516 research outputs found

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Zone-based verification of timed automata: extrapolations, simulations and what next?

    Full text link
    Timed automata have been introduced by Rajeev Alur and David Dill in the early 90's. In the last decades, timed automata have become the de facto model for the verification of real-time systems. Algorithms for timed automata are based on the traversal of their state-space using zones as a symbolic representation. Since the state-space is infinite, termination relies on finite abstractions that yield a finite representation of the reachable states. The first solution to get finite abstractions was based on extrapolations of zones, and has been implemented in the industry-strength tool Uppaal. A different approach based on simulations between zones has emerged in the last ten years, and has been implemented in the fully open source tool TChecker. The simulation-based approach has led to new efficient algorithms for reachability and liveness in timed automata, and has also been extended to richer models like weighted timed automata, and timed automata with diagonal constraints and updates. In this article, we survey the extrapolation and simulation techniques, and discuss some open challenges for the future.Comment: Invited contribution at FORMATS'2

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Fast algorithms for handling diagonal constraints in timed automata

    Full text link
    A popular method for solving reachability in timed automata proceeds by enumerating reachable sets of valuations represented as zones. A na\"ive enumeration of zones does not terminate. Various termination mechanisms have been studied over the years. Coming up with efficient termination mechanisms has been remarkably more challenging when the automaton has diagonal constraints in guards. In this paper, we propose a new termination mechanism for timed automata with diagonal constraints based on a new simulation relation between zones. Experiments with an implementation of this simulation show significant gains over existing methods.Comment: Shorter version of this article to appear in CAV 201

    Towards Reliable Benchmarks of Timed Automata

    Get PDF
    The verification of the time-dependent behavior of safety-critical systems is important, as design problems often arise from complex timing conditions. One of the most common formalisms for modeling timed systems is the timed automaton, which introduces clock variables to represent the elapse of time. Various tools and algorithms have been developed for the verification of timed automata. However, it is hard to decide which one to use for a given problem as no exhaustive benchmark of their effectiveness and efficiency can be found in the literature. Moreover, there does not exist a public set of models that can be used as an appropriate benchmark suite. In our work we have collected publicly available timed automaton models and industrial case studies and we used them to compare the efficiency of the algorithms implemented in the Theta model checker. In this paper, we present our preliminary benchmark suite, and demonstrate the results of the performed measurements

    Backward Reachability Analysis for Timed Automata with Data Variables

    Get PDF
    Efficient techniques for reachability analysis of timed automata are zone-based methods that explore the reachable state space from the initial state, and SMT-based methods that perform backward search from the target states. It is also possible to perform backward exploration based on zones, but calculating predecessor states for systems with data variables is computationally expensive, prohibiting the successful application of this approach so far. In this paper we overcome this limitation by combining zone-based backward exploration with the weakest precondition operation for data variables. This combination allows us to handle diagonal constraints efficiently as opposed to zone-based forward search where most approaches require additional operations to ensure correctness. We demonstrate the applicability and compare the efficiency of the algorithm to existing forward exploration approaches by measurements performed on industrial case studies. Although the large number of states often prevents successful verification, we show that data variables can be efficienlty handled by the weakest precondition operation. This way our new approach complements existing techniques
    corecore