed from the plane and is replaced with 

infinity and a new plane is formed with an updated time that adds the repair time taken to repair 

the event. The solution would continue to run and eliminate solutions until it hits either the 

budget or the time constraint. 

 

 

Figure V-11: Inverse Pyramid Solution Approach 

 

Figure III-27 further illustrates the form of updating the equations of the solution. Initially, eRun 

is equal to zero and, after initialization, the first event is selected. If the event meets the repair 
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criteria, then it is repaired and its cost is added to eRun, which continues to update itself based on 

this criterion until it meets the budget constraint or finds no more available events for repair. 

Similarly, time is updated with the same fashion using the variable tRun, which keeps on selecting 

and updating events simultaneously with eRun. If one event does not meet the criteria of both 

equations, then the event is dropped and the code would try to find another event that fits the 

criteria.  

 

 

Figure V-12: Updated Budget Equation Methodology  

 

V.1.2 Genetic Algorithm Comparative Model 

To compare the Lazy Serpent Algorithm to other algorithms, a genetic algorithm model is 

developed. The model aims to utilize an approach similar to that of the lazy serpent such that it 
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uses a 3D environment with motion variables such as costs and time. The purpose of the genetic 

algorithm model is to identify the order of repair with the best benefit-to-cost ratio.   

 

 

Figure V-13: Genetic Algorithm Model Methodology 

 

Figure V-13 displays the methodology used to develop the genetic algorithm model for the 

prioritization. The first stage was to identify the main assessment criteria via literature review 

and common practices. The second stage is to select the three main criteria for assessing each 

repair event. The next step is to identify the initial condition of each leak and then, based on 

historical data, to predict the decay and deterioration equations of the leak as a function of time. 

Furthermore, leak costs and repair costs are identified in a similar manner to that of the lazy 

serpent to finalize the process that defines the inputs. Before launching the genetic algorithm 
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model, the benefit-cost relationship amidst the defined criteria should be identified to be 

maximized. For this model, a fundamental relationship between the cost and the factors is 

developed and illustrated in Equation (V-16), the equation assuming that a leak is repaired in the 

best state and what remains is savings and benefits. The factors L, M and N represent the 

adjustment factors for a specific measure and are used to identify the impact of each factor on the 

benefit-cost relationship. 

 

𝑩𝑩
𝑪𝑪

= 𝑳𝑳 𝒙𝒙𝒊𝒊 +𝑴𝑴 𝒚𝒚𝒊𝒊+𝑵𝑵 𝒛𝒛𝒊𝒊
𝒄𝒄𝒊𝒊

      (V-16) 

Where:  

- B/C = benefit to cost ratio.  

- x, y and z = main assessment factors.  

- L, M and N = factor adjustment weights. 

- i = represents the number of the event under study.  

- ci = cost of repairing the event i. 

 

The optimization goal can be summarized in Equation (V-17). The goal is to maximize the total 

value of the benefit to cost ratio such that the total cost (erun) is less than the budget (E) and the 

total time required to finish the tasks (trun) is less than the allocated time (t). erun is the total cost 

spent on the completed repairs and trun is the total time used to complete the repairs. 

 

𝐦𝐦𝐦𝐦𝐦𝐦∑𝐁𝐁
𝐂𝐂𝐓𝐓

  | Such that � 𝐞𝐞𝐫𝐫𝐫𝐫𝐫𝐫 ≤ 𝐁𝐁𝐫𝐫𝐁𝐁𝐁𝐁𝐞𝐞𝐁𝐁(𝐄𝐄)
𝐁𝐁𝐫𝐫𝐫𝐫𝐫𝐫 ≤ 𝐓𝐓𝐓𝐓𝐦𝐦𝐞𝐞𝐓𝐓𝐓𝐓𝐓𝐓𝐞𝐞𝐁𝐁𝐫𝐫𝐓𝐓𝐞𝐞𝐁𝐁(𝐓𝐓)    (V-17) 
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V.2 Repair Prioritization Model Implementation 

In this section, the models for prioritization are implemented in an example and their results are 

presented and compared. First, the implementation and results of the GA model are presented 

and the multiple aspects and results of implementing the Lazy Serpent Algorithm are discussed. 

The aim is to find the optimal order for repairs, that maximizes the value of the money spent.  

 

V.2.1 Genetic Algorithm Model Implementation and Results 

A fictitious sample has been prepared to test the developed genetic algorithm prioritization 

model. The sample consists of 10 main events that are decaying linearly and have three main 

assessment criteria extracted from literature (i.e. condition, criticality and consequence of 

failure). The three factors are presented as place holders to help provide a proof of concept for 

the developed models. The factors presented require the development of actual models that meet 

the needs of municipalities. Figure V-14 displays the overall input for constructing the genetic 

algorithm model. The variable the algorithm tries to optimize is B/C. Furthermore, time 

requirements and costs are stated for each required repair. For this example, the algorithm is 

given the time to run all possible scenarios and select the best alternative. Additionally, the 

algorithm has no constraints regarding time or budget.  

 

 

Figure V-14: Genetic Algorithm Input Excel Sheet 
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The algorithm requires 68 minutes to arrive at the optimal solution after testing all the possible 

scenarios. The total number of trials is 28,385, of which 15,456 trials are valid. Figure V-15 

displays the improvement path of the solution throughout trials from the initial solution of 55.85 

all the way to 56.11 in benefit to cost ratio.  

 

 

Figure V-15: Genetic Algorithm Progress through Trials 

 

The optimized repair order for the maximized benefit to cost ratio is shown in Figure V-16 where 

the optimal order of the previous example is displayed as the following order of events: 1, 3, 6, 7, 

10, 5, 8, 4, 2 and 9.  
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Figure V-16: Optimal Repair Order of Fictitious Example 

 

 

Figure V-17: Distribution of Benefit-Cost Ratio Condition at Repair Time 

 

To further assess the quality of the output of the genetic algorithm, the data is categorized into 

four categories or solution quality levels. The classification is done using the highest possible 

benefit to cost ratio of a repair event as the maximum possible result, then each event is assessed 

at repair time against the maximum value. In Figure V-17, a set of ranges is displayed. The 

ranges are assumed to be as follows: (1) 0% – 15% is a poor-quality solution, (2) 15% – 40% is a 

Event # 1 3 6 7 10 5 8 4 2 9
1
2
3
4
5
6
7
8
9
10

Order

10%

30%

50%

10%

CONDITION AT TIME OF REPAIR 

Excellent Good Medium Poor
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medium quality solution, (3) 40% – 80% is a good quality solution and (4) 80% – 100% is an 

excellent quality solution. Based on this assessment, the proposed solution includes one solution 

of excellent quality, three solutions of good quality, five solutions of medium quality and one 

solution of poor quality. The following values result in an average solution quality of 40.5%, 

which is a good quality solution based on the proposed assessment.  

 

V.2.2 Lazy Serpent Model Comparative Results  

The Lazy Serpent Algorithm is compared to the genetic algorithm using the same sample data in 

the previous section. Multiple instances of the Lazy Serpent Algorithm are run with different 

selection criteria definitions. The aim is to explore the aspects of the lazy serpent and see the 

extent of its power as a prioritization algorithm. Figure V-18 displays the interface of the lazy 

serpent software developed using MATLAB. The interface consists of multiple parameters, first 

the codename where the user inputs the name of the event to be prioritized. The codename can be 

numeric or alphabetic or a mixture of both. The next set of parameters is A0, B0 and C0, which 

represents the initial condition upon the discovery of the event at the point of assessment. The 

second set of variables is f(A), f(B) and f(C), which represents the change in the condition of 

each event. In this example, all events deteriorate in one plane and the deterioration function is -

0.08*t. Moreover, two variables to identify the required time and cost for each event are added 

under the tabs Time Required and Cost. Finally, the constraints are added via the Time 

Constraint and Budget Constraint. The Lazy Serpent Algorithm is run with three different 

selection criteria: (1) The basic Lazy Serpent Algorithm, which consists of selecting the worst 

condition event each time and eliminating it, (2) the inverse lazy serpent, which selects the best 

event each time and (3) the selective lazy serpent, which aims at selecting the most deteriorating 
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event through projection and if two events have equal deterioration factors, the one with the 

lowest price will be selected and if the price is the same, the algorithm will move to select the 

one with the minimum required time. If all factors of selection are equal, an event will be chosen 

randomly.  

 

 

Figure V-18: Lazy Serpent Software Interface Input 

 

V.2.2.1 The Basic Lazy Serpent Results 

The basic lazy serpent selects the closest event to the origin point. So, it selects the most 

deteriorating events first and goes upwards until it meets a constraint or it finishes all the 

available events. Figure V-19 shows the results presented by the basic lazy serpent with 

deterioration preference to be as follows: Starting with event 8, followed by event 7, event 10, 
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event 2, event 1, event 9, event 3, event 6, event 4 and event 5. The algorithm requires 6 seconds 

to come up with this solution, as the lazy serpent does not search for all possible outcomes like 

the genetic algorithm. On the contrary, it goes immediately towards an expected solution. The 

quality of the solution is measured by the final benefit-to-cost ratio calculated by assuming the 

remaining three-dimensional values at the point of repair initiation as benefits. The final benefit-

to-cost ratio of the proposed solution is calculated to be at 55.81 or 5.581, which is a bit less than 

that of the first-in-first-out approach.  

 

 

Figure V-19: Basic Lazy Serpent Repair Priority 

 

V.2.2.2 The Inverse Lazy Serpent Results 

The inverse lazy serpent relies on selecting the farthest events from the origin point. In other 

words, it selects the best events available. The inverse lazy serpent presents a different order 

from the basic lazy serpent. The results are summarized in Figure V-20. The ordering starts with 

event 5, followed by the events 4, 6, 3, 9, 2, 1, 10, 7 and event 8. The benefit-to-cost ratio 

measures the quality of the solution. The ratio is calculated to be 55.31 or 5.531 and the 

algorithm requires 6 seconds to arrive at the proposed solution.  
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Figure V-20: Inverse Lazy Serpent Repair Order 

 

V.2.2.3 The Selective Lazy Serpent Results 

The selective lazy serpent has a more advanced decision making and selection criteria. The 

selective lazy serpent aims to select events with a higher deterioration rate than other events, thus 

it selects the most deteriorating event first. Furthermore, in case deterioration factors are equal 

between two events, the serpent moves ahead to select the one with the lowest price if the price 

between two events is equal, the serpent moves to select the one with the lowest time 

requirements. Finally, if all the aspects are equal, the lazy serpent selects any event from the pool 

randomly. The results of the selective lazy serpent can be viewed in Figure V-21. The proposed 

order starts with event 1, followed by event 9, event 2, event 4, event 7, event 6, event 10, event 

3, event 5 and event 8. The time required for the development of this solution is 20 seconds and 

the benefit-to-cost ratio of the solution is calculated to be 56.19 or 5.619.  
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Figure V-21: Selective Lazy Serpent Proposed Repair Order 

 

V.3 Repair Prioritization Results and Conclusions 

All the prioritization results previously mentioned are summarized in Table V-1. Table V-1 

compares and analyzes the impact of each respective approach. The approaches and algorithms 

under study are (1) Inverse Lazy Serpent, (2) Basic Lazy Serpent, (3) First In First Out (FIFO), 

(4) Genetic Algorithm and (5) Selective Lazy Serpent. The initial benefit-to-cost value of the 

FIFO approach is calculated, and it is 5.585 value per dollar. Although the results are 

comparatively good, the FIFO approach cannot be relied on to prioritize repair events regularly, 

as it is random and unpredictable and thus its results can be good or bad with no consistency. 

The inverse lazy serpent gives the least benefit-to-cost ratio and therefore it can be concluded 

that leaving the worst for last can be a wrong approach and costlier than the remaining 

approaches. The basic lazy serpent has more acceptable results with a value of 5.581, which is 

close to the original 5.585 presented by the FIFO approach. Both the inverse lazy serpent and the 

basic lazy serpent require 8 seconds to give their results, which is considerably fast. The genetic 

algorithm presented the first improvement to the order of repairs with a benefit-to-cost ratio of 

5.611, which is higher than those of the FIFO approach, the inverse lazy serpent and the basic 
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lazy serpent. The genetic algorithm requires 67 minutes to solve because the genetic algorithm 

tries to search throughout all the possibilities to arrive at a feasible solution. Finally, the selective 

lazy serpent gives a solution with the highest benefit-to-cost ratio with a value of 5.619 or 56.19. 

The selective lazy serpent requires 20 seconds to develop and present the priority of repairs. The 

main reason for the selective lazy serpent to beat the genetic algorithm in terms of computational 

time is that the selective lazy serpent goes immediately towards building a solution in contrast to 

scouring multiple options as the genetic algorithm.  

 

Table V-1: Comparison of Prioritization Models 

Algorithm / 
Approach 

Inverse Lazy 
Serpent 

Basic Lazy 
Serpent FIFO Genetic 

Algorithm 
Selective Lazy 

Serpent 
Results (B/C 

ratio) 5.531 5.581 5.585 5.611 5.619 

Time Consumed 8 seconds 8 seconds 0 67 minutes 20 seconds 
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VI CHAPTER VI: DEVELOPED AUTOMATED TOOLS 

The fourth objective of this thesis is to automate the developed models. Therefore, multiple 

software tools are developed in this chapter for the automatic analysis of the data that is provided 

by the developed models. Specifically, three tools are developed: (1) Acoustic Leak Detection 

tool, (2) Acoustic Leak Pinpointing Tool and (3) Automated Lazy Serpent Tool. 

 

VI.1 Acoustic Leak Detection Tool 

The platform used by the water services agency in the city of Montreal suffers has one critical 

issue and that is false alarms. False alarms can be in the form of identified leaks or suspected 

leaks. This created the need for a tool that can distinguish between the sounds of leak origin and 

non-leak origin. Therefore, an automated tool is developed using MATLAB for the analysis of 

the signals collected by the noise loggers that spread in the downtown of the city of Montreal.  

 

VI.1.1 Acoustic Leak Detection Tool Design 

The architecture of the developed tool can be described by Figure VI-1. After launching the tool, 

a user interface is displayed. The user interface needs the wav file selection button to be clicked, 

or the interface will remain idle. Once the wav file selection button is clicked, a new interface 

will open. The new interface allows the users to browse through their files and folders to select 

the one that requires analysis and assessment. After selecting the file, the tool checks if the file is 

in wav format. If the file is of a different format, an error would be displayed and the software 

will exit. If the file is correct, the tool will move ahead, and conduct Fourier transform of the 

signal. Based on the Fourier transform analysis, three main indicators are collected and the shape 
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of the signal is displayed. The three indicators are (1) FI50Hz, (2) Level and (3) Spread of the 

signal. FI50Hz represents the number of waves within the sound signal, that carry a frequency of 

50Hz or less. Level represents the maximum sound level reached by the signal in decibels (dB). 

Spread represents the difference between the highest measured sound (level) and the lowest 

measured sound. Each factor will be analyzed against a previously developed threshold. If the 

value of the indicator exceeds the threshold, that indicator identifies that the sound is not 

generated by a leak. If the indicator exceeds the value of the threshold, a value of 1 is added to 

the aggregator. Otherwise, a value of zero is added. After all, indicators are tested against their 

respective thresholds and the value of the aggregator is assessed. If the value of the aggregator is 

greater than 1, the sound file is not of leak origin. Otherwise, the sound would be of leak origin if 

the aggregator has a value of 1 or 0. The tool moves onwards to display the result of the 

conducted assessment by stating “Leak Sound” or “Non-Leak Sound.” 

 

 

Figure VI-1: Leak Detection Tool Processing Flowchart 
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VI.1.2 Acoustic Leak Detection Tool Manual 

The acoustic leak identifier is designed based on the previously developed research to help water 

services agents in the city of Montreal distinguish between pump sounds from leak sounds. Both 

sounds categories are received by the online software implemented for the city of Montreal by 

Guttermann, a leak detection company. The following steps and images describe how the 

software is used. It is used after the mp3 sound file of a suspected leak of pump sound is 

downloaded. The software is beneficial for identifying the origin of the sound without the need 

for on-site visits.  

 

Step 1: Launch Software 

 

Figure VI-2: Pump and Leak Identifier Interface 
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The initial step is to launch the execution file of the software. Once double clicked, the interface 

in Figure VI-2 will show up. The interface is comprised of a paragraph of instructions and the 

name of the software and the logo of the engineering and computer science department at 

Concordia University. The interface has one central button and it is dubbed “Select File for 

Analysis”. To begin the analysis, click on this button and a new window appears to help the user 

select the desired file to be analyzed. The interface also holds a results section with an “Edit 

Text” area marked in red.  

 

Step 2: Select Files for Analysis 

An interface will open to allow the user to browse for the wav file as in Figure VI-3. The user 

can select the suspected file and the file analysis begins in the software.  

 

 

Figure VI-3: Software Browsing Interface 
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Step 3: Signal Shape Diagram 

The software first moves towards analyzing the characteristics of the signal and presenting its 

shape, as in Figure VI-4. The figure shows the sound levels of the signal against its time 

component and how the sound carries through time to allow checking for a typical pattern and 

identifying any possible anomalies within the signal. The image also presents a typical signal 

pattern, which shows the final result of the analysis by the software. 

 

 

Figure VI-4: Wave Representation of an Analyzed File 
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Step 4: Analysis Results and State Identification 

Finally, the software displays the result for the analyzed wav file in editable text file presented 

next to the word “Results.” The possible outputs are either “Pump Sound” as in Figure VI-5 or 

“Leak Sound.” When the result indicates a pump sound, the software identifies the wav file to be 

on non-leak origin. Otherwise, the wav file is that of a leak.  

 

 

Figure VI-5: Results of the Analysis 

 

VI.2 Acoustic Leak Pinpointing Tool 

Improvements in leak pinpointing for the acoustic system installed in downtown Montreal is 

another aspect of the work conducted with the water services agency of the city of Montreal. As 
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part of this research, a tool is developed to automate the signals analysis that indicate a leak state 

and then use the results of the analysis to deduct the location of the leak within the network 

between the two sensors detecting the leak.  

 

VI.2.1 Acoustic Leak Pinpointing Tool Design 

The leak pinpointing tool design can be further illustrated in Figure VI-6. After initializing the 

tool, an interface pops up that contains an area for distance input and a begin initialization 

button. Once the button is clicked, a browsing interface pops up asking for the selection of the 

leak sound files in wav format. The user has to select the left sensor first and then the right 

sensor for the software to operate properly. If the sound files are any other format, an error 

message is displayed and the software exits. If the signals are in the proper format, the sound 

files will be analyzed and their data is collected, subject to the previously developed regression 

equations. Afterwards, an output screen is displayed showing the distances XL and XR from the 

left and right sensors towards the leak. The user now has the option of closing the software.  

 

 

Figure VI-6: Leak Pinpointing Tool Design Flowchart 
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VI.2.2 Acoustic Leak Pinpointing Tool Manual 

This section guides the user of the pinpointing tool along the steps required to make the tool 

operate accurately and efficiently. The operation is comprised of five main steps: Initialization, 

distance indication, file selection, signal analysis and distance output. The tool takes two leak 

signals surrounding a confirmed leak and utilizes the sound data to present an accurate estimate 

of the leak location based on the previously developed models. The tool complements the 

Guttermann software used by the water services agency in the city of Montreal and uses leak 

sounds detected by the listeners in the automated leak detection system.  

 

Step 1: Tool Initialization and Tool Interface 

After the executable file is initiated, the interface appears on the screen, as illustrated by Figure 

VI-7. The interface contains tips and steps for using the software and an explanation of how to 

interpret the results. It also contains an editable area for inserting the distance and a push button 

named “Pinpoint Leak.”  

 

 

Figure VI-7: Initial Leak Pinpointing Interface 
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Step 2: Distance Input 

The next step is to identify the distance. If the distance is not identified, the software will face an 

error while running. The distance is inserted in the allocated space labeled “distance D”. The 

value of the distance is in meters and can be either in integer format or decimal format. For 

example, in Figure VI-8, the value of the distance is 254 meters. After writing the distance in the 

allocated area, it is necessary to press the “Enter” button for the tool to read the value internally. 

After inserting the distance and properly assigning it to the tool, the user can proceed with the 

analysis through clicking the pinpoint leak push button that is encircled in red in Figure VI-8.  

 

 

Figure VI-8: Adding The Value of Distance D 

 



185 
 

Step 3: File Selection  

After clicking the initialization button, a browsing page appears as displayed in Figure VI-9. The 

pane allows the user to navigate to the location where the sound files are stored. The user must 

start by selecting the left sound signal first and then press “Open”. Afterwards, the navigating 

pane pops up again to prompt the user to select the sound signal on the right end of the leak to 

conduct the analysis. Once both files are selected, the tool proceeds towards analyzing the sound 

files and applying the regression equations to identify the location of the leak.  

 

 

Figure VI-9: Pinpointing Tool Browsing Panel 

 

Step 4: Signal Analysis Output 

The analysis of the left and right signals is displayed by the software to allow the user to identify 

any sound anomalies within the signal. Figure VI-10 shows that the tool outputs two drawn 

signals for each sound file with the sound level (dB) against time (milliseconds).  
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Figure VI-10: Pinpointing Signal Analysis Results 

 

Step 5: Predicted Distances Output 

When the analysis concludes, a new interface appears showing the results of XL, XR, PXL and 

PXR. XL and XR are in meters and represent, as illustrated in Figure VI-11, the distance from the 

left sensor to the leak and the distance from the right sensor to the leak, respectively. Meanwhile, 

PXL and PXR represent the percentage of the total distance from the left sensor to the leak and 

from the right sensor to the leak, respectively.  

 

Figure VI-11: Leak Pinpointing Result Interface 
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VI.3 Automated Lazy Serpent Tool  

To apply the Lazy Serpent Algorithm to a substantial quantity of events, a computer-based tool is 

required to automate the process. So, the automated lazy serpent software is developed for the 

automatic and fast analysis of 2D and 3D events in the analysis space. This section provides an 

overview of the tool design and a user manual to explain how the developed tool operates.  

 

VI.3.1 Automated Lazy Serpent Tool Design 

The design of the tool can be summarized by the flowchart in Figure VI-12. The first step is to 

initialize the tool. Then, a user interface for data input appears, to allow the user to input the data 

manually. The user interface includes areas for adding constraints and for adding extra rows for 

the analysis. After adding the input, the user can initialize the software by clicking the begin 

analysis button. The analysis starts by organizing the data in a matrix format and creating an 

event dataset.  

 

 

Figure VI-12: Automated Lazy Serpent Design Flowchart 
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Based on the predefined serpent selection criteria, the serpent moves towards selecting the best 

event to initiate the prioritization process. Each selected event is examined to realize if it meets 

the time constraints and the cost constraints. After testing, the event is eliminated from the initial 

dataset. If the event has met the two constraints, it is added to the optimized repair order. The 

tool continues looping in this manner until all events are analyzed. Finally, the tool presents the 

optimized repair order when all events are analyzed.   

 

VI.3.2 Automated Lazy Serpent Tool Manual 

This section presents the steps required to operate the automated lazy serpent tool properly. The 

operation of the tool follows four main steps starting with mode selection, followed by 

identifying constraints, data input and finally analysis and results.  

Step 1: Select Lazy Serpent Mode 

In the initial screen illustrated in Figure VI-13, the user can select the operating mode between 

two-dimensional and three-dimensional, based on the representation of the events.  

 

 

Figure VI-13: Automated Lazy Serpent Initial Interface 
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Step 2: Defining Constraints 

After selecting the mode, the respective interface of the selected mode appears. In this example, 

the two-dimensional analysis is selected and, accordingly, Figure VI-14 appears on the screen. 

The user can add extra rows beyond the four default rows by using the “Click Here” button 

encircled in blue. Furthermore, the user can type the constraints in the specified editable text 

locations encircled in red and then press “Enter.” If the user wishes to identify an infinite number 

for a constraint, the user must insert a number greater than any possible combination and press 

“Enter.”  

 

 

Figure VI-14: Automated Lazy Serpent Constraint Definition 
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Step 3: Input Data 

The solution input field is comprised of five main input areas. The first area is the code name 

where the representing code of the event can be inserted. The code name can be a number or a 

name or even a mix of both. The second is the initial state values area. The example shown in 

Figure VI-15 shows A0 column and B0 column where the initial states of each event are inserted 

as integers. The third area is the change equations. In the figure, columns f(A) and f(B) represent 

the equations of change through time (t). t must always be used to represent the time variable. 

The equations must always comply with the MATLAB rules and definitions for equation writing. 

The fourth and fifth areas represent the time required to tackle the event and the funds required 

for the task respectively.  

 

 

Figure VI-15: Automated Lazy Serpent Data Input 
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Step 4: Solution Output 

Finally, after pressing the “Begin Lazy Serpent 2D Analysis” button, the tool automatically starts 

to calculate its path towards a solution that complies with the predefined constraints and event 

search criteria. Once the algorithm meets one of the constraints or the event database is cleared, 

the algorithm halts and the output is displayed as illustrated by Figure VI-16. The figure shows 

that the proposed optimal repair order to meet the required constraints is to repair CDN first, 

followed by Hochelaga and finally Shangsay. Ville Marie is not in the list as the event is the least 

critical based on the predefined criteria and it exceeds one or two of the constraints.  

 

 

Figure VI-16: Automated Lazy Serpent Result Output 

  



192 
 

VII CHAPTER VII: RESEARCH CONTRIBUTIONS AND FUTURE WORK 

VII.1 Summary and Conclusions 

In conclusion, accelerometers and noise loggers are powerful devices capable of detecting and 

pinpointing leaks in the water network and both technologies can help the move towards static 

leak detection systems using internet of things. After vibration signals are analyzed, their 

outcome (MIE) can be used via classification techniques for identifying the existence of a leak 

and its size. MIE proves to be an effective parameter for assessing vibration signals and 

identifying the existence of leaks through an MIE threshold. When the data is coupled with 

regression analysis, the leak location can be predicted, via accelerometers, with an accuracy of 

85% and a range of 25 centimeters. Accuracy can raise to 100%. Accelerometers have proved to 

be robust devices to create a capable static leak detection and pinpointing system without the aid 

of other leak detection technologies. Meanwhile, further research is required on their behavior in 

various environments and buried pipelines. Such research can include multiple event testing and 

signal response to filtering.  

The hypersensitivity of accelerometers can help identify and locate small leaks if adequately 

filtered. Otherwise, the readings may contain interfering signals that can trigger false alarms or 

divert leak pinpointing. Similarly, for acoustic noise loggers, the acoustic signal is analyzed and 

transformed into a series of variables, mainly level, spread and frequency. The variables are 

utilized to identify the existence of leaks when supported by classification techniques. The 

technology can also aid in identifying whether the recorded sound is a leak or an interfering 

sound, using classification techniques coupled with an aggregation mechanism. The accuracy of 

such models can reach up to 100%. As for leak pinpointing, regression analysis is used with 

collected acoustic data to determine the exact location of a suspected leak. Acoustic listeners 
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tend to be a more popular static leak detection technology due to the simplicity of analyzing and 

filtering acoustic signals and the vast knowledge of their operation, making their results in leak 

detection much more accurate than accelerometers in an actual field situation. Accelerometers 

will present an optimistic future in leak detection if sufficient research and more extensive 

experiments are conducted while using them. Those two modes of detection can provide cities 

with the capability to save money through early detection if used alone or together for a more 

powerful detection system. 

Furthermore, leak repair prioritization can be performed using two approaches: (1) Genetic 

Algorithm and (2) the Lazy Serpent Algorithm. Both approaches have proved to provide a better 

solution than the usual first in first out (FIFO) approach. The genetic algorithm can provide a 

good solution but, when it comes to the time requirement of GA, the time to propose a solution 

to a small problem is substantially large, and accordingly, bigger scale projects may not attain a 

good solution quickly enough. On the other hand, the Lazy Serpent Algorithm can provide better 

solutions in some cases, yet in much lesser time as the Lazy Serpent Algorithm goes directly 

towards finding a solution instead of searching multiple possibilities and progressing. Through 

its search mechanism, the lazy serpent starts ordering events one by one as they are being 

simulated through time. Accordingly, municipalities now can have more directed leak repair 

prioritization orders that fit their criteria and maximize return on their expenditure and save 

money. Therefore, combining simulation and prediction strategies with optimization can provide 

municipalities with a sense of visualization allowing them to see how leaks behave in the 

predictable future. The strategic prioritization of such independent repair events is a key factor in 

saving money for governmental organizations as they allow the proper prediction and 
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implementation of future scenarios. The use of prediction models with the inverse pyramid 

solution is a powerful tool in this regard.   

 

VII.2 Research Contributions 

This research aims at solving the leak detection problem for municipal bodies by providing an 

in-house real-time leak detection monitoring system, besides a repair prioritization algorithm. On 

the level of accelerometers, the final output can provide immediate indications of the formation 

of a leak and pinpoint the leak with a 25-cm radius accuracy. On the level of loggers, the model 

presented a high accuracy of pinpointing by identifying the exact leak location with a 20-cm 

accuracy. The question beyond leak detection is that of leak repair prioritization.  Using the 

developed Lazy Serpent Algorithm, municipalities will be able to identify the leaks that account 

the most critical, based on their criteria, simulate the progression of those leaks to a certain 

extent and identify the optimal repair priority.  

Therefore, the primary contributions of this research are summed up as follows:  

1- A comprehensive literature review is performed, shedding light on the current state of the 

art in leak detection, and the most suitable devices for this research is selected.  

2- A set of experiments and models are conducted to help enhance the accuracy and the 

detection capabilities of static leak detection systems that utilize noise loggers and 

accelerometers.  

3- Basic experiments that utilize accelerometers in leak detection networks are done. The 

experiments show that accelerometers have potential in the field of leak detection with 

extra experimentation and research.  
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4- A model is developed, capable of identifying the existence of leaks in ductile iron as well 

as PVC pipelines using accelerometers.  

5- A model is developed, capable of identifying the size of a leak in ductile iron as well as 

PVC pipelines using accelerometers.  

6- A model is developed, capable of pinpointing a leak in ductile iron as well as PVC 

pipelines using accelerometers.  

7- Possible approaches to assess the decay of vibration signals in ductile iron and PVC 

pipelines are analyzed.  

8- A model is developed, capable of identifying the existence of leaks using acoustic noise 

loggers for the network surveillance project in the city of Montreal.  

9- A model is developed, capable of differentiating between the sound of leaks and the 

sound of pumps within the water network for the pilot project for water network 

surveillance in the city of Montreal.  

10- A model is developed, capable of pinpointing the leak within a network monitored by 

acoustic noise loggers for the water network surveillance project in the city of Montreal. 

11- A genetic algorithm model that aims to optimize repair ordering is developed.  

12- An algorithm is developed, capable of identifying the best possible repair ordering for 

identified leaks in a small time-frame.  

13- An aggregation technique is developed, that helps improve binary classification models 

through using their collective thinking.  
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VII.3 Research Limitations  

Like in any research, there are several limitations in this particular work and due to the broadness 

of its scope, the limitations are broad. They can be summarized as follows:  

1- The designed experiments for accelerometers study the necessary conditions for 

operation. The conditions are the existence of a pressurized pipelines and induced leaks. 

In reality, multiple other factors exist like soil type, branching, and leak progress which 

should be included in future experimentation. Exploring the actual operational conditions 

allows the comprehension of the requirements for using accelerometers in the real world.  

2- Lack of filtering for both vibration signals and acoustic signals: The utilization of proper 

filtering techniques is assumed to have an impact on the quality of the derived data.  

3- The validation of the noise-logger-based models on the field is minimal. Therefore, 

further verification is required to enhance the developed models.  

4- Lack of a scientific definition for leak-size categorization and using an assumption 

instead.  

5- Limited range of experiments using vibration signals, as only ductile iron pipelines and 

PVC pipelines as well as small size pipelines no greater than two inches in diameter are 

used in the experiments.  

6- The extent of the Lazy Serpent Algorithm is yet to be tested on a real-life project that 

contains a vast number of events.  

7- The current representation of the lazy serpent builds on the assumption that any repair 

event can be represented using three main criteria. Therefore, events that can be 

represented with more than three dimensions cannot be used in this version.  
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8- The proposed factors for assessment in the lazy serpent and the genetic algorithm 

prioritization example - criticality, consequence of failure, and condition – are suggested 

as placeholders. Those factors require the development of actual models that meet the 

needs of municipalities. Their use in this thesis was in the form of tools to help provide a 

proof of concept.  

9- The comparative study utilized linearly deteriorating models to allow for quick 

computational analysis by the developed models. This is not the case in the real world. 

Therefore, the exploration of models that deteriorate in a unique manner is required. 

10- The genetic algorithm approach requires a substantial amount of time and may not arrive 

at an optimal solution.  

11- The extent of aggregation can be studies further for all 3D interaction where a full 

rendering can be developed for a full envelope.  

 

VII.4 Future Work  

In this section, possible areas for improving the currently proposed models are previewed. 

Besides, approaches to extend the use of the proposed models and widen their application are 

presented. Here, two main components are discussed: (1) enhancement areas and (2) extension 

areas.  

 

VII.4.1 Enhancement Areas 

Current models can be enhanced to produce better results and have an edge in their targeted 

fields. The suggested enhancement areas are divided into three main groups: (1) Accelerometer 

Leak Detection System, (2) Acoustic Leak Detection System and (3) Prioritization Approaches.  
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1- Accelerometer Leak Detection System  

i- Utilize filtration techniques to improve signal clarity. Due to the sensitivity of 

accelerometers, a wide variety of external factors can find their way into the 

signal and disrupt its clarity. Additionally, the signal itself is affected by any 

gravitational shift leading to a slightly unstable signal. The utilization of white 

noise filtering, Fourier Transform and other forms of filtering may help by 

stabilizing the signal and thus providing more consistent results in analysis.  

ii- Utilize a more robust and scientifically-based leak size categorization scheme. In 

this thesis, the categorization of leak sizes is based on a set of assumptions. 

Categorization can be improved by a professional survey that would indicate at 

which percentage of the flow rate a leak is considered average or big. Other 

approaches can also be used for assessment, such leak losses and leak flow rate. A 

fuzzy approach can also be useful in improving the categorization scheme.  

2- Acoustic Leak Detection System  

i- Utilize acoustic filtration techniques and study the effect of each filtration 

approach: In this study, the acoustic signals are raw and unaltered via filtration, to 

study the potential of the system in its current state. Meanwhile, eliminating 

specific frequencies that have little to no effect on the system can be beneficial to 

get the pure sound produced by the leak only. Those techniques include white 

noise filtering, impulse response filtering, discrete time filtering and linear 

filtering.  

ii- Validate the proposed pump identification model further through experiments: In 

this research, acoustic leak detection models are validated by using the leaks in 
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the area. The leaks are analyzed via software and assessed on the field. The results 

of both assessments are compared. Due to the extensive time required to conduct 

field verification, very few assessments are done. Therefore, further validation of 

leaks over the span of one year can verify the obtained results and assist in 

improving the currently developed models.  

iii- Utilize the current leak pinpointing model in other field tests to create a more 

valid assessment: Similar to the pump identification model, the leak pinpointing 

model requires further application over the span of one year to collect additional 

data and improve the model with new data.  

3- Prioritization Approaches  

i- Utilize a more advanced search technique in the Lazy Serpent Algorithm: The 

lazy serpent is at an elementary stage currently. It can be improved in terms of 

speed and capabilities by adding dynamic programming and other advanced 

problem solving and modeling techniques.   

ii- Explore different genetic algorithm formulations that can speed up the model’s 

convergence: One of the problems of using the genetic algorithm for prioritization 

is the extensive amount of time required for solving a problem. It is possible to 

improve the speed of the algorithm by changing the mathematical presentation of 

the problem or the boundary search approach. 
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VII.4.2 Extension Areas 

Extension areas include extra work to push the developed models and improve their outcome. 

Similarly, the extension areas are divided into three main categories, as (1) Accelerometer Leak 

Detection System, (2) Acoustic Leak Detection System and (3) Prioritization Approaches. 

1- Accelerometer Leak Detection System  

i- Perform experiments on new materials other than ductile iron and PVC.  

ii- Perform experiments on pipelines greater than 1 inch and 2 inches in size.  

iii- Apply the pinpointing model in large-scale experiments.  

iv- Study the impact of the proposed sensor distribution approach in a network setup.  

2- Acoustic Leak Detection System  

i- Study the impact of non-straight connection between pipelines on leak detection 

accuracy and the leak signal.  

ii- Combine the proposed models with triangulation algorithms.  

iii- Study the possibility of pinpointing using a single sensor or more than two 

sensors.  

3- Prioritization Approaches  

i- Apply the Lazy Serpent Algorithm on a real existing project and compare it 

against the genetic algorithm.  

 

 

  



201 
 

REFERENCES 

Al Hawari, A., Khader, M., Zayed, T., and Moselhi, O. (2015). “Non-Destructive Visual-

Statistical Approach to Detect Leaks in Water Mains.” World Academy of Science, 

Engineering and Technology, International Journal of Environmental, Chemical, 

Ecological, Geological and Geophysical Engineering, 9(3), 230–234. 

Al Hawari, A., Khader, M., Zayed, T., and Moselhi, O. (2016). “Detection of Leaks in Water 

Mains Using Ground Penetrating Radar.” World Academy of Science, Engineering and 

Technology, International Journal of Environmental, Chemical, Ecological, Geological and 

Geophysical Engineering, 10(4), 422–425. 

Alkasseh, J., Adlan, M. N., Abustan, I., Aziz, H. A., and Hanif, A. B. M. (2013). “Applying 

minimum night flow to estimate water loss using statistical modeling: A case study in Kinta 

Valley, Malaysia.” Water resources management, Springer, 27(5), 1439–1455. 

Almeida, F., Joseph, M. J. B. P. F., Dray, S., Witfield, S., and Paschoalini, A. T. (2014). “An 

investigation into the effects of resonances on the time delay estimate for leak detection in 

buried plastic water distribution pipes.” Eurodyn 2014: IX International Conference On 

Structural Dynamics, 3129–3136. 

Atef, A., Zayed, T., Hawari, A., Khader, M., and Moselhi, O. (2016). “Multi-tier method using 

infrared photography and GPR to detect and locate water leaks.” Automation in 

Construction, Elsevier, 61, 162–170. 

Awawdeh, A., Bukkapatnam, S.., Kumara, S., Bunting, C., and Komanduri, R. (2006). “Wireless 

sensing of flow-induced vibrations for pipeline integrity monitoring.” 2006 IEEE Sensor 

Array and Multichannel Signal Processing Workshop Proceedings, SAM 2006, 114–117. 

AWWA. (1987). Leaks in water distribution systems: a technical/economic overview. AWWA, 



202 
 

Denver, Colorado, USA. 

Belouchrani, A., Amin, M. G., Thirion-Moreau, N., and Zhang, Y. D. (2013). “Source separation 

and localization using time-frequency distributions: an overview.” IEEE Signal Processing 

Magazine, IEEE, 30(6), 97–107. 

Belsito, S., Lombardi, P., Andreussi, P., and Banerjee, S. (1998). “Leak detection in liquefied gas 

pipelines by artificial neural networks.” AIChE Journal, 44(12), 2675–2688. 

Billmann, L., and Isermann, R. (1987). “Leak detection methods for pipelines.” Automatica, 

Elsevier, 23(3), 381–385. 

Brennan, M., Gao, Y., and Joseph, P. (2007). “On the relationship between time and frequency 

domain methods in time delay estimation for leak detection in water disribution pipes.” 

Journal of Sound and Vibration, Elsevier, 304(1), 213–223. 

Cai, X., and Li, K. N. (2000). “Genetic algorithm for scheduling staff of mixed skills under 

multi-criteria.” European Journal of Operational Research, 125(2), 359–369. 

Cataldo, A., Persico, R., Leucci, G., De Benedetto, E., Cannazza, G., Matera, L., and De Giorgi, 

L. (2014). “Time domain reflectometry, ground penetrating radar and electrical resistivity 

tomography: a comparative analysis of alternative approaches for leak detection in 

underground pipes.” NDT & E International, Elsevier, 62, 14–28. 

Cheong, L. C. (1991). “Unaccounted for water and economics of leak detection. 8th Int.” Proc. 

International Water Supply Congress and Exhibition, International Water Supply 

Association, Copenhagen, 11–16. 

Colombo, A. F., and Karney, B. W. (2002). “Energy and Costs of Leaky Pipes: Toward 

Comprehensive Picture.” Journal of Water Resources Planning and Management, 128(6), 

441–450. 



203 
 

Colorni, A., Dorigo, M., and Maniezzo, V. (1992b). “A genetic algorithm to solve the timetable 

problem.” Politecnico di Milano, Milan, Italy TR, 60–90. 

Cortes, C., and Vapnik, V. (1995). “Support-vector networks.” Machine learning, Springer, 

20(3), 273–297. 

Covas, D., Ramos, H., and De Almeida, A. B. (2005). “Standing wave difference method for 

leak detection in pipeline systems.” Journal of Hydraulic Engineering, American Society of 

Civil Engineers, 131(12), 1106–1116. 

Datamatic Inc. (2008). “Permalog+ Leak Noise Loggers, used in conjunction with a MOSAIC 

Mesh Network or ROADRUNNER Mobile & Handheld data collection platforms, are 

today’s most powerful tool to protect precious resources and guard against costly and 

damaging water leaks.” Datamatic Inc., <www.datamatic.com> (Mar. 3, 2015). 

Datta, S., and Sarkar, S. (2016). “A review on different pipeline fault detection methods.” 

Journal of Loss Prevention in the Process Industries, Elsevier, 41, 97–106. 

Davis, S. (2003). “Priority Algorithms.” Priority Algorithms, 

<http://cseweb.ucsd.edu/~sdavis/res_exam.pdf> (Jan. 24, 2017). 

Echologics Inc. (2006). “Operation Management Training.” Department of Environment and 

Conservation Newfoundland Canada, <http://www.env.gov.nl.ca/env/waterres/ 

training/adww/manageoperation/11_m_bracken_gander_moe.pdf> (Nov. 27, 2016). 

El-Abbasy, M. S., Mosleh, F., Senouci, A., Zayed, T., and Al-Derham, H. (2016). “Locating 

Leaks in Water Mains Using Noise Loggers.” Journal of Infrastructure Systems, American 

Society of Civil Engineers, 4016012. 

El-Abbasy, M. S., Senouci, A., Zayed, T., Asce, M., and Mirahadi, F. (2014). “Condition 

Prediction Models for Oil and Gas Pipelines Using Regression Analysis.” 140(6), 1–17. 



204 
 

El-Zahab, S., Asaad, A., Abdelkader, E. M., and Zayed, T. (2017). “Collective thinking approach 

for improving leak detection systems.” Smart Water, 2(1), 3. 

El-Zahab, S., Mosleh, F., Zayed, T., Zahab, S. El, Mosleh, F., and Zayed, T. (2016). “An 

Accelerometer-Based Real-Time Monitoring and Leak Detection System for Pressurized 

Water Pipelines.” Pipelines 2016, 257–268. 

Elbehairy, H., Elbeltagi, E., Hegazy, T., and Soudki, K. (2006). “Comparison of two 

evolutionary algorithms for optimization of bridge deck repairs.” Computer-Aided Civil and 

Infrastructure Engineering, 21(8), 561–572. 

Eyuboglu, S., Mahdi, H., Al-Shukri, H., and Rock, L. (2003). “Detection of water leaks using 

ground penetrating radar.” 3rd International Conference on Applied Geophysics 2003. 

Fahmy, M., and Moselhi, O. (2009). “Automated detection and location of leaks in water mains 

using infrared photography.” Journal of Performance of Constructed Facilities, American 

Society of Civil Engineers, 24(3), 242–248. 

Fantozzi, M., Calza, F., and Lambert,  A. (2009). “Experience and Results Achieved in 

Introducing District Metered Areas (DMA) and Pressure Management Areas (PMA) at Enia 

Utility (Italy).” Proceedings of the 5th IWA Water Loss Reduction Specialist Conference, 

153–160. 

Fletcher, T. (2009). “Support vector machines explained.” Tutorial Paper, 

<http://www.tristanfletcher.co.uk/SVM Explained.pdf> (Jan. 25, 2017). 

Gao, Y., Brennan, M. J., Joseph, P. F., Muggleton, J. M., and Hunaidi, O. (2005). “On the 

selection of acoustic/vibration sensors for leak detection in plastic water pipes.” Journal of 

Sound and Vibration, 283(3–5), 927–941. 

Geiger, G., Vogt, D., and Tetzner, R. (2006). “State-of-the-Art in Leak Detection and 



205 
 

Localisation 1 Regulatory Framework.” Oil Gas European Magazine, URBAN VERLAG, 

32(4), 193. 

Ghazali, M., Staszewski, W., Shucksmith, J., Boxall, J., and Beck, S. (2011). “Instantaneous 

phase and frequency for the detection of leaks and features in a pipeline system.” Structural 

Health Monitoring, 10(4), 351–360. 

Giustolisi, O., and Berardi, L. (2009). “Prioritizing Pipe Replacement: From Multiobjective 

Genetic Algorithms to Operational Decision Support.” Journal of Water Resources 

Planning and Management, 135(6), 484–492. 

Goldberg, D. E. (2006). Genetic Algorithms in Search, Optimization, and Machine LEarning. 

Pearson Education, Upper Saddle River, New Jersey, USA. 

Gurney, K. (1997). An introduction to neural networks. CRC press, Boca Raton, Florida, USA. 

Hamilton, S. (2009). “ALC in Low Pressure Areas - It can be Done.” Proceedings of Water Loss 

2009 South Africa, CapeTown, South Africa, 131–137. 

Hauge, E., Aamo, O. M., and Godhavn, J.-M. (2007). Model Based Pipeline Monitoring With 

Leak Detection. IFAC Proceedings Volumes, IFAC. 

Hossin, M., and Sulaiman, M. N. (2015). “A review on evaluation metrics for data classification 

evaluations.” International Journal of Data Mining & Knowledge Management Process, 

Academy & Industry Research Collaboration Center (AIRCC), 5(2), 1. 

Hunaidi, O., and Wang, A. (2006). “A new system for locating leaks in urban water distribution 

pipes.” Management of Environmental Quality: An International Journal, Emerald Group 

Publishing Limited, 17(4), 450–466. 

Hunaidi, O., Wang, A., Bracken, M., Gambino, T., and Fricke, C. (2004). “Acoustic methods for 

locating leaks in municipal water pipe networks.” International Water Demand 



206 
 

Management Conference, 1–14. 

Inaudi, D., Glisic, B., Figini, A., Walder, R., Belli, R., and Walder, R. (2008). “Pipeline Leakage 

Detection and Localization Using Distributed Fibre Optic Sensing.” 2008 7th International 

Pipeline Conference, 1–8. 

Khulief, Y., Khalifa, A., Mansour, R. Ben, and Habib, M. (2012). “Acoustic Detection of Leaks 

in Water Pipelines Using Measurements inside Pipe.” Journal of Pipeline Systems 

Engineering and Practice, 3(2), 47–54. 

Kim, D., Ha, J., and You, K. (2011). “Adaptive extended Kalman filter based geolocation using 

TDOA/FDOA.” International Journal of Control and Automation, 4(2), 49–58. 

Krchnak, K. (2016). “Water Scarcity.” Water Scarcity - World Wild Life, 

<https://thewaterproject.org/water-scarcity/> (Dec. 18, 2016). 

KVS. (2015). “Tracer Gas Detection.” Tracer Gas Detection, <http://www.leakdetection-

technology.com/science/leak-detection-with-tracer-gas-methods> (Mar. 9, 2016). 

Lay-Ekuakille, A., Vendramin, G., and Trotta, A. (2009). “Spectral analysis of leak detection in 

a zigzag pipeline: A filter diagonalization method-based algorithm application.” 

Measurement, Elsevier, 42(3), 358–367. 

Lay-Ekuakille, A., Vergallo, P., and Trotta, A. (2010). “Impedance method for leak detection in 

zigzag pipelines.” Measurement Science Review, 10(6), 209–213. 

Lee, P. J., V’\itkovsk\`y, J. P., Lambert, M. F., Simpson, A. R., and Liggett, J. A. (2005). 

“Frequency domain analysis for detecting pipeline leaks.” Journal of Hydraulic 

Engineering, American Society of Civil Engineers, 131(7), 596–604. 

Li, W., Ling, W., Liu, S., Zhao, J., Liu, R., Chen, Q., Qiang, Z., and Qu, J. (2011). 

“Development of systems for detection, early warning, and control of pipeline leakage in 



207 
 

drinking water distribution: A case study.” Journal of Environmental Sciences, The 

Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 23(11), 

1816–1822. 

Liggett, J. A., and Chen, L.-C. (1994). “Inverse transient analysis in pipe networks.” Journal of 

Hydraulic Engineering, American Society of Civil Engineers, 120(8), 934–955. 

Lobato de Almeida, F. C. (2013). “Improved Acoustic Methods for Leak Detection in Buried 

Plastic Water Distribution Pipes.” University of SouthHampton. 

Mandal, S. K., Chan, F. T. S., and Tiwari, M. K. (2012). “Leak detection of pipeline: An 

integrated approach of rough set theory and artificial bee colony trained SVM.” Expert 

Systems with Applications, Elsevier Ltd, 39(3), 3071–3080. 

Martini, A., Troncossi, M., and Rivola, A. (2015). “Automatic leak detection in buried plastic 

pipes of water supply networks by means of vibration measurements.” Shock and Vibration, 

2015, 1–13. 

Mashford, J., De Silva, D., Marney, D., and Burn, S. (2009). “An approach to leak detection in 

pipe networks using analysis of monitored pressure values by support vector machine.” 

Third International Conference on Network and System Security, 2009. NSS’09., 534–539. 

MEMS and Nanotechnology Exchange. (2015). “What is MEMS Technology?” 

<https://www.mems-exchange.org/MEMS/what-is.html> (Feb. 26, 2016). 

Meng, L., Yuxing, L., Wuchang, W., and Juntao, F. (2012). “Experimental study on leak 

detection and location for gas pipeline based on acoustic method.” Journal of Loss 

Prevention in the Process Industries, Elsevier Ltd, 25(1), 90–102. 

Meniconi, S., Brunone, B., and Ferrante, M. (2010). “In-line pipe device checking by short-

period analysis of transient tests.” Journal of Hydraulic Engineering, American Society of 



208 
 

Civil Engineers, 137(7), 713–722. 

Mitchell, M. (1998). “L.D. Davis, handbook of genetic algorithms.” Artificial Intelligence, 

100(1–2), 325–330. 

Morcous, G., and Lounis, Z. (2005). “Maintenance optimization of infrastructure networks using 

genetic algorithms.” Automation in Construction, 14(1), 129–142. 

Moselhi, O., and Hassanein,  a. (2003). “Optimized Scheduling of Linear Projects.” Journal of 

Construction Engineering and Management, 129(6), 664–673. 

Mostafapour,  a., and Davoudi, S. (2013). “Analysis of leakage in high pressure pipe using 

acoustic emission method.” Applied Acoustics, Elsevier Ltd, 74(3), 335–342. 

Mounce, S. R., and Machell, J. (2006). “Burst detection using hydraulic data from water 

distribution systems with artificial neural networks.” Urban Water Journal, 3(1), 21–31. 

Mpesha, W., Gassman, S. L., and Chaudhry, M. H. (2001). “Leak detection in pipes by 

frequency response method.” Journal of Hydraulic Engineering, American Society of Civil 

Engineers, 127(2), 134–147. 

Müller, B., Reinhardt, J., and Strickland, M. T. (2012). Neural networks: an introduction. 

Springer Science & Business Media, Berlin, Germany. 

Piller, O., and Van Zyl, J. E. (2014). “Incorporating the FAVAD leakage equation into water 

distribution system analysis.” Procedia Engineering, 613–617. 

Pudar, R. S., and Liggett, J. A. (1992). “Leaks in Pipe Networks.” Journal of Hydraulic 

Engineering, 118(7), 1031–1046. 

Puretech Ltd. (2015). “Smartball.” <http://www.puretechltd.com/products/ 

smartball/smartball_leak_detection.shtml> (Feb. 26, 2016). 

Rajani, B., and Kleiner, Y. (2001). “Comprehensive review of structural deterioration of water 



209 
 

mains: Physically based models.” Urban Water, 3(3), 151–164. 

Rawlings, J. O., Pantula, S. G., and Dickey, D. a. (1998). Applied Regression Analysis: A 

Research Tool. Technometrics. 

Romano, M., Woodward, K., and Kapelan, Z. (2017). “Statistical Process Control Based System 

for Approximate Location of Pipe Bursts and Leaks in Water Distribution Systems.” 

Procedia Engineering, Elsevier, 186, 236–243. 

Royal, A. C. D., Atkins, P. R., Brennan, M. J., Chapman, D. N., Chen, H., Cohn, A. G., Foo, K. 

Y., Goddard, K. F., Hayes, R., Hao, T., Lewin, P. L., Metje, N., Muggleton, J. M., Naji, A., 

Orlando, G., Pennock, S. R., Redfern, M. A., Saul, A. J., Swingler, S. G., Wang, P., and 

Rogers, C. D. F. (2011). “Site Assessment of Multiple-Sensor Approaches for Buried 

Utility Detection.” International Journal of Geophysics, Hindawi Publishing Corporation, 

2011, 1–19. 

Sala, D., and Kołakowski, P. (2014). “Detection of leaks in a small-scale water distribution 

network based on pressure data - Experimental verification.” Procedia Engineering, 1460–

1469. 

Santos, R. B., Rupp, M., Bonzi, S. J., and Fileti, A. M. F. (2013). “Comparison between 

multilayer feedforward neural networks and a radial basis function network to detect and 

locate leaks in pipelines transporting gas.” Chemical Engineering Transactions, 32, 1375–

1380. 

Schempf, H., Mutschler, E., Goltsberg, V., Skoptsov, G., Gavaert, A., and Vradis, G. (2003). 

“Explorer: Untethered real-time gas main assessment robot system.” Proc. of Int. Workshop 

on Advances in Service Robotics, ASER. 

Shibley, J. A. (2013). “Enhanced Sonar Array Target Localization Using Time-Frequency 



210 
 

Interference Phenomena.” 

Shinozuka, M., Chou, P. H., Kim, S., Kim, H. R., Yoon, E., Mustafa, H., Karmakar, D., and Pul, 

S. (2010). “Nondestructive monitoring of a pipe network using a MEMS-based wireless 

network.” Proceedings of SPIE - Nondestructive Characterization for Composite Materials, 

Aerospace Engineering, Civil Infrastructure, and Homeland Security, 76490P. 

Silva, R. a., Buiatti, C. M., Cruz, S. L., and Pereira, J. a. F. R. (1996). “Pressure wave behaviour 

and leak detection in pipelines.” Computers & Chemical Engineering, 20(96), S491–S496. 

Sokolova, M., and Lapalme, G. (2009). “A systematic analysis of performance measures for 

classification tasks.” Information Processing & Management, Elsevier, 45(4), 427–437. 

Srirangarajan, S., Allen, M., Preis, A., Iqbal, M., Lim, H. B., and Whittle, A. J. (2013). 

“Wavelet-based burst event detection and localization in water distribution systems.” 

Journal of Signal Processing Systems, 72(1), 1–16. 

Stampolidis, A., Soupios, P., Vallianatos, F., and Tsokas, G. N. (2003). “Detection of leaks in 

buried plastic water distribution pipes in urban places - A case study.” Proceedings of the 

2nd International Workshop on Advanced Ground Penetrating Radar, 120–124. 

Stoianov, I., Nachman, L., Madden, S., Tokmouline, T., and Csail, M. (2007b). “PIPENET: A 

wireless sensor network for pipeline monitoring.” Information Processing in Sensor 

Networks, 2007. IPSN 2007. 6th International Symposium on, 264–273. 

Sun, Z., Wang, P., Vuran, M. C., Al-Rodhaan, M. A., Al-Dhelaan, A. M., and Akyildiz, I. F. 

(2011). “MISE-PIPE: Magnetic induction-based wireless sensor networks for underground 

pipeline monitoring.” Ad Hoc Networks, Elsevier B.V., 9(3), 218–227. 

Sykes, A. O. (2007). “An Introduction to Regression Analysis.” American Statistician, 61(1), 

101–101. 



211 
 

United States Environmental Protection Agency. (2009). Control And Mirigation of Drinking 

Water Losses in Distribution Systems. Washington, DC. 

Van Eck, N. J., and Waltman, L. (2010). “Software survey: VOSviewer, a computer program for 

bibliometric mapping.” Scientometrics, Springer, 84(2), 523–538. 

Van Eck, N. J., and Waltman, L. (2014). “CitNetExplorer: A new software tool for analyzing and 

visualizing citation networks.” Journal of Informetrics, Elsevier, 8(4), 802–823. 

Varone, S. ;, and Varsalona, P. (2012). “Detecting Leaks with Infrared Thermography.” Habitat 

MAgazine, New York, NY, 48–50. 

Verde, C., Molina, L., and Torres, L. (2014). “Parameterized transient model of a pipeline for 

multiple leaks location.” Journal of Loss Prevention in the Process Industries, Elsevier Ltd, 

29(1), 177–185. 

Wang, X.-J., Lambert, M. F., Simpson, A. R., Liggett, J. A., V \i’ tkovsk\`y, J. P., Asce, M., 

Liggett, J. A., and Vı, J. P. (2002). “Leak detection in pipelines using the damping of fluid 

transients.” Journal of Hydraulic Engineering, American Society of Civil Engineers, 

128(7), 697–711. 

WCT Products. (2015). “Vivax Vcam5.” <http://www.wctproducts.com/products/pipe-

cameras/vivax-metrotech-vcam-5-camera.php> (Mar. 5, 2016). 

Whittle, A. J., Girod, L., Preis, A., Allen, M., Lim, H. B., Iqbal, M., Srirangarajan, S., Fu, C., 

Wong, K. J., and Goldsmith, D. (2010). “WaterWiSe@SG: A Testbed for Continuous 

Monitoring of the Water Distribution System in Singapore.” Water Distribution Systems 

Analysis 2010, 1362–1378. 

Zielke, W. (1968). “Frequency-dependent friction in transient pipe flow.” Journal of basic 

engineering, American Society of Mechanical Engineers, 90(1), 109–115. 



212 
 

Van Zyl, J. E., and Clayton, C. R. I. (2007). “The effect of pressure on leakage in water 

distribution systems.” Proceedings of the Institution of Civil Engineers-Water Management, 

109–114. 

 

  



213 
 

A APPENDIX A: LEAK DETECTION TECHNOLOGIES 

Multiple technologies have been developed throughout the years to help identify and locate leaks 

within water networks. In this review, the modern state-of-the-art techniques will be reviewed, 

and their advantages and disadvantages will be pointed out.  

A.1 Listening Devices 

Both electrical and mechanical geophones are used to listen to buried water pipelines from the 

surface. These devices are accurate and highly sensitive that they can detect the exact location of 

the leak, and also cheap to purchase and easy to set up.  

The accuracy of geophones depends highly on the proficiency and the experience of the operator, 

and it also might fail to detect some leak classes. Furthermore, the exact location of the pipeline 

to be assessed must be marked so that the operator would know where to put the device. The 

examination renders the area above the pipe unusable in case it is a street or highly utilized area. 

Similar to Geophones, Hydrophones try to listen to leaks by sometimes being placed in the 

system and rarely on the surface of the ground. Hydrophones can be more accurate than 

geophones in detecting leaks but they require more training than geophones to operate, and they 

are approximately seven times more expensive than geophones (United States Environmental 

Protection Agency 2009). 

To detect a leak, these devices rely on the high-frequency acoustic signals sent by the release of 

pressurized fluids, to detect leak existence and leak locations. Sound frequencies are then 

amplified and filtered at 1 kHz using a preamplifier to remove high-frequency noises that are not 

related to the network. By measuring the time delay between two detection instants between two 

given listeners the leak can be pinpointed by relating propagation speed within the medium with 

time and distance.  
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A.2 Leak Noise Loggers 

Leak Noise loggers are placed in utility holes without any trenching or drilling; they can be used 

as a permanent monitoring, semi-permanent monitoring, or leak surveying technique. Noise 

Loggers operate by implementing sophisticated algorithms to identify the sound emitted by 

normal operations compared to that of the leak, thus identifying leaks immediately as they occur. 

Also, this technology is automatic thus eliminating human error. Noise loggers also have low 

maintenance and battery replacement cost for long-term use.  

This technology has a very high initial cost for a real-time monitoring system, and it does not 

identify the exact leak location without the use of correlators (Datamatic Inc. 2008). 

A.3 Infrared Thermography 

According to Fahmy and Moselhi (2009) “Thermography (IR) camera measures and images the 

emitted infrared radiation from an object. It can detect thermal contrasts on pavement surface 

due to water leaks.”  

This technology has been tested on non-metallic pipelines and has shown accurate results, yet 

these results were not as accurate as the results provided by acoustic technologies such as 

geophones and are unreliable under the cases of damaged pipelines. Furthermore, IR Camera 

requires marking of the pipeline on the ground surface so that the machine can move above the 

pipeline. Also the machine is profoundly affected by the surrounding weather and any variations 

in soil conditions and temperature. 

 

The infrared technology relies on the energy released by the vibration and motion of particles 

that release energy emissions based on their temperature. Infrared energy is not visible to the 

naked eye. Infrared thermography utilizes wavelengths that are limited to the electromagnetic 
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range between 0.4 and 0.7 micrometers. Infrared technologies detect wavelength ranges larger 

than 0.7 micrometers, thus detecting the temperature distribution inside the pipe and in the 

surrounding environment to identify any temperature anomalies that might indicate the existence 

of a leak as shown in Figure A-1 (Varone and Varsalona 2012). 

 

Figure A-1: Infrared image of a floor showing the distinctive color of entrapped moisture 

A.4 Tracer Gas 

Tracer gasses is a leak detection technique that utilizes pressurizing nontoxic and insoluble 

gasses into leaks, these gasses contain ammonia, halogens, and helium, where helium is the most 

sensitive.  

Given that the utilized gasses are lighter than air they will tend to go out through leaks and then 

seep out through the soil or pavements. Later on, these gasses are traced and detected using a 

man operated detector to identify the locations of leaks through detecting the seepage of tracer 

gasses (KVS 2015). 
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A.5 Ground Penetrating Radar  

The Ground Penetrating Radar (GPR) technology utilizes electromagnetic waves (between 125 

Mhz and 370 MHz) and transmits them into the ground to identify leak location via imaging the 

sub-terrain including the pipe and the leak.  

The advantages of this technology lie in its capability to detect leaks regardless of the material of 

the pipe, for any diameter size above one inch and reaching to a depth of 4 meters. Furthermore, 

this device can be easily transported between sites, and it does not require a lot of experience or 

training on behalf of the operator to operate it.  

 

Figure A-2: GPR Leak detection of a simulated leak at multiple angles. (Eyuboglu et al. 2003) 

On the other hand, this technology has multiple disadvantages namely requiring access to the 

road above the pipeline – thus disturbing traffic –, experience and training are required to 

accurately indicate the position of the leak and the dependency on the pipeline’s bedding and 
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surrounding conditions. Also, this technology is expensive where the machine price can range 

between 15,000$ to 31,000$ (United States Environmental Protection Agency 2009). 

Eyuboglu et al. (2003)developed a mathematical model that utilizes the amplitude of radar 

reflection to visualize the state of the pipe and detect precisely where the leak occurred. Figure 

A-2 illustrates how the GPR is moved above the soil to detect the condition of the pipeline.  

A.6 Leak Detecting Robots 

Multiple robotic devices were developed to perform in pipe inspection and determine leak 

locations in sewers. These devices can be wireless devices or cord connected. Furthermore, some 

leak detection robots can also perform leak repair tasks.  

A. Smart-Ball 

Smart-Ball is a free-swimming technology developed to detect leaks from within live large water 

pipelines. Smart-ball technology is composed of a foam ball with an aluminum alloy core, within 

the aluminum core, a highly sensitive detection instrument is placed.  

Smart-ball does not create any noise when passing through the pipeline. Therefore, it can detect 

tiny leaks. Also, the Smart-ball has a location accuracy within 3 meters of estimated leak 

location, it is very flexible due to its small size and can enter multiple sizes of pipelines. The 

Smart-ball requires two points of access to assess a pipe, a point for insertion and a point for 

extraction, and it is a non-destructive technology for leak detection.  

On the other hand, Smart-ball can only be operated by the manufacturing company only, and the 

ball might divert from the path it was required to search, or even the ball might get stuck 

(Puretech Ltd. 2015). 

PureTech Limited utilizes the acoustic sensor within the smart-ball device to listen to all the 

sounds emitted inside the vicinity of the pipe. Furthermore, PureTech utilizes their software to 
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analyze the sounds they are hearing and identify the locations of leaks, valves, as well as air 

pockets. Figure A-3 Further illustrates a smart ball passing through a pipeline and its possible 

outputs.   

 

Figure A-3: Movement of Smart-Ball within a pipeline with possible results.  

(Puretech Ltd. 2015) 

B. Explorer 

Schempf et al. developed a new photogrammetric leak detection robot named Explorer. Explorer 

is a robot developed mainly to detect leaks in gas pipelines; it is made of seven compartments 

that are composed of 2 locomotors with camera heads, two batteries, two support compartments, 

and one computer compartment in the middle as shown in Figure A-4.  

Explorer travels inside 6-inch and 8-inch pipelines as they operate with scanning the entire 

network with its long battery life and taking a picture of the sections they pass through using 

their front and back camera. The images are taken via fish-eye camera lenses and then processed 

by the computer within Explorer. These images are transferred to the operator’s computers where 

Laplace enhancements are performed on the images and then delivered to the operator for visual 

inspection (Schempf et al. 2003). 
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Figure A-4: Overall Shape and architecture of Explorer leak detection robot.  

(Schempf et al. 2003) 

C. Beaver 

DSI Robotics developed a cord attached robot that can be inserted into pipelines and sewers for 

pipeline assessment, leak detection, and leak repair purposes. The system is known as Beaver; 

the robot is attached to a machine that helps control the inspection robot and view what it is 

seeing.  

Beaver relies on Closed Circuit Television (CCTV) that is built into the robot. The robot 

compartment is inserted into the pipeline that requires studying and takes images that are 

processed in the stationary device to be viewed by the operator. Figure A-5 shows the robot 

device and the van that is attached to it.  
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Figure A-5: Beaver robot along with the van that operates and displays the robot. Photo 

courtesy of DSI Robotics 

D. Pear-point 

Much like Beaver, pear point is a tethered device used to assess live pipelines. Pear-point utilizes 

a camera with a long tube to transfer live images to the monitor attached to the reeling device – 

as shown in Figure A-6 – for the operator to identify the locations of leaks within the pipeline 

(WCT Products 2015). 

 

Figure A-6: Pear-point leak detection system. Courtesy of WCT Products. 
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A.7 Wireless Micro-Electro-Mechanical Systems (MEMS) 

Micro-Electro-Mechanical Systems are microfabricated mechanical and electro-mechanical 

devices and structures. MEMS are usually composed of four main elements:  

- Micro-Sensors 

- Micro-Actuators 

- Micro-Electronics 

- Micro-Structures (MEMS and Nanotechnology Exchange 2015). 

Multiple types of MEMS were used in leak detection of water mains mainly accelerometers, 

acoustic, and thermal.  

MEMS technology provides continuous water network monitoring for any leaks from the 

moment they are placed. MEMS’s accelerometers and data gathering hub are relatively cheap 

compared to other technologies and very accurate. 

On the other hand, MEMS application is still mostly theoretical and requires further research. 

Furthermore, MEMS needs further testing on long pipes and some pipeline materials as well 

(Kim et al. 2011). 
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