646 research outputs found

    Accurate a priori signal integrity estimation using a multilevel dynamic interconnect model for deep submicron VLSI design.

    Get PDF
    A multilevel dynamic interconnect model was derived for accurate a priori signal integrity estimates. Cross-talk and delay estimations over interconnects in deep submicron technology were analyzed systematically using this model. Good accuracy and excellent time-efficiency were found compared with electromagnetic simulations. We aim to build a dynamic interconnect library with this model to facilitate the interconnect issues for future VLSI design

    Variant X-Tree Clock Distribution Network and Its Performance Evaluations

    Get PDF

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Delay Extraction Based Equivalent Elmore Model For RLC On-Chip Interconnects

    Get PDF
    As feature sizes for VLSI technology is shrinking, associated with higher operating frequency, signal integrity analysis of on-chip interconnects has become a real challenge for circuit designers. For this purpose, computer-aided-design (CAD) tools are necessary to simulate signal propagation of on-chip interconnects which has been an active area for research. Although SPICE models exist which can accurately predict signal degradation of interconnects, they are computationally expensive. As a result, more effective and analytic models for interconnects are required to capture the response at the output of high speed VLSI circuits. This thesis contributes to the development of efficient and closed form solution models for signal integrity analysis of on-chip interconnects. The proposed model uses a delay extraction algorithm to improve the accuracy of two-pole Elmore based models used in the analysis of on-chip distributed RLC interconnects. In the proposed scheme, the time of fight signal delay is extracted without increasing the number of poles or affecting the stability of the transfer function. This algorithm is used for both unit step and ramp inputs. From the delay rational approximation of the transfer function, analytic fitted expressions are obtained for the 50% delay and rise time for unit step input. The proposed algorithm is tested on point to point interconnections and tree structure networks. Numerical examples illustrate improved 50% delay and rise time estimates when compared to traditional Elmore based two-pole models

    High-freequency CMOS VLSI chip testability and on-chip interconnect modeling

    Get PDF
    As high-speed digital and radio-frequency mixed-signal integrated circuits become increasingly common in product designs in industry, it is important for VLSI designers to be familiar with the challenges of chip testing and the behavior of circuit elements, including on-chip interconnect, at high frequencies. Expensive, specialized test equipment and software simulation packages for high-frequency chip testing and design are not always accessible for student research. This thesis documents the setup and characterization of a best-possible environment for high-frequency chip testing and data acquisition using existing laboratory equipment and resources. Experimental methodologies and measurement results of on-chip interconnect signal integrity and delay, ring oscillator noise and timing jitter, and time-domain reflectometry (TDR) testing are presented. Methods of modeling on-chip interconnect at high frequencies using field solvers and equivalent circuits are discussed. Lastly, the designs of single-ended and differential ring oscillators, for use in future voltage-controlled oscillator (VCO) and phase-locked loop (PLL) test chip designs, are presented and analyzed

    Modelling and analysis of crosstalk in scaled CMOS interconnects

    Get PDF
    The development of a general coupled RLC interconnect model for simulating scaled bus structures m VLSI is presented. Several different methods for extracting submicron resistance, inductance and capacitance parameters are documented. Realistic scaling dimensions for deep submicron design rules are derived and used within the model. Deep submicron HSPICE device models are derived through the use of constant-voltage scaling theory on existing 0.75µm and 1.0µm models to create accurate interconnect bus drivers. This complete model is then used to analyse crosstalk noise and delay effects on multiple scaling levels to determine the dependence of crosstalk on scaling level. Using this data, layout techniques and processing methods are suggested to reduce crosstalk in system

    High-frequency characterization of embedded components in printed circuit boards

    Get PDF
    The embedding of electronic components is a three-dimensional packaging technology, where chips are placed inside of the printed circuit board instead of on top. The advantage of this technology is the reduced electronic interconnection length between components. The shorter this connection, the faster the signal transmission can occur. Different high-frequency aspects of chip embedding are investigated within this dissertation: interconnections to the embedded chip, crosstalk between signals on the chip and on the board, and interconnections running on top of or underneath embedded components. The high-frequency behavior of tracks running near embedded components is described using a broadband model for multilayer microstrip transmission lines. The proposed model can be used to predict the characteristic impedance and the loss of the lines. The model is based on two similar approximations that reduce the multilayer substrate to an equivalent single-layer structure. The per-unit-length shunt impedance parameters are derived from the complex effective dielectric constant, which is obtained using a variational method. A complex image approach results in the calculation of a frequency-dependent effective height that can be used to determine the per-unit-length resistance and inductance. A deliberate choice was made for a simple but accurate model that could easily be implemented in current high-frequency circuit simulators. Next to quasi-static electromagnetic simulations, a dedicated test vehicle that allows for the direct extraction of the propagation constant of these multilayer microstrips is manufactured and used to verify the model. The verification of the model using simulation and measurements shows that the proposed model slightly overestimates the loss of the measured multilayer microstrips, but is more accurate than the simulations in predicting the characteristic impedance
    corecore