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Abstract
We introduce a new symbolic reflection API for implementing tool-independent summaries for
the symbolic execution of C programs. We formalise the proposed API as a symbolic semantics
and extend two state-of-the-art symbolic execution tools with support for it. Using the proposed
API, we implement 67 tool-independent symbolic summaries for a total of 26 libc functions.
Furthermore, we present SumBoundVerify, a fully automatic summary validation tool for checking
the bounded correctness of the symbolic summaries written using our symbolic reflection API. We
use SumBoundVerify to validate 37 symbolic summaries taken from 3 state-of-the-art symbolic
execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries.
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1 Introduction

Symbolic execution [14, 34] is a program analysis technique that allows for the exploration of
all the execution paths of the given program up to a bound, by executing the program with
symbolic values instead of concrete ones. For each execution path, the symbolic execution
engine builds a first order formula, called path condition, which accumulates the constraints
on the symbolic inputs that cause the execution to follow that path. Symbolic execution
engines rely on an underlying SMT solver [20, 9] to check the feasibility of execution paths
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24:2 Toward Tool-Independent Summaries for Symbolic Execution

and the validity of any assertions supplied by the developer. Despite being extensively used
in practice [15, 26, 7, 54], symbolic execution suffers from two main limitations when applied
to real-world code: interactions with the runtime environment (e.g. file system, network,
operating system) and path explosion. An effective approach to deal with these two issues is
to use symbolic summaries to model the behaviour of both external runtime functions as
well as internal functions with a high level of branching [6].

Symbolic summaries constrain the symbolic state of the given program so as to simulate
the behaviour of the modelled functions without having to symbolically execute them. The
idea is that instead of symbolically executing the code of a given concrete function on some
symbolic inputs, one implements a symbolic summary that models the behaviour of that
function, and then executes the summary instead of the concrete function. Importantly,
symbolic summaries allow developers to merge different symbolic execution paths into a
single path by explicitly interacting with the current symbolic state [6, 52]. Hence, they
provide an effective mechanism for containing the number of paths to be explored during
symbolic execution, allowing developers to mitigate the effect of the path explosion problem.

When writing a symbolic summary, tool developers must carefully construct the symbolic
state that properly captures the outcome of all the execution paths that the summary is
supposed to model. They do this by directly interacting with the various elements of the given
symbolic state using symbolic reflection mechanisms [6, 52]. This is often a challenging task
that is both error prone and difficult to validate. For this reason, most symbolic execution
tools for C have very limited support for external functions and commonly used library
functions, such as those of the Standard C Library (libc).

State-of-the-art symbolic execution tools [50, 15, 38] come with their own symbolic
summaries implemented in the programming languages used to build each tool. For instance,
angr ’s [50] summaries are implemented in Python, KLEE ’s [15] summaries in C, and
BINSEC ’s [19] summaries in OCaml, even though all these tools target C code. These
summaries often rely on specific aspects of the tools for which they were implemented,
making it extremely difficult to share summaries between different symbolic execution tools.
Surprisingly, and although there is a clear lack of appropriate tool support for developing
and sharing symbolic summaries across different symbolic execution tools, the research
community has not yet given much attention to this topic. The current state of affairs is,
however, dire: even though the Standard C Library (libc) includes more than one thousand
functions, the symbolic execution tool with the broadest support for libc is angr [50],
with only 128 unverified symbolic summaries. This situation is made considerably worse
by the fact that even the few existing summaries are written manually and not verified,
potentially compromising the correctness and coverage guarantees of their corresponding
symbolic execution tools.

In this paper, we introduce a new symbolic reflection API for the implementation of
tool-independent symbolic summaries for the C programming language. The proposed
API consists of a set of symbolic reflection primitives [52] for the explicit manipulation of
C symbolic states in a tool-independent way. Our symbolic primitives include a variety
of instructions for: creating symbolic variables and first-order constraints, checking the
satisfiability of constraints, and extending the path condition of the current symbolic state
with a given constraint. Symbolic summaries implemented using our API are written directly
in C and can therefore be shared across different symbolic execution tools, provided that these
tools implement the proposed API. Importantly, the goal of our API is not to make symbolic
summaries simpler or easier to write, but rather to establish a symbolic reflection interface
shared by all symbolic execution tools, allowing for the decoupling of symbolic summaries from
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the internal details of each tool. To illustrate the applicability of our API, we have extended
the symbolic execution tools angr [50] and AVD [45] with support for it and developed
67 tool-independent symbolic summaries for a total of 27 libc functions, including string-
manipulating, number-parsing, input/output, and heap-manipulating functions. Furthermore,
we formalised our symbolic reflection API as a symbolic semantics [52, 21] and used this
semantics to formally characterise the correctness properties that symbolic summaries are
expected to observe, specifically, over- and/or under-approximation.

Leveraging our symbolic reflection API, we developed SumBoundVerify, a new fully-
automated tool for the bounded verification of symbolic summaries. SumBoundVerify
works by comparing the execution paths modelled by the given summary against those
generated by symbolically executing its corresponding concrete function up to the chosen
bound. In order to assess the effectiveness of SumBoundVerify, we used it to verify
summaries belonging to three state-of-the-art symbolic execution tools: angr [50], Binsec [19,
39, 18], and Manticore [38]. Out of the 37 analysed summaries, 24 were flagged as buggy,
clearly demonstrating the need for tool support when it comes to designing and implementing
symbolic summaries. This need is further confirmed by our own experience in the development
of symbolic summaries, which we typically found to be highly complex and error-prone.
This paper bridges this gap by providing the first verification tool specifically aimed at the
development of correct symbolic summaries.

In summary, the contributions of this paper are the following: (1) a formally defined API
for developing symbolic summaries for C; (2) a library of 67 symbolic summaries modelling
26 libc functions; and (3) SumBoundVerify, an automatic bounded verification tool for
validating symbolic summaries against their corresponding concrete implementations.

2 Overview

In this section, we first contrast the existing methodology for implementing symbolic sum-
maries with our proposed approach (§2.1) and then give a high-level overview of SumBound-
Verify (§2.2), illustrating how it can be used to verify symbolic summaries.

2.1 Tool-Specific vs. Tool-Independent Symbolic Summaries
A symbolic summary is an operational model of a function that simulates its behaviour by
interacting directly with the underlying symbolic state. So far, each symbolic execution tool
for C comes with its own summaries directly implemented in the programming language
used to build the tool. Existing symbolic summaries are therefore tightly connected to the
architecture of their corresponding tools, preventing summaries from being shared between
different tools. In order to cater for the reuse of symbolic summaries, we propose an alternative
approach: Symbolic summaries are to be directly implemented in C using a shared symbolic
reflection API for direct manipulation of symbolic states at the programming language level.

To illustrate the difference between tool-specific and tool-independent summaries, we
compare Manticore’s [38] symbolic summary for strlen (Figure 1) with the equivalent
summary written directly in C using our API (Figure 2).

Manticore’s Tool-Specific Summary

Figure 1 shows Manticore’s summary for the function strlen. This summary first checks if
the given string pointer is itself symbolic, in which case it throws an error (lines 3-4). Then,
the summary uses the Manticore’s internal function find_zero to determine the index of the
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1 def strlen_approx(state: State, s: Union[int, BitVec]) -> Union[int, BitVec]:
2
3 if issymbolic(s):
4 raise ConcretizeArgument(state.cpu, 1)
5
6 #Find max string length
7 cpu = state.cpu
8 zero_idx = _find_zero(cpu, state, s)
9 ret = zero_idx

10
11 #Build nested ITE formula
12 for offset in range(zero_idx - 1, -1, -1):
13 byt = cpu.read_int(s + offset, 8)
14 if issymbolic(byt):
15 ret = ITEBV(cpu.address_bit_size, byt == 0, offset, ret)
16
17 return ret

Figure 1 Implementation of Manticore’s strlen summary.

first concrete null character in the input string, zero_idx. Note that if the string does not
contain any symbolic character, zero_idx coincides with the length of the string. In the final
for-loop, the summary iterates over the characters of the given string to construct a symbolic
expression denoting its length. For instance, given the symbolic string [c0, c1, c2, \0],
the loop will generate the expression:

ret = ITE(c0 == \0, 0, ITE(c1 == \0, 1, ITE(c2 == \0, 2, 3)))

signifying that: if the first character (c0) is null, then the return value is 0; if the second
character (c1) is null, then the return value is 1; if the third character (c2) is null, then the
return value is 2; otherwise, the return value is 3. Note that the overlines have no semantic
meaning, being only there to facilitate the reading.

Tool-Independent Summary

Figure 2 shows our equivalent C implementation of Manticore’s summary for strlen.
Although both summaries implement approximately the same logic,1 our summary is
written directly in C using our symbolic reflection API. It uses the following primitives:
(1) is_symbolic(x) to check if variable x denotes a symbolic value; (2) new_sym_var(size)
to create a new symbolic variable to represent a value of size size; (3) _solver_EQ(a, b)
to build a constraint stating that the two given values are equal; (4) assume(c) to add
the constraint c to the path condition of the current symbolic state; and (5) the primitive
_solver_IF(c, a, b) to build an if-then-else symbolic expression of the form ITE(c, a, b).

Why use symbolic summaries?

To better understand the benefits of symbolic summaries, let us consider the symbolic execu-
tion of the concrete implementation of strlen on the symbolic string [c0, c1, c2, \0].
That execution would generate four execution paths, each corresponding to one of the possible
outputs. In contrast, the execution of either of the symbolic summaries described above
generates a single execution path representing all four outputs. Both symbolic summaries

1 The C summary assumes that it is never given a symbolic pointer as input.
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1 size_t strlen(char* s){
2 int i = 0;
3 char char_zero = '\0';
4

5 //Calculate max string length
6 while(is_symbolic(&s[i]) || s[i] != '\0'){
7 i++;
8 }
9 int len = i;

10 symbolic ret = new_sym_var(INT_SIZE);
11 cnstr_t ret_cnstr = _solver_EQ(&ret, &len, INT_SIZE);
12

13 //Build nested ITE constraint
14 for(i = len-1; i >= 0; i--){
15

16 if(is_symbolic(&s[i])){
17

18 cnstr_t c_eq_zero = _solver_EQ(&s[i], &char_zero, CHAR_SIZE);
19 cnstr_t ret_eq_i = _solver_EQ(&ret, &i, INT_SIZE);
20

21 ret_cnstr = _solver_IF(c_eq_zero, ret_eq_i, ret_cnstr);
22 }
23 }
24 assume(ret_cnstr);
25 return ret;
26 }

Figure 2 Implementation of Manticore’s strlen in C.

achieve this by directly extending the path condition of the calling state with a formula that
constrains the return value appropriately, depending on the symbolic characters appearing
in the given string.

2.2 Bounded Verification of Symbolic Summaries
In this section we show how SumBoundVerify can be used to verify the symbolic sum-
mary of strlen given above. We support two flavours of correctness properties: under-
approximating [40] and over-approximating [5]. A summary is under-approximating if all the
execution paths modelled by the summary are contained in the set of concrete paths of its
corresponding function. In other words, an under-approximating summary guarantees that
all its generated paths have corresponding concrete paths. Conversely, a symbolic summary
is over-approximating if it models all the concrete paths of its corresponding function; that
is, an over-approximating summary must take into account all possible concrete paths. If a
summary is both under- and over-approximating, we say that it is exact, following recent
terminology in the context of separation-logic-based verification [37]. Naturally, the type
of correctness property to be aimed at depends on how the summary is going to be used.
For instance, over-approximating summaries are essential for security applications that must
guarantee the absence of security vulnerabilities; in contrast, under-approximating summaries
may be a better fit for debugging tools that aim at reporting only real bugs.

Bounded Verification

Let us now take a closer look at the inner workings of SumBoundVerify. In a nutshell,
SumBoundVerify requires the developer to provide the summary to be verified, its cor-
responding concrete implementation, and an integer bound on the size of its parameters;
for instance, for inputs of array type, this bound corresponds to the maximum length of

ECOOP 2023



24:6 Toward Tool-Independent Summaries for Symbolic Execution

1 int main(){
2
3 char s[4];
4 for (int i = 0; i < 2; i++){
5 s[i] = new_sym_var_array("c", i, CHAR_SIZE);
6 }
7 s[3] = '\0';
8
9 state_t fresh_state = save_current_state();

10
11 int ret1 = concrete_strlen(s);
12 cnstr_t c1 = get_cnstr(&ret1, INT_SIZE);
13 store_cnstr("cncrt", c1);
14
15 switch_state(fresh_state);
16
17 int ret2 = summ_strlen(s);
18 cnstr_t c2 = get_cnstr(&ret2, INT_SIZE);
19 store_cnstr("summ", c2);
20
21 result_t res = check_implications("summ", "cncrt");
22 print_counterexamples(res);
23 return 0;
24 }

(a) Test code.

Reference Implementation Formula:
(c0 = \0) ∧ (ret = 0) ∨
(c0 ̸= \0) ∧ (c1 = \0) ∧ (ret = 1) ∨
(c0 ̸= \0) ∧ (c1 ̸= \0) ∧ (c2 = \0) ∧ (ret = 2) ∨
(c0 ̸= \0) ∧ (c1 ̸= \0) ∧ (c2 ̸= \0) ∧ (c3 = \0)
∧ (ret = 3)

Symbolic Summary Formula:
IT E(c0 = \0, r = 0,

IT E(c1 = \0, r = 1,
IT E(c2 = \0, r = 2, 3)) ∧ ret = r

(b) Generated formulas.

Figure 3 Bounded Verification of the strlen summary given in Figure 2.

the array. Given the signature of the summarised function, SumBoundVerify synthesises
a set of symbolic tests to check the correctness of the given summary. These tests can be
executed by any symbolic execution tool that implements our reflection API. If the summary
passes all the generated tests, then it is correct up to the pre-established bound. If it does
not, then SumBoundVerify generates a concrete input that is not correctly modelled by
the summary.

Figure 3 illustrates one of the tests generated for the strlen summary discussed in §2.1,
assuming that the developer specified bound 3. The test first creates an array of size 4,
initialises the first 3 characters to new symbolic characters, and sets the fourth element
of the array to be the null character (lines 3-7). Then, the test uses the API function
save_current_state to save the current symbolic state (line 9). Next, the test calls the
concrete strlen function on the created symbolic string and stores the generated return
values and final path conditions for future reference (lines 12-14). Then, the test re-establishes
the symbolic state saved in line 10 by calling the API function switch_state (line 15),
which simply replaces the current symbolic state with the given symbolic state. Having
re-established the original symbolic state, the test calls the summary on the input string and
stores the generated return values and final path conditions (lines 17-19). Finally, the test
compares the return values and path conditions generated by the summary against those
generated by the concrete function.

A summary can be classified as being: under-approximating correct, over-approximating
correct, or incorrect. In a nutshell, the two correct cases are checked as follows:

Under-approximating: the formula describing the final state resulting from the symbolic
execution of the summary implies the formula describing the final state resulting from
the symbolic execution of its reference implementation;
Over-approximating: the formula describing the final state resulting from the symbolic
execution of the reference implementation implies the formula describing the final state
resulting from the symbolic execution of the summary.

The strlen summary given in Figure 2 is exact (i.e., both under- and over-apaproximating).
Figure 3b shows the formulas generated by the execution of both the reference implementation
and the summary. As the summary is exact, the solver can check both implications.
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3 Symbolic Reflection API

We formally define the semantics of our API for developing symbolic summaries (§3.1) and
use this semantics to characterise the correctness properties that symbolic summaries are
expected to observe (§3.2). Then, we illustrate how our reflection API can be used to develop
symbolic summaries for string-manipulating and number-parsing libc functions (§3.3).

3.1 Formal Semantics
We define the formal semantics of our Symbolic Reflection API on top of a core C-like
language in the style of the core language used in [41], which we extend with our symbolic
reflection primitives. Importantly, and in order not to clutter the formalism with unnecessary
technical details, the formal model is a simplified version of our proposed API. The syntax
of the language is given in the table below.

Syntax

e := n
∣∣ x

∣∣ ⊖ (e) | ⊕ (e1, e2)| ⊗ (e1, e2, e3)

ŝ := x := e
∣∣ skip

∣∣ ŝ1; ŝ2
∣∣ if(e) {ŝ1} else {ŝ2}

∣∣ while(e) {ŝ}
∣∣ return e∣∣ x := e1[e2]

∣∣ e1[e2] := e3
∣∣ x := new(e)

∣∣ rs

rs := assert(e)
∣∣ assume(e)

∣∣ x := is_symbolic(e)
∣∣ x := symb()

∣∣ x := is_sat(e)∣∣ x := maximize(e)
∣∣ x := minimize(e)

∣∣ x := cur_pc()
∣∣ x := eval(e)∣∣ x := block_size(e)

∣∣ x := construop(e)
∣∣ x := constrbop(e1, e2)

bop := or
∣∣ and

∣∣ eq
∣∣ neq

∣∣ lt
∣∣ le uop := not

Expressions e ∈ Expr include integers n, program variables x, unary, binary, and ternary
operators. Statements ŝ ∈ Stmt include: (i) the typical imperative statements, i.e. variable
assignment, skip, sequence, if, while, and return statements; (ii) statements for interaction
with a linear memory, and (iii) symbolic reflection primitives rs ∈ RS. In the following we
use ŝ for statements that may include reflection primitives and s for statements that do not.
Accordingly, we use ŝ for symbolic summaries and s for reference implementations.

The statements for memory interaction are the following: (1) the statement x := e1[e2]
assigns to x the value stored in the memory block denoted by e1 at the offset denoted by e2;
(2) the statement e1[e2] := e3 stores the value denoted by e3 in the memory block denoted
by e1 at the offset denoted by e2; and (3) the statement x := new(e) creates a memory block
with the size denoted by e and assigns the obtained pointer to x.

The symbolic reflection primitives rs ∈ RS are the following: (1) assert(e) to check if
the current path condition implies the constraint denoted by e; (2) assume(e) to extend the
current path condition with the constraint denoted by e; (3) x := is_symbolic(e) to assign
to variable x a boolean value indicating if e denotes a symbolic expression; (4) x := symb()
to assign a fresh symbolic value to x; (5) x := is_sat(e) to check if the constraint denoted
by e is satisfiable when conjoined with the current path condition; (6) x := maximize(e)
to assign the largest possible value that may be denoted by e to x; (7) x := minimize(e)
to assign the smallest possible value that may be denoted by e to x; (8) x := cur_pc() to
assign the formula denoting the current path condition to x; (9) x := eval(e) to assign one
of the concrete values denoted by e to x; (10) x := block_size(e) to assign the size of the
memory block pointed to by e to x; (11) x := construop(e) to assign the constraint resulting
from the application of the logical unary operator uop to the symbolic value denoted by e to
x; and (12) x := constrbop(e1, e2) to assign the constraint resulting from the application of
the logical binary operator bop to the symbolic values denoted by e1 and e2.
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New
JeKρ̂ = n alloc(µ̂, n) = ⟨µ̂′, l⟩

ρ̂′ = ρ̂[x 7→ l]
µ̂, ρ̂, x := new(e)⇝ µ̂′, ρ̂′,C⟨·⟩

Load
Je1Kρ̂ = l Je2Kρ̂ = ô load(µ̂, l, ô)⇝s S⟨v̂, π′⟩

ρ̂′ = ρ̂[x 7→ v̂] π′′ = π ∧ π′

µ̂, ρ̂, π, x := e1[e2]⇝ µ̂, ρ̂′, π′′,C⟨·⟩

Store
Je1Kρ̂ = l Je2Kρ̂ = ô Je3Kρ̂ = v̂

store(µ̂, l, ô, v̂)⇝ S⟨µ̂′, π′⟩
µ̂, ρ̂, π, e1[e2] := e3 ⇝ µ̂′, ρ̂, π ∧ π′,C⟨·⟩

Skip
skip⇝ C⟨·⟩

Return
JeKρ̂ = v̂

ρ̂, return e⇝ ρ̂,R⟨v̂⟩

If-True
JeKρ̂ = v̂ π′ = π ∧ (v̂ = true)

ρ̂, π, if(e) {ŝ1} else {ŝ2}⇝ ρ̂, π′,C⟨ŝ1⟩

If-False
JeKρ̂ = v̂ π′ = π ∧ (v̂ = false)

ρ̂, π, if(e) {ŝ1} else {ŝ2}⇝ ρ̂, π′,C⟨ŝ2⟩

Assignment
JeKρ̂ = v̂

ρ̂, x := e⇝ ρ̂[x 7→ v̂],C⟨·⟩

Sequence - Cont
µ̂, ρ̂, π, ŝ1 ⇝ µ̂′, ρ̂′, π′,C⟨ŝ′

1⟩
µ̂, ρ̂, π, ŝ1; ŝ2 ⇝ µ̂′, ρ̂′, π′, C⟨ŝ′

1; ŝ2⟩

Sequence - Empty
µ̂, ρ̂, π, ŝ1 ⇝ µ̂′, ρ̂′, π′,C⟨·⟩

µ̂, ρ̂, π, ŝ1; ŝ2 ⇝ µ̂′, ρ̂′, π′, C⟨ŝ′
2⟩

While
while(e) {ŝ}⇝ C⟨if(e) {ŝ, while(e) {ŝ}} else {skip}⟩

Figure 4 Core Semantics: Imperative Fragment.

Symbolic Execution – Trace Semantics

The symbolic semantics of our core language operates on symbolic states, which store symbolic
values given by the grammar: v̂ ∈ V̂ ::= n | x̂ | ⊖ (v̂) | ⊕ (v̂, v̂) | ⊗ (v̂, v̂, v̂). Symbolic values
include: integers n, symbolic variables x̂ ∈ X̂ , and unary, binary, and ternary operators,
respectively ranged by ⊖, ⊕, and ⊗. Furthermore, we use π ∈ Π to range over symbolic
values of type Boolean. Symbolic states σ̂ ∈ SymSt are composed of:

a symbolic heap, µ̂ : N ⇀ V̂ × N × N, mapping integer pointers l ∈ N to triples of the
form (v̂, kl, kr), where v̂ denotes the symbolic value stored at location l and kl and kr

respectively denote the number of cells that can be accessed to the left and to the right
of l using l as the accessing pointer;
a symbolic store, ρ̂ : X ⇀ V̂, mapping program variables to symbolic values; and
a path condition, π ∈ Π, keeping track of the constraints on which the current symbolic
execution branched so far.

Note that our symbolic execution model requires heap locations to always be concrete; hence,
we take the domain of symbolic heaps to be the set of naturals, N, rather than that of
symbolic values, V̂. Symbolic heaps, as concrete heaps, are organised in blocks, with each
block being a sequence of memory locations; blocks can be univocally identified by their
first location, which is referred to as the head of the block (i.e., l is the head of a block in µ̂,
if µ̂(l) = (−, 0,−), meaning that one cannot access any location before l within its block).
Furthermore, we assume heaps to be well-formed, meaning that ranges of adjacent locations
are consistent with each other; put formally, a heap µ̂ is said to be well-formed if and only if:

∀l ∈ dom(µ̂). µ̂(l) = (−, 0, kr) =⇒ ∀0 ≤ i < kr. µ̂(l+i) = (−, i, kr−i)
∀l ∈ dom(µ̂). µ̂(l) = (−, kl, kr) =⇒ µ̂(l − kl) = (−, 0, kl + kr)
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Alloc
l = |dom(µ̂)|

µ̂′ = µ̂[l+i 7→ (0, n−i, i) | 0 ≤ i < n]
alloc(µ̂, n) ≜ ⟨µ̂′, l⟩

Block-size
µ̂(l) = (−, −, kr)
b_size(µ̂, l) ≜ kr

Load - In Bounds
µ̂(l) = (−, kl, kr) − kl ≤ i < kr

π′ = ô = i µ̂(l + i) = (v̂, −, −)
load(µ̂, l, ô)⇝s S⟨v̂, π′⟩

Store - In Bounds
µ̂(l) = (−, kl, kr) − kl ≤ i < kr µ̂(l + i) = (−, k′

l, k′
r) µ̂′ = µ̂[l+i 7→ (v̂, k′

l, k′
r)]

store(µ̂, l, ô, v̂)⇝s S⟨µ̂′, π′⟩

Figure 5 Core Semantics: Memory Actions.

In order to define the symbolic semantics of our core language, we make use of computation
outcomes [21, 36], which capture the flow of execution and are generated by the following
grammar: ô ∈ Ô ::= C⟨ŝ⟩ | C⟨·⟩ | R⟨v̂⟩ | E⟨π⟩. We make use of four types of outcomes: (1) the
non-empty continuation outcome C⟨ŝ⟩, signifying that the execution of the current statement
generated a new statement to be executed next; (2) the empty continuation outcome C⟨·⟩,
signifying that the execution may proceed to the next instruction; (3) the return continuation
outcome R⟨v̂⟩, signifying that the current execution terminated with return value v̂; and (4)
the error outcome E⟨π⟩, signifying that the current execution generates an error.

We define the symbolic semantics of our core language using a semantic judgement
of the form: σ̂, s ⇝ σ̂′, ô, meaning that the symbolic evaluation of statement s in the
state σ̂ generates the state σ̂′ and outcome ô. We splice the components of the state into
the semantic transition, simply writing ⟨µ̂, ρ̂, π, s⟩ ⇝ ⟨µ̂′, ρ̂′, π′, ô⟩ when σ̂ = (µ̂, ρ̂, π) and
σ̂′ = (µ̂′, ρ̂′, π′). The semantic rules are given in Figures 4 and 6, where the former focus on
the core language and the latter on symbolic reflection API. Due to space constraints, we
omit all error-generating transitions with the exception of those describing errors generated
by API primitives. We further omit the elements of the configuration that are neither
updated nor inspected by the current rule, writing, for instance, ρ̂, s ⇝ ρ̂′, ô to mean
⟨µ̂, ρ̂, π, s⟩⇝ ⟨µ̂, ρ̂′, π, ô⟩. Note that the semantics is non-deterministic, meaning the symbolic
execution of a statement on a given state may generate multiple states and continuations.

The symbolic semantics of the imperative fragment is straightforward. It makes use of
the auxiliary function alloc and relations load and store for interacting with the linear
memory; their meanings are as follows:

alloc(µ̂, n) allocates a new memory block of size n;
load(µ̂, l, ô)⇝s S⟨v̂, π′⟩ successfully loads the value v̂ stored at the offset ô of location l

in memory µ̂; as the loading operation may cause the execution to branch, it additionally
generates a new formula π′ with the conditions that must hold for the symbolic value v̂

to be returned;
store(µ̂, l, ô, v̂) ⇝ S⟨µ̂′, π′⟩ successfully stores the symbolic value v̂ at the offset ô of
location l in memory µ̂ under the path condition π, returning a new memory µ̂′; as for
the loading operation, the storing operation may cause the execution to branch, hence
the returned constraint π′.

In the above, we use the symbol S to distinguish the successful transitions of load and store
from their error-leading transitions, which are labelled with E.

The definitions of alloc, load, and store are given in Figure 5. In contrast to load
and store which may cause the current execution to branch, alloc is assumed to be
deterministic. Hence, it is modelled as a function. Load and store operations fail if they
attempt to read/update the contents of a memory cell beyond the bounds of the inspected
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Assert - False
JeKρ̂ = π′ ̸⊢ π ⇒ π′

ρ̂, π, assert(e)⇝ ρ̂, π,E⟨π⟩

Assert - True
JeKρ̂ = π′ ⊢ π ⇒ π′

ρ̂, π, assert(e)⇝ ρ̂, π,C⟨·⟩

Assume
JeKρ̂ = π′

ρ̂, π, assume(e)⇝ ρ̂, π ∧ π′,C⟨·⟩

IsSymbolic - True
JeKρ̂ ̸∈ Consts ρ̂′ = ρ̂[x 7→ true]
ρ̂, x := is_symbolic(e)⇝ ρ̂′,C⟨·⟩

IsSymbolic - False
JeKρ̂ ∈ Consts ρ̂′ = ρ̂[x 7→ false]

ρ̂, x := is_symbolic(e)⇝ ρ̂′,C⟨·⟩

Symb
x̂ fresh

ρ̂, x := symb()⇝ ρ̂[x 7→ x̂],C⟨·⟩

IsSat - True
JeKρ̂ = π′ π ∧ π′ SAT

ρ̂′ = ρ̂[x 7→ true]
ρ̂, π, x := is_sat(e)⇝ ρ̂′, π,C⟨·⟩

IsSat - False
JeKρ̂ = π′ π ∧ π′ UNSAT

ρ̂′ = ρ̂[x 7→ false]
ρ̂, π, x := is_sat(e)⇝ ρ̂′, π,C⟨·⟩

Maximise
JeKρ̂ = ê π ∧ ê ≤ v SAT

π ∧ ê > v UNSAT ρ̂′ = ρ̂[x 7→ v]
ρ̂, π, x := maximize(e)⇝ ρ̂′, π,C⟨·⟩

Minimise
JeKρ̂ = ê π ∧ ê ≥ v SAT

π ∧ ê < v UNSAT ρ̂′ = ρ̂[x 7→ v]
ρ̂, π, x := minimize(e)⇝ ρ̂′, π,C⟨·⟩

Cur-PC
ρ̂′ = ρ̂[x 7→ π]

ρ̂, π, x := cur_pc()⇝ ρ̂′, π,C⟨·⟩

Eval
JeKρ̂ = ê π ∧ ê = v SAT
ρ̂, π, x := eval(e)⇝ ρ̂′, π,C⟨·⟩

BlockSize
JeKρ̂ = l b_size(µ̂, l) = k

ρ̂′ = ρ̂[x 7→ k]
ρ̂, π, x := block_size(e)⇝ ρ̂′, π,C⟨·⟩

Not
JeKρ̂ = ê′ ρ̂′ = ρ̂[x 7→ uop(ê′)]
ρ̂, x := construop(e)⇝ ρ̂′,C⟨·⟩

Bi-Contr
JeiKρ̂ = êi|i=1,2 ρ̂′ = ρ̂[x 7→ bop(ê1, ê2)]

ρ̂, x := constrbop(e1, e2)⇝ ρ̂′,C⟨·⟩

Figure 6 Core Semantics: Symbolic Reflection API.

location (the failing rules are omitted due to space constraints). In the success case, both
load and store operations branch on the value of all legal offsets. This means that these
operations may generate unsatisfiable path conditions (for instance, when the given offset is
concrete), in such cases the symbolic execution path is unfeasible and will be filtered out by
symbolic execution.

Finally, Figure 6 gives the rules that describe the semantics of our proposed API. The
rules are straightforward. Note that constraints are simply symbolic values of boolean type;
hence, various rules either assign constraints to variables (e.g. Cur-Pc) or obtain a constraint
as the result of symbolically evaluating an expression (e.g. Assert, Assume, IsSat).

Symbolic Execution – Collecting Semantics

So far, we have defined the semantics of a single symbolic execution trace. In the following,
we extend this definition to account for multiple traces. We use ϕ̂ and ω̂ to range over input
and output symbolic configurations, respectively.2 We further use Ω̂ to range over sets of

2 Input configurations differ from output configurations in that former are composed of a symbolic state
and a statement whereas the latter are composed of a symbolic state and an outcome.
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output configurations. We capture the semantics of multiple-trace symbolic execution using
a big-step relation of the form ϕ̂ ⇓ Ω̂, meaning that if we “run” the symbolic semantics on the
input configuration ϕ̂, we obtain the set of output configurations Ω̂. As symbolic execution
often diverges, we additionally introduce a bounded version of the collecting semantics,
writing ϕ̂ ⇓k Ω̂ to mean that if we “run” the symbolic semantics on the input configuration
ϕ̂ and ignore symbolic traces with more than k steps, we end up with the set of output
configurations Ω̂. In order to formalise these relations, we make use of collecting one-step
transitions, writing ϕ̂ ↘ Ω̂ to mean Ω̂ contains all the configurations resulting from the
application of a single symbolic step on the input configuration ϕ̂ and no other; put formally:

Ω̂ = {⟨µ̂′, ρ̂′, π′, ô⟩ | ⟨µ̂, ρ̂, π, ŝ⟩⇝ ⟨µ̂′, ρ̂′, π′, ô⟩}
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂

Definition 1 formalises the collecting semantics for bounded symbolic execution (the
unbounded version can be easily obtained from the bounded one by dropping the constraints
on k). The definition makes use of the following auxiliary predicates and functions:

The predicates Final(ω̂) and NonFinal(ω̂) respectively hold if the output configuration ω̂

is, respectively, final and non-final, with a configuration being final if it contains either a
return or an error outcome.
The function Next can only be applied to non-final output configurations, turning the
given output configuration into an input configuration by unwrapping the statement
contained in its non-empty continuation output.

We say that Final/NonFinal holds for a set of configurations if it holds for all of them.

▶ Definition 1 (Symbolic Execution – Collecting Semantics).

Bounded - Base
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂1 ∪ Ω̂2 π SAT Final(Ω̂1) NonFinal(Ω̂2)

⟨µ̂, ρ̂, π, ŝ⟩ ⇓1 Ω̂1

Bounded - False
π UNSAT

⟨µ̂, ρ̂, π, ŝ⟩ ⇓k ∅

Bounded - Rec
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂ ∪ {ω̂i |ni=1} Final(Ω̂) k > 1 π SAT Next(ω̂i) ⇓k−1 Ω̂i |ni=1

⟨µ̂, ρ̂, π, ŝ⟩ ⇓k ∪n
i=1Ω̂i ∪ Ω̂

3.2 Summary Correctness Properties
In contrast to most works on verification in which a concrete program is proven correct
with respect to a specification [5], here we take the concrete function associated with the
given summary to be the ground truth. Given a summary ŝ and its associated concrete
implementation s, we say that:

ŝ is an over-approximation of s if all the concrete executions of s are contained in the set
of the executions modelled by ŝ;
ŝ is an under-approximation of s if all the executions modelled by ŝ are contained in the
set of concrete executions of s.

When a summary satisfies both properties, we say that it is exact. In the following, we make
use of the concrete and symbolic semantics of our core language to establish the rigorous
definitions underpinning these concepts.

Symbolic State Interpretation

We write σ ∈ Jσ̂K to mean that the concrete state σ is in the interpretation of the symbolic
state σ̂. The interpretation of a symbolic state σ̂ is the set of concrete states that can be
obtained from σ̂ by mapping the symbolic values of σ̂ to concrete values in a way that is
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consistent with its path condition. For instance, if σ̂ = ⟨µ̂, ρ̂, x̂ ̸= 0⟩, then the symbolic
variable x̂ cannot be replaced by 0 in µ̂ and ρ̂. Accordingly, the interpretation function
J.K :: SymSt → ℘(ConcSt) takes as input a symbolic state and returns a set of concrete
states. We define the interpretation function for symbolic states with the help of two auxiliary
interpretation functions, one for symbolic memories and one for symbolic stores. These
interpretation functions require a valuation function, ε : X̂ ⇀ V , that maps symbolic variables
to concrete variables. We write Jµ̂Kε = µ to mean that the interpretation of µ̂ under ε yields
the concrete memory µ (analogously for stores). We interpret symbolic memories and stores
point-wise, applying the valuation function to each memory/store cell. Put formally:

Heap-Interp.
µ̂(l) = (v̂, kl, kr)

Jµ̂Kε(l) ≜ (Jv̂Kε, kl, kr)

Store-Interp.
ρ̂(x) = v̂

Jρ̂Kε(x) ≜ Jv̂Kε

State-Interp.
σ̂ = ⟨µ̂, ρ̂, π⟩

Jσ̂K ≜ { (Jµ̂Kε, JρKε) | JπKε = true}

In the definitions that follow, we characterise the correctness of a given summary with
respect to its corresponding reference implementation. In this context, the contents of
the store are not relevant as they are discarded after the execution of the function. To
account for this, we make use of truncated state interpretations, which ignore the store
component. We use Tσ̂U to refer to the truncated interpretation of the symbolic state
σ̂, which is defined as follows: T⟨µ̂, ρ̂, π⟩U ≜ { Jµ̂Kε | JπKε = true} For convenience, we lift
truncated symbolic state interpretation to pairs of symbolic states and symbolic outcomes as
follows: T(⟨µ̂, ρ̂, π⟩, ô)U ≜ { (Jµ̂Kε, JôKε) | JπKε = true}.

Correctness Properties

We are now at a position to formally define the correctness properties of symbolic summaries.
Definitions 2 and 3 respectively define over- and under-approximating summaries. We omit
the definition of exactness, which is simply the conjunction of the first two. Both definitions
rely on the concrete semantics of our core language, using ⟨µ, ρ, s⟩ →k ⟨µ′, ρ′, o⟩ to state that
the concrete execution of s in the concrete memory µ and store ρ, finishes in k steps and
generates the concrete memory µ′, store ρ′, and outcome o.

▶ Definition 2 (Bounded Over-Approximating Summary). A symbolic summary ŝ is said to
be a k-bound over-approximation of a concrete implementation s with respect to a symbolic
memory µ̂ and symbolic store ρ̂, if and only if it holds that:

⟨µ̂, ρ̂, true, ŝ⟩⇝∗ ⟨µ̂′, ρ̂′, π, ô⟩ ∧ Final(ô)
=⇒ ∀µ, µ′, ρ, ρ′, o, k′. (µ, ρ) ∈ J⟨µ̂, ρ̂, π⟩K ∧ ⟨µ, ρ, s⟩ →k′ ⟨µ′, ρ′, o⟩ ∧ k′ ≤ k ∧ Final(o)

=⇒ (µ′, o) ∈ T⟨µ̂′, ρ̂′, π⟩, ôU

▶ Definition 3 (Under-Approximating Summary). A symbolic summary ŝ is said to be an
under-approximation of a concrete implementation s with respect to a symbolic memory µ̂

and symbolic store ρ̂, if and only if it holds that:

⟨µ̂, ρ̂, true, ŝ⟩⇝∗ ⟨µ̂′, ρ̂′, π, ô⟩ ∧ Final(ô)
=⇒ ∀µ′, o. (µ′, o) ∈ T⟨µ̂′, ρ̂′, π⟩, ôU

=⇒ ∃µ, ρ, ρ′. (µ, ρ) ∈ J⟨µ̂, ρ̂, π⟩K ∧ ⟨µ, ρ, s⟩ →∗ ⟨µ′, ρ′, o⟩

The proposed definitions are unusual in that they relate the symbolic execution of the
summary ŝ with the concrete executions of its reference implementation s. Typical definitions
of this type [21, 36, 48, 47] relate symbolic execution of a given program with its concrete
execution. In our setting, we have two different programs being related: a symbolic summary
and its reference implementation.
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Table 1 C-Implemented summaries.

Memory Effects Symbolic ReturnClass N Lines of code API calls
✕ ✓ ✕ ✓

Strings 34 1639 194 24 10 18 16
Number Parsing 6 563 56 6 0 0 6
I/O 6 79 16 4 2 5 1
Memory 14 508 71 8 6 9 5
Heap 7 174 29 5 2 7 0

Total 67 2814 344 47 20 39 28

Finally, we note that the proposed definitions require that over/under-approximating
summaries allocate memory in the exact same order of their corresponding reference im-
plementations. This requirement could be relaxed by modifying our definition of symbolic
heap interpretation for it to relate each symbolic heap with all its valid concrete reshufflings
instead of simply those that follow its allocation order. We opted, however, for the more
restrictive definitions in order to simplify the presentation.

3.3 Modelling LIBC Functions

We illustrate how the symbolic reflection API can be used to implement symbolic summaries
for two families of libc functions: string manipulation functions and number-parsing functions.
In total, we have implemented 67 summaries targeting 24 libc functions. Table 1 gives
an overview of the 67 implemented summaries, showcasing for each category of summaries:
(1) the total number of lines of code; (2) the total number of calls to the symbolic reflection
API; (3) the number of summaries that update the heap memory; and (4) the number of
summaries that return symbolic values. In the following, we give an example of a summary
from each category.

Example – String Summaries

Figure 7 shows the implementation of an under-approximating symbolic summary for the
strlen function (recall that the summary given in Figure 2 is exact). This summary iterates
over an input string until it finds a concrete null character. During this process, if it finds a
symbolic character, it tries to prove that the corresponding byte can only be a null character.
If it succeeds, then the summary returns the current length, otherwise it assumes that the
current character is not the null character and continues iterating. More concretely, if a
character s[i] is symbolic, the summary builds the constraint cnstr ≡ (s[i] ̸= \0) and uses
the primitive is_sat to check if s[i] can only be the null character (i.e., !is_sat(cnstr)),
in which case the summary simply returns the value of i. Otherwise, cnstr is added
to the current path condition using the primitive assume, making the summary under-
approximating. For example, given the symbolic string [c0, 'a', c2, \0], where c0 and
c2 denote unconstrained symbolic characters, the summary outputs the value 3 and adds
the constraints c0 ̸= \0 and c2 ̸= \0 to the path condition.
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1 int strlen2(char* s){
2 char charZero = '\0'; int i = 0;
3 while(1){
4 if(is_symbolic(&s[i])){ //s[i] is symbolic
5 cnstr_t cnstr = _solver_NEQ(&s[i], &charZero, CHAR_SIZE); // s[i] ̸= '\0'
6 if(!is_sat(cnstr)) break;
7 else assume(cnstr); //Add cnstr to symbolic state
8 }
9 else if(s[i] == charZero) break;

10 i++;
11 }
12 return i;
13 }

Figure 7 Under-approximating Summary of strlen.

1 int atoi2(char *str){
...

33 else {
34 symbolic retval = new_sym_var(INT_SIZE);
35 int size = strlen(str); //Max possible length
36

37 //Determine bounds
38 int lower_bound = pow(10,size-1) * -1;
39 int upper_bound = pow(10,size);
40

41 //Build interval with constraints
42 cnstr_t val_GT_lower = _solver_SGT(&retval, &lower_bound, INT_SIZE);
43 cnstr_t val_LT_upper = _solver_SLT(&retval, &upper_bound, INT_SIZE);
44 cnstr_t bounds_cnstr = _solver_And(val_GT_lower,val_LT_upper);
45

46 //Add constraints to symbolic state
47 assume(bounds_cnstr);
48 return retval;
49 }
50 }
51 return res * sign;
52 }

Figure 8 Fragment of Over-approximating Summary of atoi.

Example – Number summaries

Figure 8 shows a fragment of an over-approximating summary for atoi. The atoi function
is used to parse strings denoting integer values. The key for guaranteeing that the summary
is over-approximating is to return a fresh symbolic value and constrain this value to be:
(i) greater than or equal to the smallest possible value that may be denoted by the given
string; and (ii) smaller than or equal to the largest possible value that may be denoted by the
given string. To this end, the summary determines the maximum possible length of the given
string and uses it to compute the interval of possible return values. For example, considering
a symbolic string [c0, c1, c2, \0], the summary constrains the returned symbolic value,
retval to lie within the interval retval ∈ [−99, 999].

3.4 Reflection API Implementation
The proposed API can be implemented on top of any symbolic execution tool whose rep-
resentation of symbolic states includes a symbolic memory and a path condition. We have
found this to be the case for all the symbolic execution tools that we have analysed so
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far [50, 19, 8, 15, 38, 43, 17, 16, 31]. In the formalism we have chosen to include a sym-
bolic store component, to simplify the presentation, but this component is not essential for
implementing the API.

In order to illustrate the effort involved in implementing the API, we have extended
AVD [45] and angr [50], two current symbolic execution tools, with support for it. AVD is
a novel symbolic execution tool developed by the authors, whereas angr is a widely used
binary analysis toolkit. In both cases, the API implementation was straightforward, with the
API code totalling 330 LoC for angr and 529 LoC for AVD. Table 2 shows the number of
LoC of both implementations per type of API primitive. API primitives were implemented
differently in AVD and angr. In AVD, we have implemented each reflection primitive as if it
were a native symbolic summary, interacting directly with our own internal representation of
symbolic states. In angr, we have used an internal API provided by the tool for developers
to implement their own angr summaries directly in Python, associating each API primitive
to an angr simprocedure.

Table 2 Lines of code per type of API primitive implemented in AVD and angr.

Reflection Primitives
Core Memory Symbolic Values Constraints Total

AVD 206 54 56 213 529
angr 100 23 53 154 330

We believe that extending other symbolic execution tools with support for the proposed
API should be as straightforward as extending angr and AVD since most tools already
possess internally, albeit with variations, the reflection mechanisms captured by our API. The
main difficulty in the implementation of the API is that it requires a thorough understanding
of the inner-workings of the targeted tool and therefore should be done by the tools’ own
engineering teams rather than by external users. This effort should, however, pay off as
implementing our API requires considerably less code than implementing a comprehensive
library of symbolic summaries for libc from scratch, while also being conceptually simpler.

4 SumBoundVerify: Bounded Verification of Symbolic Summaries

In this section, we introduce our proposed methodology for the bounded verification of
symbolic summaries. We first introduce our main summary verification algorithm (§4.1) and
then explain how we leverage this algorithm to build SumBoundVerify by automatically
generating symbolic tests for the summaries to be verified (§4.2).

4.1 Bounded Summary Verification Algorithm
Symbolic State Lifting

In order to verify the correctness properties of a summary, we introduce a lifting operator
⌈.⌉ :: P(SymSt×Ô)→ Π that transforms a set of output configurations (i.e. symbolic states
paired up with symbolic outcomes) into a boolean formula. We write ⌈Ω̂⌉ = π to denote that
the lifting of the output configurations in Ω̂ generates the formula π. The lifting operator is
formally defined as follows:

⌈Ω̂⌉ ≜
∨ {
⌈µ̂⌉m ∧ π ∧ (ret = v̂) | (⟨µ̂, ρ̂, π⟩,R⟨v̂⟩) ∈ Ω̂

}
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Essentially, a set of output configurations is transformed into a disjunction of boolean
formulas, each describing its corresponding configuration. The formula created for each
configuration has three components: (i) a memory component ⌈µ̂⌉m describing the content of
the symbolic memory (defined below); (ii) a path condition component π; and (iii) a return
component ret = v̂, describing the return value of the function in the execution path that led
to the given configuration. We use two dedicated variable ret and count to refer to the return
value of a function and the number of cells in the current heap, respectively. Importantly, the
lifting of a set of output configurations is only defined if all configurations are associated with
a return outcome. The lifting operator for symbolic memories ⌈.⌉m :: SymMem→ Π, which
takes a symbolic memory µ̂ and returns a boolean formula ⌈µ̂⌉m describing its contents, is
defined as follows:

Memory Lifting
πblocks = ∧l∈blocks(µ̂)⌈µ̂⌉l

b πcount = count = | dom(µ̂) |
⌈µ̂⌉m ≜ πblocks ∧ πcount

Block Lifting
µ̂(l) = (−, 0, kr)

⌈µ̂⌉l
b ≜ ∧0≤i<kr { cell(l+i, µ̂(l + i))}

A symbolic memory µ̂ is encoded into the conjunction of its blocks, which are, in turn,
encoded using an auxiliary encoding function ⌈.⌉.b : SymMem× N→ Π for lifting memory
blocks to formulas. The memory encoding function makes use of an auxiliary function
blocks : SymMem→ ℘(N) to obtain the locations in the given memory corresponding to
the beginning of blocks. The block-lifting function transforms each memory block into a
formula describing the contents of each cell in the given block. To this end, we make use of an
uninterpreted predicate cell to denote that the cell at a given address has the given content.

Bounded Verification Algorithm

Algorithm 1 describes our procedure for verifying if a summary ŝ is under/over-approximating
with respect to a concrete implementation s, symbolic memory µ̂, and symbolic store ρ̂. In a
nutshell, this algorithm compares the symbolic state(s) resulting from the execution of the
summary, Ω̂sum, against those generated by its reference implementation, Ω̂ref . We do not
bound the symbolic execution of the summary given that summaries should be designed to
be convergent. In contrast, we bound the execution of their reference implementations as
they often diverge. In a nutshell, we conclude that:

a summary is over-approximating if ⌈Ω̂ref ⌉ =⇒ ⌈Ω̂sum⌉, i.e. the set of symbolic
states generated by the reference implementation are contained in those generated by
the summary;
a summary is under-approximating if ⌈Ω̂sum⌉ =⇒ ⌈Ω̂ref ⌉, i.e. the set of symbolic
states generated by the summary are contained in those generated by the corresponding
reference implementation.

These implications are, however, too strong as they do not account for the creation of
new symbolic values within the execution of the summary. To account for these, we have to
existentially quantify the symbolic variables created during the execution of the summary.
Algorithm 1 makes use of an auxiliary function existentials for computing the variables to be
existentially quantified according to the following equation:

existentials(π, µ̂, ρ̂) ≜ lvars(π)\(lvars(µ̂) ∪ lvars(ρ̂))

Essentially, all the symbolic variables created during the execution of the summary must
be existentially quantified; these correspond to the symbolic variables that exist in the final
symbolic states obtained from the summary execution but do not in the initial state.
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Algorithm 1 Bounded Summary Verification.

1 function VerifySummary(prop, ŝ, s, µ̂, ρ̂, k)
2 ⟨µ̂, ρ̂, true, ŝ⟩ ⇓ Ω̂sum

3 ⟨µ̂, ρ̂, true, s⟩ ⇓k Ω̂ref

4 πsum ← ⌈Ω̂sum⌉
5 πref ← ⌈Ω̂ref ⌉
6 xssum ← existentials(πsum, µ̂, ρ̂)
7 if prop = over then
8 out← isValid(πref =⇒ ∃xssum. πsum)
9 else

10 out← isValid(∃xssum. πsum =⇒ πref )
11 return out

Correctness Result

Theorem 4 is our main correctness result. Essentially, it states that if we apply Veri-
fySummary in over-approximation mode and it returns true, then the given summary is
a bounded over-approximation of the given concrete implementation and analogously for
under-approximation mode.

▶ Theorem 4 (Summary Correctness). Let ŝ be a symbolic summary, s its reference imple-
mentation, µ̂ a symbolic memory, ρ̂ a symbolic store, and k and a positive integer; then, it
holds that:

If VerifySummary(over, ŝ, s, µ̂, ρ̂, k) = true, then ŝ is a k-bound over-approximation
of s with respect to µ̂ and ρ̂;
If VerifySummary(under, ŝ, s, µ̂, ρ̂, k) = true, then ŝ is an under-approximation of s

with respect to µ̂ and ρ̂.

4.2 Automatic Symbolic Test Generation
In §4.1, we introduced a method for checking whether or not a given summary ŝ is correct
with respect to a reference implementation s, a symbolic memory µ̂, and a symbolic store ρ̂.
Naturally, one would like to prove that a summary is correct with respect to all symbolic
memories and stores consistent with the signature of the summarised function instead of only
a particular symbolic memory and store. SumBoundVerify solves this problem partially
by bounding the size of memories and stores to be explored and using the type information
in the signature of the summarised function to generate the initial symbolic states for which
to check the summary up to the pre-established bound. In this section, we explain the
procedure by example, leaving its formalisation for future work.

Instead of directly creating the symbolic states on which to run the summaries to be
evaluated, we generate the initialisation code that creates such states from the signature of
the function to be summarised. In general, the generated initialisation code depends on the
type of the arguments given to the summary:

For non-character arrays, we generate one fully symbolic array for each array size under
the specified bound;
For character arrays, we generate a single fully symbolic array terminated with a concrete
null character with size given by the specified bound (note that this single character array
models all strings of size lower than the specified bound since the intermediate symbolic
characters of the array may denote the null character);
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For non-recursive structures, we generate a single fully symbolic test with the elements of
the structure being mapped to fresh symbolic values;
For recursive structures, we generate one fully symbolic test for each unfolding of the
recursive structure up to the specified bound.

The test generation algorithm has two important limitations. First, it does not cover
cases in which there are mutual dependencies between the parameters of the function to be
summarised (e.g. a function with two array parameters with shared elements). Second, when
it comes to recursive structures, the algorithm does not consider structures with loops, such
as doubly-linked lists. If the arguments of the summarised function may exhibit one of these
features, then the corresponding tests should be created manually.

Examples - Non-Character vs. Character Arrays

We now illustrate the test generation algorithm with two simple examples, covering non-
character and character arrays. Suppose we want to validate a summary for a function with
signature int f(int* arr); in this case, SumBoundVerify would generate a set of tests,
each with an initial section in charge of creating the symbolic integer array associated with
the parameter arr. An example of one such initialisation code is given below.

1 int arr[4];
2 for (int i = 0; i < 4; i++) { arr[i] = new_sym_var_array("i", i, INT_SIZE); }

Essentially, the initialisation code allocates an integer array of size 4 in the stack and fills the
four elements of the array with fresh symbolic integers. Suppose now, we want to validate a
summary for a function with signature int g(char* s); in this case, SumBoundVerify
would generate a single test with the initialisation code given below.

1 char s[BOUND];
2 for (int i = 0; i < BOUND-1; i++) { s[i] = new_sym_var_array("c", i, CHAR_SIZE); }
3 s[BOUND-1] = '\0';

The initialisation code for character arrays has two main differences with respect respect to
the code generated for non-character arrays: (1) the size of the character array allocated
in the stack is always set to the specified bound and (2) the last element of the allocated
character array is always set to the concrete null character.

5 Evaluation

This section answers the following evaluation questions:
EQ1 - Is the proposed symbolic reflection API sufficiently expressive to allow for the imple-

mentation of under/over-approximating summaries?
EQ2 - Can tool independent symbolic summaries be used to contain path explosion in

symbolic execution?
EQ3 - Can SumBoundVerify be used to analyse real-world symbolic summaries developed

in the context of state-of-the-art symbolic execution tools?

5.1 EQ1: API Expressivity
In order to illustrate the expressivity of our symbolic reflection API, we implement a library of
symbolic summaries consisting of 67 summaries covering 26 libc functions from three different
header files: string.h, stdlib.h and stdio.h. For most of these functions, we have implemented



F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:19

at least two summaries, each illustrating a different correctness property. We then used
SumBoundVerify to check the correctness properties of the implemented summaries by
comparing them against their corresponding reference implementations. The fact that we
were able to implement both under/over-approximating summaries for a large number of
libc functions gives us a strong confidence that our library is expressive enough to model a
wide range of behaviours.

Table 3 shows, for each function category, the number of implemented summaries and
their corresponding correctness properties. In the table, N represents the total number of
implemented summaries; N/A represents the number of implemented summaries that do
not satisfy any correctness property; and the remaining columns represent the number of
implemented summaries that satisfy the corresponding property (Under, Over, or Exact).

Table 3 Correctness properties for the C-implemented summaries.

Category N N/A Under-aprox. Over-aprox. Exact

Strings 34 14 7 6 7
Memory 14 6 4 2 2
Number Parsing 6 2 – 4 –
System Calls 13 13 – – –

Total 67 35 11 12 9

Note that the summaries modelling functions that use system calls (e.g., malloc and
fgets) cannot be verified against their respective reference implementations. The reason is
that the symbolic execution of the reference implementations would necessarily step outside
the perimeter of the language and, therefore, of the symbolic execution engine. For instance,
the function fgets uses the read system call to obtain the string with the contents of the
given file. In order to symbolically execute fgets, we always need to have a summary of read
to start with, and this bootstrapping summary cannot be symbolically checked. Additionally,
some summaries are neither over- nor under-approximating for performance reasons. These
summaries assume that the function inputs satisfy certain preconditions, which we explicitly
specify as comments in the summary code. The formal characterisation and verification of
the properties satisfied by these summaries is, however, left for future work.

5.2 EQ2: Performance of Tool Independent Summaries

We measure the performance gains that can be obtained through the use of symbolic
summaries implemented with our API and compare the performance of tool-independent
summaries against that of native summaries. In order to carry out this experiment we set up
a symbolic test suite focusing on libc function usage. To the best of our knowledge, no such
test suite exists in the literature. In particular, we have analysed both the TestComp [11, 12]
and SVComp [10, 13] test suites, counting for each test suite the number of calls to libc
functions. We concluded that both these test suites make scarce use of libc functions, each
calling fewer than 3 functions per test on average. Furthermore, the libc functions used in
these test suites are mostly called with concrete arguments, rendering the use of symbolic
summaries pointless.
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Table 4 Summarized results in angr and AVD for both datasets.

Memory Out
✕

Timeout
✕

Success
✓

Avg.
NP aths

Avg.
NLibc

Avg.
NAP I

Avg.
Time (s)

Hash
Map

angr
Concrete 7 0 3 2.2k 6.3k 3.6k –
C-Summaries 0 0 10 80 419 7.7k 199.66
Native Summ 0 0 10 72 390 222 97.99

AVD
Concrete 0 7 3 6.2k 9.6k 1.7k –
C-Summaries 0 0 10 95 483 8.4k 61.55
Native Summ 0 0 10 96 487 244 26.66

Dynamic
Strings

angr
Concrete 6 2 4 2.3k 1.0k 4.4k –
C-Summaries 1 0 11 431 397 4.0k 235.58
Native Summ 1 0 11 353 237 97 143.96

AVD
Concrete 0 7 5 3.5k 5.0k 105 –
C-Summaries 0 1 11 499 1.9k 1.8k 14.20
Native Summ 0 1 11 564 1.4k 97 18.94

Experimental Set-up and Symbolic Test Suites

As the test bed for this experiment, we used angr [50] and AVD [45] extended with our
symbolic reflection API (see §3.4). All tests were run on a Ubuntu server (18.04.5 LTS) with
an Intel Xeon E5–2620 CPU and 32GB of RAM. Additionally, each test was given 16GB of
RAM with a maximum timeout of 30 minutes (1800 seconds).

We searched GitHub for open source C libraries that make intensive use of libc string-
processing functions. We found two such libraries: (1) the HashMap library [55], which
provides an implementation of a standard array-based hash table, and (2) the Dynamic
Strings library [46], which provides an implementation of heap-allocated strings that extend
the functionality offered by libc strings. Neither of these libraries came with concrete test
suites. We created a symbolic test suite for each library: 10 symbolic tests for HashMap
and 12 symbolic tests for Dynamic Strings. The symbolic test suites cover all the functions
exposed by two libraries that interact with libc functions.

Results

We ran both symbolic test suites on angr and AVD using: (1) our tool-independent sym-
bolic summaries implemented in C (C Summaries); (2) the native symbolic summaries
originally included in each tool (Native Summaries); and (3) the corresponding C reference
implementations. Part of these implementations were obtained from Verifiable C [4], a
toolset for proving the functional correctness of C programs which comes with verified libc
implementations [3]. The remaining functions were obtained from glibc [23] and libiberty [22]
libc implementations.

Results are summarised in Table 4, which shows for each test suite run: (1) the number
of tests that failed due to lack of memory (Memory Out); (2) the number of tests that failed
for exceeding the time limit (Time Out); (3) the number of tests that finished executing
within the given time limit (Success); (4) the average number of explored paths per test
(Avg. NP aths); (5) the average number of calls to libc functions per test (Avg. NLibc);
(6) the average number of calls to API primitives per test (Avg. NAP I); and (7) the average
execution time per test (Avg. Time). Note that we do not include the average execution
time for the concrete summaries as the majority of the corresponding executions do not
finish within the time limit. In contrast, we do include the average execution time for both
C summaries and native summaries given that they execute successfully the exact same
set of tests.
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Unsurprisingly, results clearly show that symbolic summaries substantially improve the
performance of symbolic execution tools. For the HashMap test suite, we observe that, for
both tools, 7 out of the 10 symbolic tests fail to execute without summaries. Using reference
implementations, all but the three smallest tests, either exhausted all the available memory or
hit the timeout of 30 minutes. The results for the Dynamic Strings test suite are analogous.
When using reference implementations: 8 out of 12 tests fail to execute with angr and 7 out of
12 tests fail to execute with AVD. When it comes to the path explosion problem, we observe
that, for both libraries, the number of execution paths generated by symbolic execution
with reference implementations is always at least one order of magnitude greater than that
generated by symbolic execution with summaries. Table 4 also shows the average number of
calls to libc functions and API functions. The number of calls to libc functions is lower for
symbolic execution with summaries than with reference implementations; this is expected
as symbolic execution with reference implementations generates a much larger number of
paths. Note that, there are calls to the symbolic reflection API even when using reference
implementations; this is due to the fact that we always model system calls with summaries.

Finally, we observe that tool-independent summaries are generally less performant than
native summaries implemented directly within the code base of the corresponding tools. This
slowdown is expected since tool-independent summaries are interpreted, whereas tool-specific
summaries are executed natively. Furthermore, our test suites were specifically created to
make heavy use of libc, making the slowdown more significant than for typical codebases,
which interact less frequently with libc functions. Importantly, the proposed reflection API
was not designed to obtain either performance or expressivity gains with respect to tool-
specific summaries, but rather to allow for the implementation of verified, tool-independent
summaries that can be shared across multiple SE tools. If the performance of a given
tool-independent summary becomes an execution bottleneck for a specific application, then
that summary should be implemented natively for the job at hand. However, we believe that
will not be the case for the majority of summaries.

5.3 EQ3: Bugs in Symbolic Execution tools

In order to test the applicability of SumBoundVerify, we used it to find bugs in summaries
used in three high-profile symbolic execution tools: angr [50], Binsec [19] and Manticore [38].
Additionally, we also used SumBoundVerify to verify the summaries that came with the
AVD tool. In the following, we classify a summary as buggy if it is neither under- nor
over-approximating and if there is no additional information about the expected behaviour of
the summary regarding missing/incorrect paths (for instance, in the form of a code comment
clarifying how the inputs should be constrained). As we implemented our API in both AVD
and angr, we were able to use their summaries directly. In contrast, we had to manually
re-write Binsec’s and Manticore’s summaries using our reflection API, following the original
algorithms line-by-line. Using this methodology, we were able to validate a total of 52 libc
symbolic summaries against their corresponding reference implementations.3

The results for all the validated summaries are shown in Table 5. Out of the analysed
summaries, we found 14 buggy summaries in angr, 9 in Binsec, 1 in Manticore, and 13 in
AVD. These summaries include spurious paths and exclude correct paths, meaning that they
are neither under- nor over-approximating. Importantly, only a few summaries included

3 As in §5.2, we use as reference the libc implementations from the Verifiable C tool chain, and the glibc
and libiberty libraries

ECOOP 2023



24:22 Toward Tool-Independent Summaries for Symbolic Execution

comments restricting the conditions under which they could be soundly applied. However,
even these summaries contained bugs that were not ruled out by their authors’ comments,
which clearly demonstrates that the development of sound symbolic summaries is a difficult
and error prone task that requires automated assistance.

Table 5 Summary bugs found in state-of-the-art symbolic execution tools.

NEvaluated NBugs Bugs Found

angr 24 14
atoi
strncat
strtol

atol
strncmp
strtoul

strcasecmp
strncpy
wcscasecmp

strchr
strstr
wcscmp

strcmp
strtok_r

Binsec 9 9 memcmp
strcpy

memcpy
strncmp

memset
strncpy

strchr
strrchr strcmp

Manticore 4 1 strcmp

Total 37 24

AVD 15 13
atoi
strcat
strtol

memcmp
strchr
tolower

memcpy
strcmp
toupper

memmove
strncmp

memset
strncpy

Total (incl. AVD) 52 37

To illustrate the type of bug uncovered by SumBoundVerify, we present three bugs,
each corresponding to a different tool and all three to the function strcmp. This function is
used to compare two strings lexicographically, returning: (i) a positive integer if the first
string is greater than the second one, (ii) a negative integer if it is lower, and (iii) 0 if the two
strings coincide. Even though the reference implementation of this function is very compact
with less than 10 LoC, its corresponding summaries can be extremely complex (for instance,
angr ’s summary has 160 LoC).

Bug in angr

The possible execution paths for the strcmp function can be divided into two main sets
according to the returned value: the execution paths where the return value is equal to zero
and those where it is different. angr correctly models all the execution paths that return
the value zero, i.e., the cases where the two symbolic input strings are equal. Regarding the
execution paths with a return value different from zero, i.e, the cases where the input strings
are different, angr always constrains the return value to 1. Hence, by returning a fixed
positive integer for all paths where the two strings differ, the summary does not satisfy any of
the correctness properties. Assuming, for example, two symbolic input strings of size 3, str1
and str2, SumBoundVerify produces the following counterexample for angr ’s summary:

Missing Path: [str1 = [A, A, A, \0] ∧ str2 = [B, B, B, \0] ∧ ret = −1]
Wrong Path: [str1 = [A, A, A, \0] ∧ str2 = [B, B, B, \0] ∧ ret = 1]

Essentially, the missing path describes a concrete execution that is not covered by the
summary, whereas the wrong path describes a behaviour covered by the summary that is not
generated by the execution of the concrete function.
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Bug in Manticore

Manticore’s strcmp summary iterates over the two strings to build a nested if-then-else
formula over pairs of symbolic bytes. This formula means that if two symbolic bytes are
different, then the summary must return the difference of those bytes; if they are equal, the
summary must return the value 0 when they are the last two bytes of the strings or continue
iterating otherwise. For instance, considering two symbolic input strings: str1 = [c1, c2, \0]
and str2 = [c3, c4, \0], this summary will create the following if-then-else formula:

ret = ITE(c1 ̸= c3, c1− c3, ITE(c2 ̸= c4, c2− c4, 0))

Even though it appears to be correct, Manticore’s summary does not take into account the
fact that intermediate symbolic bytes may also be the null character (\0). When validating
this summary on the input strings str1 and str2, SumBoundVerify produces the following
counterexample:

Missing Path: [str1 = [\0, A, \0] ∧ str2 = [\0, B, \0] ∧ ret = 0]
Wrong Path: [str1 = [\0, B, \0] ∧ str2 = [\0, A, \0] ∧ ret = 1]

Bug in Binsec

Unlike the previous summary, Binsec’s strcmp summary takes into account the case where
the intermediate symbolic bytes are null characters, but still gets it wrong. For instance,
given the same two symbolic input strings: str1 = [c1, c2, \0] and str2 = [c3, c4, \0], this
summary generates the following formula:

ret = ITE(c1 = \0,

ITE(c3 = \0, 0, 1),
ITE(c1 = c3,

ITE(c2 = \0,

ITE(c4 = \0, 0, 1),
ITE(c2 = c4, 0, ITE(c2 > c4, 1,−1))),

ITE(c1 > c3, 1, −1)))

Note that, when comparing each pair of symbolic bytes, this formula first checks if the
current byte of str1 (e.g., c1) is equal to the null character, in which case it then checks
if the corresponding byte of str2 (e.g., c3) is also equal to null; if it is, it evaluates to 0;
otherwise, it evaluates to 1 and here lies the problem. When validating this summary on the
input strings str1 and str2, SumBoundVerify produces the following counterexample:

Missing Path: [str1 = [A, \0, \0] ∧ str2 = [A, B, \0] ∧ ret = −1]
Wrong Path: [str1 = [A, \0, \0] ∧ str2 = [A, B, \0] ∧ ret = 1]

When the first string is shorter than the second one, Manticore’s summary assumes that
strcmp returns 1 when it should instead return −1.

Bug in Verifiable C

During our validation experiments we saw unexpected results when using the strcmp imple-
mentation of Verifiable C to validate the corresponding symbolic summaries. In particular,
we observed different results for the same strcmp summaries when using as reference im-
plementation that of Verifiable C and those of the glibc and libiberty libraries. We found
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a bug in the strcmp implementation of Verifiable C [53]: it compares characters as signed
values instead unsigned ones as mandated by the POSIX specification of libc. The code
had been proven correct, but for a specification too weak to bring the bug to light. This
illustrates yet another application of SumBoundVerify: it can be used to validate reference
implementations against each other.

6 Related Work

There is a vast body of work on summaries for different types of program analysis, such as
program logics [30, 44], abstract interpretation [56], and symbolic execution [25, 29]. However,
in contrast to program logics, which are typically designed to be compositional and therefore
place a heavy emphasis on summaries, in the form of function specifications and their usage,
the study of summaries in symbolic execution literature is much more uneven. In particular,
while there is a large number of symbolic execution tools that make use of operational
summaries in the style of those described in this paper [50, 19, 8, 15, 38, 43, 17, 16, 31],
we believe we are the first to address the issue of their formalisation and verification. The
existing work on the use of summaries in symbolic execution can broadly be divided into two
main groups: (1) first-order summaries that either do not reason about the heap memory
or do so in a very limited way; and (2) structural summaries that rely on various types of
representations to model the effects of heap-manipulating functions. In the following, we
give a brief outline of research in both categories of summaries, focusing on the work that is
closest to ours.

Godefroid et al. were the first to explore the use of first-order summaries in symbolic
execution [24, 2, 28]. The first compositional tool in this line of work was SMART [24], a
dynamic symbolic execution tool with support for summaries. SMART analyses functions in
isolation in a bottom-up manner, encoding the testing results of each function as a first-order
summary to be re-used in the analysis of other functions. Then, the authors proposed a
variation of their original algorithm to allow for the lazy exploration of the search space in a
top-down manner [2]. Later, the authors presented SMASH [28], a framework for testing
and verifying C programs. Analogously to SMART, SMASH is incremental, analysing one
function at a time and generating summaries that can be used in the analysis of other
functions. The novelty of SMASH is that it allows for the combined use of both under- and
over-approximating summaries in a demand-driven way. Importantly, the summaries of all
three tools consist only of first-order formulas that cannot describe heap effects.

First-order summaries have also been used in the context of loop-summarisation [27,
51, 35]. These works typically combine symbolic execution with a custom-made static
analysis component for detecting the induction variables of the loops to be summarised
and constructing partial invariants describing their behaviour. Along this line of research,
Kapus et al. [32] have recently proposed a new algorithm for inferring loop invariants for
string-manipulating C programs using counter-example guided synthesis [1, 49]. These
works are, however, complementary to ours since our goal is not to automatically generate
summaries but rather to validate manually-written ones.

When it comes to structural summaries, Qiu et al. [42] proposed a new approach for
compositional symbolic execution where function summaries are expressed as memoization
trees. A memoization tree is a tree-like data structure that describes the various paths taken
by the summarised function, including their effects on the heap. To this end, memoization tree
nodes describe both the variable store as well as the contents of the heap of the summarised
function. The proposed tool is compositional, analysing one function at a time and expanding
the contents of symbolic objects by need, following the lazy initialisation approach [33].
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Recently, Fragoso Santos et al. [48] proposed JaVerT 2.0, a new compositional symbolic
execution tool for JavaScript. JaVerT 2.0 combines separation-logic-based summaries with
static symbolic execution. More concretely, it allows for the incremental analysis of the
given program, generating separation-logic-based specifications that can later be used during
symbolic execution. The use of separation-logic summaries during symbolic execution has
also been explored in the design of the Gillian framework [21, 36], which resulted from the
generalisation of JaVerT 2.0 to a multi-language setting.

7 Conclusions

Symbolic summaries are a key element of modern symbolic execution engines. They are an
essential tool for both containing the path explosion problem and modelling interactions with
the runtime environment. The implementation of symbolic summaries is time-consuming
and error-prone, but until now there was a lack of mechanisms and methodologies for sharing
symbolic summaries across different tools and for their validation.

This paper proposes a new API for developing and verifying tool-independent summaries.
Using the proposed API, symbolic summaries can be directly implemented in C and shared
across different symbolic execution tools, provided that these tools implement the API. To
demonstrate the expressiveness of our API, we extended the symbolic execution tools angr
and AVD with support for it and developed tool-independent symbolic summaries for 26
different libc functions, comprising string-manipulating functions, number-parsing functions,
input/output functions, and heap functions. Furthermore, we presented SumBoundVerify,
a new tool for the bounded verification of the summaries written with our symbolic reflection
API. We applied SumBoundVerify to 37 symbolic summaries taken from 3 state-of-the-art
symbolic execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries.

As future work, we intend to design a tool for automating the creation of symbolic
summaries by synthesising them from declarative specifications, such as separation logic
triples. To this end, we plan to leverage recent results on code synthesis from separation
logic specifications [41], with the key difference being that our goal is to synthesise symbolic
summaries instead of reference implementations.
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