
A Graphics Processing Unit Based Method for
Dynamic Real-Time Global Illumination

Insu Yu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London.

2011

2

Dedicated to my wife, Yoon Jung and my son, Ian

3

I, Insu Yu, confirm that the work presented in this thesis is my own. Where information has been

derived from other sources, I confirm that this has been indicated in the thesis.

Insu Yu

Abstract

Real-time realistic image synthesis for virtual environments has been one of the most actively researched

areas in computer graphics for over a decade. Images that display physically correct illumination of an

environment can be simulated by evaluating a multi-dimensional integral equation, called the rendering

equation, over the surfaces of the environment. Many global illumination algorithms such as path-

tracing, photon mapping and distributed ray-tracing can produce realistic images but are generally unable

to cope with dynamic lighting and objects at interactive rates. It still remains one of most challenging

problems to simulate physically correctly illuminated dynamic environments without a substantial pre-

processing step.

In this thesis we present a rendering system for dynamic environments by implementing a cus-

tomized rasterizer for global illumination entirely on the graphics hardware, the Graphical Processing

Unit. Our research focuses on a parameterization of discrete visibility field for efficient indirect illu-

mination computation. In order to generate the visibility field, we propose a CUDA-based (Compute

Unified Device Architecture) rasterizer which builds Layered Hit Buffers (LHB) by rasterizing polygons

into multi-layered structural buffers in parallel. The LHB provides a fast visibility function for any di-

rection at any point. We propose a cone approximation solution to resolve an aliasing problem due to

limited directional discretization. We also demonstrate how to remove structure noises by adapting an

interleaved sampling scheme and discontinuity buffer. We show that a gathering method amortized with

a multi-level Quasi Mont Carlo method can evaluate the rendering equation in real-time.

The method can realize real-time walk-through of a complex virtual environment that has a mixture

of diffuse and glossy reflection, computing multiple indirect bounces on the fly. We show that our method

is capable of simulating fully dynamic environments including changes of view, materials, lighting and

objects at interactive rates on commodity level graphics hardware.

Acknowledgements

I am extremely grateful to my supervisor, Prof. Mel Slater and second supervisor, Dr. Jan Kautz for

invaluable guidance. I would also thank to fellow researchers: Jesper Mortensen, Pankaj Khanna and

especially Joel Jordan for encouragement. This work was funded by EPSRC projects (EP/C511824/1

and GR/R13685/01).

Finally, I would like to thank my parents and parents-in-law for their love, unconditional support

and pray during my PhD.

Contents

1 Introduction 13

1.1 Introduction . 13

1.2 Motivation . 14

1.2.1 Approximated Visibility for Indirect Illumination 15

1.3 Scope and Limitation . 16

1.4 Contribution . 17

1.5 Organization of the Thesis . 17

2 Overview of Global Illumination 19

2.1 Fundamentals of Illumination Theory . 19

2.1.1 Models of Light . 19

2.1.2 Geometry . 20

2.1.3 Radiometry . 21

2.1.4 Material Properties . 21

2.2 Mathematical Foundation of Global Illumination . 22

2.2.1 Plenoptic Function . 22

2.2.2 Energy Balance Equation . 23

2.2.3 Neumann Series Expansion . 24

2.3 Overview of Global Illumination Methods . 24

2.3.1 Finite Element Radiosity Methods . 25

2.3.2 Ray Tracing Methods . 26

2.3.3 Monte Carlo Path Tracing Methods . 27

2.3.4 Hybrid Methods . 27

2.3.5 Photon Mapping (Multi-Pass) Methods . 28

2.4 Precomputed Methods for Global Illumination . 28

2.4.1 Image-Based Rendering . 29

2.4.2 Light Fields (Lumigraph) . 29

2.4.3 Pre-computed Radiance Transfer . 31

2.5 Interactive Global Illumination . 31

2.5.1 Instant Radiosity . 32

Contents 7

2.5.2 Imperfect Shadow Map . 32

2.6 Overview of Global Illumination on GPU . 33

2.6.1 GPU Radiosity Methods . 33

2.6.2 GPU Ray Tracing Methods . 34

2.6.3 GPU Photon Mapping Methods . 34

2.6.4 GPU Irradiance and Radiance Caching Methods 35

2.7 Screen Space Methods for Real-Time Global Illumination 35

2.7.1 Screen Space Ambient/Directional Occlusion 36

2.7.2 Reflective Shadow Maps . 36

2.8 Virtual Light Field Method for Global Illumination . 37

2.9 Summary . 38

3 Global Illumination with Spherical Layered Hit Buffers 39

3.1 Overview . 39

3.2 Mathematical Formulation of Global Illumination . 39

3.2.1 Hemisphere and Area Formulations . 40

3.2.2 Stochastic Numerical Model for the Rendering Equation 42

3.2.3 Neumann Series Expansion . 44

3.3 Parametrization of Spherical Data (Solid Angles) . 44

3.3.1 Uniform Subdivision Methods . 45

3.3.2 Evaluation of Uniform Subdivision Methods 48

3.4 Spherical Layered Hit Buffers . 49

3.5 Summary . 51

4 CUDA Deep Rasterization 52

4.1 Introduction . 52

4.2 CUDA Architecture . 53

4.2.1 CUDA Implementation Issues . 55

4.3 Building Layered Hit Buffering using CUDA Rasterization 56

4.4 CUDA Deep Rasterization . 57

4.4.1 Overview . 57

4.4.2 Rendering Pipeline and Memory Structure . 58

4.4.3 Micro-Rasterization . 60

4.4.4 Macro-Rasterization . 62

4.5 Performance Analysis . 65

4.6 Discussion . 66

5 Real-Time GPU Global Illumination 68

5.1 Overview of the Rendering System . 68

5.1.1 Rendering Procedure . 68

Contents 8

5.1.2 Light Transport . 69

5.2 Direct Lighting . 71

5.2.1 Important Sampling on Luminaries . 72

5.3 Indirect Lighting and Irradiance Estimation . 73

5.3.1 Cone Approximation . 76

5.3.2 Lambertian Reflection Model . 78

5.3.3 Implementation Details . 80

5.4 Dynamic Elements . 81

5.5 Discussion . 82

6 Results 84

6.1 Evaluation of the Spherical Layered Hit Buffer . 84

6.1.1 Test Scenes for Scalability . 84

6.1.2 Numbers of Polygons . 86

6.1.3 Number of Directions . 87

6.1.4 Hit Buffer Size . 88

6.2 Performance Analysis of Complex Objects . 89

6.2.1 Rendering Timing of Various Objects . 89

6.2.2 Paths VS Timing . 92

6.3 Performance Comparison with OptiX path tracer . 92

6.4 Performance Analysis of Dynamic Elements . 94

6.4.1 Performance comparison of Rebuilding the SLHB 96

6.5 Scalability on Graphics Cards . 98

6.6 Summary . 98

7 Conclusions and Future Works 100

7.1 Summary . 100

7.2 Future Research . 101

7.2.1 Real-time Global illumination in Virtual Reality 103

7.2.2 Real-time Global Illumination in Augmented Reality 104

A Summary of Notations 106

A.1 Geometry . 106

A.2 Probability (Monte Carlo) . 107

A.3 Radiometry . 107

A.4 Miscellaneous . 108

B List of Publications 109

Bibliography 110

List of Figures

1.1 Comparison of Direct and Indirect Illumination of Sponza Model. 14

1.2 Renderings of the arches scene, where the indirect illumination in each image is com-

puted with a different visibility approximation. A psychophysical study shows that many

of these visibility approximations produce images that are perceptually very similar to

reference renderings. 15

2.1 Geometry Notations. 20

2.2 Bidirectional Reflectance Direction Function. 22

2.3 The Plenoptic function. 23

2.4 Comparison of Accurate Lighting and Ambient Occlusion. 35

3.1 Hemisphere and Area (Surface) Integration. 40

3.2 Hemisphere and Area Formulation. 41

3.3 Recursive subdivision of octahedra base and icosahedron. 45

3.4 An Example of Uniform Spherical UV Grid (Quadrant). 46

3.5 Solid Angle Maps for Octahedron, Icosahedron and Halton Samples. 47

3.6 Comparison of Two Uniform Subdivision methods. 48

3.7 A Profile of Tetrahedra in terms of Solid Angle. The X-axis is 0◦-360◦ around the equa-

tor, Y-axis is a cosine angular difference. 49

3.8 A 2D example of multiple directions to build a SLHB. 50

3.9 Layered Hit Buffers in icosahedron directions. 50

4.1 Overview of CUDA Deep Rasterization to build Layered Hit Buffers (LHB). 53

4.2 Performance Comparison and Memory Bandwidth for GPU and CPU (from NVIDIA

[Cud11]). 54

4.3 NVIDIA GTX 480 Architecture(left) and a Stream Processor(right) (from NVIDIA

[Cud11]). 55

4.4 An example of CUDA Deep Rasterization to build a Layered Hit Buffer (LHB). Polygon

A,B and C are rasterized to the LHB buffer. 56

4.5 Micro and Macro Polygons. 60

4.6 Half space rasterization method. 60

4.7 4x4 Block Half-Space Macro-Rasterization. 63

List of Figures 10

4.8 Linear Block Macro-Rasterization. 64

4.9 Edge-Table Macro-Rasterization. 65

4.10 Normal Rendering of Various Models. 67

5.1 Overview of Rendering Procedure. 69

5.2 An Example of a G-Buffer. 72

5.3 Low Dependency Sampling (196 samples). 74

5.4 A Directional Map of an icosahedron (320) is illustrated with Longitude-Latitude and

Paraboloid parameterizations. 75

5.5 Solid angles coverage shown in Paraboloid Map (Icosahedron 320 directions) (a) closest

to a delta function (c) solid angle covers the hemisphere region. 76

5.6 An example of two Cone Approximations (R=1.5, 4 pixels) in a canonical LHB view. . . 78

5.7 A Cone Approximation for 8 LHB directions with various radius r (in pixels). The

number of irradiance samples is the same for all cases. 79

5.8 A galloping dynamic horse (17K) running at 45 frames per second at 512 x 512. 81

5.9 An Example of Environment Map Lighting. 82

6.1 Random unit box objects for scalability test. 85

6.2 Multiresolution Happy Buddha objects for scalability test. 85

6.3 Rendering time by number of polygons (2K-1M triangles, 64 paths, 1-3 indirect bounces,

320 LHB directions, 128x128 LHB map size at 512x512 screen resolution). 86

6.4 Rendering and construction time by increasing number of directions (250K Buddha

model, 64 paths, 2 indirect bounces, 8-320 LHB directions, 128x128 LHB map size

at 512x512 screen resolution). 87

6.5 Rendering time by various size of Layered Hit Buffer (16K-1M triangles, 64 paths, 2

indirect bounces, 320 LHB directions, 16x16-256x256 LHB map size at 512x512 screen

resolution). 89

6.6 Rendered images of complex objects (resolution 512x512). 90

6.7 One million polygon statue rendered at 15,904ms per frame, which is 42M paths per

frame (640 paths, 5 indirect bounces, 320 LHB directions, 128x128 LHB map size at

1024x1024 screen resolution). 91

6.8 Paths VS frame rates by increasing number of paths (2K-1M triangles, 2-640 paths, 5

indirect bounces, 320 LHB directions, 128x128 LHB map size at 1024x1024 screen

resolution). 92

6.9 Timing measurements for various paths (1M statue model, 2-640 paths, 5 indirect

bounces, 320 LHB directions, 128x128 LHB map size at 1024x1024 screen resolution). 93

6.10 Performance comparison of OptiX [PBD+10] and the proposed CUDA Path tracer. . . . 94

6.11 Dynamic movement of an elephant. 95

6.12 A large image of the galloping elephant model. 96

List of Figures 11

6.13 Rendering and construction time of dynamic objects at 512 x 512 resolution at 16 paths

with 2 indirect bounces per pixel. 97

6.14 Performance comparison of static and dynamic data structure update. 97

6.15 The scalability test on three graphics cards. 98

7.1 An example of McGuire’s [MESL10] work, showing the difference between conven-

tional and stochastic rasterization. 101

7.2 An example of lens blur effect from Lee’s work [LES09]. 102

7.3 Real-time Global illumination in Virtual Reality. 103

7.4 Real-time Global Illumination in Augmented Reality. 104

List of Tables

2.1 Radiometric quantity, symbols and units. 21

3.1 Uniform Tetrahedron subdivision. 46

5.1 Compute Radiance in Neumann series. 70

5.2 Direct Lighting. 71

5.3 Indirect Lighting. 71

6.1 Individual timings shown in Figure 6.3 in milliseconds (ms). 86

6.2 Individual timings shown in Figure 6.4 in milliseconds (ms). 87

6.3 Individual timings shown in Figure 6.5 in milliseconds (ms). 88

6.4 Individual timings shown in Figure 6.8 in milliseconds (ms). 92

6.5 Individual performance shown in Figure 6.10 in millions of rays per second. 94

Chapter 1

Introduction

1.1 Introduction
Computer Graphics has changed significantly in the last three decades. Prior to the 1980s, the simulation

of light was extremely limited to local illumination models. Most of the major theoretical advances

in simulating realistic lighting in 3D scenes were made between the 1980s and 1990s. During these

decades, two new innovative concepts were introduced within the computer graphics community; one

based on a point sampling Ray Tracing method, and the other is a finite element method such as a

Radiosity solution. Ray Tracing techniques tend to solve the rendering equation per pixel over an image

plane using the Monte Carlo integration method. In contrast, the finite element method computes the

radiosity value for every element in the scene.

Both of these concepts were already employed in different fields; for example ray tracing was a

popular method in optics, whereas the radiosity notion was widely used in heat transfer problems. These

methods both make extensive use of the physical nature of light, which is related to the goal of computer

graphics to produce photo realistic images based on the physical phenomena of light interaction. Global

Illumination takes into account not only the light that comes directly from light sources, known as Local

Illumination, but also further contributions from light bounces, in which the light rays are reflected by

other surfaces in the scene. Images rendered using global illumination appear more photorealistic than

images simply generated by local illumination models.

Although many studies have focused on improving the rendering speed while maintaining quality,

existing approaches are usually limited to computing only a part of the global illumination effect for

simple dynamic scenes. It is impractical to make a real-time path tracer due to the complexity of the ren-

dering equation. However, in recent years, advanced graphics hardware is capable of providing flexible

rendering pipelines, so that global illumination have become more practical and realistic. This research

belongs to that category of study, which enhances the rendering speed of path tracing in the context of

global illumination. The main issue that is addressed in this research is massively improving the indirect

illumination computation. The key problem is to how to solve the visibility computation efficiently for

dynamic scenes. In this thesis, an efficient multi-layered visibility structure is presented by implement-

ing a customized rasterizer. The visibility field provides instant access to visibility queries without the

need for computing the ray-polygon intersections. We present a GPU-based Monte Carlo path-tracing

1.2. Motivation 14

for dynamic environments, which achieves a real-time path tracer entirely on the graphic hardware, such

that global illumination is well perceived without loss of realism.

1.2 Motivation

Computer graphics rendering may be expressed as a technique to simulate all reflections of light and

reproduce the accurate intensity of the light at any given point. However, some computer graphics algo-

rithms use partial solutions of the rendering equation in order to achieve interactive frame rates. Figure

1.1 shows an example of globally illuminated scene, which represents many natural lighting phenomena.

Two rendered images of the Sponza model are shown; one rendered with direct lighting only, and the

other using path tracing. The right-hand image, which was rendered using global illumination, appears

to be more realistic than the left-hand image, which was rendered using a direct illumination algorithm.

Figure 1.1: Comparison of Direct and Indirect Illumination of Sponza Model.

The fundamental goal of this research is to provide a rendering system that handles complex dy-

namic elements, whilst allowing updating of global illumination on the fly without any pre-processing

step. In order to achieve this, graphics card hardware is exploited to generate a Monte Carlo path tracer

for real-time rendering of dynamic scenes. One of the most expensive components of global illumination

is the visibility determination, and global illumination solutions for multiple inter-reflection of light in

a dynamic environment require the computation of a global illumination solution for each frame. An

acceleration structure improve ray-polygon intersection computation for complex scenes, but it becomes

very costly to rebuild an accelerations structure per frame which often prohibits real-time rendering.

This results in the motivation to build a new acceleration structure to speed up indirect illumination com-

putation. This acceleration structure is based on the idea of scarifying accuracy of visibility in order

to achieve a highly interactive rate, without losing perceived realism for dynamic environments. The

perceptual influence of visibility approximations on indirect illumination has been studied in order to

evaluate whether inaccurate visibility approximations are perceived as realistic as the reference render-

ing. The following section explains the user study in more detail.

1.2. Motivation 15

1.2.1 Approximated Visibility for Indirect Illumination

Global illumination effects, such as indirect illumination, are known to be perceptually important, but

are often omitted or coarsely approximated due to their high rendering cost, especially in interactive

applications. One of the most expensive components in global illumination is visibility determination,

where it must be decided whether two points are mutually visible or not. This is usually performed accu-

rately using the ray-casting method, and there are many methods that exist to speed up accurate visibility

queries. However, it was unknown whether accurate visibility for indirect illumination is perceptually

important at all.

(a) Imperfect (25%) (b) Imperfect (50%) (c) Imperfect (75%)

(d) Amb. Occl. (r = 0.05) (e) Amb. Occl. (r = 0.10) (f) Amb. Occl. (r = 0.20)

(g) Dir. Amb. Occl. (r = 0.05) (h) Dir. Amb. Occl. (r = 0.10) (i) Reference

Figure 1.2: Renderings of the arches scene, where the indirect illumination in each image is computed

with a different visibility approximation. A psychophysical study shows that many of these visibility

approximations produce images that are perceptually very similar to reference renderings.

In our latest perception study [YCK+09], the use of approximated visibility is evaluated for effi-

cient global illumination, in order to determine the relationship between the realism of rendered images

and the accuracy of the visibility function. Traditionally, the accurate visibility function is used for

light transport. However, the indirect illumination that is perceived on a daily basis is rarely of a high

1.3. Scope and Limitation 16

frequency nature. This is because the most significant aspect of light transport in real world scenes is dif-

fuse, therefore displaying a smooth gradation. In [YCK+09], a psychophysical study is conducted on the

perceptual influence of approximate visibility on indirect illumination, where the perceptual influence

of different visibility approximations is initially determined by carrying out a series of psychophysical

experiments. The data is then analyzed to evaluate how different approximated solutions affect the per-

ceived realism of rendering under global illumination. The formal study uses global illumination scenes

as shown in Figure 1.2 rendered with different approximations, such as imperfect visibility [RGK+08],

ambient occlusion [ZIK98] and directional ambient occlusion [SGNS07]. It shows different render-

ings of an arches scene, where the reference uses the accurate visibility function, and the other ones

are computed using a visibility approximation for indirect illumination. A psychophysical analysis was

performed on the data in order to determine which visibility approximations are perceptually acceptable.

The experiments show that using certain visibility approximations yields results that are percep-

tually very similar to reference renderings. In other words, visibility approximations can be used in

global illumination while maintaining an appearance that is perceptually similar to a reference solu-

tion. Furthermore, many visibility approximations yield renderings that are perceived to be realistic

despite perceptible differences to reference renderings. The perception study therefore validates the use

of visibility approximations in previous works [RGK+08, REG+09]. The proposed real-time render-

ing solution in this research stems from this notion that using visibility approximations to compute fast

indirect illumination can result in renderings that are considered to be as realistic as accurate solutions.

1.3 Scope and Limitation
The proposed solution supports real-time path tracing [Kaj86] for global illumination. A number of

simplifying assumptions are made, which are applied throughout the thesis and described below:

• Wavelength independence: It is assumed that there is no interaction between different wavelengths.

A few samples of RGB wavelengths will be taken independently, in order to estimate the radiance

value at a point.

• Time invariance: It is assumed that the entire solution for the distribution of energy will remain the

same over time. There will be no time delay in emitting the energy that is gathered in a particular

moment.

• Non-participating medium: One of most significant simplifying assumptions is that light travels

in a vacuum space. In other words, this research will only consider a non-participating medium.

Therefore it is assumed that light interaction will only occur on surfaces.

• Polygonal based objects are used: Although the approach in this research could be extended to

parametric surfaces, this study is limited to the use of polygonal surfaces for simplicity.

It is demonstrated that this solution can handle physically correct global illumination of over hun-

dreds of thousands of polygons at a real-time rate. Although this implementation is limited to scenes

containing mainly diffuse materials, extensions for glossy reflection could be achieved by increasing the

1.4. Contribution 17

sampling rates when gathering the directional samples. However, this solution is not ideal for specular

or high glossy surfaces and suffers from a ghost effect for a perfect specular surface, due to the limitation

of discrete representation of the SLHB. In addition, transparency is not considered in this dissertation.

Our method deals well with dynamic environments, including those incorporating changes of view, ma-

terials, lighting and objects. Dynamic objects with over hundreds of thousands of polygons interacting

with a few bounces of indirect illumination can be achieved in real-time. This solution can cope with

various lighting environments, such as point, directional and area light sources. On top of this, it can

easily handle low frequency lighting as well as complex environment lighting conditions, which would

take far too long to compute with many other global illumination solutions. The proposed visibility data

structure can be extended to support instant radiosity solutions [Kel97]. The method was implemented

in Compute Unified Device Architecture (CUDA) to maximize the graphics hardware when building

visibility structures and propagating energy in parallel processing. The proposed GPU Monte Carlo path

tracing method targets the applications for which a real time rendering is essential for complex scenes

with plausible realism. So it does not aim for high-end visualisations such as movies but for real time

rendering with global illumination.

1.4 Contribution
The overall contribution of this thesis is the development of a new GPU based rendering system, from

GPU rasterization to a real-time path tracing solution using a proposed acceleration structure, entirely

implemented on a CUDA-based platform. Our proposed rasterization method utilizes graphics hardware

to build a visibility field for instant access.

The three key contributions are:

• A CUDA-based rasterizer: This research has proposed a new and efficient CUDA Deep Raster-

ization method. Conventional OpenGL (or Direct 3D) based rasterization has the limitation of

constructing the structural fragment buffer output in a single-pass, whereas the new method is

able to rasterize objects into a customized multi-layered structural buffers. The performance is

comparable to OpenGL rendering, while providing fully customizable pipeline and output.

• Spherical Layered Hit Buffers(SLHB): The thesis presents an efficient parameterization of the

visibility field in a discrete manner, which provides an acceleration structure for instant occlusion

query. The proposed CUDA rasterizer is used to build multi-layered hit buffers in order to maintain

the visibility structure. For dynamic scenes, a SLHB is built instantly in every frame.

• A GPU-based Monte-Carlo path tracer: The research proposes deterministic and stochastic gath-

ering methods that utilize a spherical layered hit buffers for real-time rendering. The Monte-Carlo

path tracer is capable of computing multiple indirect bounces on the fly.

1.5 Organization of the Thesis
This thesis is organized as follows:

1.5. Organization of the Thesis 18

The first chapter states the problem and the motivation behind the research, together with the scope

of the study and the main contributions.

Chapter 2 follows with an extensive literature review on the theory of a number of rendering tech-

niques related to this work. The fundamental theory of global illumination is presented, followed by an

introduction to the early global illumination solutions. The literature review focuses mainly on interac-

tive and real-time global illumination, alongside the latest works on GPU based approaches. In addition

to this, our earlier research works will be discussed, regarding the Virtual Light Field(VLF) [SMKY04],

which uses pre-computed light fields for real-time rendering. Although the VLF approach is capable of

providing a walk-through in real-time, it is limited to static scenes due to the high cost of rebuilding the

light field. The new rendering solution determined in this research is then introduced, which overcomes

the dynamic problems.

Chapter 3 introduces the fundamental data structure of a new rendering solution to construct a

discrete visibility field for instant accessing of occlusion information.

In Chapter 4, a CUDA-based rasterizer is presented, which is capable of writing structural multi-

layered depths buffers. Chapter 5 goes on to explain how to utilise the GPU to accelerate the rendering

system and demonstrates that the path-tracing method can be achieved in real-time. Implementation

details are discussed, to show that a real-time rendering of global illumination models is achievable by

using the Spherical Layered Hit Buffers(a pre-computed visibility set).

The results from the new rendering method are presented in Chapter 6. Finally, Chapter 7 sum-

marizes the proposed rendering algorithms, which is followed by a brief discussion of proposed future

research. Appendix A includes the notation and symbols used in this thesis, and Appendix B gives a list

of papers published in the course of developing this research.

Chapter 2

Overview of Global Illumination

This chapter begins with introducing the basic terms and definitions required to formulate the global

illumination problem in mathematical form. Some notations used to describe the models in geometric

form are described, followed by discussion of the concept of radiometry to describe light in the computer

graphics field. A fundamental mathematical equation describes the light transport in a three-dimensional

environment, which is reviewed to explain the complexity of the physical presentation of light. This

equation is derived in a linear transport operator form so that the integral form can be solved in a recursive

manner. An overview of the global illumination solution to the rendering equation is also reviewed. This

is considered in three different categories, which are ray tracing, finite element radiosity and hybrid

approaches. Some works in Image Based Rendering are also reviewed, in the context of the global

illumination problem. Due to the nature of multiple integrals in the rendering equation, it has been very

difficult to solve global illumination in real-time. However, many attempts have been made to achieve

this goal by exploiting graphics hardware. An overview of graphics hardware solutions is presented to

observe the latest developments using the parallel nature of the computationally intensive procedures in

computer graphics. The last part of this chapter addresses this research group’s early study on real-time

walkthrough of globally illuminated scenes for static environments.

2.1 Fundamentals of Illumination Theory
The primary goal of this section is to establish the terminology necessary to understand illumination

theory. Several physical quantities are required to express the physical definition of global illumination.

The notation used in this section is explained in Appendix A.

2.1.1 Models of Light

Light is electromagnetic radiation, which carries energy and momentum with a wavelength that is visible

to the eye. Three basic properties of light are Intensity (or amplitude), which is the human perception

of brightness of light; Frequency (or wavelength), which is the color of the light; and Polarization (or

angle or vibration), which accounts for vibration in a multitude of directions. The physics of light is

often explained in several models:

• Quantum optics: The foundation for interaction of light and medium, where the behavior of light

is explained at the submicroscopic level.

2.1. Fundamentals of Illumination Theory 20

• Wave Optics: Describes light as electromagnetic waves, which can model interference and diffrac-

tion.

• Geometrical Optics: Describes light as a independent ray that follows geometric rules. In this

model, light is emitted, reflected and transmitted.

In this thesis, the geometrical optics model is used as the fundamental model of light. This means that

some effects, such as diffraction, interference and polarization are ignored. The transmission of light

through participating media is also ignored. Another assumption is that light has infinite speed, such that

the light energy can reach the status of the equilibrium distribution immediately.

2.1.2 Geometry

Surface and Direction

Surface points are points within the three dimensional space that describe positions on the surface of an

object. The set of all surface points is denoted by A. A surface normal to the object surface denoted

as Nx can be constructed at any surface point x. The differential surface area around point x is written

as dAx. Spherical coordinates are often used to illustrate a direction in the hemisphere. A direction is

identified by two angles, (θ ,φ). Ψ is used to denote the incoming (incident) direction and Θ is used for

outgoing direction. The hemisphere, containing all directions, is denoted by Ω. A set of all directions

on hemispheres at point x is denoted as Ωx (more geometric symbols are explained in Appendix A).

Figure 2.1: Geometry Notations.

Differential Solid Angle

The description of energy exchanges in geometry requires the notion of a solid angle, which is used to

measure the area of the projection of an object onto the unit sphere as seen from a point. This describes

how big the object appears to be from that point. The solid angle is expressed in steradians (sr). The solid

angle subtended by the whole sphere Ω4π is 4π sr, which is the entire area of a unit sphere. Therefore,

the solid angle extended by a hemisphere Ω is 2π sr.

dω = sinθ dθ dφ (2.1)

A differential solid angle (dω) around a direction (Θ or (θ ,φ)) is expressed by considering the differen-

tial area on the unit sphere. The size of a differential solid angle in spherical coordinates is calculated in

Equation 2.1.

2.1. Fundamentals of Illumination Theory 21

2.1.3 Radiometry

Radiometry is the science of measuring radiant energy transfers, which can be characterized using a set

of physical quantities. These radiometric variables form a set of objective quantities.

Quantity Symbol Unit Abbr. Note

Radiant Energy Q Joule J Energy

Radiant Flux Φ Watt W Radiant energy per unit time,

radiant power

Irradiance E Watt per square me-

tre

W/m2 Power incident on a surface

Radiance L Watt per steradian

per square metre

W/(sr ·m2) Power per unit solid angle per

unit projected source data

Radiant Intensity I Watt per steradian W/sr Power per unit solid angle

Table 2.1: Radiometric quantity, symbols and units.

Energy and Power (Flux)

Radiant Energy, Q, is the energy of a collection of photons. Radiant power(flux), Φ, is the derivative of

energy with respect to time. This expresses how much total energy flows to a surface per unit time.

Irradiance

Irradiance is the incident radiant power on a surface, per unit projected surface area.

E =
dΦ

dA
(2.2)

Radiance

Radiance, L, is the radiant flux per unit solid angle per unit projected area.

L =
dE
dω

=
d2Φ

dωdAcosθ
(2.3)

Radiance is the most fundamental quantity in global illumination since it captures the appearance of

objects in a scene. Radiance is invariant along straight paths; for any two mutually visible points x and

y in space, the radiance leaving point x in the direction of point y is the same as the radiance on point

y from the direction of point x. Radiance is represented in five dimensional space as L; for example,

L(x→ Θ) is the radiance at x in the outgoing direction Θ, whereas L(x←Ψ) is the radiance at x in the

incoming direction Ψ.

2.1.4 Material Properties

Materials in nature interact with light in many different ways. The reflecting properties of a material are

explained by the concept of reflectance, which affects the appearance of objects.

2.2. Mathematical Foundation of Global Illumination 22

BRDF

The most general expression for reflectance is the bidirectional scattering surface reflectance distribu-

tion function (BSSRDF) [NRH+77, JMLH01], which defines the relationship between the incident and

reflected radiance. With the assumption that subsurface scattering is not considered, this equation can be

Figure 2.2: Bidirectional Reflectance Direction Function.

simplified to the bidirectional reflectance distribution function. The BRDF fr(x,Ψ→ Θ) is defined as

the ratio of the radiance in the outgoing direction Θ to the irradiance in the incident direction Ψ. It has a

property called the Helmhotz reciprocity, which means that the change of incident and extant directions

does not affect the amount of light that is reflected. By applying this reciprocity property, fr(x,Ψ→ Θ)

is equal to fr(x,Θ←Ψ) or simply fr(x,Θ↔Ψ).

fr(x,Ψ→Θ) =
dL(x→Θ)

dE(x←Ψ)
(2.4)

=
dL(x→Θ)

L(x←Ψ) cos(Nx,Ψ)dωΨ

(2.5)

This describes the directional distribution of reflected light. Two ideal cases are extensively used in

computer graphics in order to simply these models, which are known as diffuse and specular reflectors.

Diffuse surfaces reflect light uniformly in all directions. In the ideal diffuse case, the BRDF is an average

all incoming radiances over hemisphere and redistribute equally toward outgoing directions, which is

consistent with the law of reciprocity [SH92]. The perfect specular surfaces only reflect light only in

mirror direction. The incident and exitant polar angle is equal, and the BRDF in this case is a Dirac

distribution, δ (x).

2.2 Mathematical Foundation of Global Illumination
This section describes some mathematical foundations, such as the plenoptic function, the energy balance

equation and Neumann Series Expansion. These describe the fundamental mathematical framework for

solving global illumination problems, where the equations are solved in a numerical fashion in Section

2.2.3.

2.2.1 Plenoptic Function

The goal of global illumination in computer graphics is to compute a set of realistic radiances for a view-

point. By employing the concept of the Plenoptic Function[AB91], the virtual world can be expressed

2.2. Mathematical Foundation of Global Illumination 23

as a flow of light energy. The plenoptic function captures the flow of light in space, which means a set of

rays visible from any point in space, at any time, and over any range of wavelengths can be determined

as follows:

Plenoptic(x,y,z,θ ,φ ,λ , t) (2.6)

The plenoptic function represents the radiances flowing through every position (x,y,z) in a scene in all

possible directions (θ ,φ) as illustrated in Figure 2.3. The parameter t describes the dynamic changes

over time.

Figure 2.3: The Plenoptic function.

Ideally, the plenoptic function is continuous over the range of parameters. However, this can be

generally simplified by ignoring time t and selective wavelength λ . Since the parameterization is in

five dimensional space, it is seldom possible to compute and store the entire flow of light in a structure.

However, an approximated solution to this is possible by limiting the range of input parameters. An

attempt was made using the light field approach [LH96, GGSC96] to represent a 4D scalar function,

which gives radiances at 3D spatial positions for every direction. However, this was limited to a bounded

region of space and has a disparity problem (further explained in Section 2.4). In the following section,

the mathematical foundation for equilibrium distribution of light energy in a scene is described as an

integral equation.

2.2.2 Energy Balance Equation

The energy equilibrium of radiative surfaces is expressed by the following integral equation, which

assumes the absence of participating media:

L(x→Θ)︸ ︷︷ ︸
Total radiance

= Le(x→Θ)︸ ︷︷ ︸
Emitted radiance

+
∫

Ωx

L(x←Ψ) fr(x,Ψ→Θ)cos(Nx,Ψ)dωΨ

︸ ︷︷ ︸
Reflected radiance

(2.7)

Kajiya [Kaj86] originally presented a slightly different form of the equation called the Rendering Equa-

tion in the context of computer graphics. In fact, this equation appears under various names, such as the

Energy balance equation, Radiance equation, Light transport equation, Global illumination equation,

Scattering equation and Surface rendering equation. This energy balance equation shows that the total

outgoing energy at point ’x’ is the sum of emitted radiance and reflected radiance. The first term on the

right hand side is the emission. The second term on the right-hand side of the equation shows the effect

2.3. Overview of Global Illumination Methods 24

of light reflection as an integral over all of the possible irradiance energies (L cosθdω) multiplied by the

bi-directional reflectance distribution function.

The rendering equation is the mathematical foundation of the global illumination problem. This can

express the exitant radiance L(x→Θ) at any surface point x in any direction Φ. Therefore the rendering

equation provides a solution to the plenoptic function in virtual environments.

2.2.3 Neumann Series Expansion

The rendering equation cannot be directly evaluated, since the radiance term is on both sides of the

equation. It is convenient to use Linear Transport Operator notation to understand this equation in a

compact form. By applying operator notation, the rendering equation can be written as:

L = Le +T L (2.8)

(I−T)L = Le (2.9)

The integral operator T describes the redistribution of radiance energy on the reflector from all surfaces

of the scene. The definition of T is:

T =
∫

Ωx

fr(x,Ψ→Θ)cos(Nx,Ψ)dωΨ (2.10)

By applying the inverse of (I−T) to the emission function E, the rendering equation can be recursively

evaluated as the Neumann series [Kaj86] expansion. If Le is replaced by an emitter E E, then:

L = (I−T)−1 E (2.11)

= (I +T +T 2 +T 3 +T 4 + ...)E (2.12)

=
∞

∑
n=0

(T)n E (2.13)

The first of order of expansion (L = I ·E) describes emitters without any illumination. The second order

(L = (I +T)E) provides direct illumination. This has the most effect on the solution; therefore it is very

important to have a good approximation. Convergence of the Neumann series is guaranteed such that the

amount of energy reflected from all surfaces is less than the incident amount of energy.

2.3 Overview of Global Illumination Methods
The physically-based simulation of light transport [Kaj86] in virtual environments is called global illu-

mination. The goal of global illumination is to simulate all reflections of light, therefore reproducing

an accurate intensity of the light at any given point. Global illumination simulates not only a path di-

rectly from light sources, but also represents indirect illumination, taking account of complex material

properties and reflection models.

In this section the traditional global illumination techniques are examined, which primarily aim to

deliver physical simulation of light transport. Many global illumination algorithms have been devel-

oped in the last few decades. Most of the early research was based on two major techniques, known as

point sampled ray tracing and finite element radiosity. The rendering method developed in this research

2.3. Overview of Global Illumination Methods 25

group’s study is very closely related to the techniques used in the ray tracing method, and shares the

concept of point-based rendering that enables parallel computing on GPUs. The Monte Carlo ray tracing

technique has also been used in our research to stochastically approximate the outgoing radiance val-

ues of the rendering equation. The rest of this section introduces hybrid methods and photon mapping.

Hybrid methods combine both ray tracing and radiosity techniques, to take advantages of both algo-

rithms. Photon mapping is a two-pass algorithm to solve the rendering equation using photons. Due to a

lack of hardware development of graphics cards in the early stages of development, researchers mainly

focused on the development of software for fundamental global illumination solutions, which involved

exploration of some acceleration techniques. Early global illumination solutions were not capable of

achieving interactive frame rates because of the high rendering cost of evaluating the rendering equation.

2.3.1 Finite Element Radiosity Methods

In the previous section, the algorithms that were developed to directly compute the intensity of light

passing through a pixel in the image plane were discussed. In contrast, this section describes the methods

that compute illumination in the object space. The finite element technique typically uses two step

algorithms. Firstly, a scene is subdivided into small patches in order to compute radiances by solving a

set of linear equations for light exchange between all the patches. The pre-computed values are stored in

finite element data structures. In the next step, re-computed values are interpolated to generate the final

resulting images. Introductions and overviews of the classic radiosity method can be found in textbooks

[CW93b, SP94].

Radiosity [GTGB84] was developed for scenes with Lambertian surfaces, to compute inter-

reflection efficiently using the form factor calculation. The fundamental operation in radiosity theory

is the computation of these form factors, and Cohen et al [CG85] adapted the hemicube technique to

reduce the computation time required to determine the visibility information. As an extension to form

factor computation, ray-based techniques [WEH89, SP89] were employed to perform the numerical in-

tegration of the form factor equation. In further research, the radiosity solution was reformulated in a

progressive refinement manner [CCWG88] so that the algorithm could produce the results to the com-

plete radiosity equation progressively. This technique also allows calculation of the form factor on the

fly. An extension to the progressive refinement solution was proposed in incremental radiosity [Che90]

to offer an interactive modelling environment. The traditional separate processes were replaced with a

single new approach, known as rendering-while-modelling as described in the research paper.

The computational complexity of the radiosity solution has been addressed in early development.

In comparison with ray tracing methods, the high cost for complex models comes from the fact that

the radiosity algorithm computes values for every patch in the model. Many techniques have been

developed to improve the efficiency of the algorithm. The radiosity method has also been extended to

the importance-driven approach [SAS92], the clustering algorithm for complex environments [SAG94]

and the hierarchical radiosity algorithm [HSA91]. These techniques reduce the time and complexity of

the radiosity algorithm with a subsequent reduction in the accuracy of the solution.

With increasing the number of patches in a scene, the form factor calculation becomes the major

2.3. Overview of Global Illumination Methods 26

bottleneck in radiosity solutions. A number of algorithms use form factor sampling based on uniformly

distributed global lines. For instance, the global lines are generated by connecting two sample points

on the bounding sphere for the scene. This algorithm has been used in many radiosity applications

[Sbe93, Pel95, Sbe97, KP98]. In other studies, there have been attempts to make use of wavelet theory

in radiosity solutions [GSCH93, CSS96], and further to this, radiosity was extended to handle non-

diffuse environments [LTG92]. Finally, in this thesis, hardware acceleration techniques are discussed in

Section 2.6.1

2.3.2 Ray Tracing Methods

The fundamental idea of Ray (or Path) tracing is to generate light transport paths between light sources

and the point in the virtual scene, in order to compute radiance values. These methods usually calculate

radiance values for each pixel in the screen space directly. For this reason, this category of techniques

belongs to pixel-driven (or point-sampled) ray tracing algorithms. A general overview of ray tracing

algorithms is discussed in [Gla89]. The ray tracing algorithm for global illumination was initially intro-

duced by Whitted [Whi80]. This method traces rays in a backward path from the observer to the light

source, to simulate perfect specular reflection, refraction and direct illumination with visibility determi-

nation.

Acceleration Techniques and Further Optimization

Since the introduction of Kajiya’s rendering equation, the global illumination community has tried to

develop algorithms that can render realistic images to some accuracy in a reasonable amount of time. A

practical scene using Monte Carlo ray tracing requires generation of a large number of rays per pixel.

Reducing the number of primary or secondary rays can lead to significant improvements in rendering

time.

The number of secondary rays per pixel can be large for a scene with many light emitting and

specular objects. For shadow rays, it is sufficient to find any occluding object to guarantee occlusion.

For this reason, Haines [HG86] proposed a light buffer for shadow caching, exploiting the coherence

stored at each light source. This idea has been extended to a sophisticated optimization for shadow rays

[FBG02]. This algorithm subdivides the scene into a set of voxels, which stores a list of light sources

that are occluded, visible and partially visible. Another algorithm for reducing the number of shadow

rays was introduced in [War91], where light samples are sorted according to their contribution.

Apart from reducing the number of rays, another obvious approach for acceleration would be an

improvement of the core ray tracing algorithms, such that each ray can be traced faster. As Whitted

[Whi80] explained, most of computation time in ray tracing is spent in ray primitive intersections. A

large number of different algorithms were dedicated to increasing the speed of ray primitive intersections

[MT97, Bad90, Woo90]. However, it is still costly to intersect a ray to all primitives in complex objects.

To avoid this, a tightly enclosing bounding volume, which is normally a simple geometric primitive, was

introduced. When a ray misses the bounding box, the complex object can be disregarded cheaply. The

most efficient way to accelerate ray tracing is to exploit spatial and hierarchical data structures to reduce

the number of ray primitive intersections per pixel. Many different kinds of acceleration structures

2.3. Overview of Global Illumination Methods 27

were developed in recent decades, such as uniform [AW87, Coh94], non-unform [KS97], recursive grid

[JW89], hierarchical grid [CDP95], Octrees [Gla84, WSC+95], Bounding Volume Hierarchies [KK86,

Smi98], BSP [SS92], Kd-tree [Hav01, Bit99] and higher-dimensional ray classification [AK87, LW95].

Among all of these techniques, hierarchical subdivision methods reduce the computational complexity

most effectively, from O(N) to O(logN).

The ray tracing algorithm has been optimized to run at real-time rates. Parker et al [PMS+99]

demonstrated that a ray tracer can achieve an interactive rate on large, shared-memory supercomputers.

They have proved that ray tracing scales well in multiple processor environments. Pharr et al [PKGH97]

exploited coherence by reordering the tracing computation, thereby achieving interactive frame rates.

Wald et al [WBWS01, Wal04] optimized the implementation of the ray tracer method using caching

and SIMD optimization on a CPU for complex environments. The most recent techniques to accelerate

ray tracing are based on exploiting graphics hardware as parallel streaming processors, which will be

discussed in Section 2.6.2

2.3.3 Monte Carlo Path Tracing Methods

Cook et al [CPC84] presented a distributed ray tracing technique where rays are distributed stochastically

for all the light paths, to simulate fuzzy phenomena such as motion blur, depth of field, penumbras and

glossy reflections. Cook [Coo86] also presented a non-uniform sampling scheme to perform a Monte

Carlo evaluation of integrals in a stochastic manner, in order to reduce aliasing artifacts presented in

point sampling schemes. Kajiya [Kaj86] generalised Monte Carlo path tracing to the rendering equation

to simulate all types of optical phenomena, including caustics and inter-reflections between any types

of surface. Arvo et al [AK90] adapted some statistical techniques to stochastic path tracing, one of

them being Russian roulette, which can terminate the recursive tracing in an unbiased way. The most

complete solution is bidirectional path tracing [LW93, VG94], where rays are traced simultaneously

from the light and the eye. However, these pure unbiased Monte Carlo based ray-tracing methods are

still very time intensive. In contrast, our proposed solution uses the Monte Carlo path-tracing method

on the GPU to simulate the rendering equation in a stochastic manner. The GPU-based approach allows

a geometry acceleration structure to be built very efficiently, so that real-time rendering of path-tracing

can be achieved.

The most common problem that occurs with stochastic models is variance (or noise) in the rendered

image. A straightforward solution to this problem is to have a large number of sample rays. Many

researchers have proposed algorithms to reduce the noise by carefully distributing rays, such as Basic

lighting condition [Shi91], sampling techniques [VG95] and Metropolis Light Transport [VG97].

2.3.4 Hybrid Methods

In the previous sections, an evolution of two major algorithms were described, where the fundamental

concept of these two methods remained the same. A ray tracing algorithm computes radiance values for

each pixel by finding paths between the pixel and the light sources, whereas a radiosity solution computes

radiance values for every element in the scene. In general, radiosity can simulate diffuse reflections well,

and ray tracing is good for specular reflection models. It seems natural to combine the two to obtain the

2.4. Precomputed Methods for Global Illumination 28

advantages from both schemes.

The first hybrid techniques [WCG87, SP89] used the radiosity method to compute diffuse reflection

and used ray tracing to handle mirror effects. Shirley [Shi90] proposed a three pass rendering method,

where the pre-computed solution is used only for indirect lighting. Many researchers [CRMT91, ZS95]

noticed visible artifacts in the radiosity algorithm, such that path tracing was employed to account for

all types of light scattering directly. These algorithms only used the radiosity method to compute the

indirect illumination of the diffuse surfaces, and used Monte Carlo ray tracing for all the details required

in the final image.

Particle Tracing is a method used in the application of Monte Carlo techniques to simulate lighting

travelling from the light source to the scene using stochastic methods. The difference compared to path

tracing is that the particles are considered to carry energy. Bidirectional path tracing [LW93, VG94]

generates paths starting at the light source and at the surface point, where both paths are connected to

determine the energy contribution. It has the advantages of both ray tracing and particle tracing.

Since the Monte Carlo rendering takes a long time to generate adequate quality images, the idea of

reusing radiance or irradiance values has been developed. Ward et al [WRC88] introduced an irradiance

caching scheme to accelerate the computation of indirect illumination. This approach is based on the

fact that the irradiance at diffuse surfaces varies smoothly. Irradiance Volume [GSHG98] is extended to

five dimensional space such that irradiance values are stored in a regular grid structure to account for all

points and directions. Ward and Heckbert [WH92] developed Irradiance gradients to determine when

the cached values can be interpolated to produce reasonably accurate results. Other suggested caching

schemes are Render Cache [WDP99] and Octree based caching algorithms [WS99].

2.3.5 Photon Mapping (Multi-Pass) Methods

Photon mapping [Jen95, Jen96] is a robust two-pass algorithm that traces illumination paths both from

the light and from the viewpoint. In the first pass, a photon map is constructed from photons that are

emitted from the light sources and interact with all of the surface types in the scene. In the second

pass, the values stored in the photon map are gathered to formulate final rendering images. Unlike other

bidirectional path tracing methods [LW93, VG94], this technique caches and reuses photon values that

are stored in separate independent data structures. The caustics map is specifically designed to store the

photons that interact with specular surfaces. The combination of photon mapping and a Monte Carlo ray

tracing based rendering algorithm results in being significantly more efficient than conventional Monte

Carlo ray tracing. Several extensions have been added to photon mapping [PP98, SW00, Jen97, Chr99,

PDC+03, CB04]. For example, a significant addition is light interaction with participating medium

[JC98].

2.4 Precomputed Methods for Global Illumination
The plenoptic function captures a flow of light, which is also in the image-based rendering domain. The

first attempt at this was made in the light field rendering approach, which is described in detail in this

section. The first step is to introduce the path that image-based rendering has developed, to use radiance

2.4. Precomputed Methods for Global Illumination 29

images (or photos) to reconstruct a new scene at any viewpoint. Then some parameterizations will be

described to explain the light field in a uniform manner. The acceleration structure developed in this

thesis by our research group stems from the fundamental idea of the light field model, where a function

of radiances is associated with the surface geometry. However, the new approach differs significantly,

since it stores depth information to build a 5 dimensional (positional and directional) visibility structure

using hardware acceleration in order to efficiently compute light transport for multiple objects in the

virtual environment.

A new notion of rendering techniques using a set of images has emerged, which offers an alter-

native solution to traditional geometric methods for generating more realistic results from complex en-

vironments. Image-based rendering is a technique that allows interaction with objects and scenes with

original specifications from digitized photographs or from synthesized images. A set of input images is

used to build new high quality images of scenes or objects with low computational costs.

2.4.1 Image-Based Rendering

Image-based rendering covers a wide range of different techniques, all of which use images as a signif-

icant component. The most commonly used image-based approach is texture mapping [BN76], where

the appearance and complexity of an object is represented by an image. Environmental mapping [Gre86]

has been a popular technique for image-based rendering. Multiple environment maps are created from

cylindrical panoramic images at discrete points, which are used to compose images seen from locations

with continuously changing view directions. Seitz et al [SD95, SD96] proposed image morphing, which

generates a series of intermediate images between two or more reference images using basic principles

of projective geometry.

Apple’s QuickTime VR [Che95] generates a single panoramic image to navigate the virtual envi-

ronment. This rendering method allows for rotations and modifications of the field of view within the

three dimensional environment. Although dynamic perspective changes in real-time are possible, this is

limited to a single viewing position. Some other studies have concentrated on a rendering technique us-

ing view interpolation [CW93a]. A hybrid approach [DTM96] has also been proposed, which combines

both geometry and image based techniques for modelling and rendering architectural scenes from a set

of synthetic images. All of these methods fall into the category of modelling and rendering using image

warping and interpolation.

2.4.2 Light Fields (Lumigraph)

Early research showed that image-based rendering techniques can offer an alternative solution to tra-

ditional geometric methods for modelling and rendering complex objects. An interesting concept in

image-based rendering is to consider a collection of images as a database of rays with no associated

structure. New images are approximated from these collections by interpolating between nearby rays,

which allows capturing of the complete object appearance directly from real world image data, without

building any geometry.

Levoy and Hanrahan [LH96] proposed a new paradigm approach in computer graphics in which the

underlying modelling primitives are considered as rays rather than images, in contrast to the previous

2.4. Precomputed Methods for Global Illumination 30

image-based rendering methods. Light field rendering [LH96] represents the flow of light in radiance

rays. This idea is based on the plenoptic function [AB91], which captures the complete flow of light in a

region or environment. The study suggested two-plane parameterization, where the set of lines in space

is parameterized by the intersection points of each line with two planes, in order to capture all of the

rays as they pass through a slab of empty space. Gortler et al [GGSC96] propose a single arrangement

of six pairs of planes called the Lumigraph. The Lumigraph represents all the light as a 4D function in

unobstructed space, where the camera is positioned outside of the convex hull object.

The light field rendering method has several advantages. It is capable of generating global illumina-

tion with a combination of specular and diffuse materials and caustics. In addition to this, the light field

obtained from both synthetic and real images can be rendered in real-time, independent of the complex-

ity of the scene. However, this relies on either a very dense set of images, or sophisticated reconstruction

algorithms in order to synthesize new images. In practice, the results suffer from ghosting problems,

limited fields of view and costly storage requirements. The storage requirement for a light field is very

large, so that a lossy compression technique is used to minimize some of the redundancy in the light-field

representation. Other issues were discussed and resolved in [SCG97, IMG00, HLCS99]. The param-

eterization used in the light field approaches shows noticeable artifacts when the camera crosses the

boundary between two light slabs. Even doubling the number of light slabs is not sufficient to avoid

the disparity problem. A solution to this requires a uniform representation that is invariant under both

rotation and translation. To this end, a few techniques for capturing the light field in a uniform fashion

have been proposed [CLF98, CF99, IPL97].

Uniformly Sampled Light Fields

Camahort et al [CLF98, CF99] suggested two new uniform representations for light field modelling. The

first is a two-sphere parameterization, which uniformly subdivides a sphere into hierarchical elements.

The light field is sampled by joining pairs of subdivision elements in a multi-resolution fashion. The

second method, known as sphere-plane parameterization, allows a uniform sampling of all five dimen-

sions of the light field, using hierarchical subdivision for directional space, and uniform grid sampling

for positional space. Light field models are acquired using parallel projections along a set of uniform di-

rections. Ihm et al [IPL97] also proposed a spherical light field, which constructs the plenoptic function

as a collection of small, uniformly subdivided directional spheres that cling to a large positional sphere.

In this manner, the complete flow of light can be parameterized with four parameters in spherical coor-

dinates, where each point on the surface of the directional sphere is parameterized by two variables. An

oriented ray is determined by associating a direction with each point on the positional sphere. The use

of the sphere provides a symmetric representation of the complete flow of light. The idea of exploiting

geometry information for parameterizing the light field was proposed in the Surface Light Field method

by Wood et al [WAA+00]. This is a function from the surface to a lumisphere, where a lumisphere

is a set of directions of radiance color, which represents the radiance leaving a point in all directions.

This study used the generalization of Vector Quantization and Principal Component Analysis to com-

press light fields at interactive rates. This idea was extended to light field mapping [CBCG02] to enable

2.5. Interactive Global Illumination 31

the use of the surface light field in real-time rendering, by developing a compact representation for the

graphics pipeline.

Our parameterization of the SLHB structure is similar to that proposed by Camahort et al [CLF98,

CF99], where a light field is parameterized in a uniformly sampled way. The new method put forward in

this thesis also uses uniformly subdivided spherical directions to build an LHB for each direction.

2.4.3 Pre-computed Radiance Transfer

The light field approach captures the flow of light in 4D functions in the pre-processing stage, and syn-

thesizes the final image from the obtained images. Another major development in the pre-computed

method is the Pre-computed Radiance Transfer (PRT) technique proposed by Sloan et al [SKS02]. This

method offers real-time rendering with complex lighting interactions, by saving pre-computed illumi-

nation data in the pre-processing step. Spherical harmonics are used to represent the radiance transfer

function between surfaces of an object. PRT encodes illumination information in a compact form as

spherical harmonic coefficients. The pre-computed transfer information is then applied to incident light-

ing to compute the global illumination solution in real-time, using graphics hardware. Although this

is applicable to real-time global lighting effects, it requires an expensive pre-computation step, which

is incapable of applying the technique to real-time dynamic environments. However, our solution does

not require any pre-processing, but can handle all aspects of dynamic elements on the fly. Although

many high-order spherical harmonics can express some fine detail, PRT solutions are mainly limited

to low-frequency lighting environments in order to handle a reasonable number of spherical harmonic

coefficients. This limitation can be overcome by replacing spherical harmonics with discrete wavelet

representation [NRH03]. Liu et al [LSSS04] proposed another way of replacing these spherical harmon-

ics, by adapting a clustered principal component analysis as a quantization method. However, their PRT

method can handle a glossy object at interactive rates for a limited 50K polygons, whereas our solution

can handle over one million polygons at interactive rates.

2.5 Interactive Global Illumination
Real-time global illumination has been a very active research area in the past decade. This section will

give a brief overview on the early development of interactive global illumination solutions. Despite

significant advances in graphics hardware in recent years, it is still challenging to achieve physically

correct indirect illumination in real-time without pre-computation. The previous section shows that pre-

computed solutions can offer real-time rendering for global illumination, but only with a high cost as-

sociated with pre-processing. Several global illumination algorithms will now be presented, which offer

interactive frame rates for mainly diffuse environments. Many of the global illumination methods intro-

duced in Section 2.3 and 2.4 compute direct and indirect illumination as accurately as possible by inter-

secting the rays with the geometry. The following methods allow the rendering of global illumination at

interactive frame rates with the loss of some accuracy. Interactive illumination for dynamic environments

can be easily achieved if visibility for indirect illumination is completely neglected [DS06]. Arikan et al

[AFO05] approximated a global illumination solution where the nearby geometry is integrated without

2.5. Interactive Global Illumination 32

computing the visibility all. The fundamental idea of improving the rendering performance is to speed

up the indirect illumination efficiently by using an alternative approximated solution.

2.5.1 Instant Radiosity

Instant Radiosity (IR) was first introduced by Keller [Kel97], who suggested the new idea of Virtual

Point Light. IR is a simple global illumination algorithm that approximates diffuse lighting of a scene by

placing virtual point lights, which act as indirect light sources. This technique has advanced a new level

of interactive global illumination solutions for diffuse environments. The algorithm is fairly straightfor-

ward; for each light source, some photons are sent into a scene. At each randomly chosen intersection

point, a VPL is generated to act as a new indirect light source. The final image is approximated from

direct and indirect lighting, with virtual point lights acting as each light source. The advantage of the IR

solution is that complex indirect illumination is computed from only a handful of the set of virtual point

lights. As this method does not require any pre-computations of the scene, it supports interactive move-

ments of dynamic objects. There are many follow up studies to this [CPWAP08, NW09, WWZ+09] that

were intended to improve the original idea. The lightcuts method [WFA+05] groups a large number of

VPLs into a hierarchy to speed up the rendering. Laine el at [LSK+07] improved instant radiosity by

adapting their caching scheme. Over several frames, their technique checks whether buffer [Kel98] to

reduce the number of samples per pixel. This technique is applied in the gathering of indirect illumi-

nation data only. It is important to note that early developments of IR were bounded to mostly static

environments and hard-to-handle dynamic objects.

2.5.2 Imperfect Shadow Map

Although instant radiosity [Kel97] and instant global illumination [WBS03] simplify the rendering equa-

tion by using virtual point lights, both methods still require accurate visibility to compute indirect illu-

mination. The fundamental bottleneck of real-time graphics in global illumination is the high cost of

this accurate visibility test for indirect lighting computation. Ritschel et al [RGK+08] suggested an Im-

perfect Shadow Map(ISM) to overcome this bottleneck, by adapting point representation. The basic idea

is to use an incorrect or rough estimation of the visibility information to speed up the indirect lighting

computation. In order to do this, a scene is represented as a large collection of point clouds, so that a fast

shadow map can be created from the point cloud for every VPL. In this way, hundreds of shadow maps

can be generated per frame to allow dynamic movements. Although ISM can achieve interactive frame

rates for dynamic scenes with reasonable complexity, it fails to cope with highly complex scenes due

to inefficient management of point representation. ISM methods tend to wipe out the detail of indirect

shadow due to an overly simplified representation. In contrast, the method presented in this author’s

thesis preserves the detail by using the accuracy model geometry, rather than point representation.

Ritschel [REG+09] also extended the point representation to hierarchical representation of splats in

order to handle complex scenes. This method uses data gathering based on a CUDA architecture, which

is an SKD that enables graphics cards to be used for various purposes. Our rendering algorithm is also

built on CUDA and OpenGL architecture, and it also shares the fundamental idea of using approximated

visibility in the rendering method. However, our solution provides simulation for fully dynamic scenes,

2.6. Overview of Global Illumination on GPU 33

with multiple bounces of indirect illumination at real-time frame rates for moderately complex scenes,

and interactive rates for highly detailed objects consisting of over one million polygons.

2.6 Overview of Global Illumination on GPU
In this section, early GPU methods for global illumination are introduced. The most computationally

expensive part of the rendering equation lies in the visibility calculation, and our solution is not an

exception to this. Many researchers have proposed ways to accelerate the visibility information using

graphics hardware in global illumination problems. In this thesis, an acceleration structure for fast

visibility query is presented in order to achieve this. It employs several GPU techniques to accelerate

visibility and to enhance propagation timing in the computation of the rendering equation. More details

of this are presented in chapter 3.

The development of the GPU (Graphics Processing Unit) on consumer graphics hardware has re-

sulted in significant improvements in processing power, memory and programmability. A parallel ar-

chitecture of the GPU has enabled the performance to develop faster than the CPU capability. For this

reason, the GPU is used in not only the computer graphics field, but also for general parallel prob-

lem solving. An introductory survey of general purpose computation using the GPU was presented in

[OLG+05, LHK+04].

The functionality and programmability of the GPU was limited until the OpenGL 2.0 extension

was introduced. This allows the user to program parallel problems directly on graphics cards with the

precision of 32-bits floating point, which results in numerical computation being more accurate. A new

feature, known as the Frame Buffer Object (FBO), enables rendering of a texture to memory without

a readback from the main memory, which was the major bottleneck of the previous generation. In

addition, the advanced compiler Nvidia’s CG [MGAK03] and Microsoft’s HLSL [KBR04] have reduced

the programming time by offering high-level language capability on the GPU. There will now be a

discussion of the approaches that employ the GPU in the global illumination domain.

2.6.1 GPU Radiosity Methods

Radiosity methods are an effective solution to the global illumination problem in diffuse environments.

Radiosity requires a computationally expensive preprocessing step in order to form the factors compu-

tation from every visible patch. However, once the radiosity is obtained, a real-time walkthrough of

the virtual environment is possible. Typically, the preprocessing phase is performed off-line, and many

researchers have attempted to exploit graphics hardware in the GPU,

Nielsen et al [NC02] partially exploited graphics hardware to compute the hemicube [CG85] for

visibility computation using texture mapping. Car et al [CHH03] used the floating point textures, ap-

plying a Jacobi iteration on graphics hardware to find the matrix radiosity solution. The algorithm can

support dynamic relighting assuming the geometry is fixed. Coombe et al [CHL04] presented a tech-

nique that requires no preprocessing, which performs the entire computation, including form factors,

visibility and shooter selection implemented on the GPU. A progressive refinement radiosity solution

[CCWG88] is chosen, since radiosity values can be stored in hardware texture memory, which can be

2.6. Overview of Global Illumination on GPU 34

used for rendering. They also implemented an adaptive subdivision method on the GPU to reduce the

visibility computation.

2.6.2 GPU Ray Tracing Methods

Ray tracing [Whi80] is one of the classical solutions in computer graphics. Numerous global illumination

methods are based on ray tracing techniques, including path tracing [Kaj86], Monte Carlo ray tracing

[CPC84, Coo86, AK90] and photon mapping [Jen96]. For this reason, the graphics community has been

eager to improve the speed of ray tracing, using whatever resources are available [Bad90]. A coherent

ray tracing method that optimizes SIMD instructions was presented by Wald et al [WBWS01], and for

larger scenes on a shared memory multiprocessor and a cluster [RCJ98]. Special purpose hardware also

supports efficient parallel ray tracing [WSS05]. One of the most time consuming operations in ray tracing

is to compute the visibility information in object space, which is a ray-object intersection problem.

The Ray Engine [CHH02] is one such application, which configures the GPU to compute ray-

triangle intersections. Due to frequent communication between the CPU and GPU, there is a subsequent

degradation in performance. The ray engine could be used to accelerate path tracing, Monte Carlo ray

tracing, photon mapping, form factor computation and visibility pre-processing. Purcell et al [PBMH02]

also presented a similar study on real-time ray tracing, such that the GPU is employed as a streaming

processing model for a highly parallelized algorithm. Their work has led to several other GPU ray

tracing implementations [Chr05, KL04]. Early ray tracing models [CHH02, PBMH02] were incapable of

utilizing spatial coherence. Instead of a simple uniform grid, Simonsen et al [ST05] applied a bounding

box hierarchy to the GPU as an an acceleration structure. A Kd-tree structure on the GPU is implemented

by Foley et al [FS05], which is several times faster than a uniform grid. Carr et al [CHCH06] presented

an efficient solution, which uses a threaded bounding volume hierarchy stored as a geometry image MIP

map, in order to quickly intersect triangular meshes on the GPU. This method can update the hierarchy

in every frame such that the ray can trace dynamic geometry.

2.6.3 GPU Photon Mapping Methods

The ray tracing method presented in [PBMH02] has been extended to photon mapping in [Pur04,

PDC+03] by resolving the sorting and searching problem, which commonly appears in streaming frame-

works. Another study in photon map rendering was presented in [MM02]. This method tries to resolve

the kd-tree searching problem in the hardware by adapting a hashing algorithm to find the nearest neigh-

bors. Since the GPU architecture is not capable of handling a complex kd-tree structure, both of the ap-

proaches [PDC+03, MM02] used simplified structures neglecting the performance. Larsen et al [LC04]

proposed a combined approach by balancing loads between the CPU and GPU. The GPU accelerates

final gathering and caustic filtering, whereas the CPU traces caustic photons in a data structure.

An approximated solution to caustic rendering in real-time has been suggested in [WS03]. This

algorithm chooses sample points on the specular surfaces, where each sample point functions as a pinhole

camera that projects incoming light on diffuse receivers. Although it can render caustics in dynamic

scenes in real-time, it is limited to a single specular interaction.

2.7. Screen Space Methods for Real-Time Global Illumination 35

2.6.4 GPU Irradiance and Radiance Caching Methods

Ward et al [GSHG98] introduced an irradiance caching scheme to take advantage of the fact that irradi-

ance has a low variance. Irradiance is stored in a sparse data structure and used in gathering by interpola-

tion. Nijasure et al [NPG03, NPG05] have extended the irradiance caching method to non-diffuse global

illumination computation using graphics hardware. A set of regular sample points are chosen to store

the incoming radiance function as spherical harmonics coefficients. Then irradiance at any surface point

is approximated by interpolating the nearest sample locations. A drawback of this method is that the

sample points are located independently of the light condition and complexity. Gautron et al [GKBP05]

reformulated the irradiance and radiance caching algorithms [GKPB04, KGBP05] to allow GPU im-

plementation. Their method has improved performance over classical irradiance caching by adapting a

splatting scheme and radiance gradient computation [KGBP05] instead of conventional nearest neighbor

interpolation.

(a) Accurate Area Light (b) Ambient Occlusion

Figure 2.4: Comparison of Accurate Lighting and Ambient Occlusion.

2.7 Screen Space Methods for Real-Time Global Illumination
In recent years, it has become popular to approximate global illumination based on screen space infor-

mation. By limiting the computation space, this often produces inaccurate or fake GI, but in real-time

rendering. Most computation takes place in the screen space, which is easy to implement in the GPU.

Therefore, algorithms in this category often deliver high frame rates with minimum rendering cost. Our

proposed rendering algorithm is based on a global interaction rather than a screen space in order to fully

simulate all inter-reflection effects. However, it is possible to limit the visibility data structure to a sin-

gle direction, which is a camera view. In this way, the building performance of the SLHB acceleration

structure can be significantly increased, trading off some accuracy to improve the speed. Nichols et

al [NPW10] presented a similar concept based on a layered depth image in screen space to compute

2.7. Screen Space Methods for Real-Time Global Illumination 36

gathering illumination. Using a single layered hit buffer, the screen space path tracing method can be

approximated; however, it cannot handle the situation where reflectors are outside of the screen space.

2.7.1 Screen Space Ambient/Directional Occlusion

Ambient Occlusion (AO) [ZIK98] is a technique that approximates the amount of light reaching a point

over the hemisphere. A single constant value can represent an integral of the occlusion contribution on

that point. AO algorithms can add realism to a scene by using a pre-computed occlusion value to generate

smooth soft shadows. Bunnel [BUN05] used an ambient occlusion method to compute the indirect

illumination efficiently. The visibility between elements in a hierarchical link structure is estimated by a

simple AO.

Screen Space Ambient Occlusion (SSAO) uses an image space to compute ambient occlusion. The

depth information in the frame buffer gives an approximation of the scene structure. This is a similar

concept that is used in our research, in order to build a visibility structure. In contrast, here we employ an

orthogonal parallel projection to construct depth buffers instead of perspective viewing. Also, a multiple

layered depth information is stored in the buffers along with polygon ID, so that a scene structure can

be estimated from neighbor depth information. SSAO techniques are widely used in the games industry

as an alternative solution to global illumination, since they are easy to implement in the GPU with a

very small requirement of computational resources. Ritschel et al [RGS09] presented a Screen Space

Directional Occlusion(SSDO) which is similar to the SSAO method. This adds directional visibility and

indirect illumination from near by screen space geometry. This only adds minor computational time

to SSAO by sampling the neighboring screen space pixels, which are then used to calculate indirect

illumination.

2.7.2 Reflective Shadow Maps

Dachsbacher et al [DS05] introduced a screen space based technique, called Reflected Shadow

Map(RSM). This is an extension of the instant radiosity technique, providing a way to quickly gener-

ate high quality VPLs. A standard shadow map is extended to support the reflective shadow map, where

every pixel is considered as a light source. By efficiently generating VPLs on the shadow map, RSM

is able to interpolate indirect lighting in the screen space, yielding interactive rates for complex scenes.

The solution is mainly limited to single bound indirect illumination. One of the drawbacks of this so-

lution is that indirect illumination does not take into account the visibility calculation, because the cost

of generating shadow amps for each VPL is too high. In this sense, our proposed visibility structure

(SLHB) would be an ideal solution to provide approximated visibility without building many shadow

maps. By adapting SLHB, the instant radiosity solution can benefit by computing efficient indirect il-

lumination for real-time rendering of dynamic scenes. The key idea behind this new method is to use

accurate geometry with an approximated visibility structure. In other words, the subset of all possible

visibility fields is computed into the spherical layered buffer structure, which is used for visibility query

in indirect lighting computation, which saves considerable time. By using screen-space interpolation of

the indirect lighting, interactive rates can be achieved, even for complex scenes.

2.8. Virtual Light Field Method for Global Illumination 37

2.8 Virtual Light Field Method for Global Illumination

In this section, the early works of our research group will be introduced, such as the Virtual Light

Field (VLF) approach [SMKY04], and its extension exploiting the GPU to speed up the propagation

[KSMY07, MYK+08]. The early works inspired the new acceleration data structure presented in this

thesis. The VLF is an algorithm that provides real-time walkthrough for globally illuminated scenes,

with mixtures of ideal diffuse and specular surfaces.

A 2D grid of rays parallel to the z-axis is called the canonical parallel subfield (PSF). This canonical

PSF is intersected with objects in the scene. It requires only a 2D rasterization algorithm to build the PSF

structure. In order to ensure every polygon is added and propagated in the discrete grid representation, a

continuous clipping is adapted, which takes most of the computing time. Multiple rotations of the PSF

form a representation of the scene structure in a set of directional global rays. This structure inspired our

proposed solution, which uses an acceleration structure in Spherical Layered Hit Buffers (SLHB). The

VLF approach uses PSF to store computed radiances and also propagate them in a pre-processing stage,

whereas our SLHB stores only depth and polygonal information. The idea of both data structures stems

from Layered Depth Images [SGHS98], where each ray maintains a list of radiance or depth information

at all intersection positions, so that a projected image can be reconstructed from any viewpoint and

direction in the scene.

The VLF is based on the concept of Light Field methods, where energy propagation is done in a

pre-processing stage, which stores the radiances in the light field structure for final image rendering. One

of the major drawbacks of the VLF algorithm is a long propagation time and high memory requirements.

However, it offers a global illumination solution for real-time walkthrough. It mainly relies on fast

lookup at the final rendering stage. In other words, the final image synthesis is independent of scene

complexity. A typical small scene requires at least one gigabyte of memory to propagate the scene. The

vast amount of time in propagation is allocated to the clipping process, and [MYK+08] overcame this

problem by parallelizing the clipping process using GPU processors. Although this GPU-based VLF

approach enhances propagation and rendering speed, the algorithm can only handle static environments

and still sacrifices memory and propagation time for interaction. In contrast, our proposed solution in

this thesis is fully capable of running dynamic environments.

The VLF approach has also been integrated with the VR system for real-time GPU-based ren-

dering in the Cave Automatic Virtual Environment [MKYS07a, MYK+08, KYMS06]. By separating

the scene geometry into static and dynamic elements, it was possible to pre-compute the mainly dif-

fuse global illumination for the static elements using the VLF approach, and some simple techniques

to deal with dynamic elements, such as avatars and shadows. This was in order to make them realis-

tic by synthesizing both elements. Some user studies were also conducted using VLF approaches to

understand whether visual realism induces greater presence in immersive virtual environments, and our

recent papers [SKMY09] and [YMKS11] indicate that visual realism enhances a realistic response in an

immersive virtual environment. There have also been some other attempts to employ the VLF technique

in ray-tracing solutions, such as [KMYS04, MKYS07b].

2.9. Summary 38

2.9 Summary
In this chapter, an overview of global illumination algorithms has been presented, which are capable of

interactive or real-time rendering of virtual environments. Some algorithms use approximated global

illumination techniques, such as virtual point lights or screen space computation to provide high frame

rates. Recent development of customizable graphics hardware opened a new research area for real-time

global illuminations. Our new algorithm has also benefitted from massive parallel processing power us-

ing a GPU. This solution is related to many ideas discussed in this chapter, where an interleaved sampling

scheme and a discontinuity buffer are used in our algorithm to reduce the number of sampling directions.

Our fundamental visibility data structure stems from the LDI [SGHS98] structure, which combines the

multiple radiance and depth values representing the many polygons seen along a ray. Instead of per-

spective camera view projection to build multi depth maps, an orthogonal projection is used to build

multi layered hit buffers in spherical directions, which contain 3D visibility data structures. In this way,

approximated visibility structures are used for fast indirect illumination computation. Our acceleration

structure is also related to a concept used in light field approaches [LH96, GGSC96, WAA+00]. Light

field stores radiance information in 5D structures, whereas our method stores depth values and associ-

ated polygon IDs. Finally, a stochastic ray tracing method has been employed [CPC84, Coo86, AK90]

to solve the light transport problem [Kaj86].

Chapter 3

Global Illumination with Spherical Layered

Hit Buffers

3.1 Overview
The goal of global illumination is to compute the converged distribution of light energy in a scene. To

compute this distribution, an understanding of mathematical formulation is required, in order to describe

global illumination in a numerical way. The following section will give an overview of mathematical

approaches used to evaluate the rendering equation in terms of two operators; Hemisphere Formulation

and Area Formulation. Then a novel acceleration structure is introduced, using Spherical Layered Hit

Buffers (SLHB), which gives the approximated visibility field of the scene. The data structure holds a

complete list of all intersections and polygon IDs. Some techniques are introduced to generate random

directions over the (hemi)sphere in a uniform manner. Finally, there is an analysis of spherical directional

distribution in terms of solid angles.

3.2 Mathematical Formulation of Global Illumination
Global illumination solutions aim to compute a physically accurate estimate of the function L(x→ Θ),

which is the radiance at point x in three-dimensional space, in the direction Θ. Kajiya [Kaj86] showed

that this function can be evaluated as an integral equation. In this section, the mathematical background

of global illumination and the rendering equation (Equation 2.7) will be described. Two numerical light

transport operators are presented to approximate the integral equation, and the rendering equation is

iteratively solved using Neumann series expansion. Note that the notation used in this thesis follows

Dutré’s notation methods [Dut96].

Following is the common notation used to describe the flow of light:

• L(x→Θ) : radiance leaving point x in direction Θ

• L(x←Θ) : radiance arriving at point x from direction Θ

• L(x→ y): radiance leaving point x, arriving at point y

• L(x← y): radiance arriving at point x, coming from point y

3.2. Mathematical Formulation of Global Illumination 40

3.2.1 Hemisphere and Area Formulations

The Rendering Equation formulates the equilibrium distribution of light energy in a scene. This equa-

tion computes the outgoing radiance L(x→ Θ) in direction Θ at a surface point x. Light propagates

instantaneously in non-participating media space. There are two commonly used methods for solving

the rendering equation, which are Hemisphere integration and Area (Surface) integration methods as

illustrated in Figure 3.1.

X

xN

()L x←Ψ

()L x←Ψ

()L x←Ψ

()L x→Θ

()eL x→Θ

X

xN

y

y

y

()eL x→Θ

()L x→Θ

()L y→−Ψ y

()L y→−Ψ

()L y→−Ψ

Hemisphere
Integraion

Area(Surface)
Integraion

Figure 3.1: Hemisphere and Area (Surface) Integration.

Hemisphere Formulation

One of the most widely used formulations of the rendering equation is the hemisphere formulation,

where the rendering equation is derived using energy conservation theory. The total outgoing radiance

L(x→ Θ) at a point x in a particular direction Θ is the sum of the emitted radiance Le(x→ Θ) and the

reflected radiance Lr(x→Θ):

L(x→Θ) = Le(x→Θ) + Lr(x→Θ) (3.1)

Recall the BRDF function definition:

fr(x,Ψ→Θ) =
dLr(x→Θ)

dE(x←Ψ)
(3.2)

dL(x→Θ) = fr(x,Ψ→Θ)dE(x←Ψ) (3.3)

Integrating the BRDF over the hemisphere:

Lr(x→Θ) =
∫

Ωx

fr(x,Ψ→Θ)dE(x←Ψ) (3.4)

=
∫

Ωx

fr(x,Ψ→Θ)L(x←Ψ) cos(Nx,Ψ)dωΨ (3.5)

Substituting the above equation 3.5 into equation 3.1, we get the result:

L(x→Θ) = Le(x→Θ) +
∫

Ωx

L(x←Ψ) fr(x,Ψ→Θ) cos(Nx,Ψ)dωΨ (3.6)

3.2. Mathematical Formulation of Global Illumination 41

• Nx: a normal surface

• Θ: an outgoing radiance direction

• Ψ: an incoming radiance direction

• L(x→Θ): the radiances leaving point x in a direction Θ

• Le(x→Θ): the emitted radiances of point x

• L(x←Ψ): the incident radiances towards point x from direction Ψ

• fr(x,Ψ→ Θ): the bidirectional reflectance distribution function(BRDF) describing the reflective

properties of the surface

• V (x←Ψ): the visibility function of point x from direction Ψ.

()L y→−Ψ

X

y

dA

dωΨ

Ψ

xN
yN

Surface A

α

Figure 3.2: Hemisphere and Area Formulation.

Area Formulation

Instead of using the integral over the hemisphere, it is sometimes convenient to express the integral over

visible surfaces from a point x. This formulates the energy balance equation in terms of area formulation

as opposed to the hemisphere formulation method described above. To transform a hemisphere integral

to an area integral, the differential solid angle dωΘ around direction Θ is transformed to a differential

surface dAy at a surface point y. For small surfaces, an approximate solution can be used to compute the

projected surface area of the solid angle subtended by a surface A (Figure 3.2).

dωΘ ≈
Acosα

d2 = cos(Ny,−Ψ)
dA
r2

xy
(3.7)

3.2. Mathematical Formulation of Global Illumination 42

By substituting this equation into 3.1, the rendering equation can also be expressed as an area formula-

tion, which is an integration over all surfaces:

L(x→Θ) = Le(x→Θ) +
∫
A

L(x→Ψ) fr(x,Ψ→Θ)V (x,y) cos(Nx,Ψ)

(
cos(Ny,Ψ)

dA
r2

xy

)
(3.8)

= Le(x→Θ) +
∫
A

L(y→−Ψ) fr(x,Ψ→Θ)V (x,y)G(x,y)dAy (3.9)

= Le(x→Θ) +
∫
A

Le(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)dAy (3.10)

• yi: the sampled points on the emitter

• −→yix: the set of directions from the point yi in emitter to point x

• Le(yi→−→yix): the radiance arriving at point x from the emitter point yi

• G(x,yi): the geometry term between the point yi and elements on point x

• V (x,yi): the visibility between the point yi and elements on point x

Incoming radiance at point x from direction Ψ is the same as the outgoing radiance from point y in the

direction −Ψ, which means L(x←Ψ) = L(y→−Ψ) (see Figure 3.2).

The term G(x,y) is the geometry relation, which depends on the relative geometry of the surfaces be-

tween points x and y.

G(x,y) =
cos(Nx,Ψ) cos(Ny,Ψ)

r2
xy

(3.11)

3.2.2 Stochastic Numerical Model for the Rendering Equation

In this section, a stochastic approach to solving a complex integral function such as the rendering equa-

tion is introduced. Then it will be shown that the two formulations can be approximated by using a

numerical method.

The integral part of the rendering equation is very difficult to compute in an analytic form, which

can be overcome by the use of Monte Carlo integration, a powerful technique that can be used to estimate

arbitrary functions. Let f (x) be a function defined over the x ∈ [0,1], then an integral function can be

defined such that:

I =

1∫
0

f (x)dx (3.12)

The Monte Carlo method can be used to evaluate the integral in terms of a numerical solution by choos-

ing N samples to estimate the value of that integral. The samples xi are selected with the Probability

Distribution Function (PDF) p(x). The estimator 〈I〉 is:

〈I〉 = 1
N

N

∑
i=1

f (xi)

p(xi)
(3.13)

The variance of this estimate is:

σ
2 =

1
N

∫ (f (x)
p(x)

)2

p(x)dx (3.14)

3.2. Mathematical Formulation of Global Illumination 43

As the number of samples increases, the variance decreases linearly with N. The standard deviation σ

decreases with
√

N. Although it has a slow convergence characteristic, a number of variance reduction

techniques can be adapted.

By applying the Monte Carlo technique to the two formulations in Section 3.2.1, an approximated

function can be evaluated by generating N random directions Ψi, on a hemisphere Ωx, distributed ac-

cording to some probability density function p(Ψi):

Hemisphere Formulation

Equation 3.6 can be rewritten in terms of a numerical method:

L(x→Θ) = Le(x→Θ) + Lr(x→Θ) (3.15)

= Le(x→Θ) +
∫
Ω

L(x←Ψ)︸ ︷︷ ︸
Incident radiance

fr(x,Ψ→Θ)︸ ︷︷ ︸
BRDF

V (x←Ψ)︸ ︷︷ ︸
Visibility

cos(Nx,Ψ)︸ ︷︷ ︸
Geometric Term

dωΨ︸ ︷︷ ︸
Solid angle

(3.16)

Let’s denote a Monte Carlo estimator 〈 Lr(x→Θ)〉H to Lr(x→Θ) (where H stands for Hemisphere

formulation), then the numerical solution to the integral is:

〈 Lr(x→Θ) 〉H =
1
N

N

∑
i=1

[
L(x←Ψi) fr(x,Ψi→Θ) cos(Nx,Ψi)

p(Ψi)

]
(3.17)

Area Formulation

In the same way, equation 3.10 can be rewritten in numerical terms:

L(x→Θ) = Le(x→Θ) + Lr(x→Θ) (3.18)

= Le(x→Θ) +
∫
A

Le(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)dAy (3.19)

Let’s denote an estimator 〈 Lr(x→Θ)〉A to Lr(x→Θ) (where A stands for Area formulation), then

the numerical solution to the integral is:

〈 Lr(x→Θ) 〉A =
1
N

N

∑
i=1

[
Le(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)

p(yi)

]
(3.20)

The radiance equation can be computed in two ways as explained in equations 3.17 and 3.20. In the

following section, both formulations are used in different illumination models in order to evaluate the

integral function recursively.

3.3. Parametrization of Spherical Data (Solid Angles) 44

3.2.3 Neumann Series Expansion

As explained in Section 2.2.3, the Surface Radiance Equation is written compactly using an operator

form. This allows solving of the radiance equation iteratively with the Neumann series.

L0 = Le (3.21)

L1 = T ·L0 = T ·Le (3.22)

L2 = T ·L1 = T (T ·Le) (3.23)

...= ... (3.24)

Ln = T ·Ln (3.25)
∞

∑
n=0

Ln =
∞

∑
n=0

T n ·Le (3.26)

The radiance equation can be written in three terms using the above notation. The first term L0 describes

the light sources and the second term L1 is the direct lighting. The rest of the terms, L2 · · ·Ln are indirect

illumination, such that:

L(x→Θ) = L0︸︷︷︸
Emitter

+ L1︸︷︷︸
Direct illumination

+ L2 · · ·Ln︸ ︷︷ ︸
Indirect Illumination

(3.27)

= Le(x→Θ) + 〈 Lr(x→Θ) 〉A + 〈 Lr(x→Θ) 〉H · · · (3.28)

To compute each of these terms, the Monte Carlo Hemisphere formulation and Area formulations are

extended to a surface x.

For direct lighting, the area formulation equation is used (Equation 3.20)

L1 = 〈 Lr(x→Θ) 〉A (3.29)

=
1
N

N

∑
i=1

[
L(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)

p(yi)

]
(3.30)

The rest of the terms in Equation 3.27 are for the indirect illumination calculation. To evaluate them,

hemisphere formulation is used (Equation 3.17).

L2 · · ·Ln = 〈 Lr(x→Θ) 〉H (3.31)

=
1
N

N

∑
i=1

[
L(x←Ψi) fr(x,Ψi→Θ) cos(Nx,Ψi)

p(Ψi)

]
(3.32)

The direct lighting calculation is extensively explained in Chapter 5, Section 5.2, and indirect illu-

mination is described in Section 5.3.

3.3 Parametrization of Spherical Data (Solid Angles)
In this section, the various parameterization methods for representing (Hemi)spherical data will be re-

viewed. Our visibility data structure is heavily dependent on directional representation, as the SLHB

is a collection of directional LHBs over the sphere, with associated depth values. Therefore, it is quite

important to select a good parameterization for spherical data. There are many applications that require

a parameterization of spherical data, and in computer graphics, a function of the (hemi)sphere associated

3.3. Parametrization of Spherical Data (Solid Angles) 45

with values can be used in many different ways. One of the typical usages is a distribution of radiance

values L(x→ Θ) on a hemisphere, which represent the radiance leaving a surface. This kind of parame-

terization is an environment map, or reflection map, of radiance at a surface point. In terms of the Light

field technique, this holds radiance field information. Another area of implementation is as a represen-

tation of direction, as many applications use a uniform distribution of spherical directions. The BRDF

is another interesting area, and there have been many attempts to formulate hemispherical data as an

analytic function. Spherical harmonics and hemispherical harmonics belong to this category of research.

3.3.1 Uniform Subdivision Methods

Two uniform parameterization methods are used in this study to represent hemispherical data. The first

one uses build-directional samples, by recursively subdividing platonic models. We propose another

uniform parameterization method, which generates a fairly uniform distribution on the (hemi)sphere.

Uniform Subdivision of Platonic Models

The most popular subdivision of a unit sphere is to use platonic solid models as the basic function to

offer a uniform subdivision. Platonic solids such as a tetrahedron, octahedron and icosahedron are used

in our study to represent the directions of LHBs. Each side of the equilateral triangle is subdivided

and projected to the surface of the sphere. This procedure is carried out recursively until a given depth

is reached. Then the centroid or vertex points of the subdivided triangles can uniformly represent a

distribution of samples on the sphere, as illustrated in Figure 3.3.

Figure 3.3: Recursive subdivision of octahedra base and icosahedron.

For instance, a tetrahedron subdivision method uniformly subdivides a quadrant into smaller trian-

gles. The tetrahedron is recursively partitioned into smaller triangles up to a certain level to generate

spherical triangles. Each point p on the polyhedron is projected onto the sphere to produce a point p
′
.

Applying this process to a tetrahedron L times, a solid model is generated with 4L× 4. The centre (or

vertex) point of each tessellated triangle represents a direction with a radiance value seen from the centre

of the unit sphere. The spherical triangle can be considered as a solid angle or direction in our terms.

3.3. Parametrization of Spherical Data (Solid Angles) 46

Tetrahedron Subdivision ()

Triangulation

For every edge

Find midpoint of the edge

Project midpoint onto the unit sphere

For each face

Replace the face with new four triangles

Midpoints to original vertices

Table 3.1: Uniform Tetrahedron subdivision.

Uniform Spherical UV Grid

Although a simple uniform subdivision of platonic models provides fairly uniform distribution for

(hemi)spherical data, there are some drawbacks in practice. One difficulty of using this method is that the

number of triangles for each level increases four-fold; for example, 256, 1024, 4096, 16384, 65536 and

so on. Secondly, when a hemisphere is subdivided recursively by using the uniform subdivision tech-

nique on tetrahedra, then the projection of points on the sphere onto the tetrahedron triangles generates

projection errors, which results in non-uniform subdivision as shown in Figure 3.6 (a). The variance of

the spherical triangles becomes larger near the center region. This error should be minimized in order to

avoid uneven solid angle coverages for discrete directions. We present a new UV-Grid parameterization

method to overcome these problems.

Figure 3.4: An Example of Uniform Spherical UV Grid (Quadrant).

A uniform Spherical UV grid method can be generated by simply dividing a unit sphere in a spher-

ical coordinates system. The proposed method gives smaller variance in size, yielding uniformness over

the hemisphere and more flexible subdivision level. We will denote latitude as θ and longitude as φ .

For any given value of N, equal distance angles can be produced in latitude and longitude by dividing

by N samples. The (θ ,φ) form a direction on the hemisphere. This way, instant access to any point on

3.3. Parametrization of Spherical Data (Solid Angles) 47

the hemisphere is possible. Figure 3.4 shows an example of this, where N = 8. This method produces

4L2 spherical triangles, where L is the subdivision level. Overall, this is a far more flexible subdivision

scheme.

(a) Octahedron 128 (Level 2) (b) Octahedron 128 (Level 2)

(c) Icosahedron 320 (Level 2) (d) Icosahedron 320 (Level 2)

(e) Halton 144 (f) Halton 144

Figure 3.5: Solid Angle Maps for Octahedron, Icosahedron and Halton Samples.

A constant query of hemispherical data was suggested by Slater [Sla02], where a portion of the

3.3. Parametrization of Spherical Data (Solid Angles) 48

tetrahedron is rendered into an off-screen buffer, in order to query a data point distributed over the

hemisphere in constant time. A weakness of this technique is the limited size of the off-screen buffer

memory to handle large data points in a commodity graphics card. However, our method does not

require more than a few hundreds of directions, so that we can adapt the off-screen technique to query

the directional data in constant time.

Apart from the uniform subdivision methods, we also employ a low discrepancy sampling scheme,

like a Halton sequence. In order to generate uniform directions, random samples in 2D cartesian coordi-

nates are transformed to spherical coordinates to form samples in a sphere. In this way, any number of

uniformly directions on a sphere can be generated as shown in Figure 3.5 (c).

3.3.2 Evaluation of Uniform Subdivision Methods

Figure 3.6 illustrates the difference between the tetrahedron subdivision method and spherical UV Grid

method. The tetrahedron method was used in the previous [SMKY04] study to query a random position

on the hemisphere. IT can be seen from the figure that the tetrahedron subdivision produces uneven

tessellated triangle areas, and the variance is very high compared with our proposed solution. The

spherical UV Grid shows that the area of each element is more evenly tessellated.

(a) Tetrahedron Subdivision (b) UV-Grid Subdivision

Figure 3.6: Comparison of Two Uniform Subdivision methods.

The proposed Spherical Layered Hit Buffers are a discrete representation of the continuous visi-

bility field. Therefore, a limited number of discrete directions can result in banding artifacts. This is

discussed and a Cone Approximation technique is proposed in Section 5.3.1. The Cone Approximation

can approximate Monte Carlo integration with only a small number of LHB directions.

Figure 3.7 shows a profile of the tetrahedron subdivision method, where 4 Levels of subdivision

have been chosen to show the effect of angle variance. The number of directions for each graph is 8

(Level 0), 32 (Level 1), 128 (Level2), an 512 (Level 3). Each graph represents a profile of angular

variance around the equator. The x-axis is in degrees between 0 and 360. The Y-axis is cosine θ , between

the accurate discrete direction and the estimated directions. In other words, if the visibility enquiry

3.4. Spherical Layered Hit Buffers 49

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	
 22	
 43	
 64	
 85	
 106	
 127	
 148	
 169	
 191	
 212	
 233	
 254	
 275	
 296	
 317	
 338	
 359	

Level 0 Level 1

Level 2 Level 3

Figure 3.7: A Profile of Tetrahedra in terms of Solid Angle. The X-axis is 0◦-360◦ around the equator,

Y-axis is a cosine angular difference.

direction is perfectly aligned to the discrete direction, then the cosine angle is 1, or 0 degree difference.

Therefore, any direction between the discrete delta directions has a cosine fall off characteristic. Level

3 subdivision of tetrahedra shows a very low angle difference, whereas Level 0 shows that the cosine

angle is below 0.6 (or 53 degrees) in the worst case. This means that the angle difference between the

accurate direction and the worst case direction could be 53 degrees. Therefore, it is important to choose

a high number of directions, which ensures the angle variance is a minimum while achieving real-time

rendering. Again, we employ a cone approximation to resolve this problem in Section 5.3.1. Figure

3.5 illustrates the solid angle map of various parameterizations, including Octahedron, Icosahedron and

Halton sampling.

3.4 Spherical Layered Hit Buffers
The key idea behind our real-time rendering algorithm is to solve the rendering equation using an ap-

proximated visibility function, especially for indirect lighting computation. For this reason, we propose

Spherical Layered Hit Buffers (SLHB), which represents a 5D visibility function (position (x,y,z) and di-

rection (θ ,φ)) in multi-layered buffers, called Layered Hit Buffers (LHB). This structure can be thought

of as a multi-layered orthographic projection in many directions. A 2D illustration of directions is shown

in Figure 3.8. The LHB directions resemble the PSF directions in our early work [SMKY04]; however,

the SLHB does not store nor propagate any radiances.

Given a scene in real-world coordinates, a translation, scale and rotation is applied to fit the scene

into a unit cuboid, centered at the origin as shown in Figure 3.9. Then, the scene can be orthographically

projected onto the frame buffer using a hardware rasterization. The whole process of rasterizing the scene

into LHBs can be defined as a single matrix form, as given in Equation 4.1. Unlike the conventional

3.4. Spherical Layered Hit Buffers 50

Figure 3.8: A 2D example of multiple directions to build a SLHB.

(a) Scene in world coordinates (b) Scene with LHB directions (Icosahe-

dron)

(c) A canonical LHB for rasterization

Figure 3.9: Layered Hit Buffers in icosahedron directions.

rasterization method, a CUDA Deep rasterization method is proposed to construct a LHB in a canonical

view. The CUDA Deep rasterization outputs a list of all intersected polygon IDs and depth values in

the Z-axis direction. In other words, each fragment location at (i, j) in the LHB stores a list of elements

that are defined with a depth value and associated polygon ID. In this way, a partial visibility field is

constructed in a single orthographic view. The LHB structure shares some similarity to the A-buffer

[Car84], which contains a list of elements. However, fixed pipeline graphics hardware is not capable

of writing a structural output in random global memory locations. In order to simulate this process

in the graphics hardware, some depth-peeling algorithms can be adapted; however, multiple rendering

passes prohibit real-time rendering. In contrast, our proposed CUDA Deep rasterization method is a

fully customized rendering pipeline, which can output any structural data and also fully benefits from

GPU parallel processing. The details of building the LHB using a CUDA rasterization method is given

3.5. Summary 51

in Chapter 4. The LHB structure has some similarities to Layered Depth Images [SGHS98], where

the LDI stores radiance values and the LHB stores primarily depth information to capture the visibility

field. A single rasterization can build a LHB with a size of N×N fragments in an orthogonal view. The

SLHB is a collection of LHBs in many directions (θ ,φ), in order to capture the visibility in different

views. When the scene in a unit cuboid is rotated within (θ ,φ), a new canonical visibility field can

be rasterized to build LHB(θ ,φ). We chose l discrete directions to represent the direction of the LHB.

Finding the closest direction to any arbitrary direction can be achieved in a constant time using a pre-

computed Directional Map in a similar way to [Sla02], where each pixel in the textures stores a nearest

direction. The directions of the SLHB should follow a uniform distribution over a sphere, such that the

angular variance between two nearest directions is kept to a minimum. In the following section, a few

parameterization methods will be examined, which offer uniformly distributed directions.

3.5 Summary
In this chapter, the mathematical foundations of global illumination were introduced. The rendering

equation can be analytically solved using a Monte Carlo integration technique, and more details on

the implementation of real-time rendering methods are explained in Chapter 5. We also proposed an

acceleration structure, based on SLHBs, which is a 5D visibility field for instant occlusion query. More

details on how to generate the LHB using a CUDA deep rasterizer will be explained in Chapter 4.

Several parameterization methods are presented to represent the directions of the SLHB. An analysis of

the distribution of spherical data in terms of solid angles was discussed in this chapter.

Chapter 4

CUDA Deep Rasterization

4.1 Introduction
In the past decade, significant advances in graphics hardware technology has provided a flexible environ-

ment for dealing with complex tasks. In computer graphics, the graphics or rendering pipeline refers to

rasterization supported by commodity graphics hardware. The graphics pipeline takes the vertex data of

a 3D scene as the input, which rasterizes objects into a screen size frame buffer as the output. There are

two industry standards, which are OpenGL and Direct3D, and they offer similar graphics pipeline mod-

els. Traditionally, the graphics pipeline was a fixed-function on hardware, however recent developments

have provided increasing programmability with vertex shaders, geometry shaders and pixel (fragment)

shaders.

A shader is a program to calculate some rendering effects on the graphics hardware. A fixed-

function pipeline allows only geometry transformation and pixel-shading, whereas shaders offers high

degree of flexibility on Graphics Processing Unit (GPU). In the early development stages, only pixel

shaders were programmable; however as the GPU evolved, vertex and geometry shaders were intro-

duced. A vertex shader is applied to each vertex to transform the data in object space to that in view

space. The output of the vertex shader feeds to the geometry shader, which is responsible for tessel-

lating the triangles into refined vertex data. The output positions are then rasterized by interpolating

within three vertices to form pixels within its area. A pixel shader is applied to each pixel to compute

the screen color. Modern graphics units have hundreds of stream processors running concurrently to

compute shading operations in a massively parallel way.

Despite significant advances in graphics hardware, there are still some limitations. In particular, the

output of the pixel shaders is bound to a fixed sized texture rather than a user defined data structure. In

our new algorithm, it is the aim to use graphics hardware to build a structural buffer, which contains a list

of primitives with depth information per pixel, in a single pipeline. For this reason, a traditional graphics

pipeline is not able to deliver scatter writing to build structural data output. Therefore a fully customiz-

able rendering system is proposed, which uses the GPU as a general parallel processing unit. Shading

languages such as OpenGL and Direct3D are implemented for 3D graphics requirements, whereas the

CUDA architecture is employed for general purpose parallel processing. The standard pipeline is repli-

cated in a CUDA architecture, and the entire pipeline is run in a programmable graphics hardware. The

4.2. CUDA Architecture 53

proposed graphics pipeline has been designed and modified to fit the intended need and also run cache

efficient manner as illustrated in Figure 4.1. CUDA allows to manage constant and shared memory for

caching purpose, which is as fast as the registers. The performance of the CUDA Deep rasterization

method is comparable to standard OpenGL for moderately complex models, and for complex models

with many micro-polygons, this new rasterizer achieves twice the speed of OpenGL functions. In the

following section, the details of the CUDA architecture is introduced.

Vertex Data

Model View

Projection

Viewport

Transform

Area < 32 Pixels

Micro-­Rendering

Macro-­Rendering

Global Scan

Conversion

Layered Hit
Buffers

Constant Memory

Global Memory

Shared Memory

MVP Array

Materials

Halton Samples

...

Vertex, Index List

LHB Counters

SLHB

Random Seeds

...

YES NO

Object cooridinates

Normalized Device Coordinates

Viewport Coordinates

G
eo
m
et
ry
 P
ro
ce
ss

Ra
st
er
iz
at
io
n

GPU Memory

Figure 4.1: Overview of CUDA Deep Rasterization to build Layered Hit Buffers (LHB).

4.2 CUDA Architecture
In the past few years, the programmable graphics processor has evolved dramatically into highly parallel

multi-core processors, which can support many multi-threads with high memory bandwidth. This results

in massive computational power compared with CPU processors as illustrated in Figure 4.2. The reason

behind this evolution is that the GPU can be specialized and optimized for highly parallel computation,

by simplifying the number of instruction sets and control flows.

4.2. CUDA Architecture 54

Figure 4.2: Performance Comparison and Memory Bandwidth for GPU and CPU (from NVIDIA

[Cud11]).

In 2006, NVIDIA introduced Computed Unified Device Architecture (CUDA) as a general purpose

computing architecture, which offers hundreds of arithmetic units in a GPU as illustrated in Figure 4.3.

The CUDA is a new parallel programming model and provides instruction sets offering a high-level

programming language to control the parallel architecture easily. It allows users to access the GPU

directly in data parallel ways, and this has been chosen over DirectCompute or OpenCL language for

this project, because it allows low level processing of graphics hardware with high-level programming

languages like C/C++. CUDA also provides functions that give better controls for the graphics hardware

kernels.

Figure 4.3 illustrates the architecture of the NIVIDA GTX 480, which is the graphics card that is

used to implement the methods proposed in this thesis and measure the results timing. The NIVIDA GTX

480 features 15 Streaming Multiprocessors (SM). Each SM (on the right-hand image) utilizes 64KB of

Shared Memory / L1 cache on the chip between 32 CUDA cores. In other words, NVIDIA GPUs are

based on multi-processors with a Shared Memory architecture. There are 480 CUDA cores running in a

Single Program Multiple Data (SPMD) model. The CUDA cores execute the same instructions simulta-

neously, as each SM is a highly parallel multiprocessor, supporting up to 48 warps simultaneously, where

each warp is 32 threads. Therefore, GPUs can maintain up to 1536 threads per stream multi-processor.

The NIVIDA GTX 480 Fermi architecture features four memory types, which are Global (Device) Mem-

ory, Local Memory, Shared Memory and Constant Memory. The Global (Device) Memory is accessible

by all Streaming Multiprocessors, but has very high latency (400- 800 cycles). The Local memory is

also slow and uncached, but only accessible within each SM. The Shared Memory is expected to have

very low latency and high throughput, which is located in the L1 cache near each processor core. The

shared memory is also known as a user defined cache, because it is configurable to support caching of

local and global memory. The Constant Memory allows read-only access and provides faster access than

the global memory.

4.2. CUDA Architecture 55

Figure 4.3: NVIDIA GTX 480 Architecture(left) and a Stream Processor(right) (from NVIDIA

[Cud11]).

4.2.1 CUDA Implementation Issues

OpenGL or DirectX APIs are able to read scatter data from texture memory, but they are unable to write

arbitrary addresses in the memory. In contrast, CUDA is capable of accessing both scattered read and

write. Because of this benefit, CUDA has been chosen over the traditional fixed graphics pipeline in

order to produce a structural output directly into GPU memory, within a single rendering pass. In order

to build an efficient rasterization in CUDA architecture, there are a few things to consider.

The GTX 480 graphics card features 15 Stream Multiprocessors with 48 warps, so it can run 23,040

threads (15 SM x 48 warps x 32 threads) at the same time. In order to maximize the scheduling of stream

processors, at least 2-3 times more than the 23,040 thread jobs must be allocated to CUDA cores, in

order to hide the latency. Therefore, it is very important to avoid any thread serialization and allocate

well designed parallel jobs to the multi-processors. This issue is addressed in Section 4.4 to show how

to allocate thread jobs for micro and macro polygons.

Regarding memory management, any data transfer between the CPU and GPU should be mini-

mized, because the transfer rate is extremely slow. The local and global memory is in the device mem-

ory, whereas the shared memory and the constant memory are in the on-chip cache memory. Access to

the shared memory is extremely fast and highly parallel, and is generally hundreds of times faster than

the local or global memory. Therefore the new algorithm efficiently utilizes the shared memory as user

managed caches, to hold the portion of global information.

Figure 4.1 shows the GPU memory structure of our algorithm. We have allocated scene data, the

SLHB data structure and random variables in the global memory. For faster access, read-only data such

as Model View Projection Matrices, Material properties and Halton sequences are stored in the constant

4.3. Building Layered Hit Buffering using CUDA Rasterization 56

memory. The shared memory is heavily used in the rasterization method to store intermediate data and

and load global data.

4.3 Building Layered Hit Buffering using CUDA Rasterization

0 1 2 2 1 02 2 1

B

C

A

Rasterizing polygon A Rasterizing polygon B Rasterizing polygon CInitialize LHB buffer
 & LHB counters

LHB counters 0 1 1 1 01 1 1 0

B A

00 1 01 1 1 0

A

00 0 0 0 000

BB

CCC

A

0 0 0 0 0 0

C

A

B

AA

LHB bu�er

Layered Hit Bu�er

C

Figure 4.4: An example of CUDA Deep Rasterization to build a Layered Hit Buffer (LHB). Polygon

A,B and C are rasterized to the LHB buffer.

The aim of the proposed rasterization is to construct a list of polygon IDs and depth values along

pixels, at the intersection positions where rays hit objects for a given direction. Using graphics hardware,

this process can be carried out efficiently by employing a rasterization method rather than a ray-casting

algorithm.

Figure 4.4 shows a rasterization process of polygons into Layered Hit Buffers. An LHB is con-

structed by rasterizing the scene into memory buffers in an orthogonal projection. Each pixel in the

orthogonal view represents ray-polygon intersections. Therefore, we store a list of elements that consist

of the depth and id information along the ray at all intersection positions. Ideally, the list of elements is

stored in a linked list data structure. However, for simplicity, we have opted to use a fixed memory buffer

with a counter per pixel. Thus, when the number of intersections at a particular location is higher than

the fixed element size, the element information is discarded. The counters are used to define the location

of elements at each intersection. They are initialized with zero value at the beginning.

When the first polygon A is rasterized, the counter is incremented and the element information

(Depth and Polygon ID) of front facing polygons is stored in the LHB at the zero location. Due to

thread parallel processing, there is a concurrency control problem involved in synchronizing the LHB. In

many multi-threaded programming, a race condition arises when multiple threads attempt to access the

shared data and write to the same location at the same time. Kurt et al [DDSC11] suggested a Wait-Free

mechanism to synchronize accesses to shared memory data. However, CUDA provides Atomic Opera-

tions, which deal with read- modify-write (RMW) operations. For instance, we employ the atomicInc

function to read the 32-bit word counter and increment its value, then store the result back to the same

address. These three operations are performed in a single atomic instruction without interference from

other threads. Therefore, atomicInc increases the counter by one in order to reserve memory for current

4.4. CUDA Deep Rasterization 57

element location data, then stores the element information in the previous entry of the array. Next, the

polygons B and C are rasterized in same way and the counters are incremented as the elements are ap-

pended to the list. Each element has two values; one is of 32 bits floating point depth value, and the other

one is the polygon ID in a 32-bit word. In order to save storage space and increase the bandwidth, it is

possible to pack the polygon ID and depth values into a 32 bit integer for a simple scene. For instance,

polygon ID is stored in 20 of the bits and the integer depth value in 12 bits. In this way, the memory

requirements for the LHB can be minimized and the bandwidth made more efficient by reducing the

output to global memory, due to its very high latency.

The CUDA Deep Rasterization constructs an LHB buffer for a given direction. This process is

applied to N spherical directions to build the Spherical Layered Hit Buffers (SLHB), which serve as a

5D visibility field for the proposed real-time rendering method.

4.4 CUDA Deep Rasterization
In this section, a Deep Rasterization method is presented, which is designed for the fast execution of

many parallel instructions simultaneously. First, there is an overview of the related works on rasterization

methods and their limitations. Then a new CUDA-based rendering pipeline is described, following by

more detail of the model view transform. Micro and macro-rasterization methods to output projected

polygons into LHBs is then presented.

4.4.1 Overview

Fatahailan [FLB+09] proposed an algorithm that rasterizes micro polygons for efficient defocus and mo-

tion blur using CUDA. Several researchers employ REYES (Renders Everything You Ever Saw) render-

ing methods [PO08], [ZHR+09] on GPUs for realistic rendering. Although these methods can produce

high quality results, due to their sub-pixel level accuracy, they are not suitable for real-time applications.

The new Deep Rasterization method proposed in this dissertation is essentially aimed towards building

a Layered Hit Buffer (LHB) that contains a list of depths and polygon IDs at all intersection points per

pixel, from an orthographic projection view. For this reason, the Deep Rasterization method closely

resembles the A-Buffer algorithm [Car84]. Spherical Layered Hit Buffers are a collection of LHBs in

carefully chosen spherical directions. In order to implement this on conventional fixed pipelines, the

hardware requires many rendering passes to capture the fragment data per pixel, using a depth-peeling

algorithm [Mam89]. The K-Buffer [BCL+07] uses multiple rendering targets to capture many layers in a

single pass. Myers et al [MB07] introduce a technique to employ MSAA (multi-sampling anti-aliasing)

with the stencil test, which allows 8 fragments per each geometry rendering pass. Bucket depth peeling

[LHLW09b] captures 32 fragments for a single pass. All these methods are limited by the maximum

render target, so that a complex area in a scene still requires many rendering passes to build an array

of fragment data. In contrast, the new Deep Rasterization method has no limit to writing structure data

in Layered Hit Buffers. Another benefit of using CUDA rasterization is that there is no need to assign

buffers to textures, since LHBs are directly stored in the GPU global memory.

A list of elements in a LHB should ideally be sorted in depth order, such that the nearest intersected

4.4. CUDA Deep Rasterization 58

element can be retrieved efficiently. However, a sorting algorithm in post-processing takes more than

a simple linear search of the elements when an average number of elements is small. In order to build

Spherical Layered Hit Buffers, a CUDA deep rasterization is applied for many spherical directions in

orthographic views. In this way, the SLHB forms a 5D visibility structure, thereby maintaining depth

and polygon information for each element. Our CUDA rasterization is inspired by Liu et al [LHLW10]

work, who showed that CUDA could be used as an alternative platform to the fixed function method.

In contrast, our solution is highly optimized, achieving this at least 4 times faster than their solution.

Also their method does not work well on a scene where a few polygons occupy large portion of area in

screen space resulting in unreasonably low frame rates for a very simple scene such as a cornell box. In

contrast, we deliver an efficient parallel processing method by adapting two rendering methods; one for

micro polygons and the other for macro polygons. In this way, the proposed CUDA rasterization method

is able to deliver high frame rates for rasterizing in a mixture of micro and macro polygons.

4.4.2 Rendering Pipeline and Memory Structure

The fundamental procedure of a GPU pipeline is to receive a group of polygons and perform all necessary

operations, and then output pixels. The first step in optimizing the rendering pipeline is to find a way to

store the geometry data in the GPU memory efficiently. It is common in data parallel programming to

use Struct of Arrays (SOA) data over Array of Structs (AOS), which also applies to CUDA architecture.

Thus polygon vertex data in SOA is initially stored in the CPU and transferred to the GPU once during

the whole rendering period. Although GPU device memory is faster than CPU memory access, the

latency to transfer the GPU memory to the CUDA cores takes typically 200-300 cycles, so this process

should be is minimized by allocating sufficient independent arithmetic instructions to threads.

The proposed CUDA Deep rasterization method does not require computation of any shading pro-

cess, because it only needs to construct a visibility structure such that normal color and texture are dis-

carded in the the pipeline. In this way, the data loading from the GPU device memory can be minimized

in order to rasterize multiple scenes into LHBs efficiently. Therefore, the rendering pipeline focuses

on optimizing a geometry process and a scan conversion process as shown in Figure 4.1. Since there

are tens of thousands of threads available to compute the data simultaneously, it is natural to allocate

a triangle for each thread. A single thread takes three vertices from the global memory and multiplies

it by a Model View Projection (MVP) matrix to obtain the projected coordinates in Normalized device

coordinates (NDC). An MVP matrix is pre-computed for each spherical direction (θ ,φ) and stored in

constant memory for instant access with no latency.

4.4. CUDA Deep Rasterization 59

MVP(θ ,φ)

=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


︸ ︷︷ ︸
Orthographic Projection


1 0 0 0

0 cos(φ) −sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1


︸ ︷︷ ︸

Rotation Matrix φ


cos(θ) 0 sin(θ) 0

0 1 0 0

−sin(θ) 0 cos(θ) 0

0 0 0 1


︸ ︷︷ ︸

Rotation Matrix θ︸ ︷︷ ︸
LHB(θ ,φ)


S.x 0 0 T.x

0 S.y 0 T.y

0 0 S.z T.z

0 0 0 1


︸ ︷︷ ︸

Uniform Translate, Scale Matrix


x

y

z

1



(4.1)

It is straightforward to construct the MVP matrix. Firstly, the scene in world space is scaled to a

unit cuboid, then moved to the origin in order to ensure the viewport covers the whole scene. In this way,

the visibility field holds multiple layered depth structures in any direction. In order to transform objects,

translate, scale and rotation functions are applied to vertex data as in equation 4.1.

Orthogonal Projection

Unlike A-Buffer rendering, which uses perspective projections, an orthogonal projection is used to build

orthographic linear depth buffers. Constructing a matrix for orthographic projection (Equation 4.2) is

much simpler than using a perspective projection matrix. All x,y and z component in eye space are

linearly mapped to NDC (Normalized Device Coordinates). The orthographic transform is given by the

following matrix:

Porthogonal =


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 2
f−n − f+n

f−n

0 0 0 1


︸ ︷︷ ︸

Orthographic Projection

=


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


︸ ︷︷ ︸
Orthographic Projection

(4.2)

The frustum is translated so that its center is at the origin, then it is scaled to the unit cube. Orthographic

projection is predefined in the viewing volume of l = −1,r = 1, t = 1,b = −1, f = −1 and n = 1. Clip

coordinates are divided into w perspective divisions to generate coordinates in the NDC space. The

range of values is normalized between -1 and 1 in all axes. Then the viewport transform converts the

coordinate in viewport space and the windows coordinates are finally passed to the rasterization process.

The whole geometry process is done by a single matrix multiplication, with a few additions, which can

be very efficiently processed in a parallel manner.

The rest of the process is aimed at optimizing the scan conversion of the projected triangle in a GPU

friendly way. Once windows coordinates are calculated, the bounding box of the triangle is obtained to

decide whether a minimum projected area is micro or macro polygon.

Figure 4.5 illustrates a typical scene with a multi-colored index to show the area of projected tri-

angles. We opt to choose 32 pixels as a cut off to distinguish the micro and macro regions since it is

a warp size in CUDA. The scan conversion process for a micro polygon in an area of under 32 pixels

is efficiently computed on the fly. Otherwise a two-step process macro rasterization is applied for large

4.4. CUDA Deep Rasterization 60

(a) Wireframe (b) Polygon Color Chart

Figure 4.5: Micro and Macro Polygons.

polygons. The following sections will describe how the rasterization process is organized in the micro

and macro rasterization methods.

4.4.3 Micro-Rasterization

Half-Space Rasterization

Parallel processors, such as CUDA, benefit from the half-space rasterization method, which requires

minimum setup. The proposed micro CUDA rasterizer is based on a barycentric scan conversion method.

Figure 4.6 shows an example of the half-space of a triangle. One side of the line is positive and the

other is negative, therefore it splits the space in half, and the location where all three edges are positive

indicates the inside of the triangle. For any circumstance where any of the three half-space functions is

negative, then it is outside of the polygon, and when a half-space function is zero then it is on an edge.

Therefore, it can be determined whether a pixel is inside or not by evaluating the half-space functions at

the pixel center.

Figure 4.6: Half space rasterization method.

4.4. CUDA Deep Rasterization 61

Listing 4.1: Simple Half Space Rasterization.

1 // Trinalges is defined by three vertices (x1, y1), (x2,y2) and (x3, y3)

2 // Find Bounding Box of a triangle

3 int minx, max, miny, maxy;

4 for(int y = miny; y < maxy; y++) {

5 for(int x = minx; x < maxx; x++) {

6 // When all half−space functions positive, pixel is in triangle

7 if((x1−x2)∗(y−y1) − (y1−y2)∗(x−x1) > 0 &&

8 (x2−x3)∗(y−y2) − (y2−y3)∗(x−x2) > 0 &&

9 (x3−x1)∗(y−y3) − (y3−y1)∗(x−x3) > 0)) {

10 int list location = atomicInc(LHB Counter [x][y])

11 LHB [x][y][list location] = {Depth, PolyID} // store an element

12 }

13 }

14 }

List 4.1 describes a minimal implementation of the half-space rasterization method. First, the sur-

rounding bounding box of a triangle is found, then the half space parameters A,B,C and computed. The

triangle vertices are in counter-clockwise order such that all the positive values represent the inside of

triangle.

For any given point (x,y) when computing the half-space functions, if (A > 0 and B > 0 and C > 0)

then the point is inside of the triangle; otherwise it is outside.

A = (x1− x2)∗ (y− y1)− (y1− y2)∗ (x− x1)

B = (x2− x3)∗ (y− y2)− (y2− y3)∗ (x− x2)

C = (x3− x1)∗ (y− y3)− (y3− y1)∗ (x− x3)

(4.3)

Unfortunately, this basic implementation is not optimized at all. Instead, an incremental method is

suggested by applying delta value to both x and y directions such that the scan conversion computation

involves only a few additions and comparisons. An optimized Micro Rasterization method is given in

List 4.2. In order to efficiently compute depth values for each pixel, half-space parameters are adapted

to find the delta slope of the edge. Further optimization of depth values can be achieved by using

delta additions, however CUDA floating point multiplication is as efficient as addition or subtraction

arithmetic. In order to avoid any holes in the scan conversion function, careful consideration must be

given to precision and sub-pixel accuracy.

The setup cost of the half-space micro rasterization per triangle is very low compared to the scan

line conversion algorithm. The micro-rasterization method is not ideal for large triangles, since the

thread can be serialized to process a single job while some other threads finish the scan conversion of

small regions. Therefore, a macro-rasterization method is recommended for larger triangles.

4.4. CUDA Deep Rasterization 62

Listing 4.2: Optimized Half Space Micro Rasterization with Depth Computation.

1 float A = (z3 − z1) ∗ (y2 − y1) − (z2 − z1) ∗ (y3 − y1);

2 float B = (x3 − x1) ∗ (z2 − z1) − (x2 − x1) ∗ (z3 − z1);

3 float C = (x2 − x1) ∗ (y3 − y1) − (x3 − x1) ∗ (y2 − y1);

4 // back−face culling

5 if(C <= 0) return;

6 float AC = −A/C, BC = −B/C;

7 float3 Dx = X − float3(x2, x3, x1);

8 float3 Dy = Y − float3(y2, y3, y1);

9 float3 Dxy = (Dy∗X − Dx∗Y);

10 float3 Cx, Cy = Dxy − (Dy∗MinX) + (Dx∗MinY);

11 float Z = z1 + (MinX − x1)∗AC + (MinY − y1)∗BC;

12

13 if (Area >= 32) then process Macro polygon otherwise half−space rasterization below

14 for(int y = 0; y < iHeight; y++, Cy += Dx)

15 for(int x = 0, Cx = Cy; x < iWidth; x++, Cx −= Dy)

16 if(Cx.x <= 0 && Cx.y <= 0 && Cx.z <= 0) {

17 Depth = Z + AC∗(x) + BC∗(y);

18 PolyID = Global Thread ID;

19 int list location = atomicInc(LHB Counter [x][y])

20 LHB [x][y][list location] = {Depth, PolyID}

21 }

4.4.4 Macro-Rasterization

In this section, three rasterization methods are presented for macro polygons, namely 4x4 Block Half-

Space Rasterization, Linear Bock Rasterization and Edge-Table Rasterization methods. As mentioned

previously, each thread processes a single triangle independently in a parallel manner. Therefore it is

important to allocate a similar work load to each thread. However, the half-space rasterization method

for a large polygon could take a significant amount of time to process a single polygon compared to micro

polygons. Therefore, the fundamental basis for processing macro polygons is to divide them into small

segments such that more threads can be allocated to finish the task. Unlike the Micro-Rasterization

method, Macro-Rasterization employs a two-step divide and conquer algorithm. Once a triangle is

identified as a macro polygon, the first step is to divide the triangle into small 16 pixel regions, and

compute and store some parameters in the global memory. In the second step, a thread is allocated to

each small segment to finish the scan conversion task with pre-computed parameters. The small segments

of the polygon shares the same parameters required to fill the polygon so shared memory is used to boost

the performance for the same task.

The underlying idea of the macro-rasterization method is to efficiently allocate thread processors to

every pixel without causing a serialization problem. Three proposed methods for this are explained in

4.4. CUDA Deep Rasterization 63

the following sections.

4x4 Block Half-Space Rasterization

Outer
Pixels

Inner
Pixels

Boundary
Pixels

Figure 4.7: 4x4 Block Half-Space Macro-Rasterization.

The first method is an extension to the half-space rasterization technique. In the first step, instead

of evaluating every pixel, blocks are identified and assigned to one of three categories; Inner blocks,

Outer blocks and Boundary (Edge) blocks. This method detects whether a 4x4 block is fully covered

outer block, not-covered inner block, and partially covered edge block as shown in 4.7. Inner blocks will

fill the whole region without half-space evaluation, Outer blocks will be rejected, and partially covered

Edge blocks will only be evaluated for every pixel in the second stage. This method evaluates on all

four corners of the blocks. The fully covered inner block area will have 4 positive half-space values,

not-covered outer blocks will have 4 negative values, and partially covered blocks will have at least one

positive value. Therefore, only a small percentage of the blocks are fully evaluated, where the half-space

functions on the outside and inside blocks are skipped. However, this method cannot handle the partially

covered block where a small triangle is located at only inner part of the block without touching four

corners of the block. The reason that 4x4 pixel sized blocks are chosen, is that they are in a half warp

size, such that 16 evaluated pixels can fit perfectly to a half warp thread processors.

In the second step, the four corner values that were computed in the first step are used to quickly

determine the z value by linear interpolation. Since memory access is more localized in a block of

32(or 16) pixels, the shared memory is used to load data efficiently and to evaluate half-space functions.

Therefore, in the first pass, only block coverages are computed. If blocks are fully covered or partially

covered, then block data with associated parameters are stored in a global queue to be used in the second-

pass. The second pass waits until all thread processors in the first pass are finished before outputting

partially or fully covered blocks. In the second pass, each block is allocated with 16 threads such that

4.4. CUDA Deep Rasterization 64

each pixel is processed with a single thread, in order to maximize the parallel processing power. For

fully covered blocks, a simple scan filling algorithm is used. The half-space function is evaluated for

every pixel for partially covered blocks.

Linear Block Rasterization

Figure 4.8: Linear Block Macro-Rasterization.

The Linear Block rasterization method is very similar to the ’4x4 Block Half-Space Rasterization’

method introduced in the previous section. Instead of evaluating the half-space function at the four

corners of all blocks, this method does not require evaluation of any half-space functions in the first step.

A triangle is subdivided into small linear blocks of 32 pixels as illustrated in Figure 4.8. The subdivided

small blocks are appended to the global queue for post-processing. In the second step, a block is allocated

with 32 threads (a warp size) sharing half-space function parameters that are pre-calculated in the first

step. This technique is also based on a divide and conquer method, in order to allocate a thread per pixel.

Edge-Table Rasterization

The third method that is proposed is an Edge-Table Rasterization method. As explained earlier, the

fundamental idea is the same, in that it subdivides a large polygon into small segments in order to

allocate enough threads for each block. In the first step, this method scans a triangle from top to bottom

and outputs an edge table as illustrated in Figure 4.9 [Pin88]. For each scan line, it finds the intersection

of the scan line with the triangle such that it stores half-space parameters at the start and end position of

each line to a global queue. In the second step, threads are allocated to each scan line segment to fill in

all the pixels between parts of intersections.

The 4x4 Block Half-Space rasterization and Linear Block rasterization method achieve a similar

performance, whereas the Edge-Table Rasterization method is about 20% slower, depending on the size

of macro polygons. This is due to the variable length of each line segment.

4.5. Performance Analysis 65

Figure 4.9: Edge-Table Macro-Rasterization.

4.5 Performance Analysis

This section shows the results of the proposed CUDA Deep rasterization method. The performance of our

rasterization method is comparable with OpenGL and the latest GPU FreePipe [LHLW10, LHLW09a]

method. All time measurements are taken on a commodity PC of Intel Core 2 Quad 2.66GHz with 4GB

memory, and NVIDIA GeForce 480GTX with CUDA version 3.2.

Figure 4.10 shows the various models that are used in the performance analysis. Some models

are chosen from Liu [LHLW10] in order to directly compare their results with ours timing as shown

in Table ??. A few other models are added in the test to examine the scalability of the methods for

various situation. For instance, a simple cornell box (Figure 4.10.(e)) is the case where a few simple

polygons occupy a large area in screen space (macro polygon) and the other extreme case is the Neptune

objects’ 4M micro polygons. The OpenGL fixed rasterization method is known to be the fastest hardware

rendering method by using a dedicated rasterization module. However, in order to achieve this rate, a

careful design is needed. For instance, for the 871K Dragon model, an immediate mode only offers 30

frames per second whereas a pre-compiled display list offers much higher frame rates. The Vertex Buffer

Object(VBO) with redraw (glDrawElements) call reaches a maximum of 873 frames per second. The

performance of the FreePipe method is directly measured from the running code in NVIDIA GeForce

480GTX. Note that these figures are higher than the ones presented in [LHLW10], because the graphics

card is different. All performance timing does not include any color interpolation, normal interpolation,

depth testing nor texture mapping. It is a simple single color rendering to buffers with only back-face

culling enabled.

4.6. Discussion 66

4.6 Discussion
In this chapter, a new CDUA deep rasterization method is presented, which allows building of Layer

Hit Buffers in a thread efficient way. The results indicate that this CUDA rasterization is comparable

to OpenGL and faster than FreePipe for most conditions. Spherical Layered Hit Buffers consist of a

collection of LHBs in spherical directions, and this Deep Rasterization method could be further opti-

mized to build a SLHB by adapting multi-view rasterization. In other words, this would involve triangle

data being loaded once and rasterized in many orthogonal views at the same time by allocating efficient

allocation threads. In this way, mesh data loading can be minimized.

The latest development of OpenGL 4.0 and DirectX 11 provides a new feature, which enables a

single-pass A-Buffer output in the hardware. Unlike the previous generation pipeline, this allows a list

of fragments to be built per pixel during the rasterization by randomly write to the global memory. The

new feature requires 5-20% additional cost to the conventional OpenGL rasterization method. Therefore

our method provides better performance in most cases as described in Section 4.5.

4.6. Discussion 67

(a) Bunny (70K triangles) (b) Dragon (781K triangles)

(c) Buddha (1M triangles) (d) Neptune (4M triangles)

(e) Cornell (30 triangles) (f) Tessellated Cornell (6.7K triangles)

Figure 4.10: Normal Rendering of Various Models.

Chapter 5

Real-Time GPU Global Illumination

In this chapter, a novel GPU-based global illumination method for real-time rendering of dynamic scenes

is presented. In the previous chapter, a CUDA deep rasterization technique was discussed, which is

able to build a visibility acceleration structure efficiently, using fast CUDA rasterization. The accel-

eration structure, based on Spherical Layered Hit Buffers(SLHB), is a set of directional Layered Hit

Buffers(LHB) that represents a scene visibility field in a multi-layered structure. This chapter focuses on

how to efficiently compute indirect lighting using this SLHB structure. A cone approximation technique

is also introduced, in order to resolve the problem caused by a discrete directional representation of the

SLHB.

5.1 Overview of the Rendering System

5.1.1 Rendering Procedure

This new rendering algorithm stems from a numerical Monte Carlo integration of the rendering equation.

First of all, a scene is loaded and a bounding box is found, which encloses the scene and then rescales it

to a unit cube. By applying this technique, it is ensured that that the scene fits a canonical LHB view for

rasterization. A direction map is built in order to give an instant query of a random direction in a discrete

directional representation of the SLHB. The number of directions needed for the SLHB is directly related

to the accuracy of the acceleration structure.

Some possible directional sampling methods were introduced in Section 3.3. An icosahedron sub-

division method is chosen to generate samples for the SLHB directions, and a Level 2 subdivision of an

icosahedron generates 320 directions, which is an appropriate number of directions to represent approx-

imated visibility in a scene. Another parameter that affects visibility accuracy is the size of the LHBs.

The higher resolution means an improved accuracy, yet we opted to choose 128x128 elements. Based on

these figures, if we assume there are only on average 3 intersections per pixel in a LHB, the acceleration

structure holds 63 million elements, containing depth and polygon information. This vast number of

elements forms an approximate visibility field such that the instant visibility query is obtained at any

position for any direction. The detail of how to construct a SLHB using a CUDA deep rasterizer was

explained in the previous chapter, and once a SLHB for a static scene is built, the graphics hardware is

used to build G-Buffers for camera viewing, which are color, normal and intersection buffers. Although

5.1. Overview of the Rendering System 69

Load Scene File

Build Directional Map

Construct Static SLHB

G-­Buffers (Eye view)

Shadow Maps (Light view)

Append Dynamic SLHB

Compute Direct &

 Indirect Lighting

Rendered Image

Figure 5.1: Overview of Rendering Procedure.

our proposed acceleration structure can be applied to area lights and Virtual Point Lights, we opt to use

a point light source for a simplicity reason. A standard shadow map from a light view is built for the

fast visibility test of direct illumination as illustrated in Figure 5.1. If there are dynamic objects in the

scene, a second SLHB is constructed and appended to the static SLHB, in order to complete a full vis-

ibility field for both static and dynamic objects. In this way, a static SLHB is built only once, whereas

a dynamic SLHB is updated for every frame. Although two SLHBs are maintained, the memory usage

and access time is the same as for one big SLHB of the whole scene. Computation of direct and indirect

illumination is described in Section 5.2 and Section 5.3.

5.1.2 Light Transport

This section describes how to organize the light transport and use the approximated visibility function

in the equation. The new rendering solution follows the Neumann series expansion, and many global

illumination algorithms are based on conventional shooting algorithms, such that the emitter propagates

energy to all visibility surfaces in a scene. Although this approach works well in CPU oriented platforms,

it is hard to implement on early GPUs due to a random write on multiple textures. In contrast, the new

method is based on a gathering method at the screen space.

As stated in Section 3.2.3, the rendering equation can be rewritten in terms of light transport Linear

Operator T as L = Le +TL, where L is the global illumination and Le is the emitted energy from the

light sources. Because of the unknown term, L, on both sides of the equation, a recursive expansion

of the Neumann series is used to solve the equation. Our solution also follows the light energy transfer

5.1. Overview of the Rendering System 70

through the Neumann series expansion, L = Le+TLe+T2Le+T3Le+ where TLe is direct lighting of

emitters and T2Le is the first bounce of direct lighting and so on. In Section 3.2.2 it has been shown how

to evaluate the transfer operator T in terms of numerical Monte-Carlo integration. Recalling equations

3.27, we replaced TLe with L1 and T2Le with L2 as follows:

L(x→Θ) = L0︸︷︷︸
Emitter

+ L1︸︷︷︸
Direct illumination

+ L2 · · ·Ln︸ ︷︷ ︸
Indirect Illumination

(5.1)

= Le(x→Θ) + 〈 Lr(x→Θ) 〉A + 〈 Lr(x→Θ) 〉H · · · (5.2)

The series expansion can be divided into three main groups. First, the emitter is denoted (L0),

secondly direct lighting is L1 and finally the indirect illumination is L2 · · ·Ln, which represents the second

and multiple bounces of light as shown in Equation 5.1. The sum of these three terms gives the solution

to the global illumination equation. Although the direct illumination can be computed in the same way

as the indirect lighting, an important sampling of direct lighting gives better results with a fewer number

of directions.

Compute Radiance (x, Θ)

Initialize total radiance L(x→Θ) = 0

Compute Radiance at x in a direction Θ

L(x→Θ) = Le(x,→Θ) // Emitter (L0)

+ = Compute Direct Lighting () // Direct (L1)

+ = Compute Indirect Lighting () // Indirect (L2 · · ·Ln)

Table 5.1: Compute Radiance in Neumann series.

The pseudocode of the light transport in terms of the Neumann series (Equation 5.1) is given in

Table 5.1. In order to evaluate the light transport, N rays are generated at the eye point through the view

plane (i, j); first to find the intersection position x. At this intersection position, we evaluate the radiance

L(x→ Θ) calling the Compute Radiance function in Table 5.1, where Θ is a direction at x toward the

eye. A hardware rasterized G-Buffer method is employed to evaluate the primary intersection (x) and a

ray direction (Θ).

The pseudocode for the direct lighting function Compute Direct Lighting is given in Table 5.2.

Computation of direct lighting is achieved by applying the Area formulation operator 〈 Lr(x→Θ) 〉A

in Section 5.2, which explicitly samples the light sources. In the same way as other real-time global

illumination solutions, the hardware is explicitly used to generate a shadow map to provide an occlusion

query for direct illumination computation.

Finally, Table 5.3 describes the Compute Lighting function to evaluate the indirect illumination.

The indirect light term, L2 · · ·Ln, is the most expensive operation in global illumination and the Hemi-

sphere formulation operator 〈 Lr(x→Θ) 〉H is applied. In order to quickly find the visibility in random

directions, the proposed SLHB structure is employed for the occlusion query of all indirect lighting

computing. The detailed description of how to employ the SLHB is explained in Section 5.3.

5.2. Direct Lighting 71

Compute Direct Lighting ()

For N shadow rays

// Generate random point on the light source

Generate random numbers ξ1,ξ2 ∈ (0,1)

Compute a point yi at the light source with PDF p(yi) using ξ1,ξ2

Evaluate V (x,yi) from the shadow map

Apply ’Area Formulation’ with a local BRDF operator

〈 Lr(x→Θ) 〉A = 1
N

N
∑

i=1

[
Le(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)

p(yi)

]

Table 5.2: Direct Lighting.

Compute Indirect Lighting ()

For N indirect samples

// Generate random directions on hemisphere

Generate random numbers ξ1,ξ2 ∈ (0,1)

Compute a direction Ψi with PDF p(Ψi) using ξ1,ξ2

Evaluate V (x,Ψi) from the SLHB acceleration structure

Apply ’Hemisphere formulation’ with a local BRDF operator

〈 Lr(x→Θ) 〉H = 1
N

N
∑

i=1

[
L(x←Ψi) fr(x,Ψi→Θ)V (x,Ψi) cos(Nx,Ψi)

p(Ψi)

]
Compute L(x←Ψi) recursively by calling Compute Radiance (x, −Ψi)

Table 5.3: Indirect Lighting.

5.2 Direct Lighting
The direct illumination can be computed with either Area formulation or Hemisphere formulation meth-

ods. A straightforward method for solving the direct illumination using hemisphere formulation is to

sample the directions over the hemisphere and disregard the rays, which do not intersect with light

sources. However, a numerical Area formulation method is used here, as given in Equation 5.3, since

there is prior knowledge of where the light are in the scene, such that an importance sampling scheme

can be adapted to take advantage of the initial lighting environment.

〈 Lr(x→Θ) 〉A =
1
N

N

∑
i=1

[
Le(yi→−→yix) fr(x,−→xyi→Θ)V (x,yi)G(x,yi)

p(yi)

]
(5.3)

=
1
N

N

∑
i=1




(

Le(yi→−→yix)V (x,yi)

p(yi)

)
︸ ︷︷ ︸

Ray Casting

G(x,yi)︸ ︷︷ ︸
Form Factor


︸ ︷︷ ︸

Transport

[fr(x,−→xyi→Θ)]︸ ︷︷ ︸
Scattering


(5.4)

The equation can be grouped into two parts, one for the transport operator and the other for the

5.2. Direct Lighting 72

scattering operator. The scattering operator is a four dimensional function that defines how light interacts

with a surface, known as the BRDF (Bidirectional Reflectance Distribution Function). The transport

operator includes Ray Casting and Form Factor computation. A visibility function V (x,yi) has been

explicitly presented in Equation 5.4 to show where the visibility function is applied in Ray Casting.

Conventionally, the ray casting method has been used to determine the visibility V (x,yi); however, many

real-time algorithms tend to use graphics hardware to obtain the visibility for primary rays, since it is

capable of full determination of primary intersection positions using a simple rasterization method. We

also use a standard shadow map technique to find the visibility in direct illumination. A shadow map is

created by rendering a scene from the light point of view, where V (x,yi) can be easily obtained by simply

comparing the depth values. To improve the accuracy of the visibility function, the resolution of the

shadow map can be adjusted. Additionally, an omnidirectional shadow map or a paraboloid shadow map

method offers a wider field of view for shadow maps. Our rendering solution explicitly uses the shadow

map instead of ray casting methods to evaluate direct lighting illumination. The proposed CUDA deep

rasterization method can therefore be modified to build a shadow map. Since CUDA deep rasterizers

build a list of depth information per pixel, the atomicMin function can be used to find minimum depth

values for each pixel. There are many techniques to improve the quality of shadow, one of the more

popular methods is called Percentage Close Filtering (PCF), which performs a filtering on the shadows

by using multiple samples from the shadow map.

(a) Color (b) Normal (c) Position

Figure 5.2: An Example of a G-Buffer.

Direct illumination computing occurs at the intersection positions where the eye first hits the objects

in a scene. In other words, it occurs where the primary rays intersect with the scene. Graphics hardware

is used to build G-buffers, which contain the color, normal and intersection positions in buffers as shown

in Figure 5.2. In the same way, it is much faster to compute primary ray intersections by using a hardware

rasterization method.

5.2.1 Important Sampling on Luminaries

In order to evaluate Equation 5.4, two more variables yi and p(yi) should be defined. yi denotes the sam-

pled points on the emitters and p(yi) represents the probability density function (PDF). As a numerical

5.3. Indirect Lighting and Irradiance Estimation 73

Monte Carlo integration method is used for direct lighting, first the random sample points are generated

and the radiance values are averaged over N samples to approximate illumination. In the case of rectan-

gular luminaries, uniform random variables ξ1,ξ2 in the range of 0 and 1 are chosen. A corner vertex, x0

and two vectors
−→
v1 and

−→
v2 form a plane to generate a uniform random sample (yi):

y = x0 +ξ1
−→v1 +ξ2

−→v2 (5.5)

This sampling function has a constant density function (p(yi)) value of:

PDF = p(y) =
1

‖−→v1 ×−→v2‖
(5.6)

This simple sampling function is used to generate uniform random points, yi, on a rectangular emitter

with PDF, p(yi). Therefore, Equation 5.4 can be evaluated with intersection point x, normal Nx (obtained

from G-buffers) and visibility information V (x,yi) from the shadow map, together with random point yi

and PDF p(yi). The sampling functions of other shapes of luminaries are discussed in [SWZ96].

5.3 Indirect Lighting and Irradiance Estimation
The solution of the global illumination problem is equivalent to solving the rendering equation. How-

ever, the unknown radiance function L appears on both sides of the equation in 3.6. Thus it is difficult

to solve in an analytical manner. For this reason, Monte Carlo numerical approximation is employed

to resolve the integral function. In the previous section, Area formulation is chosen to compute the di-

rect lighting, whereas Hemisphere formulation can approximate the integral function better for indirect

illumination, as given in Equation 5.7.

〈 Lr(x→Θ) 〉H =
1
N

N

∑
i=1

[
L(x←Ψi) fr(x,Ψi→Θ) cos(Nx,Ψi)

p(Ψi)

]
(5.7)

=
1
N

N

∑
i=1


L(x←Ψi)V (x,Ψi)︸ ︷︷ ︸

Raycasting

cos(Nx,Ψi)

p(Ψi)


︸ ︷︷ ︸

Transport

[fr(x,Ψi→Θ)]︸ ︷︷ ︸
Scattering

 (5.8)

Again, the visibility function V (x,Ψi) is explicitly included in the ray casting function as a part of the

transport function in Equation 5.8. The visibility function V (x,Ψi) represents occlusion at x from all

incoming directions (Ψi). To compute this, a fast ray casting method is necessary. The most compu-

tationally expensive part in global illumination is the visibility computation, and many techniques have

been developed to accelerate the operation, such as hierarchical bounding volumes, Octrees and BSP

trees. In this thesis it is proposed to use Spherical Layered Hit Buffers as an acceleration structure to

find occlusion information instantly. In this section, a hemisphere integration with SLHBs for indirect

illumination is presented.

Generating Low Dependency Indirect Samples (Ψi)

When the eye ray hits an object, the direct lighting is computed as described in Section 5.2. At the

intersection point, indirect lightning is computed by evaluating the numerical integral equation 5.8. To

5.3. Indirect Lighting and Irradiance Estimation 74

(a) Halton Samples (b) Hammersley Samples

Figure 5.3: Low Dependency Sampling (196 samples).

compute the equation, random directions Ψ(θ ,φ) must first be defined. Since the integral domain is

a hemisphere, evenly distributed points should be generated over this, and a pair of two random vari-

ables ξ1,ξ2 forms unbiased samples in a square region. By projecting these variables into spherical

coordinates, uniform random samples in the hemisphere are obtained using the transform equation 5.9.

Ψ(θ ,φ) = (2arccos(
√

1−ξ1),2πξ2) (5.9)

The random directions are defined in cartesian coordinates as:

Ψ =

x = cos(2πξ1)

√
1−ξ2

2

y = ξ2

z = sin(2πξ1)

√
1−ξ2

2

(5.10)

The PDF function on this distribution is just a constant value over the surface area of a hemisphere.

Therefore the PDF is 1/2π . The uniform random variables ξ1,ξ2 result in high variance and slow

convergence, so in order to lower the variance, the stratified sampling technique is commonly used.

However, in this research we employ a low-discrepancy sequence, also called a quasi-random sequence.

Figure 5.3 shows an example of two low-discrepancy sampling methods; the Halton sampling and Ham-

mersley techniques. Although it is possible to compute low-discrepancy samples on the fly, we opt to

pre-compute the multi-set of the Halton sequence, which is stored in the constant memory in order to

minimize computation. Two random variables are used to determine the set number, and the other vari-

able is used to select the pre-defined sample in the sequences. By adapting the Halton sequences, Monte

Carlo integration is more accurate with fewer samples. However, the more samples that are used, the

better the approximation that is achieved.

Directional Map

Once a random indirect direction Ψi is chosen, it is placed into the SLHB parameterization in order

to find the corresponding LHB direction. However, finding the closest direction in a discrete SLHB

5.3. Indirect Lighting and Irradiance Estimation 75

parameterization is not a simple task. For this reason, we propose a directional map, which consists of

an indexed texture to quickly find the nearest direction.

(a) Longitude-Latitude Map (b) Paraboloid Map

Figure 5.4: A Directional Map of an icosahedron (320) is illustrated with Longitude-Latitude and

Paraboloid parameterizations.

Figure 5.4 represents an icosahedron directional map of the SLHB. The left-hand image uses an

indexed color to represent the distribution of directions in a longitude-latitude map. Each triangular area

represents a single direction of the LHB(θ ,φ). The right-hand image shows the center of each direction

in red dots, in a paraboloid representation. The random direction Ψi is projected on to the directional

map, then the nearest direction of the LHBs is chosen by finding the index i at the projected position in

the longitude-latitude map. In this way, a constant query to find the nearest LHB direction (LHBi) for a

given direction Ψi is achieved. The directional map serves as a look-up table for the instant directional

query, which is pre-computed and stored in a texture map.

Irradiance Estimation

The hemisphere formulation of indirect illumination in Equation 5.8 can be numerically solved when a

visibility function V (x,Ψi) and incoming radiance function L(x←Ψi) of the ray casting term are given.

One of the most expensive parts of indirect illumination is to evaluate the visibility function. We propose

the SLHB acceleration structure to solve the ray casting term efficiently. The visibility term, V (x,Ψi)

finds the nearest intersected object from the ray origin x in direction Ψi.

When a random direction Ψi is given, its corresponding direction (LHBi) is found by looking up the

directional map. The ray origin x is then projected onto the SLHB space to find the nearest object in the

LHBi direction. In other words, the ray origin x in world space is multiplied by MV P(θ ,φ) in Equation

4.1, which gives a new projected 3D location in the LHBi direction, where the projected position’s x,y

values represent the 2D pixel location in an LHB buffer (LHBi(x,y)), and the z value gives the depth

value in along the ray direction LHBi. To find the nearest object, the projected z value is compared

with depth values in the element list at LHBi(x,y). The element with the smallest depth difference value

5.3. Indirect Lighting and Irradiance Estimation 76

is the nearest intersected polygon. In this way, the visibility function V (x,Ψi) can be used to find the

nearest polygon ID. The depth value of the nearest polygon along the Ψi direction is used to derive the

intersection position in world space by applying the inverse MV P(θ ,φ). It is straightforward to find the

incoming radiance function L(x←Ψi) in Equation5.8 when this intersection is obtained. It is evaluated

by recursively calling the Compute Radiance function with new parameters. Therefore, Equation 5.8

can be solved efficiently using the proposed SLHB acceleration structure.

5.3.1 Cone Approximation

(a) Solid Angle 1.62 ◦ (b) Solid Angle 5.04◦

(c) Solid Angle 12.6◦ (d) Solid Angle 16.3◦

Figure 5.5: Solid angles coverage shown in Paraboloid Map (Icosahedron 320 directions) (a) closest to

a delta function (c) solid angle covers the hemisphere region.

Solid Angle Estimation

The hemisphere formulation of indirect illumination can be efficiently computed using a SLHB structure.

However, the SLHB is a set of discrete LHB directions (LHBN) to represents the continuous directions

5.3. Indirect Lighting and Irradiance Estimation 77

LHB(θ ,φ). Therefore, a SLHB has a limited number of directions as shown in Figure 5.4. In order to

visualize the directions in terms of solid angle, an example with 320 icosahedron directions is illustrated

in Figure 5.5. The red dots in Figure5.4 are located in the same position in the solid angle maps in Figure

5.5(a).

As shown in Figure 5.5(a), a set of discrete directions (LHBN) can only represent delta functions,

which means that only exactly matched directions can be retrieved from the SLHB. In other words,

whenever a random direction Ψ(θ ,φ) is queried, only the nearest direction LHBi is given by checking

the directional map. In order to avoid the discretization problem, each direction in the SLHB space

should cover a solid angular coverage instead of the delta function. Figure 5.5 shows the various solid

angle coverages in a paraboloid map. If the discrete directions (or delta functions) are extended to cover

12.6 ◦ of solid angle as shown in Figure 5.5(c), then they overlap each other such that a better coverage

of the hemisphere can be achieved from the discrete directions. Figure 5.5(d) shows that the 320 discrete

directions with a 16.3◦ solid angle can give full coverage of the hemisphere area. Therefore, an estimated

solid angle coverage can be obtained for any parameterization of hemispherical representation discussed

in Section 3.3.

Cone Approximation

The irradiance estimation in Section 5.3 can be extended to support the solid angle estimation. A Cone

Approximation is proposed to simulate a solid angle coverage for the discrete representation of the SLHB.

Since the integration domain is on a hemisphere in Equation 5.8, each discrete LHB direction should

cover a solid angular region. The cone shape approximation for a solid angle on the hemisphere is

similar to a disc approximation in the LHB representation.

The ray casting term involves finding the nearest object towards a random direction Ψi at the ray

origin x in both a visibility function V (x,Ψi) and incoming radiance function L(x←Ψi). When the ray

origin x is projected into LHBi(x,y) location in a LHB buffer, the Cone Approximation can be evaluated

by jittering the projected position (x,y) within the solid angle disc region. Therefore, the new location is

at LHBi(x+ξ1,y+ξ2), where ξ1 and ξ2 are random variables within the disc region. In short, a random

direction Ψ(θ ,φ) is achieved by firstly selecting a random direction LHBi and then choosing two random

variables ξ1 and ξ2 to jitter the projected location LHBi(x,y) to LHBi(x+ξ1,y+ξ2). The nearest object

at LHBi(x+ξ1,y+ξ2) is obtained in the same way in the irradiance estimation in Section 5.3.

Figure 5.6 shows two cone approximations with r = 1.5 and r = 4 pixels. The right-hand column

is a canonical LHB view and the left-hand column is in a 2D LHB buffer view. The red dots represent

the delta direction at x and then the projected z value should be compared with a list of depth values at

the red dot position in order to find the nearest polygon, which in this case is C . However, the cone

approximation jitters the red dots within the solid angle coverage (which is the yellow disc in the LHB)

and find the nearest polygon at a jittered location. As an example, Figure 5.6 (a) shows 4 randomly

placed samples on the disc in a black color. Two samples intersect with the C polygon and one intersects

with the B polygon. A wider solid angle coverage (r = 4) with more samples can give a better estimation

of the numerical Monte Carlo integration over the hemisphere. A low dependency sampling scheme

5.3. Indirect Lighting and Irradiance Estimation 78

0
1

2
2

1
0

2
2

1
1

X

LHB

A

B

CC

B

A

(a) R=1.5 pixel

0
1

2
2

1
0

2
2

1
1

LHB

A

B

C
C

B

A

X

(b) R=4 pixels

Figure 5.6: An example of two Cone Approximations (R=1.5, 4 pixels) in a canonical LHB view.

such as the Halton sequence can be adapted to place samples on the disc to provide a fast approximation

with a small number of samples.

Figure 5.7 (a) shows an extreme case, where the number of LHB directions is limited to only 8

directions, which is called an octahedron distribution. When the number of LHB directions is low, the

solid angle coverage for each direction becomes too wide. Although it takes a small amount of time

to build a small SLHB, the rendered image suffers severely from banding artifacts as shown in Figure

5.7 (a). This example illustrates that the cone approximation technique can remove the high-frequency

structural noise by increasing the radius of the disc (or solid angle) while maintaining the same number of

irradiance samples. The first image (r = 1 pixel) shows that the exact (or delta) directions result in severe

artifacts due to a very limited number of directions. The last image shows that a large disc estimation

can resolve these artifacts. In this example, an octahedron distribution with 8 directions requires at least

a 40◦ solid angle, which is around r = 100 in the cone approximation, to estimate irradiance distribution

over the hemisphere accurately.

5.3.2 Lambertian Reflection Model

An example of the Lambertian reflection model is introduced in this section. By carefully choosing

direction samples Ψi, it is possible to cancel out the cosine term and the PDF function. In the case of the

Lambertian reflection model, cosine weighted directions Ψ are chosen to simplify the integral function.

The random variables ξ1,ξ2 are uniformly sampled in canonical space between 0 and 1. Two random

5.3. Indirect Lighting and Irradiance Estimation 79

(a) r = 1 (b) r = 4 (c) r = 7 (d) r = 10

(e) r = 16 (f) r = 21 (g) r = 28 (h) r = 33

(i) r = 40 (j) r = 45 (k) r = 54 (l) r = 60

(m) r = 72 (n) r = 84 (o) r = 96 (p) r = 100

Figure 5.7: A Cone Approximation for 8 LHB directions with various radius r (in pixels). The number

of irradiance samples is the same for all cases.

variables form a direction Ψ on the upper hemisphere of the xz plane:

Ψ =

x = cos(2πξ1)
√

1−ξ2

y =
√

ξ2

z = sin(2πξ1)
√

1−ξ2

(5.11)

5.3. Indirect Lighting and Irradiance Estimation 80

Then the Probability Distribution Function (PDF) becomes a cosine over pi.

PDF = p(Ψ) =
cos(Nx,Ψ)

π

The BRDF of the Lambertian model is constant:

BRDF = fr(x,Ψ↔Θ) = Kd =
ρd

π

The notation of the numerical solution to the integral function for a surface is:

L(x→Θ) = Le(x→Θ)+Lr(x→Θ) (5.12)

' Le(x→Θ)+ 〈 Lr(x→Θ) 〉H (5.13)

The estimation of the reflected radiances then becomes very simple. When a hemisphere formulation is

used to evaluate the Monte Carlo Integral, it becomes:

〈 Lr(x→Θ) 〉H =
1
N

N

∑
i=1

[
L(x←Ψi) fr(x,Ψi→Θ) cos(Nx,Ψi)

p(Ψi)

]
(5.14)

=
1
N

N

∑
i=1

[
L(x←Ψi)

ρd
π

cos(Nx,Ψi)
cos(Nx,Ψi)

π

]
(5.15)

=
ρd

N

(
N

∑
i=1

L(x←Ψi)

)
(5.16)

This equation describes the result that the reflected radiance energy on a surface is a simple procedure

of accumulating the irradiance energy from visible surfaces in the direction Ψi. Therefore, the radiance

equation is:

L(x→Θ) ' Le(x→Θ)+
ρd

N

(
N

∑
i=1

L(x←Ψi)

)
(5.17)

This is extremely fast computation since L(x←Ψi) needs to find the nearest intersection point towards

the direction −Ψi at x. The SLHB structure offers an instant visibility query and gives L(x←Ψi) very

efficiently.

5.3.3 Implementation Details

The CUDA architectures allows the user to manipulate constant memory and shared memory as a user

defined cache. These memories have no latency, and function in the same way as registers in core

processors. Therefore, it is important to allocate the most frequent variables in the constant memory,

which are read-only variables. In these algorithms, matrices such as the Light viewing transform, Camera

viewing transform and LHB viewing transform are left out. A set of pre-computed Halton samples are

also stored in the constant memory. The shared memory is used extensively in the rendering algorithm

and macro rasterization, and the rest of the data, such as the SLHB and rand seeds are stored in global

memory in the GPU.

Random Number Generation

In order to evaluate Monte Carlo path tracing, an efficient random number generator is essential. One of

the difficulties in implementing a quasi-random number generator in CUDA is the serialization problem.

5.4. Dynamic Elements 81

A seed number is called from many threads concurrently, which causes a thread waiting problem. To

resolve this issue, we use a random seed in the size of viewport such that individual seed numbers are

updated whenever the random function is called. Langdon’s [Lan09] random number generator is used,

which offers a fast, high quality random number generator in CUDA. Our proposed rendering algorithm

naturally supports a Monte Carlo path tracing method, which computes the radiance for each pixel by

randomly sampling paths and computing the radiance along those paths.

5.4 Dynamic Elements
The proposed rendering method can realize real-time walk-through of complex virtual environments,

computing multiple indirect bounces on the fly. A full analysis of our rendering method is examined

in Chapter 6. There are many parameters that alter the quality and rendering speed of the proposed

solution; for instance the number of SLHB directions, the resolution of the LHB, the number of samples

for shadow, direct and indirect illumination and the number of bounces for indirect lighting. The results

indicate this solution is also capable of simulating fully dynamic environments, including changes of

view, materials, lighting and objects at interactive rates on a commodity graphics hardware. It supports

not only a point light source, but also complex area lighting.

Figure 5.8: A galloping dynamic horse (17K) running at 45 frames per second at 512 x 512.

Figure 5.8 shows an example of a galloping horse, running at over 40 frames per second, with a few

bounces of indirect illumination. The performance analysis of dynamic objects is discussed in Section

6.4. The proposed rendering algorithm is capable of rendering a global illumination scene in real-time,

which includes rebuilding the acceleration structure for each frame. It is possible to build the SLHB in

real-time for large models, but a method is proposed here that uses two SLHBs and merges them on the

fly, since the acceleration structure is very flexible. This means the new method is capable of dealing

with dynamic objects. To do this, a SLHB for the static part of a scene is built only once, whereas the

dynamic objects are appended to the static SLHB on the fly for every frame. In this way, more resources

5.5. Discussion 82

are allocated to computation of the illumination rather than to building acceleration structures. A LHB

consists of counters and buffers, which hold a list of elements. By maintaining two counters, one for

static and the other for dynamic information, a new list of elements from dynamic objects is appended to

the end of the static element list, which increments the counters. Therefore, only the static SLHB is not

overwritten by the dynamic SLHB. More details and performance analyses are given in Section 6.4.1

5.5 Discussion
The proposed rendering algorithm can be extended to support an environmental map lighting for real-

time rates without any pre-processing step. Figure 5.9 shows an example of the GPU path-traced envi-

ronmental lighting for the same model, under different lighting conditions.

Environment maps are 2D textures that store the directional radiance arriving at a single point. It

is assumed that the environmental light is infinitely far away, and a simulation of environmental lighting

requires an integral of all incident lights multiplied by the BRDF. The diffuse materials require many

samples over the hemispheres to accurately simulate the integration function. Using hemisphere formu-

lation together with the SHLB acceleration structure means that real-time rendering of an environmental

lighting condition can be achieved.

Figure 5.9: An Example of Environment Map Lighting.

In this chapter, the light transport has been analyzed in terms of approximated visibility. A GPU-

based real-time rendering method has been presented to solve the integral equation in numeral approx-

imation, using Monte Carlo integration. An approximated visibility structure, SLHB, is presented to

provide instant occlusion query for indirect illumination. It has been shown that the proposed GPU

rendering algorithm is cable of supporting fully dynamic environments at real-time rates. In the follow-

ing chapter, an in-depth analysis of the proposed Spherical Layered Hit Buffers and real-time rendering

5.5. Discussion 83

solutions will be performed.

Chapter 6

Results

In this chapter, the results of the proposed algorithm presented in previous chapters is discussed. Firstly,

the scalability of the algorithm is examined on a number of polygons, in a number of directions and with

various sizes of hit buffers. Then a rendering performance is presented on several complex static objects,

which is then compared with a recent path tracing technique provided by GPU Optix SDK. Finally, this

chapter demonstrates the performance of the algorithm on dynamic objects, followed by a scalability test

on various graphics cards.

All the results reported here are obtained using an Intel Core 2 Quad processor at 2.66GHz, with

4GB of memory. The application has been implemented on modern graphics hardware using OpenGL

and CUDA 3.2. The graphics card used in these results is an NVIDIA Geforce GTX 480 card, with

1.5GB RAM. Recent OpenGL extensions are also used, for example floating-point textures, frame buffer

objects and pixel buffer objects. All codes was written in C++ and complied on Visual Studio .NET run-

ning on Windows XP. Due to some limitation of the CPU time functions in measuring parallel processing,

the CUDA based time functions are used to obtain the accurate time. Most time measurements are pre-

sented in milliseconds (ms). All images shown in this results chapter are rendered at a screen resolution

of 512x512, except Figure 6.7, 6.8 and 6.9.

6.1 Evaluation of the Spherical Layered Hit Buffer
In this section the performance of the GPU-based Monte-Carlo path tracing method is evaluated. There

are two parameters which have the most influence on the performance of the Spherical Layered Hit

Buffers (SLHB). Initially, the relationship between increasing the number of sampling directions and the

size of the Hit Buffers is evaluated. Scalability data is gathered by varying the number of LHB directions,

the Hit Buffer size and the number of polygons. A measurement of time is recorded in order to build the

acceleration structure and render the scene, with a size of 512 x 512 accounting for 64 paths per pixel,

with 2 bounces of indirect illumination computation.

6.1.1 Test Scenes for Scalability

Two sets of test scenes are selected specifically in order to measure the various conditions for the SLHB

scalability test. The first one is a collection of random cubes in regular grids as shown in Figure 6.1. To

generate the scenes, a number of unit cubes are allocated to axis-aligned locations and then a random

6.1. Evaluation of the Spherical Layered Hit Buffer 85

rotation function is applied to each cube to avoid perfect alignment. Test scenes have been generated in

the range from one thousand to one million polygons.

(a) 1K Triangles (b) 10K Triangles

(c) 100K Triangles (d) 1000K Triangles

Figure 6.1: Random unit box objects for scalability test.

(a) 2K Triangles (b) 4K Triangles (c) 8K Triangles (d) 16K Triangles (e) 250K Triangles (f) 1000K Triangles

Figure 6.2: Multiresolution Happy Buddha objects for scalability test.

The second test scene is taken from the Stanford 3D Scanning Repository [Std04]. A Happy Buddha

model is a complex object that is widely used for test purposes, which originally consisted of one million

triangles. In this research, a commercial software package is used to generate several multi-resolution

6.1. Evaluation of the Spherical Layered Hit Buffer 86

objects of a similar size to ensure the same level of polygon occupancy in the SLHB for all objects.

However, the detail of the Buddha model is in various levels as illustrated in Figure 6.2. The memory

requirement to build the SLHB is in the range of 15MB to 480MB for the various multi-resolution

objects. The initial results show that the performance of the algorithm on both the scenes is very close,

so the time measurement on the Buddha model for the scalability test is only shown in the following

sections:

6.1.2 Numbers of Polygons

206.75	

210.35	

216.3	

223.44	

236.7	

263.2	

311.7	

143.37	

145.36	

150.3	

158.43	

171.48	

197.74	

246.54	

74.49	

75.8	

81.82	

88.7	

102.17	

128.69	

177.5	

0	

50	

100	

150	

200	

250	

300	

350	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Re
nd

er
in
g	

Ti
m
e	

pe

r	
 F
ra
m
e	

in
	
 M

ill
is
ec
on

ds
	
 (m

s)
	

Number	
 of	
 Polygons	
 Thousands	

3	
 bounce	

2	
 bounce	

1	
 bounce	

Figure 6.3: Rendering time by number of polygons (2K-1M triangles, 64 paths, 1-3 indirect bounces,

320 LHB directions, 128x128 LHB map size at 512x512 screen resolution).

Triangles 2K 4K 8K 16K 64K 125K 250K 500K 1000K

1 Bounce 74.49 74.55 75.00 75.80 81.82 88.70 102.17 128.69 177.50

2 Bounces 143.37 143.82 144.37 145.36 150.30 158.43 171.48 197.74 246.54

3 Bounces 206.75 208.43 209.33 210.35 216.30 223.44 236.70 263.20 311.70

Table 6.1: Individual timings shown in Figure 6.3 in milliseconds (ms).

Figure 6.3 shows the impact of the number of polygons on the rendering time. The plots show

three path tracing renderings, with one, two and three bounces of indirect illumination computation on

top of direct illumination computation. Direct illumination (which is L1 in Equation 3.27) is computed

using a eye-based ray and a shadow ray. One bounce of indirect illumination requires the generation

of a randomly chosen reflected direction and computes the L2 term in Equation 3.27. Each plot shows

6.1. Evaluation of the Spherical Layered Hit Buffer 87

that the relationship between the rendering time and the number of polygons is almost exactly linear.

The proposed Monte-Carlo path tracer takes the same amount of time to compute more bounces in the

rendering equation.

6.1.3 Number of Directions

144	

256	

320	

8	

32	

128	

20	

80	

320	

144	

256	

320	

20	

80	

320	

8	
 32	

128	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

160.0	

180.0	

200.0	

0	
 50	
 100	
 150	
 200	
 250	
 300	
 350	

Co
ns
tr
uc
)o

n	

an

d	

Re

nd
er
in
g	

Ti
m
e	

in
	
 M

ill
is
ec
on

ds
	
 (m

s)
	

Number	
 of	
 Direc)ons	

Icosa	
 Rendering	

Icosa	
 Construc:on	

Halton	
 Rendering	

Halton	
 Construc:on	

Octa	
 Rendering	

Octa	
 Construc:on	

Trendline	

RENDERING	
 	

SLHB	
 CONSTRUCTION	
 	

Figure 6.4: Rendering and construction time by increasing number of directions (250K Buddha model,

64 paths, 2 indirect bounces, 8-320 LHB directions, 128x128 LHB map size at 512x512 screen resolu-

tion).

Directions Icosahedron 20 Icosahedron 80 Icosahedron 320

Time (ms) 71.63 (1.92) 108.67 (7.30) 169.48 (30.56)

Directions Octahedron 8 Octahedron 32 Octahedron 128

Time (ms) 63.43 (0.83) 87.39 (3.15) 128.32 (12.36)

Directions Halton 144 Halton 256 Halton 320

Time (ms) 135.38 (13.65) 162.07 (24.44) 175.27 (30.86)

Table 6.2: Individual timings shown in Figure 6.4 in milliseconds (ms).

In order to determine the scalability of the algorithm in terms of required computation time for a

various number of directions, the 250K Buddha model was rendered under the same conditions as in the

previous section, with three sets of directions. The average timings are given in Table 6.2. Three methods

6.1. Evaluation of the Spherical Layered Hit Buffer 88

have been selected to generate random directions over the sphere, which are Icosahedron subdivision,

Octahedron subdivision and Halton sequence as described in Chapter 3. We have chosen 3 reasonable

directions for each group. For the Icosahedron method, three levels of subdivision are chosen to generate

20, 80 and 320 directions. For the Octahedron method, 8, 32 and 128 directions are used. For the Halton

sequence numbers, 144, 250 and 320 random samples are generated in 2D and projected onto spherical

coordinates to create the random directions. The time measurement includes rasterizing scenes into

LHB buffers (Construction time) with sizes of 128 x 128 pixels, and traces 64 rays per pixel for two

bounces. The construction time is given in round brackets in Table 6.2. The construction time and

overall rendering time of the three methods are plotted in Figure 6.4. The rendering time chart shows

that each group has some linear characteristics. The dotted trend line for all methods represents the fact

that the overall relationship between rendering time and the number of directions is linear. The non-

linear rendering time occurs when the number of directions becomes small, as shown in the chart. A

small number of directions may introduce uneven distributions on the sphere such that path-tracing takes

longer to trace ray through the SLHB structure. However, the construction times of the three different

methods have an exact linear time component to build the visibility structure as the number of direction

increases. From the construction timing result, the average construction time to build the SLHB is almost

100 directions per 10ms in this example. In other words, the proposed software rasterization method is

capable of rasterizing up to 2,500 million triangles per second (250K triangles * 100 directions / 10 ms)

or computing 2,621 MRays/second (512x512 screen resolution * 100 directions / 10 ms). The higher the

number of directions then the greater the accuracy of visibility that is obtained; however an increased

number of directions requires more memory and longer times to build the SLHB.

6.1.4 Hit Buffer Size

Buffer Size 16x16 32x32 64x64 128x128 256x256

16K Triangles 132.70 136.29 139.07 143.74 155.05

64K Triangles 136.55 141.16 144.43 149.63 158.99

125K Triangles 142.68 147.27 150.95 156.95 166.38

250K Triangles 152.99 159.36 164.32 169.48 182.21

500K Triangles 175.72 182.99 190.02 196.19 210.11

1000K Triangles 220.11 228.55 237.47 244.80 257.74

Table 6.3: Individual timings shown in Figure 6.5 in milliseconds (ms).

The size of the Layered Hit Buffers is another important factor in determining the overall time

for building the acceleration structure (SLHB). The smaller the Hit Buffers, the less time is required to

construct the SLHB. However, decreasing the size will result in very coarse visibility structure. Figure

6.5 shows plots the construction and rendering of six Buddha models consisting of a various number of

polygons, ranging from 16K to 1M. The higher the number of polygons, then the longer it takes to render

the models, varying in a linear fashion. Although the number of triangles is different for each model, the

6.2. Performance Analysis of Complex Objects 89

220.11	

228.55	

237.47	

244.80	

257.74	

175.72	

182.99	

190.02	

196.19	

210.11	

152.99	

159.36	

164.32	

169.48	

182.21	

132.70	
 136.29	
 139.07	

143.74	

155.05	

0	

50	

100	

150	

200	

250	

300	

16x16	
 32x32	
 64x64	
 128x128	
 256x256	

Re
nd

er
in
g	

Ti
m
e	

pe

r	
 F
ra
m
e	

in
	
 M

ill
is
ec
on

d	

(m

s)
	

Size	
 of	
 Layerd	
 Depth	
 Buffer	

	
 1000K	
 Triangles	

	
 	
 	
 500K	
 Triangles	

	
 	
 	
 250K	
 Triangles	

	
 	
 	
 125K	
 Triangles	

	
 	
 	
 	
 	
 64K	
 Triangles	

	
 	
 	
 	
 	
 16K	
 Triangles	

Figure 6.5: Rendering time by various size of Layered Hit Buffer (16K-1M triangles, 64 paths, 2 indirect

bounces, 320 LHB directions, 16x16-256x256 LHB map size at 512x512 screen resolution).

amount of area covered in the SLHB is similar to the test scene, since the models are in multi-resolution.

Therefore, individual plots show the exact same slope, but located in a linearly higher position. Each

plot has a very low slope, which means the rasterization has a small overhead for a larger size of LHB.

The timing can be seen to be proportional to the covering area of the LHB, and the larger the size of the

model, then the longer it takes to build. For following experiments, we were able to achieve plausible

path-tracing results in real-time with only 128 to 320 LHB directions in a resolution of 128 x 128 for the

Hit Buffer with 16 layers which is sufficient to capture all elements.

6.2 Performance Analysis of Complex Objects
In this section, the scalability test is extended to measure the performance of the rendering method

using SLHB, by applying the same number of 320 directions for all of the test scenes. This means the

polygons are rasterized into 320 LHBs. For typical objects, it takes between 10-100 milliseconds to

build the SLHB, and the memory consumption is dependent on the number of directions and the size of

the hit buffer.

6.2.1 Rendering Timing of Various Objects

The depth complexity of the scenes affects the rendering timing in locating the nearest intersection. In

order to check the rendering performance for various objects under a similar depth complexity, we have

placed objects in a cornell-style room. Figure 6.6 shows rendered images of the duck, horse, bunny

and dragon models illustrating the correct effects of global illumination. The scenes shows an example

of a point light source from the ceiling towards the object in the middle such that direct lighting only

6.2. Performance Analysis of Complex Objects 90

(a) Duck (14K) (b) Horse (100K)

(c) Bunny (70K) (d) Dragon (250K)

Figure 6.6: Rendered images of complex objects (resolution 512x512).

covers some part of the scene and generates sharp shadows, Other areas are illuminated from indirect

inter-reflected lighting and show soft indirect shadow effects.

The statue model in Figure 6.7 is rendered at a high resolution with many paths. The rendering time

takes 15,904 ms at a resolution of 1024 x 1024, with 640 paths per pixel for 5 bounces (see Table 6.4).

This is approximately 42 million path rays per second, accounting for 5 bounces. This illustrates that

the rendering solution presented here can cope with a highly complex model, and produce a high-quality

image. The image shows that very limited direct lighting is available in the scene. The statue model is

mainly lit by indirect illuminated energy, which shows the inter-reflections from other walls. The detail

of performance measurements on various conditions is given in the following sections.

6.2. Performance Analysis of Complex Objects 91

Figure 6.7: One million polygon statue rendered at 15,904ms per frame, which is 42M paths per frame

(640 paths, 5 indirect bounces, 320 LHB directions, 128x128 LHB map size at 1024x1024 screen reso-

lution).

6.3. Performance Comparison with OptiX path tracer 92

151	

1090	

2077	

4003	

8006	

15904	

73	

715	

1386	

2728	

5412	

10784	

38	
 580	

1155	

2300	

4579	

9145	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

18000	

0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	

Re
nd

er
in
g	

Ti
m
e	

pe

r	
 F
ra
m
e	

in
	
 M

ill
is
ec
on

ds
	
 	
 (
m
s)
	

Number	
 of	
 Paths	
 Per	
 Pixel	

Statue	
 (1M)	

Dragon	
 (250K)	

Dolphins(2K)	

Figure 6.8: Paths VS frame rates by increasing number of paths (2K-1M triangles, 2-640 paths, 5 indirect

bounces, 320 LHB directions, 128x128 LHB map size at 1024x1024 screen resolution).

Paths 2 Paths 10 Paths 40 Paths 80 Paths 160 Paths 320 Paths 640 Paths

Dolphins(2K) 38 152 580 1,155 2,300 4,579 9,145

Dragon (250K) 73 209 715 1,386 2,728 5,412 10,784

Statue (1M) 151 349 1,090 2,077 4,003 8,006 15,904

Table 6.4: Individual timings shown in Figure 6.8 in milliseconds (ms).

6.2.2 Paths VS Timing

Figure 6.8 shows plots of three scenes; the dolphin, dragon and statue models for a various number of

paths per pixel. The rendering time is measured with a resolution of 1024 x 1024 with 5 indirect bounces.

The rendering time grows linearly with the number of paths per pixel. Each plot shows a straight line

with different slopes, where a higher slope represents a more complex object.

Figure 6.9 shows a statue scene, with timing ranging from 151 ms for 2 paths to 16 seconds for 640

paths. As shown in the figures, the new rendering method shows the same noise artifacts that appeared

in the conventional path tracing results, when the number of paths per pixel is too low with a stratified

sampling scheme. However, the noise becomes less noticeable as the number of paths increases.

6.3 Performance Comparison with OptiX path tracer
In this section, the performance of the new rendering solution is compared with other GPU-based works.

The latest GPU-based ray tracing method [ZHWG08] reports that about 20 million rays can be traced in a

6.3. Performance Comparison with OptiX path tracer 93

(a) 2 paths: 151ms (b) 5 paths: 226ms (c) 10 paths: 349ms

(d) 20 paths: 596ms (e) 40 paths: 1,090ms (f) 80 paths: 2,077ms

(g) 160 paths: 4,003ms (h) 320 paths: 8,006ms (i) 640 paths: 15,904ms

Figure 6.9: Timing measurements for various paths (1M statue model, 2-640 paths, 5 indirect bounces,

320 LHB directions, 128x128 LHB map size at 1024x1024 screen resolution).

dynamic scene, including a rebuild of the acceleration structure. That algorithm proves that an efficiently

written GPU-based method could be 4 to 7 times faster than an optimized CPU algorithm [HMS06] and

comparable with multiple CPU algorithms [MSK07]. However, the performance measurement does not

account for random number generation. For this reason, a reference solution has been developed to

measure accuracy timing using Optix SDK library [PBD+10]. Table 6.5 is a comparison of the result

against [AL09, PBD+10]. However, those results are based on the measurement of intersection kernels

only. Also, the measurement sees some benefit from arranging a large size of viewport to increase the

coherence. As the figure shows, their measure is mainly based on primary ray and ambient rays, which

6.4. Performance Analysis of Dynamic Elements 94

506.0	

496.3	

489.4	

481.5	

475.6	

427.4	

50.58	

14.38	

12.22	

9.16	

8.39	

8.65	

0	
 100	
 200	
 300	
 400	
 500	

CornellBox	
 (0.1K)	

Dolphins	
 (2K)	

Duck	
 (14K)	

Bunny	
 (70K)	

Dragon	
 (250K)	

Statues	
 (1M)	

Million	
 Rays	
 per	
 Second	
 (MRays/s)	

Sc
en

es
	
 (N

um
be

r	
 o
f	
 T
ria

ng
ls
)	

Op<X	
 Path	
 tracer	
 Our	
 Stochas<c	
 Path	
 tracer	

Figure 6.10: Performance comparison of OptiX [PBD+10] and the proposed CUDA Path tracer.

Model Cornell Box Dolphins Duck Bunny Dragon Statues

Triangles 100 2K 14K 70K 250K 1.0M

Stochastic(Precomputed) 506.0 496.3 489.4 481.5 475.6 427.4

OptiX Path tracer 50.58 14.38 12.22 9.16 8.39 8.65

Table 6.5: Individual performance shown in Figure 6.10 in millions of rays per second.

has a huge benefit over path tracing from random indirect rays. In this research, our measurement is

based on random indirect rays where coherence is a minimum. In typical scenes, our new method is

able to achieve about 450M rays per second whereas Optix-based ray tracing can send out only 8-50M

rays per second. Figure 6.10 indicates that this new solution is a few orders of magnitude faster than

the Optix-based path tracer [PBD+10] as the model becomes more complex. However, Optix-based

ray tracing is capable of simulating general effects, whereas our renderer is optimized for environments

where mostly diffuse objects are dominant.

6.4 Performance Analysis of Dynamic Elements

The performance details of the path tracing method for dynamic environments is described in this section.

One of the main advantages of this new algorithm is the fact that the rebuilding cost of the visibility

structure is very low compared with conventional acceleration structures for path tracing. This is because

a parallel rasterization method has been predominantly used to build the structure on the fly. Figure 6.11

illustrates a sequence showing a galloping elephant model. In this example, the camera view is fixed

6.4. Performance Analysis of Dynamic Elements 95

(a) frame 0 (b) frame 10 (c) frame 20

(d) frame 30 (e) frame 40 (f) frame 10

(g) frame 20 (h) frame 39 (i) frame 47

Figure 6.11: Dynamic movement of an elephant.

and the dynamic elephant object consisting of 49K polygons is updated in every frame. Figure 6.12

shows an enlarged image of the galloping elephant model, where only a small amount of direct light is

illuminated on elephant’s back. The rest of the elephant is indirectly illuminated from the walls, which

shows green color bleeding. It also shows the presence of an umbra region, which is the dark part of the

shadow where the direct light source is completely blocked by the elephant’s occluding foot. The large

penumbra region created by the elephant’s body is also completely blocked from the direct lighting, but

gathers indirect energy from all directions.

Figure 6.13 shows the SHLB construction time and rendering time of dynamic objects for a 48

camera frame sequence, and some rendered frames are shown in Figure 6.11. Three models have been

chosen, which are of a horse, camel and elephant in the range of 17K to 85K polygons. The timing

6.4. Performance Analysis of Dynamic Elements 96

Figure 6.12: A large image of the galloping elephant model.

includes rebuilding an acceleration structure (construction time) and rendering one scene per frame. As

shown in the figure, it takes 23 to 30 milliseconds to render an image at a resolution of 512 x 512 with

16 paths per pixel. Conventional path tracing algorithms suffer from the high cost of rebuilding the

kd-tree, which prohibits real-time rendering of dynamic objects. However, the proposed solution takes

5 to 11 milliseconds to rebuild an acceleration structure per frame for tens of thousands of polygons.

The SLHB construction and rendering time are consistent over all frames for each model. Although the

dynamic elephant object (85K) has five times more polygons than the horse object (17K), there is only a

slight additional rendering overhead (7ms). In other words, the cost of building a dynamic acceleration

structure is relatively smaller than an overall rendering cost.

6.4.1 Performance comparison of Rebuilding the SLHB

The acceleration structure proposed in this thesis is capable of merging a few SLHBs efficiently. This

function is very useful when a scene consists of a complex static environment with small dynamic ob-

jects. In this case, the SLHB is computed for the static scene once, which is reused for every frames.

Only the SLHB for the dynamic objects is rebuilt, which is then appended to the static SLHB in order

to complete the acceleration structure. In this way, only a small amount of time is required to update an

6.4. Performance Analysis of Dynamic Elements 97

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	

Co
ns
tr
uc
)o

n	

an

d	

Re

nd
er
in
g	

Ti
m
e	

in
	
 M

ill
is
ec
on

d	

(m

s)
	
 	

Camera	
 Frame	
 Sequence	

RENDERING	
 	

SLHB	
 CONSTRUCTION	

Elephant	
 (85K)	

Elephant	
 (85K)	

Camel	
 (44K)	

Camel	
 (44K)	

Horse	
 (17K)	

Horse	
 (17K)	

Figure 6.13: Rendering and construction time of dynamic objects at 512 x 512 resolution at 16 paths

with 2 indirect bounces per pixel.

506.0	
 496.3	
 489.4	
 481.5	
 475.6	

427.4	

488.1	
 475.1	
 466.3	

434.3	

370.0	

244.2	

0	

100	

200	

300	

400	

500	

600	

CornellBox	
 (0.1K)	
 Dolphins	
 (2K)	
 Duck	
 (14K)	
 Bunny	
 (70K)	
 Dragon	
 (250K)	
 Statues	
 (1M)	

M
ill
io
n	

Ra

ys
	
 p
er
	
 S
ec
on

d	

(M

Ra
ys
/s
)	
 	

Precomputed	
 Visibility	
 Data	
 Structure	
 (StaKc)	
 On	
 the	
 fly	
 Visibility	
 Data	
 Structure	
 (Dynamic)	

Figure 6.14: Performance comparison of static and dynamic data structure update.

acceleration structure efficiently. Figure 6.14 shows a performance comparison of the same scene in two

conditions. One uses a pre-computed visibility structure, which is mainly used in a static environment in

order to maximize the rendering performance. The other one rebuilds the acceleration structure for every

frame, which is a technique typically used in a dynamic environment. The same test models are used

6.5. Scalability on Graphics Cards 98

as in the previous section (Figure 6.6 and 6.7) to show how the performance degrades as the number of

polygons increases for the two conditions. The bar charts show the rendering performance in millions

of rays per second, for models containing 0.1K to 1M triangles. The pre-computed visibility method

is capable of achieving a consistent performance over all the models, whereas the performance when

using a dynamic acceleration structure degrades as the number of polygons increases, due to the cost of

rebuilding the complex data structure. However, the performance of both methods is at least an order of

magnitude faster than the current GPU-based path tracing method using a Optix SDK.

6.5 Scalability on Graphics Cards

5.00	

10.00	

23.13	

6	

11	

25.82	

7	

13	

30.47	

GeForce	
 8800	
 GTX	
 GeForce	
 GTX	
 280	
 GeForce	
 GTX	
 480	

Horse	
 (17K)	
 Camel	
 (44K)	
 Elephant	
 (85K)	

Figure 6.15: The scalability test on three graphics cards.

All the performance measurements in this thesis are based on the NVIDIA Geforce GTX 480, which

has 480 stream processors. Figure 6.15 shows the rendering frame rates for three dynamic objects on

various graphics cards. It indicates that the new rendering algorithm linearly scales on other graphics

cards such as the Geforce GTX 280, which has 240 core processors, or the 8800 GTX, with 128 core pro-

cessors. Due to compatibility issues, the algorithm can not run on less than the CUDA 1.3 specification

architecture.

6.6 Summary
In this chapter the evaluation of the proposed global illumination rendering method using rasterization

on the GPU has been discussed. The results show that this new rendering method can render high-quality

images efficiently with varying numbers of polygons and on different model sizes. This new algorithm

6.6. Summary 99

runs at real-time rates on modern graphics hardware, and it has also been shown that real-time rendering

of dynamic objects is feasible.

Chapter 7

Conclusions and Future Works

In recent years, research into the field of global illumination has changed the focus of study towards

real-time rendering systems. This is due to the considerable technical development of flexible modern

graphics hardware, which has opened up a new research area in hardware-accelerated global illumination

algorithms. Several methods have been presented to demonstrate GPU-based algorithms running entirely

on graphics hardware, instead of using a traditional graphics pipeline. Although these methods are

capable of running in real-time, they are mainly limited to static environments due to the high cost

of rebuilding acceleration structures. This research has presented an efficient visibility acceleration

structure using a customized CUDA rasterization, so that the proposed path tracing method is capable

of rendering global illumination for dynamic environments at real-time frame rates. The main topics

investigated in this thesis are summarized in Section 7.1, and there is a discussion on the recommended

direction for ongoing and future research in Section 7.2 .

7.1 Summary

The main objective of this research was to develop a novel method for enabling real-time rendering of

physically simulated global illumination in dynamic virtual environments, accounting for changes of

view, material, lighting and objects. In order to achieve this goal, the concept of adapting an approxi-

mated visibility technique for global illumination was first introduced. Our perceptual study [YCK+09]

indicates that some visibility approximations can yield rendering results that are considered to be as re-

alistic as accurate solutions. Based on this fact, a new parameterization of an acceleration structure was

proposed, which holds approximated visibility information in multi-layered hit buffers. The hit buffers

are a similar notion to those introduced in Layered Depth Images [SGHS98]. However, the data struc-

ture presented in this study extends LDI concept to spherical directions in order to build a 5D visibility

field, so that any intersections in a scene are approximated in a simple depth search manner. In order

to construct the Spherical Layered Hit Buffers (SLHB), a new and efficient CUDA-based rasterization

method was proposed, due to the fact that OpenGL rasterization is not capable of generating structural

buffers. This research adapted our proved concept [YCK+09] that direct illumination requires higher ac-

curacy than indirect illumination computation. Therefore, direct illumination is computed directly from

the light source using a large shadow map, whereas indirect illumination is computed by the SLHB to

7.2. Future Research 101

determine the approximated visibility information. It has been shown that the performance of this new

rasterization is comparable to the standard OpenGL rasterizer, and that in some cases this new rasteri-

zation method is even faster. The proposed CUDA rasterizer has been used to build the SLHB on the

fly so that the visibility field is updated every frame. In the rendering stage, a final viewing is rendered

in real-time from any point in a virtual environment. Two methods are proposed to evaluate the ren-

dering equation. One uses a deterministic gathering method to compute the Monte Carlo Integration of

the light transport in a parallel fashion. The other method uses stochastic methods, which employs an

important sampling scheme to approximate fast indirect illumination using approximated visibility. The

fundamental achievement of this research is the development of a CUDA rasterizer, parameterization of

an approximated visibility field and a real-time GPU Monte-Carlo path tracing solution.

7.2 Future Research
There are several possible areas for future research. Within these research directions, some ideas will

be described regarding how to use the new rasterization and SLHB structure in the field of computer

graphics. In the following section, the ongoing works of this research will also be presented, focusing on

real-time global illumination in virtual reality in Section 7.2.1 and augmented reality in Section 7.2.2.

Figure 7.1: An example of McGuire’s [MESL10] work, showing the difference between conventional

and stochastic rasterization.

The new CUDA rasterizer is an optimized software rasterization method on a GPU, which enables

manipulation of a rasterized output in a structural data format. In this algorithm, the CUDA rasterizer

has been used to build multiple layered hit buffers, with depth and polygonal information that serve as

a discrete acceleration structure for global illumination. Although this user-defined graphics pipeline is

very useful, there are several possible improvements over the proposed CUDA rasterization method in

order to achieve complex tasks such as stochastic rasterization, motion blur and depth of field effects.

McGuire et al [MESL10] presented a stochastic rasterization on GPU architectures, achieving interactive

performance for complex scenes as shown in Figure 7.1.

A brute force way of achieving this effect is to render multiple conventional images using a standard

rasterization function as a pinhole camera, and then applying post-processing to average the pixel values

[HA90, WGER05]. The accumulation buffering is an inefficient method and could result in a discrete

ghosting effect. The advantage of stochastic rasterization methods [AMMH07, FLB+09, HQL+10] is

the ability to use a conventional rasterizer to check many visibility tests over time and for different lens

positions, while computing one shading value per pixel. In a similar way, the proposed CUDA rasterizer

7.2. Future Research 102

can be extended to perform multi-view rasterization by loading polygon data once and rasterizing over

many different perspective views in a single graphics pipeline. This means it avoids multiple loading

of scene data and transfer between scenes in the GPU for large models. In this way, the accumulation

buffering can be simulated for multiple views, while maintaining a shading process at a minimum per

pixel.

Figure 7.2: An example of lens blur effect from Lee’s work [LES09].

Another technique that benefits from multiple view rasterization is the lens blur effect. Lee et al

[LES09, LES10] presented a GPU-based solution to simulate depth of field effects by using a layered

image-based scene. Most real-time approaches for the lens effect use a single view image to avoid

multiple rendering of a scene, and simulate approximated visibility. However, Lee’s method uses a

multiple render target function in the graphics hardware to generate multiple layered images in order

to represent a scene. These layered images are placed in several locations towards a camera view at

an exponential distance. Then the multiple layered images are merged into a single image by applying

cone filtering to multiple layers of the depth buffer, thereby yielding the depth of field effect. However,

their method can only rasterize a certain number of layers at once due to the limitations of the OpenGL

hardware, whereas the CUDA rasterization method defined in this research study has no limit in creating

a number of layers, as long as memory is available. This new solution can be extended to support lens

blur in a similar way. An LHB structure has depth and polygon ids which are very similar to Lee’s layered

image representation. One advantage is that the SLHB holds layered depth buffer in many directional

views, so that the SLHB can be built once and used for any camera view to show the depth of field

effects.

There are some other applications that can benefit from the new acceleration structure defined in

this research study, for example, instant radiosity algorithm [Kel97] that places many virtual point lights

in a scene to approximate global illumination. However, generating shadow maps for each VPL is too

7.2. Future Research 103

costly. Instead of generating many shadow maps, the SLHB acceleration structure provides approxi-

mated visibility for faster occlusion query.

7.2.1 Real-time Global illumination in Virtual Reality

Global illumination in the context of Virtual Reality (VR) is another area that can benefit from a real-time

rendering system. Global illumination of virtual environments could enhance the visual realism and the

sense of presence. However, due to the computational complexity of rendering systems, many VR appli-

cations are limited to a direct illumination model or pre-computed global illumination for static scenes.

Dmitriev et al [DAK+04] have applied pre-computed radiance transfer [SKS02] to VR rendering in order

to support global illumination in a CAVE (Cave Automatic Virtual Environment) system. In our earlier

research, we also also adapted the Virtual Light Field (VLF) [SMKY04] technique to provide global

illumination for VR applications [MKYS07a, MYK+08]. However, the rendering method employed a

hybrid technique to provide global illumination, by integrating pre-computed global illumination with

simple dynamic elements on the fly. The global illumination effects for static elements of the scene are

from pre-computed VLF data, whereas dynamic elements, such as avatar movement, soft shadows and

reflection of avatar are added to a rendered image in post-processing for each frame. This is because

the rendering cost of the full global illumination prohibits real-time rates. The new GPU-based path

tracing solution devised in our research can be employed to overcome the problems regarding dynamic

elements, allowing realistic virtual environments.

Figure 7.3: Real-time Global illumination in Virtual Reality.

Figure 7.3 shows a photograph of a participant in a CAVE virtual library. The scene is rendered

with pre-computed VLF, which presents the dynamic virtual avatar in the mirror by tracking data from

7.2. Future Research 104

two motion sensors. We also conducted some perceptual studies [SKMY09] [YMKS11] in order to

understand whether physically-based global illumination within dynamic environments could enhance

the sense of presence in an immersive virtual reality environment. The results indicate that visual realism

enhances a realistic response in an immersive virtual environment.

7.2.2 Real-time Global Illumination in Augmented Reality

(a) HDR Environment Lighting

(b) Real Scene (c) Virtual Statue in a Real Scene

Figure 7.4: Real-time Global Illumination in Augmented Reality.

Augmented Reality (AR) techniques offer a method to merge virtual environments into real world

environments. AR is also related to the term ’mixed reality’, where virtual objects are seamlessly pre-

sented in the physical world, which are often indistinguishable from realistic photos. Many researchers

have studied the way that shadows influence [SKT03] the presence of virtual objects in an augmented

scene. In recent years, some mixed reality works [Gro05, GEM07] have studied the influence of inter-

7.2. Future Research 105

reflection between virtual and real objects. Most AR applications simply merge virtual objects in static

photo-realistic images, which often lack dynamic environmental illumination and interactive indirect il-

lumination. The new real-time path tracer in our research could provide a framework for mixed reality,

allowing a color bleeding effect at real-time rates.

Figure 7.4 shows a typical example of an augmented reality scene, where two realistic objects on

the table are illuminated from many different light sources, and a virtual statue is rendered using captured

environmental lighting. The small image at the top right corner in Figure 7.4 shows shadow and shading

of the virtual object before it is integrated into the real environment.

In this ongoing AR study, it is the aim to provide seamless compositing of dynamic virtual objects

into real scenes, considering inter-reflection from surrounding real objects. In order to achieve this,

a perceptual study is conducted to measure realism, in order to speed up the rendering by allocating

computational tasks where they are perceptually required the most. The initial focus is on investigating

the perceptual metrics of measuring the realism of shadow, direct and indirect illumination. Then the

perpetual metric is used to determine the appearance of virtual objects. In this way, the influence of

individual components is measured so that more resources are allocated to where they are most important.

Appendix A

Summary of Notations

A.1 Geometry

SYMBOL DESCRIPTION

x Point(or position) in 3D space

S, A A set of surface points

Nx Normal at surface point x (Normalized |n|= 1)

dAx Differential surface area at point x

rxy Distance between surface points x and y

xy Direction from x to y

Θ,−Θ Outgoing direction and its negate direction

Ψ,−Ψ Incoming direction and its negate direction

ω Direction (unit vector)

ωi Incoming or incident direction

ωo Outgoing or exitant direction

(θ ,φ) Direction in spherical coordinates

dω Differential Solid Angle (dω = sinθdθdφ)

dωΨ Differential Solid Angle in direction Ψ

Ω Set of directions on the hemisphere

Ω4π Set of directions on the unit sphere

V (x,y) visibility function; V (x,y) =

1, if x and y are mutually visible;

0, otherwise.

G(x,y) geometry term (cos(θ1)cos(θ2)
|x−y|2)

A.2. Probability (Monte Carlo) 107

A.2 Probability (Monte Carlo)

SYMBOL DESCRIPTION

ξ1,ξ2, ...ξn Canonical Uniformly Sampled Random Variables

E[ξ] Expected value of random variable ξ

〈I〉 Estimator of I

〈I〉N N-sample estimate or I

p(x) Probability density function(PDF)

A.3 Radiometry

SYMBOL DESCRIPTION

Φ Radiant flux (power) [(W)att]

E Irradiance (flux are density) [W ·m−2]

I Radiant intensity (flux density per solid angle) [W · sr−1]

Q Radiant Energy [(J)oule]

M,B Radiant exitance, radiosity [W ·m−2]

L Radiance (flux density per area per solid angle)

Le Emitted Radiance

Li Incident Radiance

Lr Reflected Radiance

L(x→Θ) Radiance at x in outgoing direction Θ

L(x←Ψ) Radiance at x in incoming direction Ψ

ρ Reflectance

ρd Diffuse reflectance

ρs Specular reflectance

fr(Θ↔Ψ) BRDF(bidirectional reflectance distribution function)

fr(x,Θ↔Ψ) BRDF at surface point x

σa Absorption coefficient

σs Scattering coefficient

σt Attenuation coefficient

A.4. Miscellaneous 108

A.4 Miscellaneous

SYMBOL DESCRIPTION

L Light source

E Eye or camera position

D Diffuse reflection

G Glossy reflection

S Specular reflection

| Operator ’or’

+ Operator ’addition’

δ (x) Dirac delta distribution

ε Error symbol

Appendix B

List of Publications

• Visual Realism Enhances Realistic Response in An Immersive Virtual Environment - Part 2

I. Yu, J. Mortensen, P. Khanna, M. Slater IEEE Computer Graphics and Applications, to appear,

2011

• Display-aware Image Editing W.K. Jeong, M.K. Johnson, I. Yu, J. Kautz, H. Pfister, S. Paris

International Conference on Computational Photography, 2011

• Perceptual influence of approximate visibility in indirect illumination I. Yu, A. Cox, M.H.

Kim, T. Ritschel, T. Grosch, C. Dachsbacher, J. Kautz ACM Transactions on Applied Perception,

2009

• Visual Realism Enhances Realistic Response in An Immersive Virtual Environment M.

Slater, P. Khanna, J. Mortensen, I. Yu IEEE Computer Graphics and Applications, 2009

• Real-Time Global Illumination for VR Applications J. Mortensen, I. Yu, P. Khanna, M. Slater,

F. Tecchia, B. Spanlang, G. Marino, M. Slater IEEE Computer Graphics and Applications, 2008

• Real-time Global Illumination in the CAVE J. Mortensen, P. Khanna, I. Yu, M. Slater VRST

’07: Proceedings of the 2007 ACM symposium on Virtual reality software and technology, 2007

• A Non-parametric Guide for Radiance Sampling in Global Illumination P. Khanna, M. Slater,

J. Mortensen, I. Yu CGIV ’07: Proceedings of the Computer Graphics, Imaging and Visualisation,

2007

• A Visibility Field for Ray Tracing J. Mortensen, P. Khanna, I. Yu, M. Slater CGIV ’07: Proceed-

ings of the Computer Graphics, Imaging and Visualisation, 2007

• Presence in Response to Dynamic Visual Realism: A Preliminary Report of An Experiment

Study P. Khanna, I. Yu, J. Mortensen, M. Slater VRST ’06: Proceedings of the ACM symposium

on Virtual reality software and technology, 2006

• A Virtual Light Field Approach to Global Illumination M. Slater, J. Mortensen, P. Khanna, I.

Yu, CGI ’04: Proceedings of the Computer Graphics International, 2004

Bibliography

[AB91] E. H. Adelson and J. R. Bergen. The plenoptic function and the elements of early vision.

MIT Press, 1991.

[AFO05] Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and detailed approximate

global illumination by irradiance decomposition. ACM Trans. Graph., 24:1108–1114, July

2005.

[AK87] James Arvo and David Kirk. Fast ray tracing by ray classification. Proc.of SIGGRAPH

1987, 21(4):55–64, July 1987.

[AK90] James Arvo and David Kirk. Particle transport and image synthesis. Computer Graphics,

24(4):53–66, 1990.

[AL09] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus. In

Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages 145–

149, New York, NY, USA, 2009. ACM.

[AMMH07] Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. Stochastic rasterization

using time-continuous triangles. In Proceedings of the 22nd ACM SIGGRAPH/EURO-

GRAPHICS symposium on Graphics hardware, pages 7–16, Aire-la-Ville, Switzerland,

Switzerland, 2007. Eurographics Association.

[AW87] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing. In

Eurographics ’87, pages 3–10. Elsevier Science Publishers, Amsterdam, North-Holland,

1987.

[Bad90] Didier Badouel. An efficient ray-polygon intersection. In Graphics Gems, pages 390–393.

Academic Press, 1990.

[BCL+07] Louis Bavoil, Steven P. Callahan, Aaron Lefohn, João L. D. Comba, and Cláudio T. Silva.

Multi-fragment effects on the gpu using the k-buffer. In Proceedings of the 2007 sympo-

sium on Interactive 3D graphics and games, I3D ’07, pages 97–104, New York, NY, USA,

2007. ACM.

[Bit99] Jiri Bittner. Hierarchical techniques for visibility determination. Tech-

nical Report DS-005, Department of Computer Science and Engineering,

Bibliography 111

Czech Technical University in Prague, March 1999. Also available as

http://www.cgg.cvut.cz/˜bittner/publications/minimum.ps.gz.

[BN76] James F. Blinn and Martin E. Newell. Texture and reflection in computer generated images.

Commun. ACM, 19(10):542–547, 1976.

[BUN05] M. BUNNELL. GPU Gems 2, chapter Dynamic Ambient Occlusion and Indirect Lighting,

pages 615–633. Addison Wesley, 2005.

[Car84] Loren Carpenter. The a -buffer, an antialiased hidden surface method. SIGGRAPH Comput.

Graph., 18:103–108, January 1984.

[CB04] Per H. Christensen and Dana Batali. An irradiance atlas for global illumination in complex

production scenes. In Rendering Techniques, pages 133–142, 2004.

[CBCG02] Wei-Chao Chen, Jean-Yves Bouguet, Michael H. Chu, and Radek Grzeszczuk. Light field

mapping: efficient representation and hardware rendering of surface light fields. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and inter-

active techniques, pages 447–456, New York, NY, USA, 2002. ACM Press.

[CCWG88] Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and Donald P. Greenberg. A

progressive refinement approach to fast radiosity image generation. SIGGRAPH Comput.

Graph., 22(4):75–84, 1988.

[CDP95] Frédéric Cazals, George Drettakis, and Claude Puech. Filtering, clustering and hierarchy

construction: a new solution for ray-tracing complex scenes. Computer Graphics Forum,

14(3):371–382, 1995.

[CF99] Emilio Camahort and Don Fussell. A geometric study of light field representations. Tech-

nical report tr99-35, Department of Computer Sciences, The University of Texas at Austin,

1999.

[CG85] Michael F. Cohen and Donald P. Greenberg. The hemi-cube: a radiosity solution for com-

plex environments. In SIGGRAPH ’85: Proceedings of the 12th annual conference on

Computer graphics and interactive techniques, pages 31–40, New York, NY, USA, 1985.

ACM Press.

[CHCH06] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast gpu ray tracing

of dynamic meshes using geometry images. In GI ’06: Proceedings of Graphics Inter-

face 2006, pages 203–209, Toronto, Ont., Canada, Canada, 2006. Canadian Information

Processing Society.

[Che90] Shenchang Eric Chen. Incremental radiosity: An extension of progressive radiosity to an

interactive image synthesis system. volume 24, pages 135–144, August 1990.

Bibliography 112

[Che95] Shenchang Eric Chen. Quicktime vr — an image-based approach to virtual environment

navigation. Computer Graphics, 29(Annual Conference Series):29–38, 1995.

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In HWWS ’02: Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages

37–46, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[CHH03] Nathan A. Carr, Jesse D. Hall, and John C. Hart. Gpu algorithms for radiosity and subsur-

face scattering. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 51–59, Aire-la-Ville, Switzerland, Switzerland,

2003. Eurographics Association.

[CHL04] Greg Coombe, Mark J. Harris, and Anselmo Lastra. Radiosity on graphics hardware. In

GI ’04: Proceedings of the 2004 conference on Graphics interface, pages 161–168, School

of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian

Human-Computer Communications Society.

[Chr99] Per H. Christensen. Faster photon map global illumination. J. Graph. Tools, 4(3):1–10,

1999.

[Chr05] Martin Christen. Ray Tracing on GPU. Diploma thesis, University of Applied Sciences

Basel, Switzerland, 2005.

[CLF98] Emilio Camahort, Apostolos Lerios, and Donald Fussell. Uniformly sampled light fields.

In G. Drettakis and N. Max, editors, Rendering Techniques ’98 (Proceedings of Eurograph-

ics Rendering Workshop ’98), pages 117–130, New York, NY, 1998. Springer Wien.

[Coh94] Daniel Cohen. Voxel traversal along a 3d line. In Paul Heckbert, editor, Graphics Gems

IV, page 366 369. Academic Press, 1994.

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions on Graph-

ics, 5(1):51–72, January 1986.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In SIG-

GRAPH ’84: Proceedings of the 11th annual conference on Computer graphics and in-

teractive techniques, volume 18, pages 137–145, New York, NY, USA, July 1984. ACM

Press.

[CPWAP08] Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and Fabio Pellacini. Fast, realis-

tic lighting and material design using nonlinear cut approximation. ACM Trans. Graph.,

27:128:1–128:10, December 2008.

[CRMT91] Shenchang Eric Chen, Holly E. Rushmeier, Gavin Miller, and Douglass Turner. A pro-

gressive multi-pass method for global illumination. In SIGGRAPH ’91: Proceedings of

the 18th annual conference on Computer graphics and interactive techniques, pages 165–

174, New York, NY, USA, 1991. ACM Press.

Bibliography 113

[CSS96] Per H. Christensen, Eric J. Stollnitz, and David H. Salesin. Global illumination of glossy

environments using wavelets and importance. ACM Transactions on Graphics, 15(1):37–

71, 1996.

[Cud11] NVIDIA CUDA C Programming Guide. NIVIDIA CUDA, 2011.

[CW93a] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. Com-

puter Graphics, 27(Annual Conference Series):279–288, 1993.

[CW93b] Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Academic

Press Professional, Boston, MA, 1993.

[DAK+04] Kirill Dmitriev, Thomas Annen, Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter

Seidel. A cave system for interactive modeling of global illumination in car interior. In

Proceedings of the ACM symposium on Virtual reality software and technology, VRST ’04,

pages 137–145, New York, NY, USA, 2004. ACM.

[DDSC11] Kurt Debattista, Piotr Dubla, Luis Santos, and Alan Chalmers. Wait-free shared-memory

irradiance caching. IEEE Comput. Graph. Appl., 31:66–78, September 2011.

[DS05] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps. In I3D ’05: Pro-

ceedings of the 2005 symposium on Interactive 3D graphics and games, pages 203–231,

New York, NY, USA, 2005. ACM.

[DS06] Carsten Dachsbacher and Marc Stamminger. Splatting indirect illumination. In I3D ’06:

Proceedings of the 2006 symposium on Interactive 3D graphics and games, pages 93–100,

New York, NY, USA, 2006. ACM.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering architec-

ture from photographs: A hybrid geometry- and image-based approach. Computer Graph-

ics, 30(Annual Conference Series):11–20, 1996.

[Dut96] Philip Dutré. Mathematical Frameworks and Monte Carlo Algorithms for Global Illu-

mination in Computer Graphics. PhD thesis, Katholieke Universiteit Leuven, September

1996.

[FBG02] Sebastian Fernandez, Kavita Bala, and Donald P. Greenberg. Local illumination environ-

ments for direct lighting acceleration. In EGRW ’02: Proceedings of the 13th Eurographics

workshop on Rendering, pages 7–14, Aire-la-Ville, Switzerland, Switzerland, 2002. Euro-

graphics Association.

[FLB+09] Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley, William R. Mark, and

Pat Hanrahan. Data-parallel rasterization of micropolygons with defocus and motion blur.

In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages

59–68, New York, NY, USA, 2009. ACM.

Bibliography 114

[FS05] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer.

In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, pages 15–22, New York, NY, USA, 2005. ACM Press.

[GEM07] Thorsten Grosch, Tobias Eble, and Stefan Mueller. Consistent interactive augmentation of

live camera images with correct near-field illumination. In Proceedings of the 2007 ACM

symposium on Virtual reality software and technology, VRST ’07, pages 125–132, New

York, NY, USA, 2007. ACM.

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lu-

migraph. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 43–54, New York, NY, USA, 1996. ACM Press.

[GKBP05] Pascal Gautron, Jaroslav Krivanek, Kadi Bouatouch, and Sumanta N. Pattanaik. Radiance

cache splatting: A gpu-friendly global illumination algorithm. In Rendering Techniques

2005, Eurographics Symposium on Rendering, pages 55–64, June 2005.

[GKPB04] Pascal Gautron, Jaroslav Krivanek, Sumanta Pattanaik, and Kadi Bouatouch. A novel

hemispherical basis for accurate and efficient rendering. In Rendering Techniques 2004:

15th Eurographics Workshop on Rendering, pages 321–330, June 2004.

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing. volume 4, pages 15–22, 1984.

[Gla89] Andrew S. Glassner. An Introduction to Ray tracing. Academic Press, San Diego, CA,

USA, January 1989.

[Gre86] Ned Greene. Environment mapping and other applications of world projections. IEEE

Comput. Graph. Appl., 6(11):21–29, 1986.

[Gro05] Thorsten Grosch. Differential photon mapping - consistent augmentation of photographs

with correction of all light paths. 2005.

[GSCH93] Steven J. Gortler, Peter Schröder, Michael F. Cohen, and Pat Hanrahan. Wavelet

radiosity. In SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, pages 221–230, New York, NY, USA, 1993. ACM

Press.

[GSHG98] Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. The irradiance

volume. IEEE Computer Graphics & Applications, 18(2):32–43, March 1998.

[GTGB84] Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile. Mod-

eling the interaction of light between diffuse surfaces. In SIGGRAPH ’84: Proceedings

of the 11th annual conference on Computer graphics and interactive techniques, pages

213–222, New York, NY, USA, 1984. ACM Press.

Bibliography 115

[HA90] Paul Haeberli and Kurt Akeley. The accumulation buffer: hardware support for high-

quality rendering. In Proceedings of the 17th annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’90, pages 309–318, New York, NY, USA, 1990.

ACM.

[Hav01] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical Uni-

versity in Prague, Prague, April 2001.

[HG86] Eric A. Haines and Donald P. Greenberg. The light buffer: A ray tracer shadow testing

accelerator. IEEE Computer Graphics and Applications, 6(9):6–16, September 1986.

[HLCS99] W. Heidrich, H. Lensch, M. Cohen, and H. Seidel. Light field techniques for reflections

and refractions. 1999.

[HMS06] Warren Hunt, William R. Mark, and Gordon Stoll. Fast kd-tree construction with an adap-

tive error-bounded heuristic. In 2006 IEEE Symposium on Interactive Ray Tracing. IEEE,

Sept. 2006.

[HQL+10] Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and Kun Zhou. Micropolygon ray tracing

with defocus and motion blur. In ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages

64:1–64:10, New York, NY, USA, 2010. ACM.

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity al-

gorithm. In SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer

graphics and interactive techniques, pages 197–206, New York, NY, USA, 1991. ACM

Press.

[IMG00] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynamically reparameterized

light fields. In SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 297–306, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co.

[IPL97] Insung Ihm, Sanghoon Park, and Rae Kyoung Lee. Rendering of spherical light fields. In

PG ’97: Proceedings of the 5th Pacific Conference on Computer Graphics and Applica-

tions, page 59, Washington, DC, USA, 1997. IEEE Computer Society.

[JC98] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light transport in

scenes with participating media using photon maps. pages 311–320, July 1998.

[Jen95] Henrik Wann Jensen. Importance driven path tracing using the photon map. In P. M.

Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95 (Proceedings of the Sixth

Eurographics Workshop on Rendering), pages 326–335, New York, NY, 1995. Springer-

Verlag.

Bibliography 116

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of the

eurographics workshop on Rendering techniques ’96, pages 21–30, London, UK, 1996.

Springer-Verlag.

[Jen97] Henrik Wann Jensen. Rendering caustics on non-Lambertian surfaces. Computer Graphics

Forum, 16(1):57–64, 1997.

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical

model for subsurface light transport. In SIGGRAPH ’01: Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 511–518, New York,

NY, USA, August 2001. ACM Press.

[JW89] D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing. In Proc. Graphics

Interface, pages 164–172, 1989.

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the 13th

annual conference on Computer graphics and interactive techniques, pages 143–150, New

York, NY, USA, 1986. ACM Press.

[KBR04] John Kessenich, Dave Baldwin, and Randi Rost. The OpenGL Shading Language 1.1.

3Dlabs, Inc. Ltd., April 2004. Document Revision 59.

[Kel97] Alexander Keller. Instant radiosity. In SIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 49–56, New York, NY,

USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[Kel98] Alex Keller. Quasi-Monte Carlo Methods for Photorealistic Image Synthesis. Diploma

thesis, University Kaiserslautern, 1998.

[KGBP05] Jaroslav Křivánek, Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. Improved

radiance gradient computation. In SCCG ’05: Proceedings of the 21st spring conference

on Computer graphics, pages 155–159, New York, NY, USA, 2005. ACM Press.

[KK86] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In SIGGRAPH ’86:

Proceedings of the 13th annual conference on Computer graphics and interactive tech-

niques, pages 269–278, New York, NY, USA, 1986. ACM Press.

[KL04] Filip Karlsson and Carl Johan Ljungstedt. Ray Tracing Fully Implemented on Pro-

grammable Graphics Hardware. M.s. thesis, Chalmers University of Technology Gteborg,

Sweden, 2004.

[KMYS04] Pankaj Khanna, Jesper Mortensen, Insu Yu, and Mel Slater. Fast ray tracing of scenes with

unstructured motion. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Posters, page 35, New

York, NY, USA, 2004. ACM.

Bibliography 117

[KP98] Laszlo Szirmay Kalos and Werner Purgathofer. Global ray-bundle tracing with hardware

acceleration. In In Rendering Techniques ’98, pages 247–258, 1998.

[KS97] Krzysztof S. Klimaszewski and Thomas W. Sederberg. Faster ray tracing using adaptive

grids. IEEE Comput. Graph. Appl., 17(1):42–51, 1997.

[KSMY07] Pankaj Khanna, Mel Slater, Jesper Mortensen, and Insu Yu. A non-parametric guide for

radiance sampling in global illumination. In CGIV ’07: Proceedings of the Computer

Graphics, Imaging and Visualisation, pages 41–48, Washington, DC, USA, 2007. IEEE

Computer Society.

[KYMS06] Pankaj Khanna, Insu Yu, Jesper Mortensen, and Mel Slater. Presence in response to dy-

namic visual realism: a preliminary report of an experiment study. In VRST ’06: Proceed-

ings of the ACM symposium on Virtual reality software and technology, pages 364–367,

New York, NY, USA, 2006. ACM.

[Lan09] W. B. Langdon. A fast high quality pseudo random number generator for nvidia cuda.

In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary

Computation Conference: Late Breaking Papers, GECCO ’09, pages 2511–2514, New

York, NY, USA, 2009. ACM.

[LC04] Bent Dalgaard Larsen and Niels Jorgen Christensen. Simulating photon mapping for real-

time applications. In Rendering Techniques, pages 123–132, 2004.

[LES09] Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. Depth-of-field rendering with mul-

tiview synthesis. In ACM SIGGRAPH Asia 2009 papers, SIGGRAPH Asia ’09, pages

134:1–134:6, New York, NY, USA, 2009. ACM.

[LES10] Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. Real-time lens blur effects and focus

control. ACM Trans. Graph., 29:65:1–65:7, July 2010.

[LH96] Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH ’96: Proceedings

of the 23rd annual conference on Computer graphics and interactive techniques, pages

31–42, New York, NY, USA, 1996. ACM Press.

[LHK+04] David Luebke, Mark Harris, Jens Krüger, Tim Purcell, Naga Govindaraju, Ian Buck, Cliff

Woolley, and Aaron Lefohn. Gpgpu: general purpose computation on graphics hardware.

In SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes, page 33, New York, NY, USA,

2004. ACM.

[LHLW09a] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Cuda renderer: a pro-

grammable graphics pipeline. In ACM SIGGRAPH ASIA 2009 Sketches, SIGGRAPH

ASIA ’09, pages 34:1–34:1, New York, NY, USA, 2009. ACM.

Bibliography 118

[LHLW09b] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Efficient depth peeling via

bucket sort. In Proceedings of the Conference on High Performance Graphics 2009, HPG

’09, pages 51–57, New York, NY, USA, 2009. ACM.

[LHLW10] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Freepipe: a programmable

parallel rendering architecture for efficient multi-fragment effects. In Proceedings of the

2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games, I3D ’10, pages

75–82, New York, NY, USA, 2010. ACM.

[LSK+07] Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaako Lehtinen, and Timo Aila. Incre-

mental instant radiosity for real-time indirect illumination. In Eurographics Symposium on

Rendering 2007, June 2007.

[LSSS04] Xinguo Liu, Peter P. Sloan, Heung Y. Shum, and John Snyder. All-frequency precomputed

radiance transfer for glossy objects. In Alexander Keller and Henrik W. Jensen, editors,

Eurographics Symposium on Rendering, pages 337–344, Norrköping, Sweden, 2004. Eu-

rographics Association.

[LTG92] Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. A discontinuity meshing for

accurate radiosity. IEEE Comput. Graph. Appl., 12(6):25–39, 1992.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional Path Tracing. In H. P. Santo,

editor, Proceedings of Third International Conference on Computational Graphics and

Visualization Techniques (Compugraphics ’93), pages 145–153, Alvor, Portugal, 1993.

[LW95] Eric P. Lafortune and Yves D. Willems. A 5d tree to reduce the variance of monte carlo

ray tracing. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95

(Proceedings of the Sixth Eurographics Workshop on Rendering), pages 11–20, New York,

NY, 1995. Springer-Verlag.

[Mam89] Abraham Mammen. Transparency and antialiasing algorithms implemented with the vir-

tual pixel maps technique. IEEE Comput. Graph. Appl., 9:43–55, July 1989.

[MB07] Kevin Myers and Louis Bavoil. Stencil routed a-buffer. In ACM SIGGRAPH 2007 sketches,

SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[MESL10] M. McGuire, E. Enderton, P. Shirley, and D. Luebke. Real-time stochastic rasterization on

conventional gpu architectures. In Proceedings of the Conference on High Performance

Graphics, HPG ’10, pages 173–182, Aire-la-Ville, Switzerland, Switzerland, 2010. Euro-

graphics Association.

[MGAK03] William R. Mark, R.Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg: A system for

programming graphics hardware in a c-like language. ACM Trans. Graph., 22(3):896–907,

2003.

Bibliography 119

[MKYS07a] Jesper Mortensen, Pankaj Khanna, Insu Yu, and Mel Slater. Real-time global illumination

in the cave. In VRST ’07: Proceedings of the 2007 ACM symposium on Virtual reality

software and technology, pages 145–148, New York, NY, USA, 2007. ACM.

[MKYS07b] Jesper Mortensen, Pankaj Khanna, Insu Yu, and Mel Slater. A visibility field for ray

tracing. In CGIV ’07: Proceedings of the Computer Graphics, Imaging and Visualisation,

pages 54–61, Washington, DC, USA, 2007. IEEE Computer Society.

[MM02] Vincent C. H. Ma and Michael D. McCool. Low latency photon mapping using block

hashing. In HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-

ence on Graphics hardware, pages 89–99, Aire-la-Ville, Switzerland, Switzerland, 2002.

Eurographics Association.

[MSK07] Alexei Soupikov Maxim Shevtsov and Alexander Kapustin. Highly parallel fast kd-tree

construction for interactive ray trac- ing of dynamic scenes. In 2007 Eurographics, 2007.

[MT97] Thomas Mller and Ben Trumbore. Fast, minimum storage ray/triangle intersection. Journal

of Graphics Tools, 2(1):21–28, 1997.

[MYK+08] Jesper Mortensen, Insu Yu, Pankaj Khanna, Franco Tecchia, Bernhard Spanlang, Giuseppe

Marino, and Mel Slater. Real-time global illumination for vr applications. IEEE Comput.

Graph. Appl., 28(6):56–64, 2008.

[NC02] Kasper Hoej Nielsen and Niels Joergen Christensen. Fast texture based form factor cal-

culations for radiosity using graphics hardware. Journal of Graphics Tools, 6(4):1–12,

2002.

[NPG03] Mangesh Nijasure, Sumanta Pattanaik, and Vineet Goel. Interactive global illumination

in dynamic environments using commodity graphics hardware. In Proc. of 11th Pacific

Conference on Computer Graphics and Applications (PG’03), 2003.

[NPG05] Mangesh Nijasure, Sumanta Pattanaik, and Vineet Goel. Real-time global illumination on

the gpu. Journal of Graphics Tools, 10(2):55–71, 2005.

[NPW10] Greg Nichols, Rajeev Penmatsa, and Chris Wyman. Interactive, Multiresolution Image-

Space Rendering for Dynamic Area Lighting. Computer Graphics Forum, 29(4):1279–

1288, 2010.

[NRH+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geometric

considerations and nomenclature for reflectance. Monograph 161, National Bureau of

Standards (US), October 1977.

[NRH03] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shadows using non-linear

wavelet lighting approximation. ACM Trans. Graph., 22:376–381, July 2003.

Bibliography 120

[NW09] Greg Nichols and Chris Wyman. Multiresolution splatting for indirect illumination. In I3D

’09: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pages 83–

90, New York, NY, USA, 2009. ACM.

[OLG+05] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E.

Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graphics

hardware. In Eurographics 2005, State of the Art Reports, pages 21–51, August 2005.

[PBD+10] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David

Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, and Martin

Stich. Optix: a general purpose ray tracing engine. In ACM SIGGRAPH 2010 papers,

SIGGRAPH ’10, pages 66:1–66:13, New York, NY, USA, 2010. ACM.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray tracing on pro-

grammable graphics hardware. ACM Transactions on Graphics, 21(3):703–712, July 2002.

ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

[PDC+03] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat Hanra-

han. Photon mapping on programmable graphics hardware. In HWWS ’03: Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 41–50,

Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[Pel95] Marco Pellegrini. Monte carlo approximation of form factors with error bounded a priori.

In Symposium on Computational Geometry, pages 287–296, 1995.

[Pin88] Juan Pineda. A parallel algorithm for polygon rasterization. SIGGRAPH Comput. Graph.,

22:17–20, June 1988.

[PKGH97] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering complex scenes

with memory-coherent ray tracing. pages 101–108, August 1997.

[PMS+99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and Charles

Hansen. Interactive ray tracing. pages –, April 1999.

[PO08] Anjul Patney and John D. Owens. Real-time reyes-style adaptive surface subdivision. ACM

Trans. Graph., 27:143:1–143:8, December 2008.

[PP98] Ingmar Peter and Georg Pietrek. Importance driven construction of photon maps. In

G. Drettakis and N. Max, editors, Rendering Techniques ’98 (Proceedings of Eurographics

Rendering Workshop ’98), pages 269–280, New York, NY, 1998. Springer Wien.

[Pur04] Timothy J. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford University,

March 2004.

Bibliography 121

[RCJ98] Erik Reinhard, Alan Chalmers, and Frederik W. Jansen. Overview of parallel photo-

realistic graphics. In Eurographics ’98 State of the Art Reports, pages 1–25. Eurographics

Association, August 1998.

[REG+09] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachsbacher. Micro-

rendering for scalable, parallel final gathering. ACM Trans. Graph., 28(5):1–8, 2009.

[RGK+08] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imper-

fect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.,

27:129:1–129:8, December 2008.

[RGS09] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximating dynamic global

illumination in image space. In Proceedings of the 2009 symposium on Interactive 3D

graphics and games, I3D ’09, pages 75–82, New York, NY, USA, 2009. ACM.

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for radiosity

in complex environments. Computer Graphics, 28(Annual Conference Series):435–442,

1994.

[SAS92] Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven radiosity

algorithm. In SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, pages 273–282, New York, NY, USA, 1992. ACM

Press.

[Sbe93] Mateu Sbert. An integral geometry based method for fast form-factor computation. Com-

puter Graphics Forum (Eurographics ’93), 12(3):409–420, 1993.

[Sbe97] Mateu Sbert. The Use of Global Random Directions to Compute Radiosity: Global Monte

Carlo Techniques. PhD thesis, Barcelona, Spain, 1997.

[SCG97] Peter-Pike J. Sloan, Michael F. Cohen, and Steven J. Gortler. Time critical lumigraph

rendering. In Symposium on Interactive 3D Graphics, pages 17–24, 181, 1997.

[SD95] Steven M. Seitz and Charles R. Dyer. Physically-valid view synthesis by image interpo-

lation. In Proc. Workshop on Representation of Visual Scenes. IEEE Computer Society

Press, June 1995.

[SD96] Steven M. Seitz and Charles R. Dyer. View morphing. Computer Graphics, 30(Annual

Conference Series):21–30, 1996.

[SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered depth images.

In Proceedings of the 25th annual conference on Computer graphics and interactive tech-

niques, SIGGRAPH ’98, pages 231–242, New York, NY, USA, 1998. ACM.

[SGNS07] Peter-Pike Sloan, Naga K. Govindaraju, Derek Nowrouzezahrai, and John Snyder. Image-

based proxy accumulation for real-time soft global illumination. In Proceedings of the 15th

Bibliography 122

Pacific Conference on Computer Graphics and Applications, pages 97–105, Washington,

DC, USA, 2007. IEEE Computer Society.

[SH92] Robert Siegel and John. Howell. Thermal Radiation Heat Transfer, volume 3rd ed. Hemi-

sphere Publishing, New York, 1992.

[Shi90] Peter S. Shirley. A ray tracing method for illumination calculation in diffuse-specular

scenes. Proc.Graphics Interface ’90, pages 205–212, 1990.

[Shi91] Peter S. Shirley. Physically Based Lighting Calculations for Computer Graphics. PhD

thesis, University of Illinois at Urbana-Champaign, January 1991.

[SKMY09] Mel Slater, Pankaj Khanna, Jesper Mortensen, and Insu Yu. Visual realism enhances realis-

tic response in an immersive virtual environment. IEEE Comput. Graph. Appl., 29(3):76–

84, 2009.

[SKS02] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-time rendering in

dynamic, lowfrequency lighting environments. In Proceedings of SIGGRAPH 2002, pages

527–536, July, 2002.

[SKT03] Natsuki Sugano, Hirokazu Kato, and Keihachiro Tachibana. The effects of shadow rep-

resentation of virtual objects in augmented reality. In Proceedings of the 2nd IEEE/ACM

International Symposium on Mixed and Augmented Reality, ISMAR ’03, pages 76–, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[Sla02] Mel Slater. Constant time queries on uniformly distributed points on a hemisphere. Journal

of Graphics Tools, 7(1):33–44, 2002.

[Smi98] Brian Smits. Efficiency issues for ray tracing. Journal of Graphics Tools: JGT, 3(2):1–14,

1998.

[SMKY04] Mel Slater, Jesper Mortensen, Pankaj Khanna, and Insu Yu. A virtual light field approach

to global illumination. In CGI ’04: Proceedings of the Computer Graphics International,

pages 102–109, Washington, DC, USA, 2004. IEEE Computer Society.

[SP89] François Sillion and Claude Puech. A general two-pass method integrating specular and

diffuse reflection. In Proceedings of SIGGRAPH ’89, pages 335–344. ACM Press, 1989.

[SP94] Franois X. Sillion and Claude Puech. Radiosity and Global IlluminationRadiosity and

Global IlluminationRadiosity and Global Illumination. Morgan Kaufmann Publishers,

Inc., San Francisco, 1994.

[SS92] Kelvin Sung and Peter Shirley. Ray tracing with the bsp tree. In David Kirk, editor,

Graphics Gems III, volume IBM version, pages 271–274. Morgan Kaufmann Publishers,

1992.

Bibliography 123

[ST05] Lars Ole Simonsen and Niels Thrane. A comparison of acceleration structures for gpu

assisted ray tracing. Master’s thesis, University of Aarhus, 2005.

[Std04] The Stanford 3D Scanning Repository. http://www-graphics.stanford.edu/

data/3Dscanrep/, 2004.

[SW00] Frank Suykens and Yves D. Willems. Density control for photon maps. In B. Peroche

and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the Eleventh Eu-

rographics Workshop on Rendering), pages 23–34, New York, NY, 2000. Springer Wien.

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo techniques for direct

lighting calculations. ACM Transactions on Graphics, 15(1):1–36, 1996.

[VG94] Eric Veach and Leonidas J. Guibas. Bidirectional estimators for light transport. pages

147–162, July 1994.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte

carlo rendering. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on Com-

puter graphics and interactive techniques, pages 419–428, New York, NY, USA, 1995.

ACM Press.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. Computer Graphics, 31(An-

nual Conference Series):65–76, 1997.

[WAA+00] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H.

Salesin, and Werner Stuetzle. Surface light fields for 3d photography. In SIGGRAPH ’00:

Proceedings of the 27th annual conference on Computer graphics and interactive tech-

niques, pages 287–296, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publish-

ing Co.

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis, Saar-

land University, 2004.

[War91] Gregory Ward. Adaptive shadow testing for ray tracing. In In 2nd Eurographics Workshop

on Rendering, 1991.

[WBS03] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive global illumination in com-

plex and highly occluded environments. In Proceedings of the 14th Eurographics workshop

on Rendering, EGRW ’03, pages 74–81, Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interactive rendering

with coherent ray tracing. In Alan Chalmers and Theresa-Marie Rhyne, editors, Computer

Graphics Forum (Proceedings of EUROGRAPHICS 2001, volume 20, pages 153–164.

Blackwell Publishers, Oxford, 2001. available at http://graphics.cs.uni-sb.de/ wald/Pub-

lications.

http://www-graphics.stanford.edu/data/3Dscanrep/
http://www-graphics.stanford.edu/data/3Dscanrep/

Bibliography 124

[WCG87] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A two-pass solution to

the rendering equation: A synthesis of ray tracing and radiosity methods. In SIGGRAPH

’87: Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, pages 311–320, New York, NY, USA, 1987. ACM Press.

[WDP99] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using the render

cache. In D. Lischinski and G.W. Larson, editors, Rendering techniques ’99 (Proceedings

of the 10th Eurographics Workshop on Rendering), volume 10, pages 235–246, New York,

NY, Jun 1999. Springer-Verlag/Wien.

[WEH89] John R. Wallace, Kells A. Elmquist, and Eric A. Haines. A ray tracing algorithm for

progressive radiosity. Computer Graphics, 23(3):315–324, July 1989.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and

Donald P. Greenberg. Lightcuts: a scalable approach to illumination. ACM Trans. Graph.,

24:1098–1107, July 2005.

[WGER05] Daniel Wexler, Larry Gritz, Eric Enderton, and Jonathan Rice. Gpu-accelerated high-

quality hidden surface removal. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, HWWS ’05, pages 7–14, New York, NY, USA, 2005.

ACM.

[WH92] Gregory J. Ward and Paul Heckbert. Irradiance gradients. In Third Eurographics Workshop

on Rendering, pages 85–98, Bristol, UK, 1992.

[Whi80] Turner Whitted. An improved illumination model for shaded display. Communications of

the ACM, 23(6):343–349, 1980.

[Woo90] Andrew Woo. Fast ray-polygon intersection. In In Andrew S. Glassner, editor, Graphics

Gems, page 394. Academic Press, San Diego, 1990.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for

diffuse interreflection. In SIGGRAPH ’88: Proceedings of the 15th annual conference on

Computer graphics and interactive techniques, pages 85–92, New York, NY, USA, 1988.

ACM Press.

[WS99] Gregory Ward and Maryann Simmons. The holodeck ray cache: an interactive ren-

dering system for global illumination in nondiffuse environments. ACM Trans. Graph.,

18(4):361–368, 1999.

[WS03] Michael Wand and Wolfgang Straßer. Real-time caustics. In P. Brunet and D. Fellner,

editors, Computer Graphics Forum, volume 22(3), 2003.

[WSC+95] Kyu-Young Whang, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, Wan-Sup Cho, Chong-

Mok Park, and Il-Yeol Song. Octree-r: An adaptive octree for efficient ray tracing. IEEE

Transactions on Visualization and Computer Graphics, 1(4):343–349, 1995.

Bibliography 125

[WSS05] Sven Woop, Jörg Schmittler, and Philipp Slusallek. Rpu: A programmable ray processing

unit for realtime ray tracing. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages

434–444, New York, NY, USA, 2005. ACM.

[WWZ+09] Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. An efficient gpu-based ap-

proach for interactive global illumination. In ACM SIGGRAPH 2009 papers, SIGGRAPH

’09, pages 91:1–91:8, New York, NY, USA, 2009. ACM.

[YCK+09] Insu Yu, Andrew Cox, Min H. Kim, Tobias Ritschel, Thorsten Grosch, Carsten Dachs-

bacher, and Jan Kautz. Perceptual influence of approximate visibility in indirect illumina-

tion. In APGV ’09: Proceedings of the 6th Symposium on Applied Perception in Graphics

and Visualization, New York, NY, USA, 2009. ACM.

[YMKS11] Insu Yu, Jesper Mortensen, Pankaj Khanna, and Mel Slater. Visual realism enhances re-

alistic response in an immersive virtual environment - part 2 (to appear). IEEE Comput.

Graph. Appl., 2011.

[ZHR+09] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining Guo. Render-

ants: interactive reyes rendering on gpus. ACM Trans. Graph., 28:155:1–155:11, Decem-

ber 2009.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construction on

graphics hardware. ACM Trans. Graph., 27:126:1–126:11, December 2008.

[ZIK98] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient light illumination model.

In Eurographics Symposium on Rendering/Eurographics Workshop on Rendering Tech-

niques, pages 45–56, 1998.

[ZS95] Kurt Zimmerman and Peter Shirley. A two-pass realistic image synthesis method for com-

plex scenes. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques ’95

(Proceedings of the Sixth Eurographics Workshop on Rendering), pages 284–295, New

York, NY, 1995. Springer-Verlag.

	Introduction
	Introduction
	Motivation
	Approximated Visibility for Indirect Illumination

	Scope and Limitation
	Contribution
	Organization of the Thesis

	Overview of Global Illumination
	Fundamentals of Illumination Theory
	Models of Light
	Geometry
	Radiometry
	Material Properties

	Mathematical Foundation of Global Illumination
	Plenoptic Function
	Energy Balance Equation
	Neumann Series Expansion

	Overview of Global Illumination Methods
	Finite Element Radiosity Methods
	Ray Tracing Methods
	Monte Carlo Path Tracing Methods
	Hybrid Methods
	Photon Mapping (Multi-Pass) Methods

	Precomputed Methods for Global Illumination
	Image-Based Rendering
	Light Fields (Lumigraph)
	Pre-computed Radiance Transfer

	Interactive Global Illumination
	Instant Radiosity
	Imperfect Shadow Map

	Overview of Global Illumination on GPU
	GPU Radiosity Methods
	GPU Ray Tracing Methods
	GPU Photon Mapping Methods
	GPU Irradiance and Radiance Caching Methods

	Screen Space Methods for Real-Time Global Illumination
	Screen Space Ambient/Directional Occlusion
	Reflective Shadow Maps

	Virtual Light Field Method for Global Illumination
	Summary

	Global Illumination with Spherical Layered Hit Buffers
	Overview
	Mathematical Formulation of Global Illumination
	Hemisphere and Area Formulations
	Stochastic Numerical Model for the Rendering Equation
	Neumann Series Expansion

	Parametrization of Spherical Data (Solid Angles)
	Uniform Subdivision Methods
	Evaluation of Uniform Subdivision Methods

	Spherical Layered Hit Buffers
	Summary

	CUDA Deep Rasterization
	Introduction
	CUDA Architecture
	CUDA Implementation Issues

	Building Layered Hit Buffering using CUDA Rasterization
	CUDA Deep Rasterization
	Overview
	Rendering Pipeline and Memory Structure
	Micro-Rasterization
	Macro-Rasterization

	Performance Analysis
	Discussion

	Real-Time GPU Global Illumination
	Overview of the Rendering System
	Rendering Procedure
	Light Transport

	Direct Lighting
	Important Sampling on Luminaries

	Indirect Lighting and Irradiance Estimation
	Cone Approximation
	Lambertian Reflection Model
	Implementation Details

	Dynamic Elements
	Discussion

	Results
	Evaluation of the Spherical Layered Hit Buffer
	Test Scenes for Scalability
	Numbers of Polygons
	Number of Directions
	Hit Buffer Size

	Performance Analysis of Complex Objects
	Rendering Timing of Various Objects
	Paths VS Timing

	Performance Comparison with OptiX path tracer
	Performance Analysis of Dynamic Elements
	Performance comparison of Rebuilding the SLHB

	Scalability on Graphics Cards
	Summary

	Conclusions and Future Works
	Summary
	Future Research
	Real-time Global illumination in Virtual Reality
	Real-time Global Illumination in Augmented Reality

	Summary of Notations
	Geometry
	Probability (Monte Carlo)
	Radiometry
	Miscellaneous

	List of Publications
	Bibliography

