184 research outputs found

    Interactive Global Illumination Effects Using Deterministically Directed Layered Depth Maps

    Get PDF
    A layered depth map is an extension of the well-known depth map used in rasterization. Multiple layered depth maps can be used as a coarse scene representation. We develop two global illumination methods which use said scene representation. The first is an interactive ambient occlusion method. The second is an interactive single-bounce indirect lighting method based on photon differentials. All of this is implemented in a rasterization-based pipeline

    Interactive translucent volume rendering and procedural modeling

    Get PDF
    Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data

    Model for volume lighting and modeling

    Get PDF
    Journal ArticleAbstract-Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data

    Gerçek zamanlı sahnelerin ışıklandırılmasına yardımcı, dinamik voxelleştirme teknikleri.

    Get PDF
    In this thesis, we focus on approximating indirect illumination on real-time applications to visualize realistic scenes. In order to approximate indirect illumination we provide a fast sparse voxel tree structure for highly dynamic scenes. Our system tries to cover traditional real-time animation methods including dynamic non-deforming objects and objects that deform with bone transformations. The voxel scene data structure is designed for fully dynamic objects and eliminates the voxelization of the dynamic objects per frame which in turn facilitates efficient realistic rendering. We combine this new scene information structure with the widely used real-time rendering techniques and these techniques’ data structures such as shadow mapping and deferred rendering to provide an efficient cone ray-casting algorithm that achieves global illumination in real-time. M.S. - Master of Scienc

    Modeling and real-time rendering of participating media using the GPU

    Get PDF
    Cette thèse traite de la modélisation, l'illumination et le rendu temps-réel de milieux participants à l'aide du GPU. Dans une première partie, nous commençons par développer une méthode de rendu de nappes de brouillard hétérogènes pour des scènes en extérieur. Le brouillard est modélisé horizontalement dans une base 2D de fonctions de Haar ou de fonctions B-Spline linéaires ou quadratiques, dont les coefficients peuvent être chargés depuis une textit{fogmap}, soit une carte de densité en niveaux de gris. Afin de donner au brouillard son épaisseur verticale, celui-ci est doté d'un coefficient d'atténuation en fonction de l'altitude, utilisé pour paramétrer la rapidité avec laquelle la densité diminue avec la distance au milieu selon l'axe Y. Afin de préparer le rendu temps-réel, nous appliquons une transformée en ondelettes sur la carte de densité du brouillard, afin d'en extraire une approximation grossière (base de fonctions B-Spline) et une série de couches de détails (bases d'ondelettes B-Spline), classés par fréquence.%Les détails sont ainsi classés selon leur fréquence et, additionnées, permettent de retrouver la carte de densité d'origine. Chacune de ces bases de fonctions 2D s'apparente à une grille de coefficients. Lors du rendu sur GPU, chacune de ces grilles est traversée pas à pas, case par case, depuis l'observateur jusqu'à la plus proche surface solide. Grâce à notre séparation des différentes fréquences de détails lors des pré-calculs, nous pouvons optimiser le rendu en ne visualisant que les détails les plus contributifs visuellement en avortant notre parcours de grille à une distance variable selon la fréquence. Nous présentons ensuite d'autres travaux concernant ce même type de brouillard : l'utilisation de la transformée en ondelettes pour représenter sa densité via une grille non-uniforme, la génération automatique de cartes de densité et son animation à base de fractales, et enfin un début d'illumination temps-réel du brouillard en simple diffusion. Dans une seconde partie, nous nous intéressons à la modélisation, l'illumination en simple diffusion et au rendu temps-réel de fumée (sans simulation physique) sur GPU. Notre méthode s'inspire des Light Propagation Volumes (volume de propagation de lumière), une technique à l'origine uniquement destinée à la propagation de la lumière indirecte de manière complètement diffuse, après un premier rebond sur la géométrie. Nous l'adaptons pour l'éclairage direct, et l'illumination des surfaces et milieux participants en simple diffusion. Le milieu est fourni sous forme d'un ensemble de bases radiales (blobs), puis est transformé en un ensemble de voxels, ainsi que les surfaces solides, de manière à disposer d'une représentation commune. Par analogie aux LPV, nous introduisons un Occlusion Propagation Volume, dont nous nous servons, pour calculer l'intégrale de la densité optique entre chaque source et chaque autre cellule contenant soit un voxel du milieu, soit un voxel issu d'une surface. Cette étape est intégrée à la boucle de rendu, ce qui permet d'animer le milieu participant ainsi que les sources de lumière sans contrainte particulière. Nous simulons tous types d'ombres : dues au milieu ou aux surfaces, projetées sur le milieu ou les surfacesThis thesis deals with modeling, illuminating and rendering participating media in real-time using graphics hardware. In a first part, we begin by developing a method to render heterogeneous layers of fog for outdoor scenes. The medium is modeled horizontally using a 2D Haar or linear/quadratic B-Spline function basis, whose coefficients can be loaded from a fogmap, i.e. a grayscale density image. In order to give to the fog its vertical thickness, it is provided with a coefficient parameterizing the extinction of the density when the altitude to the fog increases. To prepare the rendering step, we apply a wavelet transform on the fog's density map, and extract a coarse approximation and a series of layers of details (B-Spline wavelet bases).These details are ordered according to their frequency and, when summed back together, can reconstitute the original density map. Each of these 2D function basis can be viewed as a grid of coefficients. At the rendering step on the GPU, each of these grids is traversed step by step, cell by cell, since the viewer's position to the nearest solid surface. Thanks to our separation of the different frequencies of details at the precomputations step, we can optimize the rendering by only visualizing details that contribute most to the final image and abort our grid traversal at a distance depending on the grid's frequency. We then present other works dealing with the same type of fog: the use of the wavelet transform to represent the fog's density in a non-uniform grid, the automatic generation of density maps and their animation based on Julia fractals, and finally a beginning of single-scattering illumination of the fog, where we are able to simulate shadows by the medium and the geometry. In a second time, we deal with modeling, illuminating and rendering full 3D single-scattering sampled media such as smoke (without physical simulation) on the GPU. Our method is inspired by light propagation volumes, a technique whose only purpose was, at the beginning, to propagate fully diffuse indirect lighting. We adapt it to direct lighting, and the illumination of both surfaces and participating media. The medium is provided under the form of a set of radial bases (blobs), and is then transformed into a set of voxels, together with solid surfaces, so that both entities can be manipulated more easily under a common form. By analogy to the LPV, we introduce an occlusion propagation volume, which we use to compute the integral of the optical density, between each source and each other cell containing a voxel either generated from the medium, or from a surface. This step is integrated into the rendering process, which allows to animate participating media and light sources without any further constraintPARIS-EST-Université (770839901) / SudocSudocFranceF

    A graphics processing unit based method for dynamic real-time global illumination

    Get PDF
    Real-time realistic image synthesis for virtual environments has been one of the most actively researched areas in computer graphics for over a decade. Images that display physically correct illumination of an environment can be simulated by evaluating a multi-dimensional integral equation, called the rendering equation, over the surfaces of the environment. Many global illumination algorithms such as pathtracing, photon mapping and distributed ray-tracing can produce realistic images but are generally unable to cope with dynamic lighting and objects at interactive rates. It still remains one of most challenging problems to simulate physically correctly illuminated dynamic environments without a substantial preprocessing step. In this thesis we present a rendering system for dynamic environments by implementing a customized rasterizer for global illumination entirely on the graphics hardware, the Graphical Processing Unit. Our research focuses on a parameterization of discrete visibility field for efficient indirect illumination computation. In order to generate the visibility field, we propose a CUDA-based (Compute Unified Device Architecture) rasterizer which builds Layered Hit Buffers (LHB) by rasterizing polygons into multi-layered structural buffers in parallel. The LHB provides a fast visibility function for any direction at any point. We propose a cone approximation solution to resolve an aliasing problem due to limited directional discretization. We also demonstrate how to remove structure noises by adapting an interleaved sampling scheme and discontinuity buffer. We show that a gathering method amortized with a multi-level Quasi Mont Carlo method can evaluate the rendering equation in real-time. The method can realize real-time walk-through of a complex virtual environment that has a mixture of diffuse and glossy reflection, computing multiple indirect bounces on the fly. We show that our method is capable of simulating fully dynamic environments including changes of view, materials, lighting and objects at interactive rates on commodity level graphics hardware

    The delta radiance field

    Get PDF
    The wide availability of mobile devices capable of computing high fidelity graphics in real-time has sparked a renewed interest in the development and research of Augmented Reality applications. Within the large spectrum of mixed real and virtual elements one specific area is dedicated to produce realistic augmentations with the aim of presenting virtual copies of real existing objects or soon to be produced products. Surprisingly though, the current state of this area leaves much to be desired: Augmenting objects in current systems are often presented without any reconstructed lighting whatsoever and therefore transfer an impression of being glued over a camera image rather than augmenting reality. In light of the advances in the movie industry, which has handled cases of mixed realities from one extreme end to another, it is a legitimate question to ask why such advances did not fully reflect onto Augmented Reality simulations as well. Generally understood to be real-time applications which reconstruct the spatial relation of real world elements and virtual objects, Augmented Reality has to deal with several uncertainties. Among them, unknown illumination and real scene conditions are the most important. Any kind of reconstruction of real world properties in an ad-hoc manner must likewise be incorporated into an algorithm responsible for shading virtual objects and transferring virtual light to real surfaces in an ad-hoc fashion. The immersiveness of an Augmented Reality simulation is, next to its realism and accuracy, primarily dependent on its responsiveness. Any computation affecting the final image must be computed in real-time. This condition rules out many of the methods used for movie production. The remaining real-time options face three problems: The shading of virtual surfaces under real natural illumination, the relighting of real surfaces according to the change in illumination due to the introduction of a new object into a scene, and the believable global interaction of real and virtual light. This dissertation presents contributions to answer the problems at hand. Current state-of-the-art methods build on Differential Rendering techniques to fuse global illumination algorithms into AR environments. This simple approach has a computationally costly downside, which limits the options for believable light transfer even further. This dissertation explores new shading and relighting algorithms built on a mathematical foundation replacing Differential Rendering. The result not only presents a more efficient competitor to the current state-of-the-art in global illumination relighting, but also advances the field with the ability to simulate effects which have not been demonstrated by contemporary publications until now

    Scalable exploration of 3D massive models

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumo] Esta tese presenta unha serie técnicas escalables que avanzan o estado da arte da creación e exploración de grandes modelos tridimensionaies. No ámbito da xeración destes modelos, preséntanse métodos para mellorar a adquisición e procesado de escenas reais, grazas a unha implementación eficiente dun sistema out- of- core de xestión de nubes de puntos, e unha nova metodoloxía escalable de fusión de datos de xeometría e cor para adquisicións con oclusións. No ámbito da visualización de grandes conxuntos de datos, que é o núcleo principal desta tese, preséntanse dous novos métodos. O primeiro é unha técnica adaptabile out-of-core que aproveita o hardware de rasterización da GPU e as occlusion queries para crear lotes coherentes de traballo, que serán procesados por kernels de trazado de raios codificados en shaders, permitindo out-of-core ray-tracing con sombreado e iluminación global. O segundo é un método de compresión agresivo que aproveita a redundancia xeométrica que se adoita atopar en grandes modelos 3D para comprimir os datos de forma que caiban, nun formato totalmente renderizable, na memoria da GPU. O método está deseñado para representacións voxelizadas de escenas 3D, que son amplamente utilizadas para diversos cálculos como para acelerar as consultas de visibilidade na GPU. A compresión lógrase fusionando subárbores idénticas a través dunha transformación de similitude, e aproveitando a distribución non homoxénea de referencias a nodos compartidos para almacenar punteiros aos nodos fillo, e utilizando unha codificación de bits variable. A capacidade e o rendemento de todos os métodos avalíanse utilizando diversos casos de uso do mundo real de diversos ámbitos e sectores, incluídos o patrimonio cultural, a enxeñería e os videoxogos.[Resumen] En esta tesis se presentan una serie técnicas escalables que avanzan el estado del arte de la creación y exploración de grandes modelos tridimensionales. En el ámbito de la generación de estos modelos, se presentan métodos para mejorar la adquisición y procesado de escenas reales, gracias a una implementación eficiente de un sistema out-of-core de gestión de nubes de puntos, y una nueva metodología escalable de fusión de datos de geometría y color para adquisiciones con oclusiones. Para la visualización de grandes conjuntos de datos, que constituye el núcleo principal de esta tesis, se presentan dos nuevos métodos. El primero de ellos es una técnica adaptable out-of-core que aprovecha el hardware de rasterización de la GPU y las occlusion queries, para crear lotes coherentes de trabajo, que serán procesados por kernels de trazado de rayos codificados en shaders, permitiendo renders out-of-core avanzados con sombreado e iluminación global. El segundo es un método de compresión agresivo, que aprovecha la redundancia geométrica que se suele encontrar en grandes modelos 3D para comprimir los datos de forma que quepan, en un formato totalmente renderizable, en la memoria de la GPU. El método está diseñado para representaciones voxelizadas de escenas 3D, que son ampliamente utilizadas para diversos cálculos como la aceleración las consultas de visibilidad en la GPU o el trazado de sombras. La compresión se logra fusionando subárboles idénticos a través de una transformación de similitud, y aprovechando la distribución no homogénea de referencias a nodos compartidos para almacenar punteros a los nodos hijo, utilizando una codificación de bits variable. La capacidad y el rendimiento de todos los métodos se evalúan utilizando diversos casos de uso del mundo real de diversos ámbitos y sectores, incluidos el patrimonio cultural, la ingeniería y los videojuegos.[Abstract] This thesis introduces scalable techniques that advance the state-of-the-art in massive model creation and exploration. Concerning model creation, we present methods for improving reality-based scene acquisition and processing, introducing an efficient implementation of scalable out-of-core point clouds and a data-fusion approach for creating detailed colored models from cluttered scene acquisitions. The core of this thesis concerns enabling technology for the exploration of general large datasets. Two novel solutions are introduced. The first is an adaptive out-of-core technique exploiting the GPU rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels, opening the door to out-of-core ray tracing with shadowing and global illumination. The second is an aggressive compression method that exploits redundancy in large models to compress data so that it fits, in fully renderable format, in GPU memory. The method is targeted to voxelized representations of 3D scenes, which are widely used to accelerate visibility queries on the GPU. Compression is achieved by merging subtrees that are identical through a similarity transform and by exploiting the skewed distribution of references to shared nodes to store child pointers using a variable bitrate encoding The capability and performance of all methods are evaluated on many very massive real-world scenes from several domains, including cultural heritage, engineering, and gaming

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    Dynamic Mesh-Aware Radiance Fields

    Full text link
    Embedding polygonal mesh assets within photorealistic Neural Radience Fields (NeRF) volumes, such that they can be rendered and their dynamics simulated in a physically consistent manner with the NeRF, is under-explored from the system perspective of integrating NeRF into the traditional graphics pipeline. This paper designs a two-way coupling between mesh and NeRF during rendering and simulation. We first review the light transport equations for both mesh and NeRF, then distill them into an efficient algorithm for updating radiance and throughput along a cast ray with an arbitrary number of bounces. To resolve the discrepancy between the linear color space that the path tracer assumes and the sRGB color space that standard NeRF uses, we train NeRF with High Dynamic Range (HDR) images. We also present a strategy to estimate light sources and cast shadows on the NeRF. Finally, we consider how the hybrid surface-volumetric formulation can be efficiently integrated with a high-performance physics simulator that supports cloth, rigid and soft bodies. The full rendering and simulation system can be run on a GPU at interactive rates. We show that a hybrid system approach outperforms alternatives in visual realism for mesh insertion, because it allows realistic light transport from volumetric NeRF media onto surfaces, which affects the appearance of reflective/refractive surfaces and illumination of diffuse surfaces informed by the dynamic scene.Comment: ICCV 202
    • …
    corecore