
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-22-2012 12:00 AM 

Delay Extraction Based Equivalent Elmore Model For RLC On-Chip Delay Extraction Based Equivalent Elmore Model For RLC On-Chip 

Interconnects Interconnects 

Shamsul Arefin Siddiqui 
The University of Western Ontario 

Supervisor 

Dr. Anestis Dounavis 

The University of Western Ontario 

Graduate Program in Electrical and Computer Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of 

Engineering Science 

© Shamsul Arefin Siddiqui 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Electrical and Electronics Commons, Systems and Communications Commons, and the 

VLSI and Circuits, Embedded and Hardware Systems Commons 

Recommended Citation Recommended Citation 
Siddiqui, Shamsul Arefin, "Delay Extraction Based Equivalent Elmore Model For RLC On-Chip 
Interconnects" (2012). Electronic Thesis and Dissertation Repository. 748. 
https://ir.lib.uwo.ca/etd/748 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ir.lib.uwo.ca%2Fetd%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/748?utm_source=ir.lib.uwo.ca%2Fetd%2F748&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

DELAY EXTRACTION BASED EQUIVALENT ELMORE MODEL 
FOR RLC ON-CHIP INTERCONNECTS 

 
 

(Spine title: Delay Extraction Based Elmore Model 
For On-Chip Interconnect)  

 
(Thesis format: Monograph) 

 
 
 

by 
 
 
 

Shamsul Arefin Siddiqui 
 
 
 
 

Graduate Program in Engineering Science 
Department of Electrical and Computer Engineering 

 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of  

Master of Engineering Science 
 
 
 

The School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Shamsul Arefin Siddiqui 2012 
 

 



ii 

 

THE UNIVERSITY OF WESTERN ONTARIO 
School of Graduate and Postdoctoral Studies 

 
 

CERTIFICATE OF EXAMINATION 

 

 

 

Supervisor 
 
 

______________________________ 
Dr. Anestis Dounavis 

 
Supervisory Committee 

 
 
 

Examiners 
 
 

______________________________ 
Dr. Len Luyt 

 
 

______________________________ 
Dr. Quazi Mehbubar Rahman 

 
 

______________________________ 
Dr. Rajiv K. Varma 

 
 

 
The thesis by 

 

Shamsul Arefin Siddiqui 
 

entitled: 
 

Delay Extraction Based Equivalent Elmore Model 
For RLC On-Chip Interconnects 

 
is accepted in partial fulfillment of the 

requirements for the degree of 
Master of Engineering Science 

 
 
 

______________________            _______________________________ 
         Date    Chair of the Thesis Examination Board 



iii 

 

Abstract 

 

As feature sizes for VLSI technology is shrinking, associated with higher operating 

frequency, signal integrity analysis of on-chip interconnects has become a real challenge 

for circuit designers. For this purpose, computer-aided-design (CAD) tools are necessary 

to simulate signal propagation of on-chip interconnects which has been an active area for 

research. Although SPICE models exist which can accurately predict signal degradation 

of interconnects, they are computationally expensive. As a result, more effective and 

analytic models for interconnects are required to capture the response at the output of 

high speed VLSI circuits. This thesis contributes to the development of efficient and 

closed form solution models for signal integrity analysis of on-chip interconnects. The 

proposed model uses a delay extraction algorithm to improve the accuracy of two-pole 

Elmore based models used in the analysis of on-chip distributed RLC interconnects. In 

the proposed scheme, the time of fight signal delay is extracted without increasing the 

number of poles or affecting the stability of the transfer function. This algorithm is used 

for both unit step and ramp inputs. From the delay rational approximation of the transfer 

function, analytic fitted expressions are obtained for the 50% delay and rise time for unit 

step input. The proposed algorithm is tested on point to point interconnections and tree 

structure networks. Numerical examples illustrate improved 50% delay and rise time 

estimates when compared to traditional Elmore based two-pole models.  

Keywords 

Delay, distributed RLC model, interconnects, moment matching, simulation, tree, VLSI, 

CAD. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background Review and Problem Identification 

The process of creating integrated circuits by combining hundreds of thousands of 

transistors into a single chip is usually referred to very-large-scale-integration (VLSI). 

VLSI began in early 1970s when complex semiconductor and communication 

technologies were being developed. Now a days, VLSI circuits and integrated circuit (IC) 

chips find application in numerous fields like mobile and satellite communication, 

computer hardware, micro-electromechanical systems (MEMS) devices, robotics and 

other electronic systems. VLSI circuit density and complexity has exponentially 

increased over the years leading to miniaturization of electronic systems, increase in 

speed of production from circuit specifications to actual hardware development and a 

resulting decline in prices of electronic devices. The rapid decrease in featured size has 

followed by a commensurate increase in operating frequencies. At gigahertz range [1] 

frequencies, design of clocks has been very critical which mainly determines the speed of 

operation of such circuits.  As anticipated by Moore’s law, the number of transistors in an 

integrated circuit (IC) has doubled every two to three years. Modern ICs are now 

composed of millions of transistors switching simultaneously within a fraction of a 

second.  
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At present, 32 nm technology is in production and microprocessor clock frequencies 

are well above GHz range. The speed of an electrical signal in an IC is governed by two 

components. The first component is the switching time of an individual transistor, known 

as transistor gate delay, and the second one is the signal propagation time between 

transistors, known as wire delay or interconnect delay. In modern VLSI circuits, major 

challenges include layout optimization, high power dissipation at high frequencies of 

operation, increased interconnect delays, crosstalk noise between mutually coupled 

interconnects and simultaneous switching noise (SSN) in the power/ground plane pair. It 

has been analyzed that signal integrity problems in interconnects determines the 

performance of overall circuits. It is important to  predict signal degradation like 

propagation delay, crosstalk noise, signal overshoot, ringing and attenuation in the early 

design cycles [2]-[5] which can critically affect system response. Using computer aided 

design (CAD) tools for signal integrity, simulations have replaced the more time-

consuming and inefficient practice of circuit development and testing at every stage of 

the design cycle for modern IC circuitry. However interconnect simulations suffer from a 

myriad of issues which require sophisticated CAD tools for analysis. 

 In the past, interconnects were modeled as a single lumped capacitance. Then 

lumped resistance-capacitance (RC) models were introduced in the analysis of the 

performance of on-chip interconnects [6], [7]. However, the electrical length of 

interconnects have become a significant fraction of the fundamental and harmonic 

wavelength of the transient signal [8] at the gigahertz speed of operation with multiple 

devices switching simultaneously. This means inductance effect will come into play 
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when dealing with these high speed interconnects. At such high speeds, interconnects 

must be modeled as distributed resistive-inductive-capacitive (RLC) transmission lines as 

opposed to lumped resistive-capacitive (RC) models to account for the non monotonic 

nature of the response [9].  

          Since overall circuit performance depends on interconnect delay, low dielectric 

metals like copper has been used in IC technology to decrease the line resistance and 

capacitances [10]. However this does not significantly decrease the line inductances. This 

has led to inductive line effects being a significant contributor to signal degradation. As 

the inductive effect of the line becomes dominant, the propagation delay of the line 

increases. Since feature sizes shrink in deep sub-micrometer technology to 90nm and 

beyond, signal propagation delay in interconnect has been found to outweigh the gate 

delay [10], [11]. This delay, if not effectively quantified can cause improper triggering 

and timing uncertainty. Line inductance can also lead to effects like ringing and non-

monotonic response contaminated with spurious glitches on active lines.  

As mentioned in the previous paragraphs, on-chip interconnects were modeled as 

RC lines and single-pole Elmore-based models [6], [12]–[14] were most widely used to 

estimate signal delay. However predicting signal waveform in tree structure interconnects 

has been prime concern. Elmore based model is used as a delay model for the 

buffer insertion in RC trees and wire sizing [15]-[24].  The popularity of this model 

is due to the fact that it has analytic expression for predicting 50% delay and rise 

time which is computationally fast and well suited for considering simulations of 

millions of transistors in VLSI circuits. Traditional Elmore based models have 
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limitations modeling RLC distributed interconnect networks, since these RLC lines may 

give non monotonic responses. As a result modeling RLC interconnects for modern 

circuit designers has been the centre of intense research [25]-[43]. To predict signal 

transients in high-speed interconnects, the lines are modeled as single line, coupled line 

and tree structure interconnects. In broad perspective there are mainly two ways to model 

on-chip interconnects which are SPICE macromodels and closed-form analytic models. 

         SPICE is the most common simulation tool that generally uses numerical 

integration or convolution techniques to provide accurate results. SPICE 

macromodels include both lumped model and models based on delay extraction using 

techniques such as method of characteristics [25].  The conventional lumped models or 

rational approximation models (such as PRIMA [44], MRA [29]-[30], compact 

differences [45]) represent interconnects as resistive, inductive and capacitive circuit 

elements or as ordinary differential equations (ODE). However for high frequency 

applications, the signal delay can be significant. These algorithms approximate the 

propagation delay implicitly without using delay extraction. Nonetheless to model long 

lines with significant delay these algorithms require higher order rational approximations 

to accurately capture the delay of the signal leading to inefficient transient SPICE 

simulation.  For more compact class of models the method of characteristics [25] has 

been used which is based on extracting the line-propagation delay [26]-[30] .Since the 

delay terms can account for the high frequency characteristics of an interconnect, these 

models allow more compact discretization of the line and lead to smaller matrices when 

applied to low loss, long lines. Simulation of on-chip interconnects using lumped models 
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or method of characteristic algorithms requires numerical integration or convolution 

techniques which obviously provide excellent accuracy but they are computationally 

expensive to be used in layout optimization [23] since this requires simulating 

circuit networks composed of millions of logic gates. 

In order to avoid the computational complexity of SPICE simulations closed-form 

analytic models have been developed. In order to derive closed form analytic models for 

on-chip interconnects, far end transistor is modeled as parasitic capacitor and near end 

transistor is modeled as resistor serially connected to a voltage source. These models are 

usually effective for obtaining the far end solutions. Such circuit scenarios represent a 

point-to-point interconnect system in IC designs ([16]-[24]) useful for initial design or 

layout optimization cycles and use simple low order rational function to approximate the 

transfer function so that it can be easily converted to the time-domain in a closed form 

manner without requiring any numerical integration. Since these methods don’t use 

numerical integration of large matrices they are computationally more efficient. Single 

pole Elmore based RC model [12] was the first analytic closed form model for on-

chip interconnects. Considering the inductance effect of RLC interconnects, two 

pole model (second order approximation) was developed in order to capture non 

monotonic responses of RLC lines.  To obtain more accurate models, multi-pole 

transfer functions [12]-[14], [31]-[32], traveling-waveform technique [34]-[35], modified 

Bessel function [37]-[40] and Fourier analysis [41] were introduced later on. However, 

extending these techniques to efficiently analyze RLC tree structures is a challenging 

task.  
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Even though Elmore based models have limited accuracy, they are commonly used 

to analyze integrated circuits composed of millions of gates, since it is often impractical 

and time consuming to use accurate modeling techniques to evaluate the signal delay at 

each node in the circuit . These techniques can provide quick relative delay estimates of 

different paths in large circuit networks, allowing for more in-depth and time consuming 

simulations to be performed on critical paths. The difficulty, in modeling inductive 

dominant RLC interconnects is that these networks may exhibit significant signal delays. 

Elmore based models rely on one or two pole approximations to estimate the delay. As a 

result, it is extremely difficult to capture the delay of longer lines of interconnect. To 

overcome this problem a new algorithm is proposed in this thesis.  

1.2 Objectives and Contributions  

        The objective of this work is to use a delay extraction technique to improve the 

accuracy of two-pole Elmore-based models for RLC interconnects. Since inductive 

dominant RLC interconnects may exhibit significant signal delays, it is extremely 

difficult to model these networks using only a two-pole transfer function. As a result, the 

proposed algorithm provides a mechanism to explicitly model the signal delay caused by 

RLC on-chip interconnect without significantly increasing the computational complexity 

of the model.  

 The proposed delay extraction based equivalent Elmore model is derived from the 

second order approximation of distributed RLC model since they provide better accuracy 

compared to lumped RLC model. In the proposed scheme, the time of fight signal delay 
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is extracted without increasing the number of poles or affecting the stability of the 

transfer function. This algorithm is used to obtain the far end time domain responses for 

both unit step and ramp inputs. From this analysis, analytic fitted expressions are 

obtained for the 50% delay and rise time for unit step inputs using curve fitting 

techniques. The proposed algorithm is tested on point to point single line interconnects 

and balanced and unbalanced tree structure networks. Numerical examples illustrate 

improved 50% delay and rise time estimations when compared to traditional Elmore 

based two-pole models.  

1.3 Organization of the Thesis 

           The thesis is organized as follows. Chapter 2 reviews the challenges of 

interconnect simulation in detail. Contributions made in literature to address these 

problems are also reviewed with special emphasis on some of the latest closed form 

models proposed. Chapter 3 deals with the proposed algorithms and shows the 

development of this model. Extracting the time of fight signal delay, the model is 

developed using the idea of second order approximation of distributed RLC model for 

both unit step and ramp inputs. Using curve fitting techniques, analytic expressions are 

provided for the 50% delay and rise time signals for unit step inputs. Chapter 4 deals with 

several numerical examples (single line, balanced and unbalanced tree structures) to 

proof the validity of the proposed model with HSPICE analysis and traditional two pole 

model for both unit step and ramp inputs of different rise times. The thesis is concluded 

with chapter 5 which summarizes the proposed work and also lists future related work. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction  

There are many different technologies in which chips can be made but 

complementary metal oxide semiconductor (CMOS) technologies are the most important 

and common technologies for very large scale integrated (VLSI) applications such as 

computers, digital signal processing, telecommunication, medical image processing, 

cryptography and digital control systems. CMOS circuitry dissipates less power than 

logic families with resistive loads. Since this advantage has increased and grown more 

important, CMOS processes have become very popular and dominate, thus the vast 

majority of modern integrated circuit manufacturing is on CMOS processes [46]. 

In a CMOS technology, doped silicon substrate is used to fabricate MOS device 

with a gate of polysilicon on top of a thin layer of oxide. Then n+ or p+ doping is used to 

make drain and source of the transistor. At first some voltage is applied to gate in order to 

create the channel between source and drain. Then voltage is applied at the drain terminal 

As a result, current flows from drain to source. In order to interconnect transistors, a stack 

of metal layers is available to the designer. Lower level metal layers have higher 

resistance values and upper level metal layers have lower resistance values. Also the 

parasitic capacitances and inductances of on-chip interconnect vary from one metal layer 

to another. 
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As Moore’s law predicts, the number of transistors in an integrated circuits (IC) 

will double every two to three years. For over 30 years, the feature size of CMOS 

technology has shrunk to dimensions into the nanometer region. According to 

International Technology Roadmap for Semiconductors (ITRS) [47], [48], feature sizes 

will further decrease at the rate of 0.7x per generation [1]. As a result of this continuous 

scaling, higher circuit speeds, lower power and larger packing densities of transistors are 

achieved. At present, Intel has started producing 32 nm technology microprocessor with a 

clock frequencies of well above GHz. The speed of an electrical signal in an IC depends 

on transistor gate delay (i.e. switching time) and the interconnect delay. Since 

interconnect delay is more important that switching delay, modeling of on-chip 

interconnects have been an intense area for research. 

2.2 VLSI Interconnect with Physical and Electrical Parameters 

As technology is scaled, interconnect delay starts to dominate the gate delay 

which is shown in Fig. 2.1. Because of high operating frequencies and technology shrink 

inductance effect can no longer be ignored. Inductance is a physical property of a closed 

current loop. Inductive  coupling  can  occur  over  a  long  distance,  whereas  capacitive   

TABLE 2.1 

INCREASING CLOCK SPEED IN IC TECHNOLOGY 

 

Year Technology (nm) 
Maximum Clock Speed 

(GHz) 

2004 90 4 

2007 65 6.7 

2010 45 11.5 

2013 32 19.3 

2016 22 28.8 
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coupling is limited to adjacent interconnects. As a result, it is not straightforward to 

extend the existing parasitic extraction approach to perform inductance extraction in on-

chip interconnects. 

Interconnects in VLSI and integrated circuits can be considered as strip lines or 

microstrip transmission lines. For microstrip lines it consists of a conductive strip of 

controlled width on a low-loss dielectric material mounted on a conducting ground plane. 

Microstrip is by far the most popular structure, especially for VLSI and other integrated 

circuits. The major advantage of microstrip is that all active components can be mounted 

on top of the board. The physical structure of such interconnect is shown in Fig. 2.2 

where w, t, h are the interconnect width, height (or thickness), inter-layer dielectric 

thickness respectively. Interconnect width, height and length can be controlled by the 

circuit designer. Transmission lines are best described by Telegraphers equation where 

per unit length resistance, inductance and capacitance (R , L ,C)  are needed. From the 

physical design of interconnect structures it is important to extract the electrical 

parameters of the interconnect in terms of per unit length resistance (R), capacitance (C) 

and inductance (L) before performing the timing analysis in the design flow. In standard  

                                                 
Fig. 2.1 Interconnect and gate delay with IC technology evolution.[47] 
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cell design, quick interconnect parasitic extraction and delay estimation are done at the  

place and route stage for optimum placement. These extraction becomes important since 

the interconnect design affects every stage of the design flow. 

   There are usually two ways to extract interconnect electrical parameters from 

their physical parameters. One is analytical expressions which are fast to calculate and 

another way is to use field solver [49], [50]. Analytical expressions of the interconnect 

per unit length resistance and capacitance are given by following equations [51] for the 

structure shown in Fig 2.2 

                                                             
tw

l
R 

                                                              

(2.1)

                                                            

                                          


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


 
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2
.                                    (2.2) 

where 0  and r are dielectric constant, and relative permittivity respectively. The 

interconnect inductance equation is from the predictive technology model [52] 
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Fig. 2.2 Cross-section of a single-strip shielded transmission line 
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where µ0 is the permeability in free space. 

 Another approach for determining the per unit length parameters is to use 2-D and 

3-D electro-magnetic field-solvers [50], [53]. In HSPICE the physical parameters of 

interconnect based on latest technology can be given to extract the electrical R, L, C 

parameters. Field solver provides better accuracy when compared to analytical formulas 

at the expense of computational complexity. Once the electrical parameters are identified, 

it is necessary to develop a model to estimate the delay. There are several closed form 

interconnect models which have been developed over the years. Next section will discuss 

some of those closed form models.  

2.3 Introduction to Closed Form Interconnect Modeling 

 Analysis of on-chip interconnects are based on either simulation techniques or 

closed-form analytic formulas. When it comes to modeling of on-chip interconnects for 

signal integrity verification, the most important difficulty is the numerical integration 

problem. This is because the distributed interconnects are best described by Telegraphers 

partial differential equations which can provide an exact transfer function for the far end 

response in the frequency domain only. However it does not have an exact time domain 

representation. To provide an accurate time domain representation, numerical integration 

techniques [54] are required at every time step. Simulation tools such as SPICE use 

numerical integration or convolution techniques at every time step to provide accurate 

results. However, these techniques are computationally expensive to be used in layout 

optimization [34].  
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 For an iterative layout design of densely populated integrated circuits composed 

of hundred millions of gates, accurate analytic models are needed to efficiently predict 

the delay and rise times of interconnects. One of the traditional methods was to express 

the frequency domain transfer function of interconnects as a simple rational function 

which could then be converted to poles and residues form [12]-[14], [31]-[33]. As poles 

and residues have a direct representation in the time domain, the interconnect response 

can now be evaluated without numerical integration at every time step. Using this idea, 

on-chip interconnects were analyzed as single-pole Elmore-based RC models [6], [12]-

[14] to estimate signal delay at early stages.  In current integrated circuit designs, wire 

inductance can no longer be ignored due to higher operating speeds and longer electrical 

line lengths. Thus, analytic RLC interconnect models are required to efficiently 

characterize the signal responses of today’s high-performance integrated circuits. 

All of the above factors contribute to make on-chip interconnect modeling highly 

challenging. Closed form models are important because of their simplicity while 

maintaining reasonable accuracy as compared to SPICE. The next section deals with 

various closed form models proposed in the literature.  

                               
 

 

                                               Fig. 2.3: Circuit Model for Single Line Interconnect 

+
-

Vin

Rs R, L, C

Cl
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2.4 Review of Closed Form RLC Interconnect Models 

2.4.1 Frequency Domain Representation of Transfer Function 

 The analysis of on-chip RLC interconnects starts with Telegraphers equation in 

frequency domain. All closed form RLC models assume a quasi-TEM mode of signal 

propagation. This means that the effect of imperfect line conductors and inhomogeneous 

surrounding medium resulting in a component of the mutually transverse electric and 

magnetic fields along the line axis is considered negligible [3]. The Telegrapher's 

equations are a pair of linear differential equations which describe the voltage and current 

on a transmission line with distance and time. The equations come from Oliver Heaviside 

who in the 1880s developed the transmission line model. These equations are [55] 

  s)I(x,sLRs)V(x,
x





 

                                                       )( sx,sCVs)I(x,
x





          (2.4) 

where s is Laplace transform variable, x is the position variable; V(x,s) and I(x,s) 

represent the voltage and current of the transmission line respectively in the frequency 

domain; R, L and C are the per-unit-length resistance, inductance and capacitance 

respectively. The per unit length conductance G is assumed to be negligible for on-chip 

interconnects. The solution of (2.4) can be expressed using the exponential matrix as 

                                                     
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where                                                     
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

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






0Y

Z0
Φ                                               (2.6) 

Z=R+sL, Y=sC and l is the length of the transmission line. The exponential matrix of (2.5) 

can be expressed using the cosh and sinh functions as shown below [55]: 
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(2.7)   

where 
1

0 )YZY(Y  . Now we look the circuit network for a RLC interconnect line 

which is shown in Fig. 2.3. This represents a point-to-point interconnection driven by a 

transistor (modeled as voltage source inV  serially connected to a linear resistance sR ) and 

connected to the next gate (modeled as a capacitance lC ) and is commonly used in VLSI 

design theory [17]-[30]. Considering this interconnect circuit as shown in Fig. 2.3, the 

boundary conditions are represented as  
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Fig. 2.4: Circuit Model Tree Structure Interconnects 
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(2.8)                                               
                               

 

                                                          
s)I(l,sCs)V(l, l                                          (2.9) 

Using (2.7)-(2.9), the far end transient response of single line interconnect can be 

described as   

)sinh()()cosh()1( 1

00 


YsCYRCsR

V
V

lsls

in
f

                 (2.10) 

where )( YZl .  

Figure 2.4 shows an example of a distributed RLC tree which is often used to 

analyze clock distribution networks. In that example, a driver with an output resistance is 

Rs connected to the root of the tree N0. All of the output nodes (N5…..N9) are called leaves 

and connected with load buffers which can be used to drive the RLC trees in the next 

level. The load buffers are modeled by capacitors. All of the branches in the tree are 

represented by distributed RLC lines. The tree can be balanced or unbalanced; but 

unbalanced trees exhibit more complex characteristics than balanced trees [41]. 

 The output voltage 
i

outV  from the voltage source to a certain node Ni is [41],   

                   





k kkLkkLd

Lini

out
ZZZR

ZV
V

))sinh()/()cosh(

1

,,00,

0,
                   (2.11) 

where k  and kZ ,0  are the propagation operator and characteristic impedance of the k
th

 

line, respectively; kLZ ,  is the input impedance observed at node Nk, and k is the index 
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following each branch in the path from node N0 to Ni. If node Nj branches out to a single 

interconnect k (such as nodes N4 of Fig. 2.4), then the input impedance jLZ ,  is defined as   

                             
kkLkk

kkkkL

kjL
ZZ

ZZ
ZZ






sinhcosh

sinhcosh

,,0

,0,

,0,                                  (2.12) 

If node Nj branched out to multiple interconnects (such as node N1 of Fig. 2.4), then the 

input impedance jLZ ,  at node Nj is the parallel combination of the input impedances of 

the downstream branches which are connected to node Nj.

                                      

 

These transfer functions of single line and tree structure interconnect (2.10), 

(2.11) have no direct representation in the time domain and thus real-time prediction of 

delay of RLC interconnects. Various closed form models [12]-[14], [31]-[41] were 

developed to provide efficient representation of (2.10)-(2.12) in time domain and will be 

now discussed. 

2.4.2 Elmore Delay Based Models (Single Pole Model)  

           One of the earliest and popular models for SI verification in interconnects was the 

Elmore delay based models as proposed in [12]. For ease of presentation without loss of  

R
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Vin
+
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                                                                       Fig. 2.5: Circuit model of Elmore RC interconnect. 
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generality, each interconnect is explained as simple lumped RC circuits as shown in Fig. 

2.5. This model is commonly used in VLSI design theory [17]-[30]. 

Transfer function of such RC circuit is given by         

                                                      
)1(

1
)(

TTCsR
sH


                                                (2.13)  

where RT =Rs+R and CT =Cl+C are the total interconnect  resistances and capacitances 

respectively which includes sources resistance and load capacitance. Now if the input is a 

unit step function, then the time domain solution is given by 

                                                 
)/exp(1()( Dout TttV 

          
                        (2.14) 

where TD represents the time constant which is RT CT. 

Elmore model is particularly appealing for tree structure interconnects where each 

interconnect in tree structure is considered as lumped RC circuits which is shown in Fig. 

2.6. The transfer function of such tree structure at node i is given by                                               
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1
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                                             Fig. 2.6: Circuit Model Elmore RC Tree Structure Interconnects 
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where k is the index that covers every capacitor in the circuit; ikR  is the common 

resistance respectively, from the input to the node i and k [12],[56]. This first-order 

approximation matches the first moment of the transfer function at node i but 

approximates the higher-order moments by 
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as seen by the expansion 

            

..........1.....1)(

2

22

21 
















 

k

ikk

k

ikk RCsRCssmsmsH

 

(2.17) 

Elmore model is basically single pole model (first order approximation).There is a simple 

closed-form solution for the time constant 
iDT  for the tree shown in Fig. 2.6. The time 

constant at node i is given by  

                                                                  
k

ikkD RCT
i

                                           (2.18) 

The equation of 50% delay for unit step input becomes 

                                                               DTt 693.0%50                                                 (2.19)  

Since, the delay of an exponential function of (2.14) is well defined and easy to 

analyze, this model was very popular among circuit designers. However, this model does 

not consider inductance effect which is very obvious when modern switching speeds 

touched the GHz range. As a result transient response of interconnects may become non 
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 monotonic due to the large line inductances. For such cases instead of RC model, RLC 

models (two pole) or even multi-pole models are required.  

2.4.3 Equivalent Elmore Delay Model (Two Pole Lumped Model) 

The transfer functions of (2.10) and (2.11) include hyperbolic functions of the 

complex frequency variable s and do not have a direct representation in the time domain. 

This makes it difficult to analytically predict the signal delay of interconnect networks. 

As a result the extension of equivalent two-pole Elmore delay models for RLC tree 

networks is developed in [42]-[43],[56]. For the case of two pole lumped model [56], 

single line interconnect is represented as lumped resistive-inductive-capacitive (RLC) 

elements as shown in Fig. 2.7. As a result, the circuit of Fig. 2.7 has second order transfer 

function which is given by  
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Fig. 2.7: Lumped RLC Section for Equivalent Elmore Delay 



21 

 

 

 

This transfer function is expressed in terms of its damping factor   and natural 

frequency n  as 
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The poles of the transfer function of (2.21) are 
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Fig. 2.8: Circuit model for lumped RLC trees 
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  For the case of tree structure network, each interconnect in the tree is modeled as 

lumped resistive-inductive-capacitive (RLC) elements, as shown in Fig. 2.8. Typically, 

moment matching techniques are used to express the transfer functions of this tree 

structure interconnect as a power series [43]  
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where the moments jm  are   
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and  

                                            11 mb   2

2

12 mmb                                                       (2.26) 

The first two moments of this tree network at node Nj can be calculated using the 

following simple closed-form expressions [56] where first moment is similar to equation 

(2.16) of RC circuit of Fig. 2.8. 
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where k is the index that covers every capacitor in the circuit; ikR  and ikL  are the 

common resistance and inductance, respectively, from the input voltage node to node Ni 

and Nk [56].                         

For the general RLC tree shown in Fig. 2.8, the voltage drop at any node as Ni 

compared to the input voltage is                                                                       

                             
k

kikikkiin sLRssVCsVsV )()()()(                                  (2.29) 

If the input is a unit impulse, )(sVin is equal to 1.0 and the voltages at the nodes of the tree 

are the unit impulse responses of these nodes. Thus, the normalized transfer function gi(s) 

at node Ni of tree structure is given by  )(sVi and is 

                                                   
 

k

kIkikki sLRssVCsg )()(1)(                            (2.30) 

Using the moment matching techniques 
in  and i at this transfer function of node Ni of 

general tree structure is given by                                          
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The time constants RC and LC  in single line structure are replaced by the summations 

of the equivalent time constants in the tree structure. 
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Once the transfer function of single line or tree structure interconnect is obtained 

in the form of damping factor and natural frequency, the time domain response of (2.21) 

for a step input with supply voltage of DDV  is given by 
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where nt  
is a dimensionless time variable defined as nn tt  . The output voltage of 

(2.32) is a nonlinear function with respect to the variable . As a result, an analytic 

formula is not directly available for the 50% delay since the solution of (2.32) is obtained 

iteratively using methods such as Newton-Rhapson’s method. For this reason, (2.32) is 

solved for various values of   by setting outV  to 0.5 DDV  and solving for nt . Fig. 2.9 plots 

the time scaled 50% delay for various values of .   The results of this analysis are stored 

and fitted to the following functions [56] 

                                             net  /)39.1047.1( 85.0/

%50  
                                    (2.33)  

where %50t  corresponds to 50% delay with respect to time t. This equation is like the 

extension of 50% delay of single pole Elmore model of (2.19) considering inductance 

effect of the interconnect. Equation (2.32) can also be used to calculate the rise time by 

setting outV  to 0.1 DDV  and 0.9 DDV  and solving tn for different values of  . Fig. 2.10 plots 

the time difference of outV  to reach 0.1 DDV  to 0.9 DDV .  Similar fitted expressions can also 

be obtained for the rise time response [56]. 
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So the expression of rise time is given by [56] 

                                       nr eet  /)39.45017.6( 64.0/4.0/ 25.135.1

 
                    (2.34) 

where tr corresponds to the rise time. 

2.4.4 Two Pole Distributed RLC Interconnect Model 

The exact transfer function of single line and distributed RLC trees are hyperbolic, 

but very complicated. In [43], the accuracy of the two pole model is improved by directly 

approximating the distributed hyperbolic functions of (2.10) and (2.11) as a power series  
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to convert the transfer function to the form of (2.24) as 
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Fig. 2.10: Time Scaled rise time versus  
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In [43], it is shown that the Maclaurin series approximation from (2.35)-(2.37) to 

obtain the moments of the transfer function of (2.38) are more accurate than the moments 

calculated from the lumped model since the distributed RLC model are directly derived 

from the hyperbolic functions of (2.10) and (2.11). Once the transfer function of (2.38) is 

derived the fitted expressions of (2.33) and (2.34) can be used to analytically calculate the 

50% delay and the rise time. 

Elmore based models such as the fitted expression of (2.33) & (2.34) are widely 

used in VLSI circuit design for fast delay estimation due to its computational efficiency. 

However, the accuracy of Elmore models is limited since two poles may not be accurate 

enough to capture the high frequency effects and signal delays of RLC lines. The next 

chapter provides a methodology to improve Elmore based two pole model of RLC 

interconnects by extracting the delay from the transfer function. 
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Chapter 3 

Delay Extraction Based Equivalent Elmore Model 

 For RLC On-Chip Interconnects  

3.1 Abstract  

In this chapter a delay extraction algorithm is utilized to improve the accuracy of 

two-pole Elmore based models used in the analysis of on-chip distributed RLC 

interconnects. In the proposed scheme, the time of flight signal delay is extracted without 

increasing the number of poles or affecting the stability of the transfer function. This 

algorithm is used for both unit step and ramp inputs. From the analysis, analytic fitted 

expressions are obtained for the 50% delay and rise time for unit step input. For ramp 

input, a lookup table can be created for the 50% delay and rise time. Since the time of 

flight delay is extracted from the transfer function, the proposed algorithm provides a 

mechanism to improve the accuracy of two-pole Elmore-based models without 

significantly increasing the computational complexity. 

Elmore based models rely on one or two-pole transfer functions to estimate the 

delay. As a result, these approximations are not capable of capturing the early transient 

responses required for predicting long signal delays and rise times caused by inductive 

dominant on-chip interconnects.The proposed model basically extends the concepts of 

two pole model [43], [56] to obtain the time domain analysis for any balanced and 

unbalanced complex tree structures using delay extraction techniques. The transfer 
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function is obtained analytically in terms of predetermined coefficients and the per unit 

length parameters. As a result, the proposed model provides a mechanism to improve the 

accuracy for cases when inductive effects are significant, length of the line increases or 

when rise time of the signal becomes sharper. The algorithm is used for various single 

and tree structures interconnect scenarios for both unit step and ramp inputs. 

      The organization of the chapter is as follows: Section 3.2 develops the proposed delay 

extraction based equivalent Elmore model for unit step input. Analytic fitted expressions 

have been obtained for calculating 50% delay and rise time.  Then the model is extended 

for ramp inputs in section 3.3 where prediction of 50% delay and rise time has also been 

discussed. 

3.2 Proposed Model for Unit Step Input 

Even though Elmore based models have limited accuracy, they are still commonly 

used to analyze integrated circuits composed of millions of gates, since it is often 

impractical and time consuming to use accurate modeling techniques to evaluate the 

signal delay at each node in the circuit The objective of this work is to use a delay 

extraction algorithm to improve the accuracy of this Elmore-based models for RLC 

interconnects.  

 3.2.1 Extracting Time of Flight Delay 

As illustrated in chapter 2, moment matching techniques are used to express the 

transfer functions of on-chip RLC interconnect as follows [43] 
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sbsb
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                                                (3.1) 

Equation (3.1) usually refers to Elmore based two pole model. The proposed algorithm 

uses a delay extraction based rational approximation to improve the accuracy of (3.1). 

The first two moments of (3.1) are calculated using the same conventional moment 

matching techniques such as the methodologies described in section 2.4.3 and 2.4.4. In 

this paper, the procedure outlined in [43] is used since the hyperbolic approximations of 

(2.35)-(2.37) were shown to be more accurate than the lumped model moment 

calculations of (2.27)-(2.28). Once, the moments of the transfer function are calculated, 

the time of flight delay dT  is extracted from (2.21) as proposed in [57] to obtain 

                                        
 
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d
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
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




                                    (3.2) 

where 
225.01 dd TssT   corresponds to a Maclaurin series approximation of dsT

e . The 

delay operator dsT
e
  ensures that the voltage at the far end appears only after the time-of-

flight delay dT . Furthermore, the Maclaurin series approximation of dsT
e  only changes 

the numerator of (3.2) and does not increase the number of poles or affect the stability of 

the transfer function. For the interconnect network of Fig. 2.3, a lower bound estimate of 

the time of flight delay is 

                                                            LClTd                                                                    (3.3) 

which corresponds to the propagation delay of a lossless line. This provides a reasonable 
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estimate of the amount of delay that should be extracted from (3.2), since the voltage 

signal at the far end can only appear after dT  delay has occurred with respect to the input 

voltage at the near end [57]. For the interconnect tree network of Fig. 2.4, a lower bound 

estimate of the time of flight delay at node Ni is calculated as a summation of propagation 

delay of lossless lines as  

                                                    
k

kkk

i

d CLlT                                                    (3.4) 

where  k  is  the  index  following  each  branch  in the path from node N0 to Ni. The time 

domain response of (3.2) corresponding to a step input with supply voltage of DDV  can be 

expressed as 

                        )(1)(
)1(

2

)1(

1

22

n

tt

DDnout tueKeKVtV nn 




 

 
               (3.5) 

where 
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


K                          (3.7) 

The coefficient )( ntu  is the unit step response, ndn Ttt )(   and ndT   . The 

output voltage of (3.5) is zero for dTt   due to the unit step. At dTt  , the value of (3.5) 

will depend on the normalized extracted delay variable  . When 0 , (3.5) reduces to  
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 the equation of (2.32). 

To calculate the 50% delay requires solving the nonlinear function of (3.5) for 

specific values of   and  . Fig. 3.1 shows the solution of (3.5) for various values of   

and   by setting outV  to 0.5 DDV  and solving for nt . The  results  of  this  analysis  can  be 

stored or fitted to some function to obtain quick estimates of the 50% delay. Let the fitted 

function be defined as ),(%50 f . Thus, the 50% delay with respect to time t can be 

calculated as 

                                       
n

d

f
Tt



 ),(%50

%50                                                  (3.8)  

Note, when the time of flight delay is not extracted (i.e. 0 ), the fitted expression of 

),(%50 f  will give similar 50% delay predictions as (2.33).  

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Data
Fitted function

τ=0

τ=0.99

 

 

Fig. 3.1 The time scaled 50% delay for different values of  and   
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Equation (3.5) can also be used to calculate the rise time by setting outV  to 0.1 DDV  

and 0.9 DDV  and solving nt  for different values of   and  . The results of this analysis 

are shown in Fig. 3.2 which plots the time difference of outV  to reach 0.1 DDV  to 0.9 DDV . 

Let the fitted function for the rise time be defined as ),( risef . Thus the rise time with 

respect to time t can be calculated as   

                                                 
n

rise

rise

f
t



 ),(
                                                 (3.9) 

Section 3.2.2 discusses how ),(%50 f  and ),( risef  are fitted to the data values of Fig. 
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Fig. 3.2 The time scaled rise time for different values of  and   
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3.1 and Fig. 3.2, and how these functions are used to calculate the 50% delay and rise 

times. 

3.2.2 Fitted Functions for ),(%50 f and ),( risef  

The numerical solutions for the 50% delay is fitted to rational functions for 

specified ranges of   as 
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where iN  and iD  are defined as polynomials with respect to  ,  

                           4

4,

3

3,

2

2,1,0,  iiiiii aaaaaN   
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2,1,0,   iiii bbbD                                              (3.11) 

and jia ,  and jib ,  are polynomials with respect to  , 

                            3

3,,

2

2,,1,,0,,,  jijijijijia   

                           3

3,,

2

2,,1,,0,,,  jijijijijib                                  (3.12) 

The coefficients of kji ,,  and kji ,,  are listed in Table 3.1 and Table 3.2. The curve fitting 

for ),(%50 f is only performed up to 99.0  since the variance of ),(%50 f  is 
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significant when   is high and the extracted delay ranges from 199.0  . As a result, 

higher order rational approximations would be required to fit ),(%50 f  from 

199.0  .  

From (3.5), when 1 , the output voltage at dTt   is DDdout VTtV 5.0)(   for all 

values of  . Thus 0),(%50 f  for 1  and the 50% delay predicted by (3.8) is 

mainly due to the extracted delay (i.e. dTt %50 ). As a result, (3.8) will underestimate the 

50% delay when  1  since this calculation does not include the effects of the per-unit-

length resistance R, series resistance sR  and load capacitor lC . The proposed model can 

provide different 50% delay estimates by modifying (3.8) to extract different amounts of 

delay as 

                            
n

d

kf
kTt



 ),(%50
%50                                                      (3.13) 

where k is a scaling factor selected to ensure that k  is less than one or falls 

within the ranges of the fitted function ),(%50 f . The scaling factor k, enables a smaller 

delay to be extracted from (3.2) instead of using (3.3)-(3.4). When k is set to zero, the 

50% delay predicted by (3.13) is similar to (2.33) (i.e. zero delay is extracted from (3.2)).  

To calculate the 50% delay the following rule of thumb is followed, which 

attempts to include the effects of the per-unit-length resistances, series resistance and load 

capacitors for cases when   is close to one or over one.  
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                   (3.14) 

If the extracted delay using (3.3) and (3.4) causes 98.0 , then (3.14) uses (3.8) 

to calculate the 50% delay. If extracted delay using (3.3) and (3.4) causes 98.0 , then 

(3.13) is used, where the scaling factor k is selected such that  98.0k . The scaling 

factor k, allows a smaller delay to be extracted such that the output voltage at the 

extracted delay is DDdout VkTtV 5.0)(   and the transition period to reach DDout VV 5.0  

includes the impediments of the per-unit-length resistances, series resistance and load 

capacitors. However, when   is low, the 50% delay predicted by (3.13) may yield 

dTt %50 , which is not physically possible since the voltage at the far end can only appear 

after dT  delay has occurred with respect to the input voltage at the near end [57]. As a 

result, (3.13) is only used when dTt %50 , otherwise the 50% delay should be slightly 

over dT  and is estimated using  

                                          
n

d

f
Tt



 )98.0,(%50
%50                                          (3.15) 

Note that both (3.13) and (3.15) use nf  /)98.0,(%50 . When the contribution of 

nf  /)98.0,(%50  is significant, (3.14) uses (3.13) to calculate the 50% delay since this 
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will make dTt %50 . When (3.13) does not satisfy dTt %50 , the contribution of 

nf  /)98.0,(%50  is relatively low and (3.14) uses (3.15) to calculate the 50% delay. This 

usually corresponds to an inductive-capacitive dominant network, where low values of   

cause ),(%50 f  to decrease (see Fig. 3.2). In this scenario, the 50% delay is mainly due 

to dT  as predicted by (3.2). However, dTt %50  does not include the delay influences due 

to the per-unit-length resistances, series resistance and load capacitors. To improve the 

50% delay estimate, the function of nf  /)98.0,(%50  is added to (3.15) to include these 

effects.  

The numerical solutions for the rise time is also fitted to rational functions for 

specified ranges of   as     
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where riN  and riD  are defined as polynomials with respect to  ,  

                            5

5,

4

4,

3

3,

2

2,1,0,  r

i

r

i

r

i

r

i

r

i

r

ii aaaaaaN   

                            43

3,

2

2,1,0,   r

i

r

i

r

i

r

ii bbbbD                                 (3.17) 

The coefficients of r

kji ,,  and r

kji ,,  are listed in Table 3.3 and Table 3.4. Once  
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TABLE 3.1 

COEFFICIENTS OF kji ,,   

 
    j 

i 

0 1 2 3 4 

0,, ji

 

1 9.0213028957213 -0.52002231195006 2.362101690758197 0.563191990612 1.5823872352561 

   2 10.264566953478 -0.01554390322000 2.889071463278857 0.515067856181 1.6365812921766 

   3 -47.403528389451 -28.9764859689464 -0.24685990745238 -5.06587672519 -1.575542571587 

4 28.301840842192 22.330160625387 21.320139866462 4.598199829119 0.8502852216206 

5 -7.258203818329 12.335321069538 5.3248058863799 2.738184077116 6.9296294393022 

6 -72.08103057783 266.7515835824658 -588.9864706708 263.3430338481 105.26207953608 

1,, ji

 

1 -8.460788071761 3.527738691827600 -1.7868530539725 -0.97340830311 -0.001476898823 

   2 
-23.763788517414 -2.43306934956625 -

8.009374173386924 

-0.0478945946 -0.666681240706 

   3 375.34428532929 174.2121228418589 1.652822678320948 24.10166053956 21.540760037651 

4 -114.9076576691 -79.935236347528 -75.846756335463 -7.77235327903 1.1432892251704 

5 26.194560011856 -42.183261662620 -14.127303787700 -3.80762259716 -21.19409267996 

6 236.76163797965 -862.311729251835 1908.9742692272 -847.747237192 -339.9620538476 

2,, ji

 

1 -1.800931248953 1.820487108407566 -0.3707109118679 -0.60059675085 0.0318294704271 

   2 62.037520966409 24.62604401962565 23.8285294000543 -6.21876900073 2.7657509228355 

   3 -852.2749830443 -324.413412221138 -3.3184912203897 -26.3709828568 -48.14636380131 

4 158.90909929518 95.316631443529 89.8805709580265 0 -0.281304500281 

   5 -27.83712400668 47.816120066613 10.7164076440579 -2.03900836353 27.147255070583 

6 -255.8992115893 929.089452295064 -2064.190975158 909.4234548081 371.68478951209 

3,, ji

 

1 0 0 6.85628038835035 2.623426126036 -0.507037343861 

   2 -91.77171448885 -27.5772387580119 -24.142229648649 13.66863724912 -4.297057094903 

   3 600.73418437215 192.745734773314 212.30514951779 0 34.374880248783 

4 -73.53493736538 -38.3244086145732 -33.761822139158 0 0 

   5 8.8870710878002 -18.4157971935378 0 0 -11.25852446795 

6 91.248271078542 -334.087483010346 746.47333554401 -328.308465394 -135.4207979435 
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TABLE 3.2 

COEFFICIENTS OF kji ,,   

     j 

i 

0 1 2 

0,, ji  

1 8.613824666908954 -3.662194874735159 1.800930171393833 

   2 11.0907141810951 -4.663884458620657 2.158296775716884 

   3 -120.417803595699 45.9274611081304 -25.7679758956128 

4 66.4567185897558 -17.7224984722917 2.456712551272433 

5 45.8258199545479 -58.2874787359551 47.2533502346019 

6 865.106915927380 -1516.191451983524 794.283139003956 

1,, ji  

1 -0.041125800063642 0.044012921266307 0.009056451353493 

   2 -30.0644860959776 12.516618345750294 -4.127351852794886 

   3 845.430085885382 -349.3894030751437 176.2207651699743 

4 -270.2047562906737 99.2746200174789 -6.730200090249853 

5 -175.5203072506074 230.7226058300037 -170.9516301165219 

6 -2825.600818190934 4949.479853335178 -2587.024382123916 

2,, ji  

  1 0.848931685396748 -0.976390603880459 -0.215895932808289 

   2 122.2343298297111 -53.213270840375664 15.430672176741551 

   1 -1803.246519137808 804.8881251324483 -367.5528908864673 

4 369.5919208781667 -166.8330888505323 8.933975900669028 

5 228.6837993326621 -304.6330652436234 209.6315481635663 

6 3086.540266735930 -5396.678649085249 2814.812350348027 

3,, ji  

  1 -8.555590763338637 15.492816283283725 -1.424401823057440 

   2 -173.3075700068836 89.687578761316317 -20.688116357217538 

   1 1222.357545790275 -584.5155107465026 245.5727125667448 

4 -165.6138661891531 83.7630467091441 -4.455887524014941 

5 -97.1122989152980 129.8348632303627 -86.2216925030304 

6 -1124.616807728859 1961.853615936612 -1022.766166738894 
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TABLE 3.3 

COEFFICIENTS OF 
r

kji ,,  

 
     j 

i 

0 1 2 3 4 5 

r

ji 0,,

 

1 1.2322981736182 -1.02851254239 0.1544780170304 2.9987471253908 -5.43742970312 4.2403749733927 

2 0.4658582043758 5.04252481259 -0.473861261572 -01.91383625932 -00.0555777596 6.8352966095538 

3 9.2473810846620 -2.44152823972 7.1291410894606 4.6525976129295 8.31260522763 2.5950529243614 

4 
  

60.751051233061 

-6.82853190933 -15.74529428646 227.74330544450 -189.74388506 -18.13626145218 

5 -3.097967296943 -40.5326965521 270.52312191488 -579.7948747913 418.969004604 -4.278333844765 

r

ji 1,,

 

1 0.0535602969182 -0.08591060253 0.0212101061328 0.0369834200149 -0.04499481714 -0.004271562508 

2 7.0260129032901 -61.8303879145 6.7141654851516 49.766781023873 -54.7674542748 -26.75004218203 

3 -38.90567359365 5.86931381304 -32.14092083415 -14.42776662217 -59.3501454638 9.290153185725 

4 -180.1115617428 27.9782342769 50.436798106717 -679.1557542068 594.900021278 70.945268248786 

5 7.9060921750755 102.124634717 -680.8567216252 1459.9672371948 -1059.78099597 24.044885383982 

r

ji 2,,

 

1 -0.513896773179 0.93117047841 -0.300871921515 -0.335485277013 0.46401595813 0.0794737390126 

2 -19.76059741067 205.616719055 -23.85574243288 -164.2956079553 181.960463076 90.509780020005 

3 61.667744053475 -6.30146507298 46.169992906718 36.387968565347 76.4031241206 -15.37858725406 

4 177.90254028273 -35.1377851688 -50.60032006604 670.24815870814 -619.809061809 -73.07688479349 

5 -6.367252689053 -86.2830118787 571.24555451821 -1221.884356016 883.352561001 -21.80021893914 

r

ji 3,,

 

1 0 0 0 0 0 -0.207169708053 

2 14.451083927423 -220.587216502 27.471328652114 175.64002279173 -196.040710448 -100.7340106623 

3 -33.02337993540 3.29885910705 -21.05830460288 -27.66181784236 -26.3074468863 8.3868970411592 

4 -58.47663019594 13.9498217768 15.517205764576 -216.3477486839 209.374194997 24.792022111517 

5 1.6322480078705 24.4804212615 -160.4718572330 342.57240435480 -246.94526132 6.5218033494768 
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TABLE 3.4 

COEFFICIENTS OF 
r

kji ,,   

     j 

i 

0 1 2 3 

r

ji 0,,  

1 1.211587608488638 -2.05162928558536 2.042210218367738 -1.55873699121421 

   2 0.941006553918567 5.0916341351250 -7.0921391180348 3.4582160742154 

   3 15.2030134924340 -19.9653600923949 15.1646923537146 -2.24391204870225 

4 118.9356701047606 -189.82226531738 168.7864013569272 -83.4171047017991 

5 25.679695629594214 30.6547246848665 -34.8491399807634 70.3858530264564 

r

ji 1,,  

1 0.049865955329878 -0.10131031092261 0.069914855639354 -0.0193449151565 

   2 2.299771444231987 -72.0789519424431 93.1529141271554 -51.4282933696436 

   3 -70.2331926651397 91.3348024169421 -67.7938103152162 6.06155422097951 

4 -351.8206993575230 576.164997058308 -512.027493437917 260.023260177533 

5 -67.768457403138896 -102.321271301402 80.82543955094357 -175.22747665975 

r

ji 2,,

 

  1 -0.480984435243962 1.037286442945819 -0.76169401640458 0.23556061732040 

   2 -5.181830039467304 236.671294917510 -310.485692762809 172.659360608741 

   3 114.8036302822211 -151.056199965156 113.0717077967981 -14.3530943765016 

4 346.2181741952572 -579.630350335650 514.9643651807950 -268.22463308389 

5 59.916919772245720 112.2691146368511 -60.3929646698437 143.214782834897 

r

ji 3,,  

  1 0 0 0 0 

   2 0 -249.479217857748 336.2350782046465 -189.4561264279 

   3 -61.2959007918778 82.3407826839700 -62.3007912140839 -14.353094376501 

4 -113.1515207629811 192.8282518238725 -170.929668734861 90.5602970982523 

5 -17.553248189566055 -41.2628448023109 15.17043729138193 -39.321738444847 
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 again, the curve fitting of ),( risef  is only performed up to 33.1  since the variance 

of ),( risef  is significant when   is high and the extracted delay ranges from 

8.133.1  . For the rise time calculations, when 8.1 , the output voltage of 

(3.5) at dTt   is DDdout VTtV 9.0)(   for all values of  . This causes the rise time 

predicted by (3.9) to be 0riset , due to the unit step in (3.5). To estimate, the transition 

period of the rise time for 33.1 , (3.9) is modified to  

                            


















33.1
)33.1,(

33.10
),(











n

rise

n

rise

rise kf

f

t                               (3.18) 

where is a scaling factor selected such that  33.1k . When k is set to zero, the rise 

time predicted by nrisef  /)0,(  is similar to the rise time given by (2.34). By using k to 

extract a smaller delay for 33.1 , the output voltage of (3.5) is DDdout VkTtV 9.0)(   

and a transition period for the rise time can be calculated using (3.18).  

3.3 Proposed Model for Ramp Input 

This section develops the far end time domain response of on-chip RLC 

interconnect for ramp inputs. From this discussion the way of predicting 50% delay and 

rise time for ramp input is provided. 

3.3.1 Time Domain Solution for Ramp Input 

For the case of ramp input, edge rate (i.e., rise or fall) of the input signal Vin has to 

be included. As a result it should be modeled as ramp function such as 
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                                  (3.19) 

where tr is the rise time. The Laplace-domain representation of (3.19) can be expressed as 
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                                             (3.20) 

Using the input signal of (3.20), the time domain response of (3.2) corresponding to a 

ramp input with supply voltage of DDV  can be expressed as 
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  (3.21) 

where,                   

        
)1)(1(2

)1(5.0)1(1

22

2222

1









C                        (3.22) 

                    
)1)(1(2

)1(5.0)1(1

22

2222

2









C                           (3.23) 

The coefficient )( ntu  and )( nrtu  is the unit step response, ndn Ttt )(   and 

nrdnr tTtt )(   respectively and here ndT    and nrtP  . In this case, to 

calculate the 50% delay and rise time requires solving the nonlinear function of (3.21) for 

specific values of  , and P.  

 



44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      

 

(a)   

 

                                                        
                                                                                         (b) 

Fig. 3.3 The time scaled 50% delay for different values of  and   (a) P=0.3 (b) P=4 
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3.3.2Prediction of 50%Delay and Rise Time for Ramp Input 

The output voltage of (3.21) is a nonlinear function with respect to three variables 

which are ,  and P. As a result, an analytic formula is still not available for the 50% 

delay and rise time. The solution of (3.21) is obtained iteratively using methods such as 

Newton-Rhapson. The nonlinear equation of (3.21) can be solved for various ranges of 

,  and P by setting outV  to 0.5 DDV  to get the 50% delay. The results of this analysis can 

be used to create a look up table. With  the  knowledge  of  this  look up  table , 50%  

delay  can  be obtained  using interpolation techniques. The advantage of this approach is 

to avoid solving nonlinear equation of (3.21). This is crucial when dealing with large 

scale VLSI circuits composed of hundreds of millions of transistors for early layout 

design.  

On-chip RLC interconnects may have complex conjugate poles in frequency 

domain. As a result they have non monotonic response in time domain. For the case of 

step input, solving the nonlinear equation of (3.5) for 50% delay and rise time results in a 

continuous function with respect to  and . That is why the functions were fitted to 

rational approximations which are discussed in section 3.2.2. For ramp inputs, 50% delay 

is not a continuous function with respect to  ,  and P. Since this is not continuous, it is 

very hard to fit these functions using rational approximations. This problem is illustrated 

in Fig. 3.3. This figure is created for two specific values of P=0.3 and P=4 and for 

various ranges of  ,  solving the nonlinear function of (3.21). From the figures, the 

discontinuity of the time scaled 50% function is clearly visible for both values of P and 
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this is even true for many ranges of P. That`s why it is very challenging to approximate 

this as a rational function. In order to calculate the rise time, equation (3.21) can also be 

used by setting outV  to 0.1 DDV  and 0.9 DDV  and solving the time for different values of ,

  and P. Like the 50% delay, time scaled rise time is also a discontinuous function for 

many ranges of P. As a result the nonlinear function of (3.21) can be solved for a priory 

values of  , and P for calculating the 50% delay and rise time and the results can be 

stored in a look up table. 

The implementation details of how to create the look up table for the 50% delay 

and rise time are not discussed in this thesis since the objective of this work is to illustrate 

the improved accuracy of the proposed method compared with the two pole Elmore based 

model of [59] which also considers the ramp input. Numerical examples are provided in 

chapter 4 in order to show the better accuracy of the proposed algorithm.  

3.4 Conclusions 

In this chapter, a delay extraction based rational approximation is proposed to 

improve the accuracy of Elmore based two pole model where the time of fight signal 

delay is extracted without increasing the number of poles or affecting the stability of the 

transfer function. From this analysis, analytic fitted expressions are obtained for the 50% 

delay and rise time for unit step input and look up table is proposed to calculate those 

parameter for ramp inputs. The next chapter will present numerical examples to 

demonstrate the validity of the proposed algorithm.  
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Chapter 4 

Numerical Examples 

4.1 Introduction  

This chapter presents the numerical examples to demonstrate the validity of the 

proposed method. Examples of single line, symmetrical tree structure (balanced and 

unbalanced) and unsymmetrical tree structure are shown here to see the difference 

between the two pole model and the proposed model. In section 4.2, proposed algorithm 

is tested selecting unit step response for different lines lengths of those examples. 

Different ramp inputs are also used to observe the results in section 4.3 and finally a 

conclusion is provided in section 4.4. The results were obtained using MATLAB R2010b 

operating on Bolen Custom built T7400 64-bit workstations with clock speed 3.33 GHz 

and are also compared with HSPICE and conventional two pole model [43],[56].   

4.2 Selecting Unit Step Input: 

4.2.1 Example 1 - Single Line Interconnect   

A single RLC line proposed in [58] is considered which models the on-chip 

interconnect using 65-nm technology. Three different wire types, whose RLC parameters 

were extracted using field solvers [50], [53], are analyzed. The wire widths and per unit 

length R, L, C parameters are shown in Table 4.1. Wire thickness is 319nm for all cases. 

At first the length of the line is set to 0.05cm and then line length is increased to 0.2 cm.  
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Equation (3.5) is used to get the time domain response of the proposed model for 

unit step response. The 50% delay and rise time calculated with the proposed model 

(equation (3.13) and equation (3.18)) is compared with conventional two pole model 

(equation (2.33) and equation (2.34)) and HSPICE for various resistive and capacitive 

loads of sR and lC . The results are shown in Table 4.2 and Table 4.3. The far end time 

domain transient responses of proposed model, two pole model and HSPICE are plotted 

in Fig. 4.1 and 4.2 for 0.05cm and 0.2 cm respectively. 

When the line length is very short (such as 0.05cm) the improvement of the 

proposed model as compared to two pole model is moderate for the 50% delay where 

average error drops from 8.9 to 8.1 overall (RC and LC dominant interconnects), however 

the proposed model predicts rise time more accurately(10.94% average error as compared 

to 220%). This is due to the fact that shorter line lengths do not have significant signal 

delay and hence the proposed delay extraction algorithm offers only minor improvements 

for the 50% delay. From Fig. 4.1 it is seen that for very short lines of RC dominant 

interconnects (Fig. 4.1 (a)), two pole model and proposed model are almost same. 

However for LC dominant interconnects (Fig. 4.1 (b)), even for shorter lines proposed 

model is more accurate than two pole model when compared with HSPICE. 

TABLE 4.1 

SINGLE LINE INTERCONNECT PARAMETERS 

 

Width(m) R(/cm) L(nH/cm) C(fF/cm) 

0.5 1610 13.1 1.64 

1 806 12.2 2.43 

1.5 538 11.6 3.22 
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                                                                                                     (a)                                                                         

 
(b) 

                            Fig. 4.1: Transient response of Example in 4.2.1 for 0.05cm line length (a) Line width (w) is 0.5µm,  

Rs=200 Ω, Cl=100 fF.(b) Line width (w) is 1.5µm, Rs=20 Ω, Cl=10 fF. 
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interconnects (RC and LC dominant )where  average error drops down to 3.58% from 

13.87% and maximum error drops down to 30.54% from 8.76% 

 

TABLE 4.2 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SINGLE LINE INTERCONNECT OF PROPOSED MODEL WITH CONVENTIONAL 

TWO POLE MODEL AND HSPICE. THE LINE LENGTH IS 0.05 CM. (EXAMPLE 1) 
 

 

Width 

(m) 

 

Rs 

(Ω) 

 

Cl 

(fF

) 

 

 

 

 
  

 

 

 

 

 

HSPICE  
Two Pole Model 

(Equation () & ()) 
Proposed Model   

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

0.5 

20 10 0.48 1.18 8.4 1.93 7.83 11.20 7.4 2.7 

50 50 0.79 0.83 12.1 16.9 13.36 25.38 11.73 18.73 

100 
10

0 

1.23 0.61 
22 52.2 23.51 59.54 22.85 53.77 

200 
20

0 

2.09 0.41 
54.23 156.6 54.29 164.74 54.18 158.32 

1 

20 10 0.4 1.26 9.5 1.3 8.26 11.12 8.57 1.28 

50 50 0.73 0.95 12.1 12.5 13.06 23.53 9.99 15.36 

100 
10

0 

1.23 0.74 
20.1 49.5 22.78 57.69 21.91 50.75 

200 
20

0 

2.22 0.51 
52.9 154.5 53.28 163.05 53.21 158.61 

1.5 

20 10 0.4 1.29 10.6 1.04 9.18 12.31 9.81 1 

50 50 0.75 0.9 12.7 11.9 14.1 26.06 11.5 16.51 

100 
10

0 

1.32 0.82 
20.4 54.8 24.58 64.49 23.64 56.56 

200 
20

0 

2.4 0.58 
55.5 169.8 57.20 176.62 57.26 171.6 

Average Error % 8.93 219.98 7.64 10.94 

Maximum Error % 
20.49 

1083.6

5 
17.44 39.9 
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(a) 

 
                                                                                                           (b) 

 

                       Fig. 4.2: Transient response of Example in 4.2.1 for 0.2cm line length (a) Line width (w) is 0.5µm,  

                                        Rs=200 Ω, Cl=200 fF. (b) Line width (w) is 1.5µm, Rs=20 Ω, Cl=20 fF. 
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When the line length is increased (0.2cm), it is very clear that proposed algorithm 

gives better  accuracy  in  calculating  both  50%  propagation  delay  and  rise  time  for  

all  types  of interconnects (RC and LC dominant ). From Table 4.3 it is shown that 

average error drops down to 3.4% from 13.87% and maximum error drops down to 8.6% 

from 30.54% for 50% delay. For rise time average error drops down to 4.7% from 31.9% 

TABLE 4.2 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SINGLE LINE INTERCONNECT OF PROPOSED MODEL WITH 

CONVENTIONAL TWO POLE MODEL AND HSPICE FOR UNIT STEP INPUT.THE LINE LENGTH IS 0.05 CM. 

 (EXAMPLE 4.2.1) 
 

 

Width 

(m) 

 

Rs 

(Ω) 

 

Cl 

(fF) 

 

 

 

 

  

 

 

 

 

 

HSPICE 

 

Two Pole Model 

 

Proposed Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

0.5 

20 10 0.48 1.18 8.4 1.93 7.83 11.20 7.9 2.7 

50 50 0.79 0.83 12.1 16.9 13.36 25.38 11.72 18.7 

100 100 1.23 0.61 22 52.2 23.51 59.54 22.88 53.81 

200 200 2.09 0.41 54.23 156.6 54.29 164.74 54.22 158.32 

1 

20 10 0.4 1.26 9.5 1.3 8.26 11.12 8.8 1.28 

50 50 0.73 0.95 12.1 12.5 13.06 23.53 9.9 15.38 

100 100 1.23 0.74 20.1 49.5 22.8 57.69 21.95 50.7 

200 200 2.22 0.51 52.9 154.5 53.28 163.05 53.2 158.64 

1.5 

20 10 0.4 1.29 10.6 1.04 9.18 12.31 9.95 1 

50 50 0.75 1.03 12.7 11.9 14.1 26.06 10.2 16.51 

100 100 1.32 0.82 20.4 54.8 24.58 64.49 23.62 56.58 

200 200 2.4 0.58 55.5 169.8 57.21 176.62 57.24 171.6 

Average Error % 8.93 219.98 7.9 10.94 

Maximum Error % 20.49 1083.65 19.6 39.9 
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and maximum error drops down to 14.72% from 112%. This is due to the fact that longer 

line lengths have greater signal delay and the proposed algorithm captures this delay 

through its delay rational approximation. 

TABLE 4.3 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SINGLE LINE INTERCONNECT OF PROPOSED MODEL 

WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR UNIT STEP INPUT. THE LINE LENGTH IS 0.2 CM.  

(EXAMPLE 4.2.1) 

 

 

Width 

(m) 

 

Rs 

(Ω) 

 

Cl 

(fF) 

 

 

 

 

 

 

 

 

 

 

HSPICE 

 

Two Pole Model 

 

Proposed Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

0.5 

20 10 0.95 0.88 48.9 91.5 55.08 118.81 47.21 93.19 

50 50 1.06 0.70 67.3 142.9 73.60 170.66 69.97 145.23 

100 100 1.2 0.55 96.4 228.1 102.37 256.29 99.61 234.01 

200 200 1.46 0.38 163.7 429.9 169.18 465.12 166.10 436.18 

1 

20 10 0.79 1.07 37.1 52.1 48.43 92.56 35.41 59.77 

50 50 0.96 0.89 54.5 107.8 64.49 140.61 55.14 110.7 

100 100 1.18 0.71 83.8 196.9 91.72 227.49 88.1 199.1 

200 200 1.54 0.51 151.2 406.8 156.56 439.34 154.1 416 

1.5 

20 10 0.73 1.14 40.2 42.8 50.19 90.79 40.3 48.32 

50 50 0.95 0.97 52.2 102.1 67.34 145.36 50.1 111.34 

100 100 1.23 0.79 85.8 211.9 97.68 247.79 93.18 215.74 

200 200 1.68 0.57 161.3 446.1 169.89 490.21 167.91 462.86 

Average Error % 13.87 31.9 3.4 4.7 

Maximum Error % 30.54 112.13 8.6 14.72 
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Fig. 4.3 Example of symmetrical tree structure 

4.2.2 Example 2 – Symmetrical Tree Structure Interconnect 

The symmetrical tree structure shown in Fig. 4.3 is analyzed in this section. For 

simplicity, the branches are assumed to have the same width of 6 µm. The width of each 

interconnect in the tree structure is 10 m and the spacing is 6 m. The interconnect 

parameters of such a structure are R=39 /cm, L=4.3 nH/cm, and C=3.6 pF/cm [41]. The 

normalized wire lengths and load capacitances shown in Fig. 4.3 are listed in Tables 4.4 

and Table 4.5 for both balanced and unbalanced structures where lx and Cx are the 

normalized reference lengths and capacitances, respectively.  

TABLE 4.4 

TREE STRUCTURE INTERCONNECT LENGTHS NORMALIZED TO LX 

 

Index l1 l2 l3 l4 l5 l6 l7 

Balanced .05 0.1 0.1 0.15 0.15 0.15 0.15 

Unbalanced .05 0.2 0.1 0.2 0.1 0.1 0.05 
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     (a)                                                                        

 

 
                                                                                         (b) 

 

Fig. 4.4: Transient response of symmetrical tree structure of node N4  

(a) Balanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=80 fF.  

(b) Unbalanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=20 fF. 
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TABLE 4.5 

CAPACITANCE NORMALIZED TO CX 

 

 

 

Index C5 C6 C7 C8 

Balanced 1 1 1 1 

Unbalanced 2 1 2 .5 

TABLE 4.6 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SYMMETRICAL TREE STRUCTURE INTERCONNECT  

OF PROPOSED MODEL WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR UNIT STEP INPUT.  

FOR TREE EXAMPLE OUTPUTS ARE OBSERVED AT NODE N4 

 

 

Example 

 

 

   lx 

(cm) 

Rs 

(Ω) 

Cx 

(fF) 

 

 

   

 

 

 

HSPICE  Two Pole Model Proposed Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

Balanced 

Tree 

  0.5 10 80 0.53 0.88 23.9 25.1 27.40 41.1 23.5 24.77 

  0.5 10 200 0.59 0.77 28.5 35.2 32.61 51.43 29.87 36.24 

  1 10 80 0.60 0.92 43.08 48.99 54.30 86.12 44.4 51.5 

  1 10 200 0.62 0.85 50.59 60.5 60.43 99.04 52.4 66.46 

Unbalanced 

Tree 

  0.5 10 20 0.42 1.12 30.77 15.84 30.47 41.48 29.5 12.35 

  0.5 30 20 0.70 1.09 34.09 24.72 36.94 65.48 32.3 34.9 

  0.5 10  500 0.63 0.60 66.2 67.29 64.3 106.23 62.1 85.62 

  0.5 30 500 1.4 0.55 100.8 258.9 109.82 295.96 107.6 276 

  1 10 20 0.5 1.1 59.1 36.3 64.37 93.77 57.4 33.05 

  1 30 20 1.0 1.02 85.1 134.6 94.18 211.53 67.7 163.27 

  1 10  500 0.65 0.72 113.1 103.6 100.91 180.55 107.33 133.41 

  1 30 500 1.21 0.64 158.6 374.8 170.29 428.56 164.9 383.74 

Average Error % 10.61 79.32 4.5 14.81 

Maximum Error % 26.04 164.89 20.45 41.18 
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Results of two pole model, HSPICE and proposed model are shown in Table 4.6. 

The far end time domain responses at node N4 of this tree structure (balanced and 

unbalanced) are plotted in Fig. 4.4. As it is shown from Table 4.6, for balanced and 

unbalanced tree structures the accuracy of proposed model has also improved as 

compared to two pole model where average error drops down to 5.4% from 10.61% and 

maximum error drops down to 20.45% from 26.04% for 50% delay. For rise time average 

error drops down to 14% from 79% and maximum error drops down to 41% from 164%. 

4.2.3 Example 3 – Unsymmetrical Tree Structure Interconnect 

The unsymmetrical tree structure shown in Fig. 2.4 has been analyzed in this 

section. Here the interconnect parameter of width 1.5m of Table 4.1 has been 

considered in each interconnect section of Fig. 2.4. The normalized wire lengths and load 

capacitances shown are listed in Tables 4.7 and Table 4.8. Results of two pole model, 

HSPICE and proposed model are shown in Table 4.9.Two nodes have been considered in 

this structure, node N5 and node N7.The far end time domain responses at N5 and node N7 

of this tree structure are plotted in Fig. 4.5 

TABLE 4.7 

INTERCONNECT LENGTHS NORMALIZED TO LX FOR UNSYMMETRICAL TREE STRUCTURE 

 

Index l1 l2 l3 l4 l5 l6 l7 l8 l9 

Length .05 0.2 0.1 0.05 0.2 0.1 0.15 0.1 0.1 

 

TABLE 4.8 

CAPACITANCE NORMALIZED TO CX 

 

Index C5 C6 C7 C8 C9 

Capacitances 2 1 2 0.5 1 
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   (a)                                                                        

 
                                                                                                 (b) 

 

            Fig. 4.5: Transient response of unsymmetrical tree structure (a) Normalized line length lx =0.05cm,  

          Rs=10 Ω, Cx=20 fF. (Node N5) (b) Normalized line length lx =0.05cm, Rs=10 Ω, Cx=100 fF.(Node N7) 
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TABLE 4.9 

COMPARISONS OF 50% DELAY AND RISE TIME FOR UNSYMMETRICAL TREE STRUCTURE INTERCONNECT OF 

PROPOSED MODEL WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR UNIT STEP INPUT. 

 OUTPUTS ARE OBSERVED AT NODE N5 AND NODE N7 

 

 

 

   lx 

(cm) 

 

Rs 

(Ω) 

 

Cx 

(fF) 

 

 

   

 

 

 

 

 

Node 

HSPICE 

 

Two Pole Model 

 

Proposed Model 

50% 

Delay    

   (ps) 

Rise 

Time  

    (ps) 

50% 

Delay  

(ps) 

Rise 

Time  

(ps) 

50% 

Delay  

    (ps) 

Rise 

Time  

   (ps) 

  0.5 10 20 0.82 0.80 N5 775.9 103.55 846.75 165.85 761.04 126.5 

  0.5 10 20 1.01 0.93 N7 49.5 102.99 53.8 120.95 44.81 96.2 

  0.5 10  100 0.89 0.63 N5 102.0 171.6 110.00 227.32 105.10 187.83 

  0.5 10 100 1.08 0.71 N7 65.4 146.1 73.31 172.86 69.83 148.01 

  0.5 30 20 1.00 0.69 N5 101.5 197.2 108.44 243.13 102.9 204.55 

  0.5 30 20 1.61 0.94 N7 60.22 187.23 73.92 210.70 72.76 187.21 

  0.5 30  100 1.05 0.54 N5 134.1 282.8 141.42 327.77 137.10 292 

  0.5 30 100 1.61 0.69 N7 85.8 258.1 100.57 286.46 99.1 264.3 

  1 10 20 1.00 0.56 N5 249.1 495.9 265.22 595.87 256.3 521.9 

  1 10 20 1.66 0.94 N7 139.3 376.1 151.46 435.88 149.6 389.0 

  1 10  100 1.03 0.49 N5 297.8 612.6 311.85 711.07 303.47 636.84 

  1 10 100 1.58 0.73 N7 171.1 454.5 186.89 529.21 184.4 484.12 

  1 30 20 1.08 0.49 N5 299.3 648.8 316.2 743.81 307.7 672.77 

  1 30 20 2.31 0.98 N7 180.4 551.1 195.21 600.31 195.6 558.6 

  1 30  100 1.10 0.43 N5 356.0 775.1 370.86 880.70 361.5 804.9 

  1 30 100 2.05 0.72 N7 218.2 652.2 237.63 718.25 237.2 677.42 

Average Error % 9.13 19.19  6 5.05 

Maximum Error % 22.75 60.16 20.8 22.16 
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From Table 4.9, it also shows that for unsymmetrical tree structure, proposed 

model has improved the accuracy of conventional two pole model in calculating 50% 

delay and rise time calculation.  

4.2.4 Summary of the Results: 

As discussed in section 3.2.2, when 1 , the output voltage at the time point of 

the extracted delay ( dTt  ) is less than the 50% of the input signal     

DDdout VTtV 5.0)(  . As a result the calculation for the 50% delay of the proposed 

algorithm is always better than the conventional two pole model. For the case when 1  

the output voltage at dTt   is passed the 50% delay of the input signal (

DDdout VTtV 5.0)(  ). As a result, the proposed method sometimes underestimates the 

actual 50% delay even though it adds the extracted delay with the fitted function of 

=0.99 which may be very small because of low values of   . However for the prediction 

of rise time the proposed model is always better than the two pole model since there is no 

issue of initial condition. Overall results of single line, symmetrical and unsymmetrical 

tree structure interconnect yield significant improvements of the Elmore based two pole 

model in terms of calculating 50% delay and rise time.  

4.3 Selecting Ramp Input: 

When the rise time of input signal gets very sharp (i.e. unit step) in time domain, 

that means it has so many high frequency components. If the system has unit step input, 

two pole model might not always be accurate enough in capturing those high frequency 

components. As a result there is more error in calculating 50% delay and rise time for 
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unit step input. When the input signal becomes ramp, it has less high frequency 

components as compared to unit step input. As a result the two pole Elmore model and 

the proposed method will have better accuracy in predicting 50% delay and rise time for 

ramp input signals. However, since the proposed algorithm is based on delay extraction it 

will even improve the accuracy of the two pole model.  In this section numerical 

examples of single line, symmetrical (balanced and unbalanced) and unsymmetrical tree 

structure interconnects discussed in section 4.2 are also presented to illustrate the 

improved accuracy of the proposed method over Elmore based two pole model [59]. 

4.3.1 Example 1 - Single Line Interconnect   

A single RLC line proposed in [41] is considered. The interconnect structure is 

analyzed for a height of h = 1 µm and the conductor width is varied to w = 2 µm, w = 5 

µm and w = 10 µm. The corresponding per unit length parameters for w = 2 µm are R = 

88.29 Ω /cm, L = 15.38 nH/cm and C = 1.8 pF/cm; for w = 5 µm are R = 35.5 Ω /cm, L = 

13.6 nH/cm and C = 3.3 pF/cm; and for w = 10 µm are R = 22 Ω/cm, L = 12.6 nH/cm 

and C = 4.9 pF/cm. The algorithm is now tested for ramp response with a rise time of 

0.025 ns and 0.1 ns. 

Equation (3.21) is used to get the time domain response of the proposed model for 

ramp input. The 50% delay and rise time calculated with the proposed model is compared 

with conventional two pole model and HSPICE analysis for various resistive and 

capacitive loads of sR and lC  also and the results are shown from Table 4.10 to Table 

4.13. Table 4.10 and Table 4.11 show the results when input signal is ramp of 0.025ns 

rise   time  for  0.2cm  and  0.5cm respectively. The  corresponding  far end  time  domain  
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          Fig. 4.6: Transient response of Example in 4.3.1. For ramp input of 0.25ns for 0.2cm of line length 

              (a) Line width (w) is 10µm, Rs=50 Ω, Cl=50 fF. (b) Line width (w) is 5µm, Rs=20 Ω, Cl=10 fF. 
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                                                                                                                  (a)     

 
 

                                                                                                                (b) 

 

              Fig. 4.7: Transient response of Example in 4.3.1. For ramp input of 0.025ns for 0.5cm of line length 

                 (a) Line width (w) is 10µm, Rs=50 Ω, Cl=50 fF. (b) Line width (w) is 2µm, Rs=20 Ω, Cl=10 fF. 
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              Fig. 4.8: Transient response of Example in 4.3.1. For ramp input of 0.1ns for 0.2cm of line length 

               (a) Line width (w) is 10µm, Rs=100 Ω, Cl=100 fF. (b) Line width (w) is 2µm, Rs=20 Ω, Cl=10 fF. 
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                Fig. 4.9: Transient response of Example in 4.3.1.For ramp input of 0.1ns for 0.5cm of line length 

                (a) Line width (w) is 10µm,Rs=100 Ω, Cl=100 fF.(b) Line width (w) is 2µm, Rs=20 Ω, Cl=10 fF. 
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responses are plotted in Fig. 4.6 and Fig. 4.7. Another  ramp  input  of  0.1ns  rise time  is  

applied  and  results  are shown in Table 4.12 and Table 4.13 .Their time domain 

responses are plotted in Fig. 4.8 and Fig. 4.9 for 0.2cm and 0.5cm respectively. 

From Table 4.10 to Table 4.13, it is visible that overall error (two pole, proposed 

model) goes down significantly when input signal becomes ramp. Since the interconnect 

delay has been extracted the proposed model becomes even more accurate than the two 

pole  model  for  ramp  input  and it improves the accuracy where the average error drops 

TABLE 4.10 

 COMPARISONS OF 50% DELAY AND RISE TIME FOR RAMP RESPONSE OF 0.025NS OF PROPOSED MODEL 

WITH CONVENTIONAL TWO POLE MODEL AND HSPICE. THE LINE LENGTH IS 0.2 CM. (EXAMPLE 4.3.1) 

 

 

Width 

(µm) 

 

Rs  

(Ω) 

 

Cl 

(fF) 

 

 

 

 

 

 

 

 

 

P 

 

 

 

 

 

HSPICE  Two Pole Model Proposed Model   

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

2 

20 10 0.22 1.03 1.36 42.5 13.54 39.9 33.1 44.5 15.6 

50 50 0.45 0.92 1.23 48.3 18.8 46.8 44.4 47.5 20.4 

100 100 0.83 0.82 1.09 56.1 53.4 59.7 80.7 52.9 70 

5 

20 10 0.26 0.82 1.38 51.7 13.7 47.5 40.8 53.6 16.3 

50 50 0.58 0.77 1.30 57.32 19.87 56.6 61.4 56.5 21.7 

100 100 1.12 0.71 1.20 66 119 76.3 140.5 61.5 132 

10 

20 10 0.31 0.70 1.39 59.2 14.6 54.7 49.1 61 17.2 

50 50 0.72 0.67 1.33 65.3 22.3 66.7 83.4 63.7 22 

100 100 1.39 0.63 1.25 74.33 205.6 96.1 215 69.6 199.9 

Average Error % 8.85 141.28 4.0 12.87 

Maximum Error % 29.29 273.99 6.82 31.09 
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down to 8.85% from 4% for ramp input of 0.025ns and 4.3% to 1% for ramp input of 

0.1ns for shorter line lengths(0.2cm). Moreover the rise time prediction is even better for 

proposed model than the two pole model where average error drops down to 12% from 

141% for ramp input of 0.025ns and 4% to 21% for ramp input of 0.1ns for 0.2cm line 

lengths. 

          From Fig. 4.6 and Fig. 4.8 it is evident that even for RC dominant interconnects in 

shorter    lines,   proposed   model   is  better  than  two  pole  model.  For   LC   dominant  

TABLE 4.11 

COMPARISONS OF 50% DELAY AND RISE TIME FOR RAMP RESPONSE OF 0.025NS OF PROPOSED MODEL 

WITH CONVENTIONAL TWO POLE MODEL AND HSPICE. THE LINE LENGTH IS 0.5 CM. (EXAMPLE 4.3.1) 

 

 

Width 

(µm) 

 

Rs 

(Ω) 

 

Cl 

(fF) 

 

 

 

   

    

 

 

 

 

P 

 

 

 

 

    

HSPICE  Two Pole Model Proposed Model   

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

2 

20 10 0.32 0.4 1.36 93.54 14.5 95.6 82.7 85.1 16.5 

50 50 0.53 0.38 1.27 99.68 24 98.1 112.1 97.9 24.3 

100 100 0.87 0.35 1.16 108.5 157.9 124.2 196.5 101.7 166.3 

5 

20 10 0.31 0.33 1.38 116.8 15 103.6 103.3 118.2 19 

50 50 0.63 0.31 1.32 121.9 20.7 122.9 154.8 120 22 

100 100 1.12 0.29 1.24 131 260.6 165.9 339.9 123.1 303.5 

10 

20 10 0.35 0.28 1.39 134.1 15.2 120.8 125.3 136 19 

50 50 0.75 0.27 1.34 140 29 148.4 213.6 138.5 42.5 

100 100 1.37 0.25 1.27 150.8 491 216.7 516 141.3 470.3 

Average Error % 12.96 388.31 3.8 16.17 

Maximum Error % 43.7 724.34 9.02 46.55 
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interconnects significant improvements are still visible. 

Next the length of the line is increased to 0.5 cm. As it is expected the proposed 

model is giving even better results. For ramp input of 0.025ns the average error drops 

down to 3.% from 13% and for ramp input of 0.1ns average error drops from 7.28% to 

2% .It is important to mention that as rise time of the ramp signal gets increased the 

results are becoming better which is discussed at the start of section 4.3. Like previous 

cases the prediction of rise time is excellent for proposed model as compared to two pole 

TABLE 4.12 

 COMPARISONS OF 50% DELAY AND RISE TIME FOR RAMP RESPONSE OF 0.1NS OF PROPOSED MODEL WITH 

CONVENTIONAL TWO POLE MODEL AND HSPICE. THE LINE LENGTH IS 0.2 CM. (EXAMPLE 4.3.1) 

 

 

Width 

(µm) 

 

Rs  

(Ω) 

 

Cl 

(fF) 

 

 

 

 

 

 

 

 

 

P 

 

 

 

 

 

HSPICE  
Two Pole 

Model 
Proposed Model   

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

2 

20 10 0.22 4.10 1.36 67.44 52.66 70.1 61.69 68.36 51.55 

50 50 0.45 3.68 1.22 79.72 66.36 82.18 76.04 80.17 69.01 

100 100 0.83 3.27 1.09 98.56 93.34 109.8 157.1 99.23 105.87 

5 

20 10 0.26 3.27 1.38 77.48 54.86 80.34 67.11 79.2 53.01 

50 50 0.58 3.06 1.30 92.04 73.47 94.78 90.01 92.37 75.8 

100 100 1.12 2.83 1.20 115.1 168.6 117.9 161.8 115.8 163.48 

10 

20 10 0.31 2.80 1.39 86.5 57.82 89.3 73.79 88.42 56.23 

50 50 0.71 2.67 1.33 79.72 66.36 82.17 76.03 80.17 68.9 

100 100 1.39 2.52 1.25 131 220.3 137.3 226.6 131.5 227.3 

Average Error % 4.3 21.55 1.00 4.32 

Maximum Error % 11.48 68.31 2.22 13.42 
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model. For ramp input of 0.025ns the average error drops down to 16% from 388% and 

for ramp input of 0.1ns average error drops from 71% to 4% in calculating rise time. The 

results validate that as the line length of interconnect and the slope of input ramp signal 

increase, the accuracy gets improved. Next sections will show the results for tree 

structure interconnects for ramp inputs. 

 

TABLE 4.13 

COMPARISONS OF 50% DELAY AND RISE TIME FOR RAMP RESPONSE OF 0.1NS OF PROPOSED MODEL 

WITH CONVENTIONAL TWO POLE MODEL AND HSPICE. THE LINE LENGTH IS 0.5 CM. (EXAMPLE 4.3.1) 

 

 

Width 

(µm) 

 

Rs 

(Ω) 

 

Cl 

(fF) 

 

 

 

   

    

 

 

 

 

P 

 

 

 

 

    

HSPICE  Two Pole Model Proposed Model   

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

2 

20 10 0.32 1.64 1.36 121.8 58.77 121.5 98.9 126.2 61.01 

50 50 0.53 1.53 1.27 135.3 74.09 136.5 127.79 136 77.2 

100 100 0.87 1.40 1.16 210.5 508.6 255.1 519.3 205.2 493.8 

5 

20 10 0.31 1.30 1.38 143.9 59.1 140.3 116.16 149.3 62.1 

50 50 0.63 1.25 1.32 159.4 79.5 161.3 167.17 159.3 81 

100 100 1.12 1.17 1.24 184 294.7 205.4 347.1 180.5 333.0 

10 

20 10 0.35 1.12 1.37 163.4 61.7 157.8 135.97 168.5 64.9 

50 50 0.75 1.08 1.34 181.5 86.4 187.4 222.57 180.1 88.4 

100 100 1.37 1.02 1.27 210.5 508.6 255.2 519.3 205.3 494.5 

Average Error % 7.28 71.95 2.08 4.57 

Maximum Error % 21.24 157.6 3.75 13 
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     (a)          

                                                               

 
                                                                                             (b) 

 

Fig. 4.11: Transient response of tree structure of node N4 for ramp input of 0.1ns rise time 

 (a) Balanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=80 fF.  

      (b) Unbalanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=20 fF. 
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     (a)                                                          

 
                                                                                         (b) 

 

Fig. 4.10: Transient response of tree structure of node N4 for ramp input of 0.05ns rise time 

(a) Balanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=80 fF. 

(b) Unbalanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=20 fF. 
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     (a)          

                                                               

 
                                                                                             (b) 

 

Fig. 4.11: Transient response of tree structure of node N4 for ramp input of 0.1ns rise time 

 (a) Balanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=80 fF.  

      (b) Unbalanced Tree of Normalized line length lx =0.1cm, Rs=10 Ω, Cx=20 fF. 
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4.3.2 Example 2 – Symmetrical Tree Structure Interconnect 

The symmetrical tree structure discussed in section 4.2.2 is analyzed in this 

section  except  the  input is  ramp  signal  of  0.05ns and 0.1ns.  The far  end time domain   

 

TABLE 4.14 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SYMMETRICAL TREE STRUCTURE INTERCONNECT OF 

PROPOSED MODEL WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR RAMP INPUT OF 0.05NS. FOR 

TREE EXAMPLE OUTPUTS ARE OBSERVED AT NODE N4 

 

Example 

 

   lx 

(cm) 

Rs 

(Ω) 

Cx 

(fF) 

 

 

   

    

 

 

 

P 

 

 

    

 

HSPICE 
Two Pole 

Model 

Proposed 

Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

Balanced 

Tree 

  0.5 10 80 0.53 2.37 0.88 52.79 42.27 53.2 48.87 52.54 43.51 

  0.5 10 200 0.59 2.05 0.77 58.28 49.68 58.37 55.9 57.8 52.52 

   1 10  80 0.59 1.24 0.92 78.1 67.37 80.3 80.7 77.2 68.08 

   1 10 200 0.63 1.13 0.85 82.94 74.3 86.3 90.5 81.69 80.5 

Unbalanced 

Tree 

  0.5 10 20 0.42 2.00 1.12 57.0 35.5 55.56 48.5 56 38.1 

  0.5 30 20 0.99 1.91 1.07 69.6 71.1 71.3 95 67.7 93.3 

  0.5 10  500 0.63 1.07 0.60 92.5 70.2 89 96.3 88.6 94.2 

  0.5 30 500 1.40 0.97 0.55 126.7 257.4 134.1 277.0 133.0 275.4 

  1 10 20 0.5 0.99 1.11 94 53 88.8 88 90.3 52 

  1 30 20 1.00 0.91 1.02 108.6 104 118.9 189.3 101.8 150.5 

  1 10  500 0.65 0.64 0.72 136 107.1 133 157 126.5 142.6 

  1 30 500 1.21 0.57 0.64 181 373 192 391 190.2 385.3 

Average Error % 3.81 32.02 3.32 15.07 

Maximum Error % 9.48 82.02 6.99 44.71 
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transient responses are plotted for balanced and unbalanced tree structure in Fig. 4.10 and 

Fig. 4.11 for 0.05ns and 0.1ns of rise time respectively. Table 4.14 and Table 4.15 show 

the corresponding results. Results clearly show that proposed model has improved the 

accuracy in calculating 50% delay and rise time for both cases.  

 

TABLE 4.15 

COMPARISONS OF 50% DELAY AND RISE TIME FOR SYMMETRICAL TREE STRUCTURE INTERCONNECT OF 

PROPOSED MODEL WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR RAMP INPUT OF 0.1NS. FOR 

TREE EXAMPLE OUTPUTS ARE OBSERVED AT NODE N4 

 

Example 

 

   lx 

(cm) 

Rs 

(Ω) 

Cx 

(fF) 

 

 

   

    

 

 

 

P 

 

 

    

 

HSPICE 
Two Pole 

Model 

Proposed 

Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

Balanced 

Tree 

  0.5 10 80 0.53 4.74 0.88 75.08 75.96 75.9 77.5 75.35 76.12 

  0.5 10 200 0.59 4.11 0.77 81.84 79 82.62 82 82.12 79.9 

   1 10  80 0.59 2.48 0.92 105.1 89.5 105.8 99.5 104.8 91 

   1 10 200 0.63 2.27 0.85 111.6 98.5 112.3 108.7 111 101.9 

Unbalanced 

Tree 

  0.5 10 20 0.42 3.99 1.12 75.52 62.6 77.73 73 76.1 67.6 

  0.5 30 20 0.99 3.81 1.10 95.2 106.9 98.57 118 97.5 117.5 

  0.5 10  500 0.63 2.14 0.60 117.5 91.5 116.5 113 116.8 112 

  0.5 30 500 1.40 1.95 0.55 155 273 161.3 288 160.1 287.3 

  1 10 20 0.50 1.98 1.11 117.9 74.8 115.6 103.3 115.1 79.1 

  1 30 20 1.00 1.82 1.02 141.9 214 145.1 200.1 138.9 202.9 

  1 10  500 0.65 1.29 0.72 160.4 121.3 158.8 167 152.8 155.1 

  1 30 500 1.21 1.14 0.64 208.2 382.4 219 397.1 216.5 394.4 

Average Error % 2.2 14.13 1.5 7.8 

Maximum Error % 5.19 38.16 4.74 27.86 
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     (a)                                                                        

 

 
                                                                                             (b) 

 

                      Fig. 4.12: Transient response of unsymmetrical tree structure for ramp input of 0.1ns rise time 

 (a) Normalized line length lx =0.05cm,Rs=10 Ω, Cx=100 fF. (Node 5) 

(b) Normalized line length lx =0.05cm, Rs=30 Ω, Cx=20 fF.(Node 7) 
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TABLE 4.16 

COMPARISONS OF 50% DELAY AND RISE TIME FOR UNSYMMETRICAL TREE STRUCTURE INTERCONNECT OF 

PROPOSED MODEL WITH CONVENTIONAL TWO POLE MODEL AND HSPICE FOR RAMP INPUT OF 0.1NS.  

OUTPUTS ARE OBSERVED AT NODE N5 AND NODE N7 

 

 

 

   lx 

(cm) 

 

Rs 

(Ω) 

 

Cx 

(fF) 

 

 

Node 

 

 

   

    

 

 

 

P 

 

 

    

 

HSPICE 
Two Pole 

Model 

Proposed 

Model 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

50% 

Delay 

(ps) 

Rise 

Time 

(ps) 

  0.5 10 20 N5 0.82 1.82 0.79 134.6 132.82 136.9 159.9 132.6 154.7 

  0.5 10 20 N7 1.01 3.19 0.93 105.2 119.6 107.3 133.1 106.7 130.9 

  0.5 10  100 N5 0.89 1.46 0.63 158.1 187 160.5 208 156.9 206.8 

  0.5 10 100 N7 1.08 2.46 0.72 121.8 164.1 125.7 175.28 123.7 173.9 

  0.5 30 20 N5 1.00 1.58 0.69 154.8 215.27 159.1 228.16 154.9 227.5 

  0.5 30 20 N7 1.62 3.24 0.94 123.5 211.15 127.3 215.9 124.4 214.5 

  0.5 30  100 N5 1.05 1.25 0.54 186.4 291.2 190.5 300 189 299.1 

  0.5 30 100 N7 1.61 2.38 0.69 143.6 275.46 153.3 281.9 152.1 280.4 

  1 10 20 N5 1.01 0.65 0.56 299.6 498.9 311 529.8 307.3 519.5 

  1 10 20 N7 1.66 1.62 0.94 193.5 381.5 201.9 416.2 200 415.4 

  1 10  100 N5 1.03 0.56 0.49 350.1 645.3 356.4 628 354 631.9 

  1 10 100 N7 1.58 1.26 0.73 222.5 458.5 236 501.3 235.6 498.5 

  1 30 20 N5 1.08 0.57 0.50 350 644.2 360.8 665.4 358.2 663.1 

  1 30 20 N7 2.31 1.68 0.98 232 550.1 246.9 581.2 247 580.1 

  1 30  100 N5 1.1 0.49 0.43 406.2 776.3 413.7 791.4 412.1 790.8 

  1 30 100 N7 2.05 1.24 0.72 269.5 653 288.3 690.1 288.2 686.7 

Average Error % 3.6 6.7 2.72 5.6 

Maximum Error % 7 20.39 6.94 16.47 
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4.3.3 Example 3 – Unsymmetrical Tree Structure Interconnect 

The same unsymmetrical tree structure discussed in section 4.3.2 is also analyzed 

in this section with ramp input of 0.1ns and the corresponding results are shown in Table 

4.16 for node N5 and node N7. Transient responses of HSPICE, two pole model and 

proposed model are plotted in Fig. 4.12. Results from this example also validate the better 

accuracy of proposed model as compared to two pole model. 

4.3.4 Summary of the Results 

For the case of ramp inputs, the output voltage at the time point of the extracted 

delay ( dTt  ) is always less than the 50% of the input signal ( DDdout VTtV 5.0)(  ). As a 

result, overall results of single line, symmetrical and unsymmetrical tree structure 

interconnect is always better for the proposed model than the conventional two pole 

model. 

4.4 Conclusions 

In this work, a delay extraction based equivalent Elmore model is proposed for 

on-chip RLC interconnects. In the proposed scheme, the time of fight signal delay is 

extracted without increasing the number of poles or affecting the stability of the transfer 

function. The proposed algorithm is used for both unit step and ramp inputs of different 

rise times. Usually in the case of unit step inputs, for very short lines of RC dominant 

interconnects two pole model and proposed model gives similar accuracy. However for 
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all LC dominant interconnects proposed algorithm predicts 50% delay and rise time more 

precisely for both longer and shorter lines. In the case of ramp inputs proposed method is 

usually more accurate for both RC and LC dominant interconnects. For the unbalanced 

and unsymmetrical tree structure interconnects, the expression of the transfer function is 

complicated and there exists higher order poles in the hyperbolic functions. The transient 

responses of unbalanced tree networks are far more complicated than balanced tree 

networks. As a result instead of using two poles, sometimes higher order poles are 

required in order to capture more accurate time domain transient responses. As we 

increase the rise time of ramp inputs the accuracy is getting better which is shown in 

those examples. Since we extract the delay of the interconnect, the rise time calculation 

has always better for all examples. In the end we can say this algorithm yields significant 

improvements of two pole model. 
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Chapter 5 

Conclusions 

5.1 Summary  

This thesis describes a delay extraction based analytic model for on-chip RLC 

interconnects used in VLSI circuits. The rapid decrease in feature size and associated 

growth in circuit complexity, coupled with higher operating speeds, has made the 

analysis of on-chip interconnects a critical aspect of system reliability, speed of 

operation, and cost. Since the overall circuit performance depends mostly on the delay of 

interconnects rather than the delay of devices, designers must consider the effect of 

interconnects at the early stages of the design cycle to ensure circuit performance and 

reliability. 

Chapter 2 reviewed the closed form interconnect modeling that has been 

developed over the years. The analysis of on-chip interconnects can be performed using 

simulation techniques such as SPICE, however they are computationally expensive in 

early stage of layout optimization when dealing with millions of logic gates. As a result 

the importance of closed form analytical formulas has been emphasized. Closed-form 

analytic formulas require per unit length resistance, inductance and capacitances (R, L, 

C). How these electrical parameters can be extracted from the physical parameters has 

been discussed in this chapter. Closed form formulas have the difficulty of numerical 

integration problem because of Telegraphers partial differential equations. Those 

equations can provide an exact transfer function for the far end response in the frequency 
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domain but not in the time domain. Therefore in chapter 2, single-pole Elmore-based RC 

model was mentioned. Due to the limitations of RC model, equivalent Elmore based RLC 

models were discussed and it was shown how two pole approximations are done using 

moment matching techniques. Expressions for 50% delay and rise time were given for 

two pole model. Even though Elmore based two pole model have the limitations of 

capturing long signal delay and high-frequency effects caused by inductive dominant 

RLC lines, this model still has been widely used to analyze integrated circuits composed 

of millions of gates, since it is often impractical and time consuming to use accurate 

modeling techniques to evaluate the signal delay at each node in the circuit.  

In Chapter 3, the proposed algorithm has been developed. Since Elmore based 

models rely on one or two-pole transfer functions to estimate the delay, these 

approximations are not capable of capturing the early transient responses required for 

predicting long signal delays and rise times. As a result, a delay extraction based 

equivalent Elmore model has been proposed to improve the accuracy of two-pole models 

for RLC interconnects. The proposed algorithm extracts the time of fight delay to obtain a 

delay rational approximation without increasing the number of poles or affecting the 

stability of the transfer function. Unit step and ramp inputs are applied to get the time 

domain response at the far end. From this analysis, analytic fitted expressions are derived 

for the 50% delay and rise time for unit step response. A look up table has been proposed 

to predict those parameters for ramp inputs. Since the time of flight delay is extracted 

from the transfer function, the proposed algorithm provides a mechanism to improve the 

accuracy of two-pole Elmore-based models. 
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In Chapter 4, numerical examples are provided to demonstrate the validity of the 

proposed method. Single line and symmetrical and unsymmetrical tree structure examples 

(both balanced and unbalanced) are given using different line lengths and different RLC 

parameters. Algorithm is tested for both unit step and ramp inputs of different rise times. 

Numerical examples illustrate improved 50% delay and rise time estimates when 

compared to traditional Elmore based two-pole models. 

The proposed model provides several advantages in compared to traditional two 

pole model for analysis of on-chip interconnects. Since number of poles does not 

increase, there is no question of instability.  Therefore this model still maintains the 

stability of the system. Also for inductive dominant interconnects and longer line lengths 

this algorithm improves the results of Elmore based RLC models without significantly 

increasing the computational complexity. 

5.2 Future Work 

The analysis of on-chip interconnect mainly focuses on the timing aspects but 

with increasing operating speed and decreasing feature size, energy consumption of these 

interconnects is also important. In VLSI circuits an increasing portion of energy is 

dissipated in interconnects [60]. As a result the demand for accurate and efficient model 

for energy dissipation in on-chip interconnects has also been intense area for research as 

technology scales down. This is particularly true when inductance effect is dominant and 

when the width of the interconnect structure increases [60].  

In order to model the energy consumption for on-chip RLC interconnects, 

accurate prediction of driving point impedance and transition time (which is rise time) of 
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the output voltage is very important [60]. The proposed delay extraction algorithm may 

provide better estimation of the driving impedance. However this model surely gives 

better prediction of the rise time of the output signal. As a result this model may provide 

improved results for energy consumption in on-chip interconnects. 
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