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Abstract

Software has become ubiquitous and its impact is still increasing. The more software is

created, the more bugs get introduced into it. With software’s increasing omnipresence,

these bugs have a high probability of negative impact on everyday life. There are many

efforts aimed at improving software correctness, among which symbolic execution, a program

analysis technique that aims to systematically explore all program paths. In this thesis we

present three techniques for enhancing symbolic execution.

We first present a counterexample-guided inductive synthesis approach to summarise a

class of loops, called memoryless loops using standard library functions. Our approach can

summarize two thirds of memoryless loops we gathered on a set of open-source programs.

These loop summaries can be used to: 1) enhance symbolic execution, 2) optimise native

code and 3) refactor code.

We then propose a technique that avoids expensive forking by using a segmented memory

model. In this model, we split memory into segments using pointer alias analysis, so that each

symbolic pointer refers to objects in a single segment. This results in a memory model where

forking due to symbolic pointer dereferences is reduced. We evaluate our segmented memory

model on benchmarks such as SQLite, m4 and make and observe significant decreases in

execution time and memory usage.

Finally, we present pending constraints, which can enhance scalability of symbolic

execution by aggressively prioritising execution paths that are already known to be feasible

either via cached solver solutions or seeds. The execution of other paths is deferred until

no paths are known to be feasible without using the constraint solver. We evaluate our

technique on nine applications, including SQLite3, make and tcpdump, and show it can

achieve higher coverage for both seeded and non-seeded exploration.
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Chapter 1

Introduction

Software development is hard. It also seems necessary and increasingly pervasive. The

difficulty of software development means it is expensive to write correct or good software,

and therefore few software developers can afford to do so. The pervasiveness of software

means mistakes or bugs can cause loss of life, equipment or widespread disruption. There are

many examples of software bugs resulting in deaths such as Therac-25 [67], loss of expensive

hardware as with Ariane-5 in 1996 [74] or Baresheet in 2019 [82]. Software bugs can also

cause sensitive data leakage such as the notorious Heartbleed bug [53], whose full impact is

unknown, but the Canadian tax agency is known to have leaked personal information due

to Heartbleed [36]. Even benign cases such as the recent Garmin hack [56] or the unicode

handling bug in iOS [109] caused a denial of service to many consumers.

Making writing good software easier is a multipronged industry and research effort. There

are many practices and tools that improve the quality of software. For example, writing test

suites and running them via continuous integration tries to ensure future changes do not

introduce unexpected new behaviour. Refactoring engines ensure bugs are not introduced in

semantic preserving modifications because they automate them away and linters encourage

safer use of a programming language.

Compilers are perhaps the most widely deployed tool in software engineering practice.

While their main stated purpose is to generate correct and fast machine code, they are
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also an important tool in improving software quality. For example compiler warnings are

usually a good indication of a possible bug hiding in the background. However while compiler

warnings are common and widely available, they are not sophisticated enough to catch more

resilient programming faults.

More complex techniques such as verification and formal methods in general are able to

guarantee software correctness. But wide adoption of formal methods is held back both by

the lack of skills as well as the laborious process required. Thus they are still delegated to

highly specialised areas such as aerospace.

Fuzzers are a recent example of tools that have research roots [81] and have gained large

adoption through initiatives like OSS-Fuzz.1 One of the reasons for wide adoption of fuzzers

is that they are easy to use and widely applicable. That means it does not require a specialist

to run and use fuzzers. In addition, fuzzers are likely to work on the programs you would

want to test. In other words the ease of use of fuzzers is similar to ease of use of compilers.

The aim of this thesis is to push symbolic execution further down the road of wider adoption

that fuzzers have already taken.

1.1 Scope

The body of software engineering is large, with many different programs being written for

many different purposes, using a variety of methods. That means there is a huge variety

of problems or bugs that can arise from them. Unfortunately, there is no silver bullet that

would eliminate them all in one stroke. This section therefore presents the kind of programs

and corresponding bugs this thesis will consider.

We will only consider programs written in C-like languages, like C or C++ and to some

extent assembly code. However, assembly or binary analysis presents additional challenges

which we will not consider, such as control flow graph reconstruction.

C-like languages present many challenges not present in higher-level languages such as

Java or Python. C does not have built-in memory safety and allows for arbitrary pointer

1https://google.github.io/oss-fuzz/

12



arithmetic. That means it is possible to address memory that is “not there” or it is not the

portion of memory the programmer meant to address. This can occur for several reasons:

The address might point a couple of bytes beyond the end of the allocated buffer, which is

called a buffer overflow. At that address there might be nothing or another object, which

the programmer did not intend to reference. This is the root of the previously mentioned

Heartbleed bug [53].

Dangling pointers are another manifestation of the lack of memory safety. In this case,

the address has pointed to the right object at some point in the execution, but that object has

since been freed. This again means the address points to either nothing or a new unrelated

object that has been placed in the freed space in the meantime.

Memory leaks are another challenge of C-like languages. In C, it is up to the programmer

to explicitly free all the memory allocated. Failure to do so can lead to memory leaks, where

all references to a portion of memory are forgotten and thus cannot be accessed any more,

but they were not freed. This is a wasted resource and can cripple the program if it happens

frequently.

There are also challenges in C unrelated to memory. Example of those are: division-by-

zero errors, signed integers overflows, over-shifts and arbitrary control-flow. C allows for

diverting the control-flow outside the normal branching structures via the goto statements,

which can make programs harder to understand and lead to bugs such as Apple’s goto fail

bug.2

The final relevant challenge in the C family of languages are strings. Unlike higher

level languages, strings in C are just chunks of memory that end with a zero byte, that is

sometimes called the null character (“\0”) in this context. That means strings are liable to

all the memory bugs described above and thus a common source of errors.

While it could be argued that the problems from these languages are better solved by

changing the programming language, C and C++ remain hugely popular. There are many

essential projects written in C or C++ such as the Linux kernel and most other operating

systems, even the very new Fuschia3. Web infrastructure such as Apache Web server, Nginx,

2https://www.imperialviolet.org/2014/02/22/applebug.html
3fuchsia.dev

13



1 const char *key = "asdfghjklzxcvbnmqwertyuiop";

2
3 // assumes input is all lower case

4 char* caesar_cipher(char* input) {

5 int len = 0;

6 char* output = calloc(N, sizeof(char));

7 while(input[len] != ’\0’) len++;

8
9 if(len > N) {

10 printf("Input text too long. Aborting");

11 exit(0);

12 }

13
14 for(int i = 0; i < len; i++) {

15 output[i] = key[input[i] - ’a’];

16 }

17
18 assert(output[N - 1] == ’\0’ && "Output string is not a C string");

19 return output;

20 }

Figure 1.1: A sample program written in C.

databases like PostgreSQL and MySQL are also written in either C or C++. Even tools

that enable higher level languages are all written in C or C++, like JVM implementations,

Python interpreters and compiler infrastructure such as GCC and LLVM.

Therefore, we believe there is still a huge legacy code base, momentum and continuing

need to be close to the hardware, that make research in improving the software quality of

C-like languages relevant and directly applicable.

To make some of the bugs described above more concrete, consider a program written in

C in Figure 1.1. It shows an implementation of a function that encodes an input string. It is

using a simple Caesar cipher method, where each letter is mapped to another one using a

simple map. For example, character b would get mapped to character s.

The caesar cipher function first allocates a space of N bytes that will contain the

output string on line 6. It then computes the length of the string on line 7 and checks that

the output string has enough space to contain the encoded message on lines 9–12. Finally, it

performs the encoding on lines 14–16, by iterating over the input string and then performing

a lookup into the key on line 15.

Notice that there is an off-by-one bug present on line 9. If the length of the input string

is exactly N , the output string is not large enough for the terminating null-character. In this

14



case the programmer was careful enough to check the output string is null terminated with

the assertion on line 18. That ensures that this case would be caught early. If uncaught, an

unterminated string could cause memory corruption later in program execution. At best,

the program would abort, due to accessing unallocated memory (one byte past the end of

the output string). In the worst case it could be exploited to leak or even change program

memory, which could lead to serious vulnerabilities.

A buffer overflow could also occur on line 15 if someone violeted the precondition on

line 3. For example, if the character “}” would be present in the input string, key[input[i]

- a] would access memory two bytes beyond the end of the key memory object. In this

case, there is nothing guarding against it and would go unnoticed, potentially leaking some

unintended information.

Finally, a possible memory leak might occur due to memory allocated on line 6, which is

then passed to the caller of the caesar cipher function. This caller then needs to free the

memory. However, there is little indication that the output string needs to be freed so it is

easy to forget it.

1.2 Symbolic Execution

Now that we have defined the kind of programs we are interested in and the type of bugs

these can have, we present symbolic execution. Symbolic execution is a dynamic program

analysis technique that has established itself as an effective approach for many software

engineering problems such as test case generation [16, 47], bug finding [18, 48], equivalence

checking [25, 26], vulnerability analysis [21, 123] and debugging [83, 58]. While symbolic

execution is applicable to a broader scope, with many higher-level languages having tools

performing symbolic execution [4, 95, 113, 22], the techniques presented in this thesis are

mostly targeted towards symbolic execution of C-like languages.

In brief, symbolically executing a program means running it on a symbolic input, i.e. an

input which is initially allowed to have any value. As the program runs, the operations on

symbolic values are evaluated as symbolic expressions, while non-symbolic (concrete) values

15



cesar_cipher(symbolic) len = 0 output = calloc( … )

while(…)

if (len > N)

for ...

input[0] = ‘\0’

input[0] ≠ ‘\0’
len = 1

while(…)

if (len > N)

for ...

input[1] = ‘\0’

input[1] ≠ ‘\0’
len = N + 1

while(…)

if (len > N)

printf("Input text too long. Aborting");
exit(0);

input[N+1] = ‘\0’

input[N+1] ≠ ‘\0’

...

...

Figure 1.2: Symbolic exploration tree of the caesar cipher function.

are computed normally. When the program branches on one of these symbolic expressions,

symbolic execution explores both branches if they are feasible, adding corresponding symbolic

constraints to the respective path conditions. Upon path termination, symbolic execution

can ask the solver for a solution to the current path conditions, thus obtaining a concrete

test input that will follow the same path when executed concretely.

To make things more concrete, consider the example from before in Figure 1.1. Figure 1.2

shows the symbolic exploration of caesar cipher function up to line 14. The symbolic

execution starts on the top left of the image with a symbolic string as the argument of the

caesar cipher. In this case a symbolic string means that each character of an arbitrarily
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sized4 string can initially have any value. The execution then proceeds normally, with

rectangles indicating concrete (or normal) execution. Zero is first assigned to variable len

and a N -byte memory region is allocated.

We then hit our first branch point, which is the exit condition of the while loop. At

this point symbolic execution forks the execution and tries to follow both paths if they are

feasible. A path is feasible if there is an assignment to symbolic values, that makes all the

path constraints evaluate to true. The check is performed by an SMT solver, which we

briefly introduce in Section 1.3. In Figure 1.2, path constraints are the union of all the

logical formulae next to the arrows, while tracing them back to the root of the graph. In

this case, both paths are feasible so the execution is forked and the branch condition and its

negation added to the path constraints of respective paths. At this point a search heuristic

(sometimes called a searcher and discussed in Section 1.2.2) decides which path to explore

next. Let’s say the searcher picks the branch (going down) that exits the loop. On this path

the if (len > N) branch is encountered, which is not a symbolic branch, because it does

not depend on any symbolic value, therefore the condition is evaluated to false as it normally

would, because len has value 0 on this path. This path then continues to the for loop at

which point we consider the path completed, for the purpose of this simple introduction.

Symbolic execution then picks the other path where the body of the loop is entered

and increments len. The execution then hits the loop exit branch again, where the process

largely repeats itself. The notable difference is that len is now 1, so the second byte of the

string is now part of the branch condition. The path condition also becomes larger:

(input[0] 6= 0)

∧ (input[1] = 0)

It includes the path condition of the previous branch too. The process then repeats itself

for the next N iterations in the loop. In the N + 1 iteration and all iterations afterwards the

condition of if (len > N) evaluates to true and the then branch is followed. The program

thus prints a message and terminates normally and the path is completed.

4In further sections we adopt KLEE’s assumption that symbolic strings have a fixed maximum length
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1.2.1 Challenges

While symbolic execution is already a useful and powerful technique, it faces two major

classes of challenges: constraint solving and path explosion. Most symbolic execution research

can be viewed as tackling either or both of these problems.

Even for medium (Coreutils [40]) to large (but not huge) sized real programs (SQLite3 [106])

path constraints can get very large, such that they can be time consuming to simply traverse

in memory, let alone solve. The number of branches on a path in real programs is huge, so

there can be many symbolic branches on a path, each symbolic branch adding a new conjunct

to the path condition. In addition, each branch might depend on a large area of memory

(e.g. big arrays). This memory needs to be represented in the constraints and it can hugely

inflate the size of constraints. Large constraints combined with unfavourable complexity

of feasibility checking means that even excellent contemporary SMT solvers quickly take

seconds (or more) to solve a constraint.

This might not sound too bad, until we consider the second problem: path explosion.

Path explosion means there are a lot of constraints to be solved. Path explosion arises due

to the exponential relationship between branches and paths. Each branch for which both

directions are feasible spawns two new paths that both split again at the next feasible branch

and so on. This quickly leads to an explosion of paths. While it is very hard to compute or

estimate the number of paths a program can have, we can put an upper limit on the number

of paths. The limit is simply the number of different inputs a program can have. A program

cannot follow more than one path per concrete input. In the context of symbolic execution,

the number of different inputs a program can have is 2number of symbolic bits.

As an example, consider SQLite3 and a 20-byte symbolic input, in which we can barely

put a small SQL statement. There are 28∗20 = 1.46 ∗ 1048 possible inputs and thus the upper

limit on the number of paths. If only a second of constraint solving time is spent on each

one, the constraint solving time for this symbolic execution is 31 orders of magnitude larger

then the age of the universe! This is of course a vast exaggeration as an average path in a

program usually covers a large number of inputs. However, it is still useful to illustrate just

how large of a problem path explosion can be.
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1.2.2 Search Strategies

An important way of tackling the path explosion outlined above is search strategies. Because

path explosion prevents us from exploring all paths, we can instead try to focus on a small

subset of “interesting” paths. An interesting path might be one that covers previously

uncovered code, has a potential for a bug [78] or a code region of interest such as a patch [79].

In our outline of symbolic execution we glossed over search strategies by simply stating

symbolic execution picks the next state to explore. A search strategy or a search heuristic is

an algorithm that chooses the next state for symbolic execution to explore. It is invoked

often, usually after every instruction that is symbolically executed.

Another way of seeing search strategies is as the order in which a symbolic exploration

tree (as shown in Figure 1.2) is traversed. We can use the standard breadth or depth first

traversal strategies (DFS and BFS ). These are good baseline search heuristics that show

two contrasting ways of traversing the exploration tree. First, represented by DFS, is to go

deep — this has the advantage of low memory usage and favourable use of the constraint

solver, because the states it picks have similar constraints due to a common prefix. However,

DFS is likely to explore the same code over and over again thus achieving low coverage. On

the other hand, BFS represents search strategies that go wide, which is good for achieving

high coverage, but is very prone to path explosion, therefore usually infeasible. Most search

strategies fall somewhere in-between the two.

Random path search strategy [16] is popular because it tries to go wide, but somewhat

limits the path explosion. It does so by performing a random walk of the symbolic exploration

tree each time it is picking a state. It starts from the root and flips a fair coin at each branch

until it ends up at a leaf state, which is the state it picks next.

Search heuristics can also pick states randomly. Random state search picks each state

with equal probability, which is somewhere between DFS and BFS, but tends to be more

similar to BFS and suffers from the same problem. The probability of picking the state can

be biased by some metric; for example KLEE [16] can bias them by distance to uncovered

code. Similarly, the probability of picking a state can be biased by its depth, that is, the

number of symbolic branches through which the state has passed already.
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The search heuristics above can also be combined with so-called meta-search heuristics,

for example by interleaving search hearustics. That is the default mode of KLEE, which

uses random path and coverage-biased search alternatingly.

There are also more complex search strategies such as ZESTI’s search strategy [78], which

aims to explore paths around sensitive instructions, where it defines sensitive instructions

as instructions that are likely to contain a bug, such as memory accesses. KATCH [79]

uses a search strategy that guides symbolic execution towards patched code. MoKLEE [15]

prioritizes states that have not been explored before.

In Chapter 4 we propose a pending meta search strategy that picks states based on

them already having an available solver solution. This both makes symbolic execution use

constraint solving more efficiently and can modify a broad search strategy to also explore

deeper parts of the program.

1.2.3 Symbolic Executors

There are many implementations of the symbolic execution algorithm. Outside our scope

of C programs there is JPF-SE [4] for Java, PEX [113] for .NET and KALUZA [95] for

JavaScript, to name a few. For programs in our scope we could look at the large number of

binary symbolic executors such as Angr [102], FuzzBALL [80] or MAYHEM [21]. But these

operate at a binary level, which provides a whole new set of very hard challenges that are

unique to binaries due to useful information — such as control flow — being stripped out.

There are also concolic executors such as DART [47], SAGE [48], CREST [28] and

CUTE [99] which implement a slight variation of symbolic execution called concolic execution

or white-box fuzzing. In the concolic variant of symbolic execution execution, a path (an

input) is executed from start to finish, while still gathering path constraints. A path

constraint is then negated and solved to get a new input, which is executed start to finish

again and the process repeats. [20] This approach is easier to implement and can be more

scalable. However it is harder to use outside of test generation and bug finding. It is also

less efficient, as the same prefix of a path gets re-executed many times and only explores a

single path at a time.
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Finally KLEE [16] follows the EGT [17] line of symbolic executors. It is an ac-

tively maintained and open source symbolic executor that operates on LLVM bitcode,

an intermediate representation that still captures most of the high level semantics and

thus does not suffer from the same problems as binary analysis and can therefore scale

to larger programs. The popularity of KLEE can also be seen from its many exten-

sions [68, 97, 23, 92, 91, 73, 86, 15, 115, 66, 64, 94, 121].5 KLEE is what we will be using to

implement the approaches presented in this work and thus evaluate their effectiveness.

1.3 SMT Solvers

SMT solvers are programs that determine the feasibility of a logical formula. A logical

formula is satisfiable if there exists an assignment to its variables that renders it true. If no

such assignment exists, the formula is unsatisfiable. In general, this is a very hard problem,

however advances in SMT solvers in the past two decades have made them fast enough on

typical formulas generated by program analyzers. STP [37] and Z3 [32] are the two solvers

that we will use. The inner workings of SMT solvers are well beyond the scope of this thesis

and we will use them in a black-box manner. What is important for the context of this

discourse is how a program or a path condition is presented to the solver.

SMT solvers work on a certain set of theories, which can be thought of as a “language”

to communicate with the solver. There are four theories relevant to symbolic execution used

in this thesis: theory of bitvectors, theory of arrays, theory of strings and theory of integers.

1.3.1 Theory of Bitvectors and Arrays

The theory of bitvectors lets us encode machine integers, that is integers that are represented

by a finite number of bits and therefore have a bounded range. As a taster, consider the

logical formula (x > 0 ∧ x + 1 < 0) in the theory of bitvectors in SMT-LIB2 format [9]:

1 (declare-const x (_ BitVec 8))

2 (assert (bvsgt x #x00))

5A more complete list can be found at http://klee.github.io/publications currently listing 167 papers
using or extending KLEE
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3 (assert (bvslt (bvadd x #x01) #x00))

Variable x is first declared as an 8-bit vector on line 1. This is how a symbolic byte in

symbolic execution is presented to a constraint solver. Each conjunct is then encoded as a

separate assert statement, x > 0 on line 2 and x+ 1 < 0 on line 3. In plain terms, what this

formula is asking is: can incrementing a positive integer result in a negative integer? This is

not satisfiable if x is a mathematical integer, but it is satisfiable if x is an 8 bit bitvector due

to overflow. Namely, setting x to 127 (x = 0x7f), will lead to that overflow. This is exactly

how addition works on modern computers, so the theory of bitvectors lets us easily encode

the exact semantics of arithmetic instructions on modern architectures.

In addition to modeling arithmetic instructions as described above, we also need to model

memory access instructions such as load and store in order to get an instruction set that

can run real programs. In other words we need to model computer memory.

One way of modeling memory is to keep using the theory of bitvectors. It supports slicing,

that is extracting smaller bitvectors from a larger one. Therefore the whole memory could be

modeled as one giant bitvector and load/store instructions just become equality constraints

on slices of the giant bitvector representing the whole memory. However, the theory of

bitvectors requires slices to have concrete offsets. That means the theory of bitvectors cannot

be used to model load/store instructions with a symbolic address. This can be resolved

by enumerating all possible addresses the symbolic address can point to, concretizing for

each case and creating a disjunction over them. This can quickly get expensive, but it is a

technique used by some binary symbolic executors [102, 80, 11].

A more concise way of modeling computer memory is to use theory of arrays and

bitvectors. The theory of arrays is simple and has two operations: read(array, index) and

write(array, index, value), with two read-over-write axioms. First ∀a, i, j, v. i = j =⇒

read(write(a, i, v), j) = v, which simply says that reading a value from the same lo-

cation the value was written to yields that value. And second ∀a, i, j, v. i 6= j =⇒

read(write(a, i, v), j) = read(a, j), which simply says to ignore writes at the locations not

being read. The value in the theory of arrays can be anything, but for the purpose of

modeling computer memory it is most convenient if they are 8-bit bitvectors, to represent
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an array of bytes. Note that the theory of arrays does not require index to be concrete.

Therefore it can be used to represent load/store instructions of symbolic addresses more

concisely without large disjunctions.

1.3.1.1 Symbolic Execution and Memory

As an example, consider again our program from before in Figure 1.1. We previously

explained the basics of symbolic execution in Section 1.2. We stopped at line 15 because it

involves symbolic memory. Using theory of arrays we can now present how the key[input[i]

- ’a’] might be represented in the theory of arrays.

First we have two arrays, input and key. input is a symbolic array in our example,

so input[i], can be represented simply as read(input, i). In the first iteration of the loop

where i is 0, that would be read(input, 0). key is a concrete array with some values. To

encode this in the theory of arrays, we need to write those values explicitly into the array:

write(write(...write(write(key, 0,′ a′), 1,′ s′)), 25,′ p′).

The key[input[i] - ’a’] expression can now be encoded as

read(

write(write(...write(write(key, 0,′ a′), 1,′ s′)), 25,′ p′),

read(input, i)−′ a′)

Note that this is only one way of encoding key[input[i] - ’a’] into theory of arrays

and bitvectors albeit perhaps the most straightforward to present and the one used by

KLEE [16]. In this exposition we combined input and key to mean: program pointer to a

chunk of memory, name of the chunk of memory and a logical array representing that chunk

of memory to an SMT solver. The distinction between these three concepts is irrelevant

for the example from Figure 1.1, because our pointer (key + (input[i] - ’a’) can only

point to the key object allocated at line 1 in Figure 1.1. We will refer to the process of

identifying which memory objects a pointer can point to as memory object resolution or
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simply resolution.

In Chapter 3 we explore cases where a pointer might resolve to multiple memory objects

and present the challenges this poses for a symbolic executor. In this context we then

present other methods of encoding memory and illustrate their trade-offs. We then present a

segmented memory model that uses pointer alias analysis (briefly introduced in Section 1.4)

to pre-compute the possible memory objects a pointer can point to. Our segmented memory

model allocates these memory objects together, which enables better symbolic execution of

programs heavily utilising pointers that might resolve to multiple memory objects.

1.3.2 Theory of Strings

Strings are perhaps the most widely-used datatype, at the core of the interaction between

humans and computers, via command-line utilities, text editors, web forms, and many more.

Therefore it can be reasonable to tailor program analysis to strings. The theory of strings

allows for encoding of strings in a more natural way instead of relying on the theory of arrays.

It provides a different set of primitives that talk about sequences of characters. For brevity

we will present a single primitive: string concatenation, which we will denote as ++. String

concatenation simply appends the right string at the end of the left one, for example "hello

world" == "hello" ++ " " ++ "world".

Suppose we would want to encode a SQL statement: SELECT * FROM {table-name};,

where table-name is some symbolic variable. In the theory of strings this can simply be

expressed as: "SELECT * FROM " ++ tv ++ ";" where tv is some string variable. Let us

go back to the theory of arrays for a moment to consider how this SQL statement could

be encoded there. First we need 14 write expressions to write the 14 characters of SELECT

* FROM on indices 0-13 of the array. Then we can write the first character of tv as the

14th character, second character of tv as the 15th and so on. But when do we stop to write

the final semi-colon? That depends on the length of tv and theory of arrays has no way

of expressing variable length nicely. It would have to rely on some form of disjunction and

special case each length of tv. That is significantly less scalable.

The rise of string solvers [69, 64, 127, 117, 126, 10] has enabled effective program analysis
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techniques for string-intensive code leveraging the theory of strings, e.g. Kuduzu [95] for

JavaScript or Haderach [100] and JST [39] for Java. However, these techniques operate on

domains where strings are well-defined objects (i.e. the String class in Java).

As mentioned before, strings in our scope of C-like languages are just arbitrary portions

of memory terminated by a null character. That means interacting with strings does not

have to go through a well-defined API as in other programming languages. While there are

string functions in the C standard library (e.g. strlen, strchr, strspn, etc. defined in string.h),

programmers can write their own equivalent loops for the functionality provided by the

standard library. In Chapter 2 we show this practice is not uncommon.

An example of this can be observed in our initial program from Figure 1.1, where the

loop on line 7 could be summarised into the standard strlen function. Note how that would

compress the entire exploration tree (even the ... part in Figure 1.2) into a simple len =

strlen(input) expression. This can significantly reduce the number of paths that need to

be explored, thus speeding up symbolic execution.

There is a flip side to the theory of strings which can be explained by looking at line 15

of Figure 1.1, where we have lookups into a string based on an index. This is not a problem

in itself, because the theory of strings provides the at operator, which returns the character

at an index. There are two problems however. First, this degrades the theory of strings

into the theory of arrays that is just harder to solve. Second, the theory of strings requires

indices to be mathematical integers instead of bitvectors. That means we can either drop

the theory of bitvectors and model them as mathematical integers, which brings its own

problems [62], or do conversion between bitvectors and mathematical integers, which is very

expensive and only very recently somewhat addressed [2].

That is why having string manipulation through string functions almost exclusively is

vital to the success of applying the theory of strings to symbolic execution. In languages

such as Java or JavaScript this is almost free due to the language design and the theory of

strings is successful in that domain, while we are unaware of any similar successes for C-like

languages. In Chapter 2 we make important steps towards addressing this problem. We

show a technique that can automatically summarise string loops into well known C standard
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library functions. This has the potential for large gains for symbolic execution of string

heavy programs, as well as applications in refactoring and compiler optimisation.

1.4 Pointer Alias Analysis

Pointer alias analysis is a type of static program analysis that computes all possible memory

locations a pointer can point to. To put it another way, it tells us what pointers can point

to the same memory region, that is, which pointers may alias each other. While details of

pointer alias analysis are beyond the scope of this work, we use it in Chapter 3 to enhance

a memory model of symbolic execution. We use SVF [111], an off-the-shelf pointer alias

analysis for LLVM that implements a scalable variation of Andersen-style [5] alias analysis

that is field-sensitive, flow-insensitive and context-insensitive.

In a nutshell, Andersen-style analysis works by translating a program into a set of

constraints. For example, consider the following code:

1 char* p = malloc(10);

2 char* q = p + 1;

3 q = malloc(15)

Line 1 would be translated into a constraint pts(p) ⊇ {l1}, which says the set of locations

that p can point to (denoted as pts(p)) includes the memory region denoted by l1. We use l1

to denote all possible memory regions that can be allocated on line 1. Sometimes l1 would

be called an abstract memory object. Note that this is a static analysis, which means it is

performed without running the program, so it is very hard to know how many times line 1

will be executed. Therefore we abstract the problem away by treating all the memory at

line 1 as one, denoted by l1.

Similarly, line 2 would be translated into constraint pts(q) ⊇ pts(p), which simply says q

points to whatever p points to. Note that the + 1 arithmetic operation is abstracted away as

it has no impact on pointer aliasing information due to the C language standard prohibiting

pointer arithmetic crossing memory object boundaries. Finally, line 3 would be encoded into

pts(q) ⊇ {l3}, similarly to line 1.
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These constraints can now be solved in a flow-insensitive way, that is ignoring the order

of the program statements. A flow-insensitive solution at the end of propagation would be

pts(p) = {l1} and pts(q) = {l1, l3}. This is because flow insensitivity ignores the fact q is

overwritten on line 3. A flow sensitive solution would yield pts(p) = {l1} and pts(q) = {l3},

which is more precise (points to sets are smaller), but harder to compute and therefore less

scalable.

Andersen focuses [5] on flow-insensitive style of analysis, which they argue is the better

trade-off between scalability and precision. The original Andersen analysis is also field-

insensitive and context-insensitive. That is it considers fields of a struct as one and it does

not consider functions being called in different contexts.

1.5 Overview

We have introduced symbolic execution, placed it in the wider context of software engineering

and glanced at some of its challenges. In the remainder of this thesis we present three

techniques that are steps towards addressing some of the shortcomings of symbolic execution.

In Chapter 2 we first aim to transform programs under test in a way that makes them

friendlier to symbolic execution by summarising some of the loops over strings into standard

library string functions. We gather a set of loops from open source programs and show our

technique can summarise over two thirds of these loops in less than 5 minute of runtime

per loop. We then show these loop summaries are applicable to improvements in symbolic

execution, optimising compilers and refactoring.

We then look into the multiple resolution problem in Chapter 3. Multiple resolution

occurs when pointers that depend on (symbolic) input can resolve to multiple memory

objects. This can amplify the path explosion problem for benchmarks that make heavy use

of datastructures such as hash tables. We use pointer alias analysis to partition the memory

into segments, such that each pointer can only point to a single segment, thus alleviating

the issue of multiple resolution.

While working with the benchmarks in Chapter 3, we observed poor performance of

27



KLEE unrelated to multiple resolution. Therefore, in Chapter 4, we introduce pending

constraints that aim to increase the performance of symbolic execution on those benchmarks.

Pending constraints aim to aggressively explore paths that are already known to be feasible,

thus using the solver more efficiently and increasing coverage.

Finally we conclude and present some possible future work in Chapter 5.
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Chapter 2

Loop Summarisation

In this chapter we focus on a particular set of loops common in real C programs that

usually operate on strings. We call these loops memoryless loops, because they do not carry

information from one iteration to another. To illustrate, consider the loop shown in Figure 2.1

(taken from bash v4.4). This loop only looks at the current pointer and skips the initial

whitespace in the string line. The loop could have been replaced by a call to a C standard

library function, by rewriting it into line += strspn(line, " \t").1

In addition to enabling gathering constraints in theory of strings for symbolic execution as

presented in Section 1.3.2, replacing loops such as those of Figure 2.1 with calls to standard

string functions has two other advantages.

First, from a software development perspective, such code is often easier to understand,

as the functionality of standard string functions is well-documented. Furthermore, such code

is less error-prone, especially since loops involving pointer arithmetic are notoriously hard to

get right. Our technique is thus useful for refactoring such loops into code that calls into the

C standard library. As detailed in Section 2.2, we submitted several such refactorings to

popular open-source codebases, with some of them now accepted by developers.

Second, translating custom loops to use string functions can also impact native execution,

as such functions can be implemented more efficiently, e.g. to take advantage of architecture-

1We remind the reader that strspn(char *s, char *charset) computes the length of the prefix of s

consisting only of characters in charset.
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1 #define whitespace(c) (((c) == ’ ’) || ((c) == ’\t’))

2 char* loopFunction(char* line) {

3 char *p;

4 for (p = line; p && *p && whitespace (*p); p++)

5 ;

6 return p;

7 }

Figure 2.1: String loop from the bash v4.4 codebase, extracted into a function.

specific hardware features.

In Section 2.1 we first define a vocabulary that can express memoryless string loops

similar to the one in Figure 2.1. We then present an algorithm for counterexample-guided

synthesis within a single (standard) symbolic execution run, which we use to synthesise

memoryless string loops in our vocabulary and show they are equivalent up to a small bound.

Finally, we build a database of suitable loops in Section 2.2.1 based on popular open-source

programs, which we use to comprehensively analyse the impact of time, program size and

vocabulary on summarising loops in Section 2.2.2.

2.1 Technique

The goal of our technique is to translate2 loops such as the one in Figure 2.1 into calls to

standard string functions. Our technique uses a counterexample-guided inductive synthesis

(CEGIS) algorithm [105] inspired by Sharma et al.’s work on synthesising adaptors between C

functions with overlapping functionality but different interfaces [101]. This CEGIS approach

is based on dynamic symbolic execution, which we introduced in Section 1.2. In this section,

we first discuss the types of loops targeted by our approach (§2.1.1), then present the

vocabulary of operations to which loops are translated (§2.1.2), and finally introduce our

CEGIS algorithm (§2.1.3).

2In this chapter, we use the terms translate, summarise and synthesise interchangeably to refer to the
process of translating the loop into an equivalent sequence of primitives and string operations.
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2.1.1 Loops Targeted

Our approach targets relatively simple string loops which could be summarised by a se-

quence of standard string library calls (such as strchr) and primitive operations (such as

incrementing a pointer). More specifically, our approach targets loops that take as input

a pointer to a C string (so a char * pointer), return as output a pointer into that same

string, and have no side effects (e.g., no modifications to the string contents are permitted).

Such loops are frequently coded in real applications, and implement common tasks such

as skipping a prefix or a suffix from a string or finding the occurrence of a character or a

sequence of characters in a larger string. Such loops can be easily synthesised by a short

sequence of calls to standard string functions and primitive operations (see §2.2 which shows

that most loops in our benchmarks can be synthesised with sequences of at most 5 such

operations). While our technique could be extended to other types of loops, we found our

choice to provide a good performance/expressiveness trade-off.

More formally, we refer to the two types of loops that we can synthesise as memoryless

forward loops and memoryless backward loops, as defined below.

Definition 1 (Memoryless Forward Loop). Given a string of length len, and a pointer p

into this buffer, a loop is called a forward memoryless loop with cursor p iff:

1. The only string location being read inside the loop body is p0 + i, where p0 is the

initial value of p and i is the iteration index, with the first iteration being 0;

2. Values involved in comparisons can only be one of the following: 0, i, len for integer

comparisons; p0, p0+i, p0+ len for pointer comparisons; and ∗p (i.e. p0[i]) and constant

characters for character comparisons;

3. The conceptual return value (i.e. what the loop computes) is p0 + c, where c is the

number of completed iterations.3

Definition 2 (Memoryless Backward Loop). Such loops are defined similarly to forward

memory loops, except that the only string location being read inside the loop body is

p0 + (len− 1)− i and the return value is p0 + (len− 1)− c.
3The number of times execution reached the end of the loop body and jumped back to the loop header [3].
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Table 2.1: The vocabulary employed by our technique.

Gadget Regexp Effect
rawmemchr M(.) result = rawmemchr(result, $1)
strchr C(.) result = strchr(result, $1)
strrchr R(.) result = strrchr(result, $1)
strpbrk B(.+)\0 result = strpbrk(result, $1)
strspn P(.+)\0 result += strspn(result, $1)
strcspn N(.+)\0 result += strcspn(result, $1)
is nullptr Z skipInstruction = z != NULL
is start X skipInstruction = result != s
increment I result++
set to end E result = s + strlen(s)
set to start S result = s
reverse ˆV reverses the string (see §2.1.2)
return F return result and terminate

2.1.2 Vocabulary

Given a string loop, our technique aims to translate it into an equivalent program consisting

solely of primitive operations and standard string operations. For convenience, we represent

the synthesised program as a sequence of characters, each character representing a primitive

or string operation. To make things concrete, we show the elements (called gadgets) of our

working vocabulary in Table 2.1.

To summarise the loop in Figure 2.1, we need to first represent the call to strspn. We

choose the character P to be the opcode for calls to strspn. We do not have to represent the

first argument in strspn as it is implicitly the string the loop is operating on. The second

argument is a string containing all the characters strspn counts in its span. We represent

this using the actual list of characters passed as the second argument, followed by the \0

terminator character. Thus, the call strspn(line, " \t") would be encoded by P \t\0.

Extended regular expressions provide a concise way of presenting the vocabulary. A

string matching the regular expression P(.+)\0 represents a call to strspn, where the second

argument consists of the characters in the capture group (.+) of the regular expression. In

Table 2.1, we refer to the first capture group as $1.

To formally define the meaning of a program in our language (e.g. of a sequence like

P \t\0), we define an interpreter that operates on such sequences of instructions (characters)
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Algorithm 1 Program interpreter for a vocabulary of three gadgets: strspn, is nullptr and
return.

1: function Interpreter(s, program)
2: result← s
3: skipInstruction← false
4: foreach instruction ∈ program do
5: if skipInstruction then
6: skipInstruction← false
7: continue
8: end if
9: arguments← InstructionArgs(instruction)

10: switch OpCode(instruction) do
11: case ’P’ // strspn
12: result← result+ strspn(result, arguments)

13: case ’Z’ // is nullptr
14: skipInstruction← result ! = NULL

15: case ’F’ // return
16: return result
17: default
18: return invalidPointer
19: end switch
20: end foreach
21: return invalidPointer
22: end function

and returns an offset in the original string. The execution of the interpreter represents the

synthesised program.

A partial interpreter that can handle three of our vocabulary gadgets (strspn, is nullptr

and return) is shown in Algorithm 1. The interpreter has an immutable input pointer register

(s, the original string pointer on which the loop operates), a return pointer register (result)

and a skip instruction flag (skipInstruction).

The interpreter loops through all the instructions in the program (lines 4–20). If the skip

instruction flag is set, the interpreter skips the next instruction and resets the flag (lines 5–8).

Otherwise, it reads the next instruction and interprets each gadget type accordingly, by

either updating the result register or the skipInstruction flag (lines 9–16). If the loop runs

out of instructions or the opcode is unknown, we return an invalid pointer (lines 17–18).

This ensures that malformed programs never have the same output as the original loop and

are therefore not synthesised.

Consider running the interpreter on the program P \t\0F. The interpreter initialises
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result to the string pointer s and skipInstruction to false. It then reads the next

instruction, P, and thus updates result to result + strspn(result, " \t"). Finally, it

reads the next instruction, F, and returns the result. Therefore, the synthesised program is:

result = s;

skipInstruction = false;

if (!skipInstruction)

result = result + strspn(result, " \t");

else skipInstruction = false;

if (!skipInstruction)

return result;

else skipInstruction = false;

which is equivalent to return = s + strspn(result, " \t").

To also illustrate the use of the is nullptr gadget covered by Algorithm 1, consider

the slightly enhanced program ZFP \t\0F. In this case, the interpreter will synthesise the

following code for the added ZF prefix, which returns NULL if the string is NULL:

result = s;

if (!skipInstruction)

skipInstruction = result != NULL;

else skipInstruction = false;

if (!skipInstruction)

return result;

else skipInstruction = false;

In summary Table 2.1 shows the full set of vocabulary we devised to express the loops

we wanted to target. The first column in the table gives the name of the gadget, while the

second shows the extended regular expression that describes the gadget. The third column

shows the effect this gadget has on the Interpreter.

Meta-characters. To more easily synthesise gadgets that take sets of characters as ar-

guments, such as strspn, we introduce the notion of meta-characters. These are single

symbols in our synthesised programs that expand into sets of characters. By reducing the

program size, this helps us synthesise loops that contain calls to macros/functions such as
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isdigit in a more scalable way. For example, instead of having to synthesise 10 characters

("0123456789"), we can synthesise just a single meta-character (which we chose to be "\a").

Similarly, we also use a whitespace meta-character which represents " \t\n"). These are the

only two meta-characters that we found beneficial in our experiments, but more could be

added if needed. At the same time, we note that meta-characters are not strictly necessary,

i.e. the synthesis algorithm would work without them, but would take longer.

Reverse instruction. The reverse instruction can only occur as the first instruction of a

synthesised program. Its purpose is to facilitate the summarisation of backward loops. For

example, reverse and strchr should be equal to strrchr . However, not all functions have a

reverse version, so the purpose of the reverse instruction is to enable similar functionality

for other functions such as strspn. For instance, such function can be easily expressed in

terms of the vocabulary offered by string constraint solvers.

The reverse instruction takes the string s and copies it into a new buffer in reverse

order. It then sets result to this new buffer. It also enhances the behaviour of the return

instruction: instead of simply returning result, which now points to a completely different

buffer, it maps the offset in the new buffer back into the original buffer.

2.1.3 Counterexample-Guided Synthesis

Our synthesis approach is inspired by Sharma et al.’s work on synthesising adapters between

different C library implementations [101]. Their vocabulary gadgets are able to translate

the interface of one library into that of another. Examples of gadgets include swapping

arguments or introducing a new constant argument to a function.

Their approach uses counterexample-guided inductive synthesis (CEGIS) based on sym-

bolic execution to synthesise the adapters in that vocabulary. In brief, this means they first

take a symbolic adapter, constrain it so that it correctly translates all the currently known

examples, then concretize the adapter and try to prove the two implementations are the

same up to a bound. If that is successful, the synthesis terminates, otherwise they obtain a

counterexample, add it to the list of known examples and repeat.
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Algorithm 2 Synthesis algorithm, which is run under symbolic execution.

1: counterexamples← ∅
2: while Timeout not exceeded do
3: prog ←SymbolicMemObj(MAX PROG SIZE)
4: foreach cex ∈ counterexamples do
5: Assume(Original(cex) = Interpreter(cex, prog))
6: end foreach
7: KillAllOthers( ) . Only need a single path
8: prog ← Concretize(prog)
9:

10: example←SymbolicMemObj(MAX EX SIZE)
11: example[MAX EX SIZE − 1]← ’\0’
12: StartMerge( )
13: originalOutput← Original(example)
14: synthesizedOutput← Interpreter(example, prog)
15: isEq ← originalOutput = synthesizedOutput
16: EndMerge( )
17:

18: if IsAlwaysTrue(isEq) then
19: return prog . We are done
20: end if
21:

22: Assume(!isEq)
23: cex← Concretize(example)
24: counterexamples← counterexamples ∪ {cex}
25: end while

We took their approach further to synthesise whole functions instead of just adapters

between function interfaces.

Our approach focuses on the types of loops described in Section 2.1.1, which can be

extracted into functions with a char* loopFunction(char* s) signature. However, the

technique should be easy to adapt to loops with different signatures. Our vocabulary of

gadgets is the one described in Section 2.1.2.

Algorithm 2 presents our approach in detail. The algorithm is a program that when

executed under symbolic execution performs CEGIS and returns the synthesised program

representing the loop. This program is just a sequence of characters which can be interpreted

as discussed in Section 2.1.2.

The algorithm makes use of the following symbolic execution operations:

� SymbolicMemObj(N) creates a symbolic memory object of size N bytes.

� Assume(cond) adds the condition cond to the current path constraints.
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� Concretize(x) makes symbolic input x concrete, by asking the constraint solver for

a possible solution.

� KillAllOthers() prunes all the paths, except the path first reaching this call.

� IsAlwaysTrue(cond) returns true iff the condition cond can only be true.

� StartMerge() and EndMerge() merge all the paths between these two calls into

a single path, by creating a big disjunction of all the path constraints of the merged

paths.

The target loop for which we are trying to synthesise a summary is represented by the

Original(s) function, with s the input string. Interpreter(s, program) executes the

program on string s as discussed in Algorithm 1. Our aim is to synthesise a program

such that: ∀s.Interpreter(s, program) = Original(s).

Algorithm 2 starts by initialising the set of all counterexamples encountered so far to the

empty set (line 1). Counterexamples in this context are strings C on which the original loop

and the synthesised program were found to behave differently, i.e.

Interpreter(C, program) 6= Original(C)

.

The algorithm is centered around a main loop (lines 2–25), which ends either when a

synthesised program is found or a timeout is exceeded. On each loop iteration, we create

a new symbolic sequence of characters representing our program (line 3) and constrain it

such that its output on all current counterexamples matches that of the original function

(lines 4–6).

When the program is run through the Interpreter function, there might be multiple

paths on which the program is equivalent to the Original function for the current

counterexamples. However, we are only interested in one of them. The computation spent

on exploring other paths at this point is better used in the next iteration of the main loop,

which will have more counterexamples to guide the synthesis. Therefore, we only keep a
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single path by calling KillAllOthers (line 7). We also concretize the program (line 8)

to make the next step computationally easier.

The remainder of the loop body then focuses on finding a new counterexample, if one

exists. Lines 10–15 attempt to prove the Original function and program have the same

effect on a fresh symbolic string of up to length max ex size on all possible paths. To be

able to reason about all these paths at once, we merge them using StartMerge() and

EndMerge() (lines 12–16).

Variable isEq on line 15 is a boolean variable that encodes whether the original loop and

the synthesised program are equivalent on strings up to length max ex size. Line 18 checks

whether isEq can only take value true.

If so, we know that the synthesised program behaves the same as the original loop on

all strings of up to length max ex size and based on a small world theorem from [61] 4

on strings of arbitrary length. Intuitively, the proof in [61] shows that the loops we target

cannot distinguish between executing on a “long” string and executing on its suffix. In

both executions, the value returned by the loop is uniquely determined by the number of

iterations it completed, and every time the loop body operates on a character c, it follows

the same path, except, possibly, when scanning the first or last character. Therefore, we can

successfully return the program as it is equivalent to the original loop.

Otherwise, we need to get a new counterexample and repeat the process in a next iteration

of the main loop. For this, we first prune the paths where isEq is true by assuming it is

false (line 22). Then, we obtain a counterexample by asking for a concrete solution for the

example string that meets the current path constraints (where isEq is false) (line 23) and

add it to the set of counterexamples (line 24).

2.2 Evaluation

We implemented our synthesis algorithm on top of KLEE commit 4432580, where KLEE

already supports creating symbolic memory objects, adding path constraints, concretiz-

4Omitted from this thesis as it is not our contribution.

38



ing symbolic objects and merging of paths. Thus, we only needed to add support for

KillAllOthers and IsAlwaysTrue, which required under 20 LOC.

We split our evaluation into three parts. First we describe how we gathered a large set of

loops from real programs (§2.2.1). We then explore how many programs we can synthesise

from this database with respect to time, vocabulary and maximum synthesised program

size (§2.2.2). Finally, we evaluate the applications of loop synthesis in scaling up symbolic

execution (§2.2.3), speeding up native execution (§2.2.4), and refactoring code (§2.2.5). All

the experiments were run on a modern desktop PC with Intel i7-6700 CPU on Ubuntu 16.04

with 16GB of RAM.

A replication package can be found at https://doi.org/10.1145/3325967 or

https://srg.doc.ic.ac.uk/projects/loop-summaries/artifact.html.

2.2.1 Loop Database

We perform our evaluation on loops from 13 open-source programs: bash, diff , awk , git ,

grep, m4 , make, patch, sed , ssh, tar , libosip and wget . These programs were chosen because

they are widely-used and operate mostly on strings.

The process for extracting loops from these programs was semi-automatic. First, we used

LLVM passes to find 7,423 loops in these programs and filter them down to 323 candidate

memoryless loops. Then we manually inspected each of these 323 loops and excluded the

ones still not meeting all the criteria for memoryless loops. The next sections describe in

detail these two steps.

2.2.1.1 Automatic Filtering

After compiling each of the programs to LLVM IR, we apply LLVM’s mem2reg pass. This

pass removes load and store instructions operating on local variables, and is needed in our

next step. LLVM’s LoopAnalysis was then used to iterate through all the loops in the

program, and filter out loops which are not memoryless. We automatically prune loops that

have inner loops and then loops with calls to functions that take pointers as arguments or

return a pointer.
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Table 2.2: Loops remaining after each additional filter.

Initial loops
Inner
loops

Pointer
calls

Array
writes

Multiple
ptr reads

bash 1085 944 438 264 45
diff 186 140 60 40 14
awk 608 502 210 105 17
git 2904 2598 725 495 108
grep 222 172 72 42 9
m4 328 286 126 78 12
make 334 262 129 102 13
patch 207 172 88 67 20
sed 125 104 35 19 1
ssh 604 544 227 84 12
tar 492 432 155 106 33
libosip 100 95 39 30 25
wget 228 197 115 83 14

Total 7423 6448 2419 1515 323

Then, we filter out loops containing writes into arrays. We assume that due to mem2reg

pass, any remaining store instructions write into arrays and not into local variables. Therefore

we miss loops where this assumption fails, as they get excluded based on containing a store

instruction. Finally, we remove loops with reads from multiple pointer values. This ensures

that we only keep loops with reads of the form p0 + i as per Definitions 1 and 2 of memoryless

loops.

Table 2.2 shows, for each application considered, how many loops are initially selected

(column Initial loops) and how many are left after each of the four filtering steps described

above (e.g., column Pointer calls shows how many loops are left after both loops with inner

loops and loops with calls taking or returning pointers are filtered out). In the end, we were

left with between 9 and 108 loops per application, for a total of 323 loops.

2.2.1.2 Manual Filtering

We manually inspected the remaining 323 loops and manually excluded any loops that still

did not meet the memoryless loops criteria from Section 2.1.1.

Two loops had goto in them, which meant they jumped to some other part of the function

unrelated to the loops. Three loops had I/O side effects, such as outputting characters with
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putc (note that the automatic pointer calls filter removed most of the other I/O related

loops).

A total of 74 loops did not return a pointer, and an additional 70 loops had a return

statement in their body. 28 loops had too many arguments. For example, incrementing a

pointer while it is smaller than another pointer would belong into this category, as the other

pointer is an “argument” to the loop. Finally, 31 loops had more than one output, e.g. both

a pointer and a length.

Note that some of these loops could belong into multiple categories, we just record the

reason for which they were excluded during our manual inspection. In total, we manually

excluded 208 loops, so we were left with 323 - 208 = 115 memoryless loops on which to apply

our synthesis approach.

As part of this manual step, we also extracted each loop into a function with a char*

loopFunction(char*) signature. While this could be automated at the LLVM level, we felt

it is important to be able to see the extracted loops at the source level.

2.2.2 Synthesis Evaluation

We evaluate our synthesis algorithm in several ways. First, we report its effectiveness using a

generous timeout (§2.2.2.1), then we analyse how results vary with the size of the synthesised

program and the timeout (§2.2.2.2), and finally how they vary with the size and shape of

the vocabulary (§2.2.2.3).

2.2.2.1 Results with a Large Timeout

We first aim to understand how well our synthesis approach performs within a fixed and

generous budget. We choose to run the synthesis with a 2-hour timeout, which is a

reasonably long timeout for symbolic execution. We use the full vocabulary, as we want to

capture as many loops as possible. Finally, we choose a maximum synthesised program size

(max prog size in Alg. 2) of 9 characters based on some exploratory runs, where going

above this number made synthesis very slow. The bound for checking program equivalence

(max ex size in Alg. 2) was set to length 3, which is sufficient for proof in [61] that shows
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Table 2.3: Successfully synthesised loops in each program and the time taken by the synthesis
process (with all gadgets, max prog size=9, max ex size=3 and timeout=2h).

% synthesised Average (min) Median (min)
bash 12/14 5.7 5.3
diff 3/5 5.1 5.3
awk 3/3 2.1 0.2
git 18/33 3.1 2.6
grep 1/3 4.4 4.4
m4 1/5 4.4 4.4
make 0/3 n/a n/a
patch 9/13 1.8 0.2
sed 0/0 n/a n/a
ssh 2/2 2.7 2.7
tar 10/15 10.2 4.5
libosip 12/13 12.6 5.3
wget 6/6 6.3 1.5
Total 77/115 6.1 4.5

equivalence for all string lengths.

Table 2.3 summarises the time it took to synthesise loops in each program. In total, we

successfully synthesised 77 out of 115 loops, most under 10 minutes, well below our 2-hour

timeout. Note that the median is sometimes significantly smaller that the average, indicating

that a few loops were particularly difficult to synthesise. For example, in libosip 10 loops are

synthesised within 10 minutes, while another 2 take well over an hour to complete. These

2 loops are summarised by a strspn with a four character argument, whereas most other

loops have just 1 or 2 characters as arguments. strpbrk , is start and reverse gadgets were

not synthesised during this experiment.

2.2.2.2 Influence of Program Size and Timeout

We next investigate how our synthesis approach performs with respect to the synthesised

program size and the chosen timeout value. To do so, we use an iterative deepening approach

where we gradually increase the program size from 1 to 9 and plot the number of programs

we can synthesise. We run each experiment with timeouts of 30 seconds, 3 minutes, 10

minutes and 1 hour.

More generally, we advocate using such an iterative deepening approach when summarising
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Figure 2.2: Number of programs synthesised as we increase program size, with different
timeouts.

loops, as this strategy gives the smallest program we can synthesise for each loop, with

reasonable additional overhead.

Figure 2.2 shows the results. Unsurprisingly, we cannot synthesise any programs with

program size 1 as such a program cannot express anything but identity in our vocabulary.

However, even with size 2 we can synthesise one program, namely EF, which iterates until

the null character is encountered and then returns the pointer.

Figure 2.2 also shows that we can synthesise most loops with program size 5 and a timeout

of only 3 minutes, which is encouraging for using this technique in practice. Increasing the

program size or the timeout further provides only marginal benefits.

Another interesting observation is that there are some dips in the graph, e.g. when we

increase the program size from 5 to 6 while keeping a 3-minute timeout. This is because

increasing the program size has an impact on performance, as the search space of our

synthesis algorithm increases with each additional character in the synthesised program.
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2.2.2.3 Optimising the Vocabulary

We next explore how the performance of the synthesis approach depends on the gadgets

included in the vocabulary, and propose a method for optimising the vocabulary used. Before

we go into discussing results, let us first formalise our investigation.

Let N be the number of gadgets in our universe, and G1, G2, . . . GN be the actual gadgets.

In our concrete instantiation presented in Table 2.1, N = 13 and the gadgets are rawmemchr ,

strchr , etc.

We represent the vocabulary employed by the synthesis algorithm using a bitvector

v ∈ {0, 1}N , where bit vi of the vector is set if and only if the gadget Gi is used. For

instance, a vocabulary allowing only the rawmemchr instruction would be represented as

1000000000000, a full vocabulary would be 1111111111111, and the vocabulary with three

gadgets whose interpreter is shown in Algorithm 1 would be represented as 0000101000001.

The number of programs we can synthesise in a given time can be seen as a function of

the vocabulary used, let us call it the success function s : {0, 1}N → N.

Understanding the influence of the vocabulary and choosing the best possible vocabulary

is then equivalent to exploring the behaviour of s.

To exhaustively evaluate s we would need to perform 213 = 8192 evaluations of s. With

a timeout of 5 minutes per loop and 115 loops each evaluation could take 5 ∗ 115 = 575

minutes. However some loops would synthesize before the timeout. In our setup described

below, each evaluation of s took around 1 hour. Taking 1 hour as an optimistic estimate,

we would need 8192 hours of computation time or a little over 341 days. Given enough

resources this could be feasibly performed as evaluating s is trivially parallelizable, however

it would be too expensive and wasteful for our purpose. Therefore, we use instead Gaussian

Processes [76] to efficiently explore s.

While describing Gaussian Processes (GPs) in detail is beyond the scope of this thesis,

we will give an intuition as to why they are useful in this case. GPs can be thought of as a

probability distribution over functions. Initially, when we know nothing, they can represent

any function (including s) albeit with small probability. The main idea is to get a real

evaluation of s and refine the GP to better approximate s. Let’s say we evaluate s(v) = n.
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Table 2.4: The 7 vocabularies that perform better than the 2-hour experiment of §2.2.2.1.

Vocabularies Synthesised programs
MPNIFV 81
MPNBIFV 80
PNIFV, MPNIFVS, MPNBXIFV 78

We can now refine the GP to have the value n at v with 0 variance. The variances around v

also decrease, while variances far away from v do not.

We can repeat this refinement for other values of v to get an increasingly more precise

model of s with the GP. The GP also tells us where to evaluate next. We can use GPs to

optimise s — i.e. to optimise the vocabulary with respect to the number of programs we can

synthesise — by looking at points where s is likely to have a large value [107].

We used GPyOpt [8] for an implementation of GPs. We use an expected improvement

acquisition function, which is well suited for optimisation.

In our experiments, we chose to optimise the vocabulary by using a maximum program

size of 7 and a timeout of 5 minutes per loop. As we will show, this is enough to beat the

results of Section 2.2.2.1 that used a maximum program size of 9 and a much larger 2-hour

timeout per loop. Our optimised vocabulary is obviously optimised for our benchmarks and

might not generalise to a different set of benchmarks, however the optimisation technique

should generalise.

The optimisation process evaluated s 40 times, and to our surprise, found 5 vocabular-

ies that achieve better results in 5 minutes/loop than those achieved in 2 hours/loop in

Section 2.2.2.1. These vocabularies are shown in Table 2.4. The largest number of loops

synthesised was 81, for a vocabulary containing rawmemchr , strspn, strcspn, increment ,

return and reverse. The smallest vocabulary which still beats the results of Section 2.2.2.1

(in just 5 minutes) consists of only 5 gadgets: strspn, strcspn, increment , return and reverse.

We note that the reverse gadget is never synthesised in the 2-hour experiment, because it

is too expensive in the context of a full vocabulary. But as the GP discovered significantly

smaller vocabularies, reverse was now used several times.

We also note that the programs synthesised by the best GP-discovered vocabulary
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(MPNIFV) do not subsume the programs synthesised by the full vocabulary used in Sec-

tion 2.2.2.1. For instance, there were 11 loops synthesised by MPNIFV and not the full

vocabulary. These were mostly loops that look for a strspn from the end of the string. Con-

versely, there were 7 loops synthesised by the full vocabulary but not the MPNIFV vocabulary.

Three of these were loops that required 3 arguments to strspn, one was a strchr , and 3 were

a strrchr loop. Overall, the vocabularies in Tables 2.3 and 2.4 synthesised 88 out of the 115

loops.

2.2.3 Loop Summaries in Symbolic Execution

The next three sections discuss various scenarios that can benefit from our loop summarisation

approach: symbolic execution (this section), compiler optimisations (§2.2.4) and refactoring

(§2.2.5).

In Section 1.3.2 we illustrated how solving constraints in the theory of strings can benefit

symbolic execution. As discussed, standard string functions can be easily mapped to the

theory of strings, while custom loops cannot.

To measure the benefits of using a string solver instead of directly executing the original

loops, we wrote an extension to KLEE [16] (based on KLEE revision 9723acd) that can

translate our loop summaries into constraints over the theory of strings and pass them to

Z3 version 4.6.1. We refer to this extension as str.KLEE, and to the unmodified version of

KLEE as vanilla.KLEE.

Figure 2.3 shows the average time difference across all loops between these two versions

of KLEE when we grow the symbolic string length. We use a 240-second timeout and show

the average execution time across all loops. For small strings of up to length 8 the difference

is negligible, but then it skyrockets until we hit a plateau where some loops start to time out

with vanilla.KLEE. In contrast, str.KLEE’s average execution time increases insignificantly,

with an average execution time under 0.36s for all string lengths considered.

Figure 2.4 shows the speedup achieved for each loop by str.KLEE over vanilla.KLEE on

a log scale. It uses symbolic input strings of length 13. For over half of the loops, str.KLEE

achieves a speedup of more than two orders of magnitude, with several loops experiencing
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Figure 2.3: Mean time to execute all loops with str.KLEE and vanilla.KLEE, as we increase
the length of input strings.

speedups of over 1000x (these include loops where str.KLEE times out, and where the actual

speedup might be even higher). For others, we see smaller but still significant speedups.

There is a single loop where str.KLEE does worse by a factor of 2.5x; this is a strlen function

where it takes 1.4s, compared to 0.5s for vanilla.KLEE.

2.2.4 Loop Summaries for Optimisation

Compilers usually provide built-in functions for standard operations such as strcat, strchr ,

strcmp, etc. for optimisation purposes.56 The reason is that such functions can often be

implemented more efficiently, e.g. by taking advantage of certain hardware features such as

SIMD instructions. In addition, compilers often try to identify loops that can be translated

to such built-in functions. E.g., LoopIdiomRecognize.cpp in LLVM 8 “implements an idiom

recogniser that transforms simple loops into a non-loop form. In cases that this kicks in, it

5https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
6https://clang.llvm.org/docs/LanguageExtensions.html
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can be a significant performance win.”7

However such loop recognisers are typically highly specialised for certain functions, so we

wanted to understand if our more general technique could be helpful to compiler writers in

recognising more loops. To do so, we built a simple compiler that translates our vocabulary

back to C. We then benchmarked the compiled summary against the original loop function.

We ran each function for 10 million times on a workload of four strings about 20 characters

in length. Picking the strings has a large impact on the execution time and it is difficult

to choose strings that are representative across all loops, since they come from different

programs and modules within those programs. Therefore, we make no claim that this

optimisation should always be performed, rather we try to highlight that there are indeed

cases where summarising loops into standard string functions can be beneficial.

The programs were compiled with GCC version 5.4.0 using -O3 -march optimisation

level. Figure 2.5 shows the results of this experiment. The bars going up show cases in

7http://llvm.org/doxygen/LoopIdiomRecognize_8cpp_source.html
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program for each loop.

which the summarised version is faster, and bars going down cases in which it is slower.

Whether the summary achieves a speedup or slowdown is mostly due to the function being

synthesised. For instance, loops summarised by strrchr see important speedups because

the glibc implementation of strrchr uses hand-crafted assembly based on fast vectorized

instructions. Replacing the loop with a call to strrchr is beneficial here as the compiler

does not optimise the loop enough to compete with handcrafted assembly.

By contrast, loops summarised by strspn are slower, because the glibc implementation

of strspn builds a lookup table of the characters it needs to span over, which is expensive.

This is because strspn is optimised for cases where one wants to span over a large set

of characters and the span is large. In our example we had loops that e.g. simply skip

whitespace, which does not fit this pattern.

Therefore, our data suggests that it is always beneficial to replace strrchr, whereas for

strspn we should only replace when the accept string is long. A similar analysis can be

performed for the other string functions in our vocabulary.
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Program Before After

patch while (*s != ’\n’)

s++;
s = rawmemchr(s, ’\n’);

libosip
while ((’ ’ == *pbeg) || (’\r’ == *pbeg)

|| (’\n’ == *pbeg) || (’\t’ == *pbeg))

pbeg++;

pbeg += strspn(pbeg, " \r\n\t");

wget
p = path + strlen (path);

for (; *p != ’/’ && p != path; p--)

;

p = strrchr(path, ’/’);

p = p == NULL ? path : p;

Figure 2.6: Examples of loop summarisation patches accepted by developers.

2.2.5 Loop Summaries for Refactoring

Our technique could also be incorporated into a refactoring engine. We envision an IDE that

would highlight certain loops and suggest to developers a change that would replace them

with more readable and less error-prone calls to standard string functions.

We decided to evaluate the refactoring potential of our loop summarisation approach

by manually submitting some patches that summarise loops in five open-source projects,

selected from those used to build our loop database (see §2.2.1).

We submitted patches to five different applications, three of which accepted some or

all of our proposed changes. Figure 2.6 shows three loop summarisation patches that were

accepted in patch, libosip and wget .

The responses we received show that depending on the functionality involved, some

developers prefer to have loops, while others prefer functions. For example, developers

who rejected our strspn summaries cited as reasons strspn’s relative obscurity and the

performance implications that we also discovered in Section 2.2.4. On the other hand, the

developers who accepted our patches found the standard string functions more readable. In

wget , we also noticed prior patches from developers that did similar replacements.

2.3 Limitations

Our approach, as presented, is limited by the single pointer input/output interface to which

loops have to conform. This restriction could be relaxed. For example, allowing an integer
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output instead of a pointer could be achieved with minor engineering effort. Allowing for

loops that take two strings as input would be a larger effort. It would require both moderate

engineering effort and a new small-model theorem than the one presented in [61]. The

synthesis will also require new gadgets conforming to the two-pointer interface.

While the synthesis algorithm supports any code conforming to the single pointer interface

as gadgets, gadgets are limited by the scalability of symbolic execution. The gadgets we

chose are either constant (i.e. isnull), linear (i.e. strchr) or quadratic (i.e. strspn) in terms

of their input size. Gadgets of higher than quadratic complexity would likely make the

synthesis impractical.

We recognise that some of the loops we summarise could be recognised by more lightweight

approaches such as source code pattern matching or scalar evolution approaches such as the

one used by LLVM’s LoopIdiomRecognize. However, it would be difficult to apply these

approaches for complex loops that require additional modifications, such as conditionally

incrementing a pointer after loop exit, setting it to the end of the string etc. More generally,

pattern matching approaches require great manual effort in finding the patterns and then

encoding them. In fact, during development we found it difficult to manually synthesise loops

because equivalence checking kept finding incorrectly-handled edge cases, so we preferred to

tweak the synthesis parameters rather than attempting to manually synthesise the loops.

In Section 2.2.3, we show large increases in the scalability of symbolic execution with

our summaries. This does not directly imply the same speed-ups would be observed when

running whole programs with loops summaries, however we believe this work is an important

step towards scaling symbolic execution to large strings.

2.4 Related Work

Similar to our work, S-Looper [122] automatically summarises loops with the aim of improving

program analysis. Their technique uses static analysis to enhance buffer-overflow detection.

Our work is more general in that it is applicable to any analysis that operates on C directly,

generating human-readable summaries that can even be used for refactoring.
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Godefroid and Luchaup [49] use partial loop summarisation to enable concolic execution

to reason about multiple paths through a loop at once. Their summaries consist of pre-

and post-conditions, which they automatically infer during concolic execution. Similarly,

loop-extended symbolic-execution [96] uses a combination of symbolic execution and static

analysis to summarise loops in order to speed up symbolic execution. As for S-Looper,

these two approaches are intertwined with their analysis, unlike our approach which can be

immediately used in any technique.

STOKE [98] is an assembly level superoptimizer that speeds up loop-free code segments.

With its recent extension to loops [24] their work is similar in spirit. They also use bounded

verification to aid synthesis, but instead of a relying on a small-world theorem they use

a sound verifier to generalise to arbitrary bounds. Their work focuses on optimising libc

functions, whereas our work focuses on summarising loops in arbitrary programs, therefore

we believe the work is complementary.

Srivastava et al. [108] present an approach synthesising loops from pre- and post-conditions

using a verifier. While more precise, they require user-specified annotations, making it

inapplicable as an automatic summarisation technique.

LLVM’s LoopIdiomRecognize pass attempts to replace loops that match memset or

memcpy patterns and is quite specific to these functions (other compilers, such as GCC,

have similar passes that recognise patterns). It detects induction variables from which it

can recognise stride load and store instructions. Their to-do includes functions like strlen

for over six years, showing that such passes require significant expertise to implement. By

contrast, our approach is more general and can easily be extended by adding a gadget.

More generally, program synthesis has seen renewed interest in recent years [104, 50, 51,

90, 52, 108, 1, 29]. Our synthesis approach is based on CEGIS [105], with the synthesizer

and verifier both based on dynamic symbolic execution [101].
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2.5 Conclusion

In this chapter, we presented a novel approach for summarising loops in C code. This

approach uses counterexample-guided synthesis to generate the loop summaries, Gaussian

processes to optimise the vocabulary used, and rely on a formal proof [61] to show that

the summaries are correct for unbounded loop lengths if they are correct for the first two

iterations.

We evaluated our approach on a large loop database extracted from popular open-

source systems and assessed its utility in several contexts: symbolic execution, where we

recorded speedups of several orders of magnitude; compiler optimisations, where several

summaries resulted in significant performance improvements; and refactoring, where some of

our summary patches were accepted by developers.

The work on extending KLEE to translate loop summaries into theory of string constraints

required in-depth understanding of the memory models for symbolic execution of C-like

programs, which we applied in the next chapter.
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Chapter 3

Segmented Memory Model

One of the main strengths of symbolic execution is that it can reason precisely about all

possible values of each control-flow execution path it explores through the code under

testing. This amplifies its ability of finding bugs and other corner cases in the code being

analysed. However, symbolic execution still struggles to reason in this way about complex

data structures that involve pointers that can refer to multiple memory objects at once,

which we briefly alluded to in Section 1.3.1.1.

To illustrate this problem in further detail, consider the C code in Figure 3.1, where

we set N to 40. When SINGLE OBJ is defined, the program allocates on line 3 a 2D matrix

as a single object, for which all elements are initially zero. It then writes value 120 into

matrix[0][0] on line 10. On lines 12 and 13, it declares two symbolic indexes i,j which

are constrained to be in the range [0,N). Finally, on line 15, it checks whether the element

matrix[i][j] is positive.

The program has two paths: one on which matrix[i][j] is positive (which happens only

when i and j are both zero), and the other on which it is not (which happens when either i

or j are not zero). Unsurprisingly, a symbolic execution tool like KLEE [16] explores the

two paths in a fraction of a second.

Now consider the program in the same figure, but without defining SINGLE OBJ. Now the

matrix is allocated as multiple objects, one for each row in the matrix. In this case, KLEE
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1 int main() {

2 #ifdef SINGLE_OBJ

3 int matrix[N][N] = { 0 };

4 #else

5 int **matrix = malloc(N * sizeof(int*));

6 for (int i = 0; i < N; i++)

7 matrix[i] = calloc(N, sizeof(int));

8 #endif

9
10 matrix[0][0] = 120;

11
12 int i = klee_range(0, N, "i");

13 int j = klee_range(0, N, "j");

14
15 if (matrix[i][j] > 0)

16 printf("Found positive element\n");

17 }

Figure 3.1: 2D matrix allocated as a single object when SINGLE OBJ is defined, and as
multiple objects when it is not.

will explore N + 1 paths, one for each row in the matrix, and an additional one for the first

row in which both sides of the if statement are feasible. It will take KLEE significantly

longer — 12s instead of 0.3s in our experiments — to explore all 41 paths.

The reason is that KLEE, as well as other symbolic executors, use the concrete addresses

of memory objects to determine to which objects a symbolic pointer could refer. In our

example, matrix[i] is a symbolic pointer formed by adding a concrete base address (the

address of matrix) with a symbolic offset i. When this pointer gets dereferenced on line 15,

KLEE needs to know to which memory object it points. Therefore, KLEE scans all the

memory objects and asks the solver if the symbolic pointer can be within its bounds. If that

is true for more than one object, we are in what is called a multiple resolution case. This

is the case in our example, where the pointer matrix[i] can point to N different objects,

namely those corresponding to the N rows of the matrix. (Note that when SINGLE OBJ is

defined this is not the case, as the compiler allocates a 2D array as a 1D array indexed by

N*i+j.) So KLEE forks one path for each of the N objects, constraining the pointer to refer

to a single memory object in each case. For the case where matrix[i] refers to the first row

of the matrix, KLEE explores two paths, one in which matrix[0][j] is greater than zero,

and one where it is not. For the cases in which matrix[i] refers to one of the other rows,

only the case where matrix[i][j] is not greater than zero is feasible. This gives us a total
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of N+1 paths.

This forking memory model for symbolic pointers has several important drawbacks.

First, it leads to path explosion, as each time the code dereferences a symbolic pointer, the

execution is forked into as many paths as there are objects to which the symbolic pointer

could refer. Second, and related to the first point, it leads to memory exhaustion, as each

additional path requires a certain amount of space in memory. Third, it disables the ability

of symbolic execution to reason about all possible values on a certain control-flow program

path.

In this chapter, we propose a novel approach that uses pointer alias analysis to group

memory objects that may alias each other into a memory segment. This avoids forking,

because conservative alias analysis guarantees that a symbolic pointer can only point to

objects within a single memory segment.

We describe our technique in detail in Section 3.1, present its implementation in Section 3.2,

and evaluate it in Section 3.3. We then discuss its trade-offs in Section 3.4 and present

related work in Section 3.5.

3.1 Proposed Memory Model

Consider the program in Figure 3.1 (with SINGLE OBJ not defined) for N = 3, with a memory

layout shown on the left-hand side of Figure 3.2. matrix is an array of pointers allocated

at 0x0100 that points to the rows of the matrix allocated at addresses 0x0200, 0x0300 and

0x0400. Suppose that libc also allocates two memory objects in the background, at addresses

0x0500 and 0x0600. There are also two symbolic pointers: matrix[i], which is constrained

to point to one of the three matrix rows, and matrix[2][j], which is constrained to point

to one of the entries of the last row.

Most symbolic executors reflect this memory layout in their internal memory model. They

record the start and end addresses of each memory block and associate a corresponding array

in the constraint solver. Therefore, they can handle symbolic pointers such as matrix[2][j]

well, because their value resolves to a single memory object. The symbolic address then gets
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Figure 3.2: A concrete memory layout for the program in Figure 3.1 when SINGLE OBJ is
not defined, illustrating the flat and segmented memory models.

translated into a symbolic index into the solver array that is backing the memory object.

Solvers can then solve the associated queries with the popular theory of arrays (§1.3.1).

The problem arises when a symbolic pointer can point to multiple memory objects, as is

the case for pointer matrix[i]. This pointer resolves to three different memory objects (the

matrix rows), backed by three different solver arrays. The theory of arrays cannot be used

here, because it cannot express such constraints.

3.1.1 Existing Memory Models

There are several memory models for handling multiple resolution that have been considered

in the context of symbolic execution: single-object, forking, flat memory and merging. Each

memory model aims to resolve a dereference of a symbolic pointer to an access into a solver

array.

Single-object model. In this approach, the pointer is resolved to one possible object

and the other possibilities are discarded. This is the model used by most concolic executors,

such as CREST [28], where the single object considered is the one given by the concrete
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Algorithm 3 Forking model.

1: function ForkingDereference(Pointer p)
2: foreach MemoryObject o do
3: ForkPath( )
4: AddConstraint(o.start ≤ p < o.end)
5: solverArray ← GetSolverArray(o)
6: return solverArray[p− o.start]
7: end foreach
8: end function

input used in the current round of concolic execution. This is also the model used by the

dynamic symbolic executor EXE [18], where the pointer is concretised to one possible value.

FuzzBall [80] employs a more general version of this model, in which the pointer is concretized

to multiple values that are selected randomly.

This approach scales well, but is incomplete and may miss important execution paths.

For instance, both CREST and FuzzBall usually finish running the multi-object version of

the code in Figure 3.1 (when slightly adapted to use the CREST/FuzzBall APIs) without

exploring the feasible path where “Found positive element” is printed, incorrectly giving the

impression to the user that the statement is not reachable.

Forking model. In this approach, shown in Algorithm 3, execution is forked for each

memory object to which the pointer can refer (line 3), and on each forked path the pointer

is constrained to refer to that object only (line 4). AddConstraint terminates the path if

the added constraint is provably false (in our case, if p cannot refer to that object on that

path). Finally, the corresponding access into the solver array associated with that object is

returned (line 6). As a detail, ForkPath uses the initial path for the last object (instead of

forking). Also, for ease of exposition, in this algorithm and the following ones, we ignore

out-of-bounds checking and assume dereferences of char* pointers.

Consider running Algorithm 3 on our running example from Figure 3.1 and the layout

from Figure 3.2, with p being matrix[i]. The loop will iterate six times, forking for each of

the six memory objects in the program. In the first iteration, the path will be immediately

killed by AddConstraint, since p cannot point to the object at 0x0100. In the second

iteration, p will be constrained to point to the first object it can point to (0x0200), and

then the corresponding access into the solver array associated with that object is returned,
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i.e. solverArray0x0200[p− 0x0200]. The remaining iterations are similar, resulting in three

paths, one for each of the three objects at 0x0200, 0x0300 and 0x0400 that p can point to.

Figure 3.3 shows the behaviour of the forking model compared to other memory models.

In particular, it shows the behaviour of KLEE and Symbolic PathFinder (SPF) [88], both

of which implement the forking model. Figure 3.3a shows results for the code in Figure 3.1

(with SINGLE OBJ not defined), while Figure 3.3b shows results for a variant of the code that

performs two symbolic lookups into the matrix. These figures show that the forking model

scales poorly. This is particularly clear when two symbolic accesses are performed, where

the execution time increases exponentially with the dimension of the matrix. Note that SPF

appears to have an efficient implementation of forking for a small number of paths, which

explains its good performance on the single lookup example.

Merging model. This approach keeps a single path, and creates an or expression, with

one disjunct for each possible object to which the pointer could refer. The write operation of

the state merging model is illustrated in Algorithm 4.

Algorithm 4 State merging.

1: function StateMergingWrite(Pointer p, Value v)
2: expr ← false
3: for MemoryObject o ∈ Objs(p) do
4: s← GetSolverArray(o)
5: inBounds← o.start ≤ p < o.end
6: expr ← expr ∨ (inBounds ∧ (s[p− o.start] = v))
7: end foreach
8: return expr
9: end function

Consider running Algorithm 4 on our running example. Suppose that the symbolic

executor encounters the expression ∗p == 1, with p being again matrix[i]. This will be

translated into a disjunction, with one disjunct for each of the three memory objects to

which p can refer. Each disjunct will express the fact that p points to that object and will

replace the pointer with the associated solver array for that object. That is, the expression

∗p == 1 will be translated to the following disjunction, where sa stands for solverArray:
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Figure 3.3: Runtime of different memory models on a family of 2D matrix benchmarks
based on Figure 3.1 with SINGLE OBJ undefined. All memory models are implemented in

KLEE, except for the one explicitly mentioning Symbolic PathFinder.
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(0x0200 ≤ p < 0x020C ∧ sa0x0200[p− 0x0200] = 1)

∨ (0x0300 ≤ p < 0x030C ∧ sa0x0300[p− 0x0300] = 1)

∨ (0x0400 ≤ p < 0x040C ∧ sa0x0400[p− 0x0400] = 1)

Approaches following this idea at a high level were proposed in the context of SAGE [34]

and Angr [35].

As illustrated in Figures 3.3a and 3.3b, the scalability of this approach on the running

example is similar or slightly better than that of forking. In practice (§3.3), its performance

is benchmark dependent.

Flat memory model. This approach tackles the multiple resolution problem by treating

the whole memory as a single object, backed by a single solver array. Therefore, a solver can

reason about symbolic dereferences using the theory of arrays, because all queries are using

a single flat array.

Algorithm 5 Flat memory model.

1: function NaiveFlatMemoryDereference(Pointer p)
2: return memorySolverArray[p]
3: end function

The algorithm for translating a dereference is straightforward and shown in Algorithm 5.

Any pointer in the program is an offset into the large solver array memorySolverArray.

This approach is also illustrated in the top right of Figure 3.2. This is the approach taken

by some binary symbolic executors [11] such as ANGR [102] and BINSEC/SE [30].

As shown in Figures 3.3a and 3.3b, this approach achieves good scalability on our running

example and the variant with two symbolic lookups. However, this is because these examples

allocate little memory. In an additional experiment, we modify the example to perform an

additional irrelevant allocation of 30KB, which is meant to simulate a real application in

which most of the memory is not involved in any single dereference. The results in Figure 3.3c

show that the flat memory model also scales poorly.
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3.1.2 Segmented Memory Model

The key idea behind our approach is the realisation that memory can be divided into multiple

segments, such that any symbolic pointer can only refer to memory objects in a single memory

segment. We can then associate one solver array per memory segment, and translate the

symbolic pointer to an offset into its associated memory segment. As long as the individual

memory segments are small enough, the approach can scale while still handling the problem

of symbolic pointers referring to multiple objects.

On our running example, Figure 3.3 shows this approach has the advantages of the flat

memory model in the first two cases, while maintaining its good performance when irrelevant

memory allocations are performed.

Computing memory segments. To divide memory objects into segments, we use a

conservative points-to analysis [5, 54], which we briefly introduced in Section 1.4. To recap,

the result of a points-to analysis is a mapping between pointers and points-to sets. The

points-to set of a pointer p is a set of pointers and abstract memory objects to which p may

refer during execution. An abstract memory object is identified by the static allocation point

in the program. For instance, in Figure 3.1, there are two abstract memory objects, AO1,

corresponding to the allocation at line 5, and AO2, corresponding to the allocation at line 7.

The function ComputeMemorySegments in Algorithm 6 shows the algorithm for

computing memory segments. After running the points-to analysis (line 2), the set ptSets

is initialised to contain all the points-to sets computed by the analysis (lines 3–6). Then,

any two points-to sets s and s′ that overlap are merged until no such sets exist anymore

(lines 7–13). Finally, for each of the resulting points-to sets a new memory segment is created

(lines 14–15) in which all the objects associated with that points-to set will be allocated.

The map AssocPTSets remembers the points-to set associated with each memory segment

(line 16).

In our example from Figures 3.1 and 3.2, there are two pointers we consider: matrix and

matrix[i]. Pointer analysis tells us the points-to set of matrix is a singleton set containing

the abstract object AO1. Similarly, the points-to set of matrix[i] is a singleton set containing

AO2. Continuing with Algorithm 6, we therefore initialise ptSets = {{AO1}, {AO2}} (lines
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Algorithm 6 Computing and using memory segments.

1: function ComputeMemorySegments
2: PerformPointsToAnalysis( )
3: ptSets← ∅
4: foreach pointer p do
5: ptSets← ptSets ∪ PointsToSet(p)
6: end foreach
7: while ptSets changes do
8: foreach s ∈ ptSets do
9: if ∃s′ ∈ ptSets . s′ 6= s ∧ s′ ∩ s 6= ∅ then

10: ptSets← (ptSets \ {s, s′}) ∪ {s ∪ s′}
11: end if
12: end foreach
13: end while
14: foreach s ∈ ptSets do
15: seg ← new MemorySegment( )
16: AssocPTSet(seg) ← s
17: end foreach
18: end function
19:

20: function GetMemorySegment(Pointer p)
21: pts← PointsToSet(p)
22: foreach MemorySegment seg do
23: if pts ⊆ AssocPTSet(seg) then
24: return seg
25: end if
26: end foreach
27: end function
28:

29: function HandleAlloc(Pointer p, Size sz)
30: seg ← GetMemorySegment(p)
31: return AllocateIn(seg, sz)
32: end function

3–6). In this case there are no common elements in those sets, so lines 7–13 have no effect.

Finally, we create two memory segments corresponding to the two elements in ptSets. AO1

corresponds to the memory segment starting at 0xa100 in Figure 3.2, where the array of

pointers to the matrix rows will be allocated. AO2 corresponds to the memory segment

starting at 0xd100, where the actual rows of the matrix will be allocated.

The function GetMemorySegment in Algorithm 6 returns the memory segment asso-

ciated with a pointer p in the program. It does so by finding the memory segment whose

associated points-to set contains the points-to set of p. (We note that an implementation

could be optimised by keeping a reverse mapping from points-to sets to memory segments.)
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Algorithm 7 Pure segmented memory model.

1: function PureSegmentedDereference(Pointer p)
2: seg ← GetMemorySegment(p)
3: solverArray ← GetSolverArray(seg)
4: return solverArray[p− seg.start]
5: end function

Algorithm 8 Segmented memory model.

1: function SegmentedMemoryDereference(Pointer p)
2: foreach MemorySegment seg do
3: ForkPath( )
4: AddConstraint(seg.start ≤ p < seg.end)
5: solverArray ← GetSolverArray(seg)
6: return solverArray[p− seg.start]
7: end foreach
8: end function
9:

10: function AllocateIn(MemorySegment seg, Size sz)
11: if seg.size ≤ Threshold then
12: return Extend(seg, sz)
13: else
14: seg′ ← ChooseSegment( )
15: return AllocateIn(seg′, sz)
16: end if
17: end function

GetMemorySegment is then used by HandleAlloc in Algorithm 6 to handle a heap

allocation of the form p = malloc(sz) in C. The function allocates memory for the target

pointer p in its associated memory segment. In our example, it returns the memory segment

starting at 0xa100 when encountering the allocation for matrix on line 5. For the allocation

on line 7 where row allocations are made, it returns the memory segment starting at 0xd100.

Finally, Algorithm 7 shows how a dereference of a pointer p is handled. We first obtain

the memory segment associated with p (line 2), then we get the solver array associated with

that segment (line 3), and return the corresponding solver array access (line 4).

Restricting segment size. The approach of Algorithm 7 scales as long as the size of

each memory segment remains small. In practice, some segments may become very large,

imposing significant overheads on the solver. To ensure segment sizes remain small, we refine

the technique by imposing a threshold on the maximum segment size. If the program tries to

allocate memory in a certain segment and the current size of that segment already exceeds
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the threshold, a new segment is used. When this happens, some pointers may now refer

to several segments. In that case, dereferencing a pointer forks execution for each memory

segment. Essentially, the model becomes a hybrid between the pure segmented memory

model of Algorithm 7 and the forking model of Algorithm 3.

Our finalised approach is illustrated in Algorithm 8, (together with the previously

discussed Algorithm 6). The dereference function, SegmentedMemoryDereference, is

similar to that of the forking model, only that now we iterate over all segments, trying to

find those to which p could refer. Remember that the AddConstraint function kills a

path if the added constraint is false, that is when the pointer cannot refer to that segment.

The other change is required in the allocation function. Instead of simply allocating the

required memory in the given segment, the modified AllocateIn function works as follows.

If the current size of the segment is under the threshold, the allocation is performed in that

segment (lines 11–12). The Extend function extends the memory segment by the size and

performs the allocation there. This is done to keep the segment sizes small for as long as

possible. Otherwise, we choose another segment (which could either be a new segment or an

existing one) and we try to allocate in there (lines 14–15).

Another consequence of this hybrid model is that it is resilient to bugs in pointer alias

analysis. Should it incorrectly report two pointers not aliasing each other, putting them in

different memory segments, the hybrid approach would simply fork for the two cases without

losing any precision. Conversely, this kind of bug would cause the pure segmented memory

model to miss paths.

In practice, the performance of the algorithm depends on the precision of the points-to

analysis. If the analysis is extremely imprecise, it may put all pointers into a single points-to

set, and our model would degenerate to the flat memory model. At the other extreme, if

the threshold is too small (or the points-to analysis extremely buggy), our model would

degenerate to the forking model.
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3.2 Implementation

We implemented our approach on top of KLEE commit 0283175f, configured to use LLVM 7

and the STP constraint solver version 2.1.2. An artifact is available at https://srg.doc.ic.

ac.uk/projects/klee-segmem/artifact.html and https://doi.org/10.1145/3345840.

Below we provide additional details about our implementation.

Points-to analysis. We use SVF [111], a scalable LLVM-based framework for value-flow

construction and pointer analysis. In particular, we use whole-program wave propagation-

based Andersen analysis [89], a fast flow-insensitive, context-insensitive inclusion-based

points-to analysis. We found it to be significantly faster than the basic Andersen analysis [5]

while maintaining precision. It terminated in under two minutes for all our benchmarks.

Compared to the high runtime of symbolic execution, we found the analysis time to be

insignificant.

Memory segment implementation. For each memory segment that needs to be

created in Algorithm 6 (line 15) we reserve 200KB of address space using mmap. At this

point the segment has size 0, but can hold an object of maximum size 200KB. We use mmap

instead of malloc to save memory, as in practice many memory segments will be empty and

will therefore not be mapped to physical memory.

The threshold size for the hybrid approach can reasonably range between 5KB to 30KB.

STP starts hitting scalability issues with arrays larger than 30KB. The lower bound of 5KB

comes from KLEE’s warning, where KLEE issues a warning if an object is larger than 5KB,

which indicates than objects smaller than that should not be of concern. From this range we

tried 10KB and it worked. That is STP was still performing well and the segments were not

too fragmented.

We write the size of each allocation just before the returned pointer to enable realloc and

free. The realloc function is handled with an LLVM pass that runs before the execution

and replaces all calls to realloc with malloc, memcpy and free. We use the previously

stored allocation size information to determine the size of the region to copy with memcpy.

The memory freed by calls to free is added to a list of free space in each memory segment.
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That list is then scanned before a memory segment is extended for allocation. We try to

find the smallest gap that fits the requested size, and if such a gap is found, we perform the

allocation there. We found this to be an important optimisation to keep the sizes of memory

segments small.

Constants and local variables. A common performance optimisation in pointer

alias analysis is to model all constant objects (such as constant strings) as single memory

objects [55]. We similarly adopt a scheme in which constant objects are disregarded by the

alias analysis and allocated in their own memory segments. We make the same choice for

local memory objects, namely objects allocated on the stack. We found only one program

where constant objects are involved in multiple resolution, but this was a case where the

forking model would work well too, as the pointer could only refer to two different objects.

We found no program where local objects were involved in multiple resolution. The approach

presented here is easily adapted to support these kind of objects, should a need for it arise.

Flat memory model. We found it easy to implement the flat memory model in KLEE,

by making all allocations into a single memory segment backed by a single solver array.

Merging model. The merging model is implemented by leveraging KLEE’s ability

to merge states. Upon hitting a multiple resolution, we let KLEE fork as usual and then

immediately merge all the states thus creating the or expression of their path conditions.

We note that this approach might not be optimal — however, KLEE spent most of the time

in constraint solving activities in the merging runs in our evaluation. Therefore, we believe

the threat to validity against this implementation choice is minimal.

3.3 Evaluation

Symbolic pointer dereferences that trigger multiple resolutions often make existing symbolic

execution tools unusable. However, only some types of programs trigger such dereferences,

and we discovered that benchmark suites used in the past to evaluate symbolic execution,

such as GNU Coreutils [40], do not trigger many multiple resolutions.

In general, benchmarks which are prone to trigger multiple resolutions are those where a
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symbolic input (e.g. coming from files, command-line arguments or environment variables)

flows into a data structure indexed by that input. Hash tables are the prime example of such

benchmarks, widely used in a variety of programs.

Therefore, we selected several large programs that use hash tables — m4 , make, APR

and SQLite3— and used test harnesses that drive execution toward the parts of the code

employing these hash tables. Essentially, our evaluation is meant to show that our model

can make a big difference in such cases, while acknowledging that it is not relevant all the

time. We further discuss this aspect in Section 3.4.

Ideally, we would like to compare the fraction of the search space explored in these

programs under each memory model. Unfortunately, this is challenging to do, especially since

the number of explored paths changes across models due to forking and merging. Therefore,

we decided to build our test harnesses in such a way that programs terminate. Then, we can

simply compare the time needed to finish the exploration under different memory models.

For one program where we did not manage to write such a driver, make, we measure how

quickly each memory model reaches coverage saturation. As a sanity check, we made sure

that terminating benchmarks reach the same coverage at the end under all memory models,

and that the flat memory model and the two variants of the segmented memory model

explore the same number of paths (recall that we did not see any forking in these benchmarks

with the hybrid segmented memory model).

We also measure the memory consumption of KLEE under each memory model as a

proxy for how many states KLEE has to keep in memory at each point and to illustrate a

further tangible benefit of choosing the right memory model.

We observed that execution time and memory consumption can vary significantly with

different search strategies. Therefore, we conducted our experiments using three different

strategies: DFS and BFS representing extreme behaviors in terms of memory consumption,

and KLEE’s default search heuristic1 representing a good general strategy.

The experiments were run on an Intel(R) Core(TM) i7-6700 at 3.40GHz with 16GB of

memory. We use a timeout of two hours in our experiments and a memory limit of 4GB.

1Default heuristic interleaves random path selection with a heuristic that aims to maximize coverage.
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Table 3.1: Impact of points-to analysis on our benchmarks and its runtime.

Benchmark
Total
mem.

(bytes)

Max. segment
size (bytes)

Analysis
runtime

(s)

ideal SVF

APR 24,904 120 16,588 1.9

GNU m4 3,392 1,051 2,753 4.3

GNU make 17,663 664 7,936 4.7

SQLite3 45,461 506 17,604 70.3

3.3.1 Impact of Points-to Analysis

The performance of the segmented memory model is highly dependent on the size of the

segments, which is directly related to the precision of the points-to analysis. In order to

understand by how much our results would be improved by a more precise points-to analysis,

we decided to approximate a best-case points-to analysis.

To do so, we run the forking approach on our benchmarks until it hits the first multiple

resolution, where we record the allocation sites with allocation context of all the objects

involved in the multiple resolution and terminate the execution. We then restart the execution,

placing all objects allocated at those allocation sites in the appropriate contexts into a segment.

Should a new multiple resolution be encountered, we again record the allocation site and its

context, create a new segment and merge any segments if needed, and repeat this process

until no more multiple resolutions are encountered (within a certain timeout). In practice,

we only needed fewer than five iterations for our benchmarks. Essentially, we group into

segments only the objects actually involved in multiple resolutions in a given execution. This

gives us results which are at least as good as the most precise points-to analysis possible.

Table 3.1 shows the impact of the pointer alias analysis on the benchmarks we use in

our evaluation (and which will be described in detail in Sections 3.3.2 to §3.3.5). The first

column shows the total memory used by the dynamically-allocated memory objects in each

program. This is the size of the flat memory segment.

The next two columns show the maximum segment sizes for both the SVF pointer analysis

and our idealized analysis. For all benchmarks, the points-to analysis significantly reduces
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1 define(‘A’, ‘l’)

2 define(‘P’, 2)

3 ?

4 ?

5 ifelse(?, ‘l’, ifelse(?, P, eval(1 + n)) ,‘failed’)

Figure 3.4: Symbolic input to m4 , where ? denotes a symbolic character.

the largest segment size. The maximum segment size of the ideal analysis is significantly

smaller than for the SVF analysis, suggesting there are important opportunities for improving

the precision of SVF.

Using the SVF analysis, the APR and SQLite3 benchmarks reach the maximum threshold

of 10KB for our segments and get split. Despite this split, we did not observe any forking in

the segmented memory model for APR. For SQLite3 , we observed two forks into two paths

each.

The last column of Table 3.1 shows the runtime of the SVF points-to analysis. For all

benchmarks but SQLite3 , the analysis took less than five seconds, which is insignificant

compared to the cost of symbolic execution. Even for complex programs like SQLite3 , the

analysis took 70s, which is noticeable, but still little in a symbolic execution context.

3.3.2 GNU m4

GNU m4 [75] is a popular implementation of the m4 macro processor included in most

UNIX-based operating systems. It is a relatively small program consisting of about 8000

lines of code, which makes extensive use of hash tables to look up strings. In a nutshell, m4

operates by reading in the input text as a sequence of tokens. It then looks up each token in

a hash table. If the token is found, it replaces it with the value in the hash table. Otherwise,

it outputs the token and continues with the next one. That makes it a good candidate to

benefit from the proposed memory model, as a significant part of m4 ’s computation consists

of hash table lookups which trigger forking due to multiple resolution.

To run m4 using symbolic execution, we need to make its input symbolic. To reach

deeper parts of the code, where m4 operates as described in the paragraph above, we run m4

on a partially symbolic input. The outline of the input we used is shown in Figure 3.4. We
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Figure 3.5: Runtime and memory consumption of the different memory models for GNU m4
across different search strategies.
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define several concrete one-character macros, using the define keyword. Then we expand

two macros, with the name of the macro being symbolic, which results in a symbolic lookup

in the hash table. Finally, we expand two more macros inside ifelse constructs. The

example is set in a way that illustrates the multiple dereference problem, but we believe it is

quite representative of how m4 is used.

We ran KLEE on m4 for two hours under DFS, BFS and KLEE’s default strategy, with

forking, merging, flat and segmented memory models. The segmented memory model is

further broken down into two runs. The first one is using points-to information computed

from SVF. The second one uses ideal points-to information, which was obtained with a

pre-run as described in Section 3.3.1.

Figure 3.5 shows, for each search strategy, KLEE’s termination time and memory usage

for each of the five memory models. The forking and flat memory models do not terminate

before the 2-hour timeout. The segmented memory model using SVF terminates in around

one hour, with the ideal version a few minutes earlier. In contrast to the segmented memory

model, which is only mildly influenced by the search strategy, the performance of the merging

model heavily depends on the search strategy: for DFS, it terminates in only 25 minutes, for

BFS in 88 minutes, while with KLEE’s default strategy it times out after 2 hours.

Under DFS, the memory consumption is unsurprisingly low, as only a small number

of states are kept in memory at one time (note that the y-axis has a different scale for

DFS compared to BFS and the default KLEE strategy). The SVF segmented memory has

slightly higher overall memory usage due to the fixed memory cost of keeping all points-to

information. For BFS and the default search strategy, all memory models have low memory

usage, except for the forking model, which quickly reaches the 4GB memory limit.

3.3.3 GNU make

GNU make [77] is a popular build system, used extensively in the open source community.

It is a larger program, consisting of about 35,000 lines of code. It uses significantly more

memory during runtime than m4 . To make execution easier for KLEE, we reduced the sizes

of several caches in make.
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1 a := word1

2 b := word2

3 d := $?

4 e := $?

Figure 3.6: Symbolic input to GNU make, where ? denotes a symbolic character.

Our evaluation focused on the variable expansion capabilities of make. Similarly to m4 ,

we made the makefiles only partially symbolic. Figure 3.6 illustrates the makefile we used as

symbolic input in our experiments.

Figure 3.7 shows the memory consumption of the different memory models. This

benchmark was the only one where none of the runs terminated before reaching the timeout.

Unsurprisingly, the forking model’s memory consumption grows the quickest. The two

segmented memory models behave similarly, with the SVF version consuming a constant

amount of additional memory due to holding the whole points-to set.

The merging model appears to have the best memory consumption, but this is only

because it executes two times fewer instructions than the next slowest approach (SVF

segmented memory). When compared to m4 , the make runs are slower (execute fewer

instructions per second), therefore the differences between the memory models are also

smaller.

Since this benchmark is not terminating, we report the coverage. For DFS and BFS, the

coverage was the same across all memory memory models at 21%. For the default heuristic,

the forking and ideal segmented memory models had the highest coverage at 21.49%, followed

by SVF segmented memory model at 18.75% and the flat memory model at 18.27%. Merging

only achieved 15.44% coverage.

3.3.4 SQLite

SQLite3 [106] is a SQL database engine library written in C, which claims to be the most

used database in the world. It has a big codebase with over 200,000 lines of code. We focused

our evaluation on a part of SQLite3 that triggers multiple resolutions in symbolic execution.

In particular, SQLite3 uses a hash table to keep track of all triggers associated with a
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Figure 3.7: Memory consumption of the different memory models for GNU make across
different search strategies.
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Figure 3.8: Runtime and memory consumption of the different memory models for SQLite3
across different search strategies.
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table. We create several triggers with concrete names and then try to create a trigger with

symbolic name, which should involve a lookup of a symbolic key in the hash table of triggers.

We use an in-memory database, create a table with two int columns and add 15 triggers

to this table. We need to create more than 10 triggers as the SQLite3 hash table is optimized

to be just a linked-list when there are fewer than 10 elements. Choosing a higher amount of

triggers would tilt the results against the forking model, but we believe 15 triggers is a good

trade-off between showcasing the multiple dereference issue and a realistic use of the library.

Finally, we create two more triggers whose names are symbolic.

Figure 3.8 shows the results. The forking approach terminates in 12-16 minutes, the ideal

segmented memory model terminates in 21-22 minutes, while the SVF segmented memory,

flat memory and merging models do not terminate within the 2-hour time budget.

There are no significant differences in memory consumption across search strategies. SVF

segmented memory uses a constant additional amount of memory since it needs to hold

the points-to sets in memory. The flat memory model uses more memory due to holding

expressions over large arrays in memory.

This case study raises two interesting points. First, the precision of the points-to analysis

significantly impacts the performance of the segmented memory model. As can be seen in

Table 3.1, the difference in the size of the computed segments between ideal points-to analysis

and SVF is huge. This is has an immediate impact on the performance of the segmented

memory model, shown in Figure 3.8. Therefore, improving the precision of the points-to

analysis is a promising future avenue for improving the segmented memory model.

Second, the segmented memory model performs worse than forking when there is little or

no forking in the program. This is because grouping memory objects together increases the

size of solver arrays, which makes constraints harder. This is a price the segmented memory

approach has to pay regardless of whether the program causes multiple resolutions. In this

case, the constraints in the forking model can be solved relatively fast, so forking can brute

force its way through multiple resolutions. We note that increasing the number of triggers

in the benchmarks would likely tilt results against the forking model, but our choice of 15

triggers was so that at least some runs finish within the 2-hour time budget.
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3.3.5 Apache Portable Runtime

Apache Portable Runtime (APR) [6] is a C library that provides cross-platform functionality

for memory allocation, file operations, containers, networking and threads, among others.

It was initially used by Apache HTTP Server, but its use now extends to projects such as

LibreOffice and Apache Subversion.

We focused our evaluation on APR’s hash table API. At a high level, we add 15 elements

to a hash table and then do two symbolic lookups in this table. The number of keys and

lookups was chosen to be the same as for SQLite3 . The skeleton code is shown in Figure 3.10.

We used the default hashing algorithm for the int keys, which is the popular “times 33”

algorithm, used by Perl for example.

Figure 3.9 shows the results. All runs terminate, except for merging under BFS and

the default search strategy. Merging is also the slowest under DFS, taking 114 minutes to

terminate. Forking terminates in 80-99 minutes, depending on the strategy. Flat memory

performs well on this benchmark, terminating in 16-21 minutes. The segmented memory

models (SVF) perform the best, terminating in 8-13 minutes. Memory consumption is small

overall.

The most interesting observation about this benchmark is that the segmented memory

model with ideal points-to analysis performs slightly worse than the one with SVF analysis.

This is due to an interesting interaction with the solver. To understand why, we need to

describe the relevant memory objects involved. These are a large 8.2KB memory object and

several small objects, totalling about 120 bytes in size. The ideal points-to analysis groups

the small objects into a single segment and puts the large 8.2KB object into a separate

segment. The SVF analysis bundles both the 8.2KB object and the small objects into a

single segment. During execution, there are queries involving arrays associated with both

the 8.2KB object and the small objects. The ideal segmented memory model generates

constraints with two arrays, one with 120 bytes and one with 8.2KB. The SVF segmented

memory model generates constraints with only a single array. This gives better solver query

caching for SVF segmented memory model, which results in a quicker runtime.

However, we note that this was the only benchmark where such a difference is observed,
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Figure 3.9: Runtime and memory consumption of the different memory models for APR
across different search strategies.
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1 apr_hash_t *ht = apr_hash_make();

2 for (int i = 0; i < 15; i++) {

3 int *key = malloc(sizeof int);

4 *key = i;

5 apr_hash_set(ht, key, sizeof(int), "A value");

6 }

7
8 int i, j = symbolic();

9 apr_hash_get(ht, &i, sizeof(int));

10 apr_hash_get(ht, &j, sizeof(int));

Figure 3.10: Apache Portable Runtime baseline benchmark.

and a more precise points-to analysis is otherwise associated with better runtime performance.

However, this case study suggest that there is future work in improving caching in symbolic

execution, which would have implications beyond this memory model.

3.4 Discussion

Our experience shows that our segmented memory model can effectively deal with multiple

resolutions that occur in the context of complex data structures such as hash tables. However,

the model is only useful to the extent that the code triggers such symbolic dereferences.

To get an idea of how our model performs when there are no multiple resolutions, we

performed an experiment on GNU Coreutils version 8.29 [40]. We first ran all 105 utilities

for 60 minutes with KLEE under the (default) forking model using depth-first search strategy

and recorded the number of instructions KLEE executed for each utility. Then we ran each

utility again up to the number of recorded instructions, with both the forking model (as a

sanity check) and our segmented memory model, using a larger timeout of 80 minutes. A

total of 18 utilities timed out after 80 minutes with the segmented memory model. For the

remaining utilities, the segmented memory model was between 70% slower and 20% faster,

but on average 4% slower. GNU Coreutils are an unfavorable case for our memory model,

because the lack of multiple resolutions means that the model incurs a cost without any

benefits.

While for most utilities, the impact is not significant, for 18 utilities it is. The cost is

due to the grouping of arrays into memory segments, which can significantly increase the
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difficulty of the constraints sent to the solver. Therefore, we believe that our approach

should be enabled on demand: one would first run the forking approach, and only if that

run reports several multiple resolution cases with large branching factors, switch to the

segmented memory approach. In our experience, anything with more than five occurrences

of multiple resolution with a branching factor of more than 10 should be sufficient for our

proposed model to become beneficial.

Furthermore, the approach is particularly useful when one is interested in reasoning about

properties requiring all-value analysis for the paths explored. When forking is used, such

reasoning is not possible, as individual control-flow paths are split. If only high coverage is

of interest, the single object or forking models might sometimes be more appropriate. Our

approach also provides a convenient way to trade off forking and all-value reasoning, by

adjusting the threshold for the size of memory segments. We also note that the flat memory

and merging approaches can also perform all-value analysis.

We found the merging approach to be a competitive alternative to segmented memory.

However, in our experiments the merging approach performed worse overall (e.g. unlike the

segmented memory approach, merging timed out for all three SQLite3 experiments and

on two out of the three APR experiments) and was more sensitive to the search heuristic

used. However, in some cases it performed better than the segmented approach (e.g. m4

with DFS). As a threat to validity, as mentioned before, we note that our implementation of

merging might not be optimal, but we believe this threat to be small (see §3.2).

Our comparison between the two versions of the segmented memory model — one using

SVF and the other an approximation of the ideal points-to sets — shows that the precision

of the points-to analysis directly influences the performance of our approach. However, we

found an interesting case where better precision slightly decreased performance, suggesting

that in some cases merging arrays could be beneficial due to caching.
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3.5 Related work

CUTE [99] introduced a simple memory model, which only handles equalities and inequalities

for symbolic pointers. As discussed in Section 3.1.1, EXE [18] and CREST [28] implement

the single-memory model, FuzzBALL [80] a generalisation of it, KLEE [16] the forking model,

and an extension of SAGE [34] and Angr [102] the merging model.

A recent idea paper [35] proposes a model that associates symbolic addresses with values,

along with a time stamp and a condition. The symbolic memory is then represented as a

list of these associations. When a read occurs, the most recent value matching the address

and the condition is returned. ESBMC [27] uses a similar technique of chaining if-then-else

expressions to model pointers that can point to multiple objects, in the context of model

checking.

MAYHEM [21] creates a new memory object on each read operation, which is a subset of

the whole memory that the read operation can alias. This approach is at a high-level similar

to ours, but there are important differences. In particular, the approach does not handle

writes via symbolic pointers that may refer to multiple objects — instead, these pointers are

concretised as in the single-object model. Furthermore, the approach still involves solver

queries, as in the forking model, to determine the objects to which the pointer may refer.

Unfortunately, a direct comparison with Mayhem is not possible, as the code is closed-source,

and the memory model is complex enough to make a reimplementation difficult.

David et al. [31] summarise the concretisation approaches, such as the ones employed by

MAYHEM and EXE, by proposing a framework for specifying concretization-symbolisation

policies. While our approach strives to avoid the need for concretisation, it still uses concrete

addresses to identify memory objects.

Trt́ık and Strejček [118] present a fully symbolic segment-offset-plane memory model.

They split memory operations involving different types (such as ints or floats) into different

planes, which resemble memory segments, but their solution may group together memory

objects which would have been separated in our model.

Research on lazy initialisation for symbolic execution of Java code explores different
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ways of initialising symbolic memory object references and thus exploring different memory

layouts [63, 93, 13]. By contrast, our work improves symbolic execution given a particular

memory layout, notably it does not create new objects. We believe our work is complementary,

and necessary to efficiently implement this work in symbolic executors for lower-level languages

such as KLEE.

The idea of partitioning memory into segments is not new. Lattner and Adve [65] used

points-to analysis to partition the heap as in our work. However, they only considered uses in

compiler optimisation, whereas the novelty of our work stems from employing it to improve

symbolic execution.

Bouillaguet et al. [12] apply a similar idea of partitioning memory based on points-to

analysis to deductive verification. They require the points-to analysis to be sound and

context-sensitive, whereas our approach is more tolerant to errors and imprecision in the

analysis. Their evaluation does not consider real programs and only focuses on verifying a

small sort function.

3.6 Conclusion

We presented a novel segmented memory model for symbolic execution, which uses pointer

alias analysis to group objects into memory segments. Our segmented memory model

can significantly reduce forking due to symbolic dereferences, sometimes even completely

eliminating the need for forking. We evaluated our approach on GNU m4 , GNU make,

SQLite3 and Apache Portable Runtime, highlighting its advantages in terms of performance

and memory consumption, as well as its inherent limitations.

While working on this project, we realised that KLEE does not achieve good coverage

on these harder benchmarks. Furthermore, it seemed very hard to guide the symbolic

exploration to interesting parts of the program, so we had to resort to introducing partially

symbolic input. Unsatisfied with the situation, we introduce pending constraints in the next

chapter, which enables KLEE to better explore benchmarks at least as hard as the ones used

in this chapter.
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Chapter 4

Pending Constraints

In this chapter, we propose a novel mechanism for symbolic execution that aggressively

explores paths whose feasibility is known via caching or seeding. Our approach tackles both

scalability challenges of symbolic execution presented in Section 1.2.1. On the one hand,

it enables more efficient use of solved constraints, thus reducing the burden on the solver.

And on the other hand, it provides a meta-search heuristic that gives a way to guide the

exploration towards interesting parts of the program.

The core of our idea revolves around inverting the forking process as presented in

Section 1.2. Instead of doing an expensive feasibility check first and then forking the

execution, we fork the execution first. The branch condition is then added as a pending

constraint, which means its feasibility has not been checked yet. We refer to states (or paths)

with pending path constraints as pending states.

The responsibility for feasibility checking of pending path constraints is passed to the

search heuristic. This gives the search heuristic the capability to decide when and for which

states it wants to pay the price of constraint solving. For example, it could solve pending

states immediately, thus restoring the original algorithm from Section 1.2, or could take into

account the (estimated) cost of constraint solving in its decisions.

In our approach, we take advantage of an important characteristic of symbolic execution

runs: the feasibility of some paths/states can be quickly determined without using a constraint
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solver. There are two common cases. First, modern symbolic execution systems like KLEE

make intensive use of caching and many queries can be solved without involving the constraints

solver [16, 119, 7]. Second, symbolic execution is often bootstrapped with a set of seeds from

which to start exploration: these can come from regression test suites [78, 79] or greybox

fuzzers in hybrid greybox/whitebox fuzzing systems [110, 23, 85]. By aggressively following

paths for which feasibility can be quickly determined without using a constraint solver, our

approach can minimise the constraint solving costs as well as provide an effective exploration

of the program search space.

Note that a seed can be thought of as a solver solution to constraints of a path in the

program. We use them similarly to cached solver solutions by pre-populating the cache with

the seeds. We discuss this in further detail in section 4.1.2.2.

The rest of the chapter is organised as follows. In Section 4.1 we present in detail the

design of our technique. Then in Section 4.2 we give further implementation-specific details

in the context of building our technique in KLEE. We finally evaluate our approach in

Section 4.3, discuss related work in Section 4.4 and conclude in Section 4.5.

4.1 Approach

For clarity and contrast, Algorithm 9 presents, in simplified form, the forking and search

heuristics components of the standard symbolic execution algorithm from Section 1.2. The

symbolic executor is exploring program paths encoded as a set of states (line 1). As discussed

before, a state keeps track of all the information necessary to resume execution of the

associated path (program counter, stack contents, etc.) and particularly its path condition

pc. When a symbolic state s encounters a symbolic branch condition, the Fork function is

called (line 3).

Fork first checks if the condition can be both true and false under the current path

condition (line 4). If so, the state is duplicated into a falseState (line 5), which will be the

state representing the execution of the false branch. The path conditions of the two states

are then updated accordingly (lines 6 and 7) and the new state is added to the set of states
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Algorithm 9 Standard symbolic execution.

1: Set states
2:

3: function Fork(State s, SymExpr condition)
4: if IsSat(s.pc ∧ condition) ∧ IsSat(s.pc ∧ ¬condition) then
5: falseState← s
6: falseState.pc← s.pc ∧ ¬condition
7: s.pc← s.pc ∧ condition
8: SearcherAdd(s, falseState)
9: end if

10: end function
11:

12: function SearcherAdd(State s1, State s2)
13: states← states ∪ {s1, s2}
14: end function
15:

16: function SearcherSelect()
17: return SearchHeuristic(states)
18: end function

of the search heuristic by calling SearcherAdd (line 8). If the condition cannot be both

true and false, the path condition is not updated and s continues to execute the only feasible

side of the branch (the updates to the program counter are omitted for ease of exposition).

After each instruction, the symbolic executor calls SearcherSelect (lines 16–18) to

select the state to be executed next. In the case of standard symbolic execution, SearcherS-

elect simply forwards calls to the SearchHeuristic. We mentioned some examples of

search heurstics in Section 1.2.2. Below, we remind the reader of the three search heuristics

which we use in this chapter:

Depth-first search is a standard graph traversal algorithm that explores states as deep as

possible before backtracking.

Random path search, introduced in the original KLEE paper [16], works by randomly

selecting a path through the execution tree of explored states. The algorithm starts at the

root of the tree and with 50% probability follows the left-hand subtree and 50% probability

the right-hand one. The process repeats until a leaf state is reached, which is selected for

further exploration. By design, this search heuristic favours states closer to the root of the

execution tree.

Depth-biased search is a form of non-uniform random search provided by KLEE. It works
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by randomly selecting states weighted by their depth — the higher the depth of a state, the

more likely for it to be selected. By design, this search heuristic favours states deeper in the

execution tree.

Algorithm 10 Symbolic execution with pending constraints.

1: Set feasibleStates, pendingStates
2:

3: function Fork(State s, SymExpr condition)
4: feasibleStates← feasibleStates \ {s}
5: s.pendingCondition← condition
6: falseState← s
7: falseState.pendingCondition← ¬condition
8: SearcherAdd(s, falseState)
9: end function

10:

11: function SearcherAdd(State s1, State s2)
12: foreach State s ∈ {s1, s2} do
13: if FastIsSat(s, s.pc ∧ s.pendingCondition) then
14: s.pc← s.pc ∧ s.pendingCondition
15: s.pendingCondition← ∅
16: feasibleStates← feasibleStates ∪ {s}
17: else
18: pendingStates← pendingStates ∪ {s}
19: end if
20: end foreach
21: end function
22:

23: function SearcherSelect()
24: while feasibleStates = ∅ do
25: s← SearchHeuristic(pendingStates)
26: if IsSat(s.pc ∧ s.pendingCondition) then
27: s.pc← s.pc ∧ s.pendingCondition
28: s.pendingCondition← ∅
29: feasibleStates← feasibleStates ∪ {s}
30: end if
31: pendingStates← pendingStates \ {s}
32: end while
33: return SearchHeuristic(feasibleStates)
34: end function

4.1.1 Pending Constraints Algorithm

Note that the calls to IsSat in standard symbolic execution are potentially very expensive

and thus are the optimisation target of our proposed approach.

Algorithm 10 shows the same three functions in the pending constraints version of
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symbolic execution. In this version, we maintain two disjoint sets of states: feasibleStates,

which stores regular states which we know are feasible; and pendingStates, which stores

pending states for which feasibility is still unknown (line 1).

In our version of Fork, the IsSat feasibility checks are skipped and execution is forked

unconditionally. First, we remove the current state s from the list of feasibleStates (line 4),

and assign the condition to a special pending condition field associated with s (line 5). Second,

we duplicate s into a new state falseState (line 6) and assign the negation of condition to its

pending condition field (line 7). When a state becomes pending, as s and falseState here,

it means that it should not continue execution until its pending condition is checked for

feasibility. We call the process of checking the pending condition and adding it to the path

condition as reviving the state.

Finally, we call SearcherAdd (line 8) to let the searcher decide what to do with the

newly created pending states. For each of the two states, SearcherAdd checks whether the

pending condition is feasible using a fast satisfiability checker (line 13). If so, the pending

condition is added to the path condition (line 14), the pendingCondition field is reset (line 15)

and the state is added to the set of feasibleStates (line 16). If the fast satisfiability check is

unsuccessful, the state is added to the set of pendingStates (line 18). The fast satisfiability

solver is discussed in Section 4.1.2.

The SearcherSelect function operates as in standard symbolic execution as long as

there are feasible states available (line 33). However, when all the feasible states have been

exhausted, it keeps picking a pending state (line 25) until it finds one that can be revived

successfully. This is done by asking the solver whether the pending condition is feasible

(line 26) and if so, by adding the pending condition to the state’s path condition (line 27),

clearing the pendingCondition field (line 28), and adding the state to the set of feasibleStates

(line 29).

4.1.2 Fast Satisfiability Checking

As discussed in the introduction, the fast satisfiability checker relies on the fact that we

often have existing assignments (solutions) to symbolic constraints. There are two common
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scenarios that occur in practice: first, modern symbolic execution engines use a smart form

of caching to speed up constraint solving (§4.1.2.1) and second, symbolic exploration often

starts with a set of seeds (§4.1.2.2).

Algorithm 11 Fast satisfiability checking.

1: function FastIsSat(State s, SymExpr condition)
2: assignments← GetAssignmentsForState(s)
3: foreach Assignment a ∈ assignments do
4: if Substitute(a, condition) = true then
5: return true
6: end if
7: end foreach
8: return false
9: end function

Algorithm 11 shows the fast satisfiability checking algorithm. More formally, an as-

signment is a mapping from symbolic variables to concrete values, e.g. {x ← 2, y ← 3}.

The Substitute function takes a symbolic condition and an assignment and evaluates the

condition under the assignment (line 4). That is, it substitutes all the symbolic variables in

the condition with the values specified in the assignment. If all the symbolic variables in the

expression are mapped by the assignment, Substitute will return a concrete value (either

true or false). Otherwise it will return false.

FastIsSat first gets all the assignments associated with the given state using the GetAs-

signmentsForState function (line 2); we will discuss how this function works below. The

condition is then evaluated on every assignment returned by GetAssignmentsForState

and if the evaluation results in true, FastIsSat returns successfully (line 5). If none of the

returned assignments satisfy the condition, then FastIsSat returns unsuccessfully (line 8).

4.1.2.1 Caching

When issuing satisfiability queries to the solver, modern symbolic execution engines typically

also ask for a satisfying assignment when the query is satisfiable. This is because caching

these assignments can be highly effective [16, 119, 7]. In this work, we similarly use cached

assignments to implement our fast satisfiability checks. Substituting all assignments that

were returned by the core solver at any previous point in the execution can be expensive
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and here we want to ensure the check is fast. So instead, we use the same mechanism used

by assignment caching in KLEE, and have GetAssignmentsForState (line 2) return only

the assignments associated with a subset of the path condition of state s.

The idea behind the pending constraints approach is to use existing assignments as long

as it is possible, and only ask for expensive new solutions when absolutely necessary. As a

result, the search goes deep into the execution tree, because it explores the solutions it has

to completion. Therefore, combining this strategy with a search heuristic that goes wide

when picking a pending state can be really effective. Note that the search heuristics that

often perform best, such as random path search, tend to behave like this [16]. Another way

of understanding our approach is as a meta-searcher that enhances a given search heuristic,

enabling it to explore deeper parts of the program. Intuitively, this is achieved by picking

a path and sticking to it, while normally the same searcher would keep changing between

paths. Importantly, the path it sticks to issues no additional queries to the SMT solver and

therefore completes quickly.

Note that this technique only re-distributes the cost of solving constraints, so it is unlikely

to help if the interesting parts of the program are locked behind hard to solve constraints. In

that case it needs some help to guide pending constraints towards them. In section 4.1.2.2

we propose using seeding for this purpose.

To make things more concrete, consider the program in Figure 4.1 with DFS FRIENDLY

undefined. It has two symbolic variables: a boolean isSpace and a string str. It first

branches on isSpace on line 14 and writes space as the first character of str on the then

branch or a zero on the else branch. The two loops between lines 21–23 then introduce a

large number of symbolic branches. After these loops, it computes the fifteenth Fibonacci

number using an inefficient recursion. This represents some large concrete workload. Finally,

we assert isSpace is false. Note that reaching this assertion failure only depends on the

first branch and is completely independent of the large number of paths spawned in the

loops.

Vanilla KLEE executes around 4 million instructions, taking around 10 seconds to reach

the assertion failure using the random path search strategy. By contrast, the pending
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1 unsigned fib(unsigned n) {

2 if (n == 0) return 0;

3 if (n == 1) return 1;

4 return fib(n - 1) + fib(n - 2);

5 }

6
7 int main() {

8 bool isSpace;

9 klee_make_symbolic(&isSpace, sizeof(isSpace), "isSpace");

10 char str[6];

11 klee_make_symbolic(str, sizeof(str), "str");

12
13 #ifndef DFS_FRIENDLY

14 if (isSpace) str[0] = ’ ’;

15 else str[0] = ’\0’;

16 #else

17 if (isSpace == 0) str[0] = ’\0’;

18 else str[0] = ’ ’;

19 #endif

20
21 for (int i = 1; i < 6; i++)

22 for (char j = 0; j < str[i]; j++)

23 str[i-1]++;

24
25 fib(15);

26 assert(!isSpace);

27 return 0;

28 }

Figure 4.1: An example program where pending constraints find the failing assertion faster.

constraints approach executes only around 67k instructions, taking less than a second. The

reason is that vanilla KLEE needs to compute a large number of solutions to the symbolic

branches in the loops, which are not needed to find the assertion failure. Whereas the

pending constraints approach only needs one solver solution for str. Because random path

search is the underlying search strategy, it is also more likely to pick the pending states

produced by the branch on line 14 as it is closer to the root of the process tree.

Note that DFS reaches our one-hour timeout in this case. However, it performs similarly to

the pending states if the order of branches on line 14 is swapped (by defining DFS FRIENDLY).

With DFS FRIENDLY defined, both pending states and upstream KLEE find the assertion in

about 33k instructions. This shows that while DFS can be as efficient, it is highly dependent

on the order of branches, unlike the pending constraints approach.
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4.1.2.2 Seeding

A seed is a concrete input to a program which is given to symbolic execution to bootstrap

exploration. A seed can make symbolic execution of the program easier for two reasons. First,

it is used to guide symbolic execution toward parts of the program that are executed by real

inputs. Second, it provides a solution for complex path constraints, therefore removing the

need for expensive constraint solving. Seeding has been shown to be effective when symbolic

execution is combined with regression test suites [78, 79, 87] as well as when it is integrated

with a greybox fuzzer [110, 23, 85].

Our pending constraints approach can be easily extended to support seeding. In FastIs-

Sat, we modify the GetAssignmentsForState function to return the seeds as assignments

(line 2). As a result, only the states that satisfy the seeds are followed first, and there are no

calls to the SMT solver until all the paths followed by the seeds are explored. In this use

case, pending states represent the possible divergences from the seeds, from where we can

pick up exploration once the seeding is completed.

When seeds are available, random path search is unlikely to be the most effective strategy.

Once the paths followed by the seeds are completed, random path search would pick a state

very close to the start of the program, as the probability of picking a state halves at every

symbolic branch. This means that the exploration will behave similarly as to when no seeds

are available.

On the other hand, depth-biased search would most likely pick a state toward the end of

the path executed by the seeds, meaning it will start to explore paths that are very hard to

reach from the start of the application. In other words, it benefits from the seed and can

start exploring code out of reach of normal symbolic execution.

However, there are two limitations to this search heuristic. First, by design, this strategy

misses code that is easy to reach from the start of the program. Therefore, it is best combined

with a more wide-reaching strategy such as random path search. Second, this heuristic is

more likely to select pending states that are infeasible, as the path conditions for those states

have more constraints and thus the pending condition is more likely to be infeasible in that

state.
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4.2 Implementation

We implemented our approach in KLEE [16], our prototype is based on KLEE commit

0fd707b and is configured to use LLVM 7 and STP 2.3.3. We discuss below some of the

most important implementation aspects.

We make our prototype and associated artefact available at https://srg.doc.ic.ac.uk/

projects/pending-constraints and https://doi.org/10.6084/m9.figshare.12865973.

4.2.1 Fast Satisfiability Solver

KLEE’s constraint solving chain consists of a series of caches and other partial solvers, finally

delegating the query to an external SMT solver. For our fast solver we simply used this

solver chain without the final, potentially expensive, call to STP.

Seeding is easily implemented with KLEE’s counterexample (assignment) cache, as we

simply add the seed to the cache as an additional assignment at the start of execution. Note

that this is different from how vanilla KLEE implements seeding. However, to make the

comparison between vanilla KLEE and pending constraints fair, we also added the seed to

the cache in vanilla KLEE.

4.2.2 Error Checks

During execution, KLEE performs various checks to find errors. Examples include checks for

division by zero and out-of-bounds memory accesses. One option would be to treat these

checks as we treat regular branches and create pending states. However, that would mean

that errors would not be caught as soon as that code is covered, as in vanilla KLEE (and in

fact they might never be caught if those pending states are killed later on due to memory

pressure). Therefore, we treat these checks specially by always performing them instead of

creating pending states.

However, if higher coverage is more important than bug finding, deferring these checks to

pending states might make more sense. Therefore, we also run our benchmarks with these

checks deferred in a version that we call pending constraints with relaxed checks. We explore
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this version in Section 4.3.5 and observe significant coverage gains.

4.2.3 Branching without a Branch Instruction

In KLEE there are several cases where forking happens without a branch instruction. For

instance, in the default configuration, a switch instruction is handled as a branch with

multiple targets. This fits less neatly in our model therefore we simply configure KLEE to

lower all switch instructions to a series of if-else statements.

As discussed in Chapter 3, when a symbolic pointer is encountered, KLEE scans the

address space to find all memory objects to which it can point. If multiple objects are found,

it forks execution for each object, adding appropriate constraints. In the default version

of our approach, we do not create pending states in this case; instead we eagerly fork as

necessary, as in vanilla KLEE. However, with relaxed checks, for each memory object to

which the pointer can refer, the state gets forked into two pending states: one in-bounds

of the object and the other one out-of-bounds. This second pending state encompasses all

other resolutions of the symbolic pointer.

4.2.4 Releasing Memory Pressure

KLEE often hits the memory limit for large programs due to the vast size of the search

space and generally broad search heuristics [15]. When exceeding the memory limit, KLEE

terminates a number of randomly-chosen states to get back below the memory limit. We

could follow the same approach with pending constraints, but this could delete both feasible

and infeasible pending states. Feasible pending states potentially represent large parts of

the search space and we should avoid their termination. By reviving pending states, we can

select and terminate infeasible pending states. But this comes at a price, as reviving states

requires expensive constraint solving. In our implementation, we decided to stop reviving

states when the remaining number of pending states equals the number of states we still need

to terminate to fall below the memory limit. At that point, we start to randomly choose

states to terminate as in vanilla KLEE.
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4.3 Evaluation

Our evaluation is structured as follows. We present our benchmarks in Section 4.3.1 and

explain why we evaluated them on internal coverage in Section 4.3.2. We evaluate pending

constraints on their ability to enhance symbolic execution in a non-seeding context in

Section 4.3.3 and then in a seeding context in Section 4.3.4. We also evaluate the version

with relaxed checks in Section 4.3.5. Finally, we discuss our approach in further detail in

Section 4.3.6, via a case study on SQLite3 .

We run all experiments in a Docker container on a cluster of 18 identical machines with

Intel i7-4790 @ 3.60GHz CPU, 16GiB of RAM and Ubuntu 18.04 as operating system. We

repeat our experiments three times and where possible plot the average and the minimum

and maximum as an interval. In cases where we combine experiments, there are no intervals

shown as we merge all the repetitions.

4.3.1 Benchmarks

Our aim is to demonstrate the capability of pending constraints to increase the exploration

potential of symbolic execution. Therefore, we chose benchmarks that are challenging for

symbolic execution.

SQLite3 [106] already introduced in Section 3.3.4. We used version 3.30.1 via its default

shell interface with symbolic input and without custom drivers. However, we adjusted some

compile-time flags, such as simplifying the allocation model, to make it easier for symbolic

execution.

magick [57] is a command-line utility for performing various operations on images. We

used version 7.0.8-68 in two configurations, converting (symbolic) jpeg images to png images

and back, which makes use of libjpeg [71] and libpng [72].

tcpdump [112] is used for capturing and printing network packets. We used version 4.10.0

to print information from a symbolic capture file.

GNU m4 [44] is a macro processor introduced in Section 3.3.2. We used version 1.4.18

to process a symbolic file.
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GNU make [45] is a widely-used build system we already discussed in Section 3.3.3. We

used version 4.2 on a symbolic makefile.

oggenc [120] is a tool from the Ogg Vorbis audio compression format reference implemen-

tation. We used version 1.4.0 to convert a symbolic .wav file to the .ogg format.

GNU bc [41] is an arbitrary precision calculator. We used version 1.07 on symbolic

standard input.

GNU datamash [43] is a tool for performing command-line calculations on tabular data.

We used version 1.5 both with symbolic input and symbolic arguments.

Table 4.1 gives a more detailed overview of the benchmarks, showing their size, arguments

we used and a brief description of the seeds. The program size is measured in terms of LLVM

instructions as reported by KLEE. The third column shows the arguments we used to run

the benchmarks. The arguments prefixed with -sym are replaced with symbolic data. For

example, -sym-arg 3 is replaced with a three-character symbolic argument, -sym-stdin 20

is a 20-byte symbolic standard input stream, and -sym-file 100 creates a file named A with

100 bytes of symbolic content.

The last two columns of Table 4.1 give an overview of the seeds we used. Where possible,

we give the exact data used as in the case of bc. However, in the case of magick and similar

utilities that would not be too informative, so we give instead a brief description of the seed.

We took the smallest valid files from https://github.com/mathiasbynens/small. Some

seeds were padded with zeroes as necessary to make the seed size match the number of

symbolic bytes as specified by the arguments.

Figure 4.2 shows the percentage of time spent in the solver by vanilla KLEE on our

benchmarks, on 2-hour runs, using different search strategies. As can be seen, most of our

benchmarks are solver-bound, meaning they spent a very high proportion of time in the

solver, for example bc and make. datamash is the only benchmark that is not solver-bound

in any search strategy considered, meaning KLEE spends very little time constraint solving.

SQLite3 is only solver-bound with the DFS search strategy.
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Figure 4.2: Relative time spent in the SMT solver (STP) by vanilla KLEE in our non-seeded
experiments with the random path (RP), depth-biased (Depth) and DFS strategies.

4.3.2 Internal Coverage vs. GCov Coverage

When measuring the coverage achieved by vanilla KLEE and our pending constraints

extension, we can use either the internal coverage reported by KLEE or the coverage reported

by GCov [38] when running the test inputs generated by KLEE.

The internal coverage reported by KLEE includes the lines of code that KLEE executed

symbolically, at the LLVM bitcode level. By contrast, the GCov coverage is the coverage

reported by GCov at the source code level, when rerunning the test inputs generated by

KLEE on a version of the program compiled with GCov instrumentation. Both approaches

have advantages and disadvantages. On the one hand, GCov coverage has the advantage

of being disconnected from KLEE and LLVM; often developers just want a tool like KLEE

to generate a high-coverage test suite and assess this coverage independently, at the source

code level. On the other hand, GCov coverage includes parts of the program that KLEE did

not execute symbolically; these parts of code were not error-checked by KLEE, and thus

bugs could be missed. It is important to note here that when KLEE performs an error check,

it finds a bug if there are any values that can trigger it on that path. By contrast, a test

case that covers the buggy path might not necessarily reveal the bug. Therefore, if KLEE is
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Figure 4.3: Dual-axis scatter plot of internal coverage (left y-axis) and GCov coverage (right
y-axis) against the number of injected faults found.
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Figure 4.4: Instructions covered by vanilla KLEE and pending constraints alongside their
combination in two hours non-seeded runs.

used primarily to reveal bugs, internal coverage is more appropriate.

To illustrate this issue, we injected a division-by-zero error in every basic block of some

of our benchmarks. These division-by-zero errors are triggered by a different value in each

basic block. We then run vanilla KLEE for two hours on these fault-injected programs and

measure both internal and GCov coverage.

Figure 4.3 shows a dual-axis scatter plot of both internal coverage on the left y-axis and

GCov coverage on the right y-axis against the number of unique injected faults found.

As can be seen, internal coverage seems to highly correlate with unique faults found,
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whereas GCov coverage shows no such correlation. We discuss this in more detail in a blog

post [19].

In our work, we observed that pending constraints do not necessarily improve GCov

coverage, but significantly improve internal coverage. Therefore, while accepting the former,

we show in our experiments that it can improve the latter, and thus report internal coverage

in our experiments.

4.3.3 Non-seeded Experiments

To evaluate pending constraints in a setting without seeds, we ran each of our benchmarks

for two hours with the random path, DFS and depth-biased strategies. The results are shown

in Figure 4.4. For some benchmarks, such as bc and make, pending constraints consistently

cover more instructions for all search strategies. For others, such as m4 and tcpdump, the

relative performance is dependent on the search strategy.

If we look at the combined coverage of vanilla KLEE and pending constraints, we see

that there is some complementarity to the approaches. For instance, while vanilla KLEE

obtains better coverage for m4 with the depth-biased search, the pending constraints reach

code that is not covered by vanilla KLEE. Overall, pending constraints reached 35%, 24%

and 34% more instructions across our benchmarks with random path, DFS and depth-biased

search respectively. These results show that pending constraints can significantly increase

the power of symbolic execution on some benchmarks by themselves and/or cover different

parts of the code when compared to vanilla KLEE. Therefore they seem to be an effective

tool for non-seeded exploration in symbolic execution.

Comparing the search strategies for pending constraints, we observe that for these

experiments DFS performs best overall, covering 11% more instructions than random path,

which in turns covers 14% more instructions than depth-biased search.

One advantage of the pending constraints approach is that it usually spends less time

solving queries that turn out to be infeasible. Figure 4.5 shows the time spent constraint

solving queries that turn out to be infeasible relative to total constraint solving time. We

averaged across all search strategies for brevity and clarity. For most benchmarks, pending
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Figure 4.5: Relative time spent solving queries that were infeasible, averaged across all three
search strategies.

constraints spend significantly less time constraint solving queries that are infeasible. The

only exception is SQLite3 , where the absolute time spent solving infeasible queries is still

lower for pending constraints across all three search strategies.

4.3.4 Seeded Experiments

To evaluate our approach in the context of seeding, we ran both vanilla KLEE and pending

constraints for two hours with each seed from Table 4.1. Both versions are given the seeds —

vanilla KLEE as assignment in the (counter-example) cache and additionally as concrete

input.

Figure 4.6 shows the coverage achieved by vanilla KLEE and pending constraints, for

each search strategy. Coverage results for the two seeds are merged in each configuration.

For some benchmarks, such as magickpng, SQLite3 and tcpdump, pending constraints

significantly outperform vanilla KLEE for all search strategies. For others, such as datamash

and make, there does not seem to be a large difference. Finally, for m4 , pending constraints

perform slightly worse than vanilla KLEE. This is due to dereferences of symbolic pointers

being very common in m4 , which do not benefit from pending constraints.

From the combined coverage bars, we can observe there is very little complementarity
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Figure 4.6: Covered instructions by vanilla KLEE and pending constraints alongside their
combination in seeded runs on our benchmarks. Each seed set is run for two hours in each
configuration and the coverage results for the two seeds are then merged.

between the two approaches, with the exception of tcpdump under DFS, where the combined

coverage is significantly higher. In this case, both runs explore the seed, but pending

constraints go deeper in the exploration. We discuss in more detail the advantages provided

by pending constraints with seeding in the SQLite3 case study of Section 4.3.6.

Overall, pending constraints cover 25% more instructions with random path search,

30% more with depth-biased search, and 23% more with DFS. In the pending constraints

experiments, depth-biased search covered 2% more instructions overall when compared to

random path search, which in turn covered 3.5% more than DFS.

Figure 4.7 shows the coverage achieved with only seed set 1 between our pending

constraints approach and vanilla KLEE with the random path search strategy. For most

utilities, we can draw similar conclusions as for the experiments of Figure 4.6 where the

coverage for the two seed sets is merged. oggenc is an exception as it shows no coverage

improvement on only seed set 1.

4.3.5 Pending Constraints with Relaxed Checks

Figure 4.7 also shows the coverage achieved with relaxed checks for critical instructions

(§4.2.2). As can be seen for some tools like bc or SQLite3 , relaxing these checks can lead to

large increases in number of covered lines. In the case of bc the instruction coverage more

than doubles. For most other utilities the increase is smaller, but not insignificant, with

oggenc, magickpng and tcpdump being the notable exceptions showing no or small decreases
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Figure 4.7: Covered instructions on seed set 1 of vanilla KLEE against pending constraints
with both strong and relaxed checks with the Random Path search strategy.

in coverage.

These results show that pending constraints with relaxed checks can be used to effec-

tively reach deeper into the program, but with the downside of errors being missed during

exploration.

4.3.6 Case Study: SQLite3

To provide more insight into our approach, we now discuss one of our benchmarks, SQLite3 ,

in more detail. In particular, we look at the evolution of coverage on long-running experiments

and examine various pairwise combinations of configurations to uncover how different seeding

approaches and search strategies complement each other.

4.3.6.1 24-hour Non-seeded Runs

We first performed 24-hour experiments with SQLite3 without seeding, with each of the

three considered search strategies. Each experiment was repeated three times to account for

the randomness of the depth-biased and random path strategies. The results are shown in

Figure 4.8a.

DFS performs surprisingly well for this benchmark. However, with vanilla KLEE, it
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Figure 4.8: Coverage of SQLite3 over a 24-hour run. The experiments were repeated three
times, represented as lines of the same type. Both non-seeded and seeded runs are shown.
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achieves no additional coverage after the first hour. By contrast, pending constraints with

DFS continue to make progress and end up achieving the highest coverage overall.

We inspected the test inputs generated using DFS to understand why it performs so well.

Vanilla KLEE with DFS appears to be lucky, as it manages to find two short keywords, such

as AS and BY, which seem to be located close to the edge of the search space. These two

keywords are not found by vanilla KLEE using the other two search strategies. Pending

constraints with DFS does not find these short keywords, but instead finds longer ones

such as INSERT, FILTER, VACUUM and WINDOW. This is not surprising, as the search space of

pending constraints with DFS is often quite different from that of regular DFS.

Pending constraints with random path gain coverage quickly due to its broader exploration,

but makes limited progress in the last 10 hours. Pending constraints with the depth-biased

strategy make little progress for a long time, but gain a lot of coverage towards the end of

the run, achieving coverage similar to that of random path. Vanilla KLEE makes steady

progress with both search strategies, but does not overtake pending constraints.

4.3.6.2 24-hour Seeded Runs

We also performed 24-hour experiments with SQLite3 with seed set 1, with each of the three

considered search strategies. In addition, we also run in this setting pending constraints with

relaxed checks, using the depth biased strategy. As in the non-seeded runs, each experiment

was repeated 3 times.

Figure 4.8b shows the results. The seed covers 37.2k instructions. Vanilla KLEE performs

similarly across the three search strategies (all the lines for the vanilla KLEE runs are at the

bottom of Figure 4.8b) and never manages to complete the seeded path, stalling around 13k

covered instructions. It makes very slow progress, covering less than 500 new instructions

in the final 20 hours of its run. This is due to KLEE’s eager feasibility checks, with large

constraints that take a long time to solve.

Our pending constraints approach manages to cover all instructions on the seeded path.

With error checks in place, it takes up to 3 hours to complete the seeded path, whereas

with relaxed checks it only takes 4 minutes. There are about 303 memory bounds checks
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on the seeded path and solving the associated constraints accounts for the majority of the

time difference between the configuration without and with relaxed checks. Note that 4

minutes is still significantly slower than the pure interpretation time of KLEE on this input.

Our approach still performs some solving activities such as computing independent sets and

substituting the seed in the constraints.

There is no difference between search strategies in the initial seeding phase as the

exploration is guided by the seed. After pending constraints finish with the seeding, they

make little progress for up to several hours. During this time they are attempting to revive

pending states, most of which are infeasible and therefore killed, thus giving no additional

coverage. Finally, depending on the search strategy, a feasible state is revived, leading to the

execution of a different path, potentially giving large coverage gains.

The depth-biased search, which picks good states to revive in 2 out of 3 of our runs,

achieves significant new coverage. However, random path search outperforms the depth-

biased search in all of the 3 runs and seems to generally achieve higher coverage. Due to

determinism of DFS, there is no difference between its runs. They all achieve coverage

in-between the random path and depth biased search strategies.

We inspected the generated test inputs for the depth-biased, DFS and random path runs.

The test inputs generated by the depth-biased runs were mostly very similar to the seed,

with only a small number of characters changed (e.g. SELECT * TEMp ;. . instead of the

seed SELECT * FROM t;).1 Even when it manages to find new keywords, such as FILTER,

HAVING, UPDATE, VACUUM, and WINDOW, the test input is close to the initial seed (e.g. uPdATE

* FROM t;....). DFS-generated test inputs are almost identical to the seed, with only the

last 2 characters changing in a depth-first fashion. The random path search strategy, on the

other hand, also finds several more new keywords, such as BEFORE, HAVING, INSERT, FILTER,

and VACCUM, but diverges early from the seed and finds additional keywords by exercising

different code in the parser (e.g. ./.c....;expLain....). This difference between the

generated test inputs across the three search strategies is expected, as depth-biased search

and DFS pick states towards the end of the path, where the seed has a greater impact.

1Inputs shorter than the specified symbolic input size are padded with \0 and newlines (\n, \r) are
shown as “.”
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Figure 4.9: Heatmaps of coverage combination pairs for vanilla KLEE (below the diagonal)
and pending constraints (above the diagonal) for SQLite3 . Section 4.3.6.3 describes how to
read them.

4.3.6.3 Pairwise Coverage Combinations

Finally, we wanted to explore how the different combinations (non-seeded, seeded with seed

sets 1 and 2, and different search strategies) complement each other. Therefore, we looked at

the pairwise combinations of coverage for 2-hour runs of each configuration. We decided to

omit showing the DFS runs in this case to illustrate the complementary aspects of seeding

versus non-seeding runs more clearly. As shown in Figure 4.4c, DFS is really effective in

SQLite3 without seeds. The union of non-seeded DFS and other approaches cover only

10-100 more instructions than DFS by itself. However, we note that DFS is not always the

best-performing strategy, as shown by other benchmarks.

Analysing this amount of data is hard, so we devised the visualisation in Figure 4.9,

which shows pairwise comparisons of combined coverage across the 6 different configurations

for SQLite3 . The labels indicate the search strategy used and the seed set is indicated in

the subscript. Un-subscripted labels indicate non-seeding runs.
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The figure consists of three different heatmaps. The red heatmap above the diagonal

shows the coverage achieved by pending constraints. The green heatmap below the diagonal

shows the coverage achieved by vanilla KLEE. The blue diagonal shows the ratio between

pending states and vanilla for non-combined runs. The data in red and green heatmaps is

normalised with respect to their upper-left corner, that is the two hour depth-biased run

without seeds. The diagonal of the red and green heatmaps therefore show the non-combined

coverage.

As this graphic is dense with information, we will walk through a couple of examples.

Looking at the top-left corner of both red and green heatmap, we see that both pending

and vanilla KLEE with depth-biased strategy have the value of 1.00 — this is because

everything is normalised to this value. However, the blue 1.82 value tells us that our pending

constraints approach covered 82% more instructions than vanilla KLEE with depth-biased

search strategy.

Now focusing on two configurations from green heatmap below the diagonal: depth-

biased without seeds and depth-biased with seeds for vanilla KLEE. The coverage of the

run with a seed from set 1 is 9% (1.09) higher than that of the non-seeded run, while the

combined coverage of both achieve 36% (1.36) more coverage. This indicates that there is

complementarity between the coverage achieved with and without a seed.

Looking at the same two combinations in the red heatmap above the diagonal, we can

see that with pending constraints, seeding with set 1 achieves 61% (1.61) more coverage than

the non-seeding run. Furthermore, their combination achieves 97% (1.97) more coverage

than solely the non-seeding run. That indicates again that there is complementarity between

seeding and non-seeding runs as with vanilla KLEE.

The random path search strategy without seeding achieves more than twice the coverage

of the depth-biased search strategy in both vanilla KLEE (2.47) and with pending constraints

(3.11). However, pending constraints cover 129% (2.29) more lines than vanilla KLEE. There

is also some complementarity of coverage between depth-biased search and random path with

pending constraints. Their union covers 217% (3.17) more instructions than just depth-biased

as opposed to 211% (3.11) achieved by random path. Vanilla KLEE behaves similarly.
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Finally, looking at the union of coverage between non-seeded and seeded runs, we can

see that for pending constraints seeding complements well with depth-biased exploration,

achieving over 30% points (1.61 to 1.97 and 1.65 to 2.00) more coverage when combined.

With random path, we do not see any such complementarity (3.11). Vanilla KLEE follows a

similar pattern.

4.3.7 ZESTI

ZESTI [78] is a promising extension of KLEE that combines EGT-style symbolic execution

with seeding via regression test suites. Unfortunately, its original implementation was never

upstreamed, partly because it is quite large and intrusive. In this section we show that

pending constraints can be used to build a lightweight and effective version of ZESTI.

ZESTI consists of several parts. The two most important ones are the ability to use a

variety of inputs as seeds and the so called ZESTI searcher, whose purpose is to explore

paths around sensitive instructions. The idea of the ZESTI searcher is to take a single

seed and execute it to completion, while recording sensitive instructions and divergence

points. A divergence point is a symbolic branch where the path not taken by the seed is

feasible. ZESTI then starts bounded symbolic execution from the divergence point closest to

a sensitive instruction. It then moves to the next closest divergence point and so on.

Re-implementing ZESTI on top of pending constraints is straightforward. Consider a

symbolic execution run with pending constraints after a single seed has been executed to

completion. There are no normal states and many pending states representing the divergence

points described above. The ZESTI searcher is implemented by considering pending and

normal states separately. We prioritise normal states, but only if their depth does not exceed

the depth of the last revived pending state plus some bound. Pending states are revived in

the order of distance to sensitive instructions. This is equivalent to the ZESTI searcher and

is easy to implement. For simplicity, our implementation currently considers only memory

accesses as sensitive instructions.

We found the benchmarks used for evaluation to be too hard for ZESTI. For example, as

seen in Section 4.3.6.2 it takes three hours to execute a simple seed with SQLite3 . Thus
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running the whole test suite of SQLite3 and exploring a significant amount of paths around a

seed is impractical. Therefore, we chose three tools that KLEE can execute more comfortably:

dwarfdump [70], readelf [42] and tar [46]. These are inspired by the original ZESTI paper [78],

where we replaced GNU Coreutils with tar as recent modifications in the Coreutils build

system make it harder to use with ZESTI.

To capture the seeds, we replaced each binary with a script and ran the application test

suite. We then removed large seeds of over 8.1MiB to keep the execution time associated

with an individual seed short. This resulted in 1273, 313 and 5 seeds for dwarfdump, tar

and readelf respectively. Since we wanted to run each seed for 30 minutes as per the original

ZESTI paper and keep the overall time under 12 hours, we ran at most 200 seeds per

benchmark.

These experiments found one bug in dwarfdump2 and one in tar3 which have already

been confirmed and fixed by the developers. Both of these bugs were found by the ZESTI

searcher and were not triggered by the original seed. Vanilla KLEE seeded with the seed

ZESTI mutated was not able to find these bugs with a 2-hour timeout.

4.4 Related work

Concolic executors such as CREST [14], DART [47] or SAGE [48] briefly described in

Section 1.2.3 also drive each test input to completion, which is similar to the behaviour of

pending constraints. However, these tools suffer from the disadvantages of concolic executors

such as re-executing path prefixes and exploring a single path at a time. Our approach brings

some of the strengths of concolic execution to EGT-style tools like KLEE while maintaining

their advantages.

KLEE [16] has an existing seeding mechanism, which is also used by ZESTI [78] and

KATCH [79]. However, when following a seed, KLEE eagerly performs feasibility checks

at every symbolic branch, unlike pending constraints which defer these checks for when a

pending state is revived. This in turn can have a big impact on coverage, as we have shown

in Section 4.3.4.

2https://www.prevanders.net/dwarf.html (28 June 2020 update)
3http://git.savannah.gnu.org/cgit/tar.git/commit/?id=dd1a6bd37a0d57eb4f002f01f49c51fa5c6bb104
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KLUZZER [66], a whitebox fuzzer based on KLEE, implements a similar idea of delaying

the satisfiability checks by only following the currently satisfied branch given by a seed.

However, their approach goes further by trading off the benefits of EGT-style symbolic

execution completely and reverting to concolic execution.

UC-KLEE [91] introduces lazy constraints. Here, the executor continues exploring paths

although the underlying constraint solver can’t determine the feasibility in a given amount

of time. The corresponding expensive constraint is added as lazy constraint to the respective

path condition and only evaluated when some goal is satisfied, e.g. a bug is found, to

suppress false positives. This leads to more states in memory and thus to more solver queries

but can also reduce the overall solver time as the additional constraints along such paths

narrow down the solution space for the constraint solver. Our approach explores a different

design point, which always favours states that are known to be feasible, either via caching or

seeding, and when just pending states are left, they are only explored further if they are

determined to be feasible.

Similarly, speculative symbolic execution [124] delays checking the feasibility of constraints

until a specified number of path conditions has been accumulated. While targeting similar

problem space to pending constraints their approach can spend time exploring infeasible

paths, while pending constraints only delay feasibility checking. They also propose absurdity

based optimization, which skips the feasibility check for the else branch if the then branch

was shown to be infeasible. This is similar, but complementary to our use of caches or seeds

for fast feasibility checks.

Hybrid fuzzing approaches such as Driller [110], QSYM [125] or SAVIOR [23] pass

concrete inputs between a greybox fuzzer and a symbolic executor. These approaches could

directly benefit from pending constraints to achieve a tighter integration between fuzzing

and symbolic execution.
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4.5 Conclusion

We have presented pending constraints, a strategy that achieves a more efficient use of

constraint solving and a deeper exploration of programs with symbolic execution. The key

idea is to aggressively follow paths that are known to be feasible either via caching or seeding,

while deferring all other paths by storing states with pending constraints. We implemented

this approach in KLEE and evaluated it on eight hard benchmarks, including make, SQLite3

and tcpdump. Our evaluation shows that pending constraints can significantly increase the

coverage achieved by symbolic execution in both seeded and non-seeded exploration.
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Chapter 5

Conclusion

We have presented three ways of enhancing symbolic execution.

In Chapter 2, we presented a novel approach for summarising loops in C code. This

approach uses counterexample-guided synthesis to generate loop summaries. We evaluated

our approach on a large loop database extracted from popular open-source systems and

assessed its utility in several contexts: symbolic execution, where we recorded speedups of

several orders of magnitude; compiler optimisations, where several summaries resulted in

significant performance improvements; and refactoring, where some of our summary patches

were accepted by developers.

Then we focused on programs that use complex heap data structures, in which a pointer

is allowed to refer to more than one memory object, such as hash tables. These often cause

path explosion and memory exhaustion in symbolic execution. In Chapter 3, we presented a

novel segmented memory model for symbolic execution, which uses pointer alias analysis

to group objects into memory segments. Our segmented memory model can significantly

reduce forking due to symbolic dereferences, sometimes even completely eliminating the need

for forking.

Finally, we presented pending constraints in Chapter 4. Pending constraints are a strategy

that achieves a more efficient use of constraint solving and a deeper exploration of programs

with symbolic execution. The key idea is to aggressively follow paths that are known to be
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feasible either via caching or seeding, while deferring all other paths by storing states with

pending constraints. We implemented this approach in KLEE and evaluated it on eight hard

benchmarks, including make, SQLite3 and tcpdump. Our evaluation shows that pending

constraints can significantly increase the coverage achieved by symbolic execution in both

seeded and non-seeded exploration.

We can see several avenues for possible future work on each of our chapters.

The path forward for the loop summarisation approach of Chapter 2 is clear. The process

of creating a loop summary could become fully automated, with significant engineering work.

Additional gadgets and loop types could also be supported. Both of these changes would

significantly improve the usability and adaptability of the approach, however it remains

unclear how useful it would be in practice. There are some loops that cannot reasonably be

summarised into standard functions which would still cripple symbolic execution of C-like

programs using the theory of strings. The usefulness of loop summaries as a refactoring tool

is intriguing, but still limited by its speed, which is not appropriate for interactive use.

Trabish and Rinetzky [116] explore an interesting direction of future work for the

segmented memory model of Chapter 3. Instead of using alias analysis and grouping memory

objects into segments ahead of time, they do it dynamically on the fly. This results in a

significant performance boost as the segments are no larger than needed. A different direction

for improving the segmented memory model could be to use the layered memory model

proposed by Nowack [84], which could also alleviate the problem of segments becoming

unnecessarily large.

Finally, the pending constraints presented in Chapter 4 show most potential for impactful

future work. On one hand, different methods of fast feasibility checking could be explored in

addition to caching and seeding. For example, a regular SMT solver with a low timeout in

the order of tens of milliseconds could be used to quickly try to determine feasibility. Another

option would be to revive a pending state and use an SMT-sampler [33] to quickly get a

large number of solutions for it, which can then be explored aggressively to completion again.

Pending constraints could also be used to implement the parallelization idea from Siddiqui

and Khurshid [103], where a seed would be used to split the symbolic execution search space
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into two. Each of the two workers would execute the seed using pending constraints. Then

one worker would prune all the pending states on the then branches, while the other worker

would prune all the else branches. That would effectively partition and distribute the search

space between them. The two workers would then proceed normally.
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