4,273 research outputs found

    A tight layout of the cube-connected cycles

    Get PDF
    Preparata and Vuillemin proposed the cubeconnected cycles (CCC) in 1981 [lS], and in the same paper, gave an asymptotically-optimal layout scheme for the CCC. We give a new layout scheme for the CCC which requires less than half of the area of th,e Preparata- Vuillemin layout. We also give a non-trivial lower bound on the layout area of the CCC. There is a constant factor of 2 between the new layout and the lower bound. We conjectur.e that the new layout is optimal (minimal).published_or_final_versio

    A tight layout of the cube-connected cycles

    Get PDF
    Preparata and Vuillemin proposed the cubeconnected cycles (CCC) in 1981 [lS], and in the same paper, gave an asymptotically-optimal layout scheme for the CCC. We give a new layout scheme for the CCC which requires less than half of the area of th,e Preparata- Vuillemin layout. We also give a non-trivial lower bound on the layout area of the CCC. There is a constant factor of 2 between the new layout and the lower bound. We conjectur.e that the new layout is optimal (minimal).published_or_final_versio

    Tighter layouts of the cube-connected cycles

    Get PDF
    Preparata and Vuillemin proposed the cube-connected cycles (CCC) and its compact layout in 1981 [17]. We give a new layout of the CCC which uses less than half the area of the Preparata-Vuillemin layout. We also give a lower bound on the layout area of the CCC. The area of the new layout deviates from this bound by a small constant factor. If we 'unfold' the cycles in the CCC, the resulting structure can be laid out in optimal area.published_or_final_versio

    Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method

    Submicron Systems Architecture: Semiannual Technical Report

    Get PDF
    No abstract available

    Optimal layouts of midimew networks

    Get PDF
    Midimew networks [4] are mesh-connected networks derived from a subset of degree-4 circulant graphs. They have minimum diameter and average distance among all degree-4 circulant graphs, and are better than some of the most common topologies for parallel computers in terms of various cost measures. Among the many midimew networks, the rectangular ones appear to be most suitable for practical implementation. Unfortunately, with the normal way of laying out these networks on a 2D plane, long cross wires that grow with the size of the network exist. In this paper, we propose ways to lay out rectangular midimew networks in a 2D grid so that the length of the longest wire is at most a small constant. We prove that these constants are optimal under the assumption that rows and columns are moved as a whole during the layout process. ©1996 IEEE.published_or_final_versio

    Quantifying the relationship between the power delivery network and architectural policies in a 3D-stacked memory device

    Get PDF
    pre-printMany of the pins on a modern chip are used for power delivery. If fewer pins were used to supply the same current, the wires and pins used for power delivery would have to carry larger currents over longer distances. This results in an "IR-drop" problem, where some of the voltage is dropped across the long resistive wires making up the power delivery network, and the eventual circuits experience fluctuations in their supplied voltage. The same problem also manifests if the pin count is the same, but the current draw is higher. IR-drop can be especially problematic in 3D DRAM devices because (i) low cost (few pins and TSVs) is a high priority, (ii) 3D-stacking increases current draw within the package without providing proportionate room for more pins, and (iii) TSVs add to the resistance of the power delivery net-work. This paper is the first to characterize the relationship be- tween the power delivery network and the maximum sup ported activity in a 3D-stacked DRAM memory device. The design of the power delivery network determines if some banks can handle less activity than others. It also deter-mines the combinations of bank activities that are permissible. Both of these attributes can feed into architectural policies. For example, if some banks can handle more activities than others, the architecture benefits by placing data from high-priority threads or data from frequently accessed pages into those banks. The memory controller can also derive higher performance if it schedules requests to specific combinations of banks that do not violate the IR-drop constraint

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure
    • 

    corecore