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Tighter Layouts of the Cube-Connected Cycles
Guihai Chen and Francis C.M. Lau, Member, IEEE

AbstractÐPreparata and Vuillemin proposed the cube-connected cycles (CCC) and its compact layout in 1981 [17]. We give a new

layout of the CCC which uses less than half the area of the Preparata-Vuillemin layout. We also give a lower bound on the layout area of

the CCC. The area of the new layout deviates from this bound by a small constant factor. If we ªunfoldº the cycles in the CCC, the

resulting structure can be laid out in optimal area.

Index TermsÐInterconnection networks, cube-connected cycles, VLSI, embedding, routing, layout.

æ

1 INTRODUCTION

INTERCONNECTION network is a key component of a parallel
computer. Many issues need to be considered when

deciding on a specific topology for connecting a set of
processors. Given the rapid technological advances in VLSI,
it is reasonable to conceive of a huge number of processors
being integrated tightly together to solve problems in a
cooperative, parallel fashion. Therefore, one of the criteria
to judge the suitability of an interconnection network for the
implementation of parallel computers is whether the
network can be laid out compactly in a VLSI grid.

The cube-connected cycles �CCC�, one of the most

extensively studied and frequently cited interconnection

networks, was proposed by Preparata and Vuillemin [17] as

a substitute for the hypercube in 1981. In the same paper,

they gave an asymptotically optimal layout scheme for the

CCC. Their layout scheme, however, cannot produce the

minimal layout for the CCC. Our work aims at finding better

layout schemes for the CCC. Research in the fields of graph

embedding and VLSI layout has developed powerful

techniques [2], [5] that can produce embeddings and

layouts which are quite efficientÐoften within a constant

factor from the optimal. However, even a modest constant

factor may render an asymptotically optimal layout or

embedding unacceptable for real implementation. It is

necessary to try to achieve the minimal. This is the

motivation behind our work.

Our project has two goals: 1) to give a more compact

layout of the CCC than the Preparata-Vuillemin layout, and

2) to reduce the long wires of the layout while keeping the

asymptotically optimal area. We have achieved the first

goalÐa new layout scheme which uses less than half the

area of the Preparata-Vuillemin layout. Section 2 reviews

the Preparata-Vuillemin layout. Section 3 presents the new

layout and compares it with the Preparata-Vuillemin

layout. Section 4 gives a lower-bound on the layout area.

The Appendix presents a layout of the ªunfoldedº version

of the CCCÐcalled the cube-connected lines (CCL).

2 PRELIMINARIES

We assume the VLSI model by Thompson [18], [19]. In our

constructions, no knock-knees are allowedÐthat is, two

wires cannot turn at the same grid point [15], [16].

Formally, an embedding or layout of a graph G in a

Thompson grid is an assignment of the nodes of G to

intersection points in the grid and the edges of G to paths

along the grid tracks. One of the important measures of a

layout is the layout area, which is defined as the product of

the number of vertical tracks and the number of horizontal

tracks that the layout uses to contain all the nodes and all

the path segments.

2.1 Cube-Connected Cycles

The s-dimensional (s-d for short) cube-connected cycles

(CCC) is constructed from the s-dimensional hypercube by

replacing each node of the hypercube with a cycle of s nodes

[14], [17]. The ith-d edge of a node of the hypercube is then

connected to the ith node of the corresponding cycle of the

CCC. For example, see Figs. 1a and 1b. The resulting graph

has s � 2s nodes, each of degree 3. By extending the labeling

scheme of the hypercube, we can represent each node of the

CCC by hw; ii where i (1 � i � s) is the position of the node

within its cycle and w (an s-bit binary string with the first-d

at the rightmost) is the label of the node in the hypercube

that corresponds to the cycle. Two nodes, hw; ii and hw0; i0i,
are linked by an edge in the CCC if and only if either

1. w � w0 and iÿ i0 � �1 �mod s�, or
2. i � i0 and w differs from w0 in precisely the ith bit.

Edges of kind (1) are cycle-edges and edges of kind (2) are

cube-edges. As shown in Fig. 1c, the CCC is often drawn in

the multistage format which will directly give rise to the

Preparata-Vuillemin layout. The first and the last stage,
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stages 1 and s, are called the two end stages, and they con±

sist of all the nodes hw; ii for i � 1 and i � s, respectively.

The CCC is closely related to the butterfly network, just as

the shuffle-exchange network is to the deBruijn network.

The group-theoretic relations of the four networks are well

studied in [1] where the CCC and the butterfly are proven to

be Cayley graphs derivable from the shuffle-exchange

network and the deBruijn network, respectively; and

inversely, the shuffle-exchange network and the deBruijn

network are proven to be some coset graph of the CCC and

the butterfly network, respectively. Feldmann and Unger

proved that the CCC is a subgraph of the butterfly network,

and the shuffle-exchange network is a subgraph of the

deBruijn network [10].

We introduce in passing an unfolded version of the CCC.
Like the butterfly network, the CCC now has the traditional

folded version and the new unfolded version. For the

unfolded CCC, Condition 1 in the above definition is

changed to

1. w � w0 and iÿ i0 � �1.

Each cycle of the CCC is replaced by a line in the unfolded

CCC. We therefore call the unfolded CCC the cube-connected

lines, denoted by CCL hereafter. A 3-d CCL is shown in

Fig. 1d. We present the layout of the CCL in the Appendix.

2.2 The Preparata-Vuillemin Layout

Fig. 2b shows the Preparata-Vuillemin layout of a 4-d CCC,
which is recursively constructed from two 3-d CCCs
(identified by the dotted lines). Based on the recursive

construction, it easily can be proven that a CCC of N � s � 2s
nodes can be placed on a 2 � 2s � �2s � 1� chip. Since

s ' log�N= logN�, the chip size is O��N= logN�2�. In gen±

eral, we say that a network of N nodes has asymptotically-

optimal layout if it can be laid out in area O�N2=T 2�, where

T is the time to execute an ascend-descend algorithm [4],

[19]. CCC can execute an ascend-descend algorithm in time

O�logN� [17]. Therefore, the Preparata-Vuillemin layout is

asymptotically optimal.

In more detail, for an s-d CCC with n � 2s cycles, denoted

by CCC�n� hereafter, let W�s� and H�s� be the numbers of

vertical and horizontal tracks, respectivelyÐi.e., the width

and the height of a layout. Then, for the Preparata-

Vuillemin layout,

W�1� � 4;

H�1� � 3;

W�s� � 2W�sÿ 1�;
H�s� � H�sÿ 1� � 2sÿ1:

We get W�s� � 2s�1 � 2n and H�s� � 2s � 1 � n� 1. Hence,

the area occupied by the Preparata-Vuillemin layout,

W�s� �H�s�, is

2n�n� 1� � 2n2 � 2n: �1�
For the ªmore economicalº Preparata-Vuillemin layout

which is shown in Fig. 2c,

W�1� � 4;

H�1� � 3;

W�s� � 2W�sÿ 1�;

H�s� � H�sÿ 1� � 2sÿ1 if s is odd

H�sÿ 1� � 2sÿ2 � 1 if s is even:

�
The saving in the number of horizontal tracks for the case

of even s comes from the overlapping of some of the sth-d
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Fig. 1. (a) A 3-d hypercube. (b) A 3-d CCC. (c) Another drawing of a 3-d CCC: Cycle-edges in thick lines and cube-edges in thin lines. (d) A 3-d CCL.



tracks with the embedded layouts for the �sÿ 1�-d CCC (see

the dotted region in Fig. 2c). From the above, we get W �s� �
2s�1 � 2n and

H�s� � 3� �2� 4� 5� � � � 2sÿ2 � �2sÿ2 � 1��
� 2

3
2s � 1

2
s� 4

3

for even s, and H�s� � 5
6 2s � 1

2 s� 5
6 for odd s. For simplicity,

we only consider even s. Hence, the area is

4

3
n2 � n logn� 8

3
n: �2�

3 NEW LAYOUTS

Although the Preparata-Vuillemin layout for CCC is asymp-

totically optimal, it is not the minimal layout. For real

implementations, we would prefer using as tight a layout as

possible. Here we give a new layout for the CCC. It is more

compact than the Preparata-Vuillemin layout; whether it is

minimal is an open question.
Referring to Fig. 2 again, there are two obvious short-

comings in the Preparata-Vuillemin layout:

. It does not try to make use of the corner positions of
a cycle by putting some nodes there, and

. It places all the cycles along the same horizontal axis.

In the new layout, these two problems are corrected, and the

resulting layout uses less area and has a better aspect ratio.

3.1 Small CCCs
Figs. 3a, 3b, and 3c show the layouts of the first three CCCs,

starting from the second dimension. These layouts use

minimal areas. As our interest is in the layout of the general

CCC, we omit the proofs of these specific cases here. Like

the Preparata-Vuillemin layout, the new layout is based

on recursive construction. Unlike the Preparata-Vuillemin

layout, for which the recursion begins at the first dimension,

the base case for recursion in the new layout is the 4-d CCC
(Fig. 3c). The reason for this is that the layout of the 4-d CCC
is the first one (starting from the first dimension) that puts a

node in every corner of a cycle. This layout is correct in

the sense that it is indeed a valid CCC that is being laid out.

This can be easily verified by examining the connections

against the labels of the cycles in Fig. 3c; similarly for the

smaller cases.

3.2 Recursive Construction

The procedure is as follows, for s � 5.

Take two copies of the layout for the �sÿ 1�-d CCC;
place them side by side. Stretch every cycle vertically by
an extra height of 2sÿ3 for the embedding of the sth-d nodes
and edges.
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Fig. 2. (a) Preparata-Vuillemin layout of the 1D CCCÐthe base case. (b) Preparata-Vuillemin layout of the 4-d CCC. (c) More economical Preparata-

Vuillemin layout of the 4-d CCC.



Since there are four rows of cycles from top to bottom, a

total of 2sÿ1 extra horizontal tracks are added. Note how the

sth-d nodes and edges are embedded (refer to Fig. 3d and

Fig. 4) within these extra tracks: One node is added to every

cycle, and its corresponding node in the other copy of the

layout of the �sÿ 1�-d CCC is placed at the same horizontal
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Fig. 3. New layouts of small CCC's: (a) A 2-d CCC uses area 4� 4; (b) a 3-d CCC uses area 8� 6; (c) a 4-d CCC uses area 12� 12; (d) a 5-d CCC uses

area 24� 28.



position, and the two are joined by a horizontal wire. We

label the cycles in the left copy by extending the original

labels by a 0 on the left, and the cycles in the right copy by a

1 on the left. The correctness of the s-d layout immediately

follows from this labeling scheme. In Fig. 3d, which is

recursively constructed from Fig. 3c, the labels of the

bottom row of cycles are shown.
Using the procedure, the layout of the 6-d CCC can be

constructed easily. The result is shown in Fig. 4.

For an s-d CCC with n � 2s cycles,

W �4� � 12;

H�4� � 12;

W �s� � 2W �sÿ 1�;
H�s� � H�sÿ 1� � 2sÿ1:

We get W�s� � 12� 2sÿ4 � 3
4n and

H�s� � 2s ÿ 4 � nÿ 4:
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Fig. 4. New layout of the 6-d CCC with area 48� 60.



Hence, the area, W�s� �H�s�, is

3

4
n2 ÿ 3n: �3�

In the same way that a more economical layout can be

derived from the Preparata-Vuillemin layout, the new

layout has a more economical version. The more economical

version for the 6-d CCCis shown in Fig. 5. For this improved

layout,

W�4� � 12;

H�4� � 12;

W�s� � 2W�sÿ 1�;

H�s� � H�sÿ 1� � 2sÿ1 if s is odd

H�sÿ 1� � 2sÿ2 � 4 if s is even:

�
We get W�s� � 12� 2sÿ4 � 3

4n and H�s� � 12� �16� 20�
64� 68� � � � � 2sÿ2 � �2sÿ2 � 4�� � 2

3 2s � 2sÿ 20
3 for even s.

Hence, the area is

1

2
n2 � 3

2
n log nÿ 5n: �4�

3.3 Comparison

It is worth noting that although the construction strategy

used in the new layout and that in the Preparata-Vuillemin

layout are very different, the two layouts have the same

recursive formulae for W�s� and H�s�, and almost the same

recursive formulae for their more economical versions. The

new layout, however, is based on a much better base

caseÐW �4� � H�4� � 12 or W�4� �H�4� � 144; whereas

the area using the Preparata-Vuillemin layout for the same

size is 32� 17 � 544 or 32� 14 � 448 for the more eco±

nomical version. As a result, the new layout has a smaller

constant in front of the dominant term in its area formulae.

By ignoring the low-order terms in (1), (2), (3), and (4),

the four layout schemes of the CCC�n� that were discussed in
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Fig. 5. More economical new layout of the 6-d CCC with area 48� 48.



Sections 2.2 and 3.2 take areas of approximately 2n2, 4
3n

2,
3
4n

2, and 1
2n

2, respectively. We compare the new layout with

the Preparata-Vuillemin layout, and the more economical

version of the new layout with the more economical version

of the Preparata-Vuillemin layout. In either case, the new

layout scheme uses less than half the area of the Preparata-

Vuillemin layout. The other important advantage of the

new layout is that it has a more practical aspect ratio

(W�s�=H�s�), which is close to 1, whereas the aspect ratio of

the Preparata-Vuillemin layout could be as large as 3.

Because of a better aspect ratio, the new layout has a shorter

maximum wire length than the Preparata-Vuillemin layout.

The new layout also shows the superiority of the CCC in

layout area over other hypercube substitutes such as the

shuffle-exchange network and the butterfly network [14].

The optimal layout of the shuffle-exchange network was

due to Leighton [13]. His layout of the shuffle-exchange

network, as well as the other related ones, however, is

complicated, not regular or recursive. For years, the best

known layout of the butterfly network with n inputs or

outputs was that by Wise [20], which has area ' 2n2.

Recently, more compact layouts for the butterfly were

found with area ' 11
6 n

2 [9], or n2 � o�n2� [2]. The butterfly

networks discussed in all these papers, however, are

unfolded. To be fair, the folded butterfly network (i.e., the

first and the last stage are merged) [10], [14] should be

considered when comparing with the CCC. The correspond-

ing areas of the folded butterfly given in [2], [9], [20] would

then need to be doubled or quadrupled. On the other hand,

as can be seen in the Appendix, the unfolded CCC can be

laid out with area ' 1
4n

2.

4 LOWER BOUND ON LAYOUT AREA

We give below a lower bound of �12nÿ 1�2 on the layout

area for the CCC�n�. Our layout of the CCC as presented in the

previous sections deviates from this bound by a factor of 2.

The following construction does not take into account the

cycles in the CCC (see Fig. 6). Each cycle, in fact, is treated as

a line, and hence, the lower bound is also valid for the CCL.

As is shown in the Appendix, the CCL can be laid out in an

area of �12n� o�n��2, which is tight when compared with the

lower bound.

The lower bound of �12nÿ 1�2 can be easily seen from the

bounding strategy invented in [19], which is in terms of the

bisection width of a graph.

Lemma 1. For any graph G with bisection width BW �G�,
AREA�G� � �BW�G� ÿ 1�2 [19].

The proof of the bisection width, 1
2n, of the CCC�n�, however,

is complicated. We therefore turn to the modified bounding

strategy introduced in [2], which uses something called the

minimum special bisection width. Using this strategy, the

authors of [2] were able to derive a tight lower bound for

the butterfly network layout.

Let G be a graph having a designated set of special nodes.

The minimum special bisection width of G, denoted

MSBW�G�, is the smallest number of edges whose removal

partitions G into two disjoint subgraphs, each containing

half of G's special nodes.

The following three lemmas are due to Avior et al [2].

They used a congestion argument originated in [13], [14],

which can be applied to bound unknown MSBWs with

known ones.

Lemma 2. For any graph G with MSBW�G�, AREA�G� �
�MSBW�G� ÿ 1�2 [2].
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Fig. 6. An embedding of K8;8 into the CCC�n�.



Lemma 3. Let G andH be graphs having equal numbers of special

nodes [2] . If there is an embedding of G into H, which maps

special nodes to special nodes and which has congestion � C,

then

MSBW �H� � �1=C�MSBW�G�:

Lemma 4. For the complete bipartite graph Kn;n,

MSBW �Kn;n� � 1
2n

2 when all nodes of Kn;n are special [2].

Now given the complete bipartite graph Kn;n which has a

known MSBW , if we could embed it into the CCC�n�, then

by Lemma 3, we will have the MSBW of the CCC�n�. The

next lemma gives such an embedding.

Lemma 5. Kn;n can be embedded into the CCC�n� with congestion

2s � n.

Proof. The embedding of Kn;n into CCC�n� is such that the

inputs of Kn;n are mapped to the first stage (Stage 1) of

the CCC�n� and outputs of Kn;n are mapped to the last

stage (Stage s) of the CCC�n�. The edges of Kn;n are

mapped to various paths that go from some first-stage

node to some last-stage node in the CCC�n�Ði.e., from left

to right in Fig. 6a. Hence, the special nodes of the CCC�n�
are all the nodes in the first and the last stage.

Without loss of generality, Fig. 6 shows an embedding
of K8;8 into a CCC�8�. The CCC�8� has two columns of eight
nodes each, which correspond respectively to the first
stage and the last stage of nodes in Fig. 6e. Since the long
wrap-around cycle-edges of the CCC are not used for
routing in the embedding, Fig. 6a is simplified as Fig. 6b,
which is actually a CCL�8�. Fig. 6b can be isomorphically
arranged to become Fig. 6c, in which all stages of nodes,
except the first stage, are reordered so that a pair of
nodes connected by a cube-edge are placed together, just
like those in the first stage. As a result, the cycle-edges at
each stage would be in an unshuffle-connection pattern
[1], [8]. Fig. 6c can be transformed into Fig. 6e by
replacing every pair of nodes by a complex node, as
shown in Fig. 6d. Fig. 6e is a reverse omega network (or
a flip network [3]). Hence, we have transformed the
original CCC�n� into a reverse omega network with 1

2n

inputs and 1
2n outputs.

The reverse omega network (with 1
2n inputs and 1

2n

outputs) has the banyan property [11]: Each input node u
is connected to each output node v by exactly one path of
length sÿ 1. Let e be a stage-k edge of the reverse omega
network, where 1 � k � sÿ 1. One end point of e reaches
precisely 2sÿkÿ1 distinct output nodes while the other
end point of e reaches precisely 2kÿ1 distinct input nodes.
Hence, edge e lies on precisely 2sÿ2 input-output paths.
Since each input or output contains two nodes of Kn;n,
edge e lies on precisely 2s input-output pathsÐi.e., its
congestion is 2s � n.

A further look reveals that the congestion of cube-
edges of the CCC�n�, shown as a thin edge in Fig. 6d,
is also 2s � n, since from each input, exactly half of

the paths will go through the cube-edge of a
complex node. tu

Lemma 6. MSBW�CCC�n�� � 1
2n.

Proof. Directly from Lemmas 3, 4, and 5. tu

Combining Lemma 6 and Lemma 2 yields the desired
lower bound on the area of CCC�n� layouts:

Theorem 1. Any layout of CCC�n� has area at least �12nÿ 1�2.

5 CONCLUSION

We have given a simple, regular, and more compact layout
scheme for the CCC, which takes less than half of the area of
the Preparata-Vuillemin layout. We have also derived a
lower bound on the layout area of the CCC. Our layout
deviates from the lower bound by a constant factor of 2. The
lower bound, however, is not the tightest possible because
its construction does not take into account the laying out of
the cycles in a CCC. It is, more appropriately, a lower bound
for the CCL. On the other hand, our tight layout of the CCL
can give rise to a layout of the CCC, but the area will be four
times that of the CCL (consider Fig. 7, and the width and the
height of the grid will need to be doubled to accommodate
the cycles of the CCC). We conjecture, therefore, that the
layout of the CCC as we have proposed in this paper is
optimal. Further work will be directed to deriving a lower
bound for the CCC that would take the cycles into account.

Our layout of the CCL as given in the Appendix reveals
the superiority of the CCL over the unfolded butterfly
network, since the former takes only one-fourth of the
layout area of the unfolded butterfly network [2]. Another
merit of the CCL is that a CCC can be embedded into a CCL
with congestion 2 and dilation 2 due to the well-known fact
that a cycle can be embedded into a line with congestion 2
and dilation 2. Hence, the CCL can be a good substitute for
the CCC, and can execute an ascend-descend algorithm with
a small constant slowdown.

Another important measure of a layout is the maximum
wire length [4], [12]. We have recently succeeded in
deriving a layout of the CCC which has no long wires and
yet preserves the asymptotic-optimality of the area [7]. Our
next task is to consider the trade-off [4], [6] between area
and maximum wire length for the CCC layouts.

APPENDIX

LAYOUT OF CCL
In this Appendix, we give a tight layout of the CCL. Avior et

al. [2] gave a tight layout of the unfolded butterfly network

with area �n� o�n��2. We borrow their technique and apply

it to the CCL, resulting in the desired tight layout of the CCL
with area �12n� o�n��2.

Using the Preparata-Vuillemin layout (Fig. 2b)), if we
replace all the cycles by lines, we can lay out a CCL�n� in an
n� �nÿ 1� grid because nodes can now be placed at the
two ends of a line.

Lemma 7. A CCL�n� can be laid out in an �n� o�n�� � �n�
o�n�� grid.
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Proof. Let the stages of a CCL�n� be numbered

1; 2; . . . ; sÿ 1; s, where n � 2s. Let k � s=2. By cutting

the edges between Stage k and Stage k� 1, we decom-

pose the CCL�n� into

. CCL�n; 1�: the subgraph of CCL�n� bounded by
Stage 1 and Stage k, and

. CCL�n; 2�: the subgraph of CCL�n� bounded by
Stage k� 1 and Stage s.

Let L be a (Preparata-Vuillemin) layout of CCL�2k� in a

2k � �2k ÿ 1� grid. We stack 2k copies of L, one above

another, along the right side of the grid for CCL�n�. This

takes care of CCL�n; 1� using a space of n� �2k ÿ 1�
(Fig. 7). By basic properties of the hypercube, CCL�n; 2� is

isomorphic to CCL�n; 1� by a suitable relabeling of the

lines. We then do the same for CCL�n; 2� along the

bottom side of the grid as we just did to CCL�n; 1�. It can

be easily seen that the smallest grid for the CCL�n� that

can hold both CCL�n; 1� and CCL�n; 2� is of area

�n� o�n�� � �n� o�n��.
We must then connect CCL�n; 1� and CCL�n; 2� to re-

create the CCL�n�. This can be accomplished by routing a
specific bijection between the two subgraphs of the
CCL�n�. It is obvious that the unpopulated area that is left
behind after placing the CCL�n; 1� and CCL�n; 2� is
sufficient for any such bijection to be routed. tu
Note that by a suitable orientation, the two end stages of

nodes of the CCL�n� would occupy one horizontal side and

one vertical side of the grid, as shown in Fig. 8a.
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Fig. 8. (a) Ln. (b) L2n. (c) L4n.

Fig. 7. CCL�n; 1� and CCL�n; 2� inside CCL�n�.



Theorem 2. There is a layout of the CCL�n� with area
�12n� o�n��2.

Proof. We construct a layout of a CCL�4n� from four copies
of a layout of CCL�n�. By Lemma 7, a CCL�n� can be laid
out in an �n� o�n�� � �n� o�n�� grid (Fig. 8a). We refer
to this layout of the CCL�n� as Ln. We flip Ln horizontally
to produce L0n. Using n extra nodes (in two columns), we
can form CCL�2n� from Ln and L0n (Fig. 8b). We refer to
this layout of the CCL�2n� as L2n.

Next, flip L2n vertically to produce L02n. Add extra
stages of nodes, and then join L2n and L02n by connecting
these stages of nodes to produce L4n, a layout for
CCL�4n� (Fig. 8c). Clearly, layout L4n resides in a �2n�
o�n�� � �2n� o�n�� grid. tu
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