969 research outputs found

    Weaving Rules into [email protected] for Embedded Smart Systems

    Get PDF
    Smart systems are characterised by their ability to analyse measured data in live and to react to changes according to expert rules. Therefore, such systems exploit appropriate data models together with actions, triggered by domain-related conditions. The challenge at hand is that smart systems usually need to process thousands of updates to detect which rules need to be triggered, often even on restricted hardware like a Raspberry Pi. Despite various approaches have been investigated to efficiently check conditions on data models, they either assume to fit into main memory or rely on high latency persistence storage systems that severely damage the reactivity of smart systems. To tackle this challenge, we propose a novel composition process, which weaves executable rules into a data model with lazy loading abilities. We quantitatively show, on a smart building case study, that our approach can handle, at low latency, big sets of rules on top of large-scale data models on restricted hardware.Comment: pre-print version, published in the proceedings of MOMO-17 Worksho

    ADsafety: Type-Based Verification of JavaScript Sandboxing

    Full text link
    Web sites routinely incorporate JavaScript programs from several sources into a single page. These sources must be protected from one another, which requires robust sandboxing. The many entry-points of sandboxes and the subtleties of JavaScript demand robust verification of the actual sandbox source. We use a novel type system for JavaScript to encode and verify sandboxing properties. The resulting verifier is lightweight and efficient, and operates on actual source. We demonstrate the effectiveness of our technique by applying it to ADsafe, which revealed several bugs and other weaknesses.Comment: in Proceedings of the USENIX Security Symposium (2011

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Bounded Expectations: Resource Analysis for Probabilistic Programs

    Full text link
    This paper presents a new static analysis for deriving upper bounds on the expected resource consumption of probabilistic programs. The analysis is fully automatic and derives symbolic bounds that are multivariate polynomials of the inputs. The new technique combines manual state-of-the-art reasoning techniques for probabilistic programs with an effective method for automatic resource-bound analysis of deterministic programs. It can be seen as both, an extension of automatic amortized resource analysis (AARA) to probabilistic programs and an automation of manual reasoning for probabilistic programs that is based on weakest preconditions. As a result, bound inference can be reduced to off-the-shelf LP solving in many cases and automatically-derived bounds can be interactively extended with standard program logics if the automation fails. Building on existing work, the soundness of the analysis is proved with respect to an operational semantics that is based on Markov decision processes. The effectiveness of the technique is demonstrated with a prototype implementation that is used to automatically analyze 39 challenging probabilistic programs and randomized algorithms. Experimental results indicate that the derived constant factors in the bounds are very precise and even optimal for many programs

    Enhancing dynamic symbolic execution via loop summarisation, segmented memory and pending constraints

    Get PDF
    Software has become ubiquitous and its impact is still increasing. The more software is created, the more bugs get introduced into it. With software’s increasing omnipresence, these bugs have a high probability of negative impact on everyday life. There are many efforts aimed at improving software correctness, among which symbolic execution, a program analysis technique that aims to systematically explore all program paths. In this thesis we present three techniques for enhancing symbolic execution. We first present a counterexample-guided inductive synthesis approach to summarise a class of loops, called memoryless loops using standard library functions. Our approach can summarize two thirds of memoryless loops we gathered on a set of open-source programs. These loop summaries can be used to: 1) enhance symbolic execution, 2) optimise native code and 3) refactor code. We then propose a technique that avoids expensive forking by using a segmented memory model. In this model, we split memory into segments using pointer alias analysis, so that each symbolic pointer refers to objects in a single segment. This results in a memory model where forking due to symbolic pointer dereferences is reduced. We evaluate our segmented memory model on benchmarks such as SQLite, m4 and make and observe significant decreases in execution time and memory usage. Finally, we present pending constraints, which can enhance scalability of symbolic execution by aggressively prioritising execution paths that are already known to be feasible either via cached solver solutions or seeds. The execution of other paths is deferred until no paths are known to be feasible without using the constraint solver. We evaluate our technique on nine applications, including SQLite3, make and tcpdump, and show it can achieve higher coverage for both seeded and non-seeded exploration.Open Acces

    Toward Tool-Independent Summaries for Symbolic Execution

    Get PDF
    We introduce a new symbolic reflection API for implementing tool-independent summaries for the symbolic execution of C programs. We formalise the proposed API as a symbolic semantics and extend two state-of-the-art symbolic execution tools with support for it. Using the proposed API, we implement 67 tool-independent symbolic summaries for a total of 26 libc functions. Furthermore, we present SumBoundVerify, a fully automatic summary validation tool for checking the bounded correctness of the symbolic summaries written using our symbolic reflection API. We use SumBoundVerify to validate 37 symbolic summaries taken from 3 state-of-the-art symbolic execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries
    • …
    corecore